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ABSTRACT

Emergency Departments (EDs) are hectic, highly stochastic environments that deal with
human lives under severe resource restrictions. ED personnel must provide quality
clinical service and maintain an acceptable level of patient satisfaction while using
limited operational resources.

In this work we consider the required features and main characteristics of a real-time
ED monitoring-and-control system. We then focus on two specific applications, namely
1) monitoring the real-time ED load and ii) optimizing internal ED patient flow through
real-time control.

A good real-time monitoring-and-control system provides a holistic view of the entire
ED operation, emphasizing information collection, analysis and display. We analyze the
ED operation from multiple dimensions and viewpoints, e.g., taking clinical,
operational, and service-level aspects into account. We focus on monitoring approaches
and optimization techniques that can be deployed and used within a real-time ED
monitoring-and-control system.

We developed an innovative load monitoring and measurement approach based on a
neural networks paradigm. We thus enable adaptation of the load function into a
specific ED setting, using subjective load perception provided by a specific user or a
user group.

We analyzed service policies to optimize the ED patient by addressing the following
question: Which patient should a physician treat next? For that, we provide an optimal
control, based on a fluid model analysis and discrete event simulation. Deploying the
resulting service policies within a real-time monitoring-and-control system would enable
ED management and staff to improve overall ED operations.
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CHAPTER 1: INTRODUCTION

An Emergency Department (ED) is a hectic, highly stochastic, environment that deals
with human lives under severe resource restrictions. ED personnel must provide quality
clinical service, and maintain an acceptable level of patient satisfaction while using
limited operational resources.

This research stems from the need for ED management to optimize ED operations.
Specifically, we focus on the optimization approaches that stem from the ability to
monitor and control ED operations in real-time.

Advances in Information Technology (IT) is reflected in the extensive use of hospital IT
systems such as Admit, Discharge, Transfer (ADT), Electronic Medical Record (EMR)
systems, Picture Archive and Communication Systems (PACS) and alike, as well as by
the implementation of new RFID-based technologies for tracking human and
equipment movement. These advances suggest new monitoring and control
opportunities. Such technologies may provide ED management with a holistic view of
the current ED situation and enable the development of real-time optimization which
aims at improving the ED clinical and operational environment.

In this work, we present the required features and main characteristics of a real-time ED
monitoring-and-control system. We then focus on two specific applications, namely i)
monitoring the real-time ED load and ii) optimizing internal ED patient flow via real-
time control. Through these two applications, we demonstrate two fairly different
research techniques. We analyze the ED load problem using artificial intelligence, i.c.,
neural networks, aiming at capturing the ED operational characteristics while treating it
as a black-box, bypassing the need to deeply understand its internal behavior. We used a
somewhat different research approach for the second application. Specifically, we
address the "Which patient to treat next?" question, using a detailed queuing model that
secks to mathematically understand micro-behavior and then optimize it.

A good real-time monitoring-and-control system provides a holistic view of the entire
ED operation, emphasizing information collection, analysis and display. The ED
operation should be analyzed from multiple dimensions and viewpoints, taking clinical,
operational, and service-level aspects into account. This research focuses on monitoring
approaches and optimization techniques that can be deployed and used within a real-
time ED monitoring-and-control system.

The ED is part of a broader clinical and operational ecosystem through which patients
flow. Patients atrive at the ED from various places, and under vatious clinical
conditions, with a highly varied arrival rate. From the ED, patients are either admitted to
one of the hospital wards, sent back home, or transferred to another clinical facility.
Thus, the input and output patient flows must also be considered while analyzing and
optimizing ED operations. Influencing patient flow external to the ED by controlling



the ED arrival rate, allowing faster admissions, or reducing hospital occupancy, is
beyond the scope of this research. We thus focus on the ED internal patient flow
processes, taking external operations as a given.

1.1 Thesis Structure

The rest of this thesis is structured as follows. In Chapter 2, we provide a detailed
description of the ED operational environment and the surroundings affecting it. We
then present a classification of time-related optimization categories, namely strategic,
tactical, and real-time, which charactetize the focus of this research. We conclude
Chapter 2 by presenting a monitoring-and-control methodology that provides the
foundation for the rest of the work. In Chapter 3, we survey the most important ED
key performance indicators, with special attention to indicators that affect the ED load.
In Chapter 4, we introduce EdRhythm, an ED real-time monitoring-and-control system,
and present its key concepts. In Chapter 5, we discuss an innovative approach for real-
time ED load monitoring based on neural networks. In Chapter 6, we present two
major ED patient-flow control problems, namely: "where should a patient go next?" and
"which patient should a physician treat next?" (PTN); we continue with a theoretical
discussion of the second question. Chapter 6 concludes by proposing a heuristic service
policy that best addresses the PTN question, which is the main finding of this research.
In Chapter 7, we provide a simulation-based analysis for various service policies that
address the PTN question. In Chapter 8, we give a complementary mathematical
analysis of a fluid-model for a stylized version of the PTN question and present an
optimal control for it. We conclude this thesis with conclusions and ideas for future
work.



CHAPTER 2: EMERGENCY DEPARTMENT OPERATIONS

Emergency departments serve multiple purposes in the overall hospital setting. Hospital
is a central location in which a specialized staff provides the best possible treatment to
patients using state-of-the-art clinical procedures and the most advanced equipment.
The hospital's main goal is to provide the best possible care to patients within a
controlled cost. A hospital is a complex operational environment, designed to address a
wide variety of patients' clinical needs. The department, or ward, is the core hospital's
clinical and operational unit. In general, each ward is specialized in treating patients
under similar clinical conditions, such as oncology, cardiology, internal, and so forth. An
emergency department is somewhat different. The ED is designed to provide a medical
treatment facility specializing in acute care of patients who arrive without a prior
appointment [7]. Due to the unplanned nature of patient attendance, the department
must provide initial treatment for a broad spectrum of illnesses and injuries, some of
which may be life-threatening and require immediate attention. As such, the ED also
serves as the hospital's main gateway for arriving patients.

Numerous types of ED settings are found in different parts of the world, and even
within the same country. ED types were developed over the years following two main
models known as the Anglo-American model and the Franco-German model [15]. The
Anglo-American model suggests an acute care facility, or a unit within the hospital that
serves as both the gateway to the hospital and the provider of emergency medical care
for arriving patients. The Franco-German model, on the other hand, emphasizes the
evaluation and treatment of patients before artiving to the hospital, e.g., at the patients'
home or in the ambulance by emergency medical services. In these cases, the patient is
given first-aid or pre-hospital emergency medical care and, in case hospitalization is
required, the ED serves as an intermediate router to the relevant hospital ward. The
models differ both in their clinical settings as well as in their operational settings. Our
research focuses on an ED that follows the Anglo-American model, namely, an ED that
provides acute care treatment targeted at discharging patients to their homes as well as
initial diagnoses for patients who will be admitted into one of the hospital wards.

2.1 The Role of the ED

The role of the ED can be analyzed along the abovementioned two complementary
aspects—clinical and operational. From the clinical perspective, the ED's main goal is to
provide appropriate treatment for a broad spectrum of illnesses and injuries within a
broad spectrum of severity levels. From the operational perspective, the ED processes
should be designed in a way that allows catre personnel to efficiently reach a decision as
to where a patient should go next, and then to act upon it. The ED operational process
does not stand on its own but is designed to best support its clinical goals. The ED,



under its operational role, can be thought of as a patient router, routing patients safely
and efficiently to suitable destinations. Processes at the ED can thus be viewed and
analyzed along their clinical and operational aspects. In the next section, we provide a
detailed analysis of the high-level ED operational processes, emphasizing their related
clinical aspects.

2.2 ED Operational Processes

We use the conceptual input-throughput-output model suggested by Asplin et al. [17] to
describe and analyze the various high-level ED operational processes.

The overall view of that model is depicted in Figure 1. The input, or arrival, processes
deal with aspects related to patients' arrivals at the ED. In Section 2.2.1, we discuss in
more detail the various factors affecting this process. It is important to note that the ED
management, and even hospital management, has minimal control over the arrival
process. The throughput, or internal, processes, are related to the actual activities
happening within the ED. These processes involve the patient's clinical assessments,
treatment, and routing. These processes thus make up the core of the ED and are under
significant ED management control. The throughput processes are the main focus of
this research, and thus are further discussed throughout this thesis. The output, or
admit, discharge, and transfer (ADT) processes, deal with releasing patients from the
ED, either to their home, to one of the ED wards, or to another clinical facility. Output
processes are further discussed in Section 2.2.5.

Input Throughput Output
(Arrival) (Internal) (Discharge)
Processes - Processes g Processes
& )
@ o
S

Time

Figure 1: Schematic view of the main ED
processes

In the following sections, we further discuss the input, output, and throughput
processes and their relations to the various types of ED designs.



2.2.1 The ED Arrival Process

The ED arrival process deals with all aspects of patient arrivals. The main arrival process
factor is the rate by which patients arrive at the ED. A typical ED arrival rate changes
significantly according to the time of day. This phenomenon is important when
analyzing ED operations and when trying to control them. We will further refer to this
phenomenon in chapters 6, 7, and 8 in discussing the real-time ED control model.

Other relevant arrival process factors are patients' clinical severity and complexity.
Patient severity can be monitored in various ways, such as through the source of arrival.
Patients arriving via ambulance are usually in more serious clinical conditions than
patients arriving on their own. It is important to note that a significant fraction of
patients that arrive to the ED do not require immediate acute treatment. Treatment to
these patients can be delayed, even up to a few hours, with no significant clinical
consequences.

Internal Surgical and Orthopedic

Sun

Sun

hourly number of arrivals

hourly number of arrivals

2 4 3 8 o 12 14 16 1| 20 22 24
tirme, hour

P S R S S R
2 4 B 8 10 12 14 B 18 20 2
time, hour

Figure 2: Hourly arrival rates per patient type
(averaged over 4 years)

Figure 2 presents hourly arrival rates to the Rambam ED, collected and averaged over 4
years [44]. The left side of the figure shows arrivals to the Internal section of the ED,
while the right side of the figure shows average arrivals to the surgical and orthopedic
ED sections. As shown, the arrival rate has two peaks, the first just before noon and the
second in the eartly evening. Another important observation is that arrival rates drop to
nearly zero during most late night hours. A significant amount of research has been
devoted to developing ED atrival rate forecasting methods. For a reference on
forecasting and modeling ED arrivals and related literature, see [23].

Being able to forecast ED arrivals enables ED management to prepare for overcrowded
situations, e.g., by shifting key personnel. An interesting research question relates to the
freedom of choice patients have while approaching an ED. In other words, to what
degree can patients' decisions affect the typical atrival rate pattern, e.g., by postponing
their visit for a few hours? This question is not within the scope of this research. In



Israel, most arrivals to ED require a referral from a community physician, making up
about 60% of the visits in 2009 [19]. Thus, real-time communication between the
community care facilities (i.e., the four major Health Maintenance Organizations in
Israel) has the potential to dramatically improve the ED arrival rate forecast.

Another interesting aspect of an ED real-time monitoring system is its ability to provide
online, real-time updated status of the internal load within a specific ED, allowing
patients to make autonomic decisions as to which EDs to approach. Such real-time
views into the internal ED status will create a negative feedback loop that has the
potential to balance the ED operational situation. Allowing patients to notify an ED
about their planned arrival, e.g., through a dedicated smartphone application, offers
further improvements to the arrival forecasting methods. These questions, and the
implications of possible arrival-rate forecasting improvement approaches, are beyond
the scope of this research. For our purposes we will assume that the arrival rate is
provided to the monitoring and control system as an input that cannot be changed.

2.2.2 The ED Triage Process

One of the challenges in treating patients at the ED is to determine their right level of
clinical urgency. Such levels allow the assigning of treatment priorities for patients.
Assigning clinical priorities is most important for patients just arriving to the ED, who
present the most uncertain clinical situation, and hence must see a physician as early as
possible. The triage process, originated and first formalized in World War I by French
doctors [13], is a process of prioritizing patients based on the severity of their condition.
In fact, triaging used to be taught with an emphasis on the speed of the function, rather
than the accuracy of the outcome.

Triage is mainly a routing process, allowing ED management to route the arriving
patients into the most suitable ED section. The triage combines clinical and operational
needs. The triage process ends with two complementary results: i) the patient gets a
triage score, which is an indication as to the severity of their clinical condition and ii) the
patient is routed to a suitable ED section, based on the triage score and other clinical
conditions. Thus, setting the triage score, such as those based on the Australasian Triage
Scale (ATS), allow caregivers to transform clinical urgencies into operational priorities
[41]. The triage is the first interaction between the care personnel and the patient who
just arrived at the ED. Thus, it provides a clear separation between the ED arrival
process and the ED internal processes, as illustrated in Figure 1. Not all EDs use an
explicit triage process and not all patients are assigned triage scores. Nevertheless, the
triage process can be viewed as the first clinical-operational process provided for new
patients just arriving to the ED. Triage is usually performed by an experienced nurse

28].



Ample work and research have been conducted for helping assign the appropriate triage
categories to patients. The relationship between these categories and the ED physical
structure and resource utilization is of great importance. For example, in [42], S.
Mahapatra proposes a method that uses the acute categories (triage categories 1 and 2)
in optimizing patient treatment scheduling, and the lighter categories (categoties 3, 4,
and 5) for predicting resource use.

Assigning a triage score to a newly-arrived patient is still not sufficient for allowing
physicians to prioritize patients and to decide which patient to treat next. In reality, the
same physician needs to both diagnose newly-arrived patients and treat patients already
in process. Thus, two competing groups of patients must be prioritized accordingly. The
ED Electronic Health Record (EHR) system may provide much more detailed clinical
information about patients already in process and can be used for further optimization.
For example, suppose that an experienced caregiver is able to accurately predict if a
patient is to be discharged or to be hospitalized. This would enable the reduction of the
overall average length of stay (LOS), for example, of discharged patients, by giving them
precedence over patients that are about to be hospitalized. Such optimization and
control is further discussed in the subsequent chapters.

2.2.3 The ED Internal Processes

The internal processes constitute the main part of the end-to-end ED patient flow. An
overall view of the ED internal process activities is provided in Figure 3 [44]. As
depicted in the figure, the patient flow process can be modeled as a job shop process
[22], [49], [61]. It involves several processing-stations in close physical proximity,
through which jobs are traveling while completing work. Applying that model to an ED
setting, we correlate: 1) stations with locations in the flow process where care personnel
give clinical treatment to patients and ii) jobs with the patients themselves or with
additional work, such as X-Ray interpretation, needed to be done by caregivers not
necessarily in front of a patient.

10
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Figure 3: Internal processes activity
chart. A, B, and C indicate alternative
operations. The red dot indicates the
merging point of all alternative
operations.

There is no standard ED setting. Thus, the ED can be viewed as a composition of the
following stations from several types, listed in an arbitrary order (see Figure 4) [44]:

The arrival station is the first station a patient encounters after arriving at the ED.
Admission work is performed at this station. If a triage process exists, it is performed in
an immediate subsequent station.

The nursing station is a station at which nurses give treatment to patients and perform
related work. A single ED may contain multiple nursing stations. At that station, nurses
measure vital signs, give medications, and take lab tests, etc. In some situations, patients
must wait after receiving treatment for it to take affect before they can continue on to
other stations.
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The physician station is a station at which physicians treat patients. An ED generally
has multiple physician stations. Physician stations may have a type, i.e., for the different
specialist physicians such as internist, surgeon, or orthopedist.

The consultant station is a station at which a physician from outside of the ED treats
patients. Unlike the physician station, the consultant station is usually unoccupied. If a
patient needs to see a consultant, she will probably need to wait for her arrival to the
ED. Patients are occasionally sent to the relevant ward to see a consultant rather than
waiting for the consultant to come to the ED.

The imaging station is a station at which X-Rays, CT's, Ultrasounds, MRIs, and other
similar tests are performed. Some EDs have an integral imaging station, while others use
one in the main part of the hospital. Patients usually need to queue up for the imaging
station. The station's service is composed of two sub-service processes: first, an image is
taken, and second, a radiologist interprets the image and sends the results back to the
referring physician station. The patient only needs to be physically present during the
first service part. Thus, a patient may visit other stations while a radiologist interprets
her images.
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The lab station is a station at which laboratory tests are performed. Usually, a nurse
conducts the lab test at the nursing station and then sends the samples to the lab station.

The lab station sends back lab results to the ED after a significant period of time—
usually up to half an hour or longer. Patients are able to go to other stations during that
time, assuming that these other stations can perform their work without requiring the

lab results.

Physician

Consultant

Ultrasound

< <

Figure 4: Internal processes station (i.e.,
resources) chart. A, B, C, and D -
alternative operations; Resource queus -
in red; synchronization queues - in
green.
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Figure 5 [44] illustrates the combined activity-station flow. It thus provides a high-level
template for possible patient routes within an ED.

First
Examination

ROV SYRVEPRTS SRNUpRR G- RO |

Imagine:
X-Ray, CT,
Ultrasound

Alternative Operation -

Recourse Queue - E Synchronization Queue — \—
Ending point of alternative operation - .

Figure 5: The internal processes combined activitiy-
station chart.

As stated, patients flow through the ED stations with just a partial order. Patients may
visit each station more than once, or not at all. Thus, the main goal of a patient flow
monitoring and control system is to monitor the patient flow process and possibly
control it for improved and perhaps optimal patient routing. Achieving this goal is the
core focus of our research. Thus, we extensively discuss these issues in the subsequent
chapters.

2.2.4  Reaching a Decision

The ED internal process results in the decision whether to: i) admit a patient to one of
the hospital wards, ii) discharge a patient home, or iii) transfer a patient to another care
delivery organization. Thus, reaching an admit, discharge, transfer (ADT) decision
indicates the separation between the ED internal process and the ADT execution
process. Reaching an accurate ADT decision in a timely manner is one of the most
important ED goals. EDs strive to obtain an accurate ADT decision as fast as possible.
The decision process itself is mainly clinical, though some operational aspects are still
involved in it. The actual decision is usually made by the physician that has the main
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responsibility for the specific patient's case. In some situations, it is not clear who the
responsible physician is—an issue that may cause much delay in reaching a decision.
Delays sometimes also occur in situations in which a decision is clinically difficult to
make, thus requiring consultation from an expert physician. There are even situations in
which physicians tend to delay clinically difficult decisions, hoping that things become
clearer with time. Identifying these situations and alerting upon them will potentially
improve ED operations, but are beyond the scope of this research.

2.2.5 The ADT Process

The ADT process starts after the ADT decision is made. The discharge process is
mainly operational. During our research, we made several observations related to this
process that potentially improve ED operations. Optimally, patients should leave the
ED immediately after the decision is made, either to go home, to check in to one of the
hospital wards, or to transfer to another care delivery organization. This does not
happen for a significant fraction of the cases due to several reasons, most of them not
under ED management control. The most significant cause for delays is the admitting
process. The admitting process is often delayed because wards are, usually, highly
occupied, tending to delay the admission of new patients. Various processes and ideas
[57] are offered for accelerating and improving this process. Other delays occur in
situations in which the decision is made to discharge patients back home, but only after
some additional clinical treatment. As a result, patients remain in the ED for several
hours, consuming the ED resources and affecting the ED measured performance. In
other words, in certain situations physicians delay the discharge decision, knowing that
patients need to stay in the ED for a few more hours anyway.

Being able to accurately monitor the ADT process suggests interesting control options.
Knowing in advance which patients are about to be discharged back home without
turther delays would allow to give them some operational priority over patients that are
about to be admitted or need additional treatment. This prioritizing would enable one to
shorten the overall time these patients spent at the ED. We discuss such issues further
in the following chapters.

2.3 ED Operational Efficiency

There are many aspects of ED operational efficiency and many operational processes
affecting them. Operational processes can affect operational efficiency along three time
scale categories—strategic, tactical, and real-time. The strategic category includes
operational processes that affect efficiency in a years time scale. Such processes are, for
example, the physical planning and setting of the ED, its capacity, and the overall
resources such as rooms, beds, physicians, and nurses allocated to it. The tactical
category includes processes that affect efficiency in an hours-to-days time scale, e.g.,
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forecasting ED arrival rates, setting the staffing level at a specific day, and other related
short-term ED policies. The real-time category includes processes that affect efficiency
in a minutes-to-hours time scale, e.g., monitoring current ED load and deciding which
patient to treat next or where patients should go next. Our research focuses on
understanding issues related to the real-time category of operational processes.
Nevertheless, in the next section, we provide a short overview of various operational
efficiency aspects related to operational processes from the other two categories.

2.3.1 ED Strategic Operation Category

The term ED strategic operation refers to operational processes in the strategic
category, namely those processes that relate to the way the ED is designed and set to
operate. Several designs of ED operations have evolved over the years to best support
operational efficiency while taking clinical aspects into account. The following list
represents the most common designs and briefly describes the main pros and cons of
each.

