
Forecasting Demand for a Telephone

Call Center: Analysis of Desired versus

Attainable Precision

Reasearch Thesis

Submitted in Partial Fullfillment of the

Requirements for the Degree of

Master of Science in Statistics

Sivan Aldor-Noiman

Submitted to the Senate of the

Technion - Israel Institute of Technology

TAMUZ, 5766 – HAIFA – JULY, 2006





Acknowledgments

The Research Thesis was written under the supervision of Professor Paul

Feigin in the Faculty of Industrial Engineering and Management. I would

like to express my deep gratitude for the countless hours we have worked

together. I feel privileged to have learned from this brilliant statistician and

more importantly this dedicated advisor. His desire to teach and to con-

tinue learning made this research both challenging and at the same time a

fascinating experience. This research could not have been completed with-

out his open-door policy and is everlasting patience; and for that I am truly

grateful.

The Research Thesis was also written under the co-supervision of Pro-

fessor Avishai Mandelbaum in the Faculty of Industrial Engineering and

Management. I would like to thank him for giving me a different pre-

spective on things. The knowledge I gained during our work together is

priceless. I thank him for the time and effort he so willingly contributed to

this research.

Also I would like to thank my family for supporting and encouraging me

to attain my goals.

Finally, the generous financial help of the Technion Graduate School is

gratefully acknowledged.





Contents

List of Tables vii

List of Figures x

Abstract 1

List of Symbols 3

List of Acronyms 5

1 Introduction 6

2 Literature Review 10

3 The Data 13

3.1 The Israeli Cellular Phone Company Data. . . . . . . . . . . . . . . . . 13

3.2 The US Bank data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 Evaluation of Models 22

4.1 Prediction Accuracy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.2 Goodness of Fit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5 Prediction Models 25

5.1 Gaussian Mixed Model for Arrival Counts. . . . . . . . . . . . . . . . . 25

5.1.1 Definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.1.2 Estimation Method. . . . . . . . . . . . . . . . . . . . . . . . . 27

5.1.3 Prediction Method. . . . . . . . . . . . . . . . . . . . . . . . . 28

5.1.4 Goodness of Fit. . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.1.5 Benchmark Models. . . . . . . . . . . . . . . . . . . . . . . . . 30

v



5.1.6 Theoretical versus Practical models. . . . . . . . . . . . . . . . 31

5.2 Gaussian Bayesian Model for Arrival Counts. . . . . . . . . . . . . . . 32

5.2.1 Definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.2.2 Estimation and Prediction. . . . . . . . . . . . . . . . . . . . . 34

5.3 Poisson Bayesian Model for Arrival Counts. . . . . . . . . . . . . . . . 34

5.3.1 Definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.3.2 Estimation and Prediction. . . . . . . . . . . . . . . . . . . . . 36

5.4 Regression Model for Service Times. . . . . . . . . . . . . . . . . . . . 37

6 Mixed Model — Determining Fixed Effects and Covariance Structure 38

6.1 Analysis of Practical Models. . . . . . . . . . . . . . . . . . . . . . . . 38

6.2 Israeli Cellular Company. . . . . . . . . . . . . . . . . . . . . . . . . . 40

6.2.1 Preliminary Analysis of Billing Cycles. . . . . . . . . . . . . . 40

6.2.2 Fixed Effects Selection. . . . . . . . . . . . . . . . . . . . . . . 44

6.2.3 Determining the Covariance Structure — Random Effects. . . . 50

6.3 US Bank. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54

6.3.1 Determining Fixed Effects and Covariance Structure. . . . . . . 54

7 Results of Prediction 56

7.1 Israeli Cellular Phone Company. . . . . . . . . . . . . . . . . . . . . . 56

7.1.1 Mixed Model Analysis. . . . . . . . . . . . . . . . . . . . . . . 56

7.1.2 Comparison between the Poisson Bayesian Model and the Mixed

Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

7.2 US Bank. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .82

7.2.1 Comparison between the Gaussian Bayesian Model and the Mixed

Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

8 Conclusions and Future Research 87

A Analysis of Interval Resolution 90

B Computer Code for Two Models 93

B.1 Mixed Model – SAS Code. . . . . . . . . . . . . . . . . . . . . . . . . 93

B.2 Poisson Bayesian Model - OpenBugs Code. . . . . . . . . . . . . . . . 93

Bibliography 96

vi



List of Tables

3.1 Israeli Holidays 2004. . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 Israeli cellular phone company irregular days during 2004. . . . . . . . 17

3.3 The Private queue customer distribution over billing cycles (ISCellular).. 19

6.1 Analysis of practical models – RMSE results (ILCellular).. . . . . . . . 39

6.2 Analysis of practical models – APE results (ILCellular).. . . . . . . . . 39

6.3 Analysis of practical models – Coverage probabilities results (ILCellular).39

6.4 Analysis of practical models – Confidence interval widths (ILCellular).. 40

6.5 Analysis of parameter estimates for the Poisson Log-Linear model (IL-

Cellular). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42

6.6 The Poisson Log-Linear model likelihood-ratio comparison (ILCellular).. 43

6.7 Log-Linear models contrasts analyses (ILCellular).. . . . . . . . . . . . 45

6.8 RMSE results for the four fixed effects models and the benchmark models

(ISCellular). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.9 APE results for the four fixed effects models and the benchmark models

(ISCellular). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.10 Coverage probabilities for the four fixed effects models and the bench-

mark models (ISCellular). . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.11 Confidence interval widths for the four fixed effects models and the bench-

mark models (ISCellular). . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.12 ANOVA Results of Monday through Thursday effects for each period

(ISCellular). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.13 Comparing models with different numbers of weekday patterns – results

for RMSE (ISCellular). . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.14 Comparing models with different numbers of weekday patterns – results

for APE (ISCellular). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

vii



6.15 Comparing models with different numbers of weekday patterns – results

for coverage probability (ISCellular).. . . . . . . . . . . . . . . . . . . . 49

6.16 Comparing models with different numbers of weekday patterns – results

for width (ISellular). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.17 Different within-day errors covariance structure – RMSE results (ISCel-

lular). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51

6.18 Different within-day errors covariance structure – APE results (ISCellular).51

6.19 Different within-day errors covariance structure comparison – coverage

results (ISCellular) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.20 Different within-day errors covariance structure – width results (ISCellular)51

6.21 Testing the influence of the daily random effect – RMSE results (ISCellular).52

6.22 Testing the influence of the daily random effect – APE results (ISCellular).53

6.23 Testing the influence of the daily random effect – coverage results (ISCel-

lular). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53

6.24 Testing the influence of the daily random effect – width results (ISCellular).53

7.1 The estimated variance ofε using the ARMA(1,1) as the between-period

covariance structure (ILCellular). . . . . . . . . . . . . . . . . . . . . . 58

7.2 The estimated variance ofε using an AR(1) as the between-period covari-

ance structure (ILCellular). . . . . . . . . . . . . . . . . . . . . . . . . 59

7.3 The average service times models comparison (ILCellular).. . . . . . . . 62

7.4 The naive model linear regression estimators (ILCellular).. . . . . . . . 72

7.5 The naive, benchmark and mixed model linear regression estimators (IL-

Cellular). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75

7.6 One-day-ahead benchmark and mixed models — linear regression esti-

mators (ISCellular).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

7.7 The mixed-model results with 4 weeks of learning data (USBank).. . . . 83

7.8 Comparing the mixed-model coverage probability and width using Sat-

terthwaite approximation versus the containment method to calculate the

degrees of freedom (USBank).. . . . . . . . . . . . . . . . . . . . . . . 84

7.9 Comparing different models using RMSE and APE performance mea-

sures (USBank).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7.10 Comparing different models Coverage and Width performances (USBank).86

viii



A.1 Prediction accuracy as a function of interval resolution – RMSE results

(ISCellular). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

A.2 Prediction accuracy comparison as a function of interval resolution – APE

results (ISCellular).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

ix



List of Figures

3.1 Daily arrivals to the Private queue during 2004 (ISCellular).. . . . . . . 15

3.2 Normalized intra-day arrival patterns (ISCellular).. . . . . . . . . . . . . 18

3.3 Scaled weekdays intra-day arrival patterns (ISCellular).. . . . . . . . . . 19

3.4 Normalized intra-day arrival patterns (USBank).. . . . . . . . . . . . . . 21

6.1 P-values QQ-plot for the ANOVA by periods (USBank).. . . . . . . . . 55

7.1 The mixed model residuals QQ plot (ILCellular).. . . . . . . . . . . . . 57

7.2 The average RMSE and APE versus the prediction lead time (ILCellular).61

7.3 The average service pattern for typical weekdays as a function of period

(ILCellular). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

7.4 The average estimated∆β as a function of period (ILCellular).. . . . . . 66

7.5 Boxplots of∆β for the different periods (ILCellular).. . . . . . . . . . . 67

7.6 The average estimated∆ QED as a function of period (ILCellular).. . . . 69

7.7 The average estimated∆ QED versus periods between 8:30 and 23:30

(ILCellular). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

7.8 Plot of the log RMSE versus the log mean arrival value based on the naive

predictor (ILCellular).. . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

7.9 For each period, a plot of the log RMSE versus the log mean arrival value

based on the naive predictor, the first benchmark model and the mixed-

model (ILCellular). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

7.10 For high arrival mean periods, a plot of the log RMSE versus the log mean

arrival value based on the naive predictor, the first benchmark model and

the mixed-model (ILCellular). . . . . . . . . . . . . . . . . . . . . . . . 74

x



7.11 For each period, a plot of the log RMSE versus the log mean arrival

value based on the naive model, the benchmark model ten-day-ahead,

the benchmark model one-day-ahead, the three-pattern mixed model ten-

day-ahead and the three-pattern mixed model one-day-ahead (ISCellular).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .76

7.12 For high arrival mean periods, a plot of the log RMSE versus the log

mean arrival value based on the naive model, the benchmark model ten-

day-ahead, the benchmark model one-day-ahead, the three-pattern mixed

model ten-day-ahead and the three-pattern mixed model one-day-ahead

(ISCellular). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

7.13 The Poisson Bayesian model predicted periods (ISCellular).. . . . . . . 79

7.14 Comparison between the Poisson Bayesian model and the mixed-model

predictions results (ISCellular).. . . . . . . . . . . . . . . . . . . . . . . 80

7.15 Comparison between the Poisson Bayesian model and the mixed-model

prediction intervals (ISCellular).. . . . . . . . . . . . . . . . . . . . . . 81

7.16 The mixed model residuals QQ plot (Bank).. . . . . . . . . . . . . . . . 82

xi



Abstract

Today’s call centers managers face multiple operational decision making tasks. One of

their most common chores is determining the weekly staffing levels to ensure customer

satisfaction and needs while minimizing service costs. An initial step for producing the

weekly schedule is forecasting the future system loads comprising both the predicted

arrival counts and the average service times.

After obtaining the forecasted system load, in large call centers, a manager can implement

the QED (Quality-Efficiency Driven) regime “square-root staffing” rule to allow balanc-

ing between the offered load per server and quality of service. Implementing this staffing

rule requires that the forecasted values maintain certain levels of precision. One of the

aims of this thesis is to determine whether or not these levels can be achieved by practical

algorithms.

In this thesis we introduce two arrival count models which are based on amixedPoisson

process approach. The first model uses the Normal-Poisson stabilization transformation

in order to employ linear mixed model techniques. The model is implemented and ana-

lyzed on two different data sets. In one of the call centers the data include billing cycles

information and we also demonstrate how to incorporate it as exogenous variables in this

model. We develop different goodness-of-fit criteria that help determine the models per-

formance under the QED regime. These show that during most hours of the day the model

can reach the desired precision levels. Actually, whenever the QED regime and square

root staffing formula are appropriate, the model performs well. We also demonstrate the

effect the forecasting lead time (that is, the time between the last learning data and the

first forecasted time) has on this model precision.

We also demonstrate how our mixed model can achieve very similar levels of precision

when compared to other models, such as the Bayesian model developed by Weinberget

al. in [22]. This similarity holds even though our model’s predictions are based on smaller

amounts of learning data.
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Our second model employs the Bayesian approach, implementing Gibbs sampling tech-

niques, and using ‘OpenBugs’ software, to produce the predictive distributions for the

future arrival counts. Due to computational limitations we only show a ‘proof of concept’

for this model by applying it to predicting a single day’s arrivals and comparing it to the

mixed model results.

We also develop a fairly simple quadratic regression model to predict the average service

times needed for producing the future system loads.
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List of Symbols

The following table summaries all the symbols appearing in this thesis. Some of the

symbols have different meanings in different sections of the thesis. Next to these symbols,

the section numbers and a brief definition. Symbols that do not have a section number

indicated next to them are general symbols used throughout the thesis. Symbols which

have several section numbers indicated have different meanings in those sections.

Symbol Section Definition

∼ - distributed as (for example,X ∼ Poisson(λ)

means thatX is a random variable that is Poisson

distributed with parameterλ)

≈ - an ≈ bn if an/bn → 1, asn →∞
[̂] - an estimate (for example,̂θ is the estimated value forθ)

εdk - inherent error term related to thekth period of dayd

λdk the arrival rate during thekth period of dayd

λd is the arrival rate during dayd

µdk - the service rate during thekth period of dayd

ρ - correlation parameter

cov - covariance

E - Expectation

n - number of observations

Ndk - the arrival count during thekth period of dayd

Nd - the number of arrival counts during dayd

S - the number of agents

Var orσ2 - Variance

ydk - =
√

Ndk + 0.25

qd - the day of the week corresponding to dayd

αq 5.1 the day-of-week fixed effect for theqth weekday
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Symbol Section Definition

5.3 is the vector of prior parameters for the (discrete) Dirichlet distribution

5.2 the intercept forqth weekday

β 5.1 the fixed-effects coefficient vector

5.2 the auto-regressive coefficient

7 the QED staffing policies coefficient

βd 5.1 the billing cycles effects during dayd

ηdk 5.1 the within-day (period) error term during thekth period of dayd

θdk 5.1 the expected value ofydk during thekth period of dayd

µq 5.3 theqth weekday mean value

υq 5.3 is the averagedqth weekday mean value according to the learning data

πq 5.3 the mean proportion vector for the discrete

Dirichlet distribution for theqth weekday.

Bj
i 6.2.1 indicates whether cycle j’s billing period falls on the ith day

Dj
i 6.2.1 indicates whether cycle j’s delivery period falls on theith day

gqd
5.2 =

√
Rqd

Gd 5.3 dayd deviation from its corresponding weekday average

Mq 5.3 a variable which governs the variability of

the Dirichlet distribution about its meanαq

pq,k 5.1 the fixed (interaction) effect for periodk of theqth weekday

pq 5.3 the vector of daily volume proportions on the

qth weekday for theK periods

Rqd
(tk) 5.2 the proportion of daily volume on the

qth weekday for thekth period

vd 5.2 represents the daily volume during dayd

Vd 5.1 the random daily volume effect during dayd

Wq 6.2.1 theqth weekday effect

xd 5.2 =
√

vd

zqd
5.2 ={gqd

(tk), dgqd
(tk)/dtk}
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Chapter 1

Introduction

Many companies today invest large amounts of resources in order to provide full customer

service, with much or all of the customer interaction based on telephone or internet ac-

cess. Contact and Call centers provide a direct contact point between companies and their

customers, thus making them especially important in the battle for market share. These

contact points accumulate large amounts of data that can later be analyzed and utilized

for short term operational decisions, medium term managerial decisions or for long term

tactical, strategic decisions.

The manager of a call center faces the classical scheduling problem of determining the

number of service agents that offers the best trade-off between maintaining high service

levels and low operating costs. Forecasting higher call loads than will actually be realized

will cause overstaffing, leading to unnecessary costs. On the other hand, forecasting a

lower number of incoming calls may result in long periods of waiting and high abandon-

ment rates, which eventually could lead to a loss of customers and revenues. Therefore,

modelling the load arrival process is the first and basic step of the scheduling problem.

Forecasting the system load requires the knowledge of two components: the arrival pro-

cess and the service time distribution.

