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ABSTRACT 

Emergency Departments (EDs) are hectic, highly stochastic environments that deal with 

human lives under severe resource restrictions. ED personnel must provide quality 

clinical service and maintain an acceptable level of patient satisfaction while using 

limited operational resources. 

In this work we consider the required features and main characteristics of a real-time 

ED monitoring-and-control system. We then focus on two specific applications, namely 

i) monitoring the real-time ED load and ii) optimizing internal ED patient flow through 

real-time control.  

A good real-time monitoring-and-control system provides a holistic view of the entire 

ED operation, emphasizing information collection, analysis and display.  We analyze the 

ED operation from multiple dimensions and viewpoints, e.g., taking clinical, 

operational, and service-level aspects into account. We focus on monitoring approaches 

and optimization techniques that can be deployed and used within a real-time ED 

monitoring-and-control system.  

We developed an innovative load monitoring and measurement approach based on a 

neural networks paradigm. We thus enable adaptation of the load function into a 

specific ED setting, using subjective load perception provided by a specific user or a 

user group. 

We analyzed service policies to optimize the ED patient by addressing the following 

question: Which patient should a physician treat next? For that, we provide an optimal 

control, based on a fluid model analysis and discrete event simulation. Deploying the 

resulting service policies within a real-time monitoring-and-control system would enable 

ED management and staff to improve overall ED operations. 
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CHAPTER 1: INTRODUCTION 

An Emergency Department (ED) is a hectic, highly stochastic, environment that deals 

with human lives under severe resource restrictions. ED personnel must provide quality 

clinical service, and maintain an acceptable level of patient satisfaction while using 

limited operational resources. 

This research stems from the need for ED management to optimize ED operations. 

Specifically, we focus on the optimization approaches that stem from the ability to 

monitor and control ED operations in real-time. 

Advances in Information Technology (IT) is reflected in the extensive use of hospital IT 

systems such as Admit, Discharge, Transfer (ADT), Electronic Medical Record (EMR) 

systems, Picture Archive and Communication Systems (PACS) and alike, as well as by 

the implementation of new RFID-based technologies for tracking human and 

equipment movement. These advances suggest new monitoring and control 

opportunities. Such technologies may provide ED management with a holistic view of 

the current ED situation and enable the development of real-time optimization which 

aims at improving the ED clinical and operational environment. 

In this work, we present the required features and main characteristics of a real-time ED 

monitoring-and-control system. We then focus on two specific applications, namely i) 

monitoring the real-time ED load and ii) optimizing internal ED patient flow via real-

time control. Through these two applications, we demonstrate two fairly different 

research techniques. We analyze the ED load problem using artificial intelligence, i.e., 

neural networks, aiming at capturing the ED operational characteristics while treating it 

as a black-box, bypassing the need to deeply understand its internal behavior. We used a 

somewhat different research approach for the second application. Specifically, we 

address the "Which patient to treat next?" question, using a detailed queuing model that 

seeks to mathematically understand micro-behavior and then optimize it.  

A good real-time monitoring-and-control system provides a holistic view of the entire 

ED operation, emphasizing information collection, analysis and display. The ED 

operation should be analyzed from multiple dimensions and viewpoints, taking clinical, 

operational, and service-level aspects into account. This research focuses on monitoring 

approaches and optimization techniques that can be deployed and used within a real-

time ED monitoring-and-control system.  

The ED is part of a broader clinical and operational ecosystem through which patients 

flow. Patients arrive at the ED from various places, and under various clinical 

conditions, with a highly varied arrival rate. From the ED, patients are either admitted to 

one of the hospital wards, sent back home, or transferred to another clinical facility. 

Thus, the input and output patient flows must also be considered while analyzing and 

optimizing ED operations. Influencing patient flow external to the ED by controlling 
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the ED arrival rate, allowing faster admissions, or reducing hospital occupancy, is 

beyond the scope of this research. We thus focus on the ED internal patient flow 

processes, taking external operations as a given. 

1.1 Thesis Structure 

The rest of this thesis is structured as follows. In  Chapter 2, we provide a detailed 

description of the ED operational environment and the surroundings affecting it. We 

then present a classification of time-related optimization categories, namely strategic, 

tactical, and real-time, which characterize the focus of this research. We conclude 

 Chapter 2 by presenting a monitoring-and-control methodology that provides the 

foundation for the rest of the work. In  Chapter 3, we survey the most important ED 

key performance indicators, with special attention to indicators that affect the ED load. 

In  Chapter 4, we introduce EdRhythm, an ED real-time monitoring-and-control system, 

and present its key concepts. In  Chapter 5, we discuss an innovative approach for real-

time ED load monitoring based on neural networks. In  Chapter 6, we present two 

major ED patient-flow control problems, namely: "where should a patient go next?" and 

"which patient should a physician treat next?" (PTN); we continue with a theoretical 

discussion of the second question.  Chapter 6 concludes by proposing a heuristic service 

policy that best addresses the PTN question, which is the main finding of this research. 

In  Chapter 7, we provide a simulation-based analysis for various service policies that 

address the PTN question. In  Chapter 8, we give a complementary mathematical 

analysis of a fluid-model for a stylized version of the PTN question and present an 

optimal control for it. We conclude this thesis with conclusions and ideas for future 

work. 
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CHAPTER 2: EMERGENCY DEPARTMENT OPERATIONS 

Emergency departments serve multiple purposes in the overall hospital setting. Hospital 

is a central location in which a specialized staff provides the best possible treatment to 

patients using state-of-the-art clinical procedures and the most advanced equipment. 

The hospital's main goal is to provide the best possible care to patients within a 

controlled cost. A hospital is a complex operational environment, designed to address a 

wide variety of patients' clinical needs. The department, or ward, is the core hospital's 

clinical and operational unit. In general, each ward is specialized in treating patients 

under similar clinical conditions, such as oncology, cardiology, internal, and so forth. An 

emergency department is somewhat different. The ED is designed to provide a medical 

treatment facility specializing in acute care of patients who arrive without a prior 

appointment [ 7]. Due to the unplanned nature of patient attendance, the department 

must provide initial treatment for a broad spectrum of illnesses and injuries, some of 

which may be life-threatening and require immediate attention. As such, the ED also 

serves as the hospital's main gateway for arriving patients.  

Numerous types of ED settings are found in different parts of the world, and even 

within the same country. ED types were developed over the years following two main 

models known as the Anglo-American model and the Franco-German model [ 15]. The 

Anglo-American model suggests an acute care facility, or a unit within the hospital that 

serves as both the gateway to the hospital and the provider of emergency medical care 

for arriving patients. The Franco-German model, on the other hand, emphasizes the 

evaluation and treatment of patients before arriving to the hospital, e.g., at the patients' 

home or in the ambulance by emergency medical services. In these cases, the patient is 

given first-aid or pre-hospital emergency medical care and, in case hospitalization is 

required, the ED serves as an intermediate router to the relevant hospital ward. The 

models differ both in their clinical settings as well as in their operational settings. Our 

research focuses on an ED that follows the Anglo-American model, namely, an ED that 

provides acute care treatment targeted at discharging patients to their homes as well as 

initial diagnoses for patients who will be admitted into one of the hospital wards.  

2.1 The Role of the ED 

The role of the ED can be analyzed along the abovementioned two complementary 

aspects—clinical and operational. From the clinical perspective, the ED's main goal is to 

provide appropriate treatment for a broad spectrum of illnesses and injuries within a 

broad spectrum of severity levels. From the operational perspective, the ED processes 

should be designed in a way that allows care personnel to efficiently reach a decision as 

to where a patient should go next, and then to act upon it. The ED operational process 

does not stand on its own but is designed to best support its clinical goals. The ED, 
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under its operational role, can be thought of as a patient router, routing patients safely 

and efficiently to suitable destinations. Processes at the ED can thus be viewed and 

analyzed along their clinical and operational aspects. In the next section, we provide a 

detailed analysis of the high-level ED operational processes, emphasizing their related 

clinical aspects. 

2.2 ED Operational Processes 

We use the conceptual input-throughput-output model suggested by Asplin et al. [ 17] to 

describe and analyze the various high-level ED operational processes.  

The overall view of that model is depicted in Figure 1. The input, or arrival, processes 

deal with aspects related to patients' arrivals at the ED. In Section  2.2.1, we discuss in 

more detail the various factors affecting this process. It is important to note that the ED 

management, and even hospital management, has minimal control over the arrival 

process. The throughput, or internal, processes, are related to the actual activities 

happening within the ED. These processes involve the patient's clinical assessments, 

treatment, and routing. These processes thus make up the core of the ED and are under 

significant ED management control. The throughput processes are the main focus of 

this research, and thus are further discussed throughout this thesis. The output, or 

admit, discharge, and transfer (ADT) processes, deal with releasing patients from the 

ED, either to their home, to one of the ED wards, or to another clinical facility. Output 

processes are further discussed in Section  2.2.5. 

 

 

Figure 1: Schematic view of the main ED 

processes 

In the following sections, we further discuss the input, output, and throughput 

processes and their relations to the various types of ED designs.  
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2.2.1 The ED Arrival Process 

The ED arrival process deals with all aspects of patient arrivals. The main arrival process 

factor is the rate by which patients arrive at the ED. A typical ED arrival rate changes 

significantly according to the time of day. This phenomenon is important when 

analyzing ED operations and when trying to control them. We will further refer to this 

phenomenon in chapters 6, 7, and 8 in discussing the real-time ED control model. 

Other relevant arrival process factors are patients' clinical severity and complexity. 

Patient severity can be monitored in various ways, such as through the source of arrival. 

Patients arriving via ambulance are usually in more serious clinical conditions than 

patients arriving on their own. It is important to note that a significant fraction of 

patients that arrive to the ED do not require immediate acute treatment. Treatment to 

these patients can be delayed, even up to a few hours, with no significant clinical 

consequences.  

Internal 

 

Surgical and Orthopedic 

 

Figure 2: Hourly arrival rates per patient type 

(averaged over 4 years) 

Figure 2 presents hourly arrival rates to the Rambam ED, collected and averaged over 4 

years [ 44]. The left side of the figure shows arrivals to the Internal section of the ED, 

while the right side of the figure shows average arrivals to the surgical and orthopedic 

ED sections. As shown, the arrival rate has two peaks, the first just before noon and the 

second in the early evening. Another important observation is that arrival rates drop to 

nearly zero during most late night hours. A significant amount of research has been 

devoted to developing ED arrival rate forecasting methods. For a reference on 

forecasting and modeling ED arrivals and related literature, see [ 23].  

Being able to forecast ED arrivals enables ED management to prepare for overcrowded 

situations, e.g., by shifting key personnel. An interesting research question relates to the 

freedom of choice patients have while approaching an ED. In other words, to what 

degree can patients' decisions affect the typical arrival rate pattern, e.g., by postponing 

their visit for a few hours? This question is not within the scope of this research. In 
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Israel, most arrivals to ED require a referral from a community physician, making up 

about 60% of the visits in 2009 [ 19]. Thus, real-time communication between the 

community care facilities (i.e., the four major Health Maintenance Organizations in 

Israel) has the potential to dramatically improve the ED arrival rate forecast.  

Another interesting aspect of an ED real-time monitoring system is its ability to provide 

online, real-time updated status of the internal load within a specific ED, allowing 

patients to make autonomic decisions as to which EDs to approach. Such real-time 

views into the internal ED status will create a negative feedback loop that has the 

potential to balance the ED operational situation.  Allowing patients to notify an ED 

about their planned arrival, e.g., through a dedicated smartphone application, offers 

further improvements to the arrival forecasting methods. These questions, and the 

implications of possible arrival-rate forecasting improvement approaches, are beyond 

the scope of this research. For our purposes we will assume that the arrival rate is 

provided to the monitoring and control system as an input that cannot be changed. 

2.2.2 The ED Triage Process  

One of the challenges in treating patients at the ED is to determine their right level of 

clinical urgency. Such levels allow the assigning of treatment priorities for patients. 

Assigning clinical priorities is most important for patients just arriving to the ED, who 

present the most uncertain clinical situation, and hence must see a physician as early as 

possible. The triage process, originated and first formalized in World War I by French 

doctors [ 13], is a process of prioritizing patients based on the severity of their condition. 

In fact, triaging used to be taught with an emphasis on the speed of the function, rather 

than the accuracy of the outcome.  

Triage is mainly a routing process, allowing ED management to route the arriving 

patients into the most suitable ED section. The triage combines clinical and operational 

needs. The triage process ends with two complementary results: i) the patient gets a 

triage score, which is an indication as to the severity of their clinical condition and ii) the 

patient is  routed to a suitable ED section, based on the triage score and other clinical 

conditions. Thus, setting the triage score, such as those based on the Australasian Triage 

Scale (ATS), allow caregivers to transform clinical urgencies into operational priorities 

[ 41]. The triage is the first interaction between the care personnel and the patient who 

just arrived at the ED. Thus, it provides a clear separation between the ED arrival 

process and the ED internal processes, as illustrated in Figure 1. Not all EDs use an 

explicit triage process and not all patients are assigned triage scores. Nevertheless, the 

triage process can be viewed as the first clinical-operational process provided for new 

patients just arriving to the ED. Triage is usually performed by an experienced nurse 

[ 28].  
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Ample work and research have been conducted for helping assign the appropriate triage 

categories to patients. The relationship between these categories and the ED physical 

structure and resource utilization is of great importance. For example, in [ 42], S. 

Mahapatra proposes a method that uses the acute categories (triage categories 1 and 2) 

in optimizing patient treatment scheduling, and the lighter categories (categories 3, 4, 

and 5) for predicting resource use.  

Assigning a triage score to a newly-arrived patient is still not sufficient for allowing 

physicians to prioritize patients and to decide which patient to treat next. In reality, the 

same physician needs to both diagnose newly-arrived patients and treat patients already 

in process. Thus, two competing groups of patients must be prioritized accordingly. The 

ED Electronic Health Record (EHR) system may provide much more detailed clinical 

information about patients already in process and can be used for further optimization. 

For example, suppose that an experienced caregiver is able to accurately predict if a 

patient is to be discharged or to be hospitalized. This would enable the reduction of the 

overall average length of stay (LOS), for example, of discharged patients, by giving them 

precedence over patients that are about to be hospitalized. Such optimization and 

control is further discussed in the subsequent chapters. 

2.2.3 The ED Internal Processes 

The internal processes constitute the main part of the end-to-end ED patient flow. An 

overall view of the ED internal process activities is provided in Figure 3 [ 44]. As 

depicted in the figure, the patient flow process can be modeled as a job shop process 

[ 22], [ 49], [ 61]. It involves several processing-stations in close physical proximity, 

through which jobs are traveling while completing work. Applying that model to an ED 

setting, we correlate: i) stations with locations in the flow process where care personnel 

give clinical treatment to patients and ii) jobs with the patients themselves or with 

additional work, such as X-Ray interpretation, needed to be done by caregivers not 

necessarily in front of a patient. 
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Figure 3: Internal processes activity 

chart. A, B, and C indicate alternative 

operations. The red dot indicates the 

merging point of all alternative 

operations. 

There is no standard ED setting. Thus, the ED can be viewed as a composition of the 

following stations from several types, listed in an arbitrary order (see Figure 4) [ 44]: 

The arrival station is the first station a patient encounters after arriving at the ED. 

Admission work is performed at this station. If a triage process exists, it is performed in 

an immediate subsequent station. 

The nursing station is a station at which nurses give treatment to patients and perform 

related work. A single ED may contain multiple nursing stations. At that station, nurses 

measure vital signs, give medications, and take lab tests, etc. In some situations, patients 

must wait after receiving treatment for it to take affect before they can continue on to 

other stations. 
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The physician station is a station at which physicians treat patients. An ED generally 

has multiple physician stations. Physician stations may have a type, i.e., for the different 

specialist physicians such as internist, surgeon, or orthopedist. 

The consultant station is a station at which a physician from outside of the ED treats 

patients. Unlike the physician station, the consultant station is usually unoccupied. If a 

patient needs to see a consultant, she will probably need to wait for her arrival to the 

ED. Patients are occasionally sent to the relevant ward to see a consultant rather than 

waiting for the consultant to come to the ED. 

The imaging station is a station at which X-Rays, CTs, Ultrasounds, MRIs, and other 

similar tests are performed. Some EDs have an integral imaging station, while others use 

one in the main part of the hospital. Patients usually need to queue up for the imaging 

station. The station's service is composed of two sub-service processes: first, an image is 

taken, and second, a radiologist interprets the image and sends the results back to the 

referring physician station. The patient only needs to be physically present during the 

first service part. Thus, a patient may visit other stations while a radiologist interprets 

her images. 
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The lab station is a station at which laboratory tests are performed. Usually, a nurse 

conducts the lab test at the nursing station and then sends the samples to the lab station. 

The lab station sends back lab results to the ED after a significant period of time—

usually up to half an hour or longer. Patients are able to go to other stations during that 

time, assuming that these other stations can perform their work without requiring the 

lab results. 

 

Figure 4: Internal processes station (i.e., 
resources) chart. A, B, C, and D – 

alternative operations; Resource queus – 

in red; synchronization queues – in 

green. 
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Figure 5 [ 44] illustrates the combined activity-station flow. It thus provides a high-level 

template for possible patient routes within an ED.  

 

 

Figure 5: The internal processes combined activitiy-

station chart. 

As stated, patients flow through the ED stations with just a partial order. Patients may 

visit each station more than once, or not at all. Thus, the main goal of a patient flow 

monitoring and control system is to monitor the patient flow process and possibly 

control it for improved and perhaps optimal patient routing. Achieving this goal is the 

core focus of our research. Thus, we extensively discuss these issues in the subsequent 

chapters. 

2.2.4 Reaching a Decision 

The ED internal process results in the decision whether to: i) admit a patient to one of 

the hospital wards, ii) discharge a patient home, or iii) transfer a patient to another care 

delivery organization. Thus, reaching an admit, discharge, transfer (ADT) decision 

indicates the separation between the ED internal process and the ADT execution 

process. Reaching an accurate ADT decision in a timely manner is one of the most 

important ED goals. EDs strive to obtain an accurate ADT decision as fast as possible. 

The decision process itself is mainly clinical, though some operational aspects are still 

involved in it. The actual decision is usually made by the physician that has the main 
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responsibility for the specific patient's case. In some situations, it is not clear who the 

responsible physician is—an issue that may cause much delay in reaching a decision. 

Delays sometimes also occur in situations in which a decision is clinically difficult to 

make, thus requiring consultation from an expert physician. There are even situations in 

which physicians tend to delay clinically difficult decisions, hoping that things become 

clearer with time. Identifying these situations and alerting upon them will potentially 

improve ED operations, but are beyond the scope of this research. 

2.2.5 The ADT Process 

The ADT process starts after the ADT decision is made. The discharge process is 

mainly operational. During our research, we made several observations related to this 

process that potentially improve ED operations. Optimally, patients should leave the 

ED immediately after the decision is made, either to go home, to check in to one of the 

hospital wards, or to transfer to another care delivery organization. This does not 

happen for a significant fraction of the cases due to several reasons, most of them not 

under ED management control. The most significant cause for delays is the admitting 

process. The admitting process is often delayed because wards are, usually, highly 

occupied, tending to delay the admission of new patients. Various processes and ideas 

[ 57] are offered for accelerating and improving this process. Other delays occur in 

situations in which the decision is made to discharge patients back home, but only after 

some additional clinical treatment. As a result, patients remain in the ED for several 

hours, consuming the ED resources and affecting the ED measured performance. In 

other words, in certain situations physicians delay the discharge decision, knowing that 

patients need to stay in the ED for a few more hours anyway. 

Being able to accurately monitor the ADT process suggests interesting control options. 

Knowing in advance which patients are about to be discharged back home without 

further delays would allow to give them some operational priority over patients that are 

about to be admitted or need additional treatment. This prioritizing would enable one to 

shorten the overall time these patients spent at the ED. We discuss such issues further 

in the following chapters. 

2.3 ED Operational Efficiency 

There are many aspects of ED operational efficiency and many operational processes 

affecting them. Operational processes can affect operational efficiency along three time 

scale categories—strategic, tactical, and real-time. The strategic category includes 

operational processes that affect efficiency in a years time scale. Such processes are, for 

example, the physical planning and setting of the ED, its capacity, and the overall 

resources such as rooms, beds, physicians, and nurses allocated to it. The tactical 

category includes processes that affect efficiency in an hours-to-days time scale, e.g., 
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forecasting ED arrival rates, setting the staffing level at a specific day, and other related 

short-term ED policies. The real-time category includes processes that affect efficiency 

in a minutes-to-hours time scale, e.g., monitoring current ED load and deciding which 

patient to treat next or where patients should go next. Our research focuses on 

understanding issues related to the real-time category of operational processes. 

Nevertheless, in the next section, we provide a short overview of various operational 

efficiency aspects related to operational processes from the other two categories.  

2.3.1 ED Strategic Operation Category 

The term ED strategic operation refers to operational processes in the strategic 

category, namely those processes that relate to the way the ED is designed and set to 

operate. Several designs of ED operations have evolved over the years to best support 

operational efficiency while taking clinical aspects into account. The following list 

represents the most common designs and briefly describes the main pros and cons of 

each.  

Triage is an ED design in which an experienced care giver, e.g., an experienced nurse, 

examines newly-arrived patients and assigns them a clinical severity triage score. The 

assigned score is then used for setting priorities among the patients who wait for 

treatment. The triage score is also used for setting deadlines for first patient-physician 

encounters. The score is typically not used beyond the first encounter, as the clinical 

status is assumed to be partially-known once the physician examines the patient. The 

triage process obviously improves patient routing and the ability to associate between 

operational aspects, such as deadlines, and clinical severity. The downside of triage is 

that it requires an additional resource. This resource is reduced from the overall care 

resources. Triage also adds a station, with a possible queue preceding it, possibly adding 

to the overall length of stay within the ED as well as to the time till first encounter. 

