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Motivation: Call Centers
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The Inverted-V Model with Abandonment
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The Inverted-V Model with Abandonment: Motivation
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I Heterogeneous server population

I Learning Effects

I Various server skills
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The Model

I Single customer class - Poisson arrival process with rate λ.

I K server pools (N1,N2, ...,NK servers)

I Exponential non-preemptive service times with rates

µ1 < µ2 < ... < µK .

I Exponential time to abandonment with rate θ.

Our Focus: Staffing and Routing

I How many servers of each type are needed?

I How to route incoming or waiting customers?
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Inverted-V model Without Abandonment (Armony ‘05)

N1 N2 N3 N4

λ

µ1
µ2 µ3 µ4

Minimize C1(N1) + C2(N2) + ... + CK (NK )

Subject to P(W > 0) ≤ α, for some routing policy
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Why Consider Abandonment?

Even little abandonment can have a significant effect on performance:

I An unstable M/M/N system (ρ > 1) becomes stable with

abandonment (M/M/N + M).

I Example: (Mandelbaum & Zeltyn ‘06) Consider λ = 2000, µ = 20.

Service level target: “80% of customers should be served within 30

second”.

I 106 agents (θ = 0).

I 95 agents (θ = 20 (avg. patience of 3 minutes), P(ab) = 6.9%)

I 84 agents (θ = 60 (avg. patience of 1 minute), P(ab) = 16.8%)

Armony and Mandelbaum INFORMS November, 2006 7 / 18



Why Consider Abandonment?

Even little abandonment can have a significant effect on performance:

I An unstable M/M/N system (ρ > 1) becomes stable with

abandonment (M/M/N + M).

I Example: (Mandelbaum & Zeltyn ‘06) Consider λ = 2000, µ = 20.

Service level target: “80% of customers should be served within 30

second”.

I 106 agents (θ = 0).

I 95 agents (θ = 20 (avg. patience of 3 minutes), P(ab) = 6.9%)

I 84 agents (θ = 60 (avg. patience of 1 minute), P(ab) = 16.8%)

Armony and Mandelbaum INFORMS November, 2006 7 / 18



Why Consider Abandonment?

Even little abandonment can have a significant effect on performance:

I An unstable M/M/N system (ρ > 1) becomes stable with

abandonment (M/M/N + M).

I Example: (Mandelbaum & Zeltyn ‘06) Consider λ = 2000, µ = 20.

Service level target: “80% of customers should be served within 30

second”.

I 106 agents (θ = 0).

I 95 agents (θ = 20 (avg. patience of 3 minutes), P(ab) = 6.9%)

I 84 agents (θ = 60 (avg. patience of 1 minute), P(ab) = 16.8%)

Armony and Mandelbaum INFORMS November, 2006 7 / 18



Why Consider Abandonment?

Even little abandonment can have a significant effect on performance:

I An unstable M/M/N system (ρ > 1) becomes stable with

abandonment (M/M/N + M).

I Example: (Mandelbaum & Zeltyn ‘06) Consider λ = 2000, µ = 20.

Service level target: “80% of customers should be served within 30

second”.

I 106 agents (θ = 0).

I 95 agents (θ = 20 (avg. patience of 3 minutes), P(ab) = 6.9%)

I 84 agents (θ = 60 (avg. patience of 1 minute), P(ab) = 16.8%)

Armony and Mandelbaum INFORMS November, 2006 7 / 18



Why Consider Abandonment?

Even little abandonment can have a significant effect on performance:

I An unstable M/M/N system (ρ > 1) becomes stable with

abandonment (M/M/N + M).

I Example: (Mandelbaum & Zeltyn ‘06) Consider λ = 2000, µ = 20.

Service level target: “80% of customers should be served within 30

second”.

I 106 agents (θ = 0).

I 95 agents (θ = 20 (avg. patience of 3 minutes), P(ab) = 6.9%)

I 84 agents (θ = 60 (avg. patience of 1 minute), P(ab) = 16.8%)

Armony and Mandelbaum INFORMS November, 2006 7 / 18



Why Consider Abandonment?

Even little abandonment can have a significant effect on performance:

I An unstable M/M/N system (ρ > 1) becomes stable with

abandonment (M/M/N + M).

I Example: (Mandelbaum & Zeltyn ‘06) Consider λ = 2000, µ = 20.

Service level target: “80% of customers should be served within 30

second”.

I 106 agents (θ = 0).

I 95 agents (θ = 20 (avg. patience of 3 minutes), P(ab) = 6.9%)

I 84 agents (θ = 60 (avg. patience of 1 minute), P(ab) = 16.8%)

Armony and Mandelbaum INFORMS November, 2006 7 / 18



Problem Formulation

Minimize C1(N1) + C2(N2) + ... + CK (NK )

Subject to P(W > T ) ≤ αT , for some routing policy

EW ≤ W̄ ,

P(ab) ≤ ∆.