With the help of recent advances, we now understand how to choose appropriate staffing

levels, given sufficiently accurate predictions of the load, in order to balance service

quality and efficiency. This leads one to the so-called QED (Quality-Efficiency Driven)

regime. The basic concepts of this regime have been developed in both the M/M/N queue,

usually referred to as Erlang-C, and in the M/M/N+M queue, usually referred to as Erlang-

A. (The latter notation denotes an M/M/N queue with customers whose patience has an

exponential distribution.) The approach is relevant when there is a high customer arrival

6



rate per unit time (λ), the service rate of customers served per unit time per agent (µ) is

fixed and the number of agents (S) is a function of the offered load (R = λ/µ). For main-

taining high service levels while preserving high offered load per server (ρ = R/S), the

QED regime prescribes that, for some constantβ, the number of scheduled agents should

equalS = R + β · √R (β is positive for Erlang-C and can take either sign, as well as

being zero, for Erlang-A). We call this prescription “square-root staffing”.

Following square-root staffing, the requirements for prediction accuracy in the QED regime

is that the estimated̂λ (arrival rate) must not exceed a square-root deviation from the real

arrival rate. Otherwise the QED rule will not be effective since, with a larger error, it will

either grossly over- or under-estimate the needed number of agents.

One of the questions that we consider in this thesis is whether in real systems, one can

achieve the prediction accuracy required in order to operate in the QED regime. For an

extensive review on call centers and the QED regime one can refer to [8]. A detailed bib-

liography detailing further literature on this subject and other call centers related papers

is described by Mandelbaum in [12].

In recent years, several different modelling techniques have been suggested as alternatives

for forecasting the arrival process. These alternatives range from classical ARMA (see

[23]) to complex Bayesian models (see for example [22]).

In this thesis we introduce two arrival count models which are based on amixedPoisson

process approach. This approach stipulates that the arrival counts follow a Poisson distri-

bution and that the arrival rate,λ, is itself a stochastic process. The additional variability

created by the arrival rate creates a mechanism that can account for the well knownover-

dipersionphenomena often encountered in call center arrival counts data. Moreover, this

approach also allows for introducing correlations between different time intervals.

In the first model we use Gaussian linear mixed model formulations to describe a suit-

ably transformed version of the arrival process. Mixed model techniques allow us the

much needed flexibility to describe different seasonality effects using correlation struc-

tures. Motivated by an Israeli cellular phone company forecast procedure, we evaluate

our model’s results using six weeks of past data as the learning data and producing a

ten-day-ahead weekly forecast for each week.

As previously mentioned, the scheduling problem requires the system load prediction

which means that forecasts for the service rate should also be provided (in addition to

the arrival process predictions). We introduce a simple average service time forecasting

model based on the weekday and different daily period effects. Based on the results

7



of both the mixed arrival process model and the average service time predictions, we

introduce a new measure to evaluate these load predictions. This measure directly reflects

the extent to which the system’s operational quality and efficiency goals are achieved

when using the forecasts.

The mixed model results are also compared to results for a similar Bayesian model pre-

sented in [22] and applied to data from a US Bank.

Our second model employs Bayesian techniques to produce the arrival count predictions.

By employing Gibbs sampling techniques, we produce the forecast distributions for the

arrival counts. Due to computational limitations we only show a ’proof of concept’ for this

model by applying it to predicting a single day’s arrivals. Further work on this approach

is required in order to make it a computationally practical alternative.

The mixed model developed in this paper is relatively simple to implement using standard

softwares such as SASr. From a practical prospective, the model is very flexible and can

be adapted to different period lengths (orresolutions) as well as various lead times (the

time between the last learning data and the first forecasted time). This model provides

good precision when compared to similar models. From a managerial prospective, we

also conclude that the lead time has a significant effect on prediction precision: generally,

shorter lead times are better. Hence, we advise a two stage weekly forecasting process

where, except for the first day of the week, a one-day-ahead forecast is used to update

subsequent forecasts.

As for the question of obtaining the desired level of the QED regime precision for load

predictions, we conclude that during most of the day these levels can be maintained.

During early morning hours, the algorithm precision is insufficient. However, this fact

makes sense since the QED regime staffing rule is also inadequate during these hours.

The outline of this thesis is as follows. In Chapter2 we review past and recent studies

that have been conducted on call center arrival processes. In Chapter3 we describe two

different sources of call center data that are later used to illustrate our methodologies. In

Chapter4 we describe performance measures for comparing different forecast methods.

Chapter5 describes three different arrival counts prediction models. We describe both

our mixed model and our Bayesian model in sections5.1and5.3, respectively. The third

model, briefly described in Section5.2, was developed by Weinberg, Brown and Stroud

and is more fully described in [22]. An additional model, considered in Section5.4, is the

average service time forecasting model.

In Chapter6, for the arrival process mixed models, we explain the comprehensive process

8



of determining the fixed and random effects for the two different data sets. Comparisons

between the different models and analyses of their results are discussed in Chapter7.

Conclusions are presented in Chapter8.

9



Chapter 2

Literature Review

In recent years, several documented studies of the incoming call arrival process have

been conducted and tested thanks to technology advances in the call center industry.

Earlier studies focused on classical Box and Jenkins, Auto-Regressive-Moving-Average

(ARMA) models such as the Fedex company study [23]. A well-known study, also em-

ploying Auto-Regressive-Integrated-Moving-Average (ARIMA) models techniques, was

carried out by B.Andrews and S.Cunningham (see [1]) to produce L.L.Beans call center

daily forecasts. The study focuses on modelling two different arrival queues each with its

own characteristics. Their models incorporated exogenous variables along-side the MA

(Moving Average) and AR (Auto-Regressive) variables, using transfer functions to help

predict outliers such as holidays and special sales promotion periods.

A slightly different approach was described in an article published by Antipov and Meade

[2]. In this article the authors tackle the problem of including advertising response and

special calender effects by adding these variables in a multiplicative manner.

A more recent study was carried out by Taylor [18]. In this study several different time

series models were investigated on two different sources of data. Among these models

were: seasonal ARMA models; exponential smoothing for double seasonality methods;

and dynamic harmonic regression. His results indicated that for short term forecasting

horizons, the exponential smoothing for double seasonality method performs quite well

but for practical horizons (longer than one day) a very basic averaging model outperforms

all of the suggested alternatives. One of the author’s conclusions is that a more useful

picture could be obtained if both the prediction interval, defined in a previous article (see

[6]) by Chatfield, and the predictions density would be incorporated together with the

point estimates. In this study we follow the author’s suggestions as we are particulary

10



interested in the precision of our estimates with respect to implementing the “square-root

staffing” rule.

Recent empirical work has revealed several important characteristics that underly the ar-

rival process:

1. the arrival rate changes over the course of a day;

2. the arrival counts exhibit a common phenomena calledover-dispersion. Over-

dispersion means that the call volume data sometimes show a variance that sub-

stantially dominates the mean value, contradicting the assumption that the data is

generated by a simple Poisson distribution. A mechanism that accounts for this

phenomena was suggested by Jongbloed and Koole in [9]. They proposed the Pois-

son mixture model which incorporates a stochastic arrival rate process to generate

the additional variability;

3. there is a significant dependency between arrival counts on successive days. In [5]

Brown et al. suggest an arrival forecasting model which incorporates a random

daily variable that has an autoregressive structure to explain the intra-day correla-

tions;

4. successive periods within the same day exhibit strong correlations. This correlation

was empirically analyzed in an article by Avramidiset al. (see [3]).

In the latter article three models were suggested that take account of these correlations.

The first two are different versions of the mixed Poisson model: (a) the first assumes

that the arrival rate has the following formΛ(t) = W · f(t) whereW ∼ Gamma(γ, 1).

Heref(t) characterizes the time variation of the arrival rate over a day (yielding a neg-

ative multinomial distribution of the arrival count vector); (b) the second assumes that

the arrival counts vector has a compound negative multinomial distribution, which gen-

eralizes the negative multinomial distribution by allowing the parameters to be randomly

distributed according to a Dirichlet distribution. The third model assumes a more general

structure in that the daily volume,Y , is randomly distributed according to a general distri-

butionG. It incorporates a vector,Q, of the proportions of daily demand allocated to the

differentK periods. It assumes thatQ is independent ofY and is distributed according to

a Dirichlet distribution. The vector of observed arrival counts,X, is obtained by rounding

up each element of the product ofY andQ. However, in this article the authors do not

tackle the intra-daily correlations presented in3.
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In recent years technology has allowed researchers to employ advanced Bayesian tech-

niques to this type of forecasting problem. These techniques include Markov Chain Monte

Carlo sampling mechanisms such as the Gibbs sampling algorithm. These algorithms

produce the forecasted arrival rate and the arrival counts distributions and so give more

information then just the point estimates.

An example of such a study was conducted by Soyer and Tarimcilar [16]. In the article the

authors analyzed the effect of marketing strategies on call arrivals. Their Bayesian anal-

ysis is based on the Poisson distribution of arrivals over (possibly varying) time periods

measured in days, with cumulative rate function of the form:

Λi(t) = Λ0(t) exp(β′Zi) (2.1)

wherei denotes an advertising campaign, with its covariate vectorZi, and

Λ0(t) = γtα . (2.2)

The parameters(α, γ, β) are given a prior distribution, and the posterior distribution of

these parameters is then discussed. In a random effect or mixed model approach, they

allow γ to have a random component by modelling:

log(γ) = θ + φi (2.3)

where theφi are iid N(0, 1/τ), and the precisionτ has a Gamma prior. By considering the

DIC statistic, they conclude that the random effects model fits much better than the fixed

effects model and conclude that the data cannot be adequately described by assuming a

model that explains arrivals solely using theZi information without some additional ran-

dom variability. The mixture model also provides the within advertisement correlations

over different time periods.

Another interesting paper, modelling incoming call arrivals to the US Bank call center

used here, also employing Bayesian techniques, was written by Weinberget al. [22]. In

this paper the authors use the Normal-Poisson stabilization transformation to transform

the Poisson arrival counts to normal variables. The normally transformed observations

allowed them the necessary flexibility to incorporate conjugate multivariate normal priors

with a wide variety of covariance structures. The authors provide a detailed description

of both the one-day-ahead forecast and within-day learning algorithms. Both algorithms

use Gibbs sampling techniques and Metropolis-Hastings steps to sample from the forecast

distributions. The model and its results will be further discussed in sections5.2and7.2.1

of this thesis.
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Chapter 3

The Data

Our datasets originated from an ongoing basic research project called Data-MOCCA

(Data MOdel for Call Center Analysis), conducted by the Technion’s Statistics Labo-

ratory.(For more information on the Data-MOCCA project see [21].) Data-MOCCA’s

databases contain detailed call-by-call histories obtained from several different call cen-

ters. This study will focus on data from two different call centers belonging to: an Israeli

cellular phone company; and a North American commercial bank. The next two sections

describe these databases.

3.1 The Israeli Cellular Phone Company Data

The Technion’s collaboration with the cellular company, that began at the end of 2003, is

providing a monthly updated database which preserves call histories dating from January

2004.

The call center handles calls from several main queues: Private clients; Business clients;

Technical Support problems; Foreign languages queues; and a few minor queues. In gen-

eral, queues are operated by different service provider groups. Almost30% of incoming

calls enter the Private customers queue which is operated by a dedicated team of 150 tele-

phone agents. The load generated from each of the remaining queues is much smaller (for

example, the second largest queue is the Business queue and it generates 18% of the over-

all incoming load). Hence, we shall limit our discussion to modelling the Private queue

(and bear in mind that our model techniques can be applied to the other queues as well).

The Private queue’s call center operates six days a week, closing only on Saturdays and

Jewish holidays. On regular weekdays, operating hours are between 7AM and 11PM and

13



on Fridays it closes earlier, at around 4PM.

We divide each day into half-hour intervals. There are two alternative justifications for

choosing a half-hour analysis resolution: (a) currently shifts scheduling is carried out at

this resolution; and (b) from a computational complexity point of view taking shorter

intervals significantly increases the computing time for many models and may make their

implementation completely impractical. Another justification comes from analyzing our

mixed model (detailed later on) behavior under different resolutions, where the half-hour

resolution exhibits “good enough” behavior. This analysis is fully detailed in Appendix

A. Consequently, we consider for each day 33 half-hourly arrival intervals between 7AM

and 11:30PM.

Note that if the arrival rate wasveryinhomogeneous during a particular half-hour interval,

then using the average arrival rate could lead to under-staffing. Specifically, the staff level

assigned to meet the average load would not be able to cope with the peak load in that

particular half-hour interval. We do basically assume in the sequel that the within interval

inhomogeneity is mild.

The learning stage of the model is based on the arrivals between mid-February, 2004 and

December 31, 2004.

Figure3.1demonstrates the weekly pattern which occurs between April, 2004 and Septem-

ber, 2004. By examining the above graph one can reach several conclusions: Sundays and

Mondays have the highest arrival counts; the number of arrivals gradually decreases over

the week until it reaches its lowest point on Fridays; there are quite a few outliers which

occur in April.

Examination of outlying observations singles out twenty-two days with strange arrival

counts. Among these days were the holidays listed in Table3.1, which exhibit different

daily patterns and unusual daily volumes when compared to similar regular weekdays.

The additional five days that were assigned to the set of outliers are detailed in Table3.2.

As mentioned earlier, April 2004 has an unusual weekly pattern. Out of the list of twenty-

two outliers, nine occur in April which explains the peculiar pattern that we saw in Figure

3.1. Among these nine outliers is the Passover holiday, Memorial day and Independence

day. During these holidays there was a lower arrival counts than on similar non-holiday

weekdays. Another event that took place on April is the country-wide change in the first

three cellular digits. During that day and the previous day there was a significant increase

in the arrival counts to the cellular company’s call center.

In conclusion, the outlying days were excluded from the learning stage of our model but
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Figure 3.1:Daily arrivals to the Private queue between April 1st, 2004 and September

1st, 2004 including holidays.

kept for later evaluation purposes.

Study of intra-day arrival patterns for the regular days reveals some interesting character-

istics.

• The weekdays, Monday through Thursday have a similar pattern. Figure3.3 illus-

trates the last fact by depicting thenormalizedweekday patterns — each half-hour

is divided by the mean half-hour arrival rate for that day, and the normalized values

for corresponding weekdays are averaged. There are two major peaks during the

day: one at around 2PM and the higher one at around 7PM. The higher peak occurs

probably due to the fact that people finish working at around this hour and so are

free to phone the call center. From 7PM there is a gradual decrease (except for a

small increase at around 9PM).
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Holiday Name Date Day of week

First Passover Eve 04/05/2004 Monday

First day of Passover 04/06/2004 Tuesday

Last Eve of Passover 04/11/2004 Sunday

Last day of Passover 04/12/2004 Monday

Memorial (day’s) eve 04/25/2004 Sunday

Memorial day 04/26/2004 Monday

Independence day 04/27/2004 Tuesday

Eve of Feast of Weeks 05/25/2004 Tuesday

Feast of Weeks 05/26/2004 Wednesday

New Year’s eve 09/15/2004 Wednesday

New Year’s day 09/16/2004 Thursday

The Second day of New Year09/17/2004 Friday

Yom Kippur’s eve 09/24/2004 Friday

Eve of Feast of Tabernacles09/29/2004 Wednesday

Feast of Tabernacles 09/30/2004 Thursday

Sixth day of Tabernacles 10/06/2004 Wednesday

Simchat Torah 10/07/2004 Thursday

Table 3.1:Holidays — this list contains all the holidays

16



Irregular Date Day of week Event Description

03/01/04 Wednesday An unexplained irregular day.

04/19/04 Monday A day before a country-wide change in the first three cellular digits.

04/20/04 Tuesday The day of a country-wide change in the first three cellular digits.

08/22/04 Sunday An unexplained irregular day.

10/03/04 Sunday The third day of Tabernacles which comes after a long weekend.

Table 3.2:Irregular days, 2004

• Fridays have a completely different pattern from the rest of the weekdays. This can

be seen in Figure3.2. For each day of the week, the 33 arrivals were smoothed

using the default smoothing method in R statistical analysis software [19]. Because

Friday is a half work day for most people in Israel it is very reasonable for its daily

pattern to differ from the rest of the weekdays.

• Sunday’s pattern also differs from the rest of the weekdays. Figure3.3exhibits how

Sunday has an earlier increase than the other weekdays (Monday through Thurs-

day), possibly as a result of customers who were not able able to contact the call

center on the weekend (Saturday).