Fast track (FT) is an ED design in which priority is being given to patients who require 

minimal ED clinical resources. Two types of patients may benefit from the FT setting—

acute patients, for whom hospitalization is obviously necessary and thus the admitting 

decision can be made immediately, and patients with mild conditions, for whom the 

discharge decision can also be made immediately. The fast track seems to be the most 

attractive ED setting. The FT challenge is to identify those candidate patients who will 

potentially benefit from the fast track and then give them the appropriate precedence. 

Thus, FT goes hand-in-hand with triage. An efficient triage process upon patient arrival 

may result in a much more efficient operation in both designs.  

Walking acute is an ED design in which the ED is divided into two main sections: i) 

for treating acute patients who are not able to roam about the ED on their own, and ii) 

for patients who are able to walk by themselves from one station to another. In some 

settings, a third trauma section exists. There are significant differences in the physical 
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settings of these sections. The acute section is much larger and contains a bed for every 

patient, while the walking section is set up like a clinic. In the acute section, physicians 

walk from one patient to another, while in the walking section, patients wait outside to 

be called into the physician's office. Assigning patients to sections is usually done by 

assessing the way they arrive to the ED—if they arrived by themselves, i.e., walked in, 

they are sent to the walking section. If they arrived via ambulance or on a stretcher, they 

are usually sent to the acute section. Dividing the ED into acute and walking sections 

allows ED management to significantly increase the ED static capacity: walking patients 

require less space then patient in beds. Adding a formal triage process upon patient 

arrival may reduce errors in patient placement into sections.   

Illness based is an ED design in which the ED is divided into sections according to 

physician specialty. There seems to be no advantage to this type of ED setting from an 

operational perspective, as it mainly follows clinical needs. An interesting observation 

[ 15] resulting from this design is the need to train physicians to specialize in emergency 

medicine. Such physician proficiency may dramatically reduce the ED resources needed 

for treating patients, as all physicians will have the same proficiency and will be able to 

share rooms and treat most patients. An emergency medicine physician is able to give 

initial clinical treatment to most patients arriving to the ED. For patients with clinical 

conditions that are beyond his reach, an emergency medicine physician may consult an 

expert physician through the consultancy protocol, as is already being done in the 

current ED setting.  

2.3.2 ED Tactical Operation Category 

The term ED tactical operation refers to operational processes that affect operational 

efficiency on a daily basis. Issues relating to the standard level of resources e.g., 

physicians, nurses and life-saving equipment; the definition of roles and separation of 

duties among physicians, nurses, and administrative staff fall within the tactical 

operation category. Probably the most interesting question in the tactical category is 

staff scheduling, specifically, how to assign the right ED staffing level for meeting ED 

goals. Much work [ 64], [ 29], [ 25] has been devoted to ED scheduling and staffing. ED 

scheduling and staffing and the other aspects of tactical operation are beyond the scope 

of this research and thus will not be further considered. 

2.3.3 ED Real-time Operation Category 

The term ED real-time operation refers to operational processes that affect operational 

efficiency on a minutes-to-hours time scale. These processes are the focus of our 

research. Specifically, we are interested in issues related to monitoring the real-time ED 

operation and in controlling it. In the subsequent sections, we further analyze and 
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examine these processes in detail, focusing on two complementary issues—monitoring 

the overall ED load and controlling the real-time patient flow within it. 

2.4 Monitoring and Control Methodology 

"Monitoring and control system" is a common term in the industrial environment [ 56]. 

Monitoring and control systems are used for controlling manufacturing processes to 

ensure adequate throughput and quality levels. With the proliferation of digital systems 

for process coordination and documentation and with advances in wireless 

communication and tracking techniques, it has become practical to provide monitoring 

and control systems in services-based environments such as theme parks, bank 

branches, telecom service centers, and hospitals [ 27], [ 50]. Advancements and progress 

in hospital IT have made it possible to collect an accurate view of the current state even 

in hectic and dynamic environments such as the ED. The methodology illustrated in 

Figure 6 can be followed while introducing a monitoring and control system into an 

ED. 

 
Figure 6: Monitoring and control 

methodology 

Monitoring and control methodology consists of four main stages. In the first stage, ED 

management and other relevant stakeholders define the list of relevant key indicators 

with the expected performance of each. In the second stage, a system with monitor-and-

measure capabilities is introduced into the environment. The monitoring system 

provides an accurate view of the tracked indicators. In the third stage, an analysis-and-

understand process takes place to better understand measurement results. Last, as 

results from the third stage, ED management may decide to put in controls to influence 

the performance indicators. Alternatively, stakeholders may decide to adapt and modify 

the performance indicators, so that they better reflect the environmental needs, 

requirements, and possible achievements. 

The rest of this document follows the abovementioned methodology. We discuss key 

performance indicator (KPI) definition in  Chapter 3, in which we survey the most 

important ED KPI while giving special attention to indicators that affect the ED load. 

In  Chapter 5, we propose an innovative way to monitor and measure the ED 
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environment. In  Chapter 6, we analyze and interpret a specific ED operations question, 

namely "Which patient should a physician treat next?" and present a heuristic control 

that addresses it. In chapters 7 and 8, we further analyze the proposed control through 

simulation and mathematical analysis. The back arrows in Figure 6, namely those that 

suggest a modification to the KPI, and the measurement of the influence of a new 

control on the operation, require deployment of a system within a real ED and thus are 

not addressed further in this thesis. 
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CHAPTER 3: ED KEY PERFORMANCE INDICATORS 

A performance indicator or key performance indicator (KPI) is a measure of 

performance. Such measures are commonly used to help an organization define and 

evaluate how successful it is, typically in terms of making progress towards its long-term 

organizational goals [ 11]. Thus, performance indicators provide the foundation of the 

monitoring-and-control system. Defining the KPIs of most importance enables 

stakeholders to measure them and then to strive to improve them in a methodological 

and consistent manner. The act of monitoring KPIs in real time is known as business 

activity monitoring (BAM) [ 1]. A common practice for implementing BAM systems is to 

use complex event processing (CEP) architecture [ 3], [ 53].  A CEP-based BAM system 

generates its output from collecting and analyzing streams of events. As part of the 

present research, we developed EdRhythm, a real-time CEP-based BAM system. The 

main goal of EdRhythm is to monitor the ED environment and to generate the required 

KPIs. We describe the key concepts and core components of the EdRhythm 

monitoring and control system in  Chapter 4.  

The ED is a complex environment in which a wide variety of indicators should be 

considered. Monitoring the whole set of indicators is a demanding and complex task. 

Indicators can be classified into various categories. Some indicators may contradict one 

another. Some present different levels of granularity and are measured using different 

units. In the following sections, we describe some of the most important KPIs used for 

measuring and controlling the ED. In Section  3.2, we introduce the ED load KPI, a 

complex KPI that presents difficulties in terms of monitoring and measurement as well 

as in analysis and interpretation. In  Chapter 5, we offer an original approach for dealing 

with ED load monitoring and measurement. 

3.1 Referred Key Performance Indicators 

As part of this research, we developed the EdRhythm monitoring and control 

prototype. In Chapter 4, we describe EdRhythm in details. EdRhythm is designed to 

monitor and measure a wide variety of KPIs. In the following sections, we survey some 

of the most important KPIs generated by EdRhythm. Obviously, each KPI has a 

specific meaning. The EdRhythm system calculates each KPI from a set of low-level 

events it collects from the monitored environment. EdRhythm then generates the 

output KPI to be presented to ED management, staff, and other stakeholders. We 

describe below each KPI using three elements: i) its core meaning, ii) the set of input 

events from which it is being calculated, and iii) the actual output that describes it. We 

consider additional information and real-time alerts that the EdRhythm system is able to 
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generate based on the core input events. We provide a complete list of input events and 

output KPIs in Appendix A.  

3.1.1 Time Till First Encounter (TTFE)  

The Time Till First Encounter (TTFE) indicator measures the time from a patient's 

arrival at the ED until the time the patient is first seen by a physician. This indicator is 

one of the most important indicators for ED management, as it measures an operational 

indicator, i.e., time, with strong clinical aspects. Notably, the actual patient's clinical 

condition is not known until the first physician's examination; thus, delaying a 

physician's examination may result in clinical deterioration. Consequently, the control of 

this indicator is one of the main goals of this research. 

Input events 

The TTFE KPI is based on two input data events, namely the patient registration and 

the start of the first encounter event. 

Output event 

The system generates a TTFE output event for each patient upon the beginning of the 

first encounter with a physician. An optional threshold event is available for the system 

to report only these times that exceed the threshold. 

Optional additions and alerts 

Information derived from TTFE output events can be used to benefit the control and 

decision support part of the EdRhythm in two important ways: 

• Provides an alert if patient waiting time is higher by some predefined percentage 

than the average treatment time, and treatment has not yet begun. Such an alert will 

warn ED management in advance of situations in which the TTFE deadline is 

about to be violated. 

• Compares average TTFE for the last period with the average TTFE of some 

historical period (i.e., an average of the same time on the same day during the last 

year period). This may require additional information coming from a database. Such 

an alert may serve as additional input for the overall ED load KPI. 

3.1.2 Total Length-of-Stay 

The length-of-stay (LOS) indicator measures the overall time from a patient's arrival to 

the ED until admission or discharge. The LOS is calculated for each patient. 

Aggregative views for various categories may be provided as a derivative output event. 

This KPI is one of the most important indicators towards improving ED performance. 

The LOS KPI indicates ED clinical, operational, and service quality levels. Much work 
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has been devoted to monitoring and control of this KPI [ 26], [ 39]. A typical ED sets a 

specific LOS threshold, e.g., four hours, and aims on keeping the LOS below that 

threshold for the majority of the patients. The LOS can be viewed as a complex KPI 

calculated from several lower-level KPIs that measure the various phases of the care 

process. Thus, the TTFE described in the previous section measures the first clinical 

process stage. Similarly, a time from decision to release KPI may be generated for 

measuring the time from reaching an ADT decision, until the time a patient actually 

leaves the ED. Interestingly, an inherent tradeoff exists between the LOS and the TTFE 

KPIs. Controlling the LOS indicator and balancing it with the TTFE indicator are 

among the main goals of our research and are addressed in greater detail in the 

following sections.  

Input events 

The LOS KPI is based on two input data events, namely the patient registration event 

and the patient left event. 

Output event 

System generates LOS output events for each patient who is discharged home from the 

ED or admitted to one of the hospital wards. An optional threshold event is available 

for the system to report only those patients with an LOS that exceeded the threshold. 

Optional additions and alerts 

Generates an alert when the average LOS exceeds a certain predefined configuration 

level. This may indicate that the overall ED load is increasing above the desired 

threshold.  

3.1.3 Patient Utilization Ratio 

The patient utilization ratio (PUR) indicator measures the ratio between treatment time 

and the overall LOS for each patient. This KPI is calculated for every preconfigured 

time period. Upon patient discharge, a treatment ratio summary event is generated. 

Aggregative views may be provided as a derivative KPI output event 

PUR Input Events 

The PUR is based on multiple input events. In addition to patient registration and 

patient left events, the PUR monitors all start and stop treatment events generated at the 

various stations.   

PUR Output Event 

• Treatment period – the cumulative time period in which a patient is actually under 

treatment by care personnel. 
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• Total length-of-stay – the amount of time a patient spends in the ED from 

registration to discharge. This measurement is taken from the LOS KPI. 

Optional additions and alerts 

• Generates an alert if the average treatment ratio decreases below a given threshold. 

This may indicate that the overall ED load is increasing.  

• Generates an alert if the treatment ratio for a given patient decreases below a given 

threshold. Various thresholds may be set for various patient severity levels. This 

alert may indicate that a specific patient receives low quality service, from both the 

clinical and operational perspectives. 

3.1.4 Care Personnel Utilization Ratio 

The care personnel utilization ration (CPUR) indicator measures the ratio between work 

time and the sum of work time with idle time for each care personnel type. This 

indicator is calculated for every preconfigured time period. At the end of each shift, a 

work-ratio summary event is generated. An individual CPUR indicator can be generated 

for a specific individual as required by ED management.  The ED care personnel may 

object to such an indicator, and thus, careful attention is required as to its 

implementation. However, these issues are beyond the scope of this research and will 

not be further addressed. 

Input events 

The CPUR is based on multiple input events. The CPUR monitors all start and stop 

treatment events by a care personnel group or by a specific individual. These events 

cover both events associated with the actual patient treatment as well as events 

associated with the additional work performed by care personnel. 

Output event 

• Work ratio – the amount of time caregivers actually give treatment to patients 

during a given calculation period, including additional work not performed in front 

of a specific patient.   

Optional additions and alerts 

• Generates an alert if the average work ratio increases above a given threshold. This 

alert may indicate that the ED load is exceeding some certain desired level.   

3.1.5 Physical Occupancy 

The physical occupancy (PHO) indicator measures the number of patients in each ED 

room or section at preconfigured points in time.  
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Input events 

To calculate PHO, the EdRhythm system tracks in/out location events and counts the 

number of patients currently in the monitored room or section. 

Output event 

• Occupancy level – generates an occupancy level report for each room, section, 

and for the overall ED, for each preconfigured time period.   

Optional additions and alerts 

• Provides alerts if room capacity is exceeded. These alerts may indicate that the ED 

load is exceeding some certain desired level.    

• An accurate location tracking mechanism may provide many valuable alerts and 

controls beyond basic capacity monitoring. Some of these capabilities are: 

• Monitors all people in a room (e.g. family members) and alert security for potential 

overcrowding or escort rules violation.   

• Provides additional information about a patient that is assigned to a room but is not 

physically located within the room. For example, a patient that needs to be in the 

radiology section for a CT exam but is still waiting for transfer in the main ED 

section. 

3.2 The ED Load KPI: A Complex KPI 

ED load is certainly one of the most significant and interesting KPI to monitor and 

control [ 24], [ 54]. Reducing the ED load is a major day-to-day ED management 

challenge. High ED load leads to excessive waiting times and an unpleasant 

environment, which in turn cause: i) poor service quality from both clinical and 

operational perspectives; ii) unnecessary pain and anxiety for patients; iii) negative 

emotions in patients and escorts that sometimes could even lead to violence against 

staff; iv) increased risk of clinical deterioration; v) ambulance diversion; vi) patients 

leaving without being seen; vii) inflated staff workload; and more [ 58].  

Measuring ED load serves multiple purposes and may prove to be useful from various 

aspects. The most common need found in the literature, for knowing the actual ED 

load, is to allow ED management to determine the situations that call for ambulance 

diversion [ 21], [ 35]. That is, ED management should be able to identify situations in 

which an ED needs to be closed due to overcrowding, and ambulances must be 

redirected to other hospitals. In addition, consistent measurement of ED load may 

enable ED management to identify trends in load and to adjust and adapt the ED 

operations accordingly. Displaying a real-time snapshot of the ED load allows managers 
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and staff to act in extreme situations by making prompt decisions, e.g., in cases of high 

or extreme load peaks. 

Real-time ED load measurement turns out to be a challenging, multidimensional task. 

First, one must decide which parameters contribute to the load. Second, one must 

define how to calculate load on the various parameters (i.e., resources). Third, one must 

assign a level of contribution to each of the parameters while integrating all 

measurements into a single load score.  

The fact that no "Standard ED" exists adds to the load measurement complexity. No 

one physical ED setting can be identified as standard. EDs are varied from one another 

in many dimensions, such as physical size, the population they serve, staffing levels, and 

clinical and operational protocols. In addition, EDs involve various entities, e.g., 

physicians, nurses, patients, managers; each of whom may define the load function 

differently, and may require periodically adjusting the load definition to accommodate 

changes that occur over time.  

As a result, ED Load is defined as an integrative KPI, the calculation of which is based 

on an extensive set of low-level data events collected from the monitored environment. 

High ED load depends on a wide variety of clinical and operational parameters. Some 

of these parameters are already being monitored and displayed as stand-alone KPIs, as 

described in previous sections. Others may serve purely as input parameters for 

calculating and monitoring the ED Load indicator. 

3.2.1 A Consensus Load Parameter Classification 

We found the consensus load parameter classification (CLPC), suggested by Solberg et 

al. [ 55], most useful for serving as a baseline for the EdRhythm load monitoring and 

control functionality. The CLPC was defined by a panel of 74 national experts who 

assessed 113 measures and chose 38 through a discussion and rating process. The CLPC 

follows the Input-Throughput-Output operational model introduced in Section  2.2. 

This model permits most identified load parameters to be grouped into one of three 

stages: 

• Input or Arrival stage (15 parameters) – includes factors such as the volume of ill 

and injured people in the community and the capability of the rest of the health care 

system to address the needs of individuals not requiring emergency care. 

• Throughput or Internal stage (9 parameters) – includes factors that affect the 

efficiency of an ED to cope with its input, ranging from ED beds and staffing to 

the efficiency of ancillary services and consultant access. 

• Output or ADT stage (14 parameters) – includes factors that affect the ability of 

the inpatient system to admit patients requiring hospital care, and of the ambulatory 

care system to provide timely post-discharge care. 
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To clarify their purposes, we have further grouped the parameters within each stage by 

the main concept they represent: 

• Patient demand (6 items) – refers to the volume of patients arriving to the ED for 

receiving medical care. 

• Patient complexity (3 items) – refers to patient's clinical factors, such as the 

urgency and potential seriousness of the presented complaint, the stability of the 

clinical condition, and the baseline medical and psychosocial burden of illness. 

• ED capacity (5 items) – refers to the ability of the ED to provide timely care for 

the level of patient demand, according to the adequacy of physical space, 

equipment, personnel, and the organizational system. 

• ED workload (6 items) – refers to the demand and complexity of patient care that 

is undertaken by the ED within a given period. 

• ED efficiency (4 items) – refers to the ability of the ED to provide timely, high-

quality emergency care, while limiting waste of equipment, supplies, and effort. 

• Hospital capacity (6 items) – refers to the ability of the hospital to provide timely 

inpatient care for ED patients who require hospitalization, according to the 

adequacy of physical space, equipment, personnel, and the organizational system. 

• Hospital efficiency (8 items) – refers to the ability of the hospital to provide 

timely, high-quality inpatient care while limiting waste of equipment, supplies, and 

effort. 

The list of all 38 parameters is provided in Appendix B. 

In the next chapter, we discuss the core concepts of the EdRhythm system. In  Chapter 

5, we describe how real-time business activity monitoring system, such as EdRhythm, 

can be used to address the ED load monitoring challenge in an innovative way.  
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CHAPTER 4: REAL TIME ED MONITORING 

In the previous chapter, we described the KPIs' role within a real-time business activity-

monitoring environment and surveyed some of the most important ED KPIs. Next, we 

will describe the key concepts of an ED’s real-time monitoring-and-control system; how 

such a system is being used for monitoring and measuring the ED environment and for 

generating, through calculation, the required KPIs. 

A typical ED monitoring-and-control system comprises three major layers: i) the 

collection layer, which provides the inputs to the system, ii) the logic layer, and iii) the 

display layer, which presents system output to its users. Figure 7 presents the high-level 

structure of a typical monitoring-and-control system. Note that the figure illustrates a 

comprehensive view. Not all components are mandatory for every solution. 

 

 

Figure 7: Typical ED monitoring-and-control component 

structure 

4.1 EdRhythm: Real-time Monitoring-and-Control System 

During our research, we developed EdRhythm, a prototype real-time monitoring-and-

control system. EdRhythm has three main layers: i) the input layer, ii) the logic layer, and 

iii) the output layer. 

The EdRhythm input and output layers are implemented as an event processing 

network (EPN) [ 3], [ 40].  Implementation is done in StreamBase V6.2 [ 12]. The 

EdRhythm logic layer extends the EPN with custom-made logic and analytic 

components. 
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The input layer, i.e., the data collection layer, is connected to the data sources and 

receives the data events through these connections. Next, we describe the various data 

sources typically found within an ED environment. We then follow by describing the 

three layers of the EdRhythm prototype system.   

4.2 The Data Sources and the Data Collection Layer 

The data collection layer provides the input to the system. The collection layer uses 

various communication means to transfer raw events from its generating sources into 

the system. Computer networks become pervasive and various network types can be 

found in every modern ED. Most commonly, a TCP/IP-based network is used by most 

information technology applications. In recent years, a proliferation of wireless networks 

has accelerated the use of mobile computers and hand-held devices. Most recently, 

RFID technologies have been introduced, making accurately locating people and objects 

possible. All such networks allow the extensive collection of events from the monitored 

environment and the transmission of these events into the logic and analysis layer of the 

monitoring-and-control system. In the subsequent sections, we provide more details on 

some of these applications and technologies, emphasizing the differences between 

clinical and operational systems. We address the ways in which both types contribute to 

ED real-time monitoring.   

4.2.1 Clinical Applications as Operational Data Source 

Hospital environments utilize IT systems at an ever-growing pace. A typical hospital 

manages hundreds of IT applications. Among the main applications, one can usually 

count the admit-discharge-transfer (ADT) system, the electronic health record (EHR) 

system, the picture archive and communication (PACS) system, and the lab information 

management system (LIMS). These systems improve the clinical process by recording 

and documenting it, and by providing instant access to patients' clinical information. As 

such, these systems provide a rich source of crucial clinical information, assisting ED 

personnel in performing day-to-day tasks. Coincidentally, these systems can be used as 

an indirect source of information regarding the operational situation in the ED. 

Specifically, The EHR system is the major management information system (MIS) used 

within hospitals for documenting clinical treatment of patients. Most hospitals are in the 

process of replacing their paper-based documentation system with computer-based 

EHR. Hospitals' EDs however, are less suited for deploying and adapting EHR systems, 

due to the urgency and mobile nature of the work within them. Nevertheless, recent 

experiences have shown that hospitals are extending the reach of EHR systems and 

deploying them within EDs as well [ 52]. One such EHR can be found in the Rambam 

Medical Center's ED. Rambam's ED management, together with Rambam's IT team, 

decided during 2009 to extend EHR functionality into the ED. Currently, Rambam's 

EHR is fully functioning and provides the needed information to nurses, physicians, and 
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management within the ED. EHR also provides useful information about clinical 

aspects of patients' treatment. Through EHR, a physician is able to document diagnosis 

and request further treatment, such as prescribing a specific drug or asking for expert 

consultation on an unresolved case. The EHR system is designed to support and 

document clinical processes. As such, it does not provide the out-of-the-box, required 

view on the operational status of the ED.  