Triage is an ED design in which an experienced care giver, e.g., an experienced nurse,
examines newly-arrived patients and assigns them a clinical severity triage score. The
assigned score is then used for setting priorities among the patients who wait for
treatment. The triage score is also used for setting deadlines for first patient-physician
encounters. The score is typically not used beyond the first encounter, as the clinical
status is assumed to be partially-known once the physician examines the patient. The
triage process obviously improves patient routing and the ability to associate between
operational aspects, such as deadlines, and clinical severity. The downside of triage is
that it requires an additional resource. This resource is reduced from the overall care
resources. Triage also adds a station, with a possible queue preceding it, possibly adding
to the overall length of stay within the ED as well as to the time till first encounter.

Fast track (FT) is an ED design in which priority is being given to patients who require
minimal ED clinical resources. Two types of patients may benefit from the FT setting—
acute patients, for whom hospitalization is obviously necessary and thus the admitting
decision can be made immediately, and patients with mild conditions, for whom the
discharge decision can also be made immediately. The fast track seems to be the most
attractive ED setting. The FT challenge is to identify those candidate patients who will
potentially benefit from the fast track and then give them the appropriate precedence.
Thus, FT goes hand-in-hand with triage. An efficient triage process upon patient artival
may result in a much more efficient operation in both designs.

Walking acute is an ED design in which the ED is divided into two main sections: i)
for treating acute patients who are not able to roam about the ED on their own, and ii)
for patients who are able to walk by themselves from one station to another. In some
settings, a third trauma section exists. There are significant differences in the physical
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settings of these sections. The acute section is much larger and contains a bed for every
patient, while the walking section is set up like a clinic. In the acute section, physicians
walk from one patient to another, while in the walking section, patients wait outside to
be called into the physician's office. Assigning patients to sections is usually done by
assessing the way they arrive to the ED—if they arrived by themselves, i.e., walked in,
they are sent to the walking section. If they arrived via ambulance or on a stretcher, they
are usually sent to the acute section. Dividing the ED into acute and walking sections
allows ED management to significantly increase the ED static capacity: walking patients
require less space then patient in beds. Adding a formal triage process upon patient
arrival may reduce errors in patient placement into sections.

Illness based is an ED design in which the ED is divided into sections according to
physician specialty. There seems to be no advantage to this type of ED setting from an
operational perspective, as it mainly follows clinical needs. An interesting observation
[15] resulting from this design is the need to train physicians to specialize in emergency
medicine. Such physician proficiency may dramatically reduce the ED resources needed
for treating patients, as all physicians will have the same proficiency and will be able to
share rooms and treat most patients. An emergency medicine physician is able to give
initial clinical treatment to most patients arriving to the ED. For patients with clinical
conditions that are beyond his reach, an emergency medicine physician may consult an
expert physician through the consultancy protocol, as is already being done in the
current ED setting.

2.3.2  ED Tactical Operation Category

The term ED tactical operation refers to operational processes that affect operational
efficiency on a daily basis. Issues relating to the standard level of resources e.g.,
physicians, nurses and life-saving equipment; the definition of roles and separation of
duties among physicians, nurses, and administrative staff fall within the tactical
operation category. Probably the most interesting question in the tactical category is
staff scheduling, specifically, how to assign the right ED staffing level for meeting ED
goals. Much work [64], [29], [25] has been devoted to ED scheduling and staffing. ED
scheduling and staffing and the other aspects of tactical operation are beyond the scope
of this research and thus will not be further considered.

2.3.3 ED Real-time Operation Category

The term ED real-time operation refers to operational processes that affect operational
efficiency on a minutes-to-hours time scale. These processes are the focus of our
research. Specifically, we are interested in issues related to monitoring the real-time ED
operation and in controlling it. In the subsequent sections, we further analyze and

17



examine these processes in detail, focusing on two complementary issues—monitoring
the overall ED load and controlling the real-time patient flow within it.

2.4 Monitoring and Control Methodology

"Monitoring and control system" is a common term in the industrial environment [56].
Monitoring and control systems are used for controlling manufacturing processes to
ensure adequate throughput and quality levels. With the proliferation of digital systems
for process coordination and documentation and with advances in wireless
communication and tracking techniques, it has become practical to provide monitoring
and control systems in services-based environments such as theme parks, bank
branches, telecom service centers, and hospitals [27], [50]. Advancements and progress
in hospital I'T have made it possible to collect an accurate view of the current state even
in hectic and dynamic environments such as the ED. The methodology illustrated in

Figure 6 can be followed while introducing a monitoring and control system into an
ED.

Adapt KPI to reflect new insights

Monitor and
Measure the
Environment

Define the Key
Performance
Indicators

Control and
Influence

Analyze and
Interpret

Start

Assess influence through
monitoring and measurement
Figure 6: Monitoring and control
methodology

Monitoring and control methodology consists of four main stages. In the first stage, ED
management and other relevant stakeholders define the list of relevant key indicators
with the expected performance of each. In the second stage, a system with monitor-and-
measure capabilities is introduced into the environment. The monitoring system
provides an accurate view of the tracked indicators. In the third stage, an analysis-and-
understand process takes place to better understand measurement results. Last, as
results from the third stage, ED management may decide to put in controls to influence
the performance indicators. Alternatively, stakeholders may decide to adapt and modify
the performance indicators, so that they better reflect the environmental needs,
requirements, and possible achievements.

The rest of this document follows the abovementioned methodology. We discuss key
performance indicator (KKPI) definition in Chapter 3, in which we survey the most
important ED KPI while giving special attention to indicators that affect the ED load.
In Chapter 5, we propose an innovative way to monitor and measure the ED
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environment. In Chapter 6, we analyze and interpret a specific ED operations question,
namely "Which patient should a physician treat next?" and present a heuristic control
that addresses it. In chapters 7 and 8, we further analyze the proposed control through
simulation and mathematical analysis. The back arrows in Figure 6, namely those that
suggest a modification to the KPI, and the measurement of the influence of a new
control on the operation, require deployment of a system within a real ED and thus are
not addressed further in this thesis.
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CHAPTER 3: ED KEY PERFORMANCE INDICATORS

A performance indicator or key performance indicator (KPI) is a measure of
performance. Such measures are commonly used to help an organization define and
evaluate how successful it is, typically in terms of making progress towards its long-term
organizational goals [11]. Thus, performance indicators provide the foundation of the
monitoring-and-control system. Defining the KPIs of most importance enables
stakeholders to measure them and then to strive to improve them in a methodological
and consistent manner. The act of monitoring KPIs in real time is known as business
activity monitoring (BAM) [1]. A common practice for implementing BAM systems is to
use complex event processing (CEP) architecture [3], [53]. A CEP-based BAM system
generates its output from collecting and analyzing streams of events. As part of the
present research, we developed EdRhythm, a real-time CEP-based BAM system. The
main goal of EdRhythm is to monitor the ED environment and to generate the required
KPIs. We describe the key concepts and core components of the EdRhythm
monitoring and control system in Chapter 4.

The ED is a complex environment in which a wide variety of indicators should be
considered. Monitoring the whole set of indicators is a demanding and complex task.
Indicators can be classified into various categories. Some indicators may contradict one
another. Some present different levels of granularity and are measured using different
units. In the following sections, we desctibe some of the most important KPIs used for
measuring and controlling the ED. In Section 3.2, we introduce the ED load KPI, a
complex KPI that presents difficulties in terms of monitoring and measurement as well
as in analysis and interpretation. In Chapter 5, we offer an original approach for dealing
with ED load monitoring and measurement.

3.1 Referred Key Performance Indicators

As part of this research, we developed the EdRhythm monitoring and control
prototype. In Chapter 4, we describe EdRhythm in details. EdRhythm is designed to
monitor and measure a wide variety of KPIs. In the following sections, we survey some
of the most important KPIs generated by EdRhythm. Obviously, each KPI has a
specific meaning. The EdRhythm system calculates each KPI from a set of low-level
events it collects from the monitored environment. EdRhythm then generates the
output KPI to be presented to ED management, staff, and other stakeholders. We
describe below each KPI using three elements: i) its core meaning, ii) the set of input
events from which it is being calculated, and iii) the actual output that describes it. We
consider additional information and real-time alerts that the EdRhythm system is able to
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generate based on the core input events. We provide a complete list of input events and
output KPIs in Appendix A.

3.1.1  Time Till First Encounter (TTFE)

The Time Till First Encounter (I'TFE) indicator measures the time from a patient's
arrival at the ED until the time the patient is first seen by a physician. This indicator is
one of the most important indicators for ED management, as it measures an operational
indicator, i.e., time, with strong clinical aspects. Notably, the actual patient's clinical
condition is not known until the first physician's examination; thus, delaying a
physician's examination may result in clinical deterioration. Consequently, the control of
this indicator is one of the main goals of this research.

Input events

The TTFE KPI is based on two input data events, namely the patient registration and
the start of the first encounter event.

Output event

The system generates a TTFE output event for each patient upon the beginning of the
first encounter with a physician. An optional threshold event is available for the system
to report only these times that exceed the threshold.

Optional additions and alerts

Information derived from TTFE output events can be used to benefit the control and
decision support part of the EdRhythm in two important ways:

e Provides an alert if patient waiting time is higher by some predefined percentage
than the average treatment time, and treatment has not yet begun. Such an alert will
warn ED management in advance of situations in which the TTFE deadline is
about to be violated.

e  Compares average TTFE for the last period with the average TTFE of some
historical period (i.e., an average of the same time on the same day duting the last
year period). This may require additional information coming from a database. Such
an alert may serve as additional input for the overall ED load KPI.

3.1.2  Total Length-of-Stay

The length-of-stay (LOS) indicator measures the overall time from a patient's arrival to
the ED until admission or discharge. The LOS is calculated for each patient.
Aggregative views for various categories may be provided as a derivative output event.
This KPI is one of the most important indicators towards improving ED performance.
The LOS KPI indicates ED clinical, operational, and service quality levels. Much work
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has been devoted to monitoring and control of this KPI [26], [39]. A typical ED sets a
specific LOS threshold, e.g., four hours, and aims on keeping the LOS below that
threshold for the majority of the patients. The LOS can be viewed as a complex KPI
calculated from several lower-level KPIs that measure the various phases of the care
process. Thus, the TTFE described in the previous section measures the first clinical
process stage. Similarly, a time from decision to release KPI may be generated for
measuring the time from reaching an ADT decision, until the time a patient actually
leaves the ED. Interestingly, an inherent tradeoff exists between the LOS and the TTFE
KPIs. Controlling the LOS indicator and balancing it with the TTFE indicator are
among the main goals of our research and are addressed in greater detail in the
following sections.

Input events

The LOS KPI is based on two input data events, namely the patient registration event
and the patient left event.

Output event

System generates LOS output events for each patient who is discharged home from the
ED or admitted to one of the hospital wards. An optional threshold event is available
for the system to report only those patients with an LOS that exceeded the threshold.

Optional additions and alerts

Generates an alert when the average LOS exceeds a certain predefined configuration
level. This may indicate that the overall ED load is increasing above the desired
threshold.

3.1.3 Patient Utilization Ratio

The patient utilization ratio (PUR) indicator measures the ratio between treatment time
and the overall LOS for each patient. This KPI is calculated for every preconfigured
time period. Upon patient discharge, a treatment ratio summary event is generated.
Aggregative views may be provided as a derivative KPI output event

PUR Input Events

The PUR is based on multiple input events. In addition to patient registration and
patient left events, the PUR monitors all start and stop treatment events generated at the
various stations.

PUR Output Event

e Treatment period — the cumulative time period in which a patient is actually under
treatment by care personnel.
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e Total length-of-stay — the amount of time a patient spends in the ED from
registration to discharge. This measurement is taken from the LOS KPI.

Optional additions and alerts

e  Generates an alert if the average treatment ratio decreases below a given threshold.
This may indicate that the overall ED load is increasing,

e  Generates an alert if the treatment ratio for a given patient decreases below a given
threshold. Various thresholds may be set for various patient severity levels. This
alert may indicate that a specific patient receives low quality service, from both the
clinical and operational perspectives.

3.1.4 Care Personnel Utilization Ratio

The care personnel utilization ration (CPUR) indicator measures the ratio between work
time and the sum of work time with idle time for each care personnel type. This
indicator is calculated for every preconfigured time period. At the end of each shift, a
work-ratio summary event is generated. An individual CPUR indicator can be generated
for a specific individual as required by ED management. The ED care personnel may
object to such an indicator, and thus, careful attention is required as to its
implementation. However, these issues are beyond the scope of this research and will
not be further addressed.

Input events

The CPUR is based on multiple input events. The CPUR monitors all start and stop
treatment events by a care personnel group or by a specific individual. These events
cover both events associated with the actual patient treatment as well as events
associated with the additional work performed by care personnel.

Output event

e Work ratio — the amount of time caregivers actually give treatment to patients
during a given calculation period, including additional work not performed in front
of a specific patient.

Optional additions and alerts

e  Generates an alert if the average work ratio increases above a given threshold. This
alert may indicate that the ED load is exceeding some certain desired level.

3.1.5 Physical Occupancy

The physical occupancy (PHO) indicator measures the number of patients in each ED
room ofr section at preconfigured points in time.
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Input events

To calculate PHO, the EdRhythm system tracks in/out location events and counts the
number of patients currently in the monitored room or section.

Output event

e Occupancy level — generates an occupancy level report for each room, section,
and for the overall ED, for each preconfigured time period.

Optional additions and alerts

e  Provides alerts if room capacity is exceeded. These alerts may indicate that the ED
load is exceeding some certain desired level.

e An accurate location tracking mechanism may provide many valuable alerts and
controls beyond basic capacity monitoring. Some of these capabilities are:

e Monitors all people in a room (e.g. family members) and alert security for potential
overcrowding or escort rules violation.

e Provides additional information about a patient that is assigned to a room but is not
physically located within the room. For example, a patient that needs to be in the
radiology section for a CT exam but is still waiting for transfer in the main ED
section.

3.2 The ED Load KPI: A Complex KPI

ED load is certainly one of the most significant and interesting KPI to monitor and
control [24], [54]. Reducing the ED load is a major day-to-day ED management
challenge. High ED load leads to excessive waiting times and an unpleasant
environment, which in turn cause: i) poor service quality from both clinical and
operational perspectives; ii) unnecessary pain and anxiety for patients; iii) negative
emotions in patients and escorts that sometimes could even lead to violence against
staff; iv) increased risk of clinical deterioration; v) ambulance diversion; vi) patients
leaving without being seen; vii) inflated staff workload; and more [58].

Measuring ED load serves multiple purposes and may prove to be useful from various
aspects. The most common need found in the literature, for knowing the actual ED
load, is to allow ED management to determine the situations that call for ambulance
diversion [21], [35]. That is, ED management should be able to identify situations in
which an ED needs to be closed due to overcrowding, and ambulances must be
redirected to other hospitals. In addition, consistent measurement of ED load may
enable ED management to identify trends in load and to adjust and adapt the ED
operations accordingly. Displaying a real-time snapshot of the ED load allows managers
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and staff to act in extreme situations by making prompt decisions, e.g., in cases of high
or extreme load peaks.

Real-time ED load measurement turns out to be a challenging, multidimensional task.
First, one must decide which parameters contribute to the load. Second, one must
define how to calculate load on the various parameters (i.c., resources). Third, one must
assign a level of contribution to each of the parameters while integrating all
measurements into a single load score.

The fact that no "Standard ED" exists adds to the load measurement complexity. No
one physical ED setting can be identified as standard. EDs are varied from one another
in many dimensions, such as physical size, the population they serve, staffing levels, and
clinical and operational protocols. In addition, EDs involve various entities, e.g.,
physicians, nurses, patients, managers; each of whom may define the load function
differently, and may require periodically adjusting the load definition to accommodate
changes that occur over time.

As a result, ED Load is defined as an integrative KPI, the calculation of which is based
on an extensive set of low-level data events collected from the monitored environment.
High ED load depends on a wide vatiety of clinical and operational parameters. Some
of these parameters are already being monitored and displayed as stand-alone KPIs, as
described in previous sections. Others may serve purely as input parameters for
calculating and monitoring the ED Load indicator.

3.2.1 A Consensus Load Parameter Classification

We found the consensus load parameter classification (CLPC), suggested by Solberg et
al. [55], most useful for serving as a baseline for the EdRhythm load monitoring and
control functionality. The CLPC was defined by a panel of 74 national experts who
assessed 113 measures and chose 38 through a discussion and rating process. The CLPC
follows the Input-Throughput-Output operational model introduced in Section 2.2.
This model permits most identified load parameters to be grouped into one of three
stages:

e Input or Arrival stage (15 parameters) — includes factors such as the volume of ill
and injured people in the community and the capability of the rest of the health care
system to address the needs of individuals not requiring emergency care.

e Throughput or Internal stage (9 parameters) — includes factors that affect the
efficiency of an ED to cope with its input, ranging from ED beds and staffing to
the efficiency of ancillary services and consultant access.

e Output or ADT stage (14 parameters) — includes factors that affect the ability of
the inpatient system to admit patients requiring hospital care, and of the ambulatory
care system to provide timely post-discharge care.
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To clarify their purposes, we have further grouped the parameters within each stage by

the main concept they represent:

Patient demand (6 items) — refers to the volume of patients arriving to the ED for
receiving medical care.

Patient complexity (3 items) — refers to patient's clinical factors, such as the
urgency and potential seriousness of the presented complaint, the stability of the
clinical condition, and the baseline medical and psychosocial burden of illness.

ED capacity (5 items) — refers to the ability of the ED to provide timely care for
the level of patient demand, according to the adequacy of physical space,
equipment, personnel, and the organizational system.

ED workload (6 items) — refers to the demand and complexity of patient care that
is undertaken by the ED within a given period.

ED efficiency (4 items) — refers to the ability of the ED to provide timely, high-
quality emergency care, while limiting waste of equipment, supplies, and effort.

Hospital capacity (6 items) — refers to the ability of the hospital to provide timely
inpatient care for ED patients who require hospitalization, according to the
adequacy of physical space, equipment, personnel, and the organizational system.

Hospital efficiency (8 items) — refers to the ability of the hospital to provide
timely, high-quality inpatient care while limiting waste of equipment, supplies, and
effort.

The list of all 38 parameters is provided in Appendix B.

In the next chapter, we discuss the core concepts of the EdRhythm system. In Chapter

5, we describe how real-time business activity monitoring system, such as EdRhythm,

can be used to address the ED load monitoring challenge in an innovative way.
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CHAPTER 4: REAL TIME ED MONITORING

In the previous chapter, we described the KPIs' role within a real-time business activity-
monitoring environment and surveyed some of the most important ED KPIs. Next, we
will describe the key concepts of an ED’s real-time monitoring-and-control system; how
such a system is being used for monitoring and measuring the ED environment and for
generating, through calculation, the required KPIs.

A typical ED monitoring-and-control system comprises three major layers: i) the
collection layer, which provides the inputs to the system, ii) the logic layer, and iii) the
display layer, which presents system output to its users. Figure 7 presents the high-level
structure of a typical monitoring-and-control system. Note that the figure illustrates a
comprehensive view. Not all components are mandatory for every solution.
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Figure 7: Typical ED monitoring-and-control component
structure

4.1 EdRhythm: Real-time Monitoring-and-Control System

During our research, we developed EdRhythm, a prototype real-time monitoring-and-
control system. EdRhythm has three main layers: 1) the input layer, ii) the logic layer, and
iii) the output layer.

The EdRhythm input and output layers are implemented as an event processing

network (EPN) [3], [40]. Implementation is done in StreamBase V6.2 [12]. The
EdRhythm logic layer extends the EPN with custom-made logic and analytic
components.
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The input layer, i.e., the data collection layer, is connected to the data sources and
receives the data events through these connections. Next, we describe the various data
sources typically found within an ED environment. We then follow by describing the
three layers of the EdRhythm prototype system.

4.2 The Data Sources and the Data Collection Layer

The data collection layer provides the input to the system. The collection layer uses
various communication means to transfer raw events from its generating sources into
the system. Computer networks become pervasive and various network types can be
found in every modern ED. Most commonly, a TCP/IP-based network is used by most
information technology applications. In recent years, a proliferation of wireless networks
has accelerated the use of mobile computers and hand-held devices. Most recently,
RFID technologies have been introduced, making accurately locating people and objects
possible. All such networks allow the extensive collection of events from the monitored
environment and the transmission of these events into the logic and analysis layer of the
monitoring-and-control system. In the subsequent sections, we provide more details on
some of these applications and technologies, emphasizing the differences between
clinical and operational systems. We address the ways in which both types contribute to
ED real-time monitoring.

