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Abstract

Today'’s call centers managers face multiple operational decision making tasks. One of
their most common chores is determining the weekly staffing levels to ensure customer
satisfaction and needs while minimizing service costs. An initial step for producing the
weekly schedule is forecasting the future system loads comprising both the predicted
arrival counts and the average service times.

After obtaining the forecasted system load, in large call centers, a manager can implement
the QED (Quality-Efficiency Driven) regime “square-root staffing” rule to allow balanc-
ing between the offered load per server and quality of service. Implementing this staffing
rule requires that the forecasted values maintain certain levels of precision. One of the
aims of this thesis is to determine whether or not these levels can be achieved by practical
algorithms.

In this thesis we introduce two arrival count models which are basedoiredPoisson
process approach. The first model uses the Normal-Poisson stabilization transformation
in order to employ linear mixed model techniques. The model is implemented and ana-
lyzed on two different data sets. In one of the call centers the data include billing cycles
information and we also demonstrate how to incorporate it as exogenous variables in this
model. We develop different goodness-of-fit criteria that help determine the models per-
formance under the QED regime. These show that during most hours of the day the model
can reach the desired precision levels. Actually, whenever the QED regime and square
root staffing formula are appropriate, the model performs well. We also demonstrate the
effect the forecasting lead time (that is, the time between the last learning data and the
first forecasted time) has on this model precision.

We also demonstrate how our mixed model can achieve very similar levels of precision
when compared to other models, such as the Bayesian model developed by Weinberg
al. in [22]. This similarity holds even though our model’s predictions are based on smaller
amounts of learning data.



Our second model employs the Bayesian approach, implementing Gibbs sampling tech-
niques, and using ‘OpenBugs’ software, to produce the predictive distributions for the
future arrival counts. Due to computational limitations we only show a ‘proof of concept’
for this model by applying it to predicting a single day’s arrivals and comparing it to the
mixed model results.

We also develop a fairly simple quadratic regression model to predict the average service
times needed for producing the future system loads.



List of Symbols

The following table summaries all the symbols appearing in this thesis. Some of the
symbols have different meanings in different sections of the thesis. Next to these symbols,
the section numbers and a brief definition. Symbols that do not have a section number
indicated next to them are general symbols used throughout the thesis. Symbols which
have several section numbers indicated have different meanings in those sections.
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means tha¥ is a random variable that is Poisson
distributed with parametey)

~ - a, ~ by, if a,/b, — 1,asn — oo
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€dk - inherent error term related to th& period of dayd

Adk the arrival rate during the™ period of dayd

Ad is the arrival rate during day

Lk - the service rate during thé" period of dayd

P - correlation parameter

cov - covariance

E - Expectation

n - number of observations

Ny - the arrival count during th&™ period of dayd

Ny - the number of arrival counts during day

S - the number of agents

Varoro? | - Variance

Ydk - =/ Ng +0.25

q4 - the day of the week corresponding to day

Qg 5.1 the day-of-week fixed effect for thg" weekday
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16 5.1 the fixed-effects coefficient vector
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7 the QED staffing policies coefficient
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Chapter 1
Introduction

Many companies today invest large amounts of resources in order to provide full customer
service, with much or all of the customer interaction based on telephone or internet ac-
cess. Contact and Call centers provide a direct contact point between companies and their
customers, thus making them especially important in the battle for market share. These
contact points accumulate large amounts of data that can later be analyzed and utilized
for short term operational decisions, medium term managerial decisions or for long term
tactical, strategic decisions.

The manager of a call center faces the classical scheduling problem of determining the
number of service agents that offers the best trade-off between maintaining high service
levels and low operating costs. Forecasting higher call loads than will actually be realized
will cause overstaffing, leading to unnecessary costs. On the other hand, forecasting a
lower number of incoming calls may result in long periods of waiting and high abandon-
ment rates, which eventually could lead to a loss of customers and revenues. Therefore,
modelling the load arrival process is the first and basic step of the scheduling problem.
Forecasting the system load requires the knowledge of two components: the arrival pro-
cess and the service time distribution.

With the help of recent advances, we now understand how to choose appropriate staffing
levels, given sufficiently accurate predictions of the load, in order to balance service
guality and efficiency. This leads one to the so-called QED (Quality-Efficiency Driven)
regime. The basic concepts of this regime have been developed in both the M/M/N queue,
usually referred to as Erlang-C, and in the M/M/N+M queue, usually referred to as Erlang-
A. (The latter notation denotes an M/M/N queue with customers whose patience has an
exponential distribution.) The approach is relevant when there is a high customer arrival



rate per unit time X), the service rate of customers served per unit time per agégmd (

fixed and the number of agents (S) is a function of the offered IRag (\ /). For main-
taining high service levels while preserving high offered load per sepver /5), the

QED regime prescribes that, for some constarthe number of scheduled agents should
equalS = R+ (- VR (3 is positive for Erlang-C and can take either sign, as well as
being zero, for Erlang-A). We call this prescription “square-root staffing”.

Following square-root staffing, the requirements for prediction accuracy in the QED regime
is that the estimated (arrival rate) must not exceed a square-root deviation from the real
arrival rate. Otherwise the QED rule will not be effective since, with a larger error, it will
either grossly over- or under-estimate the needed number of agents.

One of the questions that we consider in this thesis is whether in real systems, one can
achieve the prediction accuracy required in order to operate in the QED regime. For an
extensive review on call centers and the QED regime one can ref@jr # {letailed bib-
liography detailing further literature on this subject and other call centers related papers
is described by Mandelbaum i@Z].

In recent years, several different modelling technigues have been suggested as alternatives
for forecasting the arrival process. These alternatives range from classical ARMA (see
[23]) to complex Bayesian models (see for examQ8).

In this thesis we introduce two arrival count models which are basedoiredPoisson
process approach. This approach stipulates that the arrival counts follow a Poisson distri-
bution and that the arrival rate, is itself a stochastic process. The additional variability
created by the arrival rate creates a mechanism that can account for the well dvewn
dipersionphenomena often encountered in call center arrival counts data. Moreover, this
approach also allows for introducing correlations between different time intervals.

In the first model we use Gaussian linear mixed model formulations to describe a suit-
ably transformed version of the arrival process. Mixed model techniques allow us the
much needed flexibility to describe different seasonality effects using correlation struc-
tures. Motivated by an Israeli cellular phone company forecast procedure, we evaluate
our model’s results using six weeks of past data as the learning data and producing a
ten-day-ahead weekly forecast for each week.

As previously mentioned, the scheduling problem requires the system load prediction
which means that forecasts for the service rate should also be provided (in addition to
the arrival process predictions). We introduce a simple average service time forecasting
model based on the weekday and different daily period effects. Based on the results



of both the mixed arrival process model and the average service time predictions, we
introduce a new measure to evaluate these load predictions. This measure directly reflects
the extent to which the system’s operational quality and efficiency goals are achieved
when using the forecasts.

The mixed model results are also compared to results for a similar Bayesian model pre-
sented in22] and applied to data from a US Bank.

Our second model employs Bayesian techniques to produce the arrival count predictions.
By employing Gibbs sampling techniques, we produce the forecast distributions for the
arrival counts. Due to computational limitations we only show a 'proof of concept’ for this
model by applying it to predicting a single day’s arrivals. Further work on this approach
is required in order to make it a computationally practical alternative.

The mixed model developed in this paper is relatively simple to implement using standard
softwares such as SAS From a practical prospective, the model is very flexible and can
be adapted to different period lengths (esolution$ as well as various lead times (the
time between the last learning data and the first forecasted time). This model provides
good precision when compared to similar models. From a managerial prospective, we
also conclude that the lead time has a significant effect on prediction precision: generally,
shorter lead times are better. Hence, we advise a two stage weekly forecasting process
where, except for the first day of the week, a one-day-ahead forecast is used to update
subsequent forecasts.

As for the question of obtaining the desired level of the QED regime precision for load
predictions, we conclude that during most of the day these levels can be maintained.
During early morning hours, the algorithm precision is insufficient. However, this fact
makes sense since the QED regime staffing rule is also inadequate during these hours.
The outline of this thesis is as follows. In Chap®we review past and recent studies
that have been conducted on call center arrival processes. In CBapéedescribe two
different sources of call center data that are later used to illustrate our methodologies. In
Chapteid we describe performance measures for comparing different forecast methods.
Chapter5 describes three different arrival counts prediction models. We describe both
our mixed model and our Bayesian model in sect®rizand5.3, respectively. The third
model, briefly described in Sectidn2, was developed by Weinberg, Brown and Stroud
and is more fully described i12P]. An additional model, considered in Sectbd, is the
average service time forecasting model.

In Chaptei6, for the arrival process mixed models, we explain the comprehensive process



of determining the fixed and random effects for the two different data sets. Comparisons
between the different models and analyses of their results are discussed in (Zhapter
Conclusions are presented in Chaj@er



Chapter 2
Literature Review

In recent years, several documented studies of the incoming call arrival process have
been conducted and tested thanks to technology advances in the call center industry.
Earlier studies focused on classical Box and Jenkins, Auto-Regressive-Moving-Average
(ARMA) models such as the Fedex company stu@f§].[ A well-known study, also em-
ploying Auto-Regressive-Integrated-Moving-Average (ARIMA) models techniques, was
carried out by B.Andrews and S.Cunningham (sHetp produce L.L.Beans call center
daily forecasts. The study focuses on modelling two different arrival queues each with its
own characteristics. Their models incorporated exogenous variables along-side the MA
(Moving Average) and AR (Auto-Regressive) variables, using transfer functions to help
predict outliers such as holidays and special sales promotion periods.

A slightly different approach was described in an article published by Antipov and Meade
[2]. In this article the authors tackle the problem of including advertising response and
special calender effects by adding these variables in a multiplicative manner.

A more recent study was carried out by Tayl@8]. In this study several different time
series models were investigated on two different sources of data. Among these models
were: seasonal ARMA models; exponential smoothing for double seasonality methods;
and dynamic harmonic regression. His results indicated that for short term forecasting
horizons, the exponential smoothing for double seasonality method performs quite well
but for practical horizons (longer than one day) a very basic averaging model outperforms
all of the suggested alternatives. One of the author’s conclusions is that a more useful
picture could be obtained if both the prediction interval, defined in a previous article (see
[6]) by Chatfield, and the predictions density would be incorporated together with the
point estimates. In this study we follow the author’'s suggestions as we are particulary
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interested in the precision of our estimates with respect to implementing the “square-root
staffing” rule.
Recent empirical work has revealed several important characteristics that underly the ar-
rival process:

1. the arrival rate changes over the course of a day;

2. the arrival counts exhibit a common phenomena catledr-dispersion Over-
dispersion means that the call volume data sometimes show a variance that sub-
stantially dominates the mean value, contradicting the assumption that the data is
generated by a simple Poisson distribution. A mechanism that accounts for this
phenomena was suggested by Jongbloed and Koo@}.ifiey proposed the Pois-
son mixture model which incorporates a stochastic arrival rate process to generate
the additional variability;

3. there is a significant dependency between arrival counts on successive d&Js. In [
Brown et al. suggest an arrival forecasting model which incorporates a random
daily variable that has an autoregressive structure to explain the intra-day correla-
tions;

4. successive periods within the same day exhibit strong correlations. This correlation
was empirically analyzed in an article by Avramieisal. (see B]).

In the latter article three models were suggested that take account of these correlations.
The first two are different versions of the mixed Poisson model: (a) the first assumes
that the arrival rate has the following forin(t) = W - f(t) whereW ~ Gamma, 1).

Here f(t) characterizes the time variation of the arrival rate over a day (yielding a neg-
ative multinomial distribution of the arrival count vector); (b) the second assumes that
the arrival counts vector has a compound negative multinomial distribution, which gen-
eralizes the negative multinomial distribution by allowing the parameters to be randomly
distributed according to a Dirichlet distribution. The third model assumes a more general
structure in that the daily volumé, is randomly distributed according to a general distri-
butionG. It incorporates a vecto€, of the proportions of daily demand allocated to the
different K periods. It assumes thétis independent oY and is distributed according to

a Dirichlet distribution. The vector of observed arrival coutdsjs obtained by rounding

up each element of the product Bfand@). However, in this article the authors do not
tackle the intra-daily correlations presente@in

11



In recent years technology has allowed researchers to employ advanced Bayesian tech-
niques to this type of forecasting problem. These techniques include Markov Chain Monte
Carlo sampling mechanisms such as the Gibbs sampling algorithm. These algorithms
produce the forecasted arrival rate and the arrival counts distributions and so give more
information then just the point estimates.

An example of such a study was conducted by Soyer and Tarimg8hrih the article the
authors analyzed the effect of marketing strategies on call arrivals. Their Bayesian anal-
ysis is based on the Poisson distribution of arrivals over (possibly varying) time periods
measured in days, with cumulative rate function of the form:

Ai(t) = Ao(t) exp(F'Z,) (2.2)
where: denotes an advertising campaign, with its covariate ve&toand
Ao(t) =4t . (2.2)

The parameterén, v, 3) are given a prior distribution, and the posterior distribution of
these parameters is then discussed. In a random effect or mixed model approach, they
allow ~ to have a random component by modelling:

log(7y) = 6 + ¢ (2.3)

where thep; are iid N(0, 1/7), and the precision has a Gamma prior. By considering the

DIC statistic, they conclude that the random effects model fits much better than the fixed
effects model and conclude that the data cannot be adequately described by assuming a
model that explains arrivals solely using thginformation without some additional ran-

dom variability. The mixture model also provides the within advertisement correlations
over different time periods.