 

 

Figure 8: Information generated and collected during the 
clinical process  

Still, as shown in Figure 8, many operational events can be generated by EHR as well as 

by other MIS, e.g., by monitoring the time physicians take to enter specific clinical 

orders for a patient. In the following section, we discuss IT systems that are designed to 

collect operational events from the monitored environment. 

4.2.2 Operational Data Sources 

Complementary to the clinical applications, operational applications are designed to 

assist in managing the operational environment. Indoor location tracking (ILT) [ 9], 

[ 32], [ 33], [ 48] is a specific class of operational applications that enables tracking the 

exact locations of patient and personnel within the ED and accurately identifies the start 

and end of patient/care personnel interactions. Recently, the global positioning system 

(GPS) has become the de-facto standard for outdoor tracking, and it serves as the 

foundation for many location-tracking applications [ 8]. In parallel, significant efforts 
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have been devoted to develop an efficient and accurate ILT system. However, as yet, 

no optimal, standard technology exists that is suitable for indoor location tracking. 

ILT systems are also referred to as RFID systems, after the technology of radio 

frequency identification. RFID technology has recently become widespread, due to its 

many merits. Basically, RFID provides unique identifications to objects; hence, it can be 

used as the foundation for tracking, monitoring, and controlling object movements [ 32], 

[ 33].   

RFID has traditionally been used for tracking objects such as consumer-packaged 

goods, medications, and medical equipment. Yet this same technology can be used for 

uniquely identifying humans, e.g., patients and care personnel in hospitals. Applying 

RFID for indoor-location tracking requires an additional layer to associate the RFID 

tag with a specific location. This association can be implemented via two conceptually 

different approaches: 

• Cell-based location tracking – location identified through the location of the 

reader of the RFID tag. 

• Triangulation – location calculated from radio frequencies, used in the 

communication between the RFID tag and scattered RFID readers. 

Extensive research is being devoted to better understand the pros and cons of each 

approach and their various aspects; thus, we will not address these aspects further within 

our research. 

4.2.3 Location Monitoring of ED Entities 

Using RFID or a similar technology allows a monitoring-and-control system to collect 

real-time location information of relevant entities within the ED. Real-time entity-

location monitoring enables the real time measurement and calculation of most required 

KPIs: 

Specifically, the following entities play a significant role within the ED process flow; 

some entities are further grouped into entity types.  

• Patients: Each patient is identified by a unique ID. Patients are further grouped by 

clinical condition.  

• Physicians: Physicians are grouped into several types by proficiency. Each 

proficiency type has a unique identifier. A limited number of physicians from each 

proficiency type are in the ED at any given point in time. 

• Nurses: Nurses are grouped into several types according to their specific roles. 

Each role type has a unique identifier. A limited number of nurses from each type 

are in the ED at any given point in time. 
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• Rooms: Each room in the ED is monitored. Rooms may have limited capacity, e.g., 

if serving acute patients, or unlimited capacity for serving ambulatory patients. 

• Beds: Each bed has a unique ID. A room's capacity for acute patients is monitored 

by the number of beds it contains. 

A combination of clinical and operational monitoring data sources provides sufficient 

infrastructure for a real-time ED monitoring-and-control system.  

For the sake of this research, the raw clinical and operational data events are provided 

by the ED Simulator [ 43]. The ED Simulator generates events similar to those expected 

to be generated from clinical and operational IT systems in a typical ED. Rambam ED 

management and other subject matter experts validated the patterns and distribution of 

information generated by the ED Simulator and found them similar to those that are 

typically found in a real ED operational environment. The simulator generates about 

100 different event types. Most events are related to the operational processes and 

patient flow within the ED. A comprehensive event list can be found in Appendix A.  

4.3 The EdRhythm Input Layer 

The EdRhythm input layer is implemented using StreamBase Input Connectors. The 

Input Connector client is designed to be embedded within the clinical and operational 

data sources that are available in a specific ED. Similarly, the Input Connector client is 

embedded within the ED Simulator code and provides the main EPN's event channel 

between the data sources and the EdRhythm. On startup, the ED Simulator connects to 

the EPN using the StreamBase (SB) internal protocol, which is implemented on top of 

TCP/IP. Using that protocol, the Input Client sends events to the logic layer, which is 

implemented as an EPN within SB.  

The ED Simulator uses two parallel channels over which it sends two types of events, 

data events and clock events.  

The current version of the ED Simulator generates just operational data events. The 

need to consider clinical data events and the exact data pieces are described in chapters 6 

and 7. To overcome this difficulty, we added clinical data attributes to the EdRhythm 

logic directly, bypassing the EdRhythm input layer. 

4.3.1 The Input Events 

There are three main input event types in the EdRhythm: i) data events, ii) control 

events, and iii) clock events. Each event type is further described below. 

Data Events 

Each data event has an event-ID field that encodes the meaning of the event. A list of 

all possible input data events is provided in Appendix A.  
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Each data event contains the following attributes: 

• Event ID – Unique identifier for the event. 

• Resource Type – Can be a room (e.g., in which a CT scan is being taken), a bed, or 

a lab test. 

• Resource ID – a unique resource identifier. 

• Care Giver Type – e.g., physician, nurse, consultant, etc. 

• Care Giver ID – unique care giver identifier. 

• Patient Type – e.g., orthopedic, surgical, or trauma. 

• Patient ID – a unique patient ID. 

• Time – a time stamp in which an event was generated. 

Control Events 

Several control events are used to set various thresholds and calculate time periods and 

other configuration parameters within the EPA. Control events are configuration-

dependent. Only minimal control event functionality is currently implemented in the 

EdRhythm. The most important implemented control event is the time till first 

encounter (TTFE) duration. TTFE is an ED-dependent parameter, based on the triage 

categories and their associated deadlines, as defined by the ED management.  

Clock Events 

EPN uses clock events to execute logic that is not triggered by specific events. The 

clock event provides the granularity level of the EdRhythm KPI calculation and display. 

The granularity level depends on the typical processes pace, the rate and accuracy of the 

input data events, and the monitoring-and-control granularity level required by ED 

management. In addition, different KPIs may require different granularity levels. The 

minutes scale is found to be an appropriate level of granularity for real-time monitoring 

of ED environments.   

The simulation-based EdRhythm system requires synchronization between the 

simulator clock and the real-world clock used by the EPN.  The calculation period of 

the EPN can be configured and is currently set to one-minute intervals. The internal 

ED simulator uses one-second intervals between successive ticks. Hence, the clock 

event is generated by the ED simulator every minute of simulation time, e.g., every 60 

simulation ticks. 

4.4 The EdRhythm Logic Layer 

The EdRhythm logic layer provides the core KPI monitoring and measurement 

functionality. Each indicator receives the relevant input events and generates a suitable 
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output event to be displayed on the EdRhythm dashboard. Indicators can be easily 

added to the EPN. Each event processing agent (EPA) implements a specific indicator 

or a small group of related indicators. Most indicators are calculated per period, i.e., as a 

set at a-time. Few indicators are calculated for each event, i.e. as an event-at-a-time. 

Each EPA relies on a dedicated data structure. Some elementary data structures (e.g., 

utilization counter) can be reused between various EPAs. Each EPA uses its own data 

structure for saving its state. No internal communication takes place among EPAs, and 

each EPA acts as a stand-alone component. This architectural decision results in sub-

optimal performance, but is much easier to maintain and extend. 

 

 
Figure 9: The EdRhythm EPN implemented by using StreamBase 6.2 

Figure 9 presents the high-level view of the EPN implemented in SB. There is minimal 

use of the ready-made StreamBase operators, e.g., to filter out events that are not 

relevant to a specific agent, or to converge similar events into one. This is mainly 

because we developed a Java code that implements the EPA logic.  

Thus, embedding these operators directly into the EPA logic instead of maintaining 

them as separate entities becomes trivial in most cases. Note that adding new indicators 

is simple and straightforward, as there are no dependencies among the EPAs. 

4.4.1 The EdRhythm Output Layer 

The main purpose of the EdRhythm output layer is to communicate the calculated KPI 

to the situation dashboard. The EdRhythm output layer is implemented by using the 

StreamBase output connector. The output connector client is embedded within the ED 
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dashboard. On startup, the ED dashboard connects to the EPN, using StreamBase (SB) 

protocol, which is implemented on top of HTTP. Using that protocol, the SB Flex 

output client receives the output event stream from the logic layer and passes it to the 

Flex-based ED dashboard application. The ED dashboard receives numerous output 

streams. Each is implemented by using a dedicated SB Flex connector. Each output 

stream is designed to handle a specific output event type that is associated with a 

specific KPI. Thus, output events have no unified structure. All required event 

adaptation and modifications are done within the EdRhythm logic layer. Each output 

event is tailor-made to be presented on the ED dashboard without further analysis and 

transformation.  

4.5 Monitoring Dashboard 

Monitoring dashboards serve as the user interface (UI) components of real-time 

monitoring-and-control systems [ 4]. Through dashboards, users realize the whole 

environmental situation as well as the situations of specific entities within that 

environment. Public dashboards are implemented using large electronic displays. 

Technology for creating large electronic displays has become pervasive. Such displays 

are currently being used in many services-based environments, such as airports, bank 

branches, telecom service centers, and hospitals. The most significant advantage of big 

dashboards lies within their ability to serve multiple users concurrently. A flight arrivals 

board at the airport is designed to serve all passengers. No individual-specific 

information is displayed on such public boards. Monitoring and controlling patient flow 

within EDs requires managing individual's specific information. Thus, systems must 

consider patient privacy while displaying individual specific information on public 

dashboards. 

Moreover, a targeted audience of ED public dashboards can be roughly categorized into 

two groups, patients and family escorts and care and management personnel. Each of 

these groups requires different information from the monitoring-and-control system. 

While designing a dashboard-based UI, careful attention must be paid to the various 

user groups and their different needs.  

UI capabilities and the use of dashboards in a public environment, such as an ED, are 

subjects for a separate research [ 16]. In our research, we only minimally investigated the 

best information data required by patients for efficient patient flow control. We further 

developed a proof of concept ED dashboard for displaying the various KPIs that the 

EdRhythm generates.  
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4.5.1 The ED Dashboard 

The ED dashboard provides the ED users—patients, care personnel, and 
management—with a graphical interface to the set of indicators calculated and 
monitored by the EdRhythm. The main purpose of the ED dashboard is to 
demonstrate EdRhythm capabilities and to display the various KPIs the dashboard 

monitors. The ED dashboard is implemented using Flex technology [ 2]. Flex allows fast 
development of rich and professional dashboards. Using Flex, the dashboard can be 
viewed from anywhere via most commercial Internet browsers. We utilize existing Flex 
widgets and components and integrate them into the ED dashboard. Figure 10 and 
Figure 11below show two snapshots of the ED dashboard.  
 

 
Figure 10: The Occupancy level indicator is displayed 

using several Flex widgets 
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Figure 10 demonstrates various display options for the physical occupancy KPI. The 

top view shows the occupancy level for the current day; the left meter view shows 

instant occupancy level, and the right view shows average daily occupancy level, 

measured annually.   

 

 
Figure 11: Arrivals and staff utilization 

including forecasting 

Figure 11 illustrates the predictive capabilities and decision support functionality that 

might be incorporated into the ED dashboard. The top-left graph shows the patient 

arrival rate, as monitored by the EdRhythm till 17:00 for that day. The top-right graph 

shows the predicted arrival rate from 17:00 until 23:00 for that day. Such predictive 

capability, described in [ 30], can be incorporated into the EdRhythm. The actual 

physician utilization KPI, which is part of the personnel utilization KPI, can then be 

presented, alongside the predicted utilization, based on the expected arrival rate and the 

number of physicians that are expected to be present at the ED. Such a prediction 

assists ED management to adjust physicians' numbers for accommodating immediate 

ED requirements and for meeting the required KPIs. Note that predictive techniques 

and capabilities are beyond the scope of this research and are provided here just to 

complete the picture of ED dashboard capabilities. 

4.5.2 Future Research into ED Situation Dashboard 

Extensive research is still required and is underway to identify the various ED 

dashboard user roles and the specific set of requirements of each role. Such research will 

provide answers to crucial questions, such as: 
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• Which indicators should be monitored? And at what intervals? 

• How much data should be presented in each screen? 

• How should navigate between screens work? 

• What thresholds are needed for alerting for the various KPIs? 

• Is a drill down needed? And if so, to what level and by whom? 

• How should the dashboard provide ED staff with real-time control capabilities?  

• How should the dashboard provide "what-if" analysis and decision support?  

• How can privacy be protected? 

• And many more… 

In the next chapter, we further describe methods and findings for monitoring the 

complex ED load KPI. In chapters 6, 7 and 8, we then follow with a deep analysis and 

suggested decision support for the question "Which patient to treat next?", seeking an 

appropriate clinical and operational balance between the TTFE and the LOS KPIs. 
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CHAPTER 5: REAL-TIME ED LOAD MONITORING AND 

MEASUREMENT  

In previous chapters, we described the complexity of the ED environment, discussed 

various interesting KPIs to monitor and measure, and presented the key concepts 

behind the ED real-time monitoring-and-control system. One of the main promises of 

an ED’s real-time monitoring is regarding its ability to measure the real-time ED load. 

In Section  3.2, we presented the ED load-monitoring and measurement challenge. 

During this research, we developed an innovative approach for real-time ED load 

monitoring and measurement. We then implemented this approach and demonstrated it 

using the EdRhythm system, as described in the previous chapter.  

Our approach enables the measurement and calculation of user-tuned load, based on a 

wide spectrum of input data events and various predefined load functions. Being aware 

of specific user needs makes the system user-specific, i.e., resulting in a load score that 

reflects the relevancy of the low-level situational events to the subjective load experience 

of a specific user. Our approach, which is based on artificial neural networks [ 31], 

enables the following: i) a static mechanism for the definition of an explicit load 

function and ii) a dynamic learning mechanism that adapts the load calculation to user 

perception by overriding the explicit static load function definition.  

The dynamic learning mechanism has two main advantages. First, it enables simple 

adaptation of the load function into any ED setting, bypassing the need to enforce a 

rigid load function definition for non-standard ED settings. Second, it allows for the 

calculation of different load values for the same objective situation. This is particularly 

useful for capturing the operational load perception differences of various user groups. 

Thus, by sacrificing rigid definition for high flexibility, our approach allows users to 

compare various situations and to reach informed decisions regarding the appropriate 

steps to take to reduce the ED load, by declaring an ambulance diversion situation, for 

example. 

5.1 Dynamic ED Load Function   

The first step in calculating the ED load is to define the load function. For that, we need 

to define the exact set of input parameters and the relative contribution of each 

parameter to the overall load score. Vast research has been devoted to the definition of 

a canonical and standard ED load function [ 20], [ 51], [ 55], [ 62]. The main goal of such 

research is to come up with a unified load score. A unified load score will enable ED 

comparison and will accelerate the development of generic methods for optimizing the 

ED operation. Unfortunately, until now, a consensus has not been reached on a unified 
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ED load score. Moreover, such a consensus may never be reached, due to the 

significant differences in ED types and settings. This observation leads us to develop an 

adaptive load function that calculates the load score based on a dynamic list of low-level 

input parameters. The exact set of input parameters that are relevant to a specific ED 

setting is chosen from an extensive set of parameters that were identified in the 

literature [ 55] as potential contributors to the overall ED load. Incorporating a dynamic 

and adaptive load function within the EdRhythm system allows it to provide a 

meaningful and valuable load score in a wide variety of ED settings. Configuring and 

adapting the load function into a specific ED setting can be done in two ways—

statically, i.e., by explicitly defining the relative contribution of each of the input 

parameters to the overall load and dynamically, i.e., by using learning techniques for 

assigning the relative contribution level through a feedback mechanism. In the next 

sections we provide more details on these mechanisms and the way in which they are 

implemented. 

5.2 Neural Network-Based Load Function 

We chose to use artificial neural networks for implementing the ED dynamic-load-

function-enabling mechanism. Neural networks (NN)-based functions are flexible for 

composition, adaptive over time, meaningful for the user, and enable the definition of 

complex relationships (e.g., nonlinear) between inputs and outputs. 

5.2.1 Neural Networks – Theoretical Background 

Artificial neural networks [ 31] are graphical representations of complex mathematical 

functions. They are composed of units called perceptrons (Figure 12(a)) and arranged as 

a multi-layered feed-forward network (Figure 12(b)), in which the outputs of one layer 

are the inputs of the next layer. This type of structure was inspired by the brain 

structure. Neural networks are successfully used in many applications such as pattern 

classification, dimensionality reduction, and function approximation [ 34], [ 36], [ 38]. 

Because of the origins of the network’s design, the nodes in such networks are often 

called neurons. NN’s greatest advantage, in comparison to other machine learning 

techniques, is their simplicity, both in representation and in learning. In addition, the 

number of required training examples relative to the network structure is not high 

compared to other machine learning solutions.  



40 

 

Figure 12: (a) single perceptron; (b) multi-

layer network 

Each perceptron is composed of n inputs x1, x2,…, xn; n weights w1, w2,…, wn;  and an 

activation function φ(•). The output of the unit is v(x, w)=φ(xT, w), where 

 x=(1, x1, x2,…, xn), w=(b, w1, w2,…, wn). Examples of activation functions are sign 

(φ(u)=sign(u))), linear function (φ(u)=u), and logistic function (φ(u)=1/(1+e-u)). The 

type of activation function affects the ability of the network to learn and is application-

dependent. The units in different layers are connected in a feed-forward style to 

determine the network structure (see Figure 12(b)). The exact structure is also 

application-dependent, and in many cases domain knowledge can help to determine this 

structure.  

Given an M element training set of the form (xi, yi), in which n

iX ℜ∈ is the input to the 

network and ℜ∈iy is the expected output (or target function) of the network, the back 

propagation algorithm [ 31] can be used to find a set of weights that minimizes the mean 

square error (MSE) between the provided output and the current calculated output. 

Two types of learning can occur—offline (or batch) learning and online learning. In 

offline learning, the entire training set is given in advance. At each iteration of the back 

propagation algorithm, all of the examples are taken into account when updating the 

weights. In online learning, the examples are given one after another, and each learning 

iteration depends on the current example only. Online learning is typically used when 

the environment changes over time, and when the network is trained to fit those 

changes. 

5.3 Using Neural Networks to Calculate ED Load 

To demonstrate the advantages of our methodology, we built a neural network that uses 

a wide range of load input parameters. We established the initial network structure and 

the set of individual parameter contributions based on the exhaustive structured-list and 

indicators suggested in the load parameter review paper [ 55]. We used the initial 

structure described in Figure 13 as our basic network for the load calculation.  
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Figure 13: ED neural network view. The triangle is a total 

neuron, hexagons are the stage neurons, rectangles are the 

concept neurons, and diamonds are primitive input indicator 

neurons. 

The hierarchy in the network consists of four main layers:  

• Indicator Layer – This layer can take any number of low-level input parameters. 

Our initial implementation follows the set of indicators suggested in the review 

paper [ 55]. We modify some of the indicators so they better reflect the typical ED 

environment suggested by [ 44]. For example, indicator “ED Throughput time” was 

spliced into two nodes—one for admitted patients and one for discharged patients. 

This adaptation allows us to assign different contribution weights to each of the two 

more basic indicators.  

• Concept Layer – The basic indicators from the first layer are connected to six 

concept nodes: patient demand, patient complexity, ED capacity, ED efficiency, 

ED workload, and hospital efficiency. In our basic setting, each indicator is 

connected to a single concept. The hospital capacity concept was omitted from the 

concrete implementation due to the lack of appropriate data. The ED efficiency 

concept was divided into two sub-concepts serving the input and the throughput 

separately. This modification was made to keep the tree-like structure of the 

network.  

• Operational Stage Layer – The seven concepts from the second stage are 

connected to three operational stages, input, throughput, and output, following the 

ED conceptual model described in Section  2.2.  

• Load Score Layer – This layer contains a single output node representing the total 

ED load score. 
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5.4 The ED Load Learning Mechanism 

The artificial neural network learning mechanism can be implemented using either batch 

or online methods. Both approaches require knowledge of the "true" ED load value 

given a set of input parameter vectors. One way to get the set of ED load values is to 

present each input vector to the expert user and ask him/her to provide the ED load 

value in return. However, this method is not practical for two main reasons. First, input 

vectors are often too long for human perception and embedding. Second, the desired 

value of the target function cannot be explicitly calculated. In other words, there is no 

such thing as a "true" ED load value that the user is able to provide for a given input 

parameter vector. Thus, we choose a different approach, which relies on the EdRhythm 

situation dashboard and the user's subjective situation perception. 

Instead of presenting the input vector itself, we present the current ED situation using 

the EdRhythm situational dashboard (Figure 14). The EdRhythm dashboard presents 

the current calculated ED load score (measured in percentage of the load baseline) 

together with additional information about the status of the ED.  

 

 

Figure 14: Dashboard snapshot;  

load value (black line) is calculated as the percent of the 

average (green line) 

By looking at the dashboard, and by physically experiencing the ED's current situation, 

the user gains insight into the accuracy of the calculated ED load. This insight is merely 

subjective and is based on a comparison of the current situation to previous situations as 

experienced by the user. Using the relative feedback buttons, the user then provides 

feedback about the discrepancy between the system's calculated load and her subjective 

load experience. The neural network learns from the provided feedback and adjusts its 

load function accordingly.  For example, if the user feels that the represented load is far 
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below the desired value, she clicks on the larger + button, indicating that the load score 

should be increased by approximately 10%. A similar update process (+1%, -1%, -10%) 

is executed for the other three relative feedback buttons. Letting users provide feedback 

over long enough time periods results in having a load functions that accurately reflect 

the ED load. After completing this learning process, the system is able to present a real-

time load score as a percentage of the load baseline, as can be seen in Figure 14.  