The cellular company’s major complaint regarding their current forecasting algorithm is

that it does not incorporate billing cycles effects. Their own experience leads them to be-

lieve that on billing days the number of incoming calls is higher than on non-billing days.

There are six billing cycles each month. Customers are assigned to one of the cycles when

they purchase a service contract. Table3.3summarizes the distribution of the billing cy-

cles among the Private queue customers. From these results it is clear that cycles 10 and

17 are negligible. These two billing cycles main customers are the company’s employees

which can account for these results. Hence, we focus our attention on the remaining four

cycles.

Each billing cycle is defined according to two periods: the delivery period — prior to

the bank billing day, each customer receives a letter detailing his cellular expenses; the

billing period — the day on which the customer’s bank account will be debited. The

delivery period extends over two working days (depending solely on the Israeli postal

services). The billing period usually covers only one day. There is usually a full week

between the delivery period and the billing period but this can vary due to weekends and

17



Scaled Intra−day arrival patterns

periods

S
ca

le
d 

A
rr

iv
al

s

0 5 10 15 20 25 30

0.
5

1.
0

1.
5

Sun Mon Tue Wed Thu Fri

Figure 3.2:Normalized intra-day arrival patterns

holidays. We decided therefore to describeeachcycle using two indicators: a delivery

indicator - marking the two working days of the delivery period; and a billing indicator -

marking the first and second day of the billing period and zero otherwise. By describing

each cycle using two indicators we actually differentiate between the influence of the

actual billing date and that of the delivery of the bill. According to the cellular company’s

past experience, the different queues are affected by different periods. For example, the

Private queue is strongly affected by the delivery periods and not so much by the billing

periods. On the other hand, the Finance queue is strongly affected by the billing periods

and less by the delivery periods. Section6.2.1demonstrates how we examined which

indicators are significant for the Private queue’s arrival process.
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Figure 3.3:Scaled weekdays intra-day arrival patterns

Billing Cycle name Proportion of Customers

1 0.31

7 0.27

10 0.00

14 0.26

17 0.00

21 0.16

Table 3.3:The Private queue customer distribution over billing cycles.
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3.2 The US Bank data

DataMOCCA preserves all call-by-call data originating from the US Bank during 2002-

2003. This call center is very large and handles approximately 300,000 calls each day.

It has a voice response unit (VRU) which greets each call upon entrance. Only20% of

entering calls advance to be handled by a human service provider. Since this call center

also provides various types of services, we focus on the largest queue which is the Retail

service. The calls entering this queue account for approximately68% of all the incoming

calls which require human-agent services. Our research database contains calls arriving

between March 3 and October 24, 2003.

Since one of our goals is to compare our model with the results of the model described

in [22] we generated the same database. This means that we concentrate our attention

on calls generated during weekdays between 7AM and 9:05PM (the most active periods

of the call center). Each day is divided into 169 five-minutes intervals. We assume that

during each interval the arrival rate remains relatively constant. We point out here that

we do not think that this high resolution is required for practical scheduling purposes.

Currently, five minute intervals are both impractical from a managerial point of view and

also the computations are time consuming.

Between March 3 and October 24 there are only four holidays: 1. May 26 Memorial Day;

2. Jul 4 Independence Day; 3. Sep 1 Labor Day; 4. Oct 13 Columbus Day. We removed

these days from our database since they exhibit irregular patterns and daily volumes,

compared to similar weekdays. In the previously mentioned article the authors indicate

that the day after Labor day depicts an unusual pattern. This day is a Tuesday but because

it has a similar pattern to a Monday and a peculiar high volume they have decided to

model it as a Monday. Following this same reasoning, we identified another abnormal

Tuesday which takes place a day after Columbus day. We modelled both these days as

Mondays.

Studying the daily weekday patterns two interesting characteristics appear.

• The weekdays, Tuesday through Thursday have a similar pattern. Figure3.4 il-

lustrates the last fact by depicting thenormalizedweekday patterns — each five-

minute interval is divided by the mean five-minute arrival rate for that day, and the

normalized values for corresponding weekdays are averaged. There is a major peak

during the morning hours followed by a slow decrease until 5PM. Afterwards we

see a sharper decrease in the patterns.
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• Fridays and Mondays have patterns that differ from the rest of the weekdays. Mon-

day has a lower starting point compared to the rest of the weekdays. One expla-

nation can be that Monday is the first working day of the week and so customers

begin their day later. Friday has a lower tail, as also observed in Figure3.4. This

fact may not be surprising because people want to finish their business before the

weekend (Saturdays and Sundays).
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Figure 3.4:The US bank normalized intra-day arrival patterns
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Chapter 4

Evaluation of Models

The Israeli cellular company utilizes the arrivals forecast for determining its call centers

weekly staffing schedules. Each Thursday, using the past six weeks data as the learning

data, it predicts the week starting ten-days ahead. We will refer to this forecasting strat-

egy as the ten-day-ahead weekly predictions. Accordingly, we define three periods: the

learning period; the prediction lead time which is the duration between the last learning

day and the first predicted day; and the forecast period.

In the Israeli Cellular data we implement the same strategy as the company, i.e. we predict

the arrivals to the Private queue for each week between April 11, 2004 and December

25, 2004 (37 weeks which areD = 37 · 6 = 222 days). The forecasting procedure is

carried out 37 times since there are 37 weeks. For each of the 6 weekdays, we predict

the arrivals for theK = 33 half-hour intervals between 7AM and 11:30PM using six

weeks of learning data and a lead time of ten days. All together we have a total ofn =

37 · 6 · 33 = 7326 predicted values. Excluding the 19 irregular days (which occur during

the mentioned period) we evaluate the results using a total of 203 days or203 · 33 = 6699

observations.

In the US Bank data we take a slightly different approach. Emulating the same procedure

carried out by the authors of [22] we generate one-day-ahead predictions. Using our own

notation: the learning period is five weeks because of computational limitations (since

each day hasK = 169 intervals); the prediction lead time period is set to zero; the

forecast period consists of one day. We predict the arrivals to the Retail queue for the

D = 64 days between July 25 and October 24, 2003. As previously mentioned, each day

consists of 169 five-minute intervals between 7AM and 9:05PM. In conclusion, we have

a total ofn = 169 · 64 = 10816 predicted values.
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4.1 Prediction Accuracy

Here are a few basic definitions:

• The subscriptd = 1, . . . , D denotes thedth day in the predicted data set.

• The subscriptk = 1, . . . , K denotes thekth period during a day.

• n, the number of predicted values, equals the product ofD andK, i.e. n = D ·K.

Let N̂dk denote the predicted value ofNdk, which is the number of arrivals in thekth period

for dayd. We define two measures to compare between the observed and the predicted

values:

• The Squared Error: SEdk = (N̂dk −Ndk)
2.

• The Relative Error: REdk = 100 · |N̂dk−Ndk|
Ndk

The following two measures are used to evaluate confidence statements concerningNdk:

• Coverdk = I(Ndk ∈ (Lowerdk, Upperdk))

• Widthdk = Upperdk - Lowerdk

In the above, Lowerdk and Upperdk denote the lower and upper (nominally 95%) confi-

dence limits.

The comparison between different forecasting models is performed over the entire set of

n observations. We first average the measures for each day over theK periods:

• RMSEd =

√∑K
k=1 SEdk

K

• APEd =
∑K

k=1 REdk

K

• Coverd =
∑K

k=1 Coverdk

K

• Widthd =
∑K

k=1 Widthdk

K

Alternatively, the basic performance statistics can be averaged over days for each of the

K periods, in order to consider accuracy and precision by period of the day.

The summary statistics which are reported for each measure include the lower quartile,

the median, the mean and the upper quartile values of these daily summary statistics.
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4.2 Goodness of Fit

Our model, which will be introduced later on, stipulates through (5.1) that during each

interval of each day the square-root of the arrival counts is a function of two elements:

θdk which we can model and the inherent random error termεdk. Following the Normal-

Poisson stabilizing transformation (which will also be described in the sequel), we assume

that εdk follows a Normal distribution with zero expected value and a variance equal to

0.25.

We will explore both the normality assumption and the values of residual variances in

order to evaluate the goodness of fit of our model.
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Chapter 5

Prediction Models

5.1 Gaussian Mixed Model for Arrival Counts

In this subsection we present a forecast model which is based on the mixed linear mod-

elling (MLM) theory. Figures3.2 and3.4 clearly show that the assumption of a homo-

geneous Poisson arrival process does not hold for our data. However, as assumed above

and explained in AppendixA, the arrival process during relatively short intervals can

be treated as being homogeneous. The MLM approach allows us the needed flexibility to

both model different arrival rates for different intervals, as well as to incorporate a random

component in the variation of those interval-specific arrival rates. This extra randomness

will help account for the observedover-dispersionwhen looking at the variation in ar-

rivals for a given period over similar weekdays. For more on mixed models, the reader is

referred to [7].

5.1.1 Definition

Let Ndk denote the number of arrivals to the queue on dayd = 1, ..., D and during the

time interval[tk−1, tk) wherek = 1, ..., K is thekth period of the day. Our basic model as-

sumption is thatNdk follows a Poisson distribution, with expected value(λdk). We follow

the work of Brownet al. [4] and take advantage of the variance stabilizing transformation

for Poisson data in the following manner. IfNdk ∼ Poisson(λdk), thenydk =
√

Ndk + 1
4

has approximately a mean value of
√

λdk and variance1
4
.

Forλ →∞, ydk is approximately normally distributed. In our data sets, for most parts of

the day,λdk has high values: either around 300 per five minutes for the US Bank’s data; or
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around 500 per half-hour for the Israeli cellular phone company’s data. Hence, it seems

reasonable to use this approximation for our modelling.

The transformed observationsydk allow us to exploit the benefits of the linear mixed

modelling approach. Our aim is to model the expected value of these observations (since

the variance is known). The expected value is a function of the relevant interval rate

itself. In the mixed model the square-root of the arrival rate (
√

λdk) is regarded as a linear

function of both fixed and random effects.

The fixed effects include the weekday effects and the interaction between them and the

period effects. These two effects express the weekday differences in the daily levels and

the intra-day profiles (over the different periods). In the Israeli cellular company we

also add exogenous variables to these fixed effects (i.e., the billing cycles explanatory

variables).

The random effects are normal deviates with a pre-specified covariance structure. One

random effect is the daily volume deviation from the fixed weekday effect. In concert

with other modelling attempts, a first-order autoregressive covariance structure (over suc-

cessive days) has been considered for this daily deviation. It involves the estimation of one

variance parameter and one autocorrelation parameter. The other random effects are also

called the noise or residual effects, and refer to the period-by-period random deviations

from the values after accounting for the fixed weekday and period effects. We considered

a few different covariance structures that can describe a reasonable relationship between

the periods, such as an AR(1) structure.

The general formulation of our linear mixed model can be written as:

ydk = θdk + εdk (5.1)

θdk = Vd + αqd
+ pqd,k + βd + ηdk (5.2)

with εdk ∼ N(0,
1

4
) i.i.d.,

(V1, . . . , VD)T ∼ ND(~0, G) and ηd = (ηd1, . . . , ηdK)T ∼ NK(~0, R)

where

• Vd is the random daily volume effect that has the first-order autoregressive structure.

The vectorV = (V1, . . . , VD)T represents the vector of daily volume random effects

and is assumed to follow aD-variate normal distribution with zero expected value

and covariance matrixG.

• qd denotes the weekday (Sun, Mon, ...) corresponding to dayd.
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• αq is the qth weekday fixed effect (q = 1, . . . , Q; Q = 5 or 6 or 7).

• pq,k is the fixed (interaction) effect for periodk of theqth weekday;

• Defineπd as the set of all relevant billing cycle effects that occur on thedth day.

Thenβd =
∑

j∈πd
ξj whereξj indicates thejth billing cycle effect. (The set of

possibleξj is determined by the appropriate model setup);

• ηd = (ηd1, . . . , ηdK)T is the within day vector of errors.η1, . . . , ηD is an i.i.d se-

quence ofK-variate normal with zero mean and covariance matrixR.

5.1.2 Estimation Method

The additional random effects complicate matters and so we cannot simply use linear

regression model techniques. Instead, we exploit the normality assumptions of these ran-

dom effects to obtain maximum likelihood estimators for the random effects covariance

matrices.

DefineT as the covariance matrix ofY . We can write the elements ofT explicitly using

only elements from theR andG matrices in the following manner (and assuming the

AR(1) structure forG):

cov(ydk, ydk) = Gd,d + Rk,k +
1

4
= σ2

V + σ2
η +

1

4
; k = 1, . . . , K; d = 1, . . . , D

cov(ydi, ydj) = Gd,d + Ri,j = σ2
V + cov(ηdi, ηdj); i 6= j; d = 1, . . . , D

cov(ymi, ytj) = Gm,t = σ2
V · ρd(t,m)

V ; i, j = 1, . . . , K; m 6= t

whered(t,m) is the number of days between thetth andmth days.

Recognizing this last fact, one can rewrite the log-likelihood function for the transformed

observationsY in the following manner:

l = −1

2
log |T | − 1

2
r
′
T−1r − n

2
log 2π (5.3)

wherer = Y − X(X
′
T−1X)−1X

′
T−1Y and the matrix X (the fixed effect matrix) is

of rank p. Of course, in order to use these equations we assume that all the necessary

matrices are nonsingular (otherwise we need to use generalized inverse matrices). For

models such as these, we can estimate the fixed effects and estimate R and G by mini-

mizing twice the negative of the log-likelihood using methods such as the SASr Mixed
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procedure (the code for implementing a model of this type is presented in AppendixB.1

— see Section5.1.6for a discussion of the choice of implementable models). This SASr

procedure uses a ridge-stabilized Newton-Raphson algorithm to search for the maximum

likelihood estimators.

After obtaining the estimators for the covariance matrices of the random effects, SAS

produces the vector of the fixed-effects estimators using the following formula:

β̂ = (X
′
T̂−1X)−1X

′
T̂−1Y (5.4)

5.1.3 Prediction Method

Based on the normality assumption for the random effects, SASr uses multivariate nor-

mal conditional expectations to obtain the empirical best linear unbiased predictors (BLUPs).

Using the fixed effect explanatory matrix,Xm, for the data to be predicted together with

the past data matrices,Y and X, the prediction vector,̂m, can be obtained using the

following formula:

m̂ = Xmβ̂ + ĈmT̂−1(Y −Xβ̂) (5.5)

whereT̂ is the maximum likelihood estimate of the covariance matrix;β̂ is the maximum

likelihood estimate of the fixed-effects coefficients defined in (5.4); andĈm is the model-

based estimated covariance matrix between the observedY andm.

The estimated prediction variance can be obtained as follows:

V̂ar(m̂−m) = T̂m − ĈmT̂−1Ĉ
′
m (5.6)

+ [Xm − ĈmT̂−1X](X
′
T̂−1X)−1[Xm − ĈmT̂−1X]

′

whereT̂m is the estimated model-based covariance matrix for the predicted observations.

5.1.4 Goodness of Fit

Following (5.1) and (5.2) we may check to see whether our prediction residuals are nor-

mally distributed. We use a QQ-plot to examine this assumption.

Furthermore, we may examine the estimated variance ofεdk. According to the model

presented in (5.1) and (5.2) its value should be approximately 0.25.

Assuming that both random effects covariance matrices,R andG have an AR(1) structure

we can formulate them in the following manner:
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• The daily random effects covariance matrixG:

G = σ2
V ·




1 ρd12
V . . . ρd1D

V
...

...
...

...

ρdD1
V ρdD2

V . . . 1




• The within-day periods random effects covariance matrixR for a specific day:

R = σ2
η ·




1 ρ1
η . . . ρK−1

η
...

...
...

...

ρK−1
η ρK−2

η . . . 1




Using this notation it is easy to see that the variance of each observation is: Var(ydk) =

σ2
V + σ2

η + 1
4
. Where 0.25 corresponds to the value ofε’s variance. We shall examine an

alternative model which has the following representation:

ydk = θdk + εdk (5.7)

θdk = Vd + αqd
+ pqd,k + βd + ηdk (5.8)

with εdk ∼ N(0, σ2
ε ) i.i.d.,

(V1, . . . , VD)T ∼ ND(~0, G) and ηd = (ηd1, . . . , ηdK)T ∼ NK(~0, R)

This model differs from the model presented in (5.1) and (5.2) since we are not constrain-

ing the variance ofε to 0.25. Our goal is to examine the estimated variance ofε from this

model. If in fact its value is close to 0.25 then this can help justify our theoretical model.