Another interesting paper, modelling incoming call arrivals to the US Bank call center
used here, also employing Bayesian techniques, was written by Weiabakd22]. In

this paper the authors use the Normal-Poisson stabilization transformation to transform
the Poisson arrival counts to normal variables. The normally transformed observations
allowed them the necessary flexibility to incorporate conjugate multivariate normal priors
with a wide variety of covariance structures. The authors provide a detailed description
of both the one-day-ahead forecast and within-day learning algorithms. Both algorithms
use Gibbs sampling techniques and Metropolis-Hastings steps to sample from the forecast
distributions. The model and its results will be further discussed in se@idrand7.2.1

of this thesis.
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Chapter 3

The Data

Our datasets originated from an ongoing basic research project called Data-MOCCA
(Data MOdel for Call Center Analysis), conducted by the Technion’s Statistics Labo-
ratory.(For more information on the Data-MOCCA project s2&.) Data-MOCCA's
databases contain detailed call-by-call histories obtained from several different call cen-
ters. This study will focus on data from two different call centers belonging to: an Israel
cellular phone company; and a North American commercial bank. The next two sections
describe these databases.

3.1 The Israeli Cellular Phone Company Data

The Technion’s collaboration with the cellular company, that began at the end of 2003, is
providing a monthly updated database which preserves call histories dating from January
2004.

The call center handles calls from several main queues: Private clients; Business clients;
Technical Support problems; Foreign languages queues; and a few minor queues. In gen-
eral, queues are operated by different service provider groups. ABdgsof incoming

calls enter the Private customers queue which is operated by a dedicated team of 150 tele-
phone agents. The load generated from each of the remaining queues is much smaller (for
example, the second largest queue is the Business queue and it geneératéshiBover-

all incoming load). Hence, we shall limit our discussion to modelling the Private queue
(and bear in mind that our model techniques can be applied to the other queues as well).
The Private queue’s call center operates six days a week, closing only on Saturdays and
Jewish holidays. On regular weekdays, operating hours are between 7AM and 11PM and
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on Fridays it closes eatrlier, at around 4PM.

We divide each day into half-hour intervals. There are two alternative justifications for
choosing a half-hour analysis resolution: (a) currently shifts scheduling is carried out at
this resolution; and (b) from a computational complexity point of view taking shorter
intervals significantly increases the computing time for many models and may make their
implementation completely impractical. Another justification comes from analyzing our
mixed model (detailed later on) behavior under different resolutions, where the half-hour
resolution exhibits “good enough” behavior. This analysis is fully detailed in Appendix
A. Consequently, we consider for each day 33 half-hourly arrival intervals between 7AM
and 11:30PM.

Note that if the arrival rate waseryinhomogeneous during a particular half-hour interval,
then using the average arrival rate could lead to under-staffing. Specifically, the staff level
assigned to meet the average load would not be able to cope with the peak load in that
particular half-hour interval. We do basically assume in the sequel that the within interval
inhomogeneity is mild.

The learning stage of the model is based on the arrivals between mid-February, 2004 and
December 31, 2004.

Figure3.1demonstrates the weekly pattern which occurs between April, 2004 and Septem-
ber, 2004. By examining the above graph one can reach several conclusions: Sundays and
Mondays have the highest arrival counts; the number of arrivals gradually decreases over
the week until it reaches its lowest point on Fridays; there are quite a few outliers which
occur in April.

Examination of outlying observations singles out twenty-two days with strange arrival
counts. Among these days were the holidays listed in Taldlewhich exhibit different

daily patterns and unusual daily volumes when compared to similar regular weekdays.
The additional five days that were assigned to the set of outliers are detailed itfB8Table

As mentioned earlier, April 2004 has an unusual weekly pattern. Out of the list of twenty-
two outliers, nine occur in April which explains the peculiar pattern that we saw in Figure
3.1. Among these nine outliers is the Passover holiday, Memorial day and Independence
day. During these holidays there was a lower arrival counts than on similar non-holiday
weekdays. Another event that took place on April is the country-wide change in the first
three cellular digits. During that day and the previous day there was a significant increase
in the arrival counts to the cellular company’s call center.

In conclusion, the outlying days were excluded from the learning stage of our model but
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Daily arrivals to Private queue
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Figure 3.1:Daily arrivals to the Private queue between April 1st, 2004 and September
1st, 2004 including holidays.

kept for later evaluation purposes.
Study of intra-day arrival patterns for the regular days reveals some interesting character-
istics.

e The weekdays, Monday through Thursday have a similar pattern. F3gaius-
trates the last fact by depicting thermalizedweekday patterns — each half-hour
is divided by the mean half-hour arrival rate for that day, and the normalized values
for corresponding weekdays are averaged. There are two major peaks during the
day: one at around 2PM and the higher one at around 7PM. The higher peak occurs
probably due to the fact that people finish working at around this hour and so are
free to phone the call center. From 7PM there is a gradual decrease (except for a
small increase at around 9PM).
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Holiday Name Date Day of week
First Passover Eve 04/05/2004| Monday
First day of Passover 04/06/2004| Tuesday
Last Eve of Passover | 04/11/2004| Sunday
Last day of Passover | 04/12/2004, Monday
Memorial (day’s) eve 04/25/2004| Sunday
Memorial day 04/26/2004| Monday
Independence day 04/27/2004| Tuesday
Eve of Feast of Weeks | 05/25/2004, Tuesday
Feast of Weeks 05/26/2004| Wednesday
New Year’s eve 09/15/2004| Wednesday
New Year’s day 09/16/2004| Thursday
The Second day of New Year09/17/2004 Friday
Yom Kippur’'s eve 09/24/2004 Friday
Eve of Feast of Tabernacles 09/29/2004| Wednesday
Feast of Tabernacles | 09/30/2004| Thursday
Sixth day of Tabernacles | 10/06/2004| Wednesday
Simchat Torah 10/07/2004, Thursday

Table 3.1:Holidays — this list contains all the holidays
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Irregular Date| Day of week| Event Description
03/01/04 Wednesday| An unexplained irregular day.
04/19/04 Monday | A day before a country-wide change in the first three cellular digits.
04/20/04 Tuesday | The day of a country-wide change in the first three cellular digits.
08/22/04 Sunday | Anunexplained irregular day.
10/03/04 Sunday | The third day of Tabernacles which comes after a long weekend.

Table 3.2:Irregular days, 2004

e Fridays have a completely different pattern from the rest of the weekdays. This can
be seen in Figur8.2. For each day of the week, the 33 arrivals were smoothed
using the default smoothing method in R statistical analysis softi&teBecause
Friday is a half work day for most people in Israel it is very reasonable for its daily
pattern to differ from the rest of the weekdays.

e Sunday’s pattern also differs from the rest of the weekdays. FRiGrexhibits how
Sunday has an earlier increase than the other weekdays (Monday through Thurs-
day), possibly as a result of customers who were not able able to contact the call
center on the weekend (Saturday).

The cellular company’s major complaint regarding their current forecasting algorithm is
that it does not incorporate billing cycles effects. Their own experience leads them to be-
lieve that on billing days the number of incoming calls is higher than on non-billing days.
There are six billing cycles each month. Customers are assigned to one of the cycles when
they purchase a service contract. TaBl@summarizes the distribution of the billing cy-

cles among the Private queue customers. From these results it is clear that cycles 10 and
17 are negligible. These two billing cycles main customers are the company’s employees
which can account for these results. Hence, we focus our attention on the remaining four
cycles.

Each billing cycle is defined according to two periods: the delivery period — prior to
the bank billing day, each customer receives a letter detailing his cellular expenses; the
billing period — the day on which the customer’s bank account will be debited. The
delivery period extends over two working days (depending solely on the Israeli postal
services). The billing period usually covers only one day. There is usually a full week
between the delivery period and the billing period but this can vary due to weekends and
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Scaled Intra—day arrival patterns
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Figure 3.2:Normalized intra-day arrival patterns

holidays. We decided therefore to descrdaehcycle using two indicators: a delivery
indicator - marking the two working days of the delivery period; and a billing indicator -
marking the first and second day of the billing period and zero otherwise. By describing
each cycle using two indicators we actually differentiate between the influence of the
actual billing date and that of the delivery of the bill. According to the cellular company’s
past experience, the different queues are affected by different periods. For example, the
Private queue is strongly affected by the delivery periods and not so much by the billing
periods. On the other hand, the Finance queue is strongly affected by the billing periods
and less by the delivery periods. Sect®12.1 demonstrates how we examined which
indicators are significant for the Private queue’s arrival process.
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Scaled Weekday Intra—day arrival patterns
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Figure 3.3:Scaled weekdays intra-day arrival patterns

Billing Cycle name| Proportion of Customers
1 0.31
7 0.27
10 0.00
14 0.26
17 0.00
21 0.16

Table 3.3:The Private queue customer distribution over billing cycles.
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3.2 The US Bank data

DataMOCCA preserves all call-by-call data originating from the US Bank during 2002-
2003. This call center is very large and handles approximately 300,000 calls each day.
It has a voice response unit (VRU) which greets each call upon entrance.2@ilpf
entering calls advance to be handled by a human service provider. Since this call center
also provides various types of services, we focus on the largest queue which is the Retall
service. The calls entering this queue account for approximégélyof all the incoming

calls which require human-agent services. Our research database contains calls arriving
between March 3 and October 24, 2003.

Since one of our goals is to compare our model with the results of the model described
in [22] we generated the same database. This means that we concentrate our attention
on calls generated during weekdays between 7AM and 9:05PM (the most active periods
of the call center). Each day is divided into 169 five-minutes intervals. We assume that
during each interval the arrival rate remains relatively constant. We point out here that
we do not think that this high resolution is required for practical scheduling purposes.
Currently, five minute intervals are both impractical from a managerial point of view and
also the computations are time consuming.

Between March 3 and October 24 there are only four holidays: 1. May 26 Memorial Day;

2. Jul 4 Independence Day; 3. Sep 1 Labor Day; 4. Oct 13 Columbus Day. We removed
these days from our database since they exhibit irregular patterns and daily volumes,
compared to similar weekdays. In the previously mentioned article the authors indicate
that the day after Labor day depicts an unusual pattern. This day is a Tuesday but because
it has a similar pattern to a Monday and a peculiar high volume they have decided to
model it as a Monday. Following this same reasoning, we identified another abnormal
Tuesday which takes place a day after Columbus day. We modelled both these days as
Mondays.

Studying the daily weekday patterns two interesting characteristics appeatr.

e The weekdays, Tuesday through Thursday have a similar pattern. RBglile
lustrates the last fact by depicting thermalizedweekday patterns — each five-
minute interval is divided by the mean five-minute arrival rate for that day, and the
normalized values for corresponding weekdays are averaged. There is a major peak
during the morning hours followed by a slow decrease until 5PM. Afterwards we
see a sharper decrease in the patterns.
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e Fridays and Mondays have patterns that differ from the rest of the weekdays. Mon-
day has a lower starting point compared to the rest of the weekdays. One expla-
nation can be that Monday is the first working day of the week and so customers
begin their day later. Friday has a lower tail, as also observed in F&dreThis
fact may not be surprising because people want to finish their business before the
weekend (Saturdays and Sundays).

Scaled Intra—day arrival patterns
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Figure 3.4:The US bank normalized intra-day arrival patterns
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Chapter 4
Evaluation of Models

The Israeli cellular company utilizes the arrivals forecast for determining its call centers
weekly staffing schedules. Each Thursday, using the past six weeks data as the learning
data, it predicts the week starting ten-days ahead. We will refer to this forecasting strat-
egy as the ten-day-ahead weekly predictions. Accordingly, we define three periods: the
learning period; the prediction lead time which is the duration between the last learning
day and the first predicted day; and the forecast period.

In the Israeli Cellular data we implement the same strategy as the company, i.e. we predict
the arrivals to the Private queue for each week between April 11, 2004 and December
25, 2004 (37 weeks which ae = 37 - 6 = 222 days). The forecasting procedure is
carried out 37 times since there are 37 weeks. For each of the 6 weekdays, we predict
the arrivals for theK' = 33 half-hour intervals between 7AM and 11:30PM using six
weeks of learning data and a lead time of ten days. All together we have a totakof

37 -6 - 33 = 7326 predicted values. Excluding the 19 irregular days (which occur during
the mentioned period) we evaluate the results using a total of 203 dags @3 = 6699
observations.

In the US Bank data we take a slightly different approach. Emulating the same procedure
carried out by the authors a22] we generate one-day-ahead predictions. Using our own
notation: the learning period is five weeks because of computational limitations (since
each day had{ = 169 intervals); the prediction lead time period is set to zero; the
forecast period consists of one day. We predict the arrivals to the Retail queue for the
D = 64 days between July 25 and October 24, 2003. As previously mentioned, each day
consists of 169 five-minute intervals between 7AM and 9:05PM. In conclusion, we have
atotal ofn = 169 - 64 = 10816 predicted values.
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4.1 Prediction Accuracy

Here are a few basic definitions:
e The subscriptl = 1, ..., D denotes the" day in the predicted data set.
e The subscript: = 1, ..., K denotes th&™ period during a day.
e n, the number of predicted values, equals the produ©2 ehd K, i.e.n =D - K.

Let N, denote the predicted value i¥;,, which is the number of arrivals in thé" period
for dayd. We define two measures to compare between the observed and the predicted
values:

e The Squared Error: SE= (Ng — Ng.)%

e The Relative Error: R, = 100 - —‘Nd%;i%k'

The following two measures are used to evaluate confidence statements conéggning
e Covery, = (Ng € (Lowery, Upper,.))
e Width,, = Upper;. - Lowery,

In the above, Lowef, and Uppey,. denote the lower and upper (nominally 95%) confi-
dence limits.