5.5 Tracking Load on Internal Resources 

One key advantage of a neural network lies in its ability to reflect a complex physical 

structure, i.e., by allowing every neuron to have an explicit operational meaning. For 

that, our neural network design keeps the tree-like neuron hierarchy instead of the usual 

all-to-all connections. This allows each neuron to preserve its operational meaning 

during the learning process. Conserving the tree-like structure allows the user to track 

the current load back into the environment and to gain a deeper understanding of the 

current load status (Figure 4). Moreover, we can get an alert from any hierarchy level in 

the system if a certain neuron becomes overloaded. For example, in some situations the 

overall ED load is only 40% of the baseline, but the CT room is overcrowded due to 

lack of personnel. In these cases, the appropriate neuron’s status will reach the high 

mark and the system will thus send an alert to the situation dashboard, provided the 

neuron was preconfigured accordingly. As a result, the ED manager might react by 

sending less severe patients to the Hospital's CT room instead of to the ED's CT room, 

for example. 

Figure 15: Tracing load. Green line indicates total load, 

orange line indicates throughput; the rise in the total load 

was clearly caused by increasing the throughput neuron; we 

can trace it further and deduce that the peak in throughput 

was caused by elevation of the ED workload concept neuron. 
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5.6 Multiple Views of ED Load  

A key advantage of our framework is its ability to allow dynamic learning based on 

feedback from different user groups. Thus, we can calculate and present several 

different load scores for the same objective situation. This ability allows us to adapt the 

load values to a variety of ED settings. The only concrete requirement for providing 

meaningful values is to get consistent user feedback. This can only be achieved if 

feedback will be consistently provided by the same user. Situations might occur in which 

we can extend the group of users that provide feedback, assuming their feedback is 

somewhat consistent with the load situation. For example, measuring the current ED 

load as perceived by doctors, nurses, and patients, or even by a single individual such as 

the ED manager, could have an interesting application. Research [ 44] shows that each 

role group in the ED consistently experience varying loads due to frequent 

environmental changes throughout each day. Thus, the ability to establish a subjective 

load function that best reflects the actual load experienced by a given user group could 

be a useful tool for managing the day-to-day ED load.  

To enable the EdRhythm system to reflect a group’s subjective load, we first need to 

define the group's profile. Each group's profile reflects operational load as it is being 

experienced by a given group. Group profiles can be statically defined by fixing weights 

to relevant neurons, or by dynamically learning them, which is preferable. Dynamic 

learning involves capturing feedback from a specific user group associated with a 

specific profile. 
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To demonstrate the system's ability to reflect various load values for various user 

groups, we identified three possible group types—nurse, doctor, and patient. Each 

group has an assigned group profile and a relevant target load function. Nurse and 

doctor target load functions were defined as the average occupation ratio during a 

certain time period. Patient target load function was defined as the ratio of a patient’s 

waiting time to the patient’s total staying time in the ED. Figure 16 shows a typical day 

load curve for the three user groups. 

 
Figure 16: Simulated nurse, doctor, and 

patient profile behavior, when 100% is 

the average daily load 

Figure 17 summarizes average load values for the three examined user groups: nurse, 

doctor, and patient. Each profile comprises the weights of major relevant neurons 

monitored by the system. 

 

Figure 17: User profile composed of 

major raw indicator weights learned by 
the system 
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We can see that all three profiles show reasonable behavior when comparing time of day 

and when comparing the profiles to one another. When the system is overloaded, all 

users feel it. However, the load experience is different for each group. For example, 

doctors must stay later than nurses at the end of the day to close all open cases. Thus, 

the load on them decreases later than it does for nurses. On the other hand, triage, 

served by nurses, is the first station in the patient flow. Hence, the nurses’ operational 

load starts earlier. These examples demonstrate that different weights do indeed exist on 

the neurons, emphasizing the need for subjective load scores for the same objective ED 

state. 
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CHAPTER 6: ED PATIENT FLOW CONTROL 

In the previous chapter, we demonstrated the benefits of deploying a real-time 

monitoring and control system for the monitoring and measurement of ED load. The 

control part of the real-time monitoring-and-control system deals with the ability to 

influence patient flow within the ED in real time to improve the ED key performance 

indicators (KPIs). To do so, we first need to gain a deep understanding of its various 

aspects (see Figure 6). In this chapter, we examine specific ED operational aspects, 

analyze them, and suggest potential optimization approaches.  We then follow with 

some simulation results in  Chapter 7, then continue, in  Chapter 8, with a mathematical 

analysis of the problem's stylized model. For the analyses, we need a set of mathematical 

tools. Queueing network is a natural choice for analyzing the ED environment and for 

gaining a deep insight into its KPIs. As described in  Chapter 2, the ED internal 

operational processes can be analyzed using a queueing network model. The processing 

servers model the various ED stations and the jobs model the patients that require 

service at one of the ED stations. The ED usually operates in high load, thus most 

stations usually have waiting queues where patients wait for service. 

Consider the comprehensive ED activity and resource queueing model described in 

Figure 5. The complexity of such models renders them intractable for mathematical 

analysis and unsuitable for gaining insights into service policies and optimal control. 

Thus we continue our analysis by breaking it into smaller queueing models and 

analyzing them as if they were stand-alone models. Specifically, we identify two 

complementary views while modeling the ED as a queueing network—the patient's 

view and the care personnel view. We then translate these two views into two related 

queueing models, each with its own decision problem. From the patient's view, we 

confront a routing problem, i.e., deciding to which station the patient must go next; 

while from the care personnel's view (i.e., the station's view), we confront a scheduling 

problem, i.e.,, deciding which patient should be treated next. We further simplify our 

models as required, by adding additional constraints, e.g., over the arrival process, to 

make it mathematically tractable. Furthermore, we use complementary techniques, 

such as simulation, and interviews with ED managers, for gaining additional insights 

into the operational behavior of the analyzed control policy in situations as close as 

possible to those expected to be found in the day-to-day ED reality.  

In the following sections, we first briefly address the flow control routing problem from 

the patient's perspective, specifically, "Where should the patient go next?". We then 

continue with a detailed analysis of the flow control scheduling problem from the 

station's view—"Which patient should the physician treat next?". 
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6.1 Which Station to Visit Next?  

The exact station-sequence for a new patient arriving to the ED is unknown upon 

arrival and is determined as treatment progresses. The treatment process is not 

sequential and patients often return to the same station multiple times. Notice, though, 

that the next station(s) in a patient's route within the ED is always known. Usually, after 

completing treatment at some station, a physician provides indication about the required 

subsequent stations. The physician may indicate the need to visit more than a single 

station, e.g., for ordering laboratory tests, for consulting a specialist such as gynecologist, 

and for issuing an ultrasound test. In some situations, physicians request partial ordering 

over the station sequence. For example, a gynecologist may need to see the patient only 

after an ultrasound test is completed. In other situations, treatment in different stations 

can be executed in a totally arbitrary order. For example, lab tests must be taken prior to 

a final decision but independent of a gynecologist's consultation. 

 

Figure 18: A stylized queuing model for 

the "Which station to visit next?" 

problem. 

Thus, the dynamic, flexible, and unpredicted ED environment offers the potential for 

significant routing optimization. Figure 18 describes a stylized model for the "Which 

station to visit next?" decision problem. Such models were mathematically analyzed by 

A. Zviran [ 65] in the context of Healthcare. Indeed, even an elementary real-time 

control of patient flow would likely yield a significant improvement of the ED 

operational environment. For example, an immediate ideal for flow control is to direct 

patients to the station with the shortest queue. For an improved control, we could look 

further into the anticipated patient's route. Such controls may require forecasting of the 

future stations on a patient's treatment route. Our analysis does not deal with such 
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optimal routing issues. Clearly, however, such decisions must play a significant role in 

the overall optimization of the ED patient flow. 

6.2 Which Patient to Treat Next? 

The "Which patient to treat next?" (PTN) decision problem stands at the core of our 

research. This question emerged as most interesting within the ED day-to-day 

operation. The stochastically high load under which the ED usually operates results in 

an operational queue of waiting patients prior to each treatment station. In other words, 

patients must typically wait for treatment at each and every station along their treatment 

route. Thus, the improvement of the ED operational performance, gained by optimally 

addressing the PTN question, is expected to be significant. 

PTN improvements may affect the patient's final clinical results, which is the most 

important ED performance measure. The final clinical results may be complex to 

measure. Measuring the effect of PTN optimization on ED final clinical results is out of 

the scope of our research and is subject to future work. Nevertheless, and to partially 

address this difficulty, we considered multiple views while analyzing the PTN question, 

namely the clinical view, the service level view, and the operational view. Together, these 

views provide a reasonable estimate for overall ED performance with respect to the 

problem at hand. Next, we describe the core aspects of these views and their 

implications on the PTN question. 

6.2.1 Clinical View 

The clinical view is the most important view while addressing the PTN question. It is 

important to keep in mind that most patients' clinical aspects are hidden to physicians 

during the ED care process. The main purpose of the ED care process is to reveal the 

patients' clinical situations and to act upon them. The known clinical aspects of the PTN 

questions are encapsulated within the triage score. The triage score presents the patient's 

clinical status as assessed by the triage nurse prior to the first physician encounter. Best 

practices at most EDs do not require physicians to update the triage score after the first 

encounter, nor do they require providing other "running" clinical scores to patients, 

even though such a procedure may lead to further improvements in answering the PTN 

question.  

6.2.2 Operational View 

The operational view is our main focus while addressing the PTN question. Our sought- 

after policy seeks to improve various EDs' operational KPIs, including time till first 

encounter, overall patient length-of-stay, patient waiting-time to service-time ratio, and 

the overall number of patients within the ED. By limiting ourselves to operational 
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optimization, we must translate clinical criteria into their operational proxies. This is 

done mainly by using the triage score as a proxy to the patient's clinical status, and by 

providing cost functions that take into account parameters with clinical relevancy, such 

as patient age, waiting times, and the likelihood of a patient to be admitted to the ward 

or discharged from the hospital.  

6.2.3 Service Level View 

The service level refers to a specific operational aspect that focuses on the customer 

experience during the ED care process. Recent works in service science, such as 

Armony et al. [ 14], suggest a greater focus on patients' needs while providing service. 

Improving service level, in our context, means improving the service experience from 

the patient's point of view. We translate the service level view into reducing waiting time 

and the overall length-of-stay at the ED, without compromising the level of clinical 

treatment. One interesting option for service level improvement is to assign priority to 

patients who are about to be discharged from the hospital over patients who are about 

to be admitted. Since admitted patients will stay at the hospital anyway, they are thus 

more agnostic to the overall length-of-stay. Patients who are about to be discharged 

back to their homes are anxious to leave the ED, and the hospital, as soon as possible, 

which is also clinically safer for them. Fairness is a particularly interesting service 

performance indicator. For example, taking patients' age into account while determining 

which patient should be treated next may consider favorably from the service level 

fairness perspective. First come first serve (FCFS) is a widely-used fairness policy at 

EDs, which most patients would accept. Changing this policy while trying to address a 

wider KPI set may result in patient disappointment and objection, namely service level 

deterioration. The affect of applying a service policy other than FCFS on patient 

satisfaction and on other service level KPIs is subject to future research. 

6.3 Operationally Optimal PTN Control 

Discussions with ED managers led to the following clinical requirements, while 

addressing the PTN question—patients' length-of-stay should be minimized and 

meeting triage deadlines is a must. Furthermore, these discussions also suggested 

differentiation in the waiting costs of different patient classes. Based on these 

discussions, we formulated a clinically optimal control that yields the following 

guidelines: 

A clinically optimal PTN control meets triage deadline constraints with the least minimal 

effort for newly arrived (NA) patients. It then serves in process (IP) patients so as to 

minimize clinical costs. The cost functions combine clinical, operational, and service 

level aspects, i.e., by using waiting time, triage score, patient age, and ADT status as 

input parameters. The exact values for these parameters depend on a specific ED setting 
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and are thus to be provided by the ED manager. The optimal PTN controls with their 

associated aspects are further described in the following sections. 

6.4 The PTN Stylized Queueing Model  

The core of the PTN question deals with the need to serve several competing work 

items, e.g., the patients' encounter, by the same server, e.g., physician. Thus, the question 

becomes which work item should the server cater to next. Obviously, the work item 

parameters should be considered. Mapping the PTN into a queueing network model 

leads to the following formalism: 

 
Figure 19: A stylized queueing model for 

the PTN question. 

Consider a multiclass single station queueing system with feedback. Each station is 

comprised of a pool of statistically identical servers (physicians). Newly arrived work 

items (patients) arrive to the queue (waiting area) in a generic arrival process. Service 

time (patient-physician encounters) is modeled by an independent and identically 

distributed (i.i.d.) random variable s, with mean E(s). Service rate is thus given by 

µ=1/E(s). The system has feedback. That is, after finishing service, the item (patient) 

either leaves the system (discharged home or admitted to the hospital) or continues to a 

latent time period, i.e., a period at which it is being served at other station(s), and returns 

to one of the in process (IP) queues for additional service.  

The system has multiple priority queues. Each item has a priority index based on a 

variety of parameters. Thus, items are not necessarily served by their arrival order but 

are based on their priority. The scheduling algorithm chooses the next item to process 

based on some service policy that may take item's priority into account. 
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Special attention is given to the encounter sequence number. Items requiring initial 

service (NA patients) are treated differently than items already within the process (IP 

patients).    

6.5 Queueing Theory and Queueing Networks 

Queueing theory is the mathematical study of waiting lines, or queues. The theory 

enables the mathematical analysis of several related processes, including arriving at the 

(back of the) queue, waiting in the queue, and being served at the front of the queue. 

The theory permits the derivation and calculation of several performance measures, 

including the average waiting time in the queue or the system, the expected number 

waiting or receiving service, and the probability of encountering the system in certain 

states, such as empty, full, having an available server, or having to wait a certain amount 

of time to be served.  

Networks of queues are systems that contain an arbitrary but finite number of queues. 

Customers, sometimes of different classes, travel through the network and are served at 

the nodes. In open networks, customers can join and leave the system, whereas in 

closed networks, the total number of customers circulating within the system remains 

fixed. In queueing theory, a queueing model is used to approximate a real queueing 

situation or system, so the queueing behavior can be analyzed mathematically. However, 

the queueing model, e.g., the one described in Figure 19, often turns out too complex 

for exact analysis. We can then resort to approximations, as was done in this case. The 

referenced model was analyzed asymptotically in heavy traffic, by Huang, Carmeli and 

Mandelbaum [ 37]. Next, we provide further description of several queueing model 

concepts that are relevant to the ED patient flow. 

6.5.1 System Utilization and Operation Regimes 

The system utilization, ρ, is determined by the proportion between the system's capacity, 

µ, and the arrival rate, λ. Arrival rate is defined as the rate by which jobs arrive to the 

system. Time-varying arrival rates, as found in the ED environment, result in a transient 

network.  A transient network is characterized by its alternation between low utilization 

and high utilization [ 45].  

In present research of queueing systems, various operational regimes have emerged, 

which place a different focus on resource efficiency vs. service quality. Moreover, most 

of this research is for queueing systems with many servers that operate in steady state 

(an exception is the work done by Yom-Tov [ 63]); thus, this research is not directly 

relevant to ours since EDs, modeled as queueing systems, require time-varying analysis 

for small number of servers.    
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We thus further focus our research on a situation of rigid capacity. We assume that the 

ED resource level (e.g., number of servers) is fixed and search ways for a real-time 

improvement of ED performance under time-varying arrival rate by optimizing 

operational aspects, such as the PTN service policy. 

6.5.2 Service Policies and Priority Queues 

Service policy is defined as the policy by which the server caters to jobs that wait in 

queue. The most straightforward service policy is first come first serve (FCFS), in which 

jobs are being served by their arrival order. Note that in the FCFS, queue arrival time is 

the only parameter that is being considered for deciding upon the next job to serve. As a 

result, FCFS can easily be modeled as a single queue single server queuing system. This 

is not the situation in most service environments, including in the ED. A multiclass 

queueing system allows for classifying jobs into classes by using various job 

characteristics and then to assign a queue for each of these classes. The service policy 

then must determine which queue to serve next. We assume jobs within each queue are 

being served along the FCFS policy. 

In our model, we thus need to decide upon the characteristics to consider while 

classifying jobs into classes. Specifically, within clinical environments, we consider 

clinical characteristics, such as patient age and triage score, alongside with operational 

characteristics, such as the triage deadline and the expected ADT status. Next, we 

describe several known multiclass service policies.  

6.5.3 Cost-based Service Policy and the Generalized Cµ Rule 

A cost-based policy associates a cost function with each queue. Specifically, following 

[ 59], we consider a general single-server multiclass queueing system that incurs a delay 

cost at rate Ck(τk) for each class k job that resides τk units of time in the system. We 

denote the marginal delay cost and (instantaneous) service rate functions of class k by ck 

= C'k and µk, and we let ak(t) be the "age" or time that the oldest class k job has been 

waiting at time t. We call the service policy that at time t serves the oldest waiting job of 

that class k with the highest index µk(t)ck(ak(t)), the Generalized cµ (gcµ) Rule. Van 

Mieghem further shows that, with non-decreasing convex-delay costs, the gcµ rule is 

asymptotically optimal if the system operates in heavy traffic.  The gcµ rule suggests an 

attractive policy for serving IP-patients given that suitable cost functions are provided. 

The cost-based policy seems less suitable, at least directly, for meeting the deadline 

requirements of NA-patients. 
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6.5.4 Deadlines-constrained Service Policy 

A time limit or deadline is a narrow interval of time, or particular point in time, by which 

an objective or task must be accomplished. Deadlines are types of operational 

constraints provided by operation managements as a control mean. A deadline-

constrained service policy, within a multiclass, single-station queueing system, strives to 

serve any class k job arriving at time t by its deadline t+dk. As shown by [ 60], the 

deadline-constrained service policy can be approximated by sequence of convex-

increasing delay cost functions. This formulation reduces the intractable optimal 

scheduling problem into one for which the gcµ scheduling rule is known to be 

asymptotically optimal. Moreover, such an approach allows translating a deadline-

constrained service policy into a cost service policy. 

6.6 Multiple Decisions 

Assessing the PTN clinical requirements reveals that the PTN decision process can be 

viewed as a decision tree in which multiple decisions are required at multiple levels, as 

shown in Figure 20.  

 
Figure 20: The PTN conceptual decision 

tree. 

First one must decide whether to choose from the NA-patient queues or from the IP-

patient queues. This first decision is derived from the different clinical requirements 

associated with the different patient types. That is, NA patients should be served by 

their deadline, while IP patients should be served based on their overall lengths-of-stay.  

The second decision to make, once a patient type is chosen, is which exact queue to 

serve within that type. Lastly, different policies are necessary for situations in which the 

triage deadline can be met and for situations in which it cannot. 
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6.6.1 Main Service Policy Options 

We can thus apply many different service policy combinations and test them all. Our 

analysis starts by considering the major service policy alternatives for the first level of 

the PTN decision tree. These options are described in Table 1.  

 

Policy Main Approach 

First come 

first serve 

(FCFS) 

Serve the patient with the longest queue time next, while 

ignoring the total length-of-stay as well as all other clinical 

and operational parameters.  

Cost Serve the patient with the highest waiting cost next. 

Waiting costs are based on suitable convex functions, i.e., 

as provided by the ED manager, following the gcµ rule. 

Deadline-

constraint 

Set deadlines for both NA patients (triage deadline) and 

IP patients (total length-of-stay, e.g., four hours) and try 

to meet them both using the deadline-constraint policy 

suggested by Van Mieghem [ 60]. 

Hybrid  Strive to first meet NA patient deadline constraints, then 

chose among IP-patient using a cost function 

Table 1: Major service policy classes for 

the PTN. 

6.6.2 The Hybrid-Approach Service Policy 

The hybrid-approach to the PTN question applies different service policies to NA and 

IP patients. The hybrid-approach starts by deciding whether to next treat NA or IP 

patients, and for that it applies some threshold mechanisms. The hybrid-approach leads 

to a two-step decision problem. The service policy must first determine whether to treat 

NA patients or IP patients. After this first decision, the policy then determines which 

specific patient to select out of these two groups. 

6.6.3 The Constraint-based Service Policy 

A specific class of hybrid-approach policies is the constraint-based approach, which 

handles the triage time till first encounter (TTFE) deadline as a constraint that must be 

met. The constraint hybrid-approach thus seeks to minimize situations in which NA 

patients first see a physician after their assigned triage deadline. It then seeks to reduce 

the overall waiting cost of IP patients. Intuitively, such a hybrid-approach may result in 
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very long lengths-of-stay (LOS) because it gives total precedence to NA patients. LOS 

can still be controlled through the admission-control policy that refers patients to other 

hospitals in case of ED overload. In addition, a situation could still occur in which the 

TTFE constraint cannot be met. Such a situation requires that the scheduling algorithm 

be able to choose the next patient to treat from a list of patients who already missed the 

deadline. A complementary cost-approach methodology for NA patients is suggested to 

handle this situation. 

6.6.4 The Minimal-effort Due-date Service policy 

A particularly interesting class of constraint-based policies is the minimal-effort due- 

date class. Policies in this class seek to meet NA-patient deadline constraints using 

minimal processing effort, thus allowing maximal processing of IP patients. The 

minimal-effort class of service policies best combines clinical and operational aspects 

and thus provides the core focus of our research. 
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6.6.5 List of Analyzed Hybrid-Approach Policies   

Table 2 lists the various threshold algorithms we analyzed, under the various hybrid-

approach policies, and provides key aspects of each. 

 

Policy Main Aspects 

Newly arrived 

first (NAF) 

NAF serves any existing NA patients and otherwise serves IP 

patients. 