We will examine results from two modelling alternatives, both allowing us to incorpo-

rate the three variance components. The first modelling technique is carried out by using

the ARMA(1,1) structure extra parameterγ to construct both the within-periods AR(1)

structure and the needed extraε error term variance. TheG matrix is modelled using a

standard spatial power structure, while theR∗ = R + σ2
ε · I matrix is modelled using an

ARMA(1,1) formulation. Here is the manner in which we use the standard ARMA(1,1)

covariance matrix to achieve this goal:

R∗ = σ2
R∗ ·




1 γ γ · ρR∗ . . . γρK−2
R∗

γ 1 γ . . . γρK−3
R∗

...
...

...
...

...

γ · ρK−2
R∗ γ · ρK−3

R∗ . . . γ 1



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Where:

σ2
R∗ = σ2

η + σ2
ε (5.9)

γ = ρη ·
σ2

η

σ2
η + σ2

ε

(5.10)

ρR∗ = ρη (5.11)

⇒ σ2
R∗ · (1−

γ

ρη

) = σ2
ε (5.12)

By plugging-in the relevant estimators in (5.12) we can estimate the required variance of

εdk and compare its value to the theoretical value of 0.25.

The second technique is quite straight forward. We model equations (5.7) and (5.8) using

themixedprocedure in SASr. TheG matrix is modelled using a standard spatial power

structure and theR matrix is modelled according to a first order auto-regressive structure.

We add the ’local’ option to incorporate the diagonal covariance matrix ofε. As part of

the SASr default output one obtains the estimated value ofσ2
ε .

5.1.5 Benchmark Models

An elementary prediction model would simply average past data in order to produce a

forecast. This model is referred to as the industry model. Specifically, letqi denote the

weekday corresponding to theith day. DenoteWis = {i′ : i
′ ≤ i andqi′ = s} and let

| Wis | denote the cardinality ofWis. Then the forecast arrival count,ND+h,j, based on

the information up to dayD can be expressed as

N̂D+h,j =

∑
i∈WD,D+h

Nij

| WD,D+h | (5.13)

Based on this intuitive approach, we develop two similar baseline models. These models

will serve as benchmarks for our more complicated models.

The first basic model only considers the weekday fixed effects and their interactions with

the periods. Basically, this model states that each day of the week has its own baseline

level and its own intra-day pattern and that consecutive days and periods are uncorrelated

(as opposed to our initial correlated mixed model defined in (5.2)). The formulation of
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this model can be written as follows:

ydk = θdk + εdk

θdk = αqd
+ pqd,k + ηdk (5.14)

with εdk ∼ N(0,
1

4
) i.i.d. and

ηd = (ηd1, . . . , ηdK)T ∼ NK(~0, σ2I)

where the sequenceη1, . . . , ηD is an i.i.d sequence ofK-variate normal vectors with zero

mean and covariance matrixσ2I.

This model basically corresponds to the industry model (defined in (5.13)). It assume the

days are independent of each other. Alternatively, one can think of a different benchmark

model which is similar to the above model but also includes exogenous variables. Hence,

in the Israeli Cellular company our second benchmark model also incorporates the billing

cycles variables. Using the above notation we can define the second benchmark model in

the following manner:

ydk = θdk + εdk

θdk = Vd + αqd
+ pqd,k + βd + ηdk (5.15)

with εdk ∼ N(0,
1

4
) i.i.d. and

ηd = (ηd1, . . . , ηdK)T ∼ NK(~0, σ2I)

where the sequenceη1, . . . , ηD is an i.i.d sequence ofK-variate normal vectors with a

zero mean and covariance matrixσ2I.

This second benchmark model will have the same fixed-effects settings as our final mixed

model but includes an underlying assumption that all of its observations are uncorrelated.

Hence it represents a baseline to our more elaborate, correlated model.

Both of the benchmark models are, in fact, linear regression models and are quite fast and

efficient in providing the necessary predictions using standard programs.

5.1.6 Theoretical versus Practical models

In Section5.1.1we introduced our theoretical model. This model which constrains the

variance ofε to a value of 0.25 was implemented using themixedprocedure in SASr

31



adding both the ’local’ and ’hold’ options in order to incorporate the extra variance. How-

ever, the results we obtained made little sense since the estimated value of daily variance

(i.e.,σ2
V ) was zero. This result contradicts previous research that was done on similar call

center data, and it probably is the consequence of an algorithmic failure due to the large

dimension of the model.

Consequently we implemented two alternative models. The first model is the general

model presented in (5.7) and (5.8). This model allowsε’s variance to have any non-

negative value. This model will be referred to as the general variance model.

The second model is a special case of the first model where the variance ofε is given the

value of zero. This means that we actually do not model theε extra variance parameter.

To some extent the extra variance is actually incorporated in the remaining two variance

components (i.e.,σ2
V andσ2

η) instead. This model will be referred to as the zero variance

model.

We compare the prediction results of the two models in detail in Section6.1.

5.2 Gaussian Bayesian Model for Arrival Counts

The next section is based on the forecast model specified in a paper by Weinberget al.

([22]). We use the results presented in that paper to compare our mixed model results in

the sequel.

5.2.1 Definition

Using the same terminology as in the mixed model, defineNdk as the number of arrivals to

the queue on dayd = 1, ..., D, and during the time interval[tk−1, tk), wherek = 1, ..., K

is thekth period of the day. The model assumes:

Ndk ∼ Poisson(λdk), λdk = Rqd
(tk)vd + εdk (5.16)

whereλdk is the arrival rate for dayd during periodk, Rq(tk) is the proportion of daily

volume on theqth weekday during the time interval[tk−1, tk], vd represents the daily vol-

ume during dayd andεdk is the random error. The models assumes that each day has its

own within-day pattern and as a result, the following restriction is enforced:

K∑

k=1

Rqd
(tk) = 1 for qd = 1, . . . , 5. (5.17)
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Following the same approximation technique used in the previous mixed model, define

ydk =
√

Ndk + 1
4
. This normal approximation enables one to redefine the model in the

following manner:

ydk = gqd
(tk)xd + εdk, εdk ∼ N(0, σ2) iid (5.18)

wheregqd
=

√
Rqd

andxd =
√

vd. The daily correlations are modelled using an AR(1)

structure in the following manner:

xd − αqd
= β(xd−1 − αqd−1

) + ηd, ηd ∼ N(0, ψ2) iid (5.19)

whereαqd
denotes the intercept for dayqd. To incorporate the different weekday patterns

and ensure some smoothness in them, two extra constraints are added:

d2gq(tk)

dt2k
= τq

dWqd
(tk)

dtk
(5.20)

where
K∑

k=1

gq(tk)
2 = 1, for q = 1, . . . , 5. (5.21)

HereWq(t) are 5 independent Wiener processes withWq(0) = 0 and Var{Wq(t)} = t

(and
dWqd

(tk)

dtk
is a notation for a white noise).

For computational reasons the authors reformulate their model by introducing a new vari-

ablezqd
= {gqd

(tk), dgqd
(tk)/dtk} and rewriting the model in the following manner:

ydk = h
′
zqd

(tk)xd + εdk, εdk ∼ N(0, σ2) (5.22)

xd − αqd
= β(xd−1 − αqd−1

) + ηd, ηd ∼ N(0, ψ2) (5.23)

zqd
(tk) = F (δ)zqd

(tk−1) + uk, uk ∼ N(0, τ 2
qd

U(δ)) (5.24)

whereεdk, ηd anduk are mutually independent,δ = tk − tk−1 and vectorh
′
= [1, 0]. The

matricesF (δ) andU(δ) are defined as

F (δ) =

(
1 δ

0 1

)
, U(δ) =

(
δ3/3 δ2/2

δ2/2 δ

)

Finally the authors also incorporate the weekday constraints defined in (5.21) and use

diffuse distributions for the initial statesx1 and zqd
(t1), for qd = 1, . . . , 5. It is now

apparent that the model presented here is a multiplicative model with two latent states

each evolving on its own time scale. Conditional on each latent state variable, the model

can be cast into a linear state space form. This property enables the use of state-space

model techniques to help overcome computational problems.
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5.2.2 Estimation and Prediction

The authors of [22] give an extensive description of the hybrid Markov Chain Monte

Carlo (MCMC) algorithm which they developed to sample from the relevant parameters’

posterior distributions. The algorithm utilizes Gibbs sampling techniques and Metropolis-

Hastings steps to sample from the required conditional distributions.

The first step of the one-day-ahead forecasting algorithm is to run MCMC simulations

based on past data. Assuming that the goal is to forecast dayd arrival counts, the pur-

pose of this step is to obtain samples from the posterior distributionp(Ω|Y1:d−1) (where

Ω = (α, β, σ2, ψ2, τ 2, xd−1, z) is the vector of required parameters andY1:d−1 is the vector

of transformed past observations). These samples enable the authors to generate the em-

pirical distribution of the untransformed Poisson arrival counts (i.e.,Ndk) for each period

k. The one-day-ahead forecasting algorithm for predicting dayd is summarized in the

next few lines:

1. Start by generating an MCMC sample,Ω(1), . . . , Ω(M), drawn fromp(Ω|Y1:d−1). M

is approximately 4899 samples which are obtained using the Gibbs sampler and

Metropolis algorithm. The authors state that they used 49,000 iterations after a

burn-in period of 1000. They sample the parameters every 10th iteration.

2. Drawx
(i)
d ∼ N

(
α

(i)
qd + β(i)

(
x

(i)
d−1 − α

(i)
qd−1

)
, (ψ2)(i)

)
, for eachi = 1, . . . , M .

3. For each periodk = 1, . . . , K and eachi = 1, . . . , M .

• Setλ(i)
dk =

(
x

(i)
d gqd

(tk)
(i)

)2

.

• Drawy
(i)
dk ∼ N

(√
λ

(i)
dk , (σ

2)(i)

)
.

• SetN (i)
dk =

(
y

(i)
dk

)2

− 0.25.

5.3 Poisson Bayesian Model for Arrival Counts

The model described in this section, similar to that in the last section, also employs

Bayesian modelling techniques to predict the arrival counts. However, it directly models

the untransformed Poisson arrival counts without using the Normal-Poisson stabilization

approximation. The model was implemented using both theBRugspackage [20] in the R

statistical software and ‘OpenBugs’ software [17]. The actual code used for implementing

this model is provided in AppendixB.2.
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5.3.1 Definition

The formulation of a hierarchical Bayesian model for the untransformed counts can be

presented as follows:

Ndk|λdk ∼ Poisson(λdk) (5.25)

λdk|Vd, pqd
= (pqd,1, . . . , pqd,K) = Vd · pqd,k (5.26)

Vd = µqd
·Gd (5.27)

Gd = F (Gd−1, Ud) (5.28)

pq|αq ∼ Dirichlet(αq,1, . . . , αq,K) (5.29)

αq|Mq = exp(Mq) · (πq,1, . . . , πq,K) (5.30)

Mq ∼ N(5, 5) (5.31)

µq ∼ N(υq, 0.01 · υ2
q ), for q = 1, . . . , 7 (5.32)

The arrival rate for each period of each day,λdk, is comprised of two sets of parame-

ters: the daily volume parameters and the daily pattern parameters. We shall begin by

explaining the latter:

• pqd
= (pqd,1, . . . , pqd,K) is the vector of daily proportions assigned to each of theK

periods. The subscriptq denotes the day of the week (q = 1, . . . , 7). Each weekday

has its own pattern. These vectors are distributed according to the discrete Dirichlet

distribution.

• αq = (αq,1, . . . , αq,K) is the vector of parameters for the (discrete) Dirichlet distri-

bution. The vectorαq can be written asexp(Mq) · πq.

• exp(Mq) governs the variability of the Dirichlet distribution about its meanπq =

(πq,1, . . . , πq,K), which is a probability vector itself. TheMq factors have a diffuse

prior andπq is the estimated pattern according to the learning data.Mq has been

given a normal prior distribution with expectation and variance equal to 5. This

prior choice allowsMq to have both negative and positive values. Large positive

values ofMq imply small variability of the Dirichlet distribution while very nega-

tive values ofMq imply large variability of the Dirichlet distribution. The normal

distribution is very easily simulated from and so is a natural candidate for this prior.

The daily volume has two components:µq, the weekday mean value for dayq; andGd,

which describes the dayd deviation from its corresponding weekday mean. The different
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weekday means(µ1, . . . , µ7) are given a diffuse normal prior with means corresponding to

the actual average daily total values and variance which is1% of those daily totals. In fact,

υq is the averagedqth weekday mean value according to the learning data. The weekday

means prior variance were adjusted to allow coefficients of variation of10%. This implies

that the weekdays means are not the main source of variation and the variation comes from

a different source, mainlyGd.

Equation (5.28) describes the dynamic dependence of daily volumes between successive

days. It is expressed in a general form here, whereGd is assumed to have an expectation

of 1. Different alternatives can be chosen in order to define theGd process. These alterna-

tives need to have two main characteristics: the process should always have positive val-

ues sinceGd represents amultiplicativedeviation from the weekday average;Gd should

have a mean value of 1 basically implying that on average the daily volumeVd equals the

appropriate weekday mean. We have selected the Beta-Gamma Auto-Regressive process

which accommodates both characteristics. This process is defined by:

Gd = Gd−1 ·Bd + Ud for d = 2, . . . , D (5.33)

Bd ∼ Beta(γρ, γ(1− ρ)) (5.34)

Ud ∼ Gamma(γ(1− ρ), γ) (5.35)

G1 ∼ Gamma(γ, γ) (5.36)

which has a stationary marginal Gamma(γ, γ) distribution (with mean 1). In order to com-

plete the Bayesian formulation the non-informative Gamma(0.01,0.01) prior was used for

theγ parameter. Also a normal prior distribution was used for the− log ρ parameter. It

is quite straightforward to show thatρ is the autocorrelation betweenGd andGd−1 and

that the expected value ofρ, using Normal(2,5) as the prior distribution, is approximately

0.69.

5.3.2 Estimation and Prediction

As mentioned earlier, we use the ‘OpenBugs’ environment to implement the Poisson

Bayesian model. ‘OpenBugs’ is an open-source software for Bayesian analysis of com-

plex statistical models using Markov Chain Monte Carlo (MCMC) methods. The estima-

tion procedure utilizes Gibbs sampling techniques and Metropolis steps to sample from

the relevant parameters’ posterior distributions. Based on these samples, one can create

the empirical posterior distributions of each of the parameters.
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The forecasting procedure, using ‘OpenBugs’, simply regards the predictions as addi-

tional parameters. Hence, one can create for each dayd and periodk an estimated distri-

bution for the predictedNdk.

5.4 Regression Model for Service Times

Aside from predicting the arrival rate, forecasting a queuing system load also requires

predicting the average service patterns (or alternatively the service rate pattern for each

day). Since our arrivals model focuses on a specific resolution, we need to predict the

average service time during those same intervals (i.e., periods).

Our model involves two explanatory variables that may affect service rates: the weekday

and the period. We compare two alternatives models where one is a generalization of

the other. The first model describes the average service time using a quadratic regression

in the periods, with interactions with the weekday effect, where the period is included

as a numeric variable (rather than as a categorical variable). Intuitively speaking, this

model states that the daily service time curves differ among the different weekdays but

they are confined to be of a quadratic form. The formulation of this model can be written

as follows:

Model 1 ϕdk = αqd
+ ςk2 + ϑk + χqd

k2 + φqd
k + φd + εdk; εdk ∼ N(0, σ2) (5.37)

whereαq is the constant term related to theqth weekday;ϑ andς are, respectively, the

quadratic and linear coefficients;χq andφq are the weekday-specific quadratic and linear

period effects and make up the weekday-period interaction effects. The last effect is a

postulated linear daily trend coefficient denotedφ. We naturally, added a random error

term denoted byεdk.