The comparison between different forecasting models is performed over the entire set of
n observations. We first average the measures for each day ovErpleeods:

3k, Covet
K

Covey =

Width, = iz Widtha,

Alternatively, the basic performance statistics can be averaged over days for each of the
K periods, in order to consider accuracy and precision by period of the day.

The summary statistics which are reported for each measure include the lower quartile,
the median, the mean and the upper quartile values of these daily summary statistics.
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4.2 Goodness of Fit

Our model, which will be introduced later on, stipulates througt)(that during each
interval of each day the square-root of the arrival counts is a function of two elements:
04 Which we can model and the inherent random error tesmFollowing the Normal-
Poisson stabilizing transformation (which will also be described in the sequel), we assume
that ¢, follows a Normal distribution with zero expected value and a variance equal to
0.25.

We will explore both the normality assumption and the values of residual variances in
order to evaluate the goodness of fit of our model.
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Chapter 5

Prediction Models

5.1 Gaussian Mixed Model for Arrival Counts

In this subsection we present a forecast model which is based on the mixed linear mod-
elling (MLM) theory. Figures3.2 and3.4 clearly show that the assumption of a homo-
geneous Poisson arrival process does not hold for our data. However, as assumed above
and explained in AppendiA, the arrival process during relatively short intervals can

be treated as being homogeneous. The MLM approach allows us the needed flexibility to
both model different arrival rates for different intervals, as well as to incorporate a random
component in the variation of those interval-specific arrival rates. This extra randomness
will help account for the observeaver-dispersionwhen looking at the variation in ar-

rivals for a given period over similar weekdays. For more on mixed models, the reader is
referred toly].

5.1.1 Definition

Let Ny denote the number of arrivals to the queue onday 1, ..., D and during the

time intervalt,_,,t,) wherek = 1, ..., K is thek"™ period of the day. Our basic model as-
sumption is thatV,, follows a Poisson distribution, with expected valug; ). We follow

the work of Brownet al. [4] and take advantage of the variance stabilizing transformation
for Poisson data in the following manner. N, ~ PoissoiA\s ), thenyg, = / Ny + }l

has approximately a mean valuegh ;. and varianc%.

For A\ — oo, yai IS approximately normally distributed. In our data sets, for most parts of
the day\y4 has high values: either around 300 per five minutes for the US Bank’s data; or
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around 500 per half-hour for the Israeli cellular phone company’s data. Hence, it seems
reasonable to use this approximation for our modelling.

The transformed observationg, allow us to exploit the benefits of the linear mixed
modelling approach. Our aim is to model the expected value of these observations (since
the variance is known). The expected value is a function of the relevant interval rate
itself. In the mixed model the square-root of the arrival rate\{;) is regarded as a linear
function of both fixed and random effects.

The fixed effects include the weekday effects and the interaction between them and the
period effects. These two effects express the weekday differences in the daily levels and
the intra-day profiles (over the different periods). In the Israeli cellular company we
also add exogenous variables to these fixed effects (i.e., the billing cycles explanatory
variables).

The random effects are normal deviates with a pre-specified covariance structure. One
random effect is the daily volume deviation from the fixed weekday effect. In concert
with other modelling attempts, a first-order autoregressive covariance structure (over suc-
cessive days) has been considered for this daily deviation. Itinvolves the estimation of one
variance parameter and one autocorrelation parameter. The other random effects are also
called the noise or residual effects, and refer to the period-by-period random deviations
from the values after accounting for the fixed weekday and period effects. We considered
a few different covariance structures that can describe a reasonable relationship between
the periods, such as an AR(1) structure.

The general formulation of our linear mixed model can be written as:

Yak = Oar + €ax (5.1)
Oak = Va+ gy + pgg ke + Ba + Nak (5.2)
with  ege ~ N (O, }l) iid.
Vi,..., V)" ~ Np(0,G) and na= (nar,---,nax)" ~ Nk (0, R)
where

e V,isthe random daily volume effect that has the first-order autoregressive structure.
The vectoV = (V4, ..., Vp)T represents the vector of daily volume random effects
and is assumed to follow R-variate normal distribution with zero expected value
and covariance matrig.

e (¢, denotes the weekday (Sun, Mon, ...) corresponding talday
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a, is the gth weekday fixed effect & 1,...,Q; @ =50r6or7).

pq.x IS the fixed (interaction) effect for periddof the ¢ weekday;

Definer, as the set of all relevant billing cycle effects that occur ondhelay.
Theng; = Zjerd ¢; where¢; indicates thej* billing cycle effect. (The set of
possibleg; is determined by the appropriate model setup);

® na = (Nar,---,nar)T is the within day vector of errorsy,,...,np is an i.i.d se-
guence of(-variate normal with zero mean and covariance mafix

5.1.2 Estimation Method

The additional random effects complicate matters and so we cannot simply use linear
regression model techniques. Instead, we exploit the normality assumptions of these ran-
dom effects to obtain maximum likelihood estimators for the random effects covariance
matrices.

DefineT as the covariance matrix af. We can write the elements @f explicitly using

only elements from the? and G matrices in the following manner (and assuming the
AR(1) structure foiz):

1 1
Cov(ydkyydk) = Gd’d+Rk’k+Z:U‘2/+a727+Z; k'Il,...,K; dzl,,D

COV(Yais Yaj) = Gaa+ Rij = 0\2/ + Ccov(Nai, Mgj); © #j; d=1,...,D
d(t,m) . -

Cov(ymivytj) - Gm,t:U\Q/'pV ,Z,j:17...,K;m§£t

whered(t, m) is the number of days between theandm™ days.
Recognizing this last fact, one can rewrite the log-likelihood function for the transformed
observationd” in the following manner:

1

2
wherer = Y — X(X'T7'X)"'X'T-'Y and the matrix X (the fixed effect matrix) is
of rank p. Of course, in order to use these equations we assume that all the necessary

1,
[ = log |T'| — 3" T ' — glog 27 (5.3)

matrices are nonsingular (otherwise we need to use generalized inverse matrices). For
models such as these, we can estimate the fixed effects and estimate R and G by mini-
mizing twice the negative of the log-likelihood using methods such as thé®3vised
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procedure (the code for implementing a model of this type is presented in App@ridix

— see Sectioh.1.6for a discussion of the choice of implementable models). ThisSAS
procedure uses a ridge-stabilized Newton-Raphson algorithm to search for the maximum
likelihood estimators.

After obtaining the estimators for the covariance matrices of the random effects, SAS
produces the vector of the fixed-effects estimators using the following formula:

A S 7 A~

f=(XT'X)'XT'Y (5.4)

5.1.3 Prediction Method

Based on the normality assumption for the random effects,85é&s multivariate nor-
mal conditional expectations to obtain the empirical best linear unbiased predictors (BLUPS).
Using the fixed effect explanatory matriX,,, for the data to be predicted together with
the past data matrice; and X, the prediction vectorn, can be obtained using the
following formula:

m=Xnf+CnT Y — Xp) (5.5)

whereT” is the maximum likelihood estimate of the covariance matfiis the maximum
likelihood estimate of the fixed-effects coefficients definedid) andC,, is the model-
based estimated covariance matrix between the obsénadim.
The estimated prediction variance can be obtained as follows:

A Ay

Var(m —m) = T, —C,T7'C

m

(5.6)

A ~

+ (X - C T XX T X)X, — CT7LX]

whereT, is the estimated model-based covariance matrix for the predicted observations.

5.1.4 Goodness of Fit

Following (5.1) and 6.2) we may check to see whether our prediction residuals are nor-
mally distributed. We use a QQ-plot to examine this assumption.

Furthermore, we may examine the estimated variancg0f According to the model
presented ing.1) and 6.2) its value should be approximately 0.25.

Assuming that both random effects covariance matriBemdG have an AR(1) structure
we can formulate them in the following manner:
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e The daily random effects covariance maitfix

1 ,0‘5}2 e p“l}D
G — 0_‘2/ . . . . .
p?/Dl pil/D2 o 1

e The within-day periods random effects covariance makrior a specific day:

1 p717 pf](_l
R :0_% . . . . .
pf;(_l pff‘z 1

Using this notation it is easy to see that the variance of each observation {g;Yar
oy + o7 + ;. Where 0.25 corresponds to the valug'sfvariance. We shall examine an
alternative model which has the following representation:

Yak = Oar + €ax (5.7)
O = Va+ agy + Degk + Ba + Nar (5.8)
with  ege ~ N(0,0%) iid.,

(Vi,...,Vp)' ~ Np(0,G) and ng= (a1, -..,nax)" ~ Ng(0,R)

This model differs from the model presentednl) and 6.2) since we are not constrain-

ing the variance of to 0.25. Our goal is to examine the estimated variancefi@m this
model. If in fact its value is close to 0.25 then this can help justify our theoretical model.
We will examine results from two modelling alternatives, both allowing us to incorpo-
rate the three variance components. The first modelling technique is carried out by using
the ARMA(1,1) structure extra parameteito construct both the within-periods AR(1)
structure and the needed extrarror term variance. Th& matrix is modelled using a
standard spatial power structure, while the= R + o2 - I matrix is modelled using an
ARMA(1,1) formulation. Here is the manner in which we use the standard ARMA(1,1)
covariance matrix to achieve this goal:

1 S ) S 7

1 oyphTE
R* =o%,. 7 , Fy . W)].%
VPR VPR v o1



Where:

O = 0,2] + o2 (5.9)
0.2
1= J:UE (5.10)
PR = Py (5.11)
= o2, - (1— pln) = o2 (5.12)

By plugging-in the relevant estimators /5.12) we can estimate the required variance of
eqr and compare its value to the theoretical value of 0.25.

The second technique is quite straight forward. We model equakorsahd 5.8) using

the mixedprocedure in SA8. The G matrix is modelled using a standard spatial power
structure and thé& matrix is modelled according to a first order auto-regressive structure.
We add the ’local’ option to incorporate the diagonal covariance matrix éfs part of

the SAS® default output one obtains the estimated valueof

5.1.5 Benchmark Models

An elementary prediction model would simply average past data in order to produce a
forecast. This model is referred to as the industry model. Specifically; tenote the
weekday corresponding to th# day. DenotdV;, = {i' : /' < iandgy = s} and let

| Wis | denote the cardinality dfi’;;. Then the forecast arrival countp.,, ;, based on

the information up to day can be expressed as

2o (5.13)

N —
D | Wp.pan |

Based on this intuitive approach, we develop two similar baseline models. These models
will serve as benchmarks for our more complicated models.

The first basic model only considers the weekday fixed effects and their interactions with
the periods. Basically, this model states that each day of the week has its own baseline
level and its own intra-day pattern and that consecutive days and periods are uncorrelated
(as opposed to our initial correlated mixed model define®if)). The formulation of
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this model can be written as follows:

Yae = Oax + €ax
O = gy + Payk + Nak (5.14)
. 1 ..
with ez ~ N(O, Z) ii.d. and

Nd = (ndlv B 77]dK)T ~ NK(67 0-21)

where the sequeneg, ..., np is an i.i.d sequence df -variate normal vectors with zero
mean and covariance matix 1.

This model basically corresponds to the industry model (define8lir)). It assume the

days are independent of each other. Alternatively, one can think of a different benchmark
model which is similar to the above model but also includes exogenous variables. Hence,
in the Israeli Cellular company our second benchmark model also incorporates the billing
cycles variables. Using the above notation we can define the second benchmark model in
the following manner:

Yae = Oax + €ax
Oa. =  Va+ g, + Dk + Ba+ Nar (5.15)
. 1 ..
with ez ~ N(O, Z) ii.d. and

Nd = (77d1» o 777dK)T ~ NK(67 021)

where the sequencg, ..., np is an i.i.d sequence ak-variate normal vectors with a

zero mean and covariance matsikl .

This second benchmark model will have the same fixed-effects settings as our final mixed
model but includes an underlying assumption that all of its observations are uncorrelated.
Hence it represents a baseline to our more elaborate, correlated model.

Both of the benchmark models are, in fact, linear regression models and are quite fast and
efficient in providing the necessary predictions using standard programs.

5.1.6 Theoretical versus Practical models

In Section5.1.1we introduced our theoretical model. This model which constrains the
variance ofe to a value of 0.25 was implemented using thixedprocedure in SAS
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adding both the ’local’ and 'hold’ options in order to incorporate the extra variance. How-
ever, the results we obtained made little sense since the estimated value of daily variance
(i.e.,0%) was zero. This result contradicts previous research that was done on similar call
center data, and it probably is the consequence of an algorithmic failure due to the large
dimension of the model.

Consequently we implemented two alternative models. The first model is the general
model presented irb(7) and 6.8). This model allows’s variance to have any non-
negative value. This model will be referred to as the general variance model.

The second model is a special case of the first model where the varianegi¥en the

value of zero. This means that we actually do not modektextra variance parameter.

To some extent the extra variance is actually incorporated in the remaining two variance
components (i.eq? andag) instead. This model will be referred to as the zero variance
model.

We compare the prediction results of the two models in detail in Se6tibn

5.2 Gaussian Bayesian Model for Arrival Counts

The next section is based on the forecast model specified in a paper by Weshlad¢rg
([22]). We use the results presented in that paper to compare our mixed model results in
the sequel.