4.2.1 Clinical Applications as Operational Data Source

Hospital environments utilize I'T systems at an ever-growing pace. A typical hospital
manages hundreds of IT applications. Among the main applications, one can usually
count the admit-discharge-transfer (ADT) system, the electronic health record (EHR)
system, the picture archive and communication (PACS) system, and the lab information
management system (LIMS). These systems improve the clinical process by recording
and documenting it, and by providing instant access to patients' clinical information. As
such, these systems provide a rich source of crucial clinical information, assisting ED
personnel in performing day-to-day tasks. Coincidentally, these systems can be used as
an indirect source of information regarding the operational situation in the ED.
Specifically, The EHR system is the major management information system (MIS) used
within hospitals for documenting clinical treatment of patients. Most hospitals are in the
process of replacing their paper-based documentation system with computer-based
EHR. Hospitals' EDs however, are less suited for deploying and adapting EHR systems,
due to the urgency and mobile nature of the work within them. Nevertheless, recent
experiences have shown that hospitals are extending the reach of EHR systems and
deploying them within EDs as well [52]. One such EHR can be found in the Rambam
Medical Center's ED. Rambam's ED management, together with Rambam's IT team,
decided during 2009 to extend EHR functionality into the ED. Cutrently, Rambam's
EHR is fully functioning and provides the needed information to nurses, physicians, and
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management within the ED. EHR also provides useful information about clinical
aspects of patients' treatment. Through EHR, a physician is able to document diagnosis
and request further treatment, such as prescribing a specific drug or asking for expert
consultation on an unresolved case. The EHR system is designed to support and
document clinical processes. As such, it does not provide the out-of-the-box, required
view on the operational status of the ED.
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Figure 8: Information generated and collected during the
clinical process

Still, as shown in Figure 8, many operational events can be generated by EHR as well as
by other MIS, e.g., by monitoring the time physicians take to enter specific clinical
orders for a patient. In the following section, we discuss I'T systems that are designed to
collect operational events from the monitored environment.

4.2.2  Operational Data Sources

Complementary to the clinical applications, operational applications are designed to
assist in managing the operational environment. Indoor location tracking (ILT) [9],
[32], [33], [48] is a specific class of operational applications that enables tracking the
exact locations of patient and personnel within the ED and accurately identifies the start
and end of patient/care personnel interactions. Recently, the global positioning system
(GPS) has become the de-facto standard for outdoor tracking, and it serves as the
foundation for many location-tracking applications [8]. In parallel, significant efforts
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have been devoted to develop an efficient and accurate ILT system. However, as yet,
no optimal, standard technology exists that is suitable for indoor location tracking.

ILT systems are also referred to as RFID systems, after the technology of radio
frequency identification. RFID technology has recently become widespread, due to its
many merits. Basically, RFID provides unique identifications to objects; hence, it can be
used as the foundation for tracking, monitoring, and controlling object movements [32],
[33].

RFID has traditionally been used for tracking objects such as consumer-packaged
goods, medications, and medical equipment. Yet this same technology can be used for
uniquely identifying humans, e.g., patients and care personnel in hospitals. Applying
RFID for indoor-location tracking requires an additional layer to associate the RFID
tag with a specific location. This association can be implemented via two conceptually
different approaches:

e Cell-based location tracking — location identified through the location of the
reader of the RFID tag,.

e Triangulation — location calculated from radio frequencies, used in the
communication between the RFID tag and scattered RFID readers.

Extensive research is being devoted to better understand the pros and cons of each
approach and their various aspects; thus, we will not address these aspects further within
our research.

4.2.3 Location Monitoring of ED Entities

Using RFID or a similar technology allows a monitoring-and-control system to collect
real-time location information of relevant entities within the ED. Real-time entity-
location monitoring enables the real time measurement and calculation of most required
KPIs:

Specifically, the following entities play a significant role within the ED process flow;
some entities are further grouped into entity types.

e Patients: Each patient is identified by a unique ID. Patients are further grouped by
clinical condition.

e Physicians: Physicians are grouped into several types by proficiency. Each
proficiency type has a unique identifier. A limited number of physicians from each
proficiency type are in the ED at any given point in time.

e Nurses: Nurses are grouped into several types according to their specific roles.
Each role type has a unique identifier. A limited number of nurses from each type
are in the ED at any given point in time.
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¢ Rooms: Each room in the ED is monitored. Rooms may have limited capacity, e.g.,
if serving acute patients, or unlimited capacity for serving ambulatory patients.

e Beds: Each bed has a unique ID. A room's capacity for acute patients is monitored
by the number of beds it contains.

A combination of clinical and operational monitoring data sources provides sufficient
infrastructure for a real-time ED monitoring-and-control system.

For the sake of this research, the raw clinical and operational data events are provided
by the ED Simulator [43]. The ED Simulator generates events similar to those expected
to be generated from clinical and operational IT systems in a typical ED. Rambam ED
management and other subject matter experts validated the patterns and distribution of
information generated by the ED Simulator and found them similar to those that are
typically found in a real ED operational environment. The simulator generates about
100 different event types. Most events are related to the operational processes and
patient flow within the ED. A comprehensive event list can be found in Appendix A.

4.3 The EdRhythm Input Layer

The EdRhythm input layer is implemented using StreamBase Input Connectors. The
Input Connector client is designed to be embedded within the clinical and operational
data sources that are available in a specific ED. Similarly, the Input Connector client is
embedded within the ED Simulator code and provides the main EPN's event channel
between the data sources and the EdRhythm. On startup, the ED Simulator connects to
the EPN using the StreamBase (SB) internal protocol, which is implemented on top of
TCP/1IP. Using that protocol, the Input Client sends events to the logic layer, which is
implemented as an EPN within SB.

The ED Simulator uses two parallel channels over which it sends two types of events,
data events and clock events.

The current version of the ED Simulator generates just operational data events. The
need to consider clinical data events and the exact data pieces are described in chapters 6
and 7. To overcome this difficulty, we added clinical data attributes to the EdRhythm
logic directly, bypassing the EdRhythm input layer.

4.3.1 'The Input Events

There are three main input event types in the EdRhythm: i) data events, ii) control
events, and iii) clock events. Each event type is further described below.

Data Events

Each data event has an event-ID field that encodes the meaning of the event. A list of
all possible input data events is provided in Appendix A.
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Each data event contains the following attributes:
e Event ID — Unique identifier for the event.

e Resource Type — Can be a room (e.g., in which a CT scan is being taken), a bed, or
alab test.

e Resource ID — a unique resource identifier.

e Care Giver Type — e.g., physician, nurse, consultant, etc.
e Care Giver ID — unique care giver identifier.

e Patient Type — e.g., orthopedic, surgical, or trauma.

e Patient ID — a unique patient 1D.

e Time — a time stamp in which an event was generated.
Control Events

Several control events are used to set various thresholds and calculate time periods and
other configuration parameters within the EPA. Control events are configuration-
dependent. Only minimal control event functionality is currently implemented in the
EdRhythm. The most important implemented control event is the time till first
encounter (TTFE) duration. TTFE is an ED-dependent parameter, based on the triage
categories and their associated deadlines, as defined by the ED management.

Clock Events

EPN uses clock events to execute logic that is not triggered by specific events. The
clock event provides the granularity level of the EdRhythm KPI calculation and display.
The granularity level depends on the typical processes pace, the rate and accuracy of the
input data events, and the monitoring-and-control granularity level required by ED
management. In addition, different KPIs may require different granularity levels. The
minutes scale is found to be an appropriate level of granularity for real-time monitoring
of ED environments.

The simulation-based EdRhythm system requires synchronization between the
simulator clock and the real-world clock used by the EPN. The calculation period of
the EPN can be configured and is currently set to one-minute intervals. The internal
ED simulator uses one-second intervals between successive ticks. Hence, the clock
event is generated by the ED simulator every minute of simulation time, e.g., every 60
simulation ticks.

4.4 The EdRhythm Logic Layer

The EdRhythm logic layer provides the core KPI monitoring and measurement
functionality. Each indicator receives the relevant input events and generates a suitable
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output event to be displayed on the EdRhythm dashboard. Indicators can be easily
added to the EPN. Each event processing agent (EPA) implements a specific indicator
or a small group of related indicators. Most indicators are calculated per period, i.e., as a
set at a-time. Few indicators are calculated for each event, i.e. as an event-at-a-time.

Each EPA relies on a dedicated data structure. Some elementary data structures (e.g.,
utilization counter) can be reused between various EPAs. Each EPA uses its own data
structure for saving its state. No internal communication takes place among EPAs, and
each EPA acts as a stand-alone component. This architectural decision results in sub-
optimal performance, but is much easier to maintain and extend.
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Flgure 9: The EdRhythm EPN implemented by using StreamBase 6.2

Figure 9 presents the high-level view of the EPN implemented in SB. There is minimal
use of the ready-made StreamBase operators, e.g., to filter out events that are not
relevant to a specific agent, or to converge similar events into one. This is mainly
because we developed a Java code that implements the EPA logic.

Thus, embedding these operators directly into the EPA logic instead of maintaining
them as separate entities becomes trivial in most cases. Note that adding new indicators
is simple and straightforward, as there are no dependencies among the EPAs.

4.41 The EdRhythm Output Layer
The main purpose of the EdRhythm output layer is to communicate the calculated KPI

to the situation dashboard. The EdRhythm output layer is implemented by using the
StreamBase output connector. The output connector client is embedded within the ED
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dashboard. On startup, the ED dashboard connects to the EPN, using StreamBase (SB)
protocol, which is implemented on top of HTTP. Using that protocol, the SB Flex
output client receives the output event stream from the logic layer and passes it to the
Flex-based ED dashboard application. The ED dashboard receives numerous output
streams. Each is implemented by using a dedicated SB Flex connector. Each output
stream is designed to handle a specific output event type that is associated with a
specific KPIL Thus, output events have no unified structure. All required event
adaptation and modifications are done within the EdRhythm logic layer. Each output
event is tailor-made to be presented on the ED dashboard without further analysis and
transformation.

4.5 Monitoring Dashboard

Monitoring dashboards serve as the user interface (UI) components of real-time
monitoring-and-control systems [4]. Through dashboards, users realize the whole
environmental situation as well as the situations of specific entities within that
environment. Public dashboatds are implemented using large electronic displays.
Technology for creating large electronic displays has become pervasive. Such displays
are currently being used in many services-based environments, such as airports, bank
branches, telecom service centers, and hospitals. The most significant advantage of big
dashboards lies within their ability to serve multiple users concurrently. A flight arrivals
board at the airport is designed to serve all passengers. No individual-specific
information is displayed on such public boards. Monitoring and controlling patient flow
within EDs requires managing individual's specific information. Thus, systems must
consider patient privacy while displaying individual specific information on public
dashboards.

Moreover, a targeted audience of ED public dashboards can be roughly categorized into
two groups, patients and family escorts and care and management personnel. Each of
these groups requires different information from the monitoring-and-control system.
While designing a dashboard-based Ul, careful attention must be paid to the various
user groups and their different needs.

UI capabilities and the use of dashboards in a public environment, such as an ED, are
subjects for a separate research [16]. In our research, we only minimally investigated the
best information data required by patients for efficient patient flow control. We further
developed a proof of concept ED dashboard for displaying the various KPIs that the
EdRhythm generates.
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4.5.1 The ED Dashboard

The ED dashboard provides the ED users—patients, care personnel, and
management—with a graphical interface to the set of indicators calculated and
monitored by the EdRhythm. The main purpose of the ED dashboard is to
demonstrate EdRhythm capabilities and to display the various KPIs the dashboard
monitors. The ED dashboard is implemented using Flex technology [2]. Flex allows fast
development of rich and professional dashboards. Using Flex, the dashboard can be
viewed from anywhere via most commercial Internet browsers. We utilize existing Flex
widgets and components and integrate them into the ED dashboard. Figure 10 and
Figure 11below show two snapshots of the ED dashboard.
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Figure 10: The Occupancy level indicator is displayed
using several Flex widgets
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Figure 10 demonstrates various display options for the physical occupancy KPI. The
top view shows the occupancy level for the current day; the left meter view shows
instant occupancy level, and the right view shows average daily occupancy level,
measured annually.
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Figure 11: Arrivals and staff utilization
including forecasting

Figure 11 illustrates the predictive capabilities and decision support functionality that
might be incorporated into the ED dashboard. The top-left graph shows the patient
arrival rate, as monitored by the EdRhythm till 17:00 for that day. The top-right graph
shows the predicted arrival rate from 17:00 until 23:00 for that day. Such predictive
capability, described in [30], can be incorporated into the EdRhythm. The actual
physician utilization KPI, which is part of the personnel utilization KPI, can then be
presented, alongside the predicted utilization, based on the expected arrival rate and the
number of physicians that are expected to be present at the ED. Such a prediction
assists ED management to adjust physicians' numbers for accommodating immediate
ED requirements and for meeting the required KPIs. Note that predictive techniques
and capabilities are beyond the scope of this research and are provided here just to
complete the picture of ED dashboard capabilities.

4.5.2  Future Research into ED Situation Dashboard

Extensive research is still required and is underway to identify the various ED
dashboard user roles and the specific set of requirements of each role. Such research will
provide answers to crucial questions, such as:
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e Which indicators should be monitored? And at what intervals?

e How much data should be presented in each screen?

e How should navigate between screens work?

e What thresholds are needed for alerting for the various KPIs?

e Isadrill down needed? And if so, to what level and by whom?

e How should the dashboard provide ED staff with real-time control capabilities?
e How should the dashboard provide "what-if" analysis and decision support?

e How can privacy be protected?

¢ And many more...

In the next chapter, we further describe methods and findings for monitoring the
complex ED load KPL In chapters 6, 7 and 8, we then follow with a deep analysis and
suggested decision support for the question "Which patient to treat next?", seeking an
appropriate clinical and operational balance between the TTFE and the LOS KPIs.
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CHAPTER 5: REAL-TIME ED LOAD MONITORING AND
MEASUREMENT

In previous chapters, we described the complexity of the ED environment, discussed
various interesting KPIs to monitor and measure, and presented the key concepts
behind the ED real-time monitoring-and-control system. One of the main promises of
an ED’s real-time monitoring is regarding its ability to measure the real-time ED load.
In Section 3.2, we presented the ED load-monitoring and measurement challenge.
During this research, we developed an innovative approach for real-time ED load
monitoring and measurement. We then implemented this approach and demonstrated it
using the EdRhythm system, as described in the previous chapter.

Our approach enables the measurement and calculation of user-tuned load, based on a
wide spectrum of input data events and various predefined load functions. Being aware
of specific user needs makes the system user-specific, i.e., resulting in a load score that
reflects the relevancy of the low-level situational events to the subjective load experience
of a specific user. Our approach, which is based on artificial neural networks [31],
enables the following: i) a static mechanism for the definition of an explicit load
function and ii) a dynamic learning mechanism that adapts the load calculation to user
perception by overriding the explicit static load function definition.

The dynamic learning mechanism has two main advantages. First, it enables simple
adaptation of the load function into any ED setting, bypassing the need to enforce a
rigid load function definition for non-standard ED settings. Second, it allows for the
calculation of different load values for the same objective situation. This is particularly
useful for capturing the operational load perception differences of various user groups.
Thus, by sacrificing rigid definition for high flexibility, our approach allows users to
compare various situations and to reach informed decisions regarding the appropriate
steps to take to reduce the ED load, by declaring an ambulance diversion situation, for
example.

5.1 Dynamic ED Load Function

The first step in calculating the ED load is to define the load function. For that, we need
to define the exact set of input parameters and the relative contribution of each
parameter to the overall load score. Vast research has been devoted to the definition of
a canonical and standard ED load function [20], [51], [55], [62]. The main goal of such
research is to come up with a unified load score. A unified load score will enable ED
comparison and will accelerate the development of generic methods for optimizing the
ED operation. Unfortunately, until now, a consensus has not been reached on a unified
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ED load score. Moreover, such a consensus may never be reached, due to the
significant differences in ED types and settings. This observation leads us to develop an
adaptive load function that calculates the load score based on a dynamic list of low-level
input parameters. The exact set of input parameters that are relevant to a specific ED
setting is chosen from an extensive set of parameters that were identified in the
literature [55] as potential contributors to the overall ED load. Incorporating a dynamic
and adaptive load function within the EdRhythm system allows it to provide a
meaningful and valuable load score in a wide variety of ED settings. Configuring and
adapting the load function into a specific ED setting can be done in two ways—
statically, i.e., by explicitly defining the relative contribution of each of the input
parameters to the overall load and dynamically, i.e., by using learning techniques for
assigning the relative contribution level through a feedback mechanism. In the next
sections we provide more details on these mechanisms and the way in which they are
implemented.

5.2 Neural Network-Based Load Function

We chose to use artificial neural networks for implementing the ED dynamic-load-
function-enabling mechanism. Neural networks (NN)-based functions are flexible for
composition, adaptive over time, meaningful for the user, and enable the definition of
complex relationships (e.g., nonlinear) between inputs and outputs.

5.2.1 Neural Networks — Theoretical Background

Artificial neural networks [31] are graphical representations of complex mathematical
functions. They are composed of units called perceptrons (Figure 12(a)) and arranged as
a multi-layered feed-forward network (Figure 12(b)), in which the outputs of one layer
are the inputs of the next layer. This type of structure was inspired by the brain
structure. Neural networks are successfully used in many applications such as pattern
classification, dimensionality reduction, and function approximation [34], [36], [38].
Because of the origins of the network’s design, the nodes in such networks are often
called neurons. NN’s greatest advantage, in comparison to other machine learning
techniques, is their simplicity, both in representation and in learning. In addition, the
number of required training examples relative to the network structure is not high
compared to other machine learning solutions.
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Figure 12: (a) single perceptron; (b) multi-
layer network

Each perceptron is composed of n inputs X,, X,,. .., X,; 0 weights w;, w,,..., w,; and an

activation function @(*). The output of the unit is v(x, w)=(x', w), where
x=(1, x;, X, .., X,), w=(b, W;, W,,..., w,). Examples of activation functions are sign
(p(u)=sign(u))), linear function (p(u)=u), and logistic function (p(u)=1/(1+¢")). The
type of activation function affects the ability of the network to learn and is application-
dependent. The units in different layers are connected in a feed-forward style to
determine the network structure (see Figure 12(b)). The exact structure is also
application-dependent, and in many cases domain knowledge can help to determine this
structure.

Given an M element training set of the form (x;, y), in which x, e )" is the input to the

network and y, € Ris the expected output (or target function) of the network, the back

propagation algorithm [31] can be used to find a set of weights that minimizes the mean
square error (MSE) between the provided output and the current calculated output.
Two types of learning can occur—offline (or batch) learning and online learning. In
offline learning, the entire training set is given in advance. At each iteration of the back
propagation algorithm, all of the examples are taken into account when updating the
weights. In online learning, the examples are given one after another, and each learning
iteration depends on the current example only. Online learning is typically used when
the environment changes over time, and when the network is trained to fit those
changes.

5.3 Using Neural Networks to Calculate ED Load

To demonstrate the advantages of our methodology, we built a neural network that uses
a wide range of load input parameters. We established the initial network structure and
the set of individual parameter contributions based on the exhaustive structured-list and
indicators suggested in the load parameter review paper [55]. We used the initial
structure described in Figure 13 as our basic network for the load calculation.
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Figure 13: ED neural network view. The triangle is a total
neuron, hexagons are the stage neurons, rectangles are the
concept neurons, and diamonds are primitive input indicator

neurons.

The hierarchy in the network consists of four main layers:

Indicator Layer — This layer can take any number of low-level input parameters.
Our initial implementation follows the set of indicators suggested in the review
paper [55]. We modify some of the indicators so they better reflect the typical ED
environment suggested by [44]. For example, indicator “ED Throughput time” was
spliced into two nodes—one for admitted patients and one for discharged patients.
This adaptation allows us to assign different contribution weights to each of the two
more basic indicators.

Concept Layer — The basic indicators from the first layer are connected to six
concept nodes: patient demand, patient complexity, ED capacity, ED efficiency,
ED workload, and hospital efficiency. In our basic setting, each indicator is
connected to a single concept. The hospital capacity concept was omitted from the
concrete implementation due to the lack of appropriate data. The ED efficiency
concept was divided into two sub-concepts serving the input and the throughput
separately. This modification was made to keep the tree-like structure of the
network.

Operational Stage Layer — The seven concepts from the second stage are
connected to three operational stages, input, throughput, and output, following the
ED conceptual model described in Section 2.2.

Load Score Layer — This layer contains a single output node representing the total
ED load score.
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5.4 The ED Load Learning Mechanism

The artificial neural network learning mechanism can be implemented using either batch
or online methods. Both approaches require knowledge of the "true" ED load value
given a set of input parameter vectors. One way to get the set of ED load values is to
present each input vector to the expert user and ask him/her to provide the ED load
value in return. However, this method is not practical for two main reasons. First, input
vectors are often too long for human perception and embedding. Second, the desired
value of the target function cannot be explicitly calculated. In other words, there is no
such thing as a "true" ED load value that the user is able to provide for a given input
parameter vector. Thus, we choose a different approach, which relies on the EdRhythm
situation dashboard and the user's subjective situation perception.

Instead of presenting the input vector itself, we present the current ED situation using
the EdRhythm situational dashboard (Figure 14). The EdRhythm dashboard presents
the current calculated ED load score (measured in percentage of the load baseline)
together with additional information about the status of the ED.
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Figure 14: Dashboard snapshot;
load value (black line) is calculated as the percent of the
average (green line)

By looking at the dashboard, and by physically experiencing the ED's current situation,
the user gains insight into the accuracy of the calculated ED load. This insight is merely
subjective and is based on a comparison of the current situation to previous situations as
experienced by the user. Using the relative feedback buttons, the user then provides
feedback about the discrepancy between the system's calculated load and her subjective
load experience. The neural network learns from the provided feedback and adjusts its
load function accordingly. For example, if the user feels that the represented load is far
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below the desired value, she clicks on the larger + button, indicating that the load score
should be increased by approximately 10%. A similar update process (+1%, -1%, -10%)
is executed for the other three relative feedback buttons. Letting users provide feedback
over long enough time periods results in having a load functions that accurately reflect
the ED load. After completing this learning process, the system is able to present a real-
time load score as a percentage of the load baseline, as can be seen in Figure 14.