The second model is a generalization of the first model and it assumes that the periods

variable is a categorial variable. It basically assumes that each weekday has its own aver-

age service times pattern with no other restriction on its shape (hence it is a generalization

of the last quadratic-shaped model). We add both the linear daily trend effect to this model

and the error term as well. This model can be formulated in the following manner:

Model 2 ϕdk = βqd,k + φd + εdk; εdk ∼ N(0, σ2). (5.38)

whereβq,k is the interaction between the weekday and the effect of thekth period.
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Chapter 6

Mixed Model — Determining Fixed

Effects and Covariance Structure

This next section gives details of the selection process for both the fixed effects (i.e., the

weekday patterns, or the Israeli Cellular company’s billing cycles), and the random effects

covariance structures for the mixed model.

6.1 Analysis of Practical Models

As previously explained in Section5.1.6, we shall explore the predictions results of two

alternative models. This analysis will be carried out on the Israeli Cellular company’s

data. We encountered convergence problems when we implemented the first general

model and so we base the following comparison only on 135 days out of the 203 be-

tween April 11, 2004 and December 25, 2004. For this analysis, we shall set the between-

periods (within-day) correlation according to a first-order autoregressive structure. The

fixed effects set-up is carried out according to the model presented in the end of Section .

Tables6.1,6.2, 6.3 and6.4 present the results of the two models. The model whereε’s

variance is constrained to the value of zero (zero variance model) shows much better

results then the general variance model. A possible explanation for this is that the general

model is over-fitting the learning data and hence the predictions turn out to be quite poor.

Following this analysis we decided to continue investigating only the second model where

ε’s variance is restricted to the value of zero. This model can be formulated in the follow-

ing manner:
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ydk = Vd + αqd
+ pqd,k + βd + ηdk (6.1)

with

(V1, . . . , VD)T ∼ ND(~0, G) and ηd = (ηd1, . . . , ηdK)T ∼ NK(~0, R)

From here on we shall refer to this model as the mixed model.

RMSE

N=135 general variance model zero variance model

1st Quartile 42.45 31.34

Median 72.50 37.07

Mean 103.92 42.06

3rd Quartile 170.73 49.93

Table 6.1:Analysis of practical models – RMSE results .

APE

N=135 general variance model zero variance model

1st Quartile 10.06 7.72

Median 18.57 9.68

Mean 34.47 11.10

3rd Quartile 39.29 13.51

Table 6.2:Analysis of practical models – APE results.

Coverage Probability

N=135 general variance model zero variance model

1st Quartile 0.36 0.88

Median 0.70 0.97

Mean 0.64 0.92

3rd Quartile 0.97 1

Table 6.3:Analysis of practical models – Coverage probabilities results.
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Width

N=135 general variance model zero variance model

1st Quartile 36.21 136.81

Median 152.22 155.76

Mean 159.45 159.57

3rd Quartile 181.85 182.76

Table 6.4:Analysis of practical models – Confidence interval widths.

6.2 Israeli Cellular Company

Guided by the principle of parsimony, we conducted a preliminary investigation of the

billing cycles indicators described in Section??. We sequentially examined the differ-

ent effects using out-of-sample performance measures. In effect we tested each effect

(random or fixed) alone while the rest of the model terms were kept fixed. When we

established the best setting for a specific effect we continued to the next one.

6.2.1 Preliminary Analysis of Billing Cycles

As mentioned in the data description, we have eight indicators which represent the four

major billing cycles (i.e. four delivery period indicators and four billing period indi-

cators). Based on the company’s information we were made aware that some of these

indicators might not have a significant influence on the Private queue’s arrival process.

The purpose of this preliminary examination is to highlight those indicators which are

significant so they may later be incorporated in the final forecasting model. For this

coarse investigation, we use the aggregateddaily arrivals between February14th, 2004

and December31st, 2004 (excluding all twenty-two outliers).

Let Ni denote the number of arrivals to the Private queue on day i=1,....M. In our study,

we have M=254 days. In addition, letqi denote the weekday corresponding to dayi. The

daily arrivals are modelled using a Poisson log-linear model (for further details on this

approach the reader is referred to [13]). Our initial model is of the following form:

Ni ∼ Poisson(λi) (6.2)

log(λi) =
6∑

l=1

Wqil ·Xqil +
∑

j∈cycles

Bj ·Mj
i +

∑
j∈cycles

Dj · Uj
i
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where

qi is the weekday corresponding to dayi

Wq is the qth weekday coefficient

~Xqi
is a vector which has six elements.It’sqth element has a value

of one indicating the weekday corresponding to theith day.

Bj is thej th billing period coefficient

Mj
i =

{
1 if cycle j’s billing period falls on the ith day

0 otherwise

Dj is thej th delivery period coefficient

Uj
i =

{
1 if cycle j’s delivery period falls on theith day

0 otherwise

The model is implemented using theGENMODprocedure in SASr based on the 254

observations in the current learning set. Some of the results are summarized in tables6.5

and6.6. The results indicate the following: the six weekdays have significantly different

effects, each having a different baseline mean (no intercept was included in the model);

the delivery period indicators are significant and have a positive effect on the mean value

of the number of incoming calls; on the other hand, most of the billing period indicators

seem less significant, which confirms the cellular company’s beliefs. The Cycle 14 billing

period seems to have an exceptional effect. First, it is statistically significant as opposed

to the billing indicators of the rest of the cycles. Furthermore, its estimator is the only

negative value among those of all of the effects. This strange result would suggest that

the number of incoming calls is reduced during the Cycle 14 billing period. We could

not attribute this phenomenon to any outlying data problems. One possibility is that this

negative value can be compensating for other oversized billing cycle effects, which could

arise due to the overlap of delivery and billing days among the 4 cycles.

These results led us to believe that some of the explanatory variables are statistically

redundant. We proceed by comparing different models with this initial model (defined

in (6.2)) using the ‘contrast’ statement in theGENMOD procedure (which computes

likelihood-ratio statistics). The different models are variations of the initial model. They

exclude different covariates in order to establish the importance of the omitted variables.

The retained explanatory variables for each examined model are listed below:

1. the weekday effect and the delivery period indicators;
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Parameter Category Estimate Chi-Square Pr> ChiSq

Wq Sunday 9.5358 718177 <.0001

Wq Monday 9.4977 541484 <.0001

Wq Tuesday 9.4880 572102 <.0001

Wq Wednesday 9.4719 649509 <.0001

Wq Thursday 9.4326 677894 <.0001

Wq Friday 9.0385 453474 <.0001

D1 . 0.0586 11.59 0.0007

D7 . 0.0327 3.71 0.0540

D14 . 0.0449 5.39 0.0202

D21 . 0.0935 17.98 <.0001

B1 . 0.0242 2.10 0.1473

B7 . 0.0279 2.17 0.1403

B14 . -0.0592 6.83 0.0090

B21 . 0.0276 2.54 0.1109

Table 6.5: Analysis of parameter estimates for the Poisson

Log-Linear model.

2. the weekday effect, one global billing indicator (which takes the value one when

at least one of the cycles is during its billing period) and the four delivery period

indicators

3. the weekday effect, Cycle 14 billing period indicator and the four delivery period

indicators

4. the weekday effect, Cycle 14 billing period indicator and the one global delivery

period indicator (which takes the value one when at least one of the cycles is during

its delivery period)

5. the weekday effect, one global billing period indicator and one global delivery pe-

riod indicator
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Source DF Chi-Square Pr> ChiSq

Wq 6 518663 <.0001

D1 1 11.46 0.0007

D7 1 3.69 0.0548

D14 1 5.35 0.0207

D21 1 17.79 <.0001

B1 1 2.09 0.1485

B7 1 2.16 0.1415

B14 1 6.87 0.0088

B21 1 2.53 0.1119

Table 6.6: The Poisson Log-Linear model. Likelihood-ratio

comparison for Type 3 analysis.

The analyses of the contrasts are shown in Table6.7. By using the ‘contrast’ statement

we are actually examining which variables are statistically (in)significant. The results

indicated that billing periods 1, 7 and 21 are redundant. It is therefore clear that there are

three main factors contributing to the daily volumes: the weekday, the delivery periods

and billing period of Cycle 14. Since both models 3 and 4 seemed to be reasonable we

decide to pursue them both.

We conclude this section by defining four different alternative settings for the billing cycle

indicators (ξ):

• Setup 1:(ξ1, . . . , ξ5) = (Cycle 14 billing period and four delivery period indica-

tors);

• Setup 2:(ξ1, . . . , ξ4) = (four delivery period indicators);

• Setup 3:(ξ1, ξ2) = (Cycle 14 billing period and one global delivery period indica-

tor);

• Setup 4:(ξ1) = (one global delivery period indicator).
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We shall analyze the ”best” settings using out-of-sample performance measures in the

following subsection.

6.2.2 Fixed Effects Selection

Our process of model selection does not rely on classical inference methods or mea-

sures, such as Akaike’s Information Criteria [15]. Instead, we explore the influence of the

models’ elements on the prediction performance based on the 2004 validation-set. The

evaluation method is detailed in Chapter4.

As mentioned in the above section we begin with four alternatives for the fixed-effects,

all including the different weekday effects and their interaction with periods. However,

they do differ in their billing cycles indicators. Our first step is to determine the best

candidate model out of these four. For now, we shall set the between-periods (within-day)

correlation according to a first-order autoregressive structure. We choose this specific

structure for its simplicity. In the next section we will also consider other correlation

structures.

In addition we compare the four models with the performance of the two benchmark mod-

els, mentioned in Section5.1.5. The first model only includes the weekday and weekday

patterns. The alternative benchmark model has two more additional billing cycles indica-

tors: one global delivery indicator and the billing period indicator associated with cycle

14. The reason why these specific billing cycles settings were chosen will be explained

later in this section.

These models are evaluated using the same out-of-sample prediction procedure, i.e. for a

specific week we calculate the appropriate linear regression estimates based on six weeks

of past data and then we predict the week starting 10-days-ahead. This procedure is

carried out 37 times since there are 37 weeks between April 11, 2004 and December 25,

2004.
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Model

No.

The Alternative model ex-

planatory variables

Num

DF

Den

DF

F

Value

Pr>F ChiSqPr>ChiSq Type

1

• Weekday

• four Delivery periods

indicators

4 240 3.42 0.0096 13.69 0.0084 LR

2

• Weekday

• Global Billing indicator

• four Delivery periods

indicators

3 240 4.11 0.0072 12.32 0.0064 LR

3

• Weekday

• Billing 14 period indi-

cator

• Global Delivery period

indicator

6 240 1.89 0.0834 11.33 0.0786 LR

4

• Weekday

• Billing 14 period indi-

cator

• four Delivery period in-

dicators

3 240 2.00 0.1152 5.99 0.1121 LR

5

• Weekday

• Global Billing period

indicator

• Global Delivery period

indicator

6 240 2.38 0.0296 14.30 0.0264 LR

Table 6.7: Log-Linear models contrasts analyses. Each row depicts a different model

which is compared to the initial model. Comparing models 3 and 4 to the initial model

shows that the extra variables are not significant at a significance level of 5%.
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RMSE

N=203 Setup 1 Setup 2 Setup 3 Setup 4 BM1 BM2

1st Quartile 34.26 34.14 33.33 33.37 33.23 33.12

Median 40.62 41.12 40.46 40.77 41.39 40.71

Mean 45.51 45.87 44.57 44.8 46.05 45.6

3rd Quartile 53.21 52.95 51.72 51.88 54.36 55.8

Table 6.8:RMSE results for the four fixed effects models and the benchmark models.

APE

N=203 Setup 1 Setup 2 Setup 3 Setup 4 BM1 BM2

1st Quartile 8.35 8.33 8.15 8.17 8.30 8.25

Median 10.13 10.13 9.95 9.98 10.46 10.48

Mean 11.25 11.29 11.06 11.07 11.24 11.3

3rd Quartile 13.81 13.45 13.37 13.01 13.49 13.44

Table 6.9:APE results for the four fixed effects models and the benchmark models.

Coverage Probability

N=203 Setup 1 Setup 2 Setup 3 Setup 4 BM1 BM2

1st Quartile 0.85 0.85 0.88 0.88 0.39 0.39

Median 0.94 0.94 0.94 0.94 0.51 0.48

Mean 0.91 0.91 0.92 0.92 0.51 0.5

3rd Quartile 1 1 1 1 0.61 0.61

Table 6.10:Coverage probabilities for the four fixed effects models and the benchmark

models.

Width

N=203 Setup 1 Setup 2 Setup 3 Setup 4 BM1 BM2

1st Quartile 134.87 135.06 138.15 137.59 51.57 51.29

Median 156.87 155.54 157.22 157.31 59.56 58.7

Mean 161.61 161.74 151.71 162.15 63.2 62.04

3rd Quartile 184.79 185.33 184.48 184.56 70.07 68.78

Table 6.11:Confidence interval widths for the four fixed effects models and the bench-

mark models.

46



We use the SASr Mixed procedure in order to implement and evaluate the candidate

models. Tables6.9, 6.8, 6.10and6.11present the results of the four different fixed model

setups and the two benchmark models. Out of the four different models, the3rd alternative

seems to exhibit the best results. Its results are also better than the first benchmark model.

One can argue that the shorter confidence intervals imply that the benchmark outperforms

the third model. However, since its coverage probability is very far from the nominal

95%, we conclude that these narrow intervals are unreliable and probably result from an

under-estimated error variance.

The second benchmark model is in fact the ”fixed” version of this third model; that is,

without the random effects. It is interesting to see that introducing the intra- and inter-day

correlations improves the forecasting results. Intuitively speaking, the additional corre-

lation parameters result in wider confidence intervals to compensate for the extra uncer-

tainty.

Based on the above results, we continue analyzing models which include only two billing

cycle indicators (one for any delivery period and one for the Cycle 14 billing period).

At this stage we will refer to this chosen model as theMulti-Pattern model because it

incorporates a different intra-day pattern for each weekday.

In the preceding models, each day has its own pattern of arrivals over periods. Keeping

the parsimony concept in mind, Figure3.3suggests that some weekday patterns resemble

others (at least during most periods of the day). To examine if indeed this is the case

we first normalize each period’s arrivals,Ndk, dividing by the dayd mean value,N̄d.

Then we averaged each normalized period value separately over each weekday type (for

Sunday through Friday). By carefully examining the above mentioned Figure3.3, we

can conclude that Sundays and Fridays have patterns that differ from those of the rest of

the weekdays. Based on this observation, we set aside Sundays and Fridays and test the

hypothesis, separately for each periodk, that there is no significant difference between

the remaining 4 weekdays based on the normalized mean values. In effect, we fit the

following simple model for each periodk:

Ndk

N̄d

= υqd
; for d = 1, . . . , 254; k = 1, . . . , 33 (6.3)

whereυq is the effect of theqth weekday.

We thus formally test our observation using a simple ANOVA model. The ANOVA under-

line assumptions of normality and homoscedasticity were examined using different plots

and were found to hold for the data.
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Rejecting the null hypothesis for a specific periodk indicates that there is a difference

between the weekdays for that period. According to the results shown in Table6.12, for

most periods of the day the 4 weekdays patterns are similar.

Period Start Time F-value Pr>F Period Start Time F-value Pr>F

1 7:00 0.96 0.4131 18 15:30 1.54 0.2070

2 7:30 0.93 0.4268 19 16:00 2.34 0.0757

3 8:00 1.70 0.1692 20 16:30 1.63 0.1841

4 8:30 2.43 0.0673 21 17:00 3.08 0.0290

5 9:00 1.28 0.2831 22 17:30 4.80 0.0031

6 9:30 1.54 0.1069 23 18:00 1.32 0.2683

7 10:00 0.49 0.6873 24 18:30 3.57 0.0153

8 10:30 0.53 0.6598 25 19:00 3.23 0.0238

9 11:00 1.53 0.2097 26 19:30 3.22 0.0242

10 11:30 0.70 0.5512 27 20:00 0.71 0.5467

11 12:00 5.02 0.0024 28 20:30 2.53 0.0593

12 12:30 3.00 0.0321 29 21:00 0.25 0.8607

13 13:00 0.54 0.6564 30 21:30 0.46 0.7076

14 13:30 0.05 0.9852 31 22:00 1.63 0.1836

15 14:00 0.18 0.9097 32 22:30 1.71 0.1663

16 14:30 0.15 0.9276 33 23:00 0.35 0.7865

17 15:00 0.82 0.4851 - - - -

Table 6.12:ANOVA Results of Monday through Thursday effects for each period. Ac-

cording to the p-values, most of the periods do not differ between the 4 weekdays. The

bolded rows indicate those5% significant periods.