5.2.1 Definition

Using the same terminology as in the mixed model, defigeas the number of arrivals to
the queue on day = 1, ..., D, and during the time intervat,_,,t;), wherek =1, ..., K
is the k™ period of the day. The model assumes:

Ny ~ POiSSOI(I/\dk), Adp = qu (tk)ﬂd + €4k (516)

where )\, is the arrival rate for day during periodk, R, () is the proportion of daily
volume on the;™ weekday during the time intervéll, 1, ], v, represents the daily vol-
ume during dayl/ andeg, is the random error. The models assumes that each day has its
own within-day pattern and as a result, the following restriction is enforced:

K
> Ry(ty)=1 for gu=1,....5 (5.17)
k=1

32



Following the same approximation technique used in the previous mixed model, define
Yar = 1/ Nar + }l This normal approximation enables one to redefine the model in the
following manner:

Yak = Ggu(tr)Ta + €ar,  €ax ~ N(0,07) iid (5.18)

whereg,, = /Ry, andz, = ,/v4. The daily correlations are modelled using an AR(1)
structure in the following manner:

Td — Qg = ﬁ<xd—1 - O‘qu) +Na,  Nd ~ N(O, ¢2) iid (519)

whereq,, denotes the intercept for dgy. To incorporate the different weekday patterns
and ensure some smoothness in them, two extra constraints are added:

d29q (tx) dW,, (tx)

a2 =T, it (5.20)

where
K
> g tr)?=1, for ¢=1,..5 (5.21)
k=1

HereWV,(t) are 5 independent Wiener processes With0) = 0 and VafW,(t)} = ¢
(and%ﬁftk) is a notation for a white noise).
For computational reasons the authors reformulate their model by introducing a new vari-

ablez,, = {g,,(tr), dgq,(tx)/dt;} and rewriting the model in the following manner:

Yk = h/qu (tk)xd + €4k, €dk ™~ N(O, 0'2) (522)
Ta—ag = Bl@ar—ag. )+, na~ N(0Y?) (5.23)
qu(tk) = F(&)qu(tk_l) +uk, U ~ N(O,TquU(é)) (524)

whereeg;,, 7y andu,, are mutually independent,= t, — t,_; and vector’ = [1,0]. The
matricesF’(9) andU (§) are defined as

F(5) :((1) f) U(5) :<§z;2 525/2)

Finally the authors also incorporate the weekday constraints defindd2) @nd use

diffuse distributions for the initial states, and z,,(t,), for ¢; = 1,...,5. It is now
apparent that the model presented here is a multiplicative model with two latent states
each evolving on its own time scale. Conditional on each latent state variable, the model
can be cast into a linear state space form. This property enables the use of state-space
model techniques to help overcome computational problems.
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5.2.2 Estimation and Prediction

The authors 0f22] give an extensive description of the hybrid Markov Chain Monte
Carlo (MCMC) algorithm which they developed to sample from the relevant parameters’
posterior distributions. The algorithm utilizes Gibbs sampling techniques and Metropolis-
Hastings steps to sample from the required conditional distributions.

The first step of the one-day-ahead forecasting algorithm is to run MCMC simulations
based on past data. Assuming that the goal is to forecast dasval counts, the pur-
pose of this step is to obtain samples from the posterior distribw(i@nt;.,_,) (where

Q= (a,8,0% ¢ 7% 241, 2) is the vector of required parameters ang_, is the vector

of transformed past observations). These samples enable the authors to generate the em-
pirical distribution of the untransformed Poisson arrival counts (Ng,) for each period

k. The one-day-ahead forecasting algorithm for predicting dlé&/summarized in the
next few lines:

1. Start by generating an MCMC sampfelV, ..., Q™) drawn fromp(Q|Y1.4_1). M
is approximately 4899 samples which are obtained using the Gibbs sampler and
Metropolis algorithm. The authors state that they used 49,000 iterations after a
burn-in period of 1000. They sample the parameters every 10th iteration.

2. Drawz!)) ~ N (aé? + B® (xffll — oszll) ,(wz)(i)>, foreachi =1,..., M.
3. Foreach period =1,...,Kandeach =1,..., M.
) ) N2
o Set)\g,z = <xg)qu(tk)(l)> .
() (@) (2\()
e Drawy, ~ N Agi, (02) ).

. A\ 2
e SetN{) — <y§2> ~0.25.

5.3 Poisson Bayesian Model for Arrival Counts

The model described in this section, similar to that in the last section, also employs
Bayesian modelling techniques to predict the arrival counts. However, it directly models
the untransformed Poisson arrival counts without using the Normal-Poisson stabilization
approximation. The model was implemented using botlBiRegspackage2Q] in the R
statistical software and ‘OpenBugs’ softwei€]. The actual code used for implementing
this model is provided in AppendR.2.
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5.3.1 Definition

The formulation of a hierarchical Bayesian model for the untransformed counts can be
presented as follows:

Nak|Aa ~ Poissofi\g) (5.25)

Adk|Vas Pgg = (Paats - -+ Pagic) = Vi Pggk (5.26)
Vi = g, Ga (5.27)

Gy = F(Gar,Uy) (5.28)

pelagy ~ Dirichlet(ayq, ..., apx) (5.29)

a M, = exp(M,) - (Tg1,--- s TgK) (5.30)

M, ~ N(5,5) (5.31)

Ly ~ N(Uq,0.01~U§), forg=1,...,7 (5.32)

The arrival rate for each period of each day;, is comprised of two sets of parame-
ters: the daily volume parameters and the daily pattern parameters. We shall begin by
explaining the latter:

® Dy, = (Pgsn,- - - Pg, i) IS the vector of daily proportions assigned to each offthe
periods. The subscrigtdenotes the day of the week£ 1, ..., 7). Each weekday
has its own pattern. These vectors are distributed according to the discrete Dirichlet
distribution.

e a, = (aq1,.-.,q4xk) IS the vector of parameters for the (discrete) Dirichlet distri-
bution. The vector, can be written asxp(),) - 7.

e cxp(M,) governs the variability of the Dirichlet distribution about its megn=

(g1, ---,Tq.x), Which is a probability vector itself. Th&/, factors have a diffuse
prior and, is the estimated pattern according to the learning dafahas been
given a normal prior distribution with expectation and variance equal to 5. This
prior choice allows)/, to have both negative and positive values. Large positive
values of)M, imply small variability of the Dirichlet distribution while very nega-
tive values ofM, imply large variability of the Dirichlet distribution. The normal
distribution is very easily simulated from and so is a natural candidate for this prior.

The daily volume has two components;, the weekday mean value for dayandG,,
which describes the dajdeviation from its corresponding weekday mean. The different
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weekday mean@.,, . .., u7) are given a diffuse normal prior with means corresponding to
the actual average daily total values and variance whittief those daily totals. In fact,

v, is the averageg™ weekday mean value according to the learning data. The weekday
means prior variance were adjusted to allow coefficients of variatiaf%f This implies

that the weekdays means are not the main source of variation and the variation comes from
a different source, mainlg,;.

Equation [6.28) describes the dynamic dependence of daily volumes between successive
days. Itis expressed in a general form here, wli¢rés assumed to have an expectation

of 1. Different alternatives can be chosen in order to definétherocess. These alterna-

tives need to have two main characteristics: the process should always have positive val-
ues sincex, represents anultiplicativedeviation from the weekday averagd; should

have a mean value of 1 basically implying that on average the daily volgraquals the
appropriate weekday mean. We have selected the Beta-Gamma Auto-Regressive process
which accommodates both characteristics. This process is defined by:

Gy = Gui1-By+Uy ford=2,....D (5.33)
By ~ Betdyp,v(1—p)) (5.34)
Ug ~ Gammdy(l—p),7) (5.35)
G1 ~ Gammay,~) (5.36)

which has a stationary marginal Gammay) distribution (with mean 1). In order to com-
plete the Bayesian formulation the non-informative Gamma(0.01,0.01) prior was used for
the~ parameter. Also a normal prior distribution was used for-theg p parameter. It

is quite straightforward to show thatis the autocorrelation betweer,; andG,_; and

that the expected value pf using Normal(2,5) as the prior distribution, is approximately
0.69.

5.3.2 Estimation and Prediction

As mentioned earlier, we use the ‘OpenBugs’ environment to implement the Poisson
Bayesian model. ‘OpenBugs’ is an open-source software for Bayesian analysis of com-
plex statistical models using Markov Chain Monte Carlo (MCMC) methods. The estima-
tion procedure utilizes Gibbs sampling techniques and Metropolis steps to sample from
the relevant parameters’ posterior distributions. Based on these samples, one can create
the empirical posterior distributions of each of the parameters.
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The forecasting procedure, using ‘OpenBugs’, simply regards the predictions as addi-
tional parameters. Hence, one can create for eacld @yl periodk an estimated distri-
bution for the predictedVy.

5.4 Regression Model for Service Times

Aside from predicting the arrival rate, forecasting a queuing system load also requires
predicting the average service patterns (or alternatively the service rate pattern for each
day). Since our arrivals model focuses on a specific resolution, we need to predict the
average service time during those same intervals (i.e., periods).

Our model involves two explanatory variables that may affect service rates: the weekday
and the period. We compare two alternatives models where one is a generalization of
the other. The first model describes the average service time using a quadratic regression
in the periods, with interactions with the weekday effect, where the period is included
as a numeric variable (rather than as a categorical variable). Intuitively speaking, this
model states that the daily service time curves differ among the different weekdays but
they are confined to be of a quadratic form. The formulation of this model can be written
as follows:

Model 1 a1, = vy, + ck* + 9k + X g, k° + ¢y, k + ¢d + €ar; €ax ~ N(0,0%) (5.37)

whereq, is the constant term related to th& weekday;y and¢ are, respectively, the
quadratic and linear coefficientg, and¢, are the weekday-specific quadratic and linear
period effects and make up the weekday-period interaction effects. The last effect is a
postulated linear daily trend coefficient denotedWe naturally, added a random error
term denoted by;.

The second model is a generalization of the first model and it assumes that the periods
variable is a categorial variable. It basically assumes that each weekday has its own aver-
age service times pattern with no other restriction on its shape (hence it is a generalization
of the last quadratic-shaped model). We add both the linear daily trend effect to this model
and the error term as well. This model can be formulated in the following manner:

Model 2 par = By, + ¢d + €ar; €ax ~ N(0,07). (5.38)

wheref, ;. is the interaction between the weekday and the effect of theeriod.
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Chapter 6

Mixed Model — Determining Fixed
Effects and Covariance Structure

This next section gives details of the selection process for both the fixed effects (i.e., the
weekday patterns, or the Israeli Cellular company’s billing cycles), and the random effects
covariance structures for the mixed model.

6.1 Analysis of Practical Models

As previously explained in Sectidn 1.6 we shall explore the predictions results of two
alternative models. This analysis will be carried out on the Israeli Cellular company’s
data. We encountered convergence problems when we implemented the first general
model and so we base the following comparison only on 135 days out of the 203 be-
tween April 11, 2004 and December 25, 2004. For this analysis, we shall set the between-
periods (within-day) correlation according to a first-order autoregressive structure. The
fixed effects set-up is carried out according to the model presented in the end of Section .
Tables6.1,6.2, 6.3 and6.4 present the results of the two models. The model whisre
variance is constrained to the value of zero (zero variance model) shows much better
results then the general variance model. A possible explanation for this is that the general
model is over-fitting the learning data and hence the predictions turn out to be quite poor.
Following this analysis we decided to continue investigating only the second model where
€’s variance is restricted to the value of zero. This model can be formulated in the follow-
ing manner:
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Yar = Va+ gy + Dok + Ba + Na (6.1)
with
Vi, Vp)" ~ Np(0,G) and ng= (a1, -.,nax)" ~ Ni(0, R)

From here on we shall refer to this model as the mixed model.

RMSE
N=135 | general variance model zero variance model
15t Quartile 42.45 31.34
Median 72.50 37.07
Mean 103.92 42.06
374 Quartile 170.73 49.93

Table 6.1:Analysis of practical models — RMSE results .

APE
N=135 general variance model zero variance model
1t Quartile 10.06 7.72
Median 18.57 9.68
Mean 34.47 11.10
374 Quartile 39.29 13.51

Table 6.2:Analysis of practical models — APE results.

Coverage Probability

N=135 general variance model zero variance model

15t Quartile 0.36 0.88

Median 0.70 0.97

Mean 0.64 0.92
374 Quartile 0.97 1

Table 6.3:Analysis of practical models — Coverage probabilities results.
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Width
N=135 general variance model zero variance model

1%t Quartile 36.21 136.81
Median 152.22 155.76
Mean 159.45 159.57
374 Quartile 181.85 182.76

Table 6.4:Analysis of practical models — Confidence interval widths.

6.2 Israeli Cellular Company

Guided by the principle of parsimony, we conducted a preliminary investigation of the
billing cycles indicators described in Secti@f. We sequentially examined the differ-

ent effects using out-of-sample performance measures. In effect we tested each effect
(random or fixed) alone while the rest of the model terms were kept fixed. When we
established the best setting for a specific effect we continued to the next one.

6.2.1 Preliminary Analysis of Billing Cycles

As mentioned in the data description, we have eight indicators which represent the four
major billing cycles (i.e. four delivery period indicators and four billing period indi-
cators). Based on the company’s information we were made aware that some of these
indicators might not have a significant influence on the Private queue’s arrival process.
The purpose of this preliminary examination is to highlight those indicators which are
significant so they may later be incorporated in the final forecasting model. For this
coarse investigation, we use the aggregataity arrivals between Februaryi™, 2004

and Decembe31%, 2004 (excluding all twenty-two outliers).