Static 

threshold 

(STD) 

STD chooses between NA patients and IP patients using a 

computed static threshold. The STD threshold assumes a fixed 

arrival rate and heavy traffic conditions. It then computes the 

threshold as follows: 

∑
∈

=
Jj

jjj mdTreshold λ , where j is a specific triage queue out of J 

queues, λj the arrival rate to the queue, dj the queue's deadline and 

mj the total service time of the patient in the system. 

The STD algorithm follows the PTN mathematical analysis 

suggested by Huang and Mandelbaum [ 37]. 

Adaptive 

threshold 

(ATD): 

ADT is a modification of the STD approach, which handles 

varied arrival rate. The ADT estimates the arrival rate in an hour 

time slot and adapts the static threshold accordingly. 

Greedy 

threshold 

(GTD) 

GTD chooses an NA patient who is about to miss the deadline 

from the NA queue, if one exists, and otherwise chooses an IP 

patient. The GTD only looks at head-of-the-line NA patients for 

making a decision. 

Dynamic 

threshold 

(DTD) 

DTD suggests a heuristic improvement over the GTD approach. 

The DTD starts as GTD, i.e., serves the NA patient if at least one 

such patient is about to cross the triage deadline. DTD then 

further invokes a look-ahead mechanism. It looks into the NA 

queue and estimates through simulation the expected "start of 

treatment" time for each patient already in the queue, assuming all 

processing capacity is allocated to serve NA patients, and that 

each treatment will take an average service time. It then 

determines which NA patient to treat if the look-ahead process 

suggests that at least one of the NA patients already waiting in the 

queue will miss his deadline.  

Table 2: List of Hybrid service policies. 
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6.6.6 The NA Internal Competition 

We considered two policies while choosing among NA patients in constraint-based 

policies, namely the portion policy and the difference policy. A portion service policy 

(w/d) gives precedence to jobs with a higher portion between the waiting time and the 

deadline. A difference policy gives precedence to jobs with a lower difference (w-d). A 

combined approach may also be considered. Such an approach uses difference if the 

deadline can be met and portion if it cannot, as indicated for DTD in Table 3.    

6.6.7 The IP Internal Competition 

We considered several service policy classes for the internal IP competition, namely 

FCFS, cost, and even a deadline-based class. We found the cost approach most suitable 

for resolving the IP internal competition and thus used it within all analyzed algorithms. 

6.6.8 Hybrid-approaches with NA and IP Service Sub-Policies 

Hybrid-approach service policies comprise several service sub-policies, as shown in 

Figure 20. Table 3 summarizes key aspects of the core subset of the hybrid-approach 

policies we analyzed during our research, along with their service sub-policy 

components. 

 

Service 

policy 

Threshold 

methodology 

Choosing 

among 

IP 

patients 

Choosing 

among NA 

patients who 

meet deadline 

constraint 

Choosing among 

NA patients who 

missed deadline 

constraint 

NAF  NA patient 

first 

FCFS Difference  

(w-d) 

Difference 

(w-d) 

STD Calculating 

using the 

queues length 

Cost Portion 

(w/d) 

Portion 

(w/d) 

DTD Calculating 

using waiting 

time of the 

"oldest" 

waiting patient   

Cost Difference 

(w-d) 

Portion 

(w/d) 

Table 3: Hybrid-approach service policies and their 

service sub-policy components. 
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6.7 The "Best" Service Policy 

In  Chapter 7, we provide detailed simulation results for the various service policies 

described in Table 3. Our simulation suggests that the dynamic threshold (DTD) hybrid 

service policy, which applies the threshold algorithm described below along with the 

service sub-policies described in Table 3, best addresses clinical needs under realistic ED 

situations. 

Below, we provide the pseudo code of the DTD threshold algorithm. 

 
At every service completion do{ 

If the head of the line patient at any of the triage queues 

already missed the deadline then{ 

• serve NA-patients 
}Else{ // perform a look ahead into the triage queues  

Save a copy of the queueing system and the simulation time; 

While there are patient at any of the triage queue  

Do{ 

• Pick the patient who is the closest to her deadline 
• If that patient already missed the deadline then{ 

� Exit and serve NA-patient 

} 

• Serve this patient, assuming average service time 
• Increase simulation running time by the service time 

amount 

}//do 

• Exit and serve IP-patient 

}//else 

Restore queueing system to its original status and  

simulation time to it original time 

} 

Figure 21: DTD threshold algorithm 

pseuso code. 

Note that the main strengths of the DTD service policy are i) its robustness with respect 

to the varied arrival rate and ii) its ability to serve as a real-time control in a real-life ED 

environment. 

Analyzing encounter data from a real ED setting suggests that NA patients comprise 

about 30% of encounters. Thus, only 30% from the system capacity is required for 

serving NA patients. As a result, we can reasonably assume that in most situations, the 

system has enough capacity in the system to serve NA patients just before their 

deadlines. The look-ahead capability of the algorithm allows it to proactively 

compensate for short arrival rate peaks that exceed maximal system capacity.   

We may also consider an interesting improvement to the DTD threshold algorithm, that 

is, to also simulate arrivals into the triage queue based on the expected arrival rate, 
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during the simulated look-ahead process. The current DTD threshold algorithm does 

not exploit this enhancement. We envision that such an enhancement will only have a 

minor effect on the results. We thus do not discuss it further.   

In the next chapter, we provide detailed simulation-based analysis results for the DTD 

service policy, as well as for other important service policies. We then provide a 

comparison analysis between the DTD and the STD service policies. In  Chapter 8, we 

provide fluid model analysis for a close stylized variant of the DTD threshold 

algorithm. 
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CHAPTER 7: WHICH PATIENT SHOULD BE TREATED NEXT? 

SIMULATION-BASED ANALYSIS 

In this chapter, we describe the discrete event simulation (DES) [ 5] we developed for 

analyzing the PTN question and the simulation analysis results.  The PTN simulation 

works in batch mode and is designed to evaluate potential PTN service policies for their 

performance. Nevertheless, the chronological nature of DES allows the developed 

service policy to serve as a real-time control within the EdRhythm system, described in 

 Chapter 4, while prototyping a real-life ED setting. Moreover, the DTD service policy, 

described in Section  6.7, uses the simulation engine for real-time control. Collecting 

events from the monitored environment and using real-time simulation to control it 

represents a methodology known as symbiotic simulation [ 18].    

7.1 The Simulation Environment 

The PTN simulation environment comprises three main functionality modules: the ED 

process simulator, the scheduling engine and the result processor. The scheduling 

engine, which provides the core algorithms of the PTN simulator, is implemented using 

the Java [ 10] programming language on top of the Eclipse framework [ 6]. The ED 

process simulator generates a list of patients visits based on a set of preconfigured 

parameters. The scheduling engine then applies various scheduling algorithms to the 

visit list and logs its output into an Excel file using the results processor. We then 

analyze the Excel file and compare the results of the various scheduling algorithms.  
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7.1.1 The PTN Simulation Input 

We use the EdRhythm platform, described in  Chapter 4, to generate the time-based list 

of patient visit events. The EdRhythm is calibrated to generate low-level visit events 

according to the visits expected to find in a typical ED. To this end, we validated the 

patient arrival profile, generated by the EdRhythm system, with several ED managers. 

The EdRhythm generates all kinds of low-level events, related to various ED activities. 

Thus, we first filter the list of low-level events generated by the EdRhythm, allowing 

only relevant events to pass through. The list of relevant low-level events is summarized 

in Table 4. 

 

 First 

Encounter 

Interim 

Encounter 

Last 

Encounter 

Waiting starts  33 41 47 

Encounter starts 

(waiting ends) 

34 42 48 

Encounter ends 35 43 49 

Table 4: List of processed low-level 

events. 

All patients have at least two encounters, namely first encounter and last encounter. The 

first encounter is indicated by events 33, 34; the last encounter is indicated by events 47, 

48, and 49. Many patients have more than two encounters. In rare situations, patients 

may have up to six encounters. Interim encounters are indicated by events 41, 42, and 

43. Table 5 describes a typical number-of-encounters distribution. 

 

2 encounters  3 encounters 4 encounters 5 encounters 6 encounters 

28%  30% 28% 11% 3% 

Table 5: Distribution of the number of encounters in a 

typical input set. 
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We aggregated the list of low-level encounter events into a list of encounter records. 

Each encounter record is composed of 4 elements that are described Table 6.  

 

Encounter 

Number 

Arrival Time Service Time Latent Time 

Sequential 

encounter 

number  

Indicates the 

arrival time to 

the queue  

The time of 

physician-

patient 

encounter 

The time patients spend in 

other ED stations before 

returning to the physician 

queue 

Table 6: Patient's encounter record. 

The time of the first encounter event (33) indicates the patient's arrival time at the ED. 

Service times are calculated by subtracting the time in the 34-35, 42-43, and 48-49 pairs, 

respectively. Latent time is calculated by subtracting the encounter end time (either 35 

or 43) from the following encounter's start waiting time (41 or 47, respectively) for the 

same patient. The latent time is then used for calculating the next patient's arrival time 

into the physician's queue. 

7.1.2 Additional Input Parameters 

The PTN simulator further assigns several clinical characteristics to each simulated 

patient, namely her triage score with its associated deadline, age, and the expected ADT 

status based on a realistic distribution. It then uses these characteristics for setting 

deadlines and waiting costs for waiting patients. The distribution of these parameters 

can be configured into the simulator. Below, we provide a typical realistic distribution of 

the various input parameters. 

Table 7 describes a typical distribution of patients along triage scores. 

 

Triage 3 Triage 4 Triage 5 

10% 40% 50% 

Table 7: Typical triage score distribution. 

Table 8 describes the typical triage deadlines for the three triage scores. 

 

Triage 3 Triage 4 Triage 5 

30 minutes 60 minutes 120 minutes 

Table 8: Typical triage deadlines. 
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Table 9 describes the age groups, as defined by an ED manager, and the respective 

distribution of patients among these groups. 

 

Under 45 45-65 65-75 Over 75 

40% 30% 20% 10% 

Table 9: Patients' age groups with their 

distribution. 

Table 10 describes the expected ADT distribution. We could further seek the ADT 

distribution for each of the triage groups. Notably, expected ADT status does not 

currently exist in most ED settings, and the option for caregivers to update the ADT 

status throughout the course of the treatment seems even more far-fetched.  

Furthermore, the ability to provide accurate ADT status heavily depends on the 

proficiency level of the caregiver.   

 

Admitted Discharged Unknown 

30% 60% 10% 

Table 10: Distribution of the ADT 

expected status. 

More importantly, the input parameters, with their respective distribution, provide just a 

baseline for the PTN simulation. In a real environment, the exact distribution can 

directly be calculated from the historical data, collected by a system such as the 

EdRhythm. We tested all service policies under a wide variety of input parameters to 

ensure their robustness functionality under the expected day–to-day ED conditions. 
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7.1.3 Arrival Processes 

The arrival process has a significant impact on the performance of the service policy 

being tested. The PTN simulator provides two types of arrival processes—a Poisson 

arrival process and realistic arrivals. We use the Poisson arrival process for analyzing the 

various service policies for robustness. The realistic arrival pattern is provided in Figure 

22. The PTN simulator provides a means to scale up the realistic arrivals while 

maintaining the arrival pattern itself. This ability allows scaling up the system-under-test 

into any desired size. Thus, for our tests, we generated an arrival function with scaled 

rates based on these two patterns. 
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Figure 22: A typical realistic arrival rate 

patern for a small ED. 

7.1.4 Setting the Cost parameters 

Service policies use cost functions for deciding which patient to treat next. Together 

with an ED manager, we defined the cost functions c(t), t≥0, along with their 

parameters, as described in the following tables. 

Table 11 describes the triage-related costs. Note that the important factor is the relative 

costs among the various triage groups. 

 

Triage 3 Triage 4 Triage 5 

c1(t)=4*t c1(t)=2*t c1(t)=t 

Table 11: Triage-related costs. 
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Table 12 describes the age-related costs, represented in terms of the triage costs. 

 

Under 45 45-65 65-75 Over 75 

c2(t)= c1(t) c2(t)=2*c1(t) c2(t)=3*c1(t) c2(t)=5*c1(t) 

Table 12: Age-related costs. 

Table 13 describes the costs for the Expected ADT status. The current cost function 

provides the same cost for unknown and admitted statuses. This yields higher priority to 

patients with high discharge probability.  

 

Discharged Admitted or Unknown 

c3(t)= 2*c2(t) c3(t)=c2(t) 

Table 13: ADT-related costs. 

Table 14 describes the polynomial cost that is being given to patients approaching the 

length-of-stay soft deadline. We use the term soft deadline to refer to a deadline that 

does not represent a hard constraint, rather, a soft one, which causes significant increase 

in cost if not met. The function further takes into account the differences in the length-

of-stay deadlines for different expected ADT status. 

 

If a patient needs to be 

discharged and is waiting 

more than 3.5 hours (210 

minutes) 

If a patient needs to be admitted or 

ADT status is unknown and is 

waiting more than 5 hours (300 

minutes) 

c(t)= c3(t)+(t-210)^2 c(t)= c3(t)+(t-300)^2 

Table 14: Polynomial waiting time costs, taking Expected 

ADT status into account. 

Note that the value ci(t), for type i cost function, indicates the rate at which cost 

increases with time. These rates are all with positive slops, thus representing the 

reasonable satiation in which the longer the LOS the higher the cost of an addition time 

unit of LOS. In particular, the cumulative cost can be calculated by taking the integral 

over the cost rates. 
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Table 15 summarizes the cost rate functions ci, j, k,(t) for the various patient classes using 

the following notion: ti, 3≤i≤5 stands for triage score 3 to 5, respectively; aj, 1≤j≤4, 

stands for the 4 age groups, and dk, 1≤k≤2, stands for the 2 expected ADT groups. 

Patient 

class 

Rate function before 

the soft deadline 

Rate function after 

the soft deadline 

t3, a1, d1 c(t)= 8t c(t)= 8t+(t-210)^2 

t4, a1, d1 c(t)= 4t c(t)= 4t+(t-210)^2 

t5, a1, d1 c(t)= 2t c(t)= 2t+(t-210)^2 

t3, a2, d1 c(t)= 16t c(t)= 16t+(t-210)^2 

t4, a2, d1 c(t)= 8t c(t)= 8t+(t-210)^2 

t5, a2, d1 c(t)= 4t c(t)= 4t+(t-210)^2 

t3, a3, d1 c(t)= 24t c(t)= 24t+(t-210)^2 

t4, a3, d1 c(t)= 12t c(t)= 12t+(t-210)^2 

t5, a3, d1 c(t)= 6t c(t)= 6t+(t-210)^2 

t3, a4, d1 c(t)= 40t c(t)= 40t+(t-210)^2 

t4, a4, d1 c(t)= 20t c(t)= 20t+(t-210)^2 

t5, a4, d1 c(t)= 10t c(t)= 10t+(t-210)^2 

t3, a1, d2 c(t)= 4t c(t)= 4t+(t-300)^2 

t4, a1, d2 c(t)= 2t c(t)= 2t+(t-300)^2 

t5, a1, d2 c(t)= t c(t)= t+(t-300)^2 

t3, a2, d2 c(t)= 8t c(t)= 8t+(t-300)^2 

t4, a2, d2 c(t)= 4t c(t)= 4t+(t-300)^2 

t5, a2, d2 c(t)= 2t c(t)= 2t+(t-300)^2 

t3, a3, d2 c(t)= 12t c(t)= 12t+(t-300)^2 

t4, a3, d2 c(t)= 6t c(t)= 6t+(t-300)^2 

t5, a3, d2 c(t)= 3t c(t)= 3t+(t-300)^2 

t3, a4, d2 c(t)= 20t c(t)= 20t+(t-300)^2 

t4, a4, d2 c(t)= 10t c(t)= 10t+(t-300)^2 

t5, a4, d2 c(t)= 5t c(t)= 5t+(t-300)^2 

Table 15: Cost-rate functions for the 

various patient classes. 
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For clarification, consider the following examples: 

• The cost rate for a 78-year-old patient, with a triage score of 3,  who waits for four 

and a half hours (270 minutes) and is expected to be admitted to one of the hospital 

wards is given by: 

c3,4,2(270)=20*270 = 5400 

• The cost rate for a 40-year-old patient, with a triage score 5, who waits for three and 

a half hours (240 minutes) and is expected to be discharged home is given by: 

C5,1,1(240)= 2*240+(240-210)^2 = 9480 

 

The graphs below describe the waiting cost rates for the various patient classes using the 

same notation as above. 
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Figure 23: Cost for admitted patients is linear before reaching the four-
hours-deadline. 
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Cost rate before and after the soft deadline
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Figure 24: Cost for all patients, emphasizing admitted and discharged 
differences. 

Note that the service policy algorithm uses configured cost functions. Thus, the ED 

manager is able to easily change them in order to meet desired performance indicators. 

7.1.5 The PTN Simulation Model 

The PTN simulation model is based on a queueing network, following the model 

illustrated in Figure 19.  The queues are organized into a two-dimensional structure. The 

first dimension indicates the triage level; the second dimension indicates the patient's 

encounter number with a physician. The scheduling algorithm selects a patient from the 

appropriate queue and transfers her to the next queue after the treatment and latent 

time, or out of the queueing system after treatment time in the case of a patient's last 

encounter. 

Most scheduling algorithms use FCFS within queues. Our simulation is able to simulate 

service policies that take individual identities into account, e.g., in situations in which 

cost function is complex, and to prioritize patients by calculating their waiting cost 

within the ED. 

Service times and latent times are taken as is from the input plan. Our simulation is able 

to take arrival time from the input or to generate the arrival times based on known 

process distributions, such as the Poisson process.  

The simulation simulates a physician pool with a configured number of physicians. Each 

physician spends time treating a patient, but physicians may also spend a configured 

amount of time in additional work, e.g., filling out treatment orders and discharge 
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summaries. This physician work profile is consistent with observational studies of 

physician work within the ED made by [ 44]. 

A physician becomes available to treat the next patient following the service time period 

and the additional work period. The "amount of additional physician work" parameter 

allows adjusting the overall system load without changing the arrival rates. 

Note that the main focus of the PTN simulation is on the arrival patterns and the 

waiting queues. Thus, accurately simulating the physician work profile is not part of the 

PTN simulator. 

7.1.6 The Simulation Output 

The simulation's raw output contains the input encounter record with an additional 

element, specifically the encounter start time. This element is the output of the 

scheduling algorithm. The next arrival time to one of the waiting queues is then 

calculated from the encounter's service time and latent time. The rest of the KPI's are 

calculated after the simulation, using Excel. 

7.2 Results 

The PTN simulator allows simulating and analyzing various service policies under 

various arrival rates and staffing levels. In the following sections, we describe the main 

results for some of the analyzed policies. We use the FCFS service policy as the baseline 

for composition of our results and further compare the tested algorithms along two key 

performance indicators: 

Time Till First Encounter (TTFE) is the average time, taken over all patients, from 

the time patients arrive at the ED until the time they first meet a physician. The TTFE is 

calculated with respect to the required deadline associated with each triage score. The 

simulation does not take into account additional processes that take place between 

patient arrival to the ED and patient arrival to the physician's waiting queue, i.e., the ED 

admission process, the triage process, and other processes carried out by nurses prior to 

the patient-physician encounter. 

Total Length-of-Stay (LOS) is the time period from the arrival time of patients to the 

ED till the end of their last encounter with a physician. The total length-of-stay does not 

take into account processes that take place after the last encounter with a physician, i.e., 

the discharge and admitting processes and any other processes carried out by nurses 

after the physician's last decision has been made. 
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7.2.1 Comparing PTN Policies 

We simulate three priority-based service policies for the PTN question, specifically i) 

first come first serve (FCFS), ii) NA patients first (NAF), and iii) a threshold policy 

(TSLD). We run the simulation many times and over various time periods, e.g., multiple 

days, with multiple arrival-rate patterns. We specifically emphasize a real-life scenario 

that assumes varied arrival rate during the day. We test this scenario under several ED 

scales. Our summary results for a realistic ED setting are provided in Table 16. All 

numbers are provided in minutes and represent average measurements.  

 

 Time till 

first 

encounter 

Service 

time 

Overall 

waiting 

time 

Latent 

time 

Total 

length–of-

stay 

FCFS 31 14 103 59 176 

NAF 8 14 116 59 189 

TSLD 29 14 105 59 178 

Table 16: PTN service policies 

comparison. 

Note the following: 

• FCFS is the straightforward PTN policy currently used by most EDs. FCFS in 

this regard refers to a specific encounter. As a result, FCFS does not give 

priority to returning patients. Thus, these patients need to wait in line for their 

turn with all other patients, including NA patients and other IP patients. 

Moreover, FCFS does not take triage scores, or any other patient clinical 

characteristics into account; thus it is obviously not good enough for addressing 

combined clinical and operational aspects. It is considered here just as a 

baseline, allowing us to qualify the results of other PTN policies. 

• The NA patient first policy (NAF) gives the highest priority to newly-arrived 

patients. This policy can be considered as the simplest threshold policy. It 

applies a simple binary threshold—whether patients are in one of the triage 

queues or not. Results from a complementary IP patient first policy (IPF) are 

not provided. IPF is expected to reduce the total LOS, at the expense of a 

longer TTFE. Thus, is not expected to perform better then the FCFS in meeting 

the triage deadlines.  
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• Service times and latent times are not affected by the service policy, thus have 

the same values along the various policies. Furthermore, the service times only 

include patient-physician encounters, while the latent times includes the time a 

patient spent at stations other than the physician's station. 

While the FCFS and the TSLD policy result in fairly similar performance indicators, the 

NAF policy yields a significantly different result. From assessing these results, we gain 

several interesting insights: 

• The PTN decision policy has a significant effect on performance indicators. 

• No single PTN service policy stands out as superior. While the FCFS provides a 

minimal LOS, the NAF policy provides much better TTFE. 