5.5 Tracking Load on Internal Resources

One key advantage of a neural network lies in its ability to reflect a complex physical
structure, i.e., by allowing every neuron to have an explicit operational meaning. For
that, our neural network design keeps the tree-like neuron hierarchy instead of the usual
all-to-all connections. This allows each neuron to preserve its operational meaning
during the learning process. Conserving the tree-like structure allows the user to track
the current load back into the environment and to gain a deeper understanding of the
current load status (Figure 4). Moreover, we can get an alert from any hierarchy level in
the system if a certain neuron becomes overloaded. For example, in some situations the
overall ED load is only 40% of the baseline, but the CT room is overcrowded due to
lack of personnel. In these cases, the appropriate neuron’s status will reach the high
mark and the system will thus send an alert to the situation dashboard, provided the
neuron was preconfigured accordingly. As a result, the ED manager might react by
sending less severe patients to the Hospital's CT room instead of to the ED's CT room,

Of: 40.486 :l,
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for example.

ED status | NN network

Hospital Efficiency: 404
ED Efficiency Throughout:
Patient Demand: 58.043
ED Efficiency Input: 16.753
Patient Complexity, 16.667
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Figure 15: Tracing load. Green line indicates total load,
orange line indicates throughput; the rise in the total load
was clearly caused by increasing the throughput neuron; we
can trace it further and deduce that the peak in throughput
was caused by elevation of the ED workload concept neuron.
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5.6 Multiple Views of ED Load

A key advantage of our framework is its ability to allow dynamic learning based on
teedback from different user groups. Thus, we can calculate and present several
different load scores for the same objective situation. This ability allows us to adapt the
load values to a variety of ED settings. The only concrete requirement for providing
meaningful values is to get consistent user feedback. This can only be achieved if
feedback will be consistently provided by the same user. Situations might occur in which
we can extend the group of users that provide feedback, assuming their feedback is
somewhat consistent with the load situation. For example, measuring the current ED
load as perceived by doctors, nurses, and patients, or even by a single individual such as
the ED manager, could have an interesting application. Research [44] shows that each
role group in the ED consistently experience varying loads due to frequent
environmental changes throughout each day. Thus, the ability to establish a subjective
load function that best reflects the actual load experienced by a given user group could
be a useful tool for managing the day-to-day ED load.

To enable the EdRhythm system to reflect a group’s subjective load, we first need to
define the group's profile. Each group's profile reflects operational load as it is being
experienced by a given group. Group profiles can be statically defined by fixing weights
to relevant neurons, or by dynamically learning them, which is preferable. Dynamic
learning involves capturing feedback from a specific user group associated with a
specific profile.
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To demonstrate the system's ability to reflect various load values for various user
groups, we identified three possible group types—nurse, doctor, and patient. Fach
group has an assigned group profile and a relevant target load function. Nurse and
doctor target load functions were defined as the average occupation ratio during a
certain time period. Patient target load function was defined as the ratio of a patient’s
waiting time to the patient’s total staying time in the ED. Figure 16 shows a typical day

load curve for the three user groups.
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Figure 16: Simulated nurse, doctor, and
patient profile behavior, when 100% is
the average daily load

Figure 17 summarizes average load values for the three examined user groups: nurse,
doctor, and patient. Each profile comprises the weights of major relevant neurons

monitored by the system.

Raw Indicator * Profile Hurse Doctor | Patient
Fatient Volume a o
standardized for Bed Hours 42% 76%
Summary Workload
standardized for ED Bed 18% 45%
Hours

ED Bed Placement Time 12% a0% g%

EDCT senr]t(.:e Turnaround 8% S59% 16%
e

Figure 17: User profile composed of
major raw indicator weights learned by
the system
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We can see that all three profiles show reasonable behavior when comparing time of day
and when comparing the profiles to one another. When the system is overloaded, all
users feel it. However, the load experience is different for each group. For example,
doctors must stay later than nurses at the end of the day to close all open cases. Thus,
the load on them decreases later than it does for nurses. On the other hand, triage,
served by nurses, is the first station in the patient flow. Hence, the nurses’ operational
load starts earlier. These examples demonstrate that different weights do indeed exist on
the neurons, emphasizing the need for subjective load scores for the same objective ED
state.
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CHAPTER 6: ED PATIENT FLOW CONTROL

In the previous chapter, we demonstrated the benefits of deploying a real-time
monitoring and control system for the monitoring and measurement of ED load. The
control part of the real-time monitoring-and-control system deals with the ability to
influence patient flow within the ED in real time to improve the ED key performance
indicators (KPIs). To do so, we first need to gain a deep understanding of its various
aspects (see Figure 6). In this chapter, we examine specific ED operational aspects,
analyze them, and suggest potential optimization approaches. We then follow with
some simulation results in Chapter 7, then continue, in Chapter 8, with a mathematical
analysis of the problem's stylized model. For the analyses, we need a set of mathematical
tools. Queueing network is a natural choice for analyzing the ED environment and for
gaining a deep insight into its KPIs. As described in Chapter 2, the ED internal
operational processes can be analyzed using a queueing network model. The processing
servers model the various ED stations and the jobs model the patients that require
service at one of the ED stations. The ED usually operates in high load, thus most
stations usually have waiting queues where patients wait for service.

Consider the comprehensive ED activity and resource queueing model described in
Figure 5. The complexity of such models renders them intractable for mathematical
analysis and unsuitable for gaining insights into service policies and optimal control.
Thus we continue our analysis by breaking it into smaller queueing models and
analyzing them as if they were stand-alone models. Specifically, we identify two
complementary views while modeling the ED as a queueing network—the patient's
view and the care personnel view. We then translate these two views into two related
queueing models, each with its own decision problem. From the patient's view, we
confront a routing problem, i.c., deciding to which station the patient must go next;
while from the care personnel's view (i.e., the station's view), we confront a scheduling
problem, i.e.,, deciding which patient should be treated next. We further simplify our
models as required, by adding additional constraints, e.g., over the arrival process, to
make it mathematically tractable. Furthermore, we use complementary techniques,
such as simulation, and interviews with ED managers, for gaining additional insights
into the operational behavior of the analyzed control policy in situations as close as
possible to those expected to be found in the day-to-day ED reality.

In the following sections, we first briefly address the flow control routing problem from
the patient's perspective, specifically, "Where should the patient go next?". We then
continue with a detailed analysis of the flow control scheduling problem from the
station's view—"Which patient should the physician treat next?".
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6.1 Which Station to Visit Next?

The exact station-sequence for a new patient arriving to the ED is unknown upon
arrival and is determined as treatment progresses. The treatment process is not
sequential and patients often return to the same station multiple times. Notice, though,
that the next station(s) in a patient's route within the ED is always known. Usually, after
completing treatment at some station, a physician provides indication about the required
subsequent stations. The physician may indicate the need to visit more than a single
station, e.g., for ordering laboratory tests, for consulting a specialist such as gynecologist,
and for issuing an ultrasound test. In some situations, physicians request partial ordering
over the station sequence. For example, a gynecologist may need to see the patient only
after an ultrasound test is completed. In other situations, treatment in different stations
can be executed in a totally arbitrary order. For example, lab tests must be taken prior to
a final decision but independent of a gynecologist's consultation.

Figure 18: A stylized queuing model for

the "Which station to visit next?"
problem.

Thus, the dynamic, flexible, and unpredicted ED environment offers the potential for
significant routing optimization. Figure 18 describes a stylized model for the "Which
station to visit next?" decision problem. Such models were mathematically analyzed by
A. Zviran [65] in the context of Healthcare. Indeed, even an elementary real-time
control of patient flow would likely yield a significant improvement of the ED
operational environment. For example, an immediate ideal for flow control is to direct
patients to the station with the shortest queue. For an improved control, we could look
further into the anticipated patient's route. Such controls may require forecasting of the
future stations on a patient's treatment route. Our analysis does not deal with such
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optimal routing issues. Clearly, however, such decisions must play a significant role in
the overall optimization of the ED patient flow.

6.2 Which Patient to Treat Next?

The "Which patient to treat next?" (PTN) decision problem stands at the core of our
research. This question emerged as most interesting within the ED day-to-day
operation. The stochastically high load under which the ED usually operates results in
an operational queue of waiting patients prior to each treatment station. In other words,
patients must typically wait for treatment at each and every station along their treatment
route. Thus, the improvement of the ED operational performance, gained by optimally
addressing the PTN question, is expected to be significant.

PTN improvements may affect the patient's final clinical results, which is the most
important ED performance measure. The final clinical results may be complex to
measure. Measuring the effect of PTN optimization on ED final clinical results is out of
the scope of our research and is subject to future work. Nevertheless, and to partially
address this difficulty, we considered multiple views while analyzing the PTN question,
namely the clinical view, the service level view, and the operational view. Together, these
views provide a reasonable estimate for overall ED performance with respect to the
problem at hand. Next, we describe the core aspects of these views and their
implications on the PTN question.

6.2.1 Clinical View

The clinical view is the most important view while addressing the PTN question. It is
important to keep in mind that most patients' clinical aspects are hidden to physicians
during the ED care process. The main purpose of the ED care process is to reveal the
patients' clinical situations and to act upon them. The known clinical aspects of the PTN
questions are encapsulated within the triage score. The triage score presents the patient's
clinical status as assessed by the triage nurse prior to the first physician encounter. Best
practices at most EDs do not require physicians to update the triage score after the first
encounter, nor do they require providing other "running" clinical scores to patients,
even though such a procedure may lead to further improvements in answering the PTN
question.

6.2.2  Operational View

The operational view is our main focus while addressing the PTN question. Our sought-
after policy seeks to improve various EDs' operational KPIs, including time till first
encountet, overall patient length-of-stay, patient waiting-time to service-time ratio, and
the overall number of patients within the ED. By limiting ourselves to operational
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optimization, we must translate clinical criteria into their operational proxies. This is
done mainly by using the triage score as a proxy to the patient's clinical status, and by
providing cost functions that take into account parameters with clinical relevancy, such
as patient age, waiting times, and the likelthood of a patient to be admitted to the ward
or discharged from the hospital.

6.2.3 Service Level View

The service level refers to a specific operational aspect that focuses on the customer
experience during the ED care process. Recent works in service science, such as
Armony et al. [14], suggest a greater focus on patients' needs while providing service.
Improving service level, in our context, means improving the service experience from
the patient's point of view. We translate the service level view into reducing waiting time
and the overall length-of-stay at the ED, without compromising the level of clinical
treatment. One interesting option for service level improvement is to assign priotity to
patients who are about to be discharged from the hospital over patients who are about
to be admitted. Since admitted patients will stay at the hospital anyway, they are thus
more agnostic to the overall length-of-stay. Patients who are about to be discharged
back to their homes are anxious to leave the ED, and the hospital, as soon as possible,
which is also clinically safer for them. Fairness is a particularly interesting service
petformance indicator. For example, taking patients' age into account while determining
which patient should be treated next may consider favorably from the service level
fairness perspective. First come first serve (FCES) is a widely-used fairness policy at
EDs, which most patients would accept. Changing this policy while trying to address a
wider KKPI set may result in patient disappointment and objection, namely service level
deterioration. The affect of applying a service policy other than FCES on patient
satisfaction and on other service level KPIs is subject to future research.

6.3 Operationally Optimal PTN Control

Discussions with ED managers led to the following clinical requirements, while
addressing the PTN question—patients' length-of-stay should be minimized and
meeting triage deadlines is a must. Furthermore, these discussions also suggested
differentiation in the waiting costs of different patient classes. Based on these
discussions, we formulated a clinically optimal control that yields the following
guidelines:

A clinically optimal PTN control meets triage deadline constraints with the least minimal
effort for newly arrived (NA) patients. It then serves in process (IP) patients so as to
minimize clinical costs. The cost functions combine clinical, operational, and service
level aspects, i.e., by using waiting time, triage score, patient age, and ADT status as
input parameters. The exact values for these parameters depend on a specific ED setting
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and are thus to be provided by the ED manager. The optimal PTN controls with their
associated aspects are further described in the following sections.

6.4 The PTN Stylized Queueing Model

The core of the PTN question deals with the need to serve several competing work
items, e.g., the patients' encounter, by the same setvet, e.g., physician. Thus, the question
becomes which work item should the server cater to next. Obviously, the work item
parameters should be considered. Mapping the PTN into a queueing network model
leads to the following formalism:

In Process patients

— T S

Mewly ey Mewly In In In In
Arrived 1 Arrived 2 Arrived 3 Process 1 Process 2 Process 3 Process 4

/[

physician

Figure 19: A stylized queueing model for
the PTN question.

Consider a multiclass single station queueing system with feedback. Fach station is
comprised of a pool of statistically identical servers (physicians). Newly arrived work
items (patients) arrive to the queue (waiting area) in a generic arrival process. Service
time (patient-physician encounters) is modeled by an independent and identically
distributed (i.i.d.) random variable s, with mean E(s). Service rate is thus given by
u=1/E(s). The system has feedback. That is, after finishing service, the item (patient)
either leaves the system (discharged home or admitted to the hospital) or continues to a
latent time period, i.e., a period at which it is being served at other station(s), and returns
to one of the in process (IP) queues for additional service.

The system has multiple priority queues. Each item has a priority index based on a
variety of parameters. Thus, items are not necessarily served by their arrival order but
are based on their priority. The scheduling algorithm chooses the next item to process
based on some service policy that may take item's priotity into account.
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Special attention is given to the encounter sequence number. Items requiring initial
service (NA patients) are treated differently than items already within the process (IP
patients).

6.5 Queueing Theory and Queueing Networks

Queueing theory is the mathematical study of waiting lines, or queues. The theory
enables the mathematical analysis of several related processes, including arriving at the
(back of the) queue, waiting in the queue, and being served at the front of the queue.
The theory permits the derivation and calculation of several performance measures,
including the average waiting time in the queue or the system, the expected number
waiting or receiving service, and the probability of encountering the system in certain
states, such as empty, full, having an available server, or having to wait a certain amount
of time to be served.

Networks of queues are systems that contain an arbitrary but finite number of queues.
Customers, sometimes of different classes, travel through the network and are served at
the nodes. In open networks, customers can join and leave the system, whereas in
closed networks, the total number of customers circulating within the system remains
fixed. In queueing theory, a queueing model is used to approximate a real queueing
situation or system, so the queueing behavior can be analyzed mathematically. However,
the queueing model, e.g., the one described in Figure 19, often turns out too complex
for exact analysis. We can then resort to approximations, as was done in this case. The
referenced model was analyzed asymptotically in heavy traffic, by Huang, Carmeli and
Mandelbaum [37]. Next, we provide further description of several queueing model
concepts that are relevant to the ED patient flow.

6.5.1 System Utilization and Operation Regimes

The system utilization, p, is determined by the proportion between the system's capacity,
i, and the arrival rate, A. Arrival rate is defined as the rate by which jobs arrive to the
system. Time-varying arrival rates, as found in the ED environment, result in a transient
network. A transient network is characterized by its alternation between low utilization
and high utilization [45].

In present research of queueing systems, various operational regimes have emerged,
which place a different focus on resource efficiency vs. service quality. Moreover, most
of this research is for queueing systems with many servers that operate in steady state
(an exception is the work done by Yom-Tov [63]); thus, this research is not directly
relevant to ours since EDs, modeled as queueing systems, require time-varying analysis
for small number of servers.
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We thus further focus our research on a situation of rigid capacity. We assume that the
ED resource level (e.g., number of servers) is fixed and search ways for a real-time
improvement of ED performance under time-varying arrival rate by optimizing
operational aspects, such as the PTN service policy.

6.5.2  Service Policies and Priority Queues

Service policy is defined as the policy by which the server caters to jobs that wait in
queue. The most straightforward service policy is first come first serve (FCES), in which
jobs are being served by their arrival order. Note that in the FCES, queue arrival time is
the only parameter that is being considered for deciding upon the next job to serve. As a
result, FCES can easily be modeled as a single queue single server queuing system. This
is not the situation in most service environments, including in the ED. A multiclass
queueing system allows for classifying jobs into classes by using vatious job
characteristics and then to assign a queue for each of these classes. The service policy
then must determine which queue to serve next. We assume jobs within each queue are
being served along the FCES policy.

In our model, we thus need to decide upon the characteristics to consider while
classifying jobs into classes. Specifically, within clinical environments, we consider
clinical characteristics, such as patient age and triage score, alongside with operational
characteristics, such as the triage deadline and the expected ADT status. Next, we
describe several known multiclass service policies.

6.5.3 Cost-based Service Policy and the Generalized Cp. Rule

A cost-based policy associates a cost function with each queue. Specifically, following
[59], we consider a general single-server multiclass queueing system that incurs a delay
cost at rate C,(7,) for each class k job that resides 7, units of time in the system. We
denote the marginal delay cost and (instantaneous) service rate functions of class k by ¢,
= C', and y,, and we let a,(t) be the "age" or time that the oldest class k job has been
waiting at time t. We call the service policy that at time t serves the oldest waiting job of
that class k with the highest index u,(t)c.(a,(t)), the Generalized cp (gep) Rule. Van
Mieghem further shows that, with non-decreasing convex-delay costs, the gcp rule is
asymptotically optimal if the system operates in heavy traffic. The gcy rule suggests an
attractive policy for serving IP-patients given that suitable cost functions are provided.
The cost-based policy seems less suitable, at least directly, for meeting the deadline
requirements of NA-patients.
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6.5.4 Deadlines-constrained Service Policy

A time limit or deadline is a narrow interval of time, or particular point in time, by which
an objective or task must be accomplished. Deadlines are types of operational
constraints provided by operation managements as a control mean. A deadline-
constrained service policy, within a multiclass, single-station queueing system, strives to
serve any class k job arriving at time t by its deadline t+d,. As shown by [60], the
deadline-constrained service policy can be approximated by sequence of convex-
increasing delay cost functions. This formulation reduces the intractable optimal
scheduling problem into one for which the gcp scheduling rule is known to be
asymptotically optimal. Moreover, such an approach allows translating a deadline-
constrained service policy into a cost service policy.

6.6 Multiple Decisions

Assessing the PTN clinical requirements reveals that the PTN decision process can be
viewed as a decision tree in which multiple decisions are required at multiple levels, as

NA P

Among Among
NA 1P

Deadline met

shown in Figure 20.

Deadline missed

NA meet NA missed
Deadline Deadline

Figure 20: The PTN conceptual decision
tree.

First one must decide whether to choose from the NA-patient queues or from the IP-
patient queues. This first decision is detived from the different clinical requirements
associated with the different patient types. That is, NA patients should be served by
their deadline, while IP patients should be served based on their overall lengths-of-stay.

The second decision to make, once a patient type is chosen, is which exact queue to
serve within that type. Lastly, different policies are necessary for situations in which the
triage deadline can be met and for situations in which it cannot.
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6.6.1 Main Service Policy Options

We can thus apply many different service policy combinations and test them all. Our
analysis starts by considering the major service policy alternatives for the first level of
the PTN decision tree. These options are described in Table 1.

Policy Main Approach

First come Serve the patient with the longest queue time next, while
first serve ignoring the total length-of-stay as well as all other clinical
(FCES) and operational parameters.

Cost Serve the patient with the highest waiting cost next.

Waiting costs are based on suitable convex functions, i.e.,
as provided by the ED manager, following the gcp rule.

Deadline- Set deadlines for both NA patients (triage deadline) and
constraint IP patients (total length-of-stay, e.g., four hours) and try
to meet them both using the deadline-constraint policy
suggested by Van Mieghem [60].

Hybrid Strive to first meet NA patient deadline constraints, then

chose among IP-patient using a cost function

Table 1: Major service policy classes for
the PTN.

6.6.2 The Hybrid-Approach Service Policy

The hybrid-approach to the PTN question applies different service policies to NA and
IP patients. The hybrid-approach starts by deciding whether to next treat NA or IP
patients, and for that it applies some threshold mechanisms. The hybrid-approach leads
to a two-step decision problem. The service policy must first determine whether to treat
NA patients or IP patients. After this first decision, the policy then determines which
specific patient to select out of these two groups.

6.6.3 The Constraint-based Setvice Policy

A specific class of hybrid-approach policies is the constraint-based approach, which
handles the triage time till first encounter (T'TFE) deadline as a constraint that must be
met. The constraint hybrid-approach thus seeks to minimize situations in which NA
patients first see a physician after their assigned triage deadline. It then seeks to reduce
the overall waiting cost of IP patients. Intuitively, such a hybrid-approach may result in
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very long lengths-of-stay (LOS) because it gives total precedence to NA patients. LOS
can still be controlled through the admission-control policy that refers patients to other
hospitals in case of ED overload. In addition, a situation could still occur in which the
TTFE constraint cannot be met. Such a situation requires that the scheduling algorithm
be able to choose the next patient to treat from a list of patients who already missed the
deadline. A complementary cost-approach methodology for NA patients is suggested to
handle this situation.