Let V; denote the number of arrivals to the Private queue on day i=1,....M. In our study,
we have M=254 days. In addition, lgtdenote the weekday corresponding to dayhe

daily arrivals are modelled using a Poisson log-linear model (for further details on this
approach the reader is referred1d]). Our initial model is of the following form:

N; ~ Poissofi);) (6.2)
6
log(\;) = ZW%’Z - Xgi + Z B . Mz + Z DJ . Uif
=1 j€Ecycles jEcycles
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where

i is the weekday corresponding to day
W, is the d" weekday coefficient
¢ is a vector which has six elements.l§$ element has a value

of one indicating the weekday corresponding toifielay.
B’ is thej™ billing period coefficient
M — { 1 if cycle j’s billing period falls on the'f day
0 otherwise
D’ is the ;" delivery period coefficient
U { 1 if cycle j's delivery period falls on thé" day
0 otherwise
The model is implemented using ti@ENMOD procedure in SAS based on the 254
observations in the current learning set. Some of the results are summarized ibi&bles
and6.€. The results indicate the following: the six weekdays have significantly different
effects, each having a different baseline mean (no intercept was included in the model);
the delivery period indicators are significant and have a positive effect on the mean value
of the number of incoming calls; on the other hand, most of the billing period indicators
seem less significant, which confirms the cellular company’s beliefs. The Cycle 14 billing
period seems to have an exceptional effect. First, it is statistically significant as opposed
to the billing indicators of the rest of the cycles. Furthermore, its estimator is the only
negative value among those of all of the effects. This strange result would suggest that
the number of incoming calls is reduced during the Cycle 14 billing period. We could
not attribute this phenomenon to any outlying data problems. One possibility is that this
negative value can be compensating for other oversized billing cycle effects, which could
arise due to the overlap of delivery and billing days among the 4 cycles.
These results led us to believe that some of the explanatory variables are statistically
redundant. We proceed by comparing different models with this initial model (defined
in (6.2)) using the ‘contrast’ statement in t@ENMOD procedure (which computes
likelihood-ratio statistics). The different models are variations of the initial model. They
exclude different covariates in order to establish the importance of the omitted variables.
The retained explanatory variables for each examined model are listed below:

1. the weekday effect and the delivery period indicators;
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Parameter Category | Estimate| Chi-Square| Pr> ChiSq
W, Sunday 9.5358 718177 <.0001
W, Monday 9.4977 541484 <.0001
W, Tuesday 9.4880 572102 <.0001
W, Wednesday 9.4719 649509 <.0001
W, Thursday 9.4326 677894 <.0001
Wy Friday 9.0385 453474 <.0001
D! 0.0586 11.59 0.0007
D’ 0.0327 3.71 0.0540
D4 0.0449 5.39 0.0202
D2t 0.0935 17.98 <.0001
B! 0.0242 2.10 0.1473
B” 0.0279 2.17 0.1403
B4 -0.0592 6.83 0.0090
B2t 0.0276 2.54 0.1109

Table 6.5: Analysis of parameter estimates for the Poisson

Log-Linear model.

indicators

indicators

its delivery period)
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. the weekday effect, one global billing indicator (which takes the value one when
at least one of the cycles is during its billing period) and the four delivery period

. the weekday effect, Cycle 14 billing period indicator and the four delivery period

. the weekday effect, Cycle 14 billing period indicator and the one global delivery
period indicator (which takes the value one when at least one of the cycles is during

. the weekday effect, one global billing period indicator and one global delivery pe-
riod indicator




Source| DF | Chi-Square| Pr> ChiSq
W, 6 518663 <.0001
D! 1 11.46 0.0007
D’ 1 3.69 0.0548
D4 1 5.35 0.0207
D! 1 17.79 <.0001
B! 1 2.09 0.1485
BY 1 2.16 0.1415
B4 1 6.87 0.0088
B2 1 2.53 0.1119

Table 6.6: The Poisson Log-Linear model. Likelihood-ratio
comparison for Type 3 analysis.

The analyses of the contrasts are shown in Téble By using the ‘contrast’ statement

we are actually examining which variables are statistically (in)significant. The results
indicated that billing periods 1, 7 and 21 are redundant. It is therefore clear that there are
three main factors contributing to the daily volumes: the weekday, the delivery periods
and billing period of Cycle 14. Since both models 3 and 4 seemed to be reasonable we
decide to pursue them both.

We conclude this section by defining four different alternative settings for the billing cycle
indicators £):

e Setup 1:(&y,...,&) = (Cycle 14 billing period and four delivery period indica-
tors);
e Setup 2:(&, ..., &) = (four delivery period indicators);

Setup 3:(£1, &) = (Cycle 14 billing period and one global delivery period indica-
tor);

Setup 4:(&;) = (one global delivery period indicator).
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We shall analyze the "best” settings using out-of-sample performance measures in the
following subsection.

6.2.2 Fixed Effects Selection

Our process of model selection does not rely on classical inference methods or mea-
sures, such as Akaike’s Information Criteri]. Instead, we explore the influence of the
models’ elements on the prediction performance based on the 2004 validation-set. The
evaluation method is detailed in Chaptier

As mentioned in the above section we begin with four alternatives for the fixed-effects,
all including the different weekday effects and their interaction with periods. However,
they do differ in their billing cycles indicators. Our first step is to determine the best
candidate model out of these four. For now, we shall set the between-periods (within-day)
correlation according to a first-order autoregressive structure. We choose this specific
structure for its simplicity. In the next section we will also consider other correlation
structures.

In addition we compare the four models with the performance of the two benchmark mod-
els, mentioned in Sectidh 1.5 The first model only includes the weekday and weekday
patterns. The alternative benchmark model has two more additional billing cycles indica-
tors: one global delivery indicator and the billing period indicator associated with cycle
14. The reason why these specific billing cycles settings were chosen will be explained
later in this section.

These models are evaluated using the same out-of-sample prediction procedure, i.e. for a
specific week we calculate the appropriate linear regression estimates based on six weeks
of past data and then we predict the week starting 10-days-ahead. This procedure is
carried out 37 times since there are 37 weeks between April 11, 2004 and December 25,
2004.
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Mode
No.

The Alternative model ex:

planatory variables

Num
DF

Den
DF

Value

Pr>F

ChiS

0 Pr>ChiSq

Type

e Weekday
e four Delivery periods
indicators

240

3.42

0.0096

13.69 0.0084

LR

o Weekday

e Global Billing indicator

e four Delivery periods
indicators

240

411

0.0072

12.3

0.0064

LR

o Weekday

e Billing 14 period indi-
cator

e Global Delivery period
indicator

240

1.89

0.0834

11.3

0.0786

LR

o Weekday

e Billing 14 period indi-
cator

e four Delivery period in-
dicators

240

2.00

0.1152

5.99

0.1121

LR

e Weekday

e Global Billing period
indicator

e Global Delivery period
indicator

240

2.38

0.0296

14.3(C

0.0264

LR

Table 6.7: Log-Linear models contrasts analyses. Each row depicts a different model

which is compared to the initial model. Comparing models 3 and 4 to the initial model

shows that the extra variables are not significant at a significance levél.of 5
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RMSE
N=203 Setupl Setup2 Setup3 Setup4 BM1 BM2
1% Quartile | 34.26  34.14 33.33 33.37 33.23 33.12
Median 40.62 41.12 40.46 40.77 41.39 40.71
Mean 4551  45.87 4457 44.8 46.05 45.6
374 Quartile| 53.21 5295 51.72 51.88 54.36 55.8

Table 6.8:RMSE results for the four fixed effects models and the benchmark models.

APE
N=203 Setupl Setup2 Setup3 Setup4 BM1 BM2
1" Quartile | 8.35 8.33 8.15 8.17 8.30 8.25
Median 10.13  10.13 9.95 9.98 10.46 10.48
Mean 11.25 11.29 11.06 11.07 11.24 11.3
374 Quartile| 13.81  13.45 13.37 13.01 13.49 13.44

Table 6.9:APE results for the four fixed effects models and the benchmark models.

Coverage Probability
N=203 Setupl Setup2 Setup3 Setup4 BM1 BM2
15t Quartile | 0.85 0.85 0.88 0.88 0.39 0.39
Median 0.94 0.94 0.94 094 051 0.48
Mean 0.91 0.91 0.92 092 051 05
374 Quartile 1 1 1 1 0.61 0.61

Table 6.10:Coverage probabilities for the four fixed effects models and the benchmark
models.

Width
N=203 Setupl Setup2 Setup3 Setup4 BM1 BM2
1%t Quartile | 134.87 135.06 138.15 137.59 51.57 51.29
Median 156.87 155.54 157.22 157.31 59.56 58.7
Mean 161.61 161.74 151.71 162.15 63.2 62.04
374 Quartile | 184.79 185.33 184.48 184.56 70.07 68.78

Table 6.11:Confidence interval widths for the four fixed effects models and the bench-
mark models.
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We use the SAS Mixed procedure in order to implement and evaluate the candidate
models. Table$§.S, 6.8 16.10and6.11present the results of the four different fixed model
setups and the two benchmark models. Out of the four different modeR? thieernative

seems to exhibit the best results. Its results are also better than the first benchmark model.
One can argue that the shorter confidence intervals imply that the benchmark outperforms
the third model. However, since its coverage probability is very far from the nominal
95%, we conclude that these narrow intervals are unreliable and probably result from an
under-estimated error variance.

The second benchmark model is in fact the “fixed” version of this third model; that is,
without the random effects. It is interesting to see that introducing the intra- and inter-day
correlations improves the forecasting results. Intuitively speaking, the additional corre-
lation parameters result in wider confidence intervals to compensate for the extra uncer-
tainty.

Based on the above results, we continue analyzing models which include only two billing
cycle indicators (one for any delivery period and one for the Cycle 14 billing period).
At this stage we will refer to this chosen model as Melti-Pattern model because it
incorporates a different intra-day pattern for each weekday.

In the preceding models, each day has its own pattern of arrivals over periods. Keeping
the parsimony concept in mind, FiguBe2 suggests that some weekday patterns resemble
others (at least during most periods of the day). To examine if indeed this is the case
we first normalize each period’s arrivald];;, dividing by the dayd mean value N,.

Then we averaged each normalized period value separately over each weekday type (for
Sunday through Friday). By carefully examining the above mentioned FiGreve

can conclude that Sundays and Fridays have patterns that differ from those of the rest of
the weekdays. Based on this observation, we set aside Sundays and Fridays and test the
hypothesis, separately for each perigdthat there is no significant difference between

the remaining 4 weekdays based on the normalized mean values. In effect, we fit the
following simple model for each peridd

Ndk o i
NTd = Ugqy;
whereu, is the effect of the/™ weekday.
We thus formally test our observation using a simple ANOVA model. The ANOVA under-

for d=1,...,254; k=1,...,33 (6.3)

line assumptions of normality and homoscedasticity were examined using different plots
and were found to hold for the data.
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Rejecting the null hypothesis for a specific perioghdicates that there is a difference
between the weekdays for that period. According to the results shown in@dkldor
most periods of the day the 4 weekdays patterns are similar.

Period | Start Time| F-value| Pr>F || Period| Start Time| F-value| Pr>F
7:00 0.96 | 0.4131| 18 15:30 1.54 | 0.2070
2 7:30 0.93 | 0.4268| 19 16:00 2.34 | 0.0757
3 8:00 1.70 | 0.1692| 20 16:30 1.63 | 0.1841
4 8:30 2.43 | 0.0673| 21 17:00 3.08 | 0.0290
5 9:00 1.28 |0.2831| 22 17:30 4.80 | 0.0031
6 9:30 1.54 | 0.1069| 23 18:00 1.32 | 0.2683
7 10:00 0.49 | 0.6873| 24 18:30 3.57 | 0.0153
8 10:30 0.53 | 0.6598|| 25 19:00 3.23 | 0.0238
9 11:00 1.53 | 0.2097| 26 19:30 3.22 | 0.0242
10 11:30 0.70 | 0.5512| 27 20:00 0.71 | 0.5467
11 12:00 5.02 | 0.0024| 28 20:30 2.53 | 0.0593
12 12:30 3.00 | 0.0321]| 29 21:.00 0.25 | 0.8607
13 13:00 0.54 | 0.6564| 30 21:30 0.46 | 0.7076
14 13:30 0.05 |0.9852|| 31 22:00 1.63 | 0.1836
15 14:00 0.18 | 0.9097| 32 22:30 1.71 | 0.1663
16 14:30 0.15 | 0.9276| 33 23:00 0.35 | 0.7865
17 15:00 0.82 | 0.4851 - - - -

Table 6.12:ANOVA Results of Monday through Thursday effects for each period. Ac-
cording to the p-values, most of the periods do not differ between the 4 weekdays. The
bolded rows indicate those% significant periods.

As a result of the above analysis we shall evaluate two additional models. The Three-
Pattern model has three different patterns: one for Sunday, one for Friday and one for
the remaining weekdays. In addition to the Multi-Pattern model, we also try and fit a
Two-Pattern model which includes two patterns: one for Friday and one for the rest of the
weekdays. Both models still have the weekday effect, a general delivery periods effect
and the Cycle 14 billing period effect, together with one of the patterns. The Two-Pattern
model assumes that all weekdays, except Friday, have the same relative intra-day behavior
but may show different absolute levels. The results of the three model evaluations are
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presented in table®.13 6.146.15and6.16 Based on the RMSE and the APE measures

the Three-Pattern model provides the best performance. However, looking at the coverage
and confidence widths we see that the Multi-Pattern model achieves the best outcomes.
Based on parsimony considerations, we decided to choose the Three-Pattern model. This
concludes our discussion of how the fixed effects were selected.

RMSE
N=203 Two-Pattern Three-Pattern Multi-Pattern
1t Quartile 32.51 32.65 33.33
Median 38.81 38.25 40.46
Mean 43.32 43.3 44.57
374 Quartile 50.45 50.94 51.72

Table 6.13:Comparing models with different numbers of weekday patterns. Results for
RMSE.