As a result of the above analysis we shall evaluate two additional models. The Three-

Pattern model has three different patterns: one for Sunday, one for Friday and one for

the remaining weekdays. In addition to the Multi-Pattern model, we also try and fit a

Two-Pattern model which includes two patterns: one for Friday and one for the rest of the

weekdays. Both models still have the weekday effect, a general delivery periods effect

and the Cycle 14 billing period effect, together with one of the patterns. The Two-Pattern

model assumes that all weekdays, except Friday, have the same relative intra-day behavior

but may show different absolute levels. The results of the three model evaluations are
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presented in tables6.13, 6.14, 6.15and6.16. Based on the RMSE and the APE measures

the Three-Pattern model provides the best performance. However, looking at the coverage

and confidence widths we see that the Multi-Pattern model achieves the best outcomes.

Based on parsimony considerations, we decided to choose the Three-Pattern model. This

concludes our discussion of how the fixed effects were selected.

RMSE

N=203 Two-Pattern Three-Pattern Multi-Pattern

1st Quartile 32.51 32.65 33.33

Median 38.81 38.25 40.46

Mean 43.32 43.3 44.57

3rd Quartile 50.45 50.94 51.72

Table 6.13:Comparing models with different numbers of weekday patterns. Results for

RMSE.

APE

N=203 Two-Pattern Three-Pattern Multi-Pattern

1st Quartile 7.83 7.83 8.15

Median 9.71 9.68 9.95

Mean 10.8 10.8 11.06

3rd Quartile 13.27 12.86 13.37

Table 6.14:Comparing models with different numbers of weekday patterns. Results for

APE.

Coverage Probability

N=203 Two-Pattern Three-Pattern Multi-Pattern

1st Quartile 0.91 0.88 0.88

Median 0.97 0.97 0.94

Mean 0.93 0.93 0.92

3rd Quartile 1 1 1

Table 6.15:Comparing models with different numbers of weekday patterns.Results for

coverage probability.
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Width

N=203 Two-Pattern Three-Pattern Multi-Pattern

1st Quartile 141.67 141.53 138.15

Median 160.15 160.76 157.22

Mean 164.33 162.84 161.71

3rd Quartile 186.79 185.4 184.48

Table 6.16:Comparing models with different numbers of weekday patterns. Results for

width.

6.2.3 Determining the Covariance Structure — Random Effects

Having chosen the fixed effects that will be incorporated in our model we now discuss the

modelling of the random effects. There are two sources of variation in our model: one is

from the daily volume effectVd and the other is the within-day error vectorηd.

We begin by examining different structures for the matrixR which is the within-day co-

variance matrix. Because of a certain indeterminacy in solving forVd and theK residual

error variances one cannot allow the variances (diagonal elements) inR to be uncon-

strained. Either a lower bound must be set on these variances — 1/4 would be a logical

lower bound since this is the approximate variance of the square-root-Poisson variable

— or one may choose a structure forR that has the same variance for each component.

Amongst the latter we shall try the AR(1), ARMA(1,1) and Toeplitz forms forR. Other

covariance structures theoretically may also be incorporated here but since most of them

are more complex (i.e., include more parameters) we did not consider them because of

computational limitations. Another reason is that other forms of covariance matrices in

SASr are not directly related to time series structures.

We evaluate and compare the models using the same technique we developed for selecting

the fixed effects. We use the same learning data as before.

The results are shown in tables6.17, 6.18, 6.19 and 6.20. The Toeplitz form did not

converge for the learning data. The results for the ARMA(1,1) show only slight improve-

ments compared to the AR(1) structure. However, one more factor that should be taken

into consideration is that the CPU time was markedly higher for the ARMA(1,1) model

(by several hours). In conclusion, the model chosen forR in this approach is the AR(1)

model for the residual error vector.

The last source of variability is the daily volume effect,Vd. We assume its covariance
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N=203 RMSE

R covariance structureAR(1) ARMA(1,1)

1st Quartile 32.65 32.39

Median 38.35 38.47

Mean 43.40 43.23

3rd Quartile 50.94 50.74

Table 6.17:Different within-day errors covariance structure. RMSE results.

N=203 APE

R covariance structureAR(1) ARMA(1,1)

1st Quartile 7.83 7.83

Median 9.68 9.54

Mean 10.8 10.73

3rd Quartile 12.86 12.83

Table 6.18:Different within-day errors covariance structure. APE results.

N=203 Coverage Probability

R covariance structureAR(1) ARMA(1,1)

1st Quartile 0.88 0.88

Median 0.97 0.97

Mean 0.93 0.93

3rd Quartile 1 1

Table 6.19:Different within-day errors covariance structure comparison. Coverage re-

sults.

N=203 Width

R covariance structure AR(1) ARMA(1,1)

1st Quartile 141.53 138.98

Median 160.76 158.15

Mean 162.84 161.48

3rd Quartile 185.40 161.70

Table 6.20:Different within-day errors covariance structure. Width results.

51



structure also has a first-order autoregressive form. This basic assumption means that if on

a certain day the call center experienced a rise in the amount of incoming calls (compared

to the fixed effects prediction) then we would also expect to see a similar increase during

the following days. As the days become farther apart from that day we expect its influence

to decline.

We investigated the influence of theVd correlations by comparing our Three-Pattern

model with an alternative model which does not include this random effect. For the com-

pany’s current (10-day-ahead) strategy for prediction, one would hardly expect to see any

difference between the two models. Since 10 days is such a long lead time we anticipated

that the daily random effect would have a small influence on the results, if any.

The results are summarized in tables6.21, 6.22, 6.23and6.24. In contradiction to our

expectations, it seems that the daily random effect is an important one. One possible ex-

planation for such an outcome is that by modelling the between day correlations we also

influence other parameter estimates in the model (making them moresmooth) which in

turn improves the overall forecasting model.

RMSE

N=203 Three-Pattern Three-Pattern

without daily random effect (with daily random effect)

1st Quartile 32.03 32.65

Median 38.63 38.35

Mean 44.53 43.40

3rd Quartile 54.12 50.94

Table 6.21:Testing the influence of the daily random effect. RMSE results.
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APE

N=203 Three-Pattern Three-Pattern

without daily random effect (with daily random effect)

1st Quartile 7.86 7.83

Median 10.09 9.68

Mean 11.03 10.80

3rd Quartile 13.28 12.86

Table 6.22:Testing the influence of the daily random effect. APE results.

Coverage Probability

N=203 Three-Pattern Three-Pattern

without daily random effect (with daily random effect)

1st Quartile 0.85 0.88

Median 0.94 0.97

Mean 0.91 0.93

3rd Quartile 1 1

Table 6.23:Testing the influence of the daily random effect. Coverage results.

Width

N=203 Three-Pattern Three-Pattern

without daily random effect (with daily random effect)

1st Quartile 136.12 141.53

Median 151.61 160.76

Mean 154.63 162.84

3rd Quartile 174.95 185.40

Table 6.24:Testing the influence of the daily random effect. Width results.
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6.3 US Bank

We do not repeat the whole selection process for the US bank data for several reasons: (1)

The bank’s data does not include billing cycles and as such only requires the daily pattern

analysis which was carried out; (2) Since each day is divided into 169 intervals the com-

putational efforts are significantly increased and as a result the ARMA(1,1) covariance

structure leads to a model which does not converge, and therefore we are left only with

the AR(1) choice; (3) In the bank data we only carry out one-day-ahead predictions so we

do not examine the importance of the inter-day autoregressive structure.

6.3.1 Determining Fixed Effects and Covariance Structure

The random effects are modelled using the same settings as our original model; i.e. both

follow an AR(1) structure. However, we fitted a slightly different version of the daily-

pattern fixed effects since the USA working days and weekday patterns differ from the

Israeli cellular call center ones. Recall that the normalized version of the data was plotted

in Figure3.4. As already noted, three interesting facts are depicted in this figure: (a) Mon-

days have an early start compared to the rest of the weekdays; (b) Fridays have a slower

decrease at the end of the day; (c) the remaining weekdays appear to be similar. Based

on these observations, we set aside Mondays and Fridays and tested the hypothesis that

during each periodk all the remaining weekdays are not significantly different. We tested

the last statement using a simple ANOVA model similar to the one described in (6.3). The

ANOVA underline assumptions of normality and homoscedasticity were examined using

different plots and were found to hold for the data.

Figure6.1 is a QQ-plot of 169 P-values corresponding to the ANOVA results for each

period. The results show that for most parts of the day the 3 weekdays are quite similar.

The results show that the percentage of significant p-values are far greater than the5% of

significant periods that one would expect under the intersection null hypothesis. Despite

these results, due to parsimony considerations, we restricted the analysis to 3 different

weekday patterns: one for Monday, one for Friday and one for the rest of the weekdays.
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Figure 6.1:P-values QQ-plot for the ANOVA by periods of the US Bank data. The blue

line corresponds to the5% value. The red line represents the uniform distribution.
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Chapter 7

Results of Prediction

7.1 Israeli Cellular Phone Company

In this section we will define and analyze a few goodness-of-fit criteria based on the mixed

model predictions. Some of these criteria evaluate how well our mixed model can perform

if implemented with the aim of achieving a particular QED regime. We will also compare

the Poisson Bayesian model to the mixed model results.

7.1.1 Mixed Model Analysis

Goodness of Fit Figure7.1presents the QQ-plot for the residuals of the Three-Pattern

mixed model. Consequently, it is apparent that the residuals normality assumption holds

for most of observations.

Tables7.1and7.2shows the different values of the estimated error variance (σ2
ε ) using the

two alternatives, once using an ARMA(1,1) structure for the between-periods covariance

structure and once with an AR(1) structure (both techniques are detailed in Section5.1.4).

Both analyses exhibit very similar values. The two averages of the estimated variance are

0.309 and 0.31 which are quite close to the expected theoretical value of 0.25.

56



−4 −2 0 2 4

−
5

0
5

Mixed Model Residuals QQ plot

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

Figure 7.1:The Three-Pattern mixed model residuals QQ plot
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Learning Set No. Estimated Variance Learning Set No. Estimated Variance

1 0.199 20 0.320

2 0.185 21 0.352

3 0.183 22 0.390

4 0.136 23 0.376

5 0.092 24 0.382

6 0.230 25 0.387

7 0.288 26 0.416

8 0.309 27 0.380

9 0.293 28 0.369

10 0.309 29 0.333

11 0.319 30 0.324

12 0.319 31 0.338

13 0.340 32 0.334

14 0.324 33 0.340

15 0.314 34 0.320

16 0.309 35 0.333

17 0.326 36 0.320

18 0.338 37 0.301

19 0.311 - -

Table 7.1:The estimated variance ofε using the AMRA(1,1) structure. The average value

is 0.309 and the standard deviation is 0.07.
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Learning Set No. Estimated Variance Learning Set No. Estimated Variance

1 0.260 20 0.320

2 0.227 21 0.352

3 0.193 22 0.390

4 0.192 23 0.376

5 0.086 24 0.381

6 0.131 25 0.387

7 0.288 26 0.416

8 0.310 27 0.379

9 0.293 28 0.369

10 0.301 29 0.333

11 0.319 30 0.325

12 0.319 31 0.338

13 0.340 32 0.334

14 0.324 33 0.340

15 0.314 34 0.319

16 0.310 35 0.333

17 0.326 36 0.300

18 0.338 37 0.291

19 0.311 - -

Table 7.2:The estimated variance ofε using an AR(1) as the between-period covariance

structure. The average value is 0.31 and the standard deviation is 0.07.
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Lead Time Effect Our prediction process has three user defined elements: the learning

time; the prediction lead time; the forecasting horizon. During our model’s training stage

we did not change these parameters.

Some academic studies conducted in the past concentrate on producing one-day-ahead

predictions or sometimes online updating forecasting algorithms. These methods, how-

ever, do not tackle the industry problem of attaining good predictions in order to produce

the weekly schedule sufficiently ahead of time. Trying to cope with this problem, the

cellular company actually uses a two stage process. It first produces a somewhat inaccu-

rate forecast ten days before the desired week and then it generates another one, five days

before. The second forecast, it says, slightly differs from the first one and so it is essential

in order to adequately schedule agents. One interesting question which arises from the

cellular company’s method is what is the extent of the prediction lead time effect.

In order to test the prediction lead time effect, we ran our forecasting procedure using ten

different lead times, ranging from one-day-ahead to ten-days-ahead. The learning period

and the forecasting horizon stay the same; i.e., six weeks and one week, respectively.

Figure7.2 illustrates both the average RMSE and APE behaviors as the prediction lead

times grows. By looking at the average results we can confirm that the company is right:

using more recent learning data does improve prediction results. However, from the figure

it seems that the six-days-ahead predictions are more accurate, on average, than the five-

days-ahead ones. We also examined ten boxplots for each of these measures to investigate

their dispersion across the ten different lead times. The results show that the dispersion is

quite the same over different lead times. We also note that there is an advantage in pro-

ducing one-day-ahead predictions (i.e., zero lead time) since they seem to be considerably

more accurate. Knowledge such as this may be useful for managing the workforce even

if it is not possible to change the scheduling itself from one day to the next. Since we are

referring to a weekly prediction, the manager might use this recent forecast to update the

schedule for days later in the week.
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lag

m
ea

n 
R

M
S

E

0 1 2 3 4 5 6 7 8 9 10

39
.2

39
.6

40
.0

40
.4

40
.8

41
.2

41
.6

42
.0

42
.4

42
.8

43
.2

lag

m
ea

n 
A

P
E

9.
7

9.
8

9.
9

10
.0

10
.1

10
.2

10
.3

10
.4

10
.5

10
.6

10
.7

10
.8

mean RMSE
mean APE

Figure 7.2:The average RMSE and APE versus the prediction lead time
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Service Times Analysis We estimate parameters of the two average service times mod-

els using the SASr GLM procedure. The learning data include dates between mid-

February, 2004 and the end of December, 2004. Examining the first model results shows

that the interaction between the quadratic period term and the weekday is not significant.

Consequently, we also examined the first model excluding the insignificant term. This

last model is referred to as Model 3. Since our data has a large number of observations

(8382 which correspond to 254 regular days), we use the asymptotic log-likelihood ratio

chi-square test to compare the models. Table7.3 summarizes the results of the different

models. We compare Model 3 to Model 2 to check if the generalized model is signifi-

cantly better than the reduced quadratic model. The relevant chi-square statistic equals

58.104 and the appropriate p-value is approximately one. Hence it seems that the gen-

eralized model (i.e., Model 2) is not significantly better in modelling the average service

times. Hence, we choose Model 3 for our forecasting model. Figure7.3 illustrates a

typical average service time prediction curves for each weekday.

By comparing the predictions to the true service means in the same manner as we did

with the arrival process analysis, we calculate the mean APE. Its value is 8.54%. The

predictions and this last result will later be used to estimate different measures of system

loads.

Model No. No. of parameters Error SS

1 19 947.388

2 198 890.217

3 14 948.321

Table 7.3:Average service time models. Model 1 assumes a different quadratic curve for

each weekday. Model 3 is the same as the Model 1 excluding the interaction between the

quadratic period term and the weekday. Model 2 is the generalized model which assumes

a different pattern for each weekday.
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QED regime Analysis According to the QED regime, the number of service providers,

S, can be determined by the following relation:

S = dλ
µ

+ β ·
√

λ

µ
e (7.1)

whereλ is the arrival rate andµ is the service rate. By determiningβ, the call center

manager actually sets the company’s costs and staffing policies. In a queueing system with

abandonments, such as ours,β can have both negative and positive values. The quantity

β is a function of the ratio between the cost of customers’ delays and for abandonment

and the cost of staffing an agent. Practical values ofβ are between -1 and 2. Figures

demonstrating theβ function in an Erlang-C system, where there are no abandonments

can be found in [14].