6.6.4 The Minimal-effort Due-date Service policy

A particularly interesting class of constraint-based policies is the minimal-effort due-
date class. Policies in this class seek to meet NA-patient deadline constraints using
minimal processing effort, thus allowing maximal processing of IP patients. The
minimal-effort class of service policies best combines clinical and operational aspects
and thus provides the core focus of our research.
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6.6.5 List of Analyzed Hybrid-Approach Policies

Table 2 lists the various threshold algorithms we analyzed, under the various hybrid-

approach policies, and provides key aspects of each.

Policy Main Aspects
Newly arrived | NAF serves any existing NA patients and otherwise serves IP
first (NAF) patients.
Static STD chooses between NA patients and IP patients using a
threshold computed static threshold. The STD threshold assumes a fixed
(STD) arrival rate and heavy traffic conditions. It then computes the
threshold as follows:
Treshold = Z/I ;d,;m; , where j is a specific triage queue out of |
jelJ
queues, A, the arrival rate to the queue, d, the queue's deadline and
m; the total service time of the patient in the system.
The STD algorithm follows the PTN mathematical analysis
suggested by Huang and Mandelbaum [37].
Adaptive ADT is a modification of the STD approach, which handles
threshold varied arrival rate. The ADT estimates the arrival rate in an hour
(ATD): time slot and adapts the static threshold accordingly.
Greedy GTD chooses an NA patient who is about to miss the deadline
threshold from the NA queue, if one exists, and otherwise chooses an IP
(GTD) patient. The GTD only looks at head-of-the-line NA patients for
making a decision.
Dynamic DTD suggests a heuristic improvement over the GTD approach.
threshold The DTD starts as GTD, i.e., serves the NA patient if at least one
DTD) such patient is about to cross the triage deadline. DTD then
turther invokes a look-ahead mechanism. It looks into the NA
queue and estimates through simulation the expected "start of
treatment" time for each patient already in the queue, assuming all
processing capacity is allocated to serve NA patients, and that
cach treatment will take an average service time. It then
determines which NA patient to treat if the look-ahead process
suggests that at least one of the NA patients already waiting in the
queue will miss his deadline.

Table 2: List of Hybrid service policies.
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6.6.6 The NA Internal Competition

We considered two policies while choosing among NA patients in constraint-based
policies, namely the portion policy and the difference policy. A portion service policy
(w/d) gives precedence to jobs with a higher portion between the waiting time and the
deadline. A difference policy gives precedence to jobs with a lower difference (w-d). A
combined approach may also be considered. Such an approach uses difference if the
deadline can be met and portion if it cannot, as indicated for D'TD in Table 3.

6.6.7 The IP Internal Competition

We considered several service policy classes for the internal IP competition, namely
FCES, cost, and even a deadline-based class. We found the cost approach most suitable
for resolving the IP internal competition and thus used it within all analyzed algorithms.

6.6.8 Hybrid-approaches with NA and IP Service Sub-Policies

Hybrid-approach service policies comprise several service sub-policies, as shown in
Figure 20. Table 3 summarizes key aspects of the core subset of the hybrid-approach

policies we analyzed during our research, along with their service sub-policy

components.
Service | Threshold Choosing | Choosing Choosing among
policy | methodology | among among NA NA patients who
P patients who missed deadline
patients | meet deadline constraint
constraint
NAF NA patient FCES Difference Difference
first (w-d) (w-d)
STD Calculating Cost Portion Portion
using the (w/d) (w/d)
queues length
DTD Calculating Cost Difference Portion
using waiting (w-d) (w/d)
time of the
"oldest"
waiting patient

Table 3: Hybrid-approach service policies and their

service sub-policy components.
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6.7 The "Best" Service Policy

In Chapter 7, we provide detailed simulation results for the various service policies
described in Table 3. Our simulation suggests that the dynamic threshold (DTD) hybrid
service policy, which applies the threshold algorithm described below along with the
service sub-policies described in Table 3, best addresses clinical needs under realistic ED
situations.

Below, we provide the pseudo code of the DTD threshold algorithm.

At every service completion do{
If the head of the line patient at any of the triage queues
already missed the deadline then{
e serve NA-patients
}Else{ // perform a look ahead into the triage queues
Save a copy of the queueing system and the simulation time;
While there are patient at any of the triage queue

Do{
ePick the patient who is the closest to her deadline
eIf that patient already missed the deadline then{
®= Exit and serve NA-patient
}
eServe this patient, assuming average service time
eIncrease simulation running time by the service time
amount
}//do
e FExit and serve IP-patient
}//else

Restore queueing system to its original status and
simulation time to it original time

}

Figure 21: DTD threshold algorithm
pseuso code.

Note that the main strengths of the DTD service policy are i) its robustness with respect
to the varied arrival rate and ii) its ability to serve as a real-time control in a real-life ED
environment.

Analyzing encounter data from a real ED setting suggests that NA patients comprise
about 30% of encounters. Thus, only 30% from the system capacity is required for
serving NA patients. As a result, we can reasonably assume that in most situations, the
system has enough capacity in the system to serve NA patients just before their
deadlines. The look-ahead capability of the algorithm allows it to proactively

compensate for short arrival rate peaks that exceed maximal system capacity.

We may also consider an interesting improvement to the DTD threshold algorithm, that
is, to also simulate arrivals into the triage queue based on the expected arrival rate,
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during the simulated look-ahead process. The current DTD threshold algorithm does
not exploit this enhancement. We envision that such an enhancement will only have a
minor effect on the results. We thus do not discuss it further.

In the next chapter, we provide detailed simulation-based analysis results for the DTD
service policy, as well as for other important service policies. We then provide a
comparison analysis between the DTD and the STD service policies. In Chapter 8, we

provide fluid model analysis for a close stylized variant of the D'TD threshold
algorithm.
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CHAPTER 7: WHICH PATIENT SHOULD BE TREATED NEXT?
SIMULATION-BASED ANALYSIS

In this chapter, we describe the discrete event simulation (DES) [5] we developed for
analyzing the PTN question and the simulation analysis results. The PTN simulation
works in batch mode and is designed to evaluate potential PTN setvice policies for their
performance. Nevertheless, the chronological nature of DES allows the developed
service policy to serve as a real-time control within the EdRhythm system, described in
Chapter 4, while prototyping a real-life ED setting. Moreover, the DTD service policy,
described in Section 6.7, uses the simulation engine for real-time control. Collecting
events from the monitored environment and using real-time simulation to control it
represents a methodology known as symbiotic simulation [18].

7.1 The Simulation Environment

The PTN simulation environment comprises three main functionality modules: the ED
process simulator, the scheduling engine and the result processor. The scheduling
engine, which provides the core algorithms of the PTN simulator, is implemented using
the Java [10] programming language on top of the Eclipse framework [6]. The ED
process simulator generates a list of patients visits based on a set of preconfigured
parameters. The scheduling engine then applies various scheduling algorithms to the
visit list and logs its output into an Excel file using the results processor. We then
analyze the Excel file and compare the results of the various scheduling algorithms.
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7.1.1  The PTN Simulation Input

We use the EdRhythm platform, described in Chapter 4, to generate the time-based list
of patient visit events. The EdRhythm is calibrated to generate low-level visit events
according to the visits expected to find in a typical ED. To this end, we validated the
patient arrival profile, generated by the EdRhythm system, with several ED managers.
The EdRhythm generates all kinds of low-level events, related to various ED activities.
Thus, we first filter the list of low-level events generated by the EdRhythm, allowing
only relevant events to pass through. The list of relevant low-level events is summarized
in Table 4.

First Interim Last
Encounter | Encounter | Encounter

Waiting starts 33 41 47

Encounter starts 34 42 48
(waiting ends)

Encounter ends 35 43 49
Table 4: List of processed low-level
events.

All patients have at least two encounters, namely first encounter and last encounter. The
first encounter is indicated by events 33, 34; the last encounter is indicated by events 47,
48, and 49. Many patients have more than two encounters. In rare situations, patients
may have up to six encounters. Interim encounters are indicated by events 41, 42, and
43. Table 5 describes a typical number-of-encounters distribution.

2 encounters 3 encounters | 4 encounters | 5 encounters | 6 encounters

28% 30% 28% 11% 3%

Table 5: Distribution of the number of encounters in a
typical input set.
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We aggregated the list of low-level encounter events into a list of encounter records.
Each encounter record is composed of 4 elements that are described Table 6.

Encounter | Arrival Time | Service Time | Latent Time
Number

Sequential | Indicates the | The time of The time patients spend in

encounter | arrival time to | physician- other ED stations before
number the queue patient returning to the physician
encounter queue

Table 6: Patient's encounter record.

The time of the first encounter event (33) indicates the patient's arrival time at the ED.
Service times are calculated by subtracting the time in the 34-35, 42-43, and 48-49 pairs,
respectively. Latent time is calculated by subtracting the encounter end time (either 35
or 43) from the following encountet's start waiting time (41 or 47, respectively) for the
same patient. The latent time is then used for calculating the next patient's artival time
into the physician's queue.

7.1.2  Additional Input Parameters

The PTN simulator further assigns several clinical characteristics to each simulated
patient, namely her triage score with its associated deadline, age, and the expected ADT
status based on a realistic distribution. It then uses these characteristics for setting
deadlines and waiting costs for waiting patients. The distribution of these parameters
can be configured into the simulator. Below, we provide a typical realistic distribution of
the various input parameters.

Table 7 describes a typical distribution of patients along triage scores.

Triage 3 Triage 4 Triage 5

10% 40% 50%
Table 7: Typical triage score distribution.

Table 8 describes the typical triage deadlines for the three triage scores.

Triage 3 Triage 4 Triage 5

30 minutes 60 minutes 120 minutes
Table 8: Typical triage deadlines.
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Table 9 describes the age groups, as defined by an ED manager, and the respective
distribution of patients among these groups.

Under 45 | 45-65 65-75 Over 75

40% 30% 20% 10%
Table 9: Patients' age groups with their
distribution.

Table 10 describes the expected ADT distribution. We could further seek the ADT
distribution for each of the triage groups. Notably, expected ADT status does not
currently exist in most ED settings, and the option for caregivers to update the ADT
status throughout the course of the treatment seems even more far-fetched.
Furthermore, the ability to provide accurate ADT status heavily depends on the
proficiency level of the caregiver.

Admitted Discharged | Unknown

30% 60% 10%

Table 10: Distribution of the ADT
expected status.

More importantly, the input parameters, with their respective distribution, provide just a
baseline for the PTN simulation. In a real environment, the exact distribution can
directly be calculated from the historical data, collected by a system such as the
EdRhythm. We tested all service policies under a wide variety of input parameters to
ensure their robustness functionality under the expected day—to-day ED conditions.
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7.1.3  Arrival Processes

The arrival process has a significant impact on the performance of the service policy
being tested. The PTN simulator provides two types of arrival processes—a Poisson
arrival process and realistic arrivals. We use the Poisson arrival process for analyzing the
various service policies for robustness. The realistic arrival pattern is provided in Figure
22. The PTN simulator provides a means to scale up the realistic arrivals while
maintaining the arrival pattern itself. This ability allows scaling up the system-under-test
into any desired size. Thus, for our tests, we generated an arrival function with scaled
rates based on these two patterns.

Arrivals per hour

35

25 / \ o
: foov o o)
/ N/ B
\V \\

Num of Patients
-~ &
—

/

-0.5

Hours

Figure 22: A typical realistic arrival rate
patern for a small ED.

7.1.4  Setting the Cost parameters

Service policies use cost functions for deciding which patient to treat next. Together
with an ED manager, we defined the cost functions c(t), t=0, along with their
parameters, as described in the following tables.

Table 11 describes the triage-related costs. Note that the important factor is the relative
costs among the various triage groups.

Triage 3 Triage 4 Triage 5

¢ (H)=4*t ¢ (H)=2%t ¢ (H=t

Table 11: Triage-related costs.
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Table 12 describes the age-related costs, represented in terms of the triage costs.

Under 45 45-65 65-75 Over 75

o®=a® | O=2%0 | o®=3"¢® | 0=

Table 12: Age-related costs.

Table 13 describes the costs for the Expected ADT status. The current cost function
provides the same cost for unknown and admitted statuses. This yields higher priority to
patients with high discharge probability.

Discharged Admitted or Unknown

c;(H)= 2%c,(t) c;(H=c,(t)
Table 13: ADT-related costs.

Table 14 describes the polynomial cost that is being given to patients approaching the
length-of-stay soft deadline. We use the term soft deadline to refer to a deadline that
does not represent a hard constraint, rather, a soft one, which causes significant increase
in cost if not met. The function further takes into account the differences in the length-
of-stay deadlines for different expected ADT status.

If a patient needs to be If a patient needs to be admitted or
discharged and is waiting ADT status is unknown and is
more than 3.5 hours (210 waiting more than 5 hours (300
minutes) minutes)

c(t)= c5(t)+(t-210)"2 c(t)= c;(t)+(t-300)"2

Table 14: Polynomial waiting time costs, taking Expected
ADT status into account.

Note that the value ¢,(t), for type i cost function, indicates the rate at which cost
increases with time. These rates are all with positive slops, thus representing the
reasonable satiation in which the longer the LOS the higher the cost of an addition time
unit of LOS. In particular, the cumulative cost can be calculated by taking the integral
over the cost rates.
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Table 15 summarizes the cost rate functions ¢;; , (t) for the various patient classes using
the following notion: t, 3<i<5 stands for triage score 3 to 5, respectively; a, 15j<4,
stands for the 4 age groups, and d,, 1=k=2, stands for the 2 expected ADT groups.

Patient Rate function before | Rate function after
class the soft deadline the soft deadline
t;, 4y, d, c(t)= 8t c(t)= 8t+(t-210)"2
ty, 4y, d c(t)= 4t c()= 4t+(t-210)"2
ts, a;, d; c(t)= 2t ()= 2t+(t-210)"2
t5, 2y, d, c(t)= 16t c()= 16t+(t-210)"2
ty, 2y, d c(t)= 8t c(t)= 8t+(t-210)"2
ts, a,, d; c(t)= 4t ()= 4t+(t-210)"2
t;, a3, d c(t)= 24t ()= 24t+(t-210)"2
ty, a3, d c(t)= 12t c(®= 12t+(t-210)"2
ts, a5, d, c(t)= ot c()= 6t+(t-210)"2
ts, 4y, d; c(t)= 40t c(®= 40t+(t-210)"2
ty, Ay, c(t)= 20t c(®= 20t+(t-210)"2
ts, a4, d, c(t)= 10t c()= 10t+(t-210)"2
t;, a;, d, c(t)= 4t c(t)= 4t+(t-300)"2
ty, 2y, d, c(t)= 2t c()= 2t+(t-300)"2
ts, a;, d, c)=t c(t)= t+(t-300)"2
t;, 2y, d, c(t)= 8t c(t)= 8t+(t-300)"2
ty, 2y, d, c(t)= 4t c(t)= 4t+(t-300)"2
ts, 2y, d, c(t)= 2t c(t)= 2t+(t-300)"2
t;, a5, d, c(t)= 12t c()= 12t+(t-300)"2
ty, a3, d, c(t)= ot c()= 6t+(t-300)"2
ts, a3, d, c(t)= 3t c(t)= 3t+(t-300)"2
t;, 4y, d, c(t)= 20t c(t)= 20t+(t-300)"2
ty, 4y, d, c(t)= 10t c(t)= 10t+(t-300)"2
ts, a,, d, c(t)= 5t c(t)= 5t+(t-300)"2

Table 15: Cost-rate functions for the
various patient classes.
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For clarification, consider the following examples:

e The cost rate for a 78-year-old patient, with a triage score of 3, who waits for four
and a half hours (270 minutes) and is expected to be admitted to one of the hospital
wards is given by:

C34,(270)=20%270 = 5400

e The cost rate for a 40-year-old patient, with a triage score 5, who waits for three and
a half hours (240 minutes) and is expected to be discharged home is given by:
C;1,1(240)= 2%240+(240-210)"2 = 9480

The graphs below describe the waiting cost rates for the various patient classes using the
same notation as above.

Cost rate before the soft deadline
—~t3aldl = t3ald2 13 a2 d1
1000 .
900 | / / t3a2d2 —»t3a3dl ——t3a3d2
800 y — :
[/ i +3addl —1t3add2 t at di1
700 -
L 6001 ‘ - : tatd2  t4a2d t4 a2 d2
8 500 .
© Z t4 a3 d1 t4 a3 d2 t4 a4 d1
t4add2 — t5at di 15 a1 d2
E—— ; t5 a2 d1 t5 a2 d2 t5 a3 d1
40 60 80 100 —~-t5a3d2 —x-t5a4d1 t5 a4 d2
time

Figure 23: Cost for admitted patients is linear before reaching the four-

hours-deadline.
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Cost rate before and after the soft deadline e Baldl = 13ald2 13 22 d1

60000
t3a2d2 —»—t3a3dl ——t3a3d2

50000
—+—1t3a4dl —1t3a4d2 t4 a1 d1

40000
- t4 a1 d2 t4 a2 d1 t4 a2 d2

§ 30000
t4 a3 di t4 a3 d2 t4 a4 d1

20000
t4a4d2 —t5aldi t5 a1 d2

10000
t5 a2 di t5 a2 d2 t5 a3 d1

0

100 200 300 400 500 —-t5a3d2 -—x-t5a4di t5 a4 d2

Figure 24: Cost for all patients, emphasizing admitted and discharged
differences.

Note that the service policy algorithm uses configured cost functions. Thus, the ED
manager is able to easily change them in order to meet desired performance indicators.

7.1.5 The PTN Simulation Model

The PTN simulation model is based on a queueing network, following the model
illustrated in Figure 19. The queues are organized into a two-dimensional structure. The
first dimension indicates the triage level; the second dimension indicates the patient's
encounter number with a physician. The scheduling algorithm selects a patient from the
appropriate queue and transfers her to the next queue after the treatment and latent
time, or out of the queueing system after treatment time in the case of a patient's last
encounter.

Most scheduling algorithms use FCFS within queues. Our simulation is able to simulate
service policies that take individual identities into account, e.g., in situations in which
cost function is complex, and to prioritize patients by calculating their waiting cost
within the ED.

Service times and latent times are taken as is from the input plan. Our simulation is able
to take arrival time from the input or to generate the arrival times based on known
process distributions, such as the Poisson process.

The simulation simulates a physician pool with a configured number of physicians. Each
physician spends time treating a patient, but physicians may also spend a configured
amount of time in additional work, e.g., filling out treatment orders and discharge
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summaries. This physician work profile is consistent with observational studies of
physician work within the ED made by [44].

A physician becomes available to treat the next patient following the service time period
and the additional work period. The "amount of additional physician work" parameter
allows adjusting the overall system load without changing the arrival rates.

Note that the main focus of the PTN simulation is on the arrival patterns and the
waiting queues. Thus, accurately simulating the physician work profile is not part of the
PTN simulator.

7.1.6  The Simulation Output

The simulation's raw output contains the input encounter record with an additional
element, specifically the encounter start time. This element is the output of the
scheduling algorithm. The next arrival time to one of the waiting queues is then
calculated from the encounter's service time and latent time. The rest of the KPI's are
calculated after the simulation, using Excel.

7.2 Results

The PTN simulator allows simulating and analyzing various service policies under
various arrival rates and staffing levels. In the following sections, we desctibe the main
results for some of the analyzed policies. We use the FCES service policy as the baseline
for composition of our results and further compare the tested algorithms along two key
performance indicators:

Time Till First Encounter (T'TFE) is the average time, taken over all patients, from
the time patients arrive at the ED until the time they first meet a physician. The TTFE is
calculated with respect to the required deadline associated with each triage score. The
simulation does not take into account additional processes that take place between
patient arrival to the ED and patient arrival to the physician's waiting queue, i.e., the ED
admission process, the triage process, and other processes carried out by nurses prior to
the patient-physician encounter.

Total Length-of-Stay (LLOS) is the time period from the arrival time of patients to the
ED till the end of their last encounter with a physician. The total length-of-stay does not
take into account processes that take place after the last encounter with a physician, i.e.,
the discharge and admitting processes and any other processes catried out by nurses
after the physician's last decision has been made.
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7.2.1

Comparing PTN Policies

We simulate three priotity-based service policies for the PTN question, specifically 1)
first come first serve (FCES), ii) NA patients first (NAF), and iii) a threshold policy
(TSLD). We run the simulation many times and over various time periods, e.g., multiple

days, with multiple arrival-rate patterns. We specifically emphasize a real-life scenario

that assumes varied arrival rate during the day. We test this scenario under several ED

scales. Our summary results for a realistic ED setting are provided in Table 16. All

numbers are provided in minutes and represent average measurements.

Time till Service | Overall Latent | Total
first time |waiting time |length—of-
encounter time stay

FCFS 31 14 103 59 176

NAF 8 14 116 59 189

TSLD 29 14 105 59 178

Table 16: PTN service policies
comparison.
Note the following:
[}

FCES is the straightforward PTN policy currently used by most EDs. FCES in
this regard refers to a specific encounter. As a result, FCES does not give
ptiority to returning patients. Thus, these patients need to wait in line for their
turn with all other patients, including NA patients and other IP patients.
Moreover, FCES does not take triage scores, or any other patient clinical
characteristics into account; thus it is obviously not good enough for addressing
combined clinical and operational aspects. It is considered here just as a
baseline, allowing us to qualify the results of other PTN policies.