APE
N=203 Two-Pattern Three-Pattern Multi-Pattern
15t Quartile 7.83 7.83 8.15
Median 9.71 9.68 9.95
Mean 10.8 10.8 11.06
374 Quartile 13.27 12.86 13.37

Table 6.14:Comparing models with different numbers of weekday patterns. Results for
APE.

Coverage Probability
N=203 Two-Pattern Three-Pattern Multi-Pattern

15t Quartile 0.91 0.88 0.88
Median 0.97 0.97 0.94
Mean 0.93 0.93 0.92

374 Quartile 1 1 1

Table 6.15:Comparing models with different numbers of weekday patterns.Results for
coverage probability.
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Width
N=203 Two-Pattern Three-Pattern Multi-Pattern

1% Quartile 141.67 141.53 138.15
Median 160.15 160.76 157.22
Mean 164.33 162.84 161.71
37 Quartile 186.79 185.4 184.48

Table 6.16:Comparing models with different numbers of weekday patterns. Results for
width.

6.2.3 Determining the Covariance Structure — Random Effects

Having chosen the fixed effects that will be incorporated in our model we now discuss the
modelling of the random effects. There are two sources of variation in our model: one is
from the daily volume effect; and the other is the within-day error vectgpt

We begin by examining different structures for the maftixvhich is the within-day co-
variance matrix. Because of a certain indeterminacy in solving/f@and theK residual

error variances one cannot allow the variances (diagonal elemenig)}anbe uncon-
strained. Either a lower bound must be set on these variances — 1/4 would be a logical
lower bound since this is the approximate variance of the square-root-Poisson variable
— or one may choose a structure frthat has the same variance for each component.
Amongst the latter we shall try the AR(1), ARMA(1,1) and Toeplitz forms forOther
covariance structures theoretically may also be incorporated here but since most of them
are more complex (i.e., include more parameters) we did not consider them because of
computational limitations. Another reason is that other forms of covariance matrices in
SASP® are not directly related to time series structures.

We evaluate and compare the models using the same technique we developed for selecting
the fixed effects. We use the same learning data as before.

The results are shown in tablésl?, 6.1§ 6.19 and6.2Q The Toeplitz form did not
converge for the learning data. The results for the ARMA(1,1) show only slight improve-
ments compared to the AR(1) structure. However, one more factor that should be taken
into consideration is that the CPU time was markedly higher for the ARMA(1,1) model
(by several hours). In conclusion, the model choserifan this approach is the AR(1)
model for the residual error vector.

The last source of variability is the daily volume effet}, We assume its covariance
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N=203 RMSE
R covariance structureAR(1) ARMA(1,1)

1%t Quartile 32.65 32.39
Median 38.35 38.47
Mean 43.40 43.23
374 Quartile 50.94 50.74

Table 6.17:Different within-day errors covariance structure. RMSE results.

N=203 APE
R covariance structure AR(1) ARMA(1,1)
1%t Quartile 7.83 7.83
Median 9.68 9.54
Mean 10.8 10.73
374 Quartile 12.86 12.83

Table 6.18:Different within-day errors covariance structure. APE results.

N=203 Coverage Probability
R covariance structureAR(1) ARMA(1,1)
15t Quartile 0.88 0.88
Median 0.97 0.97
Mean 0.93 0.93
3¢ Quartile 1 1

Table 6.19:Different within-day errors covariance structure comparison. Coverage re-

sults.
N=203 Width
R covariance structure AR(1) ARMA(1,1)
1%t Quartile 141.53 138.98
Median 160.76 158.15
Mean 162.84 161.48
374 Quartile 185.40 161.70

Table 6.20:Different within-day errors covariance structure. Width results.
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structure also has a first-order autoregressive form. This basic assumption means that if on
a certain day the call center experienced a rise in the amount of incoming calls (compared
to the fixed effects prediction) then we would also expect to see a similar increase during
the following days. As the days become farther apart from that day we expectits influence
to decline.

We investigated the influence of tHé correlations by comparing our Three-Pattern
model with an alternative model which does not include this random effect. For the com-
pany’s current (10-day-ahead) strategy for prediction, one would hardly expect to see any
difference between the two models. Since 10 days is such a long lead time we anticipated
that the daily random effect would have a small influence on the results, if any.

The results are summarized in tab&21, 6.22 6.23and6.24 In contradiction to our
expectations, it seems that the daily random effect is an important one. One possible ex-
planation for such an outcome is that by modelling the between day correlations we also
influence other parameter estimates in the model (making them snaweth) which in

turn improves the overall forecasting model.

RMSE
N=203 Three-Pattern Three-Pattern
without daily random effect (with daily random effect)
1t Quartile 32.03 32.65
Median 38.63 38.35
Mean 44.53 43.40
374 Quartile 54.12 50.94

Table 6.21:Testing the influence of the daily random effect. RMSE results.
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APE

N=203 Three-Pattern Three-Pattern
without daily random effect (with daily random effect)
1%t Quartile 7.86 7.83
Median 10.09 9.68
Mean 11.03 10.80
374 Quartile 13.28 12.86

Table 6.22:Testing the influence of the daily random effect. APE results.

Coverage Probability

N=203 Three-Pattern Three-Pattern
without daily random effect (with daily random effect)
1%t Quartile 0.85 0.88
Median 0.94 0.97
Mean 0.91 0.93
3¢ Quartile 1 1

Table 6.23:Testing the influence of the daily random effect. Coverage results.

Width
N=203 Three-Pattern Three-Pattern
without daily random effect (with daily random effect)
15t Quartile 136.12 141.53
Median 151.61 160.76
Mean 154.63 162.84
374 Quartile 174.95 185.40

Table 6.24Testing the influence of the daily random effect. Width results.
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6.3 US Bank

We do not repeat the whole selection process for the US bank data for several reasons: (1)
The bank’s data does not include billing cycles and as such only requires the daily pattern
analysis which was carried out; (2) Since each day is divided into 169 intervals the com-
putational efforts are significantly increased and as a result the ARMA(1,1) covariance
structure leads to a model which does not converge, and therefore we are left only with
the AR(1) choice; (3) In the bank data we only carry out one-day-ahead predictions so we
do not examine the importance of the inter-day autoregressive structure.

6.3.1 Determining Fixed Effects and Covariance Structure

The random effects are modelled using the same settings as our original model; i.e. both
follow an AR(1) structure. However, we fitted a slightly different version of the daily-
pattern fixed effects since the USA working days and weekday patterns differ from the
Israeli cellular call center ones. Recall that the normalized version of the data was plotted
in Figure3.4. As already noted, three interesting facts are depicted in this figure: (a) Mon-
days have an early start compared to the rest of the weekdays; (b) Fridays have a slower
decrease at the end of the day; (c) the remaining weekdays appear to be similar. Based
on these observations, we set aside Mondays and Fridays and tested the hypothesis that
during each period all the remaining weekdays are not significantly different. We tested
the last statement using a simple ANOVA model similar to the one describéd)n The
ANOVA underline assumptions of normality and homoscedasticity were examined using
different plots and were found to hold for the data.

Figure6.1 is a QQ-plot of 169 P-values corresponding to the ANOVA results for each
period. The results show that for most parts of the day the 3 weekdays are quite similar.
The results show that the percentage of significant p-values are far greater théhdhe
significant periods that one would expect under the intersection null hypothesis. Despite
these results, due to parsimony considerations, we restricted the analysis to 3 different
weekday patterns: one for Monday, one for Friday and one for the rest of the weekdays.
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Sorted P-values of the Anova Test

P-value

0 50 100 150

Figure 6.1:P-values QQ-plot for the ANOVA by periods of the US Bank data. The blue
line corresponds to th&% value. The red line represents the uniform distribution.

55



Chapter 7

Results of Prediction

7.1 Israeli Cellular Phone Company

In this section we will define and analyze a few goodness-of-fit criteria based on the mixed
model predictions. Some of these criteria evaluate how well our mixed model can perform
if implemented with the aim of achieving a particular QED regime. We will also compare
the Poisson Bayesian model to the mixed model results.

7.1.1 Mixed Model Analysis

Goodness of Fit Figure7.1 presents the QQ-plot for the residuals of the Three-Pattern
mixed model. Consequently, it is apparent that the residuals normality assumption holds
for most of observations.

Tables7.1and7.2 shows the different values of the estimated error variamgeusing the

two alternatives, once using an ARMA(1,1) structure for the between-periods covariance
structure and once with an AR(1) structure (both techniques are detailed in S2dtidn

Both analyses exhibit very similar values. The two averages of the estimated variance are
0.309 and 0.31 which are quite close to the expected theoretical value of 0.25.
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Mixed Model Residuals QQ plot

Sample Quantiles

-4 -2 0 2 4

Theoretical Quantiles

Figure 7.1:The Three-Pattern mixed model residuals QQ plot
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Learning Set No| Estimated Variance Learning Set No| Estimated Variance
1 0.199 20 0.320
2 0.185 21 0.352
3 0.183 22 0.390
4 0.136 23 0.376
5 0.092 24 0.382
6 0.230 25 0.387
7 0.288 26 0.416
8 0.309 27 0.380
9 0.293 28 0.369
10 0.309 29 0.333
11 0.319 30 0.324
12 0.319 31 0.338
13 0.340 32 0.334
14 0.324 33 0.340
15 0.314 34 0.320
16 0.309 35 0.333
17 0.326 36 0.320
18 0.338 37 0.301
19 0.311 - -

Table 7.1:The estimated variance efusing the AMRA(1,1) structure. The average value
is 0.309 and the standard deviation is 0.07.
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Learning Set No| Estimated Variance Learning Set No| Estimated Variance
1 0.260 20 0.320
2 0.227 21 0.352
3 0.193 22 0.390
4 0.192 23 0.376
5 0.086 24 0.381
6 0.131 25 0.387
7 0.288 26 0.416
8 0.310 27 0.379
9 0.293 28 0.369
10 0.301 29 0.333
11 0.319 30 0.325
12 0.319 31 0.338
13 0.340 32 0.334
14 0.324 33 0.340
15 0.314 34 0.319
16 0.310 35 0.333
17 0.326 36 0.300
18 0.338 37 0.291
19 0.311 - -

Table 7.2:The estimated variance efusing an AR(1) as the between-period covariance
structure. The average value is 0.31 and the standard deviation is 0.07.
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Lead Time Effect Our prediction process has three user defined elements: the learning
time; the prediction lead time; the forecasting horizon. During our model’s training stage
we did not change these parameters.

Some academic studies conducted in the past concentrate on producing one-day-ahead
predictions or sometimes online updating forecasting algorithms. These methods, how-
ever, do not tackle the industry problem of attaining good predictions in order to produce
the weekly schedule sufficiently ahead of time. Trying to cope with this problem, the
cellular company actually uses a two stage process. It first produces a somewhat inaccu-
rate forecast ten days before the desired week and then it generates another one, five days
before. The second forecast, it says, slightly differs from the first one and so it is essential
in order to adequately schedule agents. One interesting question which arises from the
cellular company’s method is what is the extent of the prediction lead time effect.

In order to test the prediction lead time effect, we ran our forecasting procedure using ten
different lead times, ranging from one-day-ahead to ten-days-ahead. The learning period
and the forecasting horizon stay the same; i.e., six weeks and one week, respectively.
Figure7.2 illustrates both the average RMSE and APE behaviors as the prediction lead
times grows. By looking at the average results we can confirm that the company is right:
using more recent learning data does improve prediction results. However, from the figure

it seems that the six-days-ahead predictions are more accurate, on average, than the five-
days-ahead ones. We also examined ten boxplots for each of these measures to investigate
their dispersion across the ten different lead times. The results show that the dispersion is
guite the same over different lead times. We also note that there is an advantage in pro-
ducing one-day-ahead predictions (i.e., zero lead time) since they seem to be considerably
more accurate. Knowledge such as this may be useful for managing the workforce even
if it is not possible to change the scheduling itself from one day to the next. Since we are
referring to a weekly prediction, the manager might use this recent forecast to update the
schedule for days later in the week.

60



The average RMSE and APE vs. the Prediction Lead time
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Figure 7.2:The average RMSE and APE versus the prediction lead time
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Service Times Analysis We estimate parameters of the two average service times mod-
els using the SA8 GLM procedure. The learning data include dates between mid-
February, 2004 and the end of December, 2004. Examining the first model results shows
that the interaction between the quadratic period term and the weekday is not significant.
Consequently, we also examined the first model excluding the insignificant term. This
last model is referred to as Model 3. Since our data has a large number of observations
(8382 which correspond to 254 regular days), we use the asymptotic log-likelihood ratio
chi-square test to compare the models. TabBsummarizes the results of the different
models. We compare Model 3 to Model 2 to check if the generalized model is signifi-
cantly better than the reduced quadratic model. The relevant chi-square statistic equals
58.104 and the appropriate p-value is approximately one. Hence it seems that the gen-
eralized model (i.e., Model 2) is not significantly better in modelling the average service
times. Hence, we choose Model 3 for our forecasting model. Figuidlustrates a
typical average service time prediction curves for each weekday.