• Giving higher priority to newly-arrived patients significantly reduces the TTFE 

indicator, but increases the overall LOS at the ED. This phenomenon justifies 

the use of triage deadlines for balancing clinical and operational needs. 

• Comparing the FCFS and NAF policies indicates that the gcµ rule holds for the 

simulated environments. Giving precedence to newly-arrived patients increases 

the total LOS. The need to optimize the TTFE indicator, which is a distinctive 

ED performance indicator, calls for further analysis.  

• Comparing the FCFS and the TSLD policies reveals no significant performance 

differences. The FCFS seems to be superior in the total LOS aspect, at the cost 

of a bit longer TTFE. A more detailed comparison of the LOS and TTFE 

distribution suggests that this is not the case. Such an analysis reveals that the 

TSLD policy provides much greater control and allows ED management to 

adjust the ED operation towards specific performance indicators. We further 

describe these insights in the following sections. 

7.2.2 Meeting Predefined Deadlines 

A reasonable service policy aims at reducing the averages of the TTFE and LOS 

indicators. Clinical needs suggest that aiming to reduce the average TTFE and LOS is 

not good enough, and that taking the exact distribution into account is also necessary. 

Specifically, clinical needs impose deadlines for both TTFE and LOS. Consequently, the 

optimal distribution associated with these indicators needs not to be uniform nor even 

symmetric. A longer TTFE is acceptable, assuming triage deadlines are not violated for 

any patient. Having many patients' go over the soft deadline (e.g., 4 hours) in the ED is 

considered not good enough, even though the average LOS is kept below the soft 

deadline. Table 17 shows the percentage of the patients that meet TTFE and LOS 

deadlines for the three above-mentioned PTN service policies. 
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 Percentage of patients that 

meet the TTFE deadline 

Percentage of patients that 

meet the 4-hour LOS deadline 

FCFS 88% 75% 

NAF 100% 74% 

TSLD 94% 78% 

Table 17: Meeeting deadline constraints. 

Table 17 reveals the following observations: 

• The TSLD algorithm is superior to FCFS in both categories.   

• The NAF policy allows meeting triage deadlines at all times, but comes at the 

expense of a longer LOS. A natural question thus emerges—what is the minimal 

effort required for meeting triage deadlines? Allocating the minimal effort for 

meeting triage deadlines allows reduction of the total LOS. An optimal TSLD 

policy should do exactly that. In the following sections, we further analyze the 

various parameters that affect the various TSLD policies, while seeking the 

optimal one. 

In Table 18, we describe results from analyzing the two KPIs across triage categories. 

Such an analysis provides additional insights into the interplay and tradeoffs between the 

two KPIs. FCFS does not take triage categories into account; thus the LOS 

performance does not depend on the triage categories. Both NAF and TSLD take triage 

deadlines into account. As a result, triage 5 patients spend more time waiting for their 

first encounter, and eventually spend more time at the ED and are more likely to miss 

their total LOS deadlines. 
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 Fraction of patients that 

meet the TTFE deadline 

Fraction of patients that meet 

the 4-hour LOS soft deadline 

Triage Class 3 4 5 3 4 5 

FCFS 75% 82% 95% 75% 81% 72% 

NAF 100% 100% 100% 92% 83% 66% 

TSLD 88% 95% 95% 86% 80% 75% 

Table 18: Meeting deadline constraints along 

triage categories.  

7.2.3 Comparing the Threshold Algorithms 

We further examine several variants of the threshold algorithm under several arrival 

processes. Specifically, we compare the adaptive threshold (ATD) algorithm with the 

dynamic threshold (DTD) algorithm described in Table 2. We compare these two 

algorithms with respect to two related parameters, the system capacity and the arrival 

rate. These parameters are summarized in Table 19.  

   

 Fixed arrival rate Varied (realistic) arrival rate 

Average arrival rate 

that results in below 

heavy traffic 

conditions  

Not interesting, 

thus not provided 

Table 21, same performance 

No real issue as all patients are 

served before their deadline 

Average arrival rate 

that results in heavy 

traffic condition 

Table 20, same 

performance 

Table 22, DTD performs 

better 

Table 19: Summary table for the various STD and DTD 

tested scenarios 

Fixed arrival rates are generated using a Poisson process with a fixed rate denoted by λ.  

Heavy traffic conditions are generated by letting λ/µ go to 1. This is done by adjusting 

the number of physicians and their work loads according to the provided λ.  
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We analyze the system under various scales. We scale up the system by increasing the 

number of physicians and arriving patients simultaneously, while maintaining the desired 

load. For a large-scale system, we use about 22 physicians, specifically, 21 physicians 

result in an overloaded condition, 22 in a critically loaded system, and 23 in an under-

loaded one. For a more realistic system, we use five physicians. Our analysis shows that 

no significant differences exist between the two system scales.   

For clarity reasons, we provide analysis results for just a single triage category in most of 

the cases. 

  

 Poisson arrival rate with fixed λ that averages in heavy 

traffic conditions; triage 5 patients. 
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Main 

observation 

The algorithms perform similarly. 

Table 20: Fixed arrival rate; heavy 

traffic. 
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 Varied arrival rate with average below heavy-traffic 

conditions; medium size system. 
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Main 

observation 

The algorithms perform similarly. No deadline issues occur. 

Table 21: Varied arrival rate with average below 

heavy-traffic conditions. 
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 Varied arrival rate with average at heavy-traffic conditions.  
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Main 

observation 

DTD performs better due to its better resilience to the time-

varying arrival rates. 

Table 22: Varied arrival rate with 

average at heavy traffic. 
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7.2.4 Assessing Different Triage Categories 

We further compare the ATD and DTD algorithms across the various triage categories. 

Recall that triage categories differ from one another in their times-to-deadline. The 

comparison is done for small and large system sizes and for fixed and realistic arrival 

rates that result in heavy-traffic conditions. We note that both algorithms perform better 

for a large-scale system than for a small one. The DTD performs better, or at least as 

well as the ATD, under all tested characteristics. 

 

 DTD ATD 

Large system; fixed arrival rate; 

heavy-traffic conditions 

Table 24 Table 25 

Small system; realistic arrival rate 

averages in heavy-traffic conditions 

Table 26 Table 27 

Table 23: Summary of  comparison 

tables. 
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Table 24: DTD, large system; fixed arrival rates; heavy 

traffic conditions. 
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ATD  Large system; fixed arrival rate; heavy traffic conditions. 
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Table 25: ATD; large system; fixed arrival rates; 

heavy traffic conditions. 

Further analysis of the system under more realistic conditions, namely few physicians 

and a realistic arrival situation, revealed the difficulty of both the ATD and DTD 

algorithms to meet triage deadline at all times. However, the DTD performed 

significantly better under these conditions, due to its dynamic adaptation to the time-



81 

varying arrival rate. Note that a significant part of triage 3 patients still miss their 

deadlines by up to 30 minutes. Similarly, about 10% of triage 4 and 5 patients also miss 

their deadlines by up to 30 minutes, manifesting the stochastic level of the system.  

  

DTD  Small system (1 physician); realistic arrival rate that 
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Table 26: DTD; small system; realistic arrival rate that averages in 

heavy-traffic conditions. 
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ATD  Small system (1 physician); realistic arrival rate that 
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Table 27: ATD; small system; realistic arrival rate that averages 

in heavy-traffic conditions. 
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7.2.5 In Process Patient Priorities  

The distribution of the Length of Stay (LOS) is highly dependent on the system load. 

No significant differences exist between the ADT and DTD policies, since both use the 

same cost function. Note that if a system is overloaded, then most resources are 

allocated to NA patients and LOS will grow infinitely. We provide results for finite 

horizon, in which the system eventually remains without patients, in the following 

tables. 
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Table 28: LOS distribution for a system under 

various loads. 
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Recall that our PTN model gives priority to IP patients based on a cost function. The 

PTN cost function takes four parameters into account: i) length-of-stay, ii) triage score, 

iii) patient age group, and iv) admit/discharge forecast. These parameters can be easily 

changed. All PTN algorithms use the same cost functions.  

Figure 25 summarizes the performance indicators along the age category for the DTD 

algorithm, running over a realistic arrival rate that averages in heavy-traffic conditions. 

The cost function indeed gives precedence to old patients over younger ones, as shown 

in the figure. 

Figure 25: LOS distribution across age groups. 

Figure 26 summarizes the performance indicators along the ADT category for the DTD 

algorithm. The results indicate the priority that the cost function gives to expected 

discharged patients.    
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Figure 26: LOS distribution across the expected ADT 

statuses. 

7.3 Summary of Results 

Through simulation, we compared several service policies under various system 

conditions with respect to time-till-first-encounter and the length-of-stay KPIs. We 

found that the dynamic threshold (DTD) policy performs better under most system 

conditions. Specifically, this policy is robust against time-varying arrival rates. The ADT 

performs similarly to the DTD, except under time-varying arrival rate conditions. The 

FCFS, though resulting in the minimum lengths-of-stay, does not provide any control 

over triage deadlines and other service-level indicators such as age. The NAF policy best 

meets triage deadline constraints, but results in a below-optimal average length of stay. 

In the following chapter, we use a fluid model to analyze a variant of the DTD policy. 

For a stylized model, we show that an optimal policy exists in situations in which the 

arrival rate is assumed known. 
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CHAPTER 8: WHICH PATIENT SHOULD BE TREATED NEXT? 

FLUID MODEL ANALYSIS 

In this chapter, we present a fluid model analysis that addresses the PTN question. In 

our analysis, we focus on the first decision within the PTN question, namely whether to 

next serve an NA patient or an IP patient. The underlying assumption is that to achieve 

an optimal solution to the PTN question, we must use a threshold-approach in which 

NA-patients are served as close as possible to their triage deadline, but not cross it. A 

key requirement for this analysis is to allow an arbitrary arrival rate. Thus, the goal of 

our fluid model analysis is to find an optimal control that, given the general arrival rate, 

dynamically determines whether to next treat the NA patient versus the IP patient. 

8.1 Problem Definition 

Our fluid model analysis is performed for a simple stylized model as depicted in Figure 

27. As shown in the figure, we focus on a single NA queue and a single IP queue. The 

main assumption, which follows from our simulation-based analysis, is that an optimal 

control belongs to the family of minimal-effort due-date policies. 

 

 

Figure 27: The stylized fluid model for 

the PTN question. 

Thus, our goal is to find an optimal departure control. A control is optimal if it 

minimizes the departure process uniformly over all times subject to deadline constraints. 

Thus, we seek the minimal-effort control that meets deadline constraints over all times 

and for all possible arrival rates. For that we define physically-feasible and deadline-

feasible controls. Obviously, arrival rates exist for which deadline constraints cannot be 



87 

met. Thus, we provide a necessary and sufficient deadline-feasibility condition (DFC) 

over an arrival rate that guarantees that deadline constraints can be met. We then 

provide a deadline-feasible control, namely a physically-feasible control that meets 

deadline constraints under the deadline-feasibility condition. We conclude by showing 

that our deadline-feasible control is indeed optimal. 

At the end of the chapter, we provide a conjecture for the optimal control in situations 

in which deadline constraints cannot be met due to high arrival rates. The generalization 

of a single NA, single IP-queuing model into the PTN model described in Figure 19 is 

left for future research. 

8.1.1 Mathematical Framework 

We start by defining the mathematical framework for our analysis, including the 

following symbols and parameters: 

We use α(•) to denote the time-varying arrival rate to the system; thus α(•) ≥ 0. It is 

technically convenient to let α(•) be defined over the whole real time (-∞, ∞) and to 

assign to it the value of 0 over (-∞, 0). 

For the technique of our proof, we shall impose the following additional constraints 

over α: 

1. α should be piecewise continuous; 

2. α should have finite number of local extrema.   

We use A to denote the cumulative number of arrivals, or work arriving to the system. 

Thus A(t) denotes the amount of work arriving to the system till time t: 

duutA
t

∫ ∞−
= )()( α  

We use δ(•) to denote a time-varying departure rate from the system. Thus δ(•) ≥ 0 and 

δ(•) is piecewise continuous. A control policy amounts to specifying δ; we shall thus use 

the two interchangeably. It is technically convenient to let δ(•) be defined over the whole 

real time (-∞, ∞) and to assign to it the value of 0 over (–∞, 0). 

We use D to denote the cumulative work departing from the system; thus D(t) is the 

integral over δ(t). 

duutD
t

∫ ∞−
= )()( δδ  

We use µ to denote departure capacity, which is the maximal departure rate from the 

system; thus µ serves as upper bound for δ: 0≤δ(•)≤µ.     

We use d to denote the deadline; d is an input constant to the model, which is measured 

in time units. 



88 

We use the following superscript throughout: tz, ts, td, te, which stands for Zero, Start, 

Deadline, and End respectively. These subscripts are used to denote specific points over 

given time intervals. 

We use δ*(•) to denote the optimal control policy, which is the sought-after solution for 

our problem. 

Using the above framework, we can now provide a solution to the PTN optimization 

problem.  

8.1.2 Physically-feasible Control 

A physically-feasible control δ(•) is a control that meets the following constraints: 

1. δ(t) = 0,  t<0, 

2. 0 ≤ δ(t) ≤ µ, 0≤t 

3. Dδ(t) ≤ A(t), -∞<t< ∞. 

The above constraints ensure that the control is physically viable. The first two 

constraints ensure that the departure rate is assigned a positive number that cannot 

exceed the physical maximum departure rate of the system. The third constraint ensures 

that work cannot depart from the system if not yet arrived into it.      

 

8.1.3 Deadline-feasible Control 

A deadline-feasible control δ(•) is a physically-feasible control that further meets the 

following constraint: 

4. A(t-d) ≤ Dδ(t), -∞<t<∞. 

The above constraint ensures that work that arrived to the system at time t will depart 

no later than at time t+d. 
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We will refer to these four constraints (1-4) by their numbers, during proofs and 

discussions in subsequent sections. 

 
 

 

Figure 28: Cumulative arrival and 

departure work. 

Figure 28 describes a cumulative arrival work function, A(t), and a cumulative deadline-

feasible departure work function, Dd(t); Dp(t)=A(t-d) is the ultimate departure work 

function in which all work departs from the system exactly at its deadline. This Dp(t) is 

usually not achievable due to the δ(•) ≤ µ constraint. 

8.1.4 An Optimal Control 

Let ∆ be the set of deadline-feasible controls. Our optimal control problem seeks to 

identify, among all ∆∈δ , the one δ* that minimizes Dδ(t)-A(t-d), simultaneously over 

all times t. Note that it is a priory unclear that there is indeed such ∆∈*δ . Nevertheless, 

we do show that, if ∆ is not empty, δ* exist. Denote by D* the departing work 

corresponding to δ*. We shall also show that D*≤Dδ for all ∆∈δ , thus establishing the 

optimality of δ* in the sense of minimizing efforts subject to triage constraints. Note 

that a physically-feasible control, for which Dδ(t)=A(t-d) at all times, is obviously 

optimal. 

8.1.5 A Necessary and Sufficient Deadline-Feasibility Condition  

A necessary and sufficient deadline feasibility condition (DFC) which ensures the 

existence of deadline-feasible departure policy, is as follows: 
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For any two time-points ti and tj such the ti<tj, the following must hold:  

Deadline feasible conditions (DFC): 

(Eq. 1)                   dttdt
t

t
ttAtA ijij

j

i

µµα +−≤=− ∫ )()()()(  

Although checking for the DFC for a given α might be cumbersome, some observations 

can still be made: 

1. If α(t) ≤ µ, for -∞<t<∞ then α is deadline feasible. Otherwise: 

2. Identify the set of time intervals (tsi, t
e
i), t

s
i ≤t< t

e
i for which α(t) ≥ µ. If there 

exists an interval (tsi, t
e
i) such that ddt

t

t
t

e

s
µµα >−∫ ))(( , then α is not deadline-

feasible. 

 

 

Figure 29: A not deadline-feasible α(t) 

8.1.6 Stability Constraint 

A stability constraint over α is required for constructing the departure policy: 

There exist T<∞ such that α(t) ≤ µ for all t>T. 

Thus, for constructing α, we need to identify the maximal time T for which α(t)>µ. 

Analyzing the system under finite horizon (-∞, T] poses no problem in that regard, as 

α(•) is only defined over the half-closed interval (-∞, T] and α(t)=0 for t<0. Thus the 

maximal time t, for which α(t)>µ, obviously exists within the time interval [0, T].    

Analysis of the system under an infinite horizon requires identifying a time T for which 

α(t) ≤ µ for all t>T. 

8.2 Proving the Deadline-Feasibility Condition 

We start by proving the necessity and sufficiency of the DFC provided at (Eq. 1):  
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8.2.1 Proof-Necessity 

For necessity we must show that if the condition does not hold, the deadline cannot be 

met. Thus, assume there are two time-points ti and tj for which the necessary condition 

does not hold. Namely: 

.)()()()()( µµµα ijijij tdtdttdt
t

t
ttAtA

j

i

−+=+−>=− ∫  

The amount of work arrived at time tj is given by: 

.)()()()( ∫ ∫∫ ∞−∞−
+==

i j

i

j t t

t

t

j dttdttdtttA ααα  

The amount of work that departed from the system at time tj+d is, at most, all the work 

that arrived at time ti (i.e., fully depleting the system, also noted as D(ti)=A(ti), which 

indicates the physically-feasible constraint), plus the maximal departure rate, µ, over the 

time period [ti, tj+d]: 

.)()()(

)()()()()(

∫∫

∫∫ ∫∫
=+

<−++=+==+

∞−

∞−∞−

++

∞−

j

i

i

ii j

i

j

t

t
j

t

t

ij

t dt

t

dt

j

tAdttdtt

tdtdttdtdttdttdtD

αα

µαµαδ
 

From the above equation, we conclude that not all the work that arrived at time tj 

departed at time tj+d. In other words, a part of the work arrived to the system at time tj 

and missed its deadline. 

8.2.2 Proof-Sufficient 

For sufficiency, we need to prove that if the condition holds, the deadline can be met 

over all times. We prove it by constructing a deadline-feasible departure policy. The 

construction's steps are provided in the subsequent sections. 

8.3 The Trivial Arrival Rate Case 

A trivial arrival rate case is: α(t) ≤ µ, –∞<t<∞. 

In this case, meeting the deadline constraints is possible by simply delaying all work for 

exactly d units of time. Such an approach minimizes the departure process uniformly 

over all times. Formally: 

δ*(t) = α(t-d), -∞≤t≤ ∞. 

is an optimal solution for the problem. 
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8.3.1 Meeting Physically-Feasible Constraints 

The δ* meets all physically-feasible constraints: 

1. δ(t)=0, t≤0 

α(t) = 0, t≤0. Thus δ*(t)=α(t-d)=0, t≤d. 

2. 0≤δ(t)≤µ, 0≤t. 

0≤α(t) ≤ µ at all time, so that α(t-d)≤µ at all times. Thus 0≤δ*(t)= α(t-d)≤µ 

3. Dδ(t) ≤ A(t), -∞≤t≤ ∞. 

)()()(*)(* dtAdududuutD
tt

−=−== ∫∫ ∞−∞−
αδ ≤A(t), –∞<t<∞. 

Thus D(t)≤A(t), –∞<t<∞. 

8.3.2 Meeting Deadline-Feasible Constraint 

The δ*(•) meets the deadline-feasible constraint: 

4. A(t-d)≤ Dδ(t), -∞≤t≤ ∞. 

)()()(*)(* dtAdudtduutD
tt

−=−== ∫∫ ∞−∞−
αδ , –∞<t<∞. 

Thus A(t-d)≤ D(t), –∞<t<∞. 

8.3.3 Proving Optimality 

The δ* and the corresponding D* are obviously optimal since  

D*(t) = A(t-d), –∞<t<∞  

and thus  

D*(t)-A(t-d) = 0, –∞<t<∞, 

while D(t)-A(t-d) ≥ 0, –∞<t<∞, for all other ∆∈δ . 

8.4 Variable Arrival Rates under the Deadline Feasibility Condition 

As discussed earlier, it is convenient to distinguish between two arrival-rate situations, 

specifically those for which a deadline-feasible control exists and those for which is 

none exists. In the following sections, we discuss the first situation, that is, we assume 

that the DFC prevails at all times. We then construct a deadline feasible control δ, and 

prove that it is optimal. 
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8.4.1 Constructing an Optimal Control 

Assume that the DFC and the Stability constraints hold at all times.  

Introduce a finite set of m+1 time intervals [tsi, t
e
i], 0≤i≤m, such that:  

α(t) ≥ µ,  tsi<t<t
e
i,  0≤i≤m, 

α(t) < µ otherwise. 

Note that m<∞ since α has a finite set of local extrema. 

Denote [ai], 0≤i≤n, a vector of index alignment constants, such that an=m and ai<ai+1.  

We now construct a sequence of n+1 time intervals [τsi, τ
e
i], 0≤i≤n≤m, such that: 

T=tm=tan=τ
e
n> τ

s
n> t

e
a(n-1) =τ

e
n-1> τ

s
n-1 …> tea1=τ

e
1> τ

s
1 >t

e
a0=τ

e
0> τ

s
0>-∞, 

for which: 

1. )()()()(
s

i

e

i

e

i

t

e

i duutAA ττµ
τ
ατ −≥=− ∫ , τns<t<τne,  0≤i≤n 

2. )()()()( s

i

e

i

e

i
s

i

s

i

e

i dttAA ττµ
τ
τ
αττ −==− ∫  

3. There exist small ε>0 such that 

 )()()()( εττµ
τ
τ

αεττ
ε

−
−

− −<=− ∫ s

i

e

i

e

i
s

i

s

i

e

i dttAA  

 

 

Figure 30: Finding the set of τsi points 

Note that: 

1. The construction of the [τsi, τ
e
i] is carried out in an iterative manner starting from 

t=T backwards. 