In this paragraph, we introduce two measures that evaluate forecast performance with

respect to the QED “square-root staffing” rule. The first one estimates the deviation be-

tween the pre-determinedβ (βu) and the true value ofβ (βa) for the load actually observed

assuming that the average service time can be perfectly forecast. The second measure es-

timates the deviation between the scheduled number of agents (Ŝ) and the actual required

number of agents (S) using units of the square-root of the offered load. In addition, this

second measure incorporates the average percentage error between the predicted and the

actual average service time. The two measures provide similar managerial information,

however, the second measure has a more natural interpretation.

We begin by definingβu as the user (i.e. the call center manager) chosenβ. Now we

know that the user will use the predicted value of the arrival and service rates in order to

set the number of required agents,Ŝ. Hence we know that:

Ŝ =
λ̂

µ̂
+ βu ·

√
λ̂

µ̂
(7.2)

In practice, the assigned agents need to deal with the true value (λ) of the arrival rate and

the actual service rate (µ). Realizing the above, one can say that with the real values of

λ andµ, the call center is in effect operating under a different value ofβ. This adjusted

value ofβ will be referred to asβa. Formally we can write:

Ŝ =
λ

µ
+ βa ·

√
λ

µ
(7.3)
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By equating the above equations we come to the following results:

λ

µ
+ βa ·

√
λ

µ
=

λ̂

µ̂
+ βu ·

√
λ̂

µ̂
⇒

βa − βu ·
√

λ̂

λ
· µ

µ̂
=

λ̂
µ̂
− λ

µ√
λ
µ

(7.4)

Let us assume for now that we can predict the rateµ perfectly which means thatµ = µ̂

(which is a fairly reasonable assumption in practice). From earlier results we know that

the average arrival rate APE is about 0.1 and hence the square root term is approximately

1.049≈ 1. Under the above assumptions we conclude that:

∆β , βa − βu≈ λ̂− λ√
λ · µ (7.5)

This difference will be referred to as the∆β measure. Examining it can help determine

how well our forecasting method behaves. It can answer questions like: does this fore-

casting algorithm usually over-estimate or under-estimate the number of arrivals and by

how many agents. Note that the desired value of∆β is zero, indicating a perfect point-

prediction of the arrival counts.

We evaluate∆β using the estimated average service times (i.e., average service time=

1/service rate). In Figure7.4, we examine the averaged∆β values across the 33 periods

of the day using our final mixed predictions. To obtain these values of the estimated∆β,

we first estimate∆β for each day in our learning data during each period. Afterwards,

we average for each period separately over all the days, excluding holidays and irregular

days.

The small values of∆β indicate that our model does quite well in predicting the value

of the arrival rate. It also indicates that the user’sβus are very close to the realβas. The

estimated average values are close to zero but are usually greater than zero which means

that for most parts of the day the predictions would lead to some over-staffing. During

the early morning hours and at the end of the day, the values which we observe make

sense since the arrival rates during those hours are usually low which corresponds to large

values of∆β.

After examining the values of average∆β one can also examine the dispersion of∆β

throughout the day by looking at boxplots for each period as shown in Figure7.5. From

these results we can say that most of the∆β have absolute value less than 2. There are
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Figure 7.4:The average estimated∆β as a function of period.

five relatively large∆β values. The three which occur during periods 31,32 and 33 all

come from the same day, July 27th, which has an unusual drop in the number of incoming

calls during those periods. The two outliers located during the 5th and 6th periods are also

related to the same date, September 19th. During these periods there is also a peculiar

drop in the number of incoming calls which is unexplained.

In conclusion, the boxplots due indicate that50% of ∆β values are between -0.5 and 0.5

and on average are zero. Given that practical values ofβ are between -1 and 2, on a large

proportion of the periods the mixed model will not make a gross error in the staffing.

Now let us remove the assumption made before about the service rate. This leads to the
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Figure 7.5:Boxplots of∆β for the different periods.

problem of predicting the mean service times in addition to the arrival rate during each

half-hour. Using the same methodology as before, one can say that the user has to pre-

determine a value forβ, and based on the predicted values of bothλ andµ set the number

of required agentŝS in the following manner:

Ŝ =
λ̂

µ̂
+ β ·

√
λ̂

µ̂
(7.6)

Knowing the true values ofλ andµ the user would still use the sameβ but would now get

the desired number of agents, i.e.S. This number is the correct number of agents needed

to handle the actual system load at the desired quality and efficiency trade-off. Following
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this notation we can write the following equation:

S =
λ

µ
+ β ·

√
λ

µ
(7.7)

From the above two formulas one can deduce the following:

Ŝ − S√
λ
µ

=

λ̂
µ̂
− λ

µ√
λ
µ

+ β




√
λ̂
µ̂
−

√
λ
µ√

λ
µ




Ŝ − S√
λ
µ

=

λ̂
µ̂
− λ

µ√
λ
µ

+ β




√
λ̂µ

λµ̂
− 1


 (7.8)

Using the mean APE for the service rate and arrival rate the second term in (7.8) is small.

Hence, we come to the conclusion that:

Ŝ − S√
λ
µ

≈
λ̂
µ̂
− λ

µ√
λ
µ

(7.9)

We shall refer to the above measure as∆QED . It enables one to evaluate the difference

between the actual and the desired number of agents, normalized by the square root of the

actual offered load. Normalizing with the square-root of the offered load is natural using

the following reasoning: in the QED regime, we add (or deduct) a factor (β) of square-

root of the offered load to ensure adequate staffing levels. Using∆QED we can evaluate

by how many units of the square-root of the offered load our staffing levelŜ deviated from

the required levelS. This is similar to evaluating the number of unit deviations between

the user definedβu, and the adjustedβa (defined above).

We proceed by calculating∆QED using the same data as before but this time we are also

incorporating the mean service times predictions produced by the model described in the

previous paragraph. Figure7.6 demonstrates the results. Because the first two values of

∆QED are very large they distort the figure and its very hard to make sense of things.

For this reason, we add Figure7.7which gives a zoomed-in view for the periods between

8:30AM and 11:30PM.

From the results we can see that during the afternoon hours we are predicting the offered

load quite well. During the second peak period (which occurs at around 19:30) we are

under-estimating the offered load and hence under-staffing the call center by 1 – 2 agents.

In the early morning hours, this deviation might cause problems since only a few agents
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Figure 7.6:The average estimated∆ QED as a function of period.

are available. However, it is very important to also note that during these hours the QED

regime is likely to be inappropriate and hence this measure is irrelevant during those

periods.

The next natural step of this analysis is to study the effect of the predictions deviations

on service level measures. In the process of scheduling, a manager will ultimately decide

what is the required number of agents according to some pre-determined service level

goals. These goals are translated into measures such as: the customer’s probability to

wait, the average waiting time or the probability of a customer to abandon. It would be

interesting to study the sensitivity of these measures to errors of the predicted service

times and arrival counts, compared to their actual values.
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Figure 7.7:The average estimated∆ QED versus periods between 8:30 and 23:30.

Variability Measure Analysis One of our research goals is to quantify the uncertainty

in the arrival process; for example, trying to decide if there are specific periods during the

day which are harder to predict than others.

As we already saw, the daily patterns differ among weekdays. Taking a slightly different

approach than before we begin by investigating the natural cluster hierarchy hidden in the

daily patterns. We explore this by implementing an agglomerative clustering algorithm

on the normalized daily patterns. We used the ‘agnes’ command located in the ‘cluster’

package (see [11]) available in the R statistical software. The results show that there are

two large clusters: one contains only weekends and the other has all the rest of the week-
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days. We continued exploring the weekdays cluster which contains most of the dataset

(including irregular days). We studied this cluster by trying to divide it into different

smaller groups. We did this by running the k-medoids algorithm (detailed in the second

chapter of [10]) with different k-values ranging from 2 to 10. Based on the silhouette

coefficient we arrived at the conclusion that the weekdays cluster can be further divided

into two clusters which can be identified as holidays and regular weekdays. The holidays

identified using this procedure correspond to the list of holidays provided in Table3.1.

Taking out the five outlier days that we initially listed in Table3.2 we are left with only

the regular weekdays in the other cluster.

After this primary procedure we now have a cluster containing days which are similar to

each other based on the Euclidian distance measure between daily arrival profiles.

Let us assume for a moment that we would have to predict each period arrival count based

on the naive estimator, i.e. the daily average during that period. Since all the days in the

cluster are similar we would use all of them to calculate each period mean value. Note

that this procedure only uses periods information to produce the prediction as opposed to

our first benchmark approach (detailed in (5.14)) which also incorporated the weekday

data.

We shall now investigate how much variability is present in each period when the forecast

is restricted to this basis (i.e.,period) by comparing between each period mean value and

its RMSE. Figure7.8shows the results of the naive model comparison.

The next evident step that suggests itself from the above figure, is to calculate the linear

regression curve estimators since the points seem to fall on an almost straight line. In

a perfect Poisson distributed environment with an arrival rate ofλ, we know that the

variance,σ2, equals the arrival rate,λ. Taking log on both sides of this last equation one

would expect the following relationship between the log standard deviation and the log

expected value:

log σ =
1

2
· log λ (7.10)

So for a collection of Poisson variates one would expect to see a straight line when plot-

ting their log-RMSE’s against their log-mean values. The estimated value of the slope

should be close to 0.5 and the intercept estimator would be close to zero. Our naive linear

regression results are presented in Table7.4, and show that the intercept is not signifi-

cantly different from zero. Looking at the slope estimator we can observe the well known

over-dispersionphenomena mentioned in several articles such as [3] and [5].

Using the same method as implemented on the naive model predictions, we can compare
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Figure 7.8:Plot of the log RMSE versus the log mean arrival value based on the naive

predictor. Each point is for a different period.

Models Name Intercept Intercept P-value Slope Slope P-value R-Squared

Naive Model 0.202 0.231 0.617 1.55 · 10−20 0.9403

Table 7.4:The naive model linear regression estimators.

between different models. Specifically, plotting the RMSE against the mean arrival value

for each period. The analysis is carried out on two additional models: the first benchmark

(industry) model, defined in (5.14) and the final three-pattern mixed-model, defined in

(5.2).
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Figure 7.9:For each period, a plot of the log RMSE versus the log mean arrival value

based on the naive predictor, the first benchmark model and the mixed-model.

Figure7.9shows the comparison between the three models: the naive model and the two

additional ones. There is a large cluster on the right side of the figure. Figure7.10focuses

on periods with higher arrival mean values which corresponds to this cluster. By looking

at both graphs, one can see that the mixed model has lower RMSE during most of the

periods. The naive model has lower RMSE than the benchmark model. The observations

located on the lower left side of the graph correspond to the morning hours. During these

morning hours, it seems that the naive model is doing just as well and even better than the

other two models. However, one must consider that this naive model’s ‘predictions’ (i.e.,
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Figure 7.10:For each period, a plot of the log RMSE versus the log mean arrival value

based on the naive predictor, the first benchmark model and the mixed-model. This is a

zoom-in graph that focuses on periods with higher mean arrival counts.

mean values) are based on the entire 203 days for each of the periods whereas the other

predictions are based on only 6 weeks.

Looking at Table7.5, we can compare the linear regression estimators of the three models.

As can be seen, the mixed model slope is the closest to the “natural” 0.5 value but it also

has a significant intercept. The positive intercept on the logarithmic scale means that even

if the dependence of standard deviation on the mean has a square-root form, there remains

nevertheless some unexplained over-dispersion.
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Models Name Intercept Intercept P-value Slope Slope P-value R-Squared

Naive Model 0.202 0.231 0.617 1.55 · 10−20 0.9403

Benchmark Model 0.344651 0.0492 0.601 5.699 · 10−20 0.9315

Three Pattern Mixed-Model 0.622 0.003 0.543 3.158 · 10−20 0.901

Table 7.5:The naive, benchmark and mixed model linear regression estimators.

The last thing we shall examine is the one-day-ahead predictions versus the ten-day-ahead

ones. Adding these two additional models brings us to a total of five models to compare:

the naive model, the benchmark model ten-day-ahead, the benchmark model one-day-

ahead (ODA), the three-pattern mixed model ten-day-ahead and the three-pattern mixed

model one-day-ahead (ODA).

Figure7.11displays the comparison between the five models. Figure7.12zooms in on

periods with higher arrival mean values. It is evident that there is a reduction in the

RMSE when we use a shorter lead time. As mentioned before, this comment should be

considered by call center managers since even when predicting the full week, one might

nevertheless consider making changes as the week unfolds.

The one-day-ahead results of the two models linear regression estimators are presented

in Table7.6. From these results one can see that the one-day-ahead estimators of both

the benchmark and the mixed models have slopes closer to the theoretical Poisson slope.

Comparing both the one-day-ahead and the ten-day-ahead behaviors, one can see that the

difference between the slopes of the two models is about 0.05.

Models Name Intercept Intercept P-value Slope Slope P-value R-Squared

Benchmark Model ODA 0.3091 0.0709 0.602 3.146 · 10−20 0.9375

Three Pattern 0.4636 0.0356 0.5522 3.781 · 10−16 0.8856

Mixed-Model ODA

Table 7.6:One-day-ahead benchmark and mixed models — linear regression estimators.

In summary, from the above results it appears that the mixed model is successful in captur-

ing more of the predictable variability than do the naive model or the benchmark model; in

particular during the busier periods of the day. As a result, for the mixed model, the resid-

ual variability is closer to that corresponding to the inherent randomness of the Poisson

distribution. Also the short, one-day-ahead, lead time plays an important role in reducing

this residual variability.
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Figure 7.11:For each period, a plot of the log RMSE versus the log mean arrival value

based on the naive model, the benchmark model ten-day-ahead, the benchmark model

one-day-ahead, the three-pattern mixed model ten-day-ahead and the three-pattern mixed

model one-day-ahead.

7.1.2 Comparison between the Poisson Bayesian Model and the Mixed

Model

When applying the Poisson Bayesian model to the current version of ‘OpenBugs’, our

programs, unfortunately, could not handle our original prediction problem of forecasting

the full week on a ten-day-ahead basis. Moreover, because of computational difficulties,
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Figure 7.12:For each period, a plot of the log RMSE versus the log mean arrival value

based on the naive model, the benchmark model ten-day-ahead, the benchmark model

one-day-ahead (ODA), the three-pattern mixed model ten-day-ahead and the three-pattern

mixed model one-day-ahead (ODA). This graph shows only periods with high arrival

mean values.

the highest resolution we were able to apply to the Poisson Bayesian model was two and

half hours over six periods of the day. As a result, this section will only present a ‘proof

of concept’ for this model. We will investigate the one-day-ahead forecast results for July

1, 2004 during the six periods between 7AM-9:30PM. We used 6 weeks of past data as

the learning data.
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The mixed-model was also adjusted using the same settings as the Poisson Bayesian

model to enable a fair comparison. For example, the model was expanded to include

all seven days of the week. The billing cycles indicators were not included in the model

because the computational complexity was excessively hard for the ‘OpenBugs’ software

to handle.

We ran the Poisson Bayesian model using two Markov chains to reduce the correlations

between the samples. Each chain was run for 1750 iterations after a burn-in period of

1000. The inference is carried out using the combined samples. The effective number of

iterations, which is used as a crude measure of effective sample size, was approximately

1900 (for the predictive distributions of the 6 periods).

One of the main advantages of implementing the model using ‘OpenBugs’ is that the

forecasted periods are considered to be parameters and as such one can generate their

posteriordistributions. The periods histograms and density plots are presented in Figure

7.13.

Figure 7.14 presents the predicted values attained from both the mixed-model and the

Poisson Bayesian model. We used the mean value of the forecast distribution as the pre-

dicted value for each period. For most periods ofthis day the mixed-model outperforms

the Poisson Bayesian model.

We also compare the prediction intervals of both methods. For the Poisson Bayesian

model we used the forecast distribution0.025 and0.975 quantiles to determine the95%

prediction interval. From Figure7.15it is apparent that the Poisson Bayesian model has

wider prediction intervals than the mixed-model.

Although, based on these results one might be discouraged from pursuing the Poisson

Bayesian model, we believe that further investigation of this model is appropriate since

one day is hardly enough to determine model adequacy.
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Figure 7.13:The Poisson Bayesian model predicted periods. For each of the six periods

between 7AM-9:30PM the forecast distribution is plotted.
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Figure 7.14:Comparison between the Poisson Bayesian model and the mixed-model pre-

dictions results.
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Figure 7.15:Comparison between the Poisson Bayesian model and the mixed-model pre-

diction intervals.
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7.2 US Bank

In this section we examine the normality assumption of the mixed model and compare

between the Gaussian Bayesian model and the mixed model prediction results. We also

discuss the practical applications of these models in a business environment.