By comparing the predictions to the true service means in the same manner as we did
with the arrival process analysis, we calculate the mean APE. Its value i%8.54e
predictions and this last result will later be used to estimate different measures of system

loads.
Model No. | No. of parameters Error SS
1 19 947.388
2 198 890.217
3 14 948.321

Table 7.3:Average service time models. Model 1 assumes a different quadratic curve for
each weekday. Model 3 is the same as the Model 1 excluding the interaction between the
guadratic period term and the weekday. Model 2 is the generalized model which assumes
a different pattern for each weekday.
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Predicted Average Service Time Patterns for a typical week
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Figure 7.3:The average service pattern for typical weekdays as a function of period.
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QED regime Analysis According to the QED regime, the number of service providers,
S, can be determined by the following relation:

S=12 48/ (7.0)

p p

where\ is the arrival rate andg is the service rate. By determining the call center
manager actually sets the company’s costs and staffing policies. In a queueing system with
abandonments, such as ousszan have both negative and positive values. The quantity
[ is a function of the ratio between the cost of customers’ delays and for abandonment
and the cost of staffing an agent. Practical valueg afe between -1 and 2. Figures
demonstrating thg function in an Erlang-C system, where there are no abandonments
can be found in14].
In this paragraph, we introduce two measures that evaluate forecast performance with
respect to the QED “square-root staffing” rule. The first one estimates the deviation be-
tween the pre-determinegtl(3,) and the true value of (3,) for the load actually observed
assuming that the average service time can be perfectly forecast. The second measure es-
timates the deviation between the scheduled number of agéramd the actual required
number of agentsy) using units of the square-root of the offered load. In addition, this
second measure incorporates the average percentage error between the predicted and the
actual average service time. The two measures provide similar managerial information,
however, the second measure has a more natural interpretation.
We begin by definings, as the user (i.e. the call center manager) chgsehNow we
know that the user will use the predicted value of the arrival and service rates in order to
set the number of required agents,Hence we know that:

~

N A
o Y

In practice, the assigned agents need to deal with the true vgloé the arrival rate and
the actual service rate:). Realizing the above, one can say that with the real values of
A andy, the call center is in effect operating under a different valug.ot his adjusted
value of 3 will be referred to agj,. Formally we can write:

A A

S=214 8.4/ (7.3)
Il p
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By equating the above equations we come to the following results:

5 3
u=Buy5 5 = A (7.4)
s

= I

Let us assume for now that we can predict the rapeerfectly which means that =
(which is a fairly reasonable assumption in practice). From earlier results we know that
the average arrival rate APE is about 0.1 and hence the square root term is approximately
1.049% 1. Under the above assumptions we conclude that:
N A=A

AB =B, — Bmﬁ (7.5)
This difference will be referred to as th®3 measure. Examining it can help determine
how well our forecasting method behaves. It can answer questions like: does this fore-
casting algorithm usually over-estimate or under-estimate the number of arrivals and by
how many agents. Note that the desired valué\gfis zero, indicating a perfect point-
prediction of the arrival counts.
We evaluateA 3 using the estimated average service times (i.e., average service time=
1/service rate). In Figuré.4, we examine the averagedls values across the 33 periods
of the day using our final mixed predictions. To obtain these values of the estimated
we first estimateA s for each day in our learning data during each period. Afterwards,
we average for each period separately over all the days, excluding holidays and irregular
days.
The small values ofAS indicate that our model does quite well in predicting the value
of the arrival rate. It also indicates that the usek;s are very close to the redls. The
estimated average values are close to zero but are usually greater than zero which means
that for most parts of the day the predictions would lead to some over-staffing. During
the early morning hours and at the end of the day, the values which we observe make
sense since the arrival rates during those hours are usually low which corresponds to large
values ofAS.
After examining the values of averages one can also examine the dispersion/of
throughout the day by looking at boxplots for each period as shown in FiQEré&rom
these results we can say that most of @ have absolute value less than 2. There are

65



Delta Beta vs. Period
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Figure 7.4:The average estimatells as a function of period.

five relatively largeA s values. The three which occur during periods 31,32 and 33 all
come from the same day, July'2&vhich has an unusual drop in the number of incoming
calls during those periods. The two outliers located during tharil 6" periods are also
related to the same date, Septembef.1Buring these periods there is also a peculiar
drop in the number of incoming calls which is unexplained.

In conclusion, the boxplots due indicate thats of Aj values are between -0.5 and 0.5

and on average are zero. Given that practical valugsast between -1 and 2, on a large
proportion of the periods the mixed model will not make a gross error in the staffing.

Now let us remove the assumption made before about the service rate. This leads to the

66



Delta Beta Boxplots vs. Period
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Figure 7.5:Boxplots of A for the different periods.

problem of predicting the mean service times in addition to the arrival rate during each
half-hour. Using the same methodology as before, one can say that the user has to pre-
determine a value fa#, and based on the predicted values of bodnd;: set the number
of required agents in the following manner:
S:é+ﬂ 2 (7.6)
o]
Knowing the true values of andy the user would still use the saméut would now get

the desired number of agents, i%. This number is the correct number of agents needed
to handle the actual system load at the desired quality and efficiency trade-off. Following
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this notation we can write the following equation:

s=215./2 (7.7)
Il u

From the above two formulas one can deduce the following:

sos o2 (VinWk
S5 _ é:ﬁ+ﬁ My (7.8)

Using the mean APE for the service rate and arrival rate the second termg)irs(small.
Hence, we come to the conclusion that:

A

=l

= I

- S N
\/E - \/X
H Iz
We shall refer to the above measureZsQED . It enables one to evaluate the difference
between the actual and the desired number of agents, normalized by the square root of the

(7.9)

actual offered load. Normalizing with the square-root of the offered load is natural using
the following reasoning: in the QED regime, we add (or deduct) a fadfoof( square-

root of the offered load to ensure adequate staffing levels. US{@ED we can evaluate

by how many units of the square-root of the offered load our staffing lédelviated from

the required leveb. This is similar to evaluating the number of unit deviations between
the user defined,, and the adjusted, (defined above).

We proceed by calculating QED using the same data as before but this time we are also
incorporating the mean service times predictions produced by the model described in the
previous paragraph. Figuie€ demonstrates the results. Because the first two values of
AQED are very large they distort the figure and its very hard to make sense of things.
For this reason, we add Figure/ which gives a zoomed-in view for the periods between
8:30AM and 11:30PM.

From the results we can see that during the afternoon hours we are predicting the offered
load quite well. During the second peak period (which occurs at around 19:30) we are
under-estimating the offered load and hence under-staffing the call center by 1 — 2 agents.
In the early morning hours, this deviation might cause problems since only a few agents
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Delta QED vs. Period
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Figure 7.6:The average estimatel QED as a function of period.

are available. However, it is very important to also note that during these hours the QED
regime is likely to be inappropriate and hence this measure is irrelevant during those
periods.

The next natural step of this analysis is to study the effect of the predictions deviations
on service level measures. In the process of scheduling, a manager will ultimately decide
what is the required number of agents according to some pre-determined service level
goals. These goals are translated into measures such as: the customer’s probability to
wait, the average waiting time or the probability of a customer to abandon. It would be
interesting to study the sensitivity of these measures to errors of the predicted service
times and arrival counts, compared to their actual values.
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Delta QED vs. Period
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Figure 7.7:The average estimates QED versus periods between 8:30 and 23:30.

Variability Measure Analysis One of our research goals is to quantify the uncertainty

in the arrival process; for example, trying to decide if there are specific periods during the
day which are harder to predict than others.

As we already saw, the daily patterns differ among weekdays. Taking a slightly different
approach than before we begin by investigating the natural cluster hierarchy hidden in the
daily patterns. We explore this by implementing an agglomerative clustering algorithm
on the normalized daily patterns. We used the ‘agnes’ command located in the ‘cluster’
package (se€lll]) available in the R statistical software. The results show that there are
two large clusters: one contains only weekends and the other has all the rest of the week-
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days. We continued exploring the weekdays cluster which contains most of the dataset
(including irregular days). We studied this cluster by trying to divide it into different
smaller groups. We did this by running the k-medoids algorithm (detailed in the second
chapter of 1Q]) with different k-values ranging from 2 to 10. Based on the silhouette
coefficient we arrived at the conclusion that the weekdays cluster can be further divided
into two clusters which can be identified as holidays and regular weekdays. The holidays
identified using this procedure correspond to the list of holidays provided in Bable
Taking out the five outlier days that we initially listed in Tal@& we are left with only
the regular weekdays in the other cluster.
After this primary procedure we now have a cluster containing days which are similar to
each other based on the Euclidian distance measure between daily arrival profiles.
Let us assume for a moment that we would have to predict each period arrival count based
on the naive estimator, i.e. the daily average during that period. Since all the days in the
cluster are similar we would use all of them to calculate each period mean value. Note
that this procedure only uses periods information to produce the prediction as opposed to
our first benchmark approach (detailed %14)) which also incorporated the weekday
data.
We shall now investigate how much variability is present in each period when the forecast
is restricted to this basis (i.e.,period) by comparing between each period mean value and
its RMSE. Figurer.8 shows the results of the naive model comparison.
The next evident step that suggests itself from the above figure, is to calculate the linear
regression curve estimators since the points seem to fall on an almost straight line. In
a perfect Poisson distributed environment with an arrival rate,oive know that the
variance 2, equals the arrival rate\. Taking log on both sides of this last equation one
would expect the following relationship between the log standard deviation and the log
expected value:

logo = % -log A (7.10)

So for a collection of Poisson variates one would expect to see a straight line when plot-
ting their log-RMSE's against their log-mean values. The estimated value of the slope
should be close to 0.5 and the intercept estimator would be close to zero. Our naive linear
regression results are presented in Tah# and show that the intercept is not signifi-
cantly different from zero. Looking at the slope estimator we can observe the well known
over-dispersiorphenomena mentioned in several articles suc/3jeaid 5).

Using the same method as implemented on the naive model predictions, we can compare
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Log Predictions RMSE of different Models vs. the log average Y
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Figure 7.8:Plot of the log RMSE versus the log mean arrival value based on the naive
predictor. Each point is for a different period.

Models Name| Intercept Intercept P-value Slope Slope P-value R-Squared

Naive Model | 0.202 0.231 0.617 1.55-10"% 0.9403

Table 7.4:The naive model linear regression estimators.

between different models. Specifically, plotting the RMSE against the mean arrival value
for each period. The analysis is carried out on two additional models: the first benchmark
(industry) model, defined in5(14) and the final three-pattern mixed-model, defined in
(5.2).
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Log Predictions RMSE of different Models vs. the log average Y

4.0

<& Naive
A BenchMark
-+ Mixed model

Log RMSE
3.5
l

3.0

>

25
|

4.5 5.0 5.5 6.0

Log Mean Y

Figure 7.9:For each period, a plot of the log RMSE versus the log mean arrival value
based on the naive predictor, the first benchmark model and the mixed-model.

Figure7.9 shows the comparison between the three models: the naive model and the two
additional ones. There is a large cluster on the right side of the figure. Hdilii®ocuses

on periods with higher arrival mean values which corresponds to this cluster. By looking
at both graphs, one can see that the mixed model has lower RMSE during most of the
periods. The naive model has lower RMSE than the benchmark model. The observations
located on the lower left side of the graph correspond to the morning hours. During these
morning hours, it seems that the naive model is doing just as well and even better than the
other two models. However, one must consider that this naive model’s ‘predictions’ (i.e.,
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Zoom on the Log Predictions RMSE of different Models vs. the log average Y
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Figure 7.10:For each period, a plot of the log RMSE versus the log mean arrival value
based on the naive predictor, the first benchmark model and the mixed-model. This is a
zoom-in graph that focuses on periods with higher mean arrival counts.

mean values) are based on the entire 203 days for each of the periods whereas the other
predictions are based on only 6 weeks.

Looking at Tablé7.5, we can compare the linear regression estimators of the three models.
As can be seen, the mixed model slope is the closest to the “natural” 0.5 value but it also
has a significant intercept. The positive intercept on the logarithmic scale means that even
if the dependence of standard deviation on the mean has a square-root form, there remains
nevertheless some unexplained over-dispersion.
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Models Name Intercept Intercept P-value Slope Slope P-value R-Squared
Naive Model 0.202 0.231 0.617 1.55-1072° 0.9403
Benchmark Model 0.344651 0.0492 0.6015.699 - 1020 0.9315
Three Pattern Mixed-Model 0.622 0.003 0.543 3.158 - 10720 0.901

Table 7.5:The naive, benchmark and mixed model linear regression estimators.

The last thing we shall examine is the one-day-ahead predictions versus the ten-day-ahead
ones. Adding these two additional models brings us to a total of five models to compare:
the naive model, the benchmark model ten-day-ahead, the benchmark model one-day-
ahead (ODA), the three-pattern mixed model ten-day-ahead and the three-pattern mixed
model one-day-ahead (ODA).

Figure7.11displays the comparison between the five models. Figut&zooms in on
periods with higher arrival mean values. It is evident that there is a reduction in the
RMSE when we use a shorter lead time. As mentioned before, this comment should be
considered by call center managers since even when predicting the full week, one might
nevertheless consider making changes as the week unfolds.

The one-day-ahead results of the two models linear regression estimators are presented
in Table7.6. From these results one can see that the one-day-ahead estimators of both
the benchmark and the mixed models have slopes closer to the theoretical Poisson slope.
Comparing both the one-day-ahead and the ten-day-ahead behaviors, one can see that the
difference between the slopes of the two models is about 0.05.

Models Name Intercept Intercept P-value Slope Slope P-value R-Squared
Benchmark Model ODA 0.3091 0.0709 0.602 3.146 -10~2° 0.9375
Three Pattern 0.4636 0.0356 0.5522 3.781 - 1016 0.8856
Mixed-Model ODA

Table 7.6:0ne-day-ahead benchmark and mixed models — linear regression estimators.