2. The process must eventually stop as ai<ai+1, 0≤i≤n, and the number of time 

intervals [tsi, t
e
i] is finite. 
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3. τs0 exists, and –∞< τ0s since α(t) = 0 for t<0, thus dtt
e

s∫ 0

0

)(
τ
τ
α  is bounded while 

)( 00

ee ττµ − tends to ∞ as τ0s  goes to -∞. 

4. tea(i-1)<τ
s
i< t

s
ai. That is, τ

s
i falls within an interval in which α(t)<µ. Assume, in 

contradiction, there is ε'<ε such that α(t)≥µ, for ε'<ε< τsi. We then have:  

)'((

()()()'()( )
''

εττµ

ττµ
τ
τ

α
τ
τ

αεττ
εε

−−≥

−+==− ∫∫ −−
−

s

i

e

i

s

i

e

i

s

i
s

i

e

i
s

i

s

i

e

i dttdttAA
  

while contradicting the above third condition.  

Thus, we conclude that α(t)<µ within the time interval teai-1=τ
e
i-1<t<τ

s
i. 

Denote a derived set of time intervals Г= {γsi, γ
e
i} defined by: 

γsi = τ
s
i + d 

γei = τ
e
i + d 

Let δ* be defined over Г as follows: 

• δ*(t) = 0, t<0, 

• δ*(t) = µ, Γ∈t , 

• δ*(t) = α(t-d),  otherwise. 

See Figure 31 for a graphical demonstration of δ* and the way we construct it. 

 

Figure 31: Constructing δ*(t) 

We argue that the above δ* is physically-feasible, deadline-feasible, and constitutes 

optimal control. We prove these claims in the following sections. 

8.4.2 The Proactive Period 

Next, we define the proactive period equality (PPE). The PPE is defined for every two 

time points τsi, τ
e
i, τ

s
i<τ

e
i for which the below equality holds: 
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PPE: 

(Eq. 2)  )()()()( s

i

e

i

e

i
s

i

s

i

e

i dttAA ττµ
τ
τ
αττ −==− ∫  

We will use the PPE throughout our proofs. 

8.4.3 Sync Point Correlations Lemma  

Sync point is a pair {t1, t2} in which work arrives to the system at time t1, then departs 

from the system exactly d time units afterwards, at time t2. 

We define the pair {tl1,t
l
2} as left sync point (LSP), and the pair {t

r
1,t

r
2} as right sync 

point (RSP), respectively, if there exist small ε1, ε2 such that work arriving to the system 

at the interval ε1<t<t
l
1, t

r
1<t<ε2, respectively for RSP, departs from the system exactly at 

its deadline (i.e., d time units afterwards), while work arriving to the system at tl1<t<ε2, 

ε1<t<t
r
1, respectively for RSP, departs from the system either before or after its deadline. 

See Figure 32 for a graphical demonstration of LSP and RSP. 

  

 

Figure 32: Left sync point and right sync 

point. 

From the way we constructed δ*, we observe that all couples {τsi, γ
s
i} are LSP; and that 

all couples {τei, γ
e
i} are RSP. Specifically, work that arrives to the system at time τsi 

departs at time γsi, and work that arrives to the system at time τei departs at time γei. 

Moreover, all work that arrives to the system after τsi but before τ
e
i departs before its 

deadline, and all work that arrives to the system just before τsi or just after τ
e
i departs 

from the system exactly at its deadline.  

Based on this observation, we define the following correlations: 

Left Sync Point (LSP) correlation for {τsi, γ
s
i} 

(Eq. 3)    D(γsi) = A(γ
s
i –d) = A(τ

s
i) 

Right Sync Point (RSP) correlation for {τei, γ
e
i} 
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(Eq. 4)    D(γei) = A(γ
e
i –d) = A(τ

e
i) 

These relations provide additional insights into the way we constructed δ*, and will 

assist us in proving the optimality of δ*. 

We prove these relations by induction over i. 

Induction base: 

Consider the two adjacent time periods for i=0: 

1. ),( 0

s
t γ−∞∈  

2. ],[ 00

es
t γγ∈  

From the definition of δ* we conclude that:  
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∞−
= ∫∫∫  

and by using the PPE (Eq. 2) for the second interval we get:  
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Now assume by induction that the LSP and RSP relations hold as in Eq. 3 and Eq. 4 for 

i, and prove them for i+1. We thus need to prove that: 

D(γs(i+1)) = A(γ
s
(i+1)–d) = A(τ

s
(i+1)) 

and 

D(γs(i+1)) = A(γ
s
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By using the PPE again: 
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8.4.4 Meeting the Physically-Feasible Constraints 

For δ* to be physically-feasible it must meet the three constraints defined in Section 

 8.1.2: 

δ(t)=0, t≤0 

Note that while constructing δ*, we enforced δ*(t) = 0, t<0. For this enforcement to 

hold, we need to show that γs0 ≥ 0. Otherwise, our definition of δ* is not consistent. 

We thus need to show that if the deadline-feasible condition holds, then γs0 ≥ 0.  

Assume, on the contrary, that γs0 =τ
s
0+d <0, and γ

s
0 –d =τ

s
0. Thus, using the PPE for 

[τs0, τ
e
0] we get: 

se

sese

e

s

se

d

ddttAA

00

0000
0

0
00

)0(

))(00()()()()(

µγµτµ

γτµττµ
τ
τ
αττ

−+−

=−−+−===− −∫  

Recall further that α(t)=0 for t<0 thus: 

dttAA
e

se ∫=− 0

0
00 )()()(

τ
αττ  

Combining the two equations we get: 

dddttAA
ese

e

se µτµµγµτµ
τ
αττ +−>−+−==− ∫ )0()0()()()( 000

0

0
00  

This is in contradiction to the deadline-feasibility condition for time {0, τeo}, since if 

γs0<0 then µγ
s
0 is a negative number. 

1. 0≤δ(t)≤µ, 0≤t. 

Obviously the constraint holds for Γ∈t . We, thus need to show that δ*(t) = α(t-d)  ≤ µ 

for Γ∉t . While constructing δ*, we showed (Section  8.4.1 Remark 4) that τsi falls 

within an interval in which α(t)<µ, and concluded that α(t)<µ within the time interval  

τei-1<t<τ
s
i. Thus, α(t-d) <µ for τ

e
i-1+d=γ

 e
i-1<t<γ

s
i= τ

s
i+d.  

2. Dδ(t) ≤ A(t), -∞≤t≤ ∞. 
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We will show that the constraint holds by considering four different time period 

categories, which together cover the whole real time: 

Two boundary conditions periods 

a. t<γs0 

b. t>γen 

and two internal period categories: 

c. γei <t< γ
s
(i+1)  0≤i<n 

d. γsi≤t≤γ
e
i
       0≤i≤n 

3.a) Let –∞<t<γs0.  

Recall that: 

δ*(t) = 0 for t<0 

δ*(t) = α(t-d) for 0≤t<γs0 

Thus: 

)()()0()()(0)(*)(*
0

tAdtAdAdtAdududuutD
tt

≤−=−−−=−+== ∫∫ ∞−
αδ , 

–∞<t<γs0. 

3.b) Let t>γen.  

Recall that δ*(t) = α(t-d) for t>γen 

)()()()()()()()(

)()()(*)()(*)(*

tAdtAAdtAAdAdtAA

dududAduuDduutD

e

n

e

n

e

n

e

n

t

e
n

t

e
n

e

n

e

n

t

≤−=−−+=−−−+=

=−+−=+== ∫ ∫∫ ∞−
ττγτ

αγδγδ
γ γ  

for t>γen. 

3.c) Let γei<t< γ
 s
(i+1),  0≤i<n. 

Recall that δ*(t) = α(t-d), for γei<t< γ
 s
(i+1).   

.0,),()(

)()()()()()()()(

)(*)()(*)(*)(*)(*

1 nittAdtA

AdtAAdAdtAAdu
t

dudA

du
t

uDdu
t

udttduutD
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i

e

i

e

i

e

i

e

i

e

ie
i

e

i

e
i

e

ie
i

e
i

t

<≤<<≤−=

−−+=−−−+=−+−=

+=+==

+

∞−∞−

∫

∫∫∫∫

γγ

ττγτγ αγ

γ δγγ δ
γ
δδ
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3.d) Let γsi≤t≤γ
e
i  0≤i≤n. 

Recall that δ*(t) = µ for γsi≤t≤γ
e
i   

Thus, using the RSP relations as in Eq. 4: 

dtAdtAtA

duAduuDduudtttD

s

i

s

i

s

i

s

i

s

i

s

i

t

s

i

s

i

t

s
i

s

i

t

s
i

s
i

µτµττµτγµτ

γ
µτγ δγγ δ

γ
δ

−−+=−+=−+

=+=+=+=

+

∞− ∫∫∫∫
)()())(()()()(

)()()()(*)()(*
 

and: 

.)()()()()( duuAduudtttA
t

s

i

s

i

t

s
i

s
i ∫∫∫ +=+=
∞− τ

αττ α
τ
α  

Now assume, on the contrary, that there is a time t for which D(t)>A(t). 

Thus: 

)()()()()()(* tAduuAdtAtD
t

s
i

s

i

s

i

s

i =+>−−+= ∫τ ατµτµτ   

and thus: 

.)()()()( duudttduudt
e
i

t

e
i

s
i

t

s
i

s

i ∫∫∫ −=>−−
τ
α

τ
τ ατ αµτµ  

From the way we constructed δ* and specifically from the PPE (Eq. 2) we know that: 

dtt
e
i

s
i

s

i

e

i ∫=−
τ
τ αττµ )()(  

Thus: 

du
t

uttdu
t

udt
e
is

i

e

i

ie
s

i

e

i

s

i ∫∫ −−+−=−−>− −
τ
ατµτµ

τ
αττµµτµ )()()()()()(  

This results in: 

duutd
e
i

t

e

i ∫−−>−
τ
ατµµ )()(  

and thus: 

dtduu
e

i
t

e
i

µτµ
τ
α +−>∫ )()(  

which is in contradiction to the deadline-feasibility condition for points τei and t. 

We conclude that Dδ(t) ≤ A(t), γ
s
i≤t≤γ

e
i  0≤i≤n. 

This last conclusion completes the proof that δ* meets the Dδ(t) ≤ A(t) constraint over 

the whole real time, and that δ* is indeed a physically-feasible control. 
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8.4.5 Meeting the Deadline-Feasible Constraint 

For δ* to be a deadline-feasible control, it must meet the constraint defined in Section 

 8.1.3. Namely, we need to show that: 

3. A(t-d)≤ D*(t), -∞≤t≤ ∞. 

For that, consider again the four different time period categories: 

Two boundary condition periods 

a. t<γs0 

b. t>γen 

and two internal period categories: 

c. γei <t< γ
s
(i+1)  0≤i<n 

d. γsi≤t≤γ
e
i         0≤i≤n 

 

4.a) Let –∞<t<γs0. 

Recall that 

δ*(t) = 0 for t<0 

δ*(t) = α(t-d) for 0≤t< γs0 

Thus: 

)()0()()(0)(*)(*
0

dtAdAdtAdududuutD
tt

−=−−−=−+== ∫∫ ∞−
αδ , 

–∞<t<γs0. 

 

4.b) Let t>γen.  

Recall that δ*(t) = α(t-d) for t>γne. Thus, using RSP correlation (Eq. 4): 

)()()()()()()(

)()()(*)()(*)(*

dtAAdtAAdAdtAA

dududAduuDduutD

e

n

e

n

e

n

e

n

t t

e

n

ne
e

n

t

e
n

−=−−+=−−−+=

=−+−=+== ∫ ∫∫ ∞−
ττγτ

γ γ
αγδγδ

 

Thus D*(t)=A(t-d) for t>γen. 

 

4.c) Let γei<t< γ
s
(i+1),  0≤i<n. 

Recall that δ*(t) = α(t-d) for γei<t< γ
s
(i+1). Thus, using RSP correlation (Eq. 4): 
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)(

)()()()()()()()(

)(*)()(*)(*)(*)(*

dtA

AdtAAdAdtAAdu
t

dudA

du
t

uDdu
t

udttduutD
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e
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e
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e
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e

i

e

i

t

e
i

e
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e
i

e
i

−=

−−+=−−−+=−+−=

+=+==

∫

∫∫∫∫ ∞−∞−

ττγτγ αγ

γ δγγ δ
γ
δδ

Thus D*(t)=A(t-d) for γei<t< γ
s
(i+1),  0≤i<n 

4.d) Let γsi≤t≤γ
e
i  0≤i≤n 

Recall that δ*(t) = µ for γsi≤t≤γ
e
i   

Thus, using RSP correlation (Eq. 4): 

4.d.1 

)()()(

)()()()()(*

s

i

s

i

t

s

i

s

i

t
s

i

ts
i

tdAdudA

duuDduudtttD
s
i

s
i

γµγ
γ
µγ

γ δγγ δ
γ
δ

−+−=+−

=+=+=

∫
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4.d.2 duudAdududAdtA
t

s

i

t
s

i s
i

s
i

∫∫ +−=−+−=− τ αγγ αγ )()()()()(  

From the PPE (Eq. 2) and from the definition of τsi, τ
e
i, γ

s
i and γ

e
i we know that 

4.d.3   )())()(()()()()( s

i

e

i

s

i

e

i

s

i

e

i dddtdtdttAA
e
i

s
i

e
i

s
i

γγµγγµ
γ
γ α

τ
τ αττ −=−−−=−==− ∫∫  

Recall further that from the way we constructed Г it holds that for each Γ∈t : 

4.d.4 )())()(()()()( tdtddududuutA
e

i

e

i
tt

e
i

e
i

−=−−−>−== ∫∫ γµγµ
γ
α

τ
α , γsi≤t≤γ

e
i 

By combining 4.d.3 with 4.d.4 we get: 

4.d.5

)()()()()()()( s

i

e

i

s

i

e

i
t

t

ttduudttduutA
e
i

e
i

s
i

s
i

γµγµγγµ
τ
α

τ
τ ατ α −=−−−<−== ∫∫∫  

, γsi≤t≤γ
e
i 

and by combining 4.d.1, 4.d.2 and 4.d.5 we get: 

4.d.6 )(*)()()()()( tDtdAduudAdtA
s

i

s

i

t
s

i s
i

=−+−<+−=− ∫ γµγτ αγ , γis≤t≤γie  

Thus, we conclude that A(t-d)≤Dδ(t), γ
s
i≤t≤γ

e
i, 0≤i≤n. 

This last conclusion completes the proof that δ* meets the A(t-d)≤Dδ(t) constraint over 

the whole real time, and that δ* is indeed a deadline-feasible control. 
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8.4.6 Proving Optimality 

We will now prove by induction over i that D*(t) defined as dtttD ∫ ∞−= )(*)(* δ  is 

optimal. 

Induction base: 

Consider the two adjacent time periods for i=0: 

1. ),(
0

s
t γ−∞∈  

2. ],[
00

es
t γγ∈  

We have already shown that D*(t) = A(t-d) for all ),(
0

s
t γ−∞∈ ; thus D*(t) is indeed 

optimal over that time interval. 

Recall that δ*(t)=µ for all ],[
00

es
t γγ∈ . Recall further that δ(t) is constrained by µ. That is 

δ(t) ≤µ. 

We will thus show that if there exists a point in time t' such that δ(t')<µ, then 

duutD
t

∫ ∞−= )(')(' δ  does not meet the A(t-d) ≤ D(t) constraint. 

Assume, on the contrary, that there is at least one point in time t' such that ],['
00

es
t γγ∈  

and δ'(t')<µ in some small neighborhood of t' (recall δ(•) is piecewise continuous) and 

that δ'(t)= δ*(t) for ),( 0

s
t γ−∞∈ . 

For such δ' there exists: 

)()(*)(' 00

0

0

0

0

se
e

s

e

s
dttdtt γγµδδ
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γ
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γγγγ
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γ αγ

γγµγ
γ
γ δγ

γ
γ δγ

γ
γ δ

γ
δ

γ
γ δ

γ
δ

γ
δγ

 

This is in contradiction to the constraint that ).()(' 00 dAD
ee −≥ γγ  

Now assume by the induction that D*(t) is optimal for i.  

We thus need to prove that D*(t) is also optimal for i+1. 

Consider again the two adjacent time periods for i+1: 

1. ),( 1

s

i

e

it +∈ γγ  
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2. ],[ 11

e

i

s

it ++∈ γγ  

From the induction assumption we know that D*(t) is optimal for t<γei. 

We have already shown that D*(t)=A(t-d) for all ),( 1

s

i

e

it +∈ γγ ; thus D*(t) is optimal for 

t<γs(i+1). 

Recall that δ*(t)=µ for all ],[ 11

e

i

s

it ++∈ γγ . Recall further that δ(t) is constrained by µ. That 

is δ(t) ≤µ for all t. 

We will thus show that if there exists a point in time t' such that δ(t')<µ, then 

dtttD ∫ ∞−= )(')(' δ  does not meet the A(t-d) ≤ D(t) constrain. 

Assume, on the contrary, that there is at least one point in time ],[' 11

e

i

s

it ++∈ γγ  for which 

δ'(t')<µ, in some small neighborhood of t', and that δ'(t)= δ*(t) for ),( )1(

s

it +−∞∈ γ . 

For such δ' there exist: 
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This is in contradiction to the constrain that )()(' 11 dAD
e

i

e

i −≥ ++ γγ  and by that we 

conclude the optimality proof for δ*. 

8.5 General Time-Varying Arrival Rate 

In the following section, we formulate a conjecture for an optimal δ* in the situation for 

which deadlines can not be met at all times. We start by defining optimality for such 

situations and then describe a method to construct the optimal δ*. Proving that δ* is 

indeed a physically-feasible optimal control is left for future work. 
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8.5.1 An Optimal Control 

Let ∆ be the set of physically-feasible controls. 

Identify, among all ∆∈δ  the one δ̂ which minimizes the cumulative time period t for 

which Dδ(t)<A(t-d). 

Formally:  

denote tsi, a point such that  Dδ(t
s
i)=A(t

s
i -d), 

denote tei a second point such that t
e
i>t

s
i, and Dδ(t

e
i)=A(t

e
i -d), 

and: 

Dδ(t)<A(t-d)for all  ],[ e

i

s

i ttt∈ . 

Then a physically-feasible optimal control δ^ minimizes )(
s

i

i

e

i tt∑ −  simultaneously 

over all times. 

Further identify, among all ∆∈δ̂  the one δ* that minimizies Dδ(t)-A(t-d) 

simultaneously over all time intervals in which the deadline-feasible condition prevails.  

Further show that for any ∆∈δ  D*(t)≤Dδ(t), for all t. 

Note that a physically-feasible control, for which Dδ(t)=A(t-d) at all times is obviously 

optimal. 

8.5.2 Constructing Optimal Control  

Denote the finite set of m+1 time intervals [tsi, t
e
i], 0≤i≤m, such that:  

α(t) ≥ µ,  tsi<t<t
e
i,  0≤i≤m 

α(t) < µ otherwise. 

Note that m<∞ since α has finite set of local extrema. 

Denote [ai], 0≤i≤n a vector of index alignment constants, such that a0=0 and ai<ai+1.  

We now construct a sequence of n+1 time intervals [εsi, ε
e
i]  0≤i≤n≤m such that: 

-∞<ts0= ε
s
0 < ε

e
0 < t

s
a1=ε

s
1< ε

e
1< …< tsai=ε

s
i< ε

e
i <… < tsan=ε

s
n< ε

e
n <∞ 

for which: 

1. )()()()( s

i

s

i tdu
t

uAtA
s
i

εµε αε −≥=− ∫ , εsi<t<ε
e
i,  0≤i≤n 

2. )()()()( s

i

e

i

e

i
s

i

s

i

e

i dttAA εεµ
ε
ε
αεε −==− ∫ , 0≤i≤n. 
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3. There exist small ε>0 such that 

)()()()( e

i

e

i

e

i
e

i

e

i

e

i dttAA εεεµ
ε
ε

αεεε
ε

−+<
−

=−+ ∫ ,  0≤i≤n 

Note that: 

1. The construction of the [εsi, ε
e
i] is done in an iterative manner starting from t= ts0 

forwards. 

2. The process must eventually stop as ai<ai+1, 0≤i≤n, and the number of time 
intervals [tsi, tei] is finite. 

3. εei exists, and ε
e
i<∞ since α(t) < µ for T<t, thus dtt

e

n
s

n
∫
ε
ε
α )(  is bounded while 

µ(εen- ε
s
n) goes to ∞ as ε

e
n  goes to ∞. 

4. teai<ε
e
i<t

s
ai+1, that is, ε

e
i falls within an interval in which α(t)<µ. Otherwise, i.e., 

assuming α(t)>µ for εeai<t< ε
e
ai+ε, we have 

)(

)(()()()( )
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e

i

e

i
e

i

s
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e
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e

i
s

i

s

i

e

i dttdttAA

εεεµ

εε
ε

αεεµ
εε

ε
αεεε

−+>

+−==−+ ∫∫
++

, 

in contradiction to the above third condition. Hence, α(t)<µ for εei <t<ε
s
i+1= t

s
ai+1. 

Further, denote [bi], 0≤i≤k a vector of index alignment constants, such that bi<bi+1.  

We now construct a sequence of k+1 time intervals [βsi, β
e
i]  0≤i≤k≤m such that: 

-∞<εsb0=β
s
0<β

d
0<β

e
0=ε

e
b0< …<εsbi=β

s
i<β

d
i<β

e
i =ε

e
bi<… <εsbk=β

s
k<β

d
k<β

e
k=ε

e
bk<∞ 

for which there exist at least one point ],[' ds

ii
t ββ∈ : 

1. dtdttAtA
s

t
s

is
i

i
µβµαβ

β
+−>=− ∫ )'()()()'(

'

, βsi<t<β
d
i,  0≤i≤k 

2. ddttAA
sdsd

ii

d
i

s
i

ii
µββµαββ

β

β
+−==− ∫ )()()()(  

3. For ],[ ed

ii
t ββ∈   dtduuAtA

s
t

s

is
i

i
µβµαβ

β
+−<=− ∫ )()()()(  

4. Denote ],[
1

sdz

i ii
βββ

−
∈ the point for which 

)()()()(
z

i

s

i
d

z

i

s

i dttdAA
s
i

z
i

ββµαββ
β

β
−==−− ∫ −

 

Define Ζ as the set of time intervals [βzi, β
s
i]. 