Goodness of Fit Figure7.16presents the QQ-plot for the residuals of the mixed model

on the US Bank data. Near the ends of the QQ-plot there are deviations from the normal

distribution. However, these deviations correspond to only a few days and hence for most

of the observations the normality assumption holds.
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Figure 7.16:The mixed model residuals QQ plot.
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7.2.1 Comparison between the Gaussian Bayesian Model and the Mixed

Model

In this section we compare between the results of two main models: the mixed model and

the Gaussian Bayesian model. We compare both models’ forecasting performances over

a period of 64 regular weekdays. This period includes weekdays between July 25 and

October 24, 2003.

For the Gaussian Bayesian model, we use the performance measures reported in [22]. We

did not implement this model. As described in the above mentioned article, for each day

the 100 previous days were used as the learning data.

For the mixed model, we ran a one-day-ahead prediction process on the data. Because of

computational problems we could not preform our original forecasting process, i.e. using

six weeks of historical data as the learning data. Instead we ran the forecasting procedure

twice: once using five weeks (referred to as Model 5) of past data and once using four

weeks (referred to as Model 4) as the learning period.

In the previous mixed-model (i.e. for the Israeli cellular data), the prediction intervals

used degrees of freedom that were calculated according to a general Satterthwaite ap-

proximation as recommended when dealing with random effects. For further details the

reader is referred to the SASr help manual located in the software itself or to theproc

mixed website.

However, using this approximation on the current US bank data yielded some confusing

results.

N=64 RMSE APE Cover Width

Min 12.31 5.85 0.63 60.60

1st Quartile 15.18 7.29 0.92 63.63

Median 17.07 7.59 0.97 69.70

Mean 19.10 8.76 0.94 139.88

3rd Quartile 21.12 9.09 0.99 81.16

Max 41.01 28.02 1 501.28

Table 7.7:The mixed-model results with 4 weeks of learning data.

Table 7.7 presents the prediction results for the mixed-model using four weeks as the

learning period. Looking at the width statistics, specifically the mean and maximum val-
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ues, it is apparent that there are a number of days which have very wide average prediction

interval. Closer examination of the results revealed that out of the 64 predicted days, 13

exhibited this abnormal behavior. These days do not have an exceptionally large pre-

diction standard deviations. However they do have an unusual number of denominator

degrees of freedom which equals one (during all periods of the day). To investigate this

phenomenon, we compared the above results with those of the mixed-model procedure

using the default degrees of freedom calculation method (all the rest of the settings remain

the same). This default method is referred to, by the SASr help manual, as the contain-

ment method. Using the default method, the 13 ‘abnormal’ days exhibited significantly

smaller widths. The remaining question is: what effect does the default method have on

the width of the remaining 51 days. Table7.8summarizes the 51 days width and coverage

results of both the Satterthwaite and the containment (default) method. We do not explore

the RMSE and APE since they are not affected by the change in the degrees of freedom.

Cover Width

N=64 Satterthwaite Containment (Default) Satterthwaite Containment (Default)

Min 0.63 0.63 60.60 58.37

1st Quartile 0.91 0.89 63.17 61.96

Median 0.96 0.95 67.13 66.37

Mean 0.93 0.93 68.62 67.25

3rd Quartile 0.98 0.98 72.32 71.85

Max 0.99 0.99 84.06 81.07

Table 7.8:Comparing the mixed-model coverage probability and width using Satterth-

waite approximation versus the containment method to calculate the degrees of freedom.

From this comparison one can see that the coverage probability statistics are very sim-

ilar (some even have exactly the same values). However, the prediction interval widths

are consistently shorter using the default method. This may indicate that using the Sat-

terthwaite approximation leads to unnecessarily large prediction intervals. The reason

as to why such results occur specifically when using Satterthwaite approximation on the

Bank’s data and not on the Cellular’s data is unknown to us and might need to be further

explored.

Following these results, the two versions of the mixed-model (once using four weeks of

past data and once using five weeks of past data as the learning periods) are implemented
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using the default method for calculating the degree of freedoms and the associated pre-

diction intervals. Tables7.9and7.10present the results of the Bayesian model and both

versions of the mixed model using all 64 predicted days data. Generally speaking, the

Bayesian model outperforms the mixed model although the results are very close. The

RMSE and APE maximum values are smaller in the mixed model. The mixed-models

width values are smaller than for the Bayesian model but the coverage probabilities are

smaller as well.

In spite of the above results, it is important to emphasize that the mixed-models daily pre-

dictions only require 20-25 learning days in comparison to the 100 days that the Bayesian

model required. Moreover, the daily forecast took about twenty-thirty minutes for each

day. Article [22] authors do not specify the learning time or the prediction time but it

seems that using the Bayesian approach is much more time consuming and hence may be

impractical industry-wise. As it was implied by the authors, their algorithm was unable to

accurately predict call volumes at horizons greater than a week for five minute intervals.

RMSE APE

N=64 Bayesian Mixed 4 Mixed 5 Bayesian Mixed 4 Mixed 5

Min 11.14 12.31 12.27 5.6 5.85 5.89

1st Quartile 14.25 15.18 14.93 7.0 7.29 7.17

Median 15.83 17.07 17.11 7.4 7.59 7.71

Mean 18.28 19.10 19.05 8.4 8.76 8.74

3rd Quartile 19.83 21.12 20.31 8.5 8.9 9.09

Max 43.42 41.01 41.30 28.6 28.02 27.84

Table 7.9:Comparing different models using RMSE and APE performance measures on

the bank’s data. The table presents the following approaches: the Bayesian and the mixed.

Mixed 4 and Mixed 5 represent the results of the mixed model using four weeks of past

data and five weeks of past data as the learning periods, respectively.
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Cover Width

N=64 Bayesian Mixed 4 Mixed 5 Bayesian Mixed 4 Mixed 5

Min 0.686 0.63 0.63 64.54 58.37 58.32

1st Quartile 0.935 0.90 0.91 68.13 62.44 63.53

Median 0.97 0.96 0.96 69.23 66.68 66.39

Mean 0.947 0.93 0.93 70.10 67.80 67.93

3rd Quartile 0.988 0.98 0.98 72.41 73.15 71.60

Max 1 0.99 0.99 79.3 82.60 92.19

Table 7.10:Comparing different models Coverage and Width performances on the bank’s

data. The table presents the following approaches: the Bayesian and the mixed. Mixed 4

and Mixed 5 represent the results of the mixed model using four weeks of past data and

five weeks of past data as the learning periods, respectively.
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Chapter 8

Conclusions and Future Research

In this thesis we have developed two variations of Poisson process models for describing

count data of call center arrivals. These models utilize different techniques to tackle the

modelling problem. One approach uses mixed models techniques while the other uses

modern Bayesian techniques to analyze the data.

Our mixed model was customized to the specific requirements of an Israeli Cellular phone

company. The company requires that the weekly forecast be available to the decision

makers at least ten days in advance and should be based on six weeks of past data. Recent

research, on the other hand, has focused on producing one-day-ahead forecasts or within-

day learning algorithms. These issues are very important and may be very useful for call

centers that can mobilize their agents on short term notice. As we show, our mixed model

does contain the much needed practical flexibility to also support long lead times and

short learning periods. It is also relatively easy to implement with standard software such

as SASr.

The mixed model incorporates fixed effects, such as day-of-week and its interaction with

the daily periods; but it also models the day-to-day and the period-to-period correlations.

We have detailed how to determine the significance of such effects. This process was

illustrated on two different data sets: from an Israeli cellular phone company and from a

US bank. The Israeli cellular phone company data allowed us to examine another feature

of the mixed model. The data contained billing cycle dates which were used as exogenous

variables after a preliminary examination was carried out to help reduce the size of the

problem.

Unfortunately, we were unable to compare our mixed model to the current forecasting

algorithm of the Israeli cellular phone company (since the company does not regularly
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maintain its past predictions). An interesting future study would compare our mixed

model to other industry-used models to see whether it may be useful in such surroundings.

We have examined the mixed model results using several different measures such as the

variability measure. Also its behavior under different lead times was examined. From a

practical prospective, a manager might wish to consider a two stage prediction forecast:

First, producing an early weekly forecast for the scheduling process and next re-producing

another forecast one day before the week begins. This later prediction provides a much

more reliable forecast. Using this one-day-ahead forecast, the manager of a call center

might be able to incorporate immediate changes to the week schedule.

The model was also compared to the Gaussian Bayesian model detailed in [22]. The

results were very similar and quite good considering that the mixed model used only a

quarter of the learning data that the Gaussian Bayesian model used. The results are com-

parable even without considering other improvements that might be made to the mixed

model (such as incorporating a different daily pattern foreachday of the week). Based

on these results and earlier analyses, we conclude that our mixed model is a very flexible,

easy to implement and time efficient model. We would recommend it to the Israeli cel-

lular phone company as an alternative to their current “black-box” algorithm. Also other

exogenous variables, such as marketing effects, can be easily incorporated into the model

using either the same basic procedure we have described for the billing cycles effects or a

similar procedure.

An alternative Bayesian model was also proposed which models directly the Poisson ar-

rival counts. This model was implemented using the ‘OpenBugs’ software. Unfortunately,

the model was too complex and the data were too large to allow a thorough examination

of this algorithm. For future research, this model needs to be implemented using other

software such as C or C++, to further evaluate its capabilities. Nevertheless, the partial

results are promising and the approach is worthy of further consideration.

Our original forecast problem was to predict the system load which involves the average

service times as well as the arrival rates. We suggested and fitted a fairly easy quadratic

regression model which incorporates weekdays and period effects.

Having both these predictions and the arrival counts, we constructed a QED regime per-

formance measure. This measure helps determine how well our model would perform

when planning a particular QED regime. Our results show that during busy periods, when

the QED regime “square-root staffing” rule is relevant, the system will be able to perform

at a desired level commensurate with the actual load. By comparison with benchmark
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and naive models, the mixed model time series approach has improved the precision of

prediction for the busier periods. This result gives some evidence that one can ensure a

pre-specified QED regime using load forecasts that are sufficiently precise.
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Appendix A

Analysis of Interval Resolution

An interesting debate might be held between practitioners and theoreticians as to what

is the appropriate interval resolution to analyze. Theoreticians might say that in order to

fully maintain the homogeneity assumption the intervals should be as small as possible.

Alternatively, from a practitioner point of view, the resolution should be determined as a

function of the possible shift starting times. If it is possible to change the number of avail-

able agents every 5 minutes then this should be the appropriate interval resolution. This

may occur, for example, in large call centers where there are also agents who are occupied

doing different off-line tasks and who can become immediately available. However, it is

fairly common that call centers plan their daily schedule according to either half-hour or

15-minute resolutions.

As previously shown, our Gaussian mixed model can be easily modified to deal with

different interval resolutions. An interesting question is by how much predictions based

on lower-level resolutions are worse than 15 minute predictions as evaluated at the 15

minute period level. For example, if one predicted accurately the total arrivals over a half-

hour period, but in that period the first 15 minutes had 0.5 times the average arrival rate,

and the second 15 minutes had 1.5 times the average arrival rate, then using the half-hour

prediction would lead one to seriously overstaff in the first 15 minutes and understaff in

the second 15 minutes. This problem would not happen if one had good predictions at

the 15 minute resolution. Hence, we are interested in analyzing the effect of the interval

resolution on the forecast accuracy at the finest practical resolution.

In order to examine this last subject we used the Israeli Cellular data and predicted the

arrival counts between 7AM and 11PM during the 203 regular weekdays between April

11 and December 24, 2004. The forecast procedure is the same as implemented by the
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company; meaning that we used 6 weeks of past data as learning data to predict the week

which begins ten days ahead.

Our baseline data resolution is 15-minute intervals. We compared 15-minute intervals

with three additional interval resolutions: half-hour, one-hour and four-hours. In order

to fairly assess the behavior of the different interval widths we compared their 15-minute

predictions. The lower resolution forecasts were simply uniformly distributed between

the 15-minutes intervals. For example, we took the predicted arrival count for a specific

hour (on a certain day) and equally divided it into the four quarter hours. TablesA.1 and

A.2 describe the results for both the RMSE and APE, respectively. The results show that

the most precise predictions are obtained using the highest resolution. However, it is also

noticeable that the differences between the half-hour resolution and the 15-minute one are

quite small. The four-hour resolution results are quite bad in comparison with the other

interval resolutions. These results can be used to justify the use of half-hour intervals

in our study — only a minor practical improvement to the precision can be achieved by

using a higher resolution.

RMSE

15-minutes half-hour One-Hour Four-Hour

Min 12.28 12.07 14.13 32.18

1st Quartile 19.67 19.81 20.86 38.18

Median 22.48 22.59 23.56 41.37

Mean 24.97 25.06 25.87 42.80

3rd Quartile 28.45 28.29 29.18 46.14

Max 60.00 60.01 60.21 73.12

Table A.1: Prediction accuracy as a function of interval resolution. We compare the

RMSE result of the mixed model for four different resolutions: 15-minute, half-hour,

one-hour and four-hour
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APE

15-minutes half-hour One-Hour Four-Hour

Min 6.28 6.71 7.48 20.29

1st Quartile 9.28 11.05 12.38 14.26

Median 11.05 11.43 12.64 28.42

Mean 12.38 12.70 14.01 30.97

3rd Quartile 14.26 14.39 15.14 32.58

Max 53.19 60.32 80.88 217.00

Table A.2:Prediction accuracy comparison as a function of interval resolution. We com-

pare the APE result of the mixed model with four different resolutions: 15-minute, half-

hour, one-hour and four-hour
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Appendix B

Computer Code for Two Models

This section presents the codes used to implement the mixed model and the Poisson

Bayesian model.

B.1 Mixed Model – SAS Code

ods listing close ;

ods output CovParms = CovP ;

proc mixed data= forpred method= ml ;

class weekday kperiod date ;

model y = weekday Sun*kperiod kperiod Fri*kperiod /noint ddfm= satterth outp= predict solution ;

random date / type=SP(POW)(numDate) ;

repeated kperiod / subject= numDate type= AR(1) ;

run ;

ods output close ;

ods listing ;

B.2 Poisson Bayesian Model - OpenBugs Code

The source code for implementing the Beta-Gamma Bayesian model is presented below.

Remarks were colored in green for readers convenience.

model{
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The following loop defines the daily Gamma-Beta Process

for (i in 2:D) {
G[i] ← G[i-1]*B[i] + W[i]

B[i] ∼ dbeta(arg1,arg2)

W[i] ∼ dgamma(arg2,gam)

}
The following three lines define the Gamma-Beta Process priors

G[1] ∼ dgamma(gam,gam)

arg1← rho*gam

arg2← gam*(1-rho)

The following loop defines the daily counts distributions for the learning data

for (i in 1:(D-1) ) {
V[i] ← G[i] * mu[QD[i]]

for (j in 1:K) {
lambda[i,j]← V[i]*p[QD[i],j]

NDK[i , j] ∼ dpois(lambda[i,j])

}
}
The following loop defines the daily counts distributions for the predicted values

V[D] ← G[D] * mu[QD[D]]

for (j in 1:K) {
lambda[D,j]← V[D]*p[QD[D],j]

NDD[j] ∼ dpois(lambda[D,j])

}
The following loop defines the vectors of proportion of daily volume on each of the weekdays

for( q in 1 : 7 ){
p[q,1:K]∼ ddirch(alpha[q,])

}
The following loop defines the vectors of proportion of daily volume on each of the weekdays priors

for( q in 1 : 7 ){
mu[q]∼ dnorm(mn[q], precis[q])

precis[q]← 100*pow(mn[q],-2)

M[q] ∼ dnorm(5,0.2)

for (j in 1:K) {
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alpha[q,j]← exp(M[q])*pi[q,j]

}
}
The following loop defines the vectors of proportion of daily volume on

each of the weekdays parameters priors

gam∼ dgamma(0.01,0.01)

rho← exp(-prerho)

prerho∼ dgamma(2,5)

}
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