The NA patient first policy (NAF) gives the highest priority to newly-arrived
patients. This policy can be considered as the simplest threshold policy. It
applies a simple binary threshold—whether patients are in one of the triage
queues or not. Results from a complementary IP patient first policy (IPF) are
not provided. IPF is expected to reduce the total LOS, at the expense of a
longer TTFE. Thus, is not expected to perform better then the FCES in meeting
the triage deadlines.
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e Service times and latent times are not affected by the service policy, thus have
the same values along the vatious policies. Furthermore, the service times only
include patient-physician encounters, while the latent times includes the time a
patient spent at stations other than the physician's station.

While the FCFS and the TSLD policy result in fairly similar performance indicators, the
NAF policy yields a significantly different result. From assessing these results, we gain
several interesting insights:

e The PTN decision policy has a significant effect on performance indicators.

e No single PTN service policy stands out as superior. While the FCES provides a
minimal LOS, the NAF policy provides much better TTFE.

e Giving higher priority to newly-arrived patients significantly reduces the TTFE
indicator, but increases the overall LOS at the ED. This phenomenon justifies
the use of triage deadlines for balancing clinical and operational needs.

e Comparing the FCFS and NAF policies indicates that the gcp. rule holds for the
simulated environments. Giving precedence to newly-arrived patients increases
the total LOS. The need to optimize the TTFE indicator, which is a distinctive
ED performance indicator, calls for further analysis.

e Comparing the FCFS and the TSLD policies reveals no significant performance
differences. The FCES seems to be superior in the total LOS aspect, at the cost
of a bit longer TTFE. A more detailed comparison of the LOS and TTFE
distribution suggests that this is not the case. Such an analysis reveals that the
TSLD policy provides much greater control and allows ED management to
adjust the ED operation towards specific performance indicators. We further
describe these insights in the following sections.

7.2.2  Meeting Predefined Deadlines

A reasonable service policy aims at reducing the averages of the TTFE and LOS
indicators. Clinical needs suggest that aiming to reduce the average TTFE and LOS is
not good enough, and that taking the exact distribution into account is also necessary.
Specifically, clinical needs impose deadlines for both TTFE and LLOS. Consequently, the
optimal distribution associated with these indicators needs not to be uniform nor even
symmetric. A longer TTFE is acceptable, assuming triage deadlines are not violated for
any patient. Having many patients' go over the soft deadline (e.g., 4 hours) in the ED is
considered not good enough, even though the average LOS is kept below the soft
deadline. Table 17 shows the percentage of the patients that meet TTFE and LOS
deadlines for the three above-mentioned PTN service policies.
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Percentage of patients that

Percentage of patients that

meet the TTFE deadline |meet the 4-hour LOS deadline
FCFS 88% 75%
NAF 100% 74%
TSLD 94% 78%

Table 17: Meeeting deadline constraints.

Table 17 reveals the following observations:

e The TSLD algorithm is supetior to FCES in both categories.

e The NAF policy allows meeting triage deadlines at all times, but comes at the
expense of a longer LOS. A natural question thus emerges—what is the minimal
effort required for meeting triage deadlines? Allocating the minimal effort for
meeting triage deadlines allows reduction of the total LOS. An optimal TSLD
policy should do exactly that. In the following sections, we further analyze the

various parameters that affect the various TSLD policies, while seeking the

optimal one.

In Table 18, we describe results from analyzing the two KPIs across triage categories.
Such an analysis provides additional insights into the interplay and tradeoffs between the

two KPIs. FCFES does not take triage categories into account; thus the LOS

performance does not depend on the triage categories. Both NAF and TSLD take triage
deadlines into account. As a result, triage 5 patients spend more time waiting for their
first encounter, and eventually spend more time at the ED and are more likely to miss

their total LOS deadlines.
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Fraction of patients that
meet the TTFE deadline

Fraction of patients that meet
the 4-hour LOS soft deadline

Triage Class |3 4 5 3 4 5

FCFS 75%  |82% 95% 75% 81% 72%
NAF 100% [ 100% 100% 92% 83% 66%
TSLD 88%  195% 95% 86% 80% 75%

Table 18: Meeting deadline constraints along
triage categories.

7.2.3 Comparing the Threshold Algorithms

We further examine several variants of the threshold algorithm under several arrival
processes. Specifically, we compare the adaptive threshold (ATD) algorithm with the
dynamic threshold (DTD) algorithm described in Table 2. We compare these two
algorithms with respect to two related parameters, the system capacity and the arrival
rate. These parameters are summarized in Table 19.

Fixed arrival rate

Varied (realistic) arrival rate

conditions

heavy traffic

Average arrival rate
that results in below

Not interesting,
thus not provided

Table 21, same performance
No real issue as all patients are
served before their deadline

Average arrival rate
that results in heavy
traffic condition

Table 20, same

performance

Table 22, DTD performs
better

Table 19: Summary table for the various STD and DTD
tested scenarios

Fixed arrival rates are generated using a Poisson process with a fixed rate denoted by A.
Heavy traffic conditions are generated by letting A/ go to 1. This is done by adjusting

the number of physicians and their work loads according to the provided A.
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We analyze the system under various scales. We scale up the system by increasing the
number of physicians and arriving patients simultaneously, while maintaining the desired
load. For a large-scale system, we use about 22 physicians, specifically, 21 physicians
result in an overloaded condition, 22 in a critically loaded system, and 23 in an under-
loaded one. For a more realistic system, we use five physicians. Our analysis shows that
no significant differences exist between the two system scales.

For clarity reasons, we provide analysis results for just a single triage category in most of

the cases.
Poisson arrival rate with fixed A that averages in heavy
traffic conditions; triage 5 patients.
Dynarnic Triage 5 -
TimeTill First Encounter
ThfeShOld 1600
1400 '}
(DTD)
2 1000 {f
% 800
‘é 600 -H
3
400 +H — ‘F
200 + H
0‘{‘H‘m‘ﬂ“““ﬂ‘
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300
Time (min)
Adaptive Triage 5 -
TimeTill First Encounter
ThfeShOld 1800
1600 H'}
(ATD) 1400 H
73 1200 H
% 1000
-f; 800
§ 600 H
. ﬁ_ﬁ W
200 H —
, [0n 0
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300
Time (min)
Main The algorithms perform similarly.
observation

Table 20: Fixed arrival rate; heavy
traffic.

75



Varied arrival rate with average below heavy-traffic
conditions; medium size system.

Dynamic

Triage 5-
TimeTill First Encounter
Threshold
120
(DTD) 100
§ 80
g 60
H]
E 4
4
0 |0
0 10 20 30 40 50 60 70 8 90 100 110 120 130 140 150 160 170 180 190 200
Time (min)
Static Triage 5-
TimeTill First Encounter
Threshold
120
(STD) 100
§ 80
‘;: 60
'g 40+
=z
o 1 o
0 10 20 30 40 50 6 70 80 90 100 110 120 130 140 150 160 170 180 190 200
Time (min)
Main The algorithms perform similarly. No deadline issues occur.
observation

Table 21: Varied arrival rate with average below
heavy-traffic conditions.
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Varied arrival rate with average at heavy-traffic conditions.

Dynarnic Triage 5 -
TimeTill First Encounter
Threshold 3000

(DTD) = ]
8 2000 H
£
&
S 1500 H M
&
2 —
£ 1000 H
=z
N ﬂH_H_H_H_H_H_H»f
0 —
cococococogeoggooocgocgoocggoocgoea0gg s
2R8YBBREZ2EBIEBREBEIFEITERER B
Time (min)
Adaptlve Triage 5 -

TimeTill First Encounter

Threshold 3500

( ATD) 3000 +—=

» 2500 1

z

£ 2000

E 1500

: -

Z 1000

: TN ANNE D .
BEEBTEEEEERIEEINREEES

Main DTD performs better due to its better resilience to the time-

observation |varying arrival rates.

Table 22: Varied arrival rate with
average at heavy traffic.
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7.2.4  Assessing Different Triage Categories

We further compare the ATD and DTD algorithms across the vatious triage categories.
Recall that triage categories differ from one another in their times-to-deadline. The
comparison is done for small and large system sizes and for fixed and realistic arrival
rates that result in heavy-traffic conditions. We note that both algorithms perform better
for a large-scale system than for a small one. The DTD performs better, or at least as
well as the ATD, under all tested characteristics.

DTD ATD
Large system; fixed arrival rate; Table 24 Table 25
heavy-traffic conditions
Small system; realistic arrival rate Table 26 Table 27
averages in heavy-traffic conditions

Table 23: Summary of comparison
tables.
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DTD Large system,; fixed arrival rates; heavy traffic conditions.
Triage 3 Triage 3

TimeTill First Encounter (2 minutes interval)
(30-minute
deadline)

0
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60

Triage 4 Triage 4

TimeTill First Encounter (10 minutes interval)
(60-minute
deadline)
Triage 5 Triage 5

TimeTill First Encounter (10 minutes interval)
(120-
minute
deadline)

Number of arrivals
8 2
3 3

g
8

o
0
0

8§ 8888R888¢2

1

Time (min)

Table 24: DTD, large system; fixed arrival rates; heavy

traffic conditions.




ATD Large system,; fixed arrival rate; heavy traffic conditions.
Triage 3 Triage 3
. TimeTill First Encounter (2 minutes interval)
(30-minute
deadline)
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60
Triage 4 Triage 4
. TimeTill First Encounter (10 minutes interval)
(60-minute
deadline)
Triage 5 Triage 5
TimeTill First Encounter (10 minutes interval)
(120-
minute
deadline) 2
E
S
2
£
z
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300
Time (min)

Table 25: ATD; large system; fixed arrival rates;
heavy traffic conditions.

Further analysis of the system under more realistic conditions, namely few physicians
and a realistic arrival situation, revealed the difficulty of both the ATD and DTD
algorithms to meet triage deadline at all times. However, the DTD performed
significantly better under these conditions, due to its dynamic adaptation to the time-



varying arrival rate. Note that a significant part of triage 3 patients still miss their
deadlines by up to 30 minutes. Similarly, about 10% of triage 4 and 5 patients also miss
their deadlines by up to 30 minutes, manifesting the stochastic level of the system.

DTD Small system (1 physician); realistic arrival rate that
averages in heavy traffic conditions.
Triage 3 Triage 3
TimeTill First Encounter
(30-
minutes
deadline)
0 10 20 30 40 50 60 70 80 90 100 110 120 130
Tﬁage 4 Triage 4
TimeTill First Encounter
(60-
minutes
deadline)
Triage 5 Triage 5 -
(1 2 0_ TimeTill First Encounter
minutes
deadline) s
3
3
E
2
°SP88988R888288¢B8R888S 8RS 8ERERE
Time (min)

Table 26: DTD; small system; realistic arrival rate that averages in
heavy-traffic conditions.



ATD

Small system (1 physician); realistic arrival rate that
averages in heavy traffic conditions.

Triage 3

Triage 3
TimeTill First Encounter
(30
minutes
deadline)
Triage 4 Triage 4
TimeTill First Encounter
(60
minutes
deadline)
0 10 20 30 40 50 60 70 80 % 100 110 120 130
Triage 5 Triage 5 -
TimeTill First Encounter
(120 o
minutes a00
deadline) 3=
E 200
5
3 150
£
=z

=
38

0

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300

Time (min)

Table 27: ATD; small system; realistic arrival rate that averages

in heavy-traffic conditions.




7.2.5

In Process Patient Priorities

The distribution of the Length of Stay (LOS) is highly dependent on the system load.
No significant differences exist between the ADT and DTD policies, since both use the

same cost function. Note that if a system is overloaded, then most resources are

allocated to NA patients and LOS will grow infinitely. We provide results for finite

horizon, in which the system eventually remains without patients, in the following

tables.
Length of |[Length of stay distribution for a system under various loads
Stay
Cﬂucaﬂy Length of stay
loaded %0

system with
fixed arrival
rate

Length of stay (%)

2 2 omoow
o o o o S o
S & & & & 2
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w

7 8 9 10 11 12 13 14 15 16 17 18
Length of Stay (Hours)

19 20 21 22

Overloaded
system with
fixed arrival

Length of stay

N
o
o

20.0 T
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Critically Length of stay
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system with
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arrival rate

i
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Length of stay (%)
- - »
o o o S
2 S S S
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Length of Stay (Hours)
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Table 28: LOS distribution for a system under

various loads.

83




Recall that our PTN model gives priority to IP patients based on a cost function. The
PTN cost function takes four parameters into account: i) length-of-stay, ii) triage score,
iii) patient age group, and iv) admit/discharge forecast. These parameters can be easily
changed. All PTN algorithms use the same cost functions.

Figure 25 summarizes the performance indicators along the age category for the DTD
algorithm, running over a realistic arrival rate that averages in heavy-traffic conditions.
The cost function indeed gives precedence to old patients over younger ones, as shown
in the figure.

Time Indicators by Age Groups

250

200

200

@ Ay LoS

B Avg Waiting

oAw TTFE

O Av Senice

® Avyg Dormant

150

Time (min)

100 -

50

Under 45 45 - 65 All

Figure 25: LOS distribution across age groups.

Figure 26 summarizes the performance indicators along the ADT category for the DTD
algorithm. The results indicate the priority that the cost function gives to expected
discharged patients.
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Time Indicators by ADT Groups
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Figure 26: LOS distribution across the expected ADT
statuses.

7.3 Summary of Results

Through simulation, we compared several service policies under various system
conditions with respect to time-till-first-encounter and the length-of-stay KPIs. We
found that the dynamic threshold (DTD) policy performs better under most system
conditions. Specifically, this policy is robust against time-varying arrival rates. The ADT
performs similarly to the DTD, except under time-varying arrival rate conditions. The
FCFS, though resulting in the minimum lengths-of-stay, does not provide any control
over triage deadlines and other service-level indicators such as age. The NAF policy best
meets triage deadline constraints, but results in a below-optimal average length of stay.
In the following chapter, we use a fluid model to analyze a variant of the DTD policy.
For a stylized model, we show that an optimal policy exists in situations in which the
arrival rate is assumed known.
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CHAPTER 8: WHICH PATIENT SHOULD BE TREATED NEXT?
FLUID MODEL ANALYSIS

In this chapter, we present a fluid model analysis that addresses the PTN question. In
our analysis, we focus on the first decision within the PTN question, namely whether to
next serve an NA patient or an IP patient. The underlying assumption is that to achieve
an optimal solution to the PTN question, we must use a threshold-approach in which
NA-patients are served as close as possible to their triage deadline, but not cross it. A
key requirement for this analysis is to allow an arbitrary arrival rate. Thus, the goal of
our fluid model analysis is to find an optimal control that, given the general arrival rate,
dynamically determines whether to next treat the NA patient versus the IP patient.

8.1 Problem Definition

Our fluid model analysis is performed for a simple stylized model as depicted in Figure
27. As shown in the figure, we focus on a single NA queue and a single IP queue. The

main assumption, which follows from our simulation-based analysis, is that an optimal
control belongs to the family of minimal-effort due-date policies.

l

Ty In
Artived Process

Figure 27: The stylized fluid model for
the PTN question.

Thus, our goal is to find an optimal departure control. A control is optimal if it
minimizes the departure process uniformly over all times subject to deadline constraints.
Thus, we seek the minimal-effort control that meets deadline constraints over all times
and for all possible arrival rates. For that we define physically-feasible and deadline-
feasible controls. Obviously, arrival rates exist for which deadline constraints cannot be
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met. Thus, we provide a necessary and sufficient deadline-feasibility condition (DFC)
over an arrival rate that guarantees that deadline constraints can be met. We then
provide a deadline-feasible control, namely a physically-feasible control that meets
deadline constraints under the deadline-feasibility condition. We conclude by showing
that our deadline-feasible control is indeed optimal.

At the end of the chapter, we provide a conjecture for the optimal control in situations
in which deadline constraints cannot be met due to high arrival rates. The generalization
of a single NA, single IP-queuing model into the PTN model described in Figure 19 is
left for future research.

8.1.1 Mathematical Framework
We start by defining the mathematical framework for our analysis, including the
following symbols and parameters:

We use a(*) to denote the time-varying arrival rate to the system; thus a(*) > 0. It is
technically convenient to let a(*) be defined over the whole real time (-0, %) and to
assign to it the value of 0 over (-0, 0).

For the technique of our proof, we shall impose the following additional constraints
over o

1. o should be piecewise continuous;
2. o should have finite number of local extrema.

We use A to denote the cumulative number of arrivals, or work artiving to the system.
Thus A(t) denotes the amount of work arriving to the system till time t:

A = [ a(u)du

We use 3(°) to denote a time-varying departure rate from the system. Thus 8(¢) > 0 and
d(®) is piecewise continuous. A control policy amounts to specifying &; we shall thus use
the two interchangeably. It is technically convenient to let 3(*) be defined over the whole
real time (-00, ) and to assign to it the value of 0 over (—0, 0).

We use D to denote the cumulative work departing from the system; thus D(t) is the

integral over 3(t).

(0= Sudu

We use u to denote departure capacity, which is the maximal departure rate from the
system; thus p serves as upper bound for 8: 0=8(*) <.

We use d to denote the deadline; d is an input constant to the model, which is measured
in time units.
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We use the following superscript throughout: t*, t', t*, t°, which stands for Zero, Start,
Deadline, and End respectively. These subscripts are used to denote specific points over
given time intervals.

We use 8*(*) to denote the optimal control policy, which is the sought-after solution for
our problem.

Using the above framework, we can now provide a solution to the PTN optimization
problem.

8.1.2  Physically-feasible Control

A physically-feasible control 3(¢) is a control that meets the following constraints:
1. 8@ =0, t<0,
2. 0=5(t) =, 0=t
3. Dyt = A(t), -00<t< 0,

The above constraints ensure that the control is physically viable. The first two
constraints ensure that the departure rate is assigned a positive number that cannot
exceed the physical maximum departure rate of the system. The third constraint ensures
that work cannot depart from the system if not yet arrived into it.

8.1.3 Deadline-feasible Control

A deadline-feasible control 8(*) is a physically-feasible control that further meets the
following constraint:

4. A(t-d) = Dy(t), -00<t<o0,

The above constraint ensures that work that arrived to the system at time t will depart
no later than at time t+d.
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We will refer to these four constraints (1-4) by their numbers, during proofs and
discussions in subsequent sections.

D, = [ 8(uxu

Cumulative Work

D, ()= At —d)=[ " alu)du

T

d Time

Figure 28: Cumulative arrival and
departure work.

Figure 28 describes a cumulative arrival work function, A(t), and a cumulative deadline-
feasible departure work function, Dy(t); D, ()=A(t-d) is the ultimate departure work
function in which all work departs from the system exactly at its deadline. This D,(t) is
usually not achievable due to the 8(*) < p constraint.

8.1.4  An Optimal Control

Let A be the set of deadline-feasible controls. Our optimal control problem seeks to
identify, among alld € A, the one &* that minimizes Dy(t)-A(t-d), simultaneously over
all times t. Note that it is a priory unclear that there is indeed such 0* € A . Nevertheless,
we do show that, if A is not empty, 5* exist. Denote by D* the departing work
corresponding to &*. We shall also show that D*<D; for allo € A, thus establishing the
optimality of &* in the sense of minimizing efforts subject to triage constraints. Note
that a physically-feasible control, for which D;(t)=A(t-d) at all times, is obviously
optimal.

8.1.5 A Necessary and Sufficient Deadline-Feasibility Condition

A necessary and sufficient deadline feasibility condition (DFC) which ensures the
existence of deadline-feasible departure policy, is as follows:
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For any two time-points t; and t; such the t<t, the following must hold:

Deadline feasible conditions (DFC):

1
(Bq. 1) A)- A = L a()dt < (4 —1) i+ pud

Although checking for the DFC for a given o might be cumbersome, some observations
can still be made:
1. Ifa(t) = p, for -00<t<00 then « is deadline feasible. Otherwise:

2. Identify the set of time intervals (t’, t%), t'; <t< t’, for which a(t) = w. If there

te
exists an intetval (', t°) such that j . (a(t) — p)dt > pd | then o is not deadline-

feasible.
tf
[.(a@® -t
o ~7 1
] 1 )
= i te-|- d

Figure 29: A not deadline-feasible a(t)

8.1.6  Stability Constraint

A stability constraint over « is required for constructing the departure policy:
There exist T<o such that «(t) = p for all t>T.

Thus, for constructing «, we need to identify the maximal time T for which a(t)>p.
Analyzing the system under finite horizon (-0, T| poses no problem in that regard, as
a(*) is only defined over the half-closed interval (-0, T] and o(t)=0 for t<0. Thus the
maximal time t, for which a(t)>p, obviously exists within the time interval [0, T].

Analysis of the system under an infinite horizon requires identifying a time T’ for which
a(t) < p for all £T.

8.2 Proving the Deadline-Feasibility Condition

We start by proving the necessity and sufficiency of the DFC provided at (Eq. 1):
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8.2.1 Proof-Necessity

For necessity we must show that if the condition does not hold, the deadline cannot be
met. Thus, assume there are two time-points t, and t; for which the necessary condition
does not hold. Namely:

A@w)- A = | :j"a(t)dr >G—t)pu+pud = (t+d —t) .