Define B as the set of time intervals [βsi, β
d
i]. 

Define Θ as the set of time intervals [βdi, β
z
i+1]. 

Define δ*i to be the optimal control over the Θ. Construct δ*i  as described in Section 

 8.4, over each of the Θ intervals, such that α(t) is defined over the close intervals [βdi-d, 

βzi+1-d].  
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Define δ* to be the optimal control over the whole real numbers T as follow: 

• δ*(t) = 0, t<0, 

• δ*(t) = µ, Β∈t  

• δ*(t) = µ, Ζ∈t  

• δ*(t) = δ*i Θ∈t  

δ* is physically-feasible but not deadline feasible over B. 

δ* is deadline-feasible over Ζ∪Θ . 

δ* is optimal over T  

8.5.3 Intuition and Claims 

Note: 

βzi< β
s
i <β

d
i < β

z
i+1 

Intuition:  

The interval [βsi, β
d
i] is physically-feasible.  

The system has enough capacity to deplete the queue at time βei. We know that βei,< 

βsi+1, we also know that at time βdi, deadlines have just been met, namely D(βdi) = A(β
d
i-

d), and {βdi-d , β
d
i} are RSP. 

We argue that βdi + d < β
s
i, since we are able to deplete the queue during that time 

period; this inequality stems from the way we constructed [εsi, ε
e
i]. 

Similarly, the condition βdi ≤ β
z
i+1 stems from the same fact.  

βzi is the latest point in time from which we can deplete the waiting queue such that it 

will become empty at time βsi. This will allow us to minimize the deviation from the 

deadline. 

We define βzi as the point from which δ(t)=µ to deplete the queue, thus, {β
z
i-d , β

z
i} are 

LSP. 

At βzi the queue contains all work that arrived during [β
z
i-d, β

z
i], thus, to deplete the 

system we need to complete this work and the rest of the work that arrived at [βzi, β
s
i], 

while serving at maximum capacity from βzi onwards. That is exactly the condition that 

allows us to find βzi. 

Claim 1: βdi < β
e
i 

Claim 2: βdi ≤ β
z
i+1 (at the extreme, we need to have δ(t)=µ from βzi+1= β

d
i in order to 

drain the queue at βsi+1 

Claim 3: the deadline-feasibility condition holds over the intervals [βdi,  β
s
i+1]   
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For all ],[ d

i

s

it ββ∈  holds: 
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For all ],[, 1

s

i

d

iji tt +∈ ββ  holds: 

µµα dttdt
t

t
ttAtA ijij
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+−<=− ∫ )()()()(  

For all ],[' 1

s

i

d

iit +∈ ββ  holds 

µµβαβ
β

dtdt
t

tAtA
s

ii

is

ii s
i

+−<=− ∫ )'(
'

)()()'(  

8.6 Summary of Results 

In this chapter, we have shown that an optimal δ* can be constructed when the 

deterministic arrival rate function, α, is known. We have shown that if α(•)<µ, then a 

trivial optimal solution exists, namely δ(t) = α(t-d). We have further shown that for 

situations in which the DFC prevails, an optimal δ* can be found. In such situations, a 

proactive behavior, namely increasing the service rate for NA patients, allows meeting 

the deadline even in situations in which α(•)>µ for some time periods. Recall the NAF 

policy presented in Section  6.6.5. Our simulation-based analysis showed that this policy 

meets the triage deadline at all times under realistic arrival rates. This indicates that the 

DFC holds for such situations. Recall further the DTD policy presented at Section  6.7. 

This policy serves the triage queues at a rate equal to δ(t) = α(t-d), at most times, and 

implements the proactive behavior in situations where α(•)>µ. Thus, this policy suggests 

optimal control with realistic arrival rates, as proved by our fluid-model analysis. 
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CHAPTER 9: CONCLUSIONS AND FUTURE WORK 

This research focuses on the benefits that a real-time monitoring-and-control system 

may provide for optimizing ED operations. During this work, we designated several 

points along the ED patient flow process that offer opportunities for promising 

improvements. We then analyzed and explored some of them using various techniques, 

such as simulation, mathematical analysis, and prototype implementations. Specifically, 

we identified two applications and addressed them through innovative approaches—

adaptive load monitoring and the "Which patient to treat next?" service policy.  While 

our work involved close interactions with ED management, and close assessment of 

ED environments in various hospitals, we did not have the opportunity to apply any of 

these techniques within a real ED environment. Our work was based on simulated data, 

which, as accurate as it can be, is still not a real ED environment. Thus, deployment of 

the proposed solution, along with its monitoring and control capabilities, is still required 

for proving its benefit to ED management in real life.  

In addition, we list below some of the main challenges and aspects that we came across 

during our research but did not have the capacity to address. These require further 

future research.  

9.1 Forecasting and Controlling ED Arrival Rates 

The arrival rate has a significant effect on all ED operational KPIs. Being able to 

accurately forecast ED arrivals may allow ED management to improve the ED service 

level, e.g., through optimal staffing. Ample work has been devoted for arrival 

forecasting. Real-time monitoring and control suggest a complementary approach, in 

which the online load of the ED is provided to arriving patients in advance. The way by 

which such an online status will affect the ED arrival rate is a subject for future research. 

9.2 Neural Network-Based Load Monitoring 

The neural network-based approach for load monitoring, presented in  Chapter 5, 

requires more research. Specifically, the learning mechanism that we introduced in 

Section  5.4, requires extensive validation, after deployment within a real ED 

environment. Moreover, the ability to calculate different load measurements for 

different ED roles, presented in Section  5.6, requires further research both for its 

accuracy and for its relevance. 
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9.3 Extending the Fluid Model Analysis 

The fluid model analysis presented in  Chapter 8 requires future work in various 

directions. First, a proof for the conjecture we presented in Section  8.5 should be 

worked out. Second, an extension into a multi-triage-class environment is called for. 

Third, a generalization for time-varying capacity, i.e., a time-dependent physician pool, is 

possible. Lastly, a method for combining the fluid-model analysis for a given timeframe 

in which arrivals are already known (i.e., from arrival to deadline) with the forecasted, 

time-varied, stochastic arrivals may prove to be superior over the heuristic approach that 

we presented in Section  6.7, and thus offers interesting potential for future research.    

9.4 ED Priority Queues  

Serving patients by a policy other than FCFS may be conceived as unfair and result in 

service-level deterioration. A better understanding of patient behavior, under a clinical-

dependent priority policy, and the optimal ways to communicate such a policy to 

patients, requires further work 

9.5 Situational Displays 

An important part of a real-time monitoring-and-control system is a situational display, 

also known as a dashboard. The dashboard communicates various aspects of the current 

environment status to patients and care personnel. A complementary requirement is to 

provide ED management and care personnel with a means of intervention in situations 

in which human intervention is required in real time. Furthermore, the ED situational 

display may confront challenges not usually found in other service environments, such 

as airports, train stations, and customer service stores, namely, the need to present 

highly private information on public displays. Such questions, or those related to the 

actual information needed to be displayed, are left for further research. 
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APPENDIX A: INPUT OUTPUT AND CONTROL EVENTS OF 
EDRHYTHM 

The EdRhythm is based on event processing technology. Below we provide a 

description of the various events that serve as input and output to the system. There are 

two categories of input events—data events and control events. All data events have the 

same structure. Each control event has its own structure.  

Output events are associated with a specific KPI. Each output event has its own 

structure. The tables below describe the structure of the various events and event 

categories and list the exhaustive input event types. 

1. Data Events 

All data events have the same structure. Data events are identified by the unique event 
type associated with each one. The list of possible event types is provided in Table 29. 
 

Attribute Description 

Event type  See Table 36 for possible types 

Room ID The physician room number or ED section 

Care giver type Group type, e.g., triage nurse 

Care giver ID ID of the specific nurse or physician 

Patient type Patient group classification, i.e., by triage score 

Patient ID Unique ID for a patient 

Time Time of operation start 

Table 29: Data event structure. 
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2. Control Events 

Each control event has a type and a set of up to three values. The table below shows the 
various control events and the meaning of the values in each of them: 
 

Type Value Description Value 1 Value 2 

Set Threshold 1001 Set a threshold for 

the TTFE KPI 

The threshold 

value 

 

Set Room 

Threshold 

1002 Set a threshold for 

the room 

occupancy KPI 

The room ID The threshold 

value 

Set Patient 

Treatment 

Ratio 

threshold 

1003 Set the threshold 

for the patient 

treatment ratio KPI 

The threshold 

for all patients 

(in %) 

 

Set clock 

period 

1100 Set clock period The period in 

seconds 

 

Table 30: Control event structure. 

3. Output Events 

Output event contains the KPI value after calculation. Each output event implements a 
specific indicator and has its own structure and set of values. The tables below describe 
a small subset of the monitored KPI implemented by the EdRhythm 
 
Patient's Time Till First Encounter: 

Attribute Description 

Event Type  The event type (110) 

Patient Type Patient's group 

Patient Id Unique patient id 

Waiting Time The time from registration till first treatment 

Registration time Time of registration 

First treatment time Time of first encounter 

Table 31: TTFE KPI structure. 
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Staff Utilization Ratio: 

Attribute Description 

Event Type  The event type (111) 

Staff Type The type of care personnel 

Staff Id Specific care personnel ID 

Treatment Total treatment time for a given period 

Additional Work  Additional (not in front of patient) treatment 

time in a given period 

Period Time (in seconds) for that period 

Table 32: Stuff utilization ration KPI structure. 

Occupancy Level: 

Attribute Description 

Event Type  The event type (112) 

Room ID The ID for the room 

Occupancy Level Number of patients within the room 

Period Time (in seconds) for that period 

Table 33: Occupancy level KPI structure. 

Patient Treatment Ratio - per period: 

Attribute Description 

Event type  The event type (113) 

Patient type Patient's group 

Patient ID Unique patient ID 

Treatment time Total treatment time for a given period 

Period Time (in seconds) for that period 

Table 34: Patient treatment ratio KPI structure. 
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Patient total treatment time (114) 

Attribute Description 

Event type  The type of the control event 

Patient type The type of patient 

Patient ID Patient ID 

Treatment time Total treatment time for a given period 

Registration time Time of patient arrival  

Discharge time Time of patient discharge 

Table 35: Patient total treatment time KPI structure. 
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4. Event Types 

The table below summarizes the various event types within the system. Each event is 
identified by a unique event ID. The table contains all event types, i.e., data, control and 
output events. 
  

Type Val Event 

Type 

Patient registered 10 Data 

Patient starts waiting for triage 11 Data 

Patient starts triage 12 Data 

Patient finishes triage 13 Data 

Patient waits for nurse 15 Data 

Nurse starts treatment 16 Data 

Nears finish of treatment 17 Data 

Patient waits for additional treatment by nurse 18 Data 

Nurse starts additional work 19 Data 

Nurse finishes additional work 20 Data 

Patient waits for nurse 21 Data 

Nurse starts treatment 22 Data 

Nears finish of treatment 23 Data 

Patient waits for additional treatment by nurse 24 Data 

Nurse starts additional work 25 Data 

Nurse finishes additional work 26 Data 

Patient waits for nurse before final decision 27 Data 

Nurse starts treatment 28 Data 

Nears finish of treatment 29 Data 

Patient waits for additional treatment by nurse 30 Data 

Nurse starts additional work 31 Data 

Nurse finishes additional work 32 Data 

Patient starts to wait for physician treatment 33 Data 
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Type Val Event 

Type 

Physician starts treatment 34 Data 

Physician finishes treatment 35 Data 

Patient starts to wait for additional work by physician 36 Data 

Physician starts additional work 37 Data 

Physician finishes additional work 38 Data 

Patient starts to wait for physician examination 41 Data 

Physician starts treatment 42 Data 

Physician finishes treatment 43 Data 

Patient starts to wait for additional work by physician 44 Data 

Physician starts additional work 45 Data 

Physician finishes additional work 46 Data 

Patient starts to wait for physician examination for final 

decision 

47 Data 

Physician starts treatment 48 Data 

Physician finishes treatment 49 Data 

Patient starts to wait for additional work by physician 50 Data 

Physician starts additional work 51 Data 

Physician finishes additional work 52 Data 

Start lab tests 55 Data 

Finish lab tests 56 Data 

Start wait for a consultant 57 Data 

Finish wait for a consultant and start the treatment 58 Data 

Finish consultant treatment 59 Data 

Start walking to CT 61 Data 

Finish walking to CT 62 Data 

Start waiting for CT 63 Data 

Finish waiting for CT 64 Data 
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Type Val Event 

Type 

Start CT 65 Data 

Finish CT 66 Data 

Start wait for CT answer 67 Data 

Finish wait for CT answer 68 Data 

Start return from CT 69 Data 

Finish return from CT 70 Data 

Start walk to US 71 Data 

Finish walk to US 72 Data 

Start wait for US 73 Data 

Finish wait for US 74 Data 

Start US 75 Data 

Finish US 76 Data 

Start wait for US answer 77 Data 

Finish wait for US answer 78 Data 

Start return from US 79 Data 

Finish return from US 80 Data 

Start walk to X-ray 81 Data 

Finish walk to X-ray 82 Data 

Start wait for X-ray 83 Data 

Finish wait for X-rayand start treatment 84 Data 

Start wait for X-rayanswer 87 Data 

Finish wait for XRay answer 88 Data 

Start return from X-ray 89 Data 

Finish return from X-ray 90 Data 

Bed release 91 Data 

Start wait before hospitalized 92 Data 

Finish wait before hospitalized 93 Data 
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Type Val Event 

Type 

Start delay before discharge 94 Data 

Finish delay before discharge 95 Data 

Wait for nurse discharge 96 Data 

Start nurse discharge 97 Data 

Finish nurse discharge 98 Data 

Patient left the ED 99 Data 

TTFE 110 Output 

Staff utilization ratio 111 Output  

Occupancy level 112 Output  

Patient wait time ratio 113 Output  

Patient total treatment time 114 Output  

Set TTFE threshold 1001 Control 

Set room occupancy threshold 1002 Control 

Set patient treatment ratio threshold 1003 Control 

Set clock period 1100 Control 

Time tick 2001 Clock 

Table 36: Event types. 
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APPENDIX B: CONSENSUS ON LOAD PARAMETER 
CLASSIFICATION 

The tables below summarizes the list of 38 load parameters as suggested by [ 55] 

1. Input Parameters 

Input Parameter Concept 

Operational 

Definition 

1. ED patient volume, 

standardized for bed 

hours 

Patient 

demand 

Number of new patients registered within a 

defined period (hour, shift, day) ÷ number of ED 

bed hours within this period 

2. ED patient volume, 

standardized for 

annual average 

Patient 

demand 

Number of new patients registered within a 

defined period ÷ annual mean number new 

patients registered within this period 

3. ED ambulance 

patient volume, 

standardized for bed 

hours 

Patient 

demand 

Number of new ambulance patients registered 

within a defined period ÷ number of ED bed 

hours within this period 

4. ED ambulance 

patient volume, 

standardized for 

annual average 

Patient 

demand 

Number of new ambulance patients within a 

defined period ÷ annual average of new 

ambulance patients registered within this period 

5. Patient source Patient 

demand 

Time, arrival mode, reason, referral source, and 

usual care for each patient registering at an ED in 

a defined period (hour/shift/day) 

6. Percentage of open 

appointments 

Patient 

demand 

Percentage of open appointments at the beginning 

of a day in ambulatory care clinics that serve an 

ED’s patient population 

7. Percentage of 

patients who leave 

without treatment 

completed* 

ED capacity Number of registered patients who leave the ED  

without treatment completed ÷ total number of 

patients who register during this period 

8. Leave without ED capacity Average severity of patients who leave the ED 
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Input Parameter Concept 

Operational 

Definition 

treatment complete 

severity* 

without treatment completed within a defined 

period (shift/day/week) 

9. Ambulance 

diversion episodes 

ED capacity Number and duration of all diversion episodes at 

EDs within the EMS system within a defined 

period (week/month/year) 

10. Ambulance 

diversion requests 

denied and forced 

openings 

ED capacity Number of diversion requests denied or forced 

openings within a defined period 

(week/month/year) 

11. Diverted 

ambulance patient 

description 

ED capacity Chief complaints and final destination of diverted 

EMS patients within a defined period 

(week/month/year) 

12. Average EMS 

waiting time 

ED 

efficiency 

Total time at hospital for ambulances delivering 

patients to ED during a defined period 

(shift/day/week/month) ÷ number of 

ambulance deliveries within that period 

13. Patient complexity 

as assessed at triage 

Patient 

complexity 

Mean complexity level as assessed at triage (using 

local criteria) for all 

14. Patient complexity 

as the percentage of 

ambulance patients 

Patient 

complexity 

Percentage of patients registering at an ED in a 

defined period (shift/day/week/month) who 

arrived by ambulance 

15. Patient complexity 

as assessed by coding 

Patient 

complexity 

Mean complexity level as coded at the end of the  

visit for all patients completed in a defined period 

(shift/day/week/month) 

* Leave without treatment completed includes those patients who leave without being 

seen, leave before being finished, and leave against medical advice. 
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2. Throughput Parameters 

Throughput 

Parameter 

Concept 

Operational 

Definition 

1. ED throughput 

time 

ED 

efficiency 

Average time between patient sign-in and 

departure (separately for admitted vs. discharged 

patients) within a defined period 

(day/week/month) 

2. ED bed placement 

time 

ED 

efficiency 

Mean interval between patient sign-in and 

placement in a treatment area within a defined 

period (shift/day/week/month) 

3. ED ancillary service 

turnaround time 

ED 

efficiency 

Average time between physician’s order and result 

report (separately for each service area) within a 

defined period (shift/day/week/month) 

4. Summary workload, 

standardized for ED 

bed hours 

ED 

workload 

Summary of (patients treated × acuity) in a 

defined period (shift/day/week) ÷ number of 

ED bed hours within this period 

5. Summary workload, 

standardized for 

registered nurse staff 

hours 

ED 

workload 

Summary of (patients treated × acuity) in a 

defined period(shift/day/week) ÷ total ED staff 

registered nurse hours within this period 

6. Summary workload, 

standardized for 

physician staff hours 

ED 

workload 

Summary of (patients treated × acuity) in a 

defined period (shift/day/week) ÷ total ED staff 

physician hours within this period 

7. ED occupancy rate ED 

workload 

Total number of ED patients registered at a 

defined time ÷ number of staffed treatment 

areas at that time 

8. ED occupancy ED 

workload 

Total number of patients present in the ED at a 

defined time ÷ number of staffed treatment 

areas at that time 

9. Patient disposition 

to physician staffing 

ratio 

ED 

workload 

Number of patients admitted or discharged per 

staff physician during a defined period 

(shift/day/week) 
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3. Output Parameters 

Output Parameter Concept 

Operational 

Definition 

1. ED boarding time Hospital 

efficiency 

Mean time from inpatient bed request to physical 

departure of patients from the ED overall and by 

bed type within a defined period 

(shift/day/week)* 

2. ED boarding time 

components 

Hospital 

efficiency 

Mean time from inpatient bed request to physical 

departure of patients from the ED by bed type by 

component (bed assignment, bed cleaning, 

transfer arrival) within a defined period* 

3. Boarding burden Hospital 

efficiency 

Mean number of ED patients waiting for an 

inpatient bed within a defined period ÷ number 

of staffed ED treatment areas 

4. Hospital admission 

source, standardized 

Hospital 

efficiency 

Number of requests for admission within a 

defined period (shift/day) overall and by 

admission source ÷ annual mean requests for 

admission during that period and adjusted for day 

of week and season of year† 

5. ED admission 

transfer rate 

Hospital 

efficiency 

Number of patients transferred from ED to 

another facility who would normally have been 

admitted within a defined period ÷ number of 

ED admissions within this period 

6. Hospital discharge 

potential 

Hospital 

efficiency 

Number of inpatients ready for discharge at or 

within a defined period ÷ number of hospital 

inpatients at that time 

7. Hospital discharge 

process interval 

Hospital 

efficiency 

Mean interval from discharge order to patient 

departure from a unit in a defined period 

(shift/day/week/month) 

8. Inpatient cycling 

time 

Hospital 

efficiency 

Mean amount of time required to discharge an 

inpatient and admit a new patient to the same bed 

within this period 

9. Hospital census Hospital 

capacity 

Mean number of inpatient beds available by bed 

type at a defined time ÷ number of staffed 

inpatient beds by bed type* 
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Output Parameter Concept 

Operational 

Definition 

10. Hospital 

occupancy rate 

Hospital 

capacity 

Number of occupied inpatient beds overall and by 

bed type ÷ number of staffed inpatient beds 

overall and by bed type* 

Output measure Concept 

operational 

Definition 

11. Hospital 

supply/demand status 

forecast 

Hospital 

capacity 

Forecast of expected hospital admissions and 

discharges as reported daily at 6 AM and 

compared with hospital census 

12. Observation unit 

census 

Hospital 

capacity 

Mean number of available ED observation beds at 

a defined time ÷ number of staffed ED 

observation beds 

13. ED 

volume/hospital 

capacity ratio 

Hospital 

capacity 

Number of new ED patients within a defined 

period (shift/day) ÷ number of available hospital 

beds at the beginning of analysis period overall 

and by bed type* 

14. Agency nursing 

expenditures 

Hospital 

capacity 

Registered nurse agency nursing expenditures 

(ED/overall) within a defined period ÷ total 

nursing expenditures (ED/overall) within this 

period 

 

*Bed type=ICU/telemetry/psychiatry/ward. 

†Admission source=ED/operating room/catheterization laboratory/outpatient/other. 

 