Issues related to formulation:

I FCFS: Natural but not necessarily optimal.

I Intensional Idling can improve service level.

I Not all are Customer-subjective measurements.
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Background: Garnett, Mandelbaum & Reiman ‘02

In a sequence of M/M/N + M models, N = 1, 2, 3, ..., with R = λ/µ, the

following are equivalent:

I N ≈ R + β
√

R, −∞ < β < ∞;

I limN→∞ PN{W > 0} = α, 0 < α < 1;

I limN→∞
√

NPN{ab} = ∆, 0 < ∆ < ∞;

Here α = w(−β,
√

µ/θ), ∆ =
[√

θ/µ · h(β
√

µ/θ)− β
]
α,

w(x , y) =
[
1 + h(−xy)

yh(x)

]−1

, h(x) = φ(x)
1−Φ(x) .
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Background: Mandelbaum & Zeltyn ‘06

Staffing M/M/N + G systems: Minimize N subject to performance

constraints. Three Operational Regimes:

1. QED regime: N = R + β
√

R

I
√

λP{ab} ≤ ∆,
√

λEW ≤ w̄

2. ED regime: N = (1− γ) · R, γ > 0

I P{ab} ≤ ∆, EW ≤ w̄

3. ED + QED regime: N = (1− γ)R + δ
√

R, γ > 0.

I P {W > T} ≤ α.
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Staffing of the Inverted-V model in the QED Regime

Minimize C1(N1) + C2(N2) + ... + CK (NK )

Subject to
√

λP(ab) ≤ ∆, for some routing policy.

Challenges:

I Offered load not well-defined

I Optimal routing unknown

Proposed Staffing: Square-Root Safety-Staffing

µ1N1 + µ2N2 + ... + µKNK = λ + δ
√

λ, −∞ < δ < ∞
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Asymptotic Feasible Region

N1

N2 μ1N1+ μ2N2 ≥ λ+δ√λ
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The Asymptotic Feasible Region

Theorem (Asymptotic Feasible Region): Consider a sequence of

systems indexed by λ ↑ ∞. Suppose that lim infλ→∞N1/N > 0. Then

there exists a non-preemptive policy under which

lim sup
λ→∞

√
λPλ(ab) ≤ ∆,

if and only if

µ1N1 + µ2N2 + ... + µKNK ≥ λ + δ
√

λ + o(
√

λ), −∞ < δ < ∞.

Armony and Mandelbaum INFORMS November, 2006 13 / 18



Routing

Exact Optimal Routing: Unknown (De Vericourt and Zhou ’06)

Proposed Routing: Route to Faster Servers First (FSF).

Potential Problem: Preemption may lead to excessive idling of fast servers.

Proposition (Optimal Preemptive Routing): FSFP is optimal in the

sense that it stochastically minimizes the cumulative number of abandoning

customers.

Proposition (Asymptotically Optimal Routing): FSF is asymptotically

optimal in the sense that in the limit FSF and FSFP have the same

performance. (Proof: State-space collapse - Faster servers are always busy).
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Asymptotically Optimal Staffing

N1

N2 μ1N1+ μ2N2 ≥ λ+δ√λ

C(N1,N2)=const
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Asymptotically Optimal Staffing: Example

Problem:

Minimize C1N
p
1 + C2N

p
2 + ... + CKNp

K , p > 1

Subject to
√

λP{ab} ≤ ∆.

Solution:

Minimize C1N
p
1 + C2N

p
2 + ... + CKNp

K , p > 1

Subject to µ1N1 + µ2N2 + ...µKNK ≥ λ + δ
√

λ.

To get: Nk

Nj
=

(
µk/Ck

µj/Cj

)
. (Note: N1/N > 0!!!)
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Outperforming the Homogeneous Server System

Consider an M/M/N + M system with µ =
∑K

k=1 qkµk . Then
√

λP{ab} ≤ ∆ if and only if:

µN ≥ λ + β
√

µ
√

λ.

Compared to:

µ1N1 + µ2N2 + ... + µKNK ≥ λ + β
√

µ1

√
λ.
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Conclusions

I Simple Solution to a Difficult Problem:

I Separation of Staffing and Control.

I Square-root Safety Staffing is asymptotically optimal.

I Linear boundary for feasible region.

I FSF is asymptotically optimal (although not exactly optimal)

I Preemptive and non-preemptive policies are asymptotically equivalent

(General result: Atar ‘03)

I Asymptotic cost minimization made simple - easy to include other

constraints.

I The inverted-V system outperforms its homogeneous server

counterpart.
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