The amount of work atrived at time ¢, is given by:

At) = jw a(t)dr = jw a(t)dt + j a(t)dr.

The amount of work that departed from the system at time t+d is, at most, all the work
that arrived at time t; (i.e., fully depleting the system, also noted as D(t)=A(t), which
indicates the physically-feasible constraint), plus the maximal departure rate, yu, over the
time period [t, t+d]:

ti+d ti ti+d ti
D@ti+d)= j S(t)dt = j a(t)dt + j " pdr = j a(t)dt+(G+d —t)u <
[ awar+ | awd=Aw).

From the above equation, we conclude that not all the work that arrived at time ¢,
departed at time t+d. In other words, a part of the work arrived to the system at time t;
and missed its deadline.

8.2.2  Proof-Sufficient

For sufficiency, we need to prove that if the condition holds, the deadline can be met
over all times. We prove it by constructing a deadline-feasible departure policy. The
construction's steps are provided in the subsequent sections.

8.3 The Trivial Arrival Rate Case

A trivial arrival rate case is: a(t) < p, —00<t<®0,

In this case, meeting the deadline constraints is possible by simply delaying all work for
exactly d units of time. Such an approach minimizes the departure process uniformly
over all times. Formally:

3*(t) = a(t-d), -00=t= o0,

is an optimal solution for the problem.
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8.3.1 Meeting Physically-Feasible Constraints

The &* meets all physically-feasible constraints:
1. 8(t)=0, t=0
a(t) = 0, t=0. Thus &*(t)=a(t-d)=0, t=d.
2. 0=8(Hh=p, O=t.
0=<w(t) < p at all time, so that a(t-d)=<p at all times. Thus 0=8*(t)= a(t-d)=p.

3. Dy() < AD), <0<t< o,
D*(t) = jjwﬁ*(u)du = jfwa(u —d)du = At —d) SA(t), —0<t<0,

Thus D(©)<A(t), ~00<t<0,

8.3.2 Meeting Deadline-Feasible Constraint

The &*(*) meets the deadline-feasible constraint:

4. A@d)< Dy(t), -0<t< .
D*(r) = j_’wa*(u)du - j_’wa(t—d)du = A(t—d) , —0<t<o0,

Thus A(t-d)< D(t), —0o<t<oo,

8.3.3 Proving Optimality

The &* and the corresponding D* are obviously optimal since
D*(t) = A(t-d), —o<t<o0

and thus

D*()-A(t-d) = 0, —00<t<o0,

while D(t)-A(t-d) = 0, —0<t<0, for all other o € A.

8.4 Variable Arrival Rates under the Deadline Feasibility Condition

As discussed earlier, it is convenient to distinguish between two arrival-rate situations,
specifically those for which a deadline-feasible control exists and those for which is
none exists. In the following sections, we discuss the first situation, that is, we assume
that the DFC prevails at all times. We then construct a deadline feasible control 5, and
prove that it is optimal.
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8.4.1 Constructing an Optimal Control

Assume that the DFC and the Stability constraints hold at all times.

Introduce a finite set of m+1 time intervals [t°, t°], 0<i<m, such that:

alt) 2 p, <t<t;, 0<i<m,

a(t) < p otherwise.

Note that m<o0 since o has a finite set of local extrema.

Denote [a], 0=i<n, a vector of index alignment constants, such that a,=m and a,<a,, .
We now construct a sequence of n+1 time intervals 7%, 1], 05i<n<m, such that:
T=t,=t,=1,> T, > tag ) =T 0> Thy - £ =T> T >t%=1> 1,>-%,

for which:

L AEH =AW =[" atudu> p(cf - 1), 7,<t<x,, 0Sisn

2 AGH-AE) = [Tt = u(z; ~ 7))

3. 'There exist small >0 such that

A(r)) - Az} - &) = 'f; andi < (T -7 &)

[-L — —
T; e s I
[r (et = pl(r; —177) |
f : f t
Tsi I-—"::'rl!i-l, tta‘c:Tci
Figure 30: Finding the set of 1% points
Note that:

1. The construction of the [7", 1] is carried out in an iterative manner starting from
t=T backwards.

2. The process must eventually stop as a,<a;,;, 0=5i<n, and the number of time
intervals [t°, t°] is finite.
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C 4 7, : ,
3. 7, exists, and —0< 1, since a(t) = 0 for t<0, thus J;_ Ya(t)dt is bounded while
0

U(ty —7;) tends to © as 1, goes to -0,

4. tha;<t;< t. That is, 7, falls within an interval in which a(t)<p. Assume, in
contradiction, there is ¢'<e such that a(t)=p, for '<e< 7°. We then have:

AC)-AG e = [T awdi=[7 atdi+p( —))

> u(r —(z; —¢)
while contradicting the above third condition.
Thus, we conclude that o(t)<p within the time interval t°, ;=1 <t<7".
Denote a derived set of time intervals I'= {y°, vy} defined by:
V=1, +d
Vo= +d
Let 8* be defined over I" as follows:
o 3%(t) =0, t<0,
.« srv=p €L,
e 0*(t) = a(t-d), otherwise.

See Figure 31 for a graphical demonstration of 8* and the way we construct it.

&*(t)

]_L - R
e . e

d yi=titd Y=+

Figure 31: Constructing d*(t)

We argue that the above 8* is physically-feasible, deadline-feasible, and constitutes
optimal control. We prove these claims in the following sections.

8.4.2 The Proactive Period

Next, we define the proactive period equality (PPE). The PPE is defined for every two
time points 1, 5, T;<t"; for which the below equality holds:
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PPE:

(Bq.2) A= AG) = [ atds = u(r —7)

We will use the PPE throughout our proofs.

8.4.3 Sync Point Correlations Lemma

Sync point is a pair {t,, t,} in which work artives to the system at time t,, then departs
from the system exactly d time units afterwards, at time t,.

We define the pair {t',t,} as left sync point (.SP), and the pair {t',,t',} as right sync
point (RSP), respectively, if there exist small e1, e2 such that work arriving to the system
at the interval e, <t<t', t',<t<e,, respectively for RSP, departs from the system exactly at
its deadline (i.e., d time units afterwards), while work arriving to the system at t,<t<e,,

e, <t<t', respectively for RSP, departs from the system either before or after its deadline.
See Figure 32 for a graphical demonstration of LSP and RSP.

D(y)=A() .
i_.—-—--"”" ! y

5 V5 T8 qi’;'i' t
L L
LSP RSP
Figure 32: Left sync point and right sync
point.

From the way we constructed &%, we observe that all couples {t°, y",} are LSP; and that
all couples {1°, y";} are RSP. Specifically, work that atrives to the system at time ',
departs at time ', and work that arrives to the system at time t°, departs at time y°.
Moreover, all work that arrives to the system after t°, but before t° departs before its
deadline, and all work that arrives to the system just before t°; or just after t°; departs
from the system exactly at its deadline.

Based on this observation, we define the following correlations:
Left Sync Point (LSP) correlation for {1, y';}

(Eq.3) DE)=Al,~d) = AR)

Right Sync Point (RSP) correlation for {°, v}
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(Eq. 4) DY) = AW —d) = A®T)
These relations provide additional insights into the way we constructed 6*, and will
assist us in proving the optimality of &*.

We prove these relations by induction over i.
Induction base:

Consider the two adjacent time periods for i=0:

1. te(—o,p,)
2.telyy. 7,1
From the definition of 8* we conclude that:
oy (70 Yo 7 s
s - - _ - -
D*(r) =] s(dt=["" a(t-dyt=[" a(t=A()
and by using the PPE (Eq. 2) for the second interval we get:

D*<y5>=j_”;ocm)dt=j_7<;oa<r—d>dt+jyygudt:
0

- j % a(t)dt + j T§a(t)dt = A1)
— 0 TO

Now assume by induction that the LSP and RSP relations hold as in Eq. 3 and Eq. 4 for
i, and prove them for i+1. We thus need to prove that:

D (Ys<i+1)) = A(Ys(iﬂ)_d) = A(TS(iH))

and
D (Ys<i+1)) = A(Ys(iﬂ)_d) = A(TS(iH))

D*(yi) =J.i/';5(t)dt=Ji/;o5(t)dt+J.;j+la(t—d)dt=

A(r)+ jfl a(tdt = A(r)) + A(z),) = AT = A(zs,)
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By using the PPE again:
wre N [Vin _ (Vin Yin _
D*(y¢,)= j_ 50y = j_ 5t + I%-‘l 1 S(t)dt =

A+ [T = A + A ) - AT = AT
i+l

8.4.4  Meeting the Physically-Feasible Constraints

For &* to be physically-feasible it must meet the three constraints defined in Section
8.1.2:
3()=0, t=0

Note that while constructing 8*, we enforced §*(t) = 0, t<0. For this enforcement to
hold, we need to show that y°, = 0. Otherwise, our definition of &* is not consistent.

We thus need to show that if the deadline-feasible condition holds, then v, = 0.

Assume, on the contrary, that y5, =t°+d <0, and y’; —d =7,. Thus, using the PPE for

[T, T°0] We get:

AT~ Ary) = L:Sga(t)dt = u(zy - 73) = p(zg =0+ 0= (75 —d)) =
p(zy = 0)+ pd — py;

Recall further that a(t)=0 for t<0 thus:

Az - A(z)) = jorg a(t)dt

Combining the two equations we get:

A(E)~ Ay = [ s = (g ~0)+ pd — a5 >z —0) +

This is in contradiction to the deadline-feasibility condition for time {0, 1°,}, since if
¥'0<0 then py’; is a negative number.

1. 0<8(t)<p, O<t.

Obviously the constraint holds fort € I'. We, thus need to show that 6*%(t) = a(t-d) < u
for t ¢ I'. While constructing &*, we showed (Section 8.4.1 Remark 4) that 7', falls
within an interval in which o(t)<p, and concluded that «(t)<p within the time interval
7, <t<7’. Thus, a(t-d) <p for %, +d=y° ,<t<y’ = v’ +d.

2. D38(t) = A(t), -00=t= o,

97



We will show that the constraint holds by considering four different time period
categories, which together cover the whole real time:

Two boundary conditions periods
a. <y
b. >y,

and two internal period categories:
c Y <t<yy 0Si<n

d y<t<ys 0<i<na

3.a) Let —00<t<y,.

Recall that:

8*(t) = 0 for t<0

S*(t) = a(t-d) for 0=t<y’,
Thus:

D*(t):J._too§*(u)du :O+J.;a(u—d)du = A(t—d)- A(0—d) = A(t—d) < AQt),

_Oo<t<Yso~

3.b) Let t>y°,.
Recall that 8*(t) = a(t-d) for t>°,

D*(t)=[ &*(udu=D(y;)+ L S*u)du=A(y. —d) + L o —d)du =

=A(r)+At—-d)-A(y, —d)=A(r) )+ A(t—d) - A(r, )= At —d) < A1)
for £>y°.

3.0) Let ¥ <t< y%, 0=i<n.

Recall that 8*%(t) = a(t-d), for y<t< 7y’
D*(z):j’ 5*(u)du=jyf€5*(r)dz+jt 5*(u)du:D(y.")+r 5 * (u)du
—0 —0 }/IP 1 }/le
t
=A(f —d)+ jye a(u—d)du=A@T)+ At —d) - A(y  —d) = A(z") + At —d) — A(z")

=A(t-d)<A®), y/ <t<y/,, 0<i<n.
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3.d) Let y"=t<y", 0<i<n.

Recall that 5*(t) = p for Y =t=<y"

Thus, using the RSP relations as in Eq. 4:

D= ' St + jy §*(u)du=D(y’) + jy Sudu=A)+ [, pdu =
® i i Vi

AT+ p—y)) = A+ ut = (7] +d)) = A(z) ) + u(t — 7)) — pd

and:

T’ t '
A =] adi+ [ atdu=A@) + [, aGdu.

Now assume, on the contrary, that there is a time t for which D(t)>A(t).

Thus:
D*(t)=A(t) )+ ut—1))— ud > A7) + J‘;Y a(u)du = A(t)
and thus:
s : 7t 7t
wt—10)— pd > j  a(u)du = L a(t)dt — j a(u)du.
From the way we constructed 6* and specifically from the PPE (Eq. 2) we know that:
e s z-ie
' —1)= J.'r.f a(t)dt
Thus:
s e s Ee e s z-ie
Mt —=1))-pd > p(z] —7; )—L oa(u)du = pu(r! —t)+ pu(t—r; )—L a(u)du
This results in:

. T
—pd > u(t! —z)—L a(u)du
and thus:

J;Tf a(u)du > pu(r, —t)+ ud

which is in contradiction to the deadline-feasibility condition for points t and t.
We conclude that Dy(t) = A(t), y',.<t<y"; 0<i<n.

This last conclusion completes the proof that 8* meets the Dy(t) < A(t) constraint over
the whole real time, and that 8* is indeed a physically-feasible control.
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8.4.5 Meeting the Deadline-Feasible Constraint

For &* to be a deadline-feasible control, it must meet the constraint defined in Section

8.1.3. Namely, we need to show that:
3. A(t-d)= D*(t), -o0=t= o,

For that, consider again the four different time period categories:
Two boundary condition periods

a.  t<y’,

b. >y,
and two internal period categories:

c Y <t<yy 0Si<n

d. Sty 0<i<n

4.2) Let —00<t<y’.

Recall that

8*(t) = 0 for t<0

3*(t) = a(t-d) for 0=t<+’,
Thus:

D*(f) = j 5% (u)du = 0+j0'a(u—d)du —At—d)—A(0—d)= At -d),
_OO<t<ySO,

4.b) Let t>v°,.

Recall that 5*(t) = a(t-d) for £>y,.. Thus, using RSP correlation (Eq. 4):
D*(t)=[ &*(udu=D(y})+ jy §* w)du = A —d) + jy a(u—d)du =

= A+ At —d) = Ay —d) = A(z}) + At —d) — A(r}) = At - d)
Thus D*(t)=A(t-d) for t>y°.

4.c) Let v <t< ¥y, 0Si<n.

Recall that 8*%(t) = a(t-d) for y<t< y’..,. Thus, using RSP correlation (Eq. 4):
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D*()=[ 5*wdu=[" 5%+ j; 5% (uydu = D(F) + j; 5% (u)du

A —d)+ j; a(u—d)du=A@T)+ At —d) - A(y! —d) = A(z¢) + A(t —d) — A(z?)

=A(t-d)
Thus D*()=A(t-d) for y'<t< y’;,, 0<i<n

4.d) Let y"=t<y", 0<i<n
Recall that 8*(t) = p for " =t<y",
Thus, using RSP correlation (Eq. 4):

D*()= [ Swdr+ [, Sdu =D+ [, Sudu=
- Vi Vi
4.d.1 ;
AG =d)+ [ pdu= Ay} =)+ pta=7)
442 A(t—d)= Ay, —-d)+ jy au—dydu=Ay; -d)+ [_a(udu
From the PPE (Eq. 2) and from the definition of ©°, 1°, ¥’ and y*, we know that
e s 4 Vi e s e s
4d3 A(r) - A@FT) = L a(t)dt = L, a(t—dydt = u((y; =d)=(y; =d) = pu(y; =77)
Recall further that from the way we constructed I it holds that for each? €I':
% Ve e e s c
444 A@t)= j a(u)du = j a(u—dydu> u(y¢ —d)—(t—d)) = u(y* —1), ¥ <<y
By combining 4.d.3 with 4.d.4 we get:
4.d.5
! 4 4 e s e s
A= awdu=[_a@di-[" a@du< u(y; —7)) - u(yf =)= ut =)
> YsiStSYci
and by combining 4.d.1, 4.d.2 and 4.d.5 we get:

446 A(t—-d) =A@y’ —d)+ L adu< Ay} —d)+ u(t— ) =D*(t), y.<t<y,

Thus, we conclude that A(t-d)<Dy(t), y'=t<y", 0=i<n.

This last conclusion completes the proof that 8* meets the A(t-d)<Dy(t) constraint over
the whole real time, and that 8* is indeed a deadline-feasible control.
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8.4.6 Proving Optimality

We will now prove by induction over i that D*(t) defined as D *(r) = L O *(t)dt is
optimal.
Induction base:

Consider the two adjacent time periods for i=0:

1. te(~w,7,)

2.tely,r]

We have already shown that D*(t) = A(t-d) for all t € (—o0,y;); thus D*(t) is indeed

optimal over that time interval.

Recall that 8*(t)=p for all # €[y, ,y;]. Recall further that (t) is constrained by p. That is
3(t) =p.
We will thus show that if there exists a point in time t' such that 3(t")<p, then

D'(t)= J::O O'(u)du does not meet the A(t-d) < D(t) constraint.

Assume, on the contrary, that there is at least one point in time t' such that t'e[y’, ¢
> 1y, p 0270

and &'(t)<p in some small neighborhood of t' (recall 5(°) is piecewise continuous) and
that 8'(t)= 8*(t) for ¢ € (-0, ,) .

For such &' there exists:
70 ' 70 % e s
[0t <[ /50t = pury 7).

I

D)= 8t =jy‘f 5w+

B ” S'(t)dt = f 4

—o0

o(t)dt +'[;//( f5 "(H)dt =

7/5 ' 7/5 K e K
A(7°“_d)+J.y.\ O'(Hdt < A(y/os—d)JrJ.}ﬂ oF)dt =A(yy —d)+ u(y; —7,) =
s 75 N e N e
A(y, —d)+J.7J a(t—d)dt=A(y, —d)+A(y, —d)—A(y, —d)=A(y;, —d)

This is in contradiction to the constraint that D'(y;) = A(y, —d).

Now assume by the induction that D*(t) is optimal for 1.
We thus need to prove that D*(t) is also optimal for i+1.

Consider again the two adjacent time periods for i+1:

Lte(y.r..)
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2. t€lyins7ia]l

From the induction assumption we know that D*(t) is optimal for t<y*.

We have already shown that D*()=A(t-d) for all # € (y;,7,.,); thus D*(t) is optimal for
<Y oy

Recall that 8*()=u for all # €[y}, 7,1 Recall further that 3(t) is constrained by p. That
is 8(t) <p forall t.

We will thus show that if there exists a point in time t' such that 5(t)<py, then

D'(t)= J._ o'(t)dt does not meet the A(t-d) < D(t) constrain.
Assume, on the contrary, that there is at least one point in time #'€[y;},;,7:,,] for which
8'(t) <y, in some small neighborhood of t', and that 8'(t)= 8*(t) for t € (0,7, ) .

For such &' there exist:
Via Via
S'(Hdr<|"o*()dt = R
[ 8 Wi <[ 6 (de = iy = v

Vi Vin Vi
D'(y' )= o' (t)dt = o'(t)dt + o' (t)dt =
Gio=[ o wdi= [T Wi+ [ 15 1)
j}/mma *(t)dt + yj“
- Viv

Ky 7/le+ s e s
A(7i+1 —d)+ J;/s 5% (n)dt = A(7i+1 -d)+ ﬂ(7i+1 - 7i+1) =
i+1

&mm:A@;—@+ﬁT&mm<
i+1

Vin
Ayl —d)+ at—d)dt =
(i ) '[7511 ( )
Ay, —d)+ Ay, —d)— Ay, —d) = A(yf,, —d)

This is in contradiction to the constrain that D'(y;,,) 2 A(y;,, —d) and by that we
conclude the optimality proof for &*.

8.5 General Time-Varying Arrival Rate

In the following section, we formulate a conjecture for an optimal &* in the situation for
which deadlines can not be met at all times. We start by defining optimality for such
situations and then describe a method to construct the optimal &*. Proving that 8* is
indeed a physically-feasible optimal control is left for future work.
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8.5.1  An Optimal Control

Let A be the set of physically-feasible controls.

Identify, among all 6 € A the one 8 which minimizes the cumulative time period t for
which Dy(t)<A(t-d).

Formally:
denote t', a point such that Dy(t)=A(t", -d),
denote t° a second point such that t>t", and Dy(t)=A(t"; -d),

and:

Ds()<A(td)forall re[t,t]].

Then a physically-feasible optimal control 8™ minimizes z (t{ — 1) simultaneously

1

over all times.

Further identify, among all 5 €A the one 8* that minimizies Dj(0)-A(t-d)
simultaneously over all time intervals in which the deadline-feasible condition prevails.
Further show that for anyd € A D (t)<Dj(t), for all t.

Note that a physically-feasible control, for which Dy(t)=A(t-d) at all times is obviously
optimal.

8.5.2  Constructing Optimal Control

Denote the finite set of m+1 time intervals [t, t°], 0=1<m, such that:

at) =, £<t<t, 0<i<m

a(t) < p otherwise.
Note that m<o0 since o has finite set of local extrema.
Denote [a], 0=i<n a vector of index alignment constants, such that a,=0 and a,<a,,,.
We now construct a sequence of n+1 time intervals [¢°, €] 0=i<n<m such that:
-0<t’ = e’y < &) < =" < e < .. < thTme < el <... <t =e < e, <o
for which:

t
1. Al -A(e) = jg a(u)du > p(t - ), & <t<e’, 0<i<n

2. Ale') - A(e") = jgg alt)dt = u(e* —&'), 0<i<n.
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3.

There exist small >0 such that

Aef +8) - A = [ ; a(dt < u(sl +e— &), 05i<n

Note that:

1.

The construction of the [¢’, €] is done in an iterative manner starting from t= t',
forwards.

The process must eventually stop as ai<ai+1, 0<i=n, and the number of time
intervals [tsi, tei] is finite.

g"a(t)dt is bounded while

s
n

e exists, and &< since a(t) < p for T<t, thus I
£

m(e’,- €°,) goes to © as &°, goes to 0.

t,<e<t',.,, that is, &, falls within an interval in which o(t)<p. Otherwise, i.c.,
assuming a(t)>p for e, <t< ¢, +e, we have

Ale +&) - Ae’) = Lf “E ()t = u(et — ')+ Lf "€ a(r)dr

>u(el +e-¢')
in contradiction to the above third condition. Hence, a(t)<u for &%, <t<e’_ = t'a,,.

Further, denote [by], 0=5i<k a vector of index alignment constants, such that b;<b,, .

We now construct a sequence of k+1 time intervals [8°, 8] 0=i<k=<m such that:

‘°o<85b02550<5d0<ﬁeozecbo< < <eh=f'< Bdi< B =em<... <Ssbk:ﬁsk<ﬁdk<ﬁek:€cbk<°o

for which there exist at least one point t'e[3°, 51

1.

2.

A= AP =] awdr> p=B1)+ ud , B<i<g, 0sisk
AB - AB) =[] et = (B = B+ ud

For te[B.5] A()—A(B’)= jﬁ a(u)du < p(t— B°)+ ud
Denote S €[ ﬂfl , B Tthe point for which

AB)-AB —d) = f;d a()dt = p(f; = f7)

Define Z as the set of time intervals [B, BY].

Define B as the set of time intervals [3°, B%.

Define ® as the set of time intervals [3°, §7,,]-

Define 8*; to be the optimal control over the ®. Construct &% as described in Section

8.4, over each of the ® intervals, such that «(t) is defined over the close intervals [3°-d,
Bzi+l_d]'

105



Define 8* to be the optimal control over the whole real numbers T as follow:
e O*t) =0, t<0,
e S =p,teB
o ¥t)=p, te”Z
o J%(t)=0%1e®
&* is physically-feasible but not deadline feasible over B.
&* is deadline-feasible over @ U Z.

8* is optimal over T

8.5.3 Intuition and Claims

Note:

BB <Bi< B

Intuition:

The interval [°, B'] is physically-feasible.

The system has enough capacity to deplete the queue at time 8. We know that §,<
B’..1, we also know that at time B, deadlines have just been met, namely D(%) = A(B‘-
d), and {B'-d, B} are RSP.

We argue that B, + d < B, since we are able to deplete the queue during that time
period; this inequality stems from the way we constructed [¢°, €°].

Similarly, the condition B, < #7., stems from the same fact.

@’ is the latest point in time from which we can deplete the waiting queue such that it
will become empty at time §°. This will allow us to minimize the deviation from the

deadline.

We define §7 as the point from which 8(t)=p. to deplete the queue, thus, {$°-d, p";} are
LSP.

At B’ the queue contains all work that arrived during [$-d, B7], thus, to deplete the
system we need to complete this work and the rest of the work that arrived at [3%, 87,
while serving at maximum capacity from % onwards. That is exactly the condition that
allows us to find B’

Claim 1: B, < B¢,

Claim 2: B, < B’,,, (at the extreme, we need to have 8(t)=p from #*,,= B in order to
drain the queue at 8,

Claim 3: the deadline-feasibility condition holds over the intervals [3°, B%,,]
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Forall te[f’, '] holds:
A= AB) = [, auidu> ua = )

A = A e =B = )+ ud

For all #i,t;[B, .,,] holds:

i+l
1
Alt) - Alt) = jt_ a(t)dt < (t — )+ du
Forall £, e[, :,] holds

'
AW = AP = la(di < (' =)+ dp

8.6 Summary of Results

In this chapter, we have shown that an optimal 6* can be constructed when the
deterministic arrival rate function, a, is known. We have shown that if a(*)<p, then a
trivial optimal solution exists, namely 8(t) = a(t-d). We have further shown that for
situations in which the DFC prevails, an optimal 8* can be found. In such situations, a
proactive behavior, namely increasing the service rate for NA patients, allows meeting
the deadline even in situations in which a(*)>p. for some time periods. Recall the NAF
policy presented in Section 6.6.5. Our simulation-based analysis showed that this policy
meets the triage deadline at all times under realistic arrival rates. This indicates that the
DFC holds for such situations. Recall further the DTD policy presented at Section 6.7.
This policy serves the triage queues at a rate equal to 3(t) = a(t-d), at most times, and
implements the proactive behavior in situations where a(*)>p. Thus, this policy suggests
optimal control with realistic arrival rates, as proved by our fluid-model analysis.
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CHAPTER 9: CONCLUSIONS AND FUTURE WORK

This research focuses on the benefits that a real-time monitoring-and-control system
may provide for optimizing ED operations. During this work, we designated several
points along the ED patient flow process that offer opportunities for promising
improvements. We then analyzed and explored some of them using various techniques,
such as simulation, mathematical analysis, and prototype implementations. Specifically,
we identified two applications and addressed them through innovative approaches—
adaptive load monitoring and the "Which patient to treat next?" service policy. While
our work involved close interactions with ED management, and close assessment of
ED environments in vatious hospitals, we did not have the opportunity to apply any of
these techniques within a real ED environment. Our work was based on simulated data,
which, as accurate as it can be, is still not a real ED environment. Thus, deployment of
the proposed solution, along with its monitoring and control capabilities, is still required
for proving its benefit to ED management in real life.

In addition, we list below some of the main challenges and aspects that we came across
during our research but did not have the capacity to address. These require further
future research.

9.1 Forecasting and Controlling ED Arrival Rates

The arrival rate has a significant effect on all ED operational KPIs. Being able to
accurately forecast ED arrivals may allow ED management to improve the ED service
level, e.g., through optimal staffing. Ample work has been devoted for arrival
forecasting. Real-time monitoring and control suggest a complementary approach, in
which the online load of the ED is provided to arriving patients in advance. The way by
which such an online status will affect the ED arrival rate is a subject for future research.

9.2 Neural Network-Based Load Monitoring

The neural network-based approach for load monitoring, presented in Chapter 5,
requires more research. Specifically, the learning mechanism that we introduced in
Section 5.4, requires extensive validation, after deployment within a real ED
environment. Moreover, the ability to calculate different load measurements for
different ED roles, presented in Section 5.6, requires further research both for its
accuracy and for its relevance.

108



9.3 Extending the Fluid Model Analysis

The fluid model analysis presented in Chapter 8 requires future work in various
directions. First, a proof for the conjecture we presented in Section 8.5 should be
worked out. Second, an extension into a multi-triage-class environment is called for.
Third, a generalization for time-varying capacity, i.e., a time-dependent physician pool, is
possible. Lastly, a method for combining the fluid-model analysis for a given timeframe
in which arrivals are already known (i.e., from arrival to deadline) with the forecasted,
time-varied, stochastic arrivals may prove to be superior over the heuristic approach that
we presented in Section 6.7, and thus offers interesting potential for future research.

9.4 ED Priority Queues

Serving patients by a policy other than FCEFS may be conceived as unfair and result in
service-level deterioration. A better understanding of patient behavior, under a clinical-
dependent priority policy, and the optimal ways to communicate such a policy to
patients, requires further work

9.5 Situational Displays

An important part of a real-time monitoring-and-control system is a situational display,
also known as a dashboard. The dashboard communicates various aspects of the current
environment status to patients and care personnel. A complementary requirement is to
provide ED management and care personnel with a means of intervention in situations
in which human intervention is required in real time. Furthermore, the ED situational
display may confront challenges not usually found in other service environments, such
as airpotts, train stations, and customer service stores, namely, the need to present
highly private information on public displays. Such questions, or those related to the
actual information needed to be displayed, are left for further research.
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APPENDIX A: INPUT OUTPUT AND CONTROL EVENTS OF
EDRHYTHM

The EdRhythm is based on event processing technology. Below we provide a
description of the various events that serve as input and output to the system. There are
two categories of input events—data events and control events. All data events have the
same structure. Fach control event has its own structure.

Output events are associated with a specific KPI. Each output event has its own
structure. The tables below describe the structure of the various events and event
categories and list the exhaustive input event types.

1. Data Events

All data events have the same structure. Data events are identified by the unique event
type associated with each one. The list of possible event types is provided in Table 29.

Attribute Description

Event type See Table 36 for possible types

Room ID The physician room number or ED section
Care giver type Group type, e.g., triage nurse

Care giver ID ID of the specific nurse or physician

Patient type Patient group classification, i.e., by triage score
Patient ID Unique ID for a patient

Time Time of operation start

Table 29: Data event structure.

114



2. Control Events

Each control event has a type and a set of up to three values. The table below shows the
various control events and the meaning of the values in each of them:

Type Value | Description Value 1 Value 2
Set Threshold | 1001 Set a threshold for The threshold
the TTFE KPI value
Set Room 1002 Set a threshold for The room ID The threshold
Threshold the room value
occupancy KPI
Set Patient 1003 Set the threshold The threshold
Treatment for the patient for all patients
Ratio treatment ratio KPI | (in %)
threshold
Set clock 1100 | Set clock period The period in
period seconds

Table 30: Control event structure.

3. Output Events
Output event contains the KPI value after calculation. Each output event implements a
specific indicator and has its own structure and set of values. The tables below describe

a small subset of the monitored KPI implemented by the EdRhythm

Patient's Time Till First Encounter:

Attribute Description

Event Type The event type (110)

Patient Type Patient's group

Patient Id Unique patient id

Waiting Time The time from registration till first treatment
Registration time Time of registration

First treatment time Time of first encounter

Table 31: TTFE KPI structure.
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Staff Utilization Ratio:

Attribute Description
Event Type The event type (111)
Staff Type The type of care personnel
Staff Id Specific care personnel ID
Treatment Total treatment time for a given period
Additional Work Additional (not in front of patient) treatment
time in a given period
Period Time (in seconds) for that period
Table 32: Stuff utilization ration KPI structure.
Occupancy Level:
Attribute Description
Event Type The event type (112)
Room ID The ID for the room
Occupancy Level Number of patients within the room
Period Time (in seconds) for that period

Table

33: Occupancy level KPI structure.

Patient Treatment Ratio - per period:

Attribute Description

Event type The event type (113)
Patient type Patient's group
Patient ID Unique patient ID

Treatment time

Total treatment time for a given period

Period

Time (in seconds) for that period

Table 34

: Patient treatment ratio KPI structure.
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Patient total treatment time (114)

Attribute Description

Event type The type of the control event

Patient type The type of patient

Patient ID Patient ID

Treatment time Total treatment time for a given period
Registration time Time of patient arrival

Discharge time Time of patient discharge

Table 35: Patient total treatment time KPI structure.

117



4. Event Types

The table below summarizes the various event types within the system. Each event is
identified by a unique event ID. The table contains all event types, i.e., data, control and
output events.

Type Val Event
Type
Patient registered 10 Data
Patient starts waiting for triage 11 Data
Patient starts triage 12 Data
Patient finishes triage 13 Data
Patient waits for nurse 15 Data
Nurse starts treatment 16 Data
Nears finish of treatment 17 Data
Patient waits for additional treatment by nurse 18 Data
Nurse starts additional work 19 Data
Nutse finishes additional work 20 Data
Patient waits for nurse 21 Data
Nurse starts treatment 22 Data
Nears finish of treatment 23 Data
Patient waits for additional treatment by nurse 24 Data
Nutse starts additional work 25 Data
Nurse finishes additional work 26 Data
Patient waits for nurse before final decision 27 Data
Nurse starts treatment 28 Data
Nears finish of treatment 29 Data
Patient waits for additional treatment by nurse 30 Data
Nutse starts additional work 31 Data
Nurse finishes additional work 32 Data
Patient starts to wait for physician treatment 33 Data
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Type Val Event
Type
Physician starts treatment 34 Data
Physician finishes treatment 35 Data
Patient starts to wait for additional work by physician 36 Data
Physician starts additional work 37 Data
Physician finishes additional work 38 Data
Patient starts to wait for physician examination 41 Data
Physician starts treatment 42 Data
Physician finishes treatment 43 Data
Patient starts to wait for additional work by physician 44 Data
Physician starts additional work 45 Data
Physician finishes additional work 46 Data
Patient starts to wait for physician examination for final | 47 Data
decision
Physician starts treatment 48 Data
Physician finishes treatment 49 Data
Patient starts to wait for additional work by physician 50 Data
Physician starts additional work 51 Data
Physician finishes additional work 52 Data
Start lab tests 55 Data
Finish lab tests 56 Data
Start wait for a consultant 57 Data
Finish wait for a consultant and start the treatment 58 Data
Finish consultant treatment 59 Data
Start walking to CT 61 Data
Finish walking to CT 62 Data
Start waiting for CT 63 Data
Finish waiting for CT 64 Data
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Type Val Event
Type
Start CT 65 Data
Finish CT 66 Data
Start wait for CT answer 67 Data
Finish wait for CT answer 68 Data
Start return from CT 69 Data
Finish return from CT 70 Data
Start walk to US 71 Data
Finish walk to US 72 Data
Start wait for US 73 Data
Finish wait for US 74 Data
Start US 75 Data
Finish US 76 Data
Start wait for US answer 77 Data
Finish wait for US answer 78 Data
Statt return from US 79 Data
Finish return from US 80 Data
Start walk to X-ray 81 Data
Finish walk to X-ray 82 Data
Start wait for X-ray 83 Data
Finish wait for X-rayand start treatment 84 Data
Start wait for X-rayanswer 87 Data
Finish wait for XRay answer 88 Data
Start return from X-ray 89 Data
Finish return from X-ray 90 Data
Bed release 91 Data
Start wait before hospitalized 92 Data
Finish wait before hospitalized 93 Data
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Type Val Event
Type
Start delay before discharge 94 Data
Finish delay before discharge 95 Data
Wait for nurse discharge 96 Data
Start nurse discharge 97 Data
Finish nurse discharge 98 Data
Patient left the ED 99 Data
TTFE 110 Output
Staff utilization ratio 111 Output
Occupancy level 112 Output
Patient wait time ratio 113 Output
Patient total treatment time 114 Output
Set TTFE threshold 1001 Control
Set room occupancy threshold 1002 Control
Set patient treatment ratio threshold 1003 Control
Set clock period 1100 Control
Time tick 2001 Clock

Table 36: Event types.
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APPENDIX B: CONSENSUS ON LOAD PARAMETER
CLASSIFICATION

The tables below summarizes the list of 38 load parameters as suggested by [55]

1. Input Parameters

Input Parameter Concept Definition
Operational
1. ED patient volume, |Patient Number of new patients registered within a
standardized for bed |demand defined period (hour, shift, day) = number of ED
hours bed hours within this period
2. ED patient volume, [Patient Number of new patients registered within a
standardized for demand defined period + annual mean number new
annual average patients registered within this period
3. ED ambulance Patient Number of new ambulance patients registered
patient volume, demand within a defined period = number of ED bed
standardized for bed hours within this period
hours
4. ED ambulance Patient Number of new ambulance patients within a
patient volume, demand defined period = annual average of new
standardized for ambulance patients registered within this period
annual average
5. Patient source Patient Time, arrival mode, reason, referral source, and
demand usual care for each patient registering at an ED in

a defined petiod (hout/shift/day)

0. Percentage of open

Patient

Percentage of open appointments at the beginning

appointments demand of a day in ambulatory care clinics that serve an
ED’s patient population

7. Percentage of ED capacity |Number of registered patients who leave the ED

patients who leave without treatment completed = total number of

without treatment patients who register during this period

completed*

8. Leave without ED capacity |Average severity of patients who leave the ED
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Input Parameter

Concept
Operational

Definition

treatment complete
severity*

without treatment completed within a defined

petiod (shift/day/week)

9. Ambulance ED capacity |Number and duration of all diversion episodes at

diversion episodes EDs within the EMS system within a defined
petiod (week/month/year)

10. Ambulance ED capacity |Number of diversion requests denied or forced

diversion requests openings within a defined petiod

denied and forced (week/month/year)

openings

11. Diverted ED capacity |Chief complaints and final destination of diverted

ambulance patient EMS patients within a defined period

description (week/month/year)

12. Average EMS ED Total time at hospital for ambulances delivering

waiting time efficiency  |patients to ED duting a defined period

(shift/day/week/month) = number of
ambulance deliveries within that period

13. Patient complexity
as assessed at triage

Patient
complexity

Mean complexity level as assessed at triage (using
local criteria) for all

14. Patient complexity
as the percentage of
ambulance patients

Patient
complexity

Percentage of patients registering at an ED in a
defined period (shift/day/week/month) who
arrived by ambulance

15. Patient complexity
as assessed by coding

Patient
complexity

Mean complexity level as coded at the end of the
visit for all patients completed in a defined period
(shift/day/week/month)

* Leave without treatment completed includes those patients who leave without being

seen, leave before being finished, and leave against medical advice.
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2. Throughput Parameters

Throughput Concept Definition

Parameter Operational

1. ED throughput ED Average time between patient sign-in and

time efficiency  |departure (separately for admitted vs. discharged
patients) within a defined petiod
(day/week/month)

2. ED bed placement |ED Mean interval between patient sign-in and

time efficiency  |placement in a treatment area within a defined

petiod (shift/day/week/month)

3. ED ancillary service
turnaround time

ED
efficiency

Average time between physician’s order and result
report (separately for each service area) within a
defined pertiod (shift/day/week/month)

4. Summary workload,
standardized for ED
bed hours

ED
workload

Summary of (patients treated X acuity) in a
defined pertiod (shift/day/week) = number of
ED bed hours within this petiod

5. Summary workload,
standardized for
registered nurse staff
hours

ED
workload

Summary of (patients treated X acuity) in a
defined period(shift/day/week) =+ total ED staff
registered nurse hours within this period

6. Summary workload,

ED

Summary of (patients treated X acuity) in a

standardized for workload  |defined period (shift/day/week) =+ total ED staff
physician staff hours physician hours within this period
7. ED occupancy rate |ED Total number of ED patients registered at a
workload |defined time <+ number of staffed treatment
areas at that time
8. ED occupancy ED Total number of patients present in the ED at a
workload |defined time < number of staffed treatment
areas at that time
9. Patient disposition |[ED Number of patients admitted or discharged per
to physician staffing  [workload staff physician during a defined period

ratio

(shift/day/week)
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3. Output Parameters

Output Parameter (Concept Definition
Operational
1. ED boarding time |Hospital Mean time from inpatient bed request to physical
efficiency departure of patients from the ED overall and by
bed type within a defined petriod
(shift/day/week)*
2. ED boarding time [Hospital Mean time from inpatient bed request to physical
components efficiency departure of patients from the ED by bed type by
component (bed assignment, bed cleaning,
transfer arrival) within a defined period*
3. Boarding burden  [Hospital Mean number of ED patients waiting for an
cfficiency  |inpatient bed within a defined period <+ number
of staffed ED treatment areas
4. Hospital admission [Hospital Number of requests for admission within a
source, standardized  |efficiency defined pertiod (shift/day) overall and by
admission source ~ annual mean requests for
admission during that period and adjusted for day
of week and season of yeart
5. ED admission Hospital Number of patients transferred from ED to
transfer rate efficiency another facility who would normally have been
admitted within a defined period = number of
ED admissions within this petiod
6. Hospital discharge |Hospital Number of inpatients ready for discharge at or
potential efficiency within a defined period =+ number of hospital
inpatients at that time
7. Hospital discharge |Hospital Mean interval from discharge order to patient
process interval efficiency departure from a unit in a defined period
(shift/day/week/month)
8. Inpatient cycling  |Hospital Mean amount of time required to discharge an
time efficiency  |inpatient and admit a new patient to the same bed
within this period
9. Hospital census Hospital Mean number of inpatient beds available by bed
capacity type at a defined time =+ number of staffed

inpatient beds by bed type*
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Output Parameter (Concept Definition
Operational
10. Hospital Hospital Number of occupied inpatient beds overall and by
occupancy rate capacity bed type = number of staffed inpatient beds
overall and by bed type*
Output measure Concept Definition
operational
11. Hospital Hospital Forecast of expected hospital admissions and

supply/demand status |capacity discharges as reported daily at 6 AM and

forecast compared with hospital census

12. Observation unit |Hospital Mean number of available ED observation beds at

census capacity a defined time = number of staffed ED
observation beds

13. ED Hospital Number of new ED patients within a defined

volume/hospital capacity  [period (shift/day) < number of available hospital

capacity ratio beds at the beginning of analysis period overall
and by bed type*

14. Agency nursing  |Hospital Registered nurse agency nursing expenditures

expenditures capacity (ED/overall) within a defined period + total

nursing expenditures (ED/overall) within this
period

*Bed type=ICU/telemetry/psychiatry/ward.

TAdmission source=ED/operating room/ cathetetization laboratory/outpatient/other.
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