In summary, from the above results it appears that the mixed model is successful in captur-
ing more of the predictable variability than do the naive model or the benchmark model; in
particular during the busier periods of the day. As a result, for the mixed model, the resid-
ual variability is closer to that corresponding to the inherent randomness of the Poisson
distribution. Also the short, one-day-ahead, lead time plays an important role in reducing
this residual variability.
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Log Predictions RMSE of different Models vs. the log average Y
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Figure 7.11:For each period, a plot of the log RMSE versus the log mean arrival value
based on the naive model, the benchmark model ten-day-ahead, the benchmark model
one-day-ahead, the three-pattern mixed model ten-day-ahead and the three-pattern mixed
model one-day-ahead.

7.1.2 Comparison between the Poisson Bayesian Model and the Mixed
Model

When applying the Poisson Bayesian model to the current version of ‘OpenBugs’, our
programs, unfortunately, could not handle our original prediction problem of forecasting
the full week on a ten-day-ahead basis. Moreover, because of computational difficulties,
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Figure 7.12:For each period, a plot of the log RMSE versus the log mean arrival value
based on the naive model, the benchmark model ten-day-ahead, the benchmark model
one-day-ahead (ODA), the three-pattern mixed model ten-day-ahead and the three-pattern
mixed model one-day-ahead (ODA). This graph shows only periods with high arrival
mean values.

the highest resolution we were able to apply to the Poisson Bayesian model was two and
half hours over six periods of the day. As a result, this section will only present a ‘proof
of concept’ for this model. We will investigate the one-day-ahead forecast results for July
1, 2004 during the six periods between 7AM-9:30PM. We used 6 weeks of past data as
the learning data.
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The mixed-model was also adjusted using the same settings as the Poisson Bayesian
model to enable a fair comparison. For example, the model was expanded to include
all seven days of the week. The billing cycles indicators were not included in the model
because the computational complexity was excessively hard for the ‘OpenBugs’ software
to handle.

We ran the Poisson Bayesian model using two Markov chains to reduce the correlations
between the samples. Each chain was run for 1750 iterations after a burn-in period of
1000. The inference is carried out using the combined samples. The effective number of
iterations, which is used as a crude measure of effective sample size, was approximately
1900 (for the predictive distributions of the 6 periods).

One of the main advantages of implementing the model using ‘OpenBugs’ is that the
forecasted periods are considered to be parameters and as such one can generate their
posteriordistributions. The periods histograms and density plots are presented in Figure
7.13

Figure(7.14 presents the predicted values attained from both the mixed-model and the
Poisson Bayesian model. We used the mean value of the forecast distribution as the pre-
dicted value for each period. For most periodslo$ day the mixed-model outperforms

the Poisson Bayesian model.

We also compare the prediction intervals of both methods. For the Poisson Bayesian
model we used the forecast distributi®®25 and0.975 quantiles to determine th5%
prediction interval. From Figur@é.15it is apparent that the Poisson Bayesian model has
wider prediction intervals than the mixed-model.

Although, based on these results one might be discouraged from pursuing the Poisson
Bayesian model, we believe that further investigation of this model is appropriate since
one day is hardly enough to determine model adequacy.
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Figure 7.13:The Poisson Bayesian model predicted periods. For each of the six periods
between 7AM-9:30PM the forecast distribution is plotted.
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Predicted arrivals counts for July 1, 2004
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Figure 7.14:Comparison between the Poisson Bayesian model and the mixed-model pre-
dictions results.
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Prediction intervals for July 1, 2004
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7.2 US Bank

In this section we examine the normality assumption of the mixed model and compare
between the Gaussian Bayesian model and the mixed model prediction results. We also
discuss the practical applications of these models in a business environment.

Goodness of Fit Figure7.16presents the QQ-plot for the residuals of the mixed model
on the US Bank data. Near the ends of the QQ-plot there are deviations from the normal
distribution. However, these deviations correspond to only a few days and hence for most
of the observations the normality assumption holds.

Mixed Model Residuals QQ plot

Sample Quantiles

Theoretical Quantiles

Figure 7.16:The mixed model residuals QQ plot.
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7.2.1 Comparison between the Gaussian Bayesian Model and the Mixed
Model

In this section we compare between the results of two main models: the mixed model and
the Gaussian Bayesian model. We compare both models’ forecasting performances over
a period of 64 regular weekdays. This period includes weekdays between July 25 and
October 24, 2003.

For the Gaussian Bayesian model, we use the performance measures rep@2gdiie |

did not implement this model. As described in the above mentioned article, for each day
the 100 previous days were used as the learning data.

For the mixed model, we ran a one-day-ahead prediction process on the data. Because of
computational problems we could not preform our original forecasting process, i.e. using
six weeks of historical data as the learning data. Instead we ran the forecasting procedure
twice: once using five weeks (referred to as Model 5) of past data and once using four
weeks (referred to as Model 4) as the learning period.

In the previous mixed-model (i.e. for the Israeli cellular data), the prediction intervals
used degrees of freedom that were calculated according to a general Satterthwaite ap-
proximation as recommended when dealing with random effects. For further details the
reader is referred to the SAShelp manual located in the software itself or to jirec

mixed website.

However, using this approximation on the current US bank data yielded some confusing
results.

N=64 RMSE APE Cover Width

Min 12.31 585 0.63 60.60

1%t Quartile | 15.18 7.29 0.92 63.63
Median 17.07 759 0.97 69.70
Mean 19.10 8.76 0.94 139.88
374 Quartile| 21.12 9.09 0.99 81.16
Max 41.01 28.02 1 501.28

Table 7.7:The mixed-model results with 4 weeks of learning data.

Table7.7 presents the prediction results for the mixed-model using four weeks as the
learning period. Looking at the width statistics, specifically the mean and maximum val-
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ues, itis apparent that there are a number of days which have very wide average prediction
interval. Closer examination of the results revealed that out of the 64 predicted days, 13
exhibited this abnormal behavior. These days do not have an exceptionally large pre-
diction standard deviations. However they do have an unusual humber of denominator
degrees of freedom which equals one (during all periods of the day). To investigate this
phenomenon, we compared the above results with those of the mixed-model procedure
using the default degrees of freedom calculation method (all the rest of the settings remain
the same). This default method is referred to, by the 8A8lp manual, as the contain-
ment method. Using the default method, the 13 ‘abnormal’ days exhibited significantly
smaller widths. The remaining question is: what effect does the default method have on
the width of the remaining 51 days. Tadl& summarizes the 51 days width and coverage
results of both the Satterthwaite and the containment (default) method. We do not explore
the RMSE and APE since they are not affected by the change in the degrees of freedom.

Cover Width

N=64 Satterthwaite Containment (Default) | Satterthwaite Containment (Default)
Min 0.63 0.63 60.60 58.37
1%t Quartile 0.91 0.89 63.17 61.96
Median 0.96 0.95 67.13 66.37
Mean 0.93 0.93 68.62 67.25
3r? Quartile 0.98 0.98 72.32 71.85
Max 0.99 0.99 84.06 81.07

Table 7.8: Comparing the mixed-model coverage probability and width using Satterth-
waite approximation versus the containment method to calculate the degrees of freedom.

From this comparison one can see that the coverage probability statistics are very sim-
ilar (some even have exactly the same values). However, the prediction interval widths
are consistently shorter using the default method. This may indicate that using the Sat-
terthwaite approximation leads to unnecessarily large prediction intervals. The reason
as to why such results occur specifically when using Satterthwaite approximation on the
Bank’s data and not on the Cellular’s data is unknown to us and might need to be further
explored.

Following these results, the two versions of the mixed-model (once using four weeks of
past data and once using five weeks of past data as the learning periods) are implemented
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using the default method for calculating the degree of freedoms and the associated pre-
diction intervals. Tableg.Sand7.10present the results of the Bayesian model and both
versions of the mixed model using all 64 predicted days data. Generally speaking, the
Bayesian model outperforms the mixed model although the results are very close. The
RMSE and APE maximum values are smaller in the mixed model. The mixed-models
width values are smaller than for the Bayesian model but the coverage probabilities are
smaller as well.

In spite of the above results, it is important to emphasize that the mixed-models daily pre-
dictions only require 20-25 learning days in comparison to the 100 days that the Bayesian
model required. Moreover, the daily forecast took about twenty-thirty minutes for each
day. Article 22] authors do not specify the learning time or the prediction time but it
seems that using the Bayesian approach is much more time consuming and hence may be
impractical industry-wise. As it was implied by the authors, their algorithm was unable to
accurately predict call volumes at horizons greater than a week for five minute intervals.

RMSE APE
N=64 Bayesian Mixed 4 Mixed5 | Bayesian Mixed4 Mixed5
Min 11.14 12.31 12.27 5.6 5.85 5.89
15" Quartile | 14.25 15.18 14.93 7.0 7.29 7.17
Median 15.83 17.07 17.11 7.4 7.59 7.71
Mean 18.28 19.10 19.05 8.4 8.76 8.74
374 Quartile| 19.83 21.12 20.31 8.5 8.9 9.09
Max 43.42 41.01 41.30 28.6 28.02 27.84

Table 7.9:Comparing different models using RMSE and APE performance measures on
the bank’s data. The table presents the following approaches: the Bayesian and the mixed.
Mixed 4 and Mixed 5 represent the results of the mixed model using four weeks of past
data and five weeks of past data as the learning periods, respectively.
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Cover Width

N=64 Bayesian Mixed 4 Mixed5 | Bayesian Mixed4 Mixed5
Min 0.686 0.63 0.63 64.54 58.37 58.32
1t Quartile | 0.935 0.90 0.91 68.13 62.44 63.53
Median 0.97 0.96 0.96 69.23 66.68 66.39
Mean 0.947 0.93 0.93 70.10 67.80 67.93
374 Quartile| 0.988 0.98 0.98 72.41 73.15 71.60
Max 1 0.99 0.99 79.3 82.60 92.19

Table 7.10:Comparing different models Coverage and Width performances on the bank’s
data. The table presents the following approaches: the Bayesian and the mixed. Mixed 4
and Mixed 5 represent the results of the mixed model using four weeks of past data and
five weeks of past data as the learning periods, respectively.
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Chapter 8
Conclusions and Future Research

In this thesis we have developed two variations of Poisson process models for describing
count data of call center arrivals. These models utilize different techniques to tackle the
modelling problem. One approach uses mixed models techniques while the other uses
modern Bayesian techniques to analyze the data.

Our mixed model was customized to the specific requirements of an Israeli Cellular phone
company. The company requires that the weekly forecast be available to the decision
makers at least ten days in advance and should be based on six weeks of past data. Recent
research, on the other hand, has focused on producing one-day-ahead forecasts or within-
day learning algorithms. These issues are very important and may be very useful for call
centers that can mobilize their agents on short term notice. As we show, our mixed model
does contain the much needed practical flexibility to also support long lead times and
short learning periods. Itis also relatively easy to implement with standard software such
as SA®.

The mixed model incorporates fixed effects, such as day-of-week and its interaction with
the daily periods; but it also models the day-to-day and the period-to-period correlations.
We have detailed how to determine the significance of such effects. This process was
illustrated on two different data sets: from an Israeli cellular phone company and from a
US bank. The Israeli cellular phone company data allowed us to examine another feature
of the mixed model. The data contained billing cycle dates which were used as exogenous
variables after a preliminary examination was carried out to help reduce the size of the
problem.

Unfortunately, we were unable to compare our mixed model to the current forecasting
algorithm of the Israeli cellular phone company (since the company does not regularly
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maintain its past predictions). An interesting future study would compare our mixed
model to other industry-used models to see whether it may be useful in such surroundings.
We have examined the mixed model results using several different measures such as the
variability measure. Also its behavior under different lead times was examined. From a
practical prospective, a manager might wish to consider a two stage prediction forecast:
First, producing an early weekly forecast for the scheduling process and next re-producing
another forecast one day before the week begins. This later prediction provides a much
more reliable forecast. Using this one-day-ahead forecast, the manager of a call center
might be able to incorporate immediate changes to the week schedule.

The model was also compared to the Gaussian Bayesian model detail2¥].inThe

results were very similar and quite good considering that the mixed model used only a
guarter of the learning data that the Gaussian Bayesian model used. The results are com-
parable even without considering other improvements that might be made to the mixed
model (such as incorporating a different daily patterndachday of the week). Based

on these results and earlier analyses, we conclude that our mixed model is a very flexible,
easy to implement and time efficient model. We would recommend it to the Israeli cel-
lular phone company as an alternative to their current “black-box” algorithm. Also other
exogenous variables, such as marketing effects, can be easily incorporated into the model
using either the same basic procedure we have described for the billing cycles effects or a
similar procedure.

An alternative Bayesian model was also proposed which models directly the Poisson ar-
rival counts. This model was implemented using the ‘OpenBugs’ software. Unfortunately,
the model was too complex and the data were too large to allow a thorough examination
of this algorithm. For future research, this model needs to be implemented using other
software such as C or C++, to further evaluate its capabilities. Nevertheless, the partial
results are promising and the approach is worthy of further consideration.

Our original forecast problem was to predict the system load which involves the average
service times as well as the arrival rates. We suggested and fitted a fairly easy quadratic
regression model which incorporates weekdays and period effects.

Having both these predictions and the arrival counts, we constructed a QED regime per-
formance measure. This measure helps determine how well our model would perform
when planning a particular QED regime. Our results show that during busy periods, when
the QED regime “square-root staffing” rule is relevant, the system will be able to perform
at a desired level commensurate with the actual load. By comparison with benchmark
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and naive models, the mixed model time series approach has improved the precision of
prediction for the busier periods. This result gives some evidence that one can ensure a
pre-specified QED regime using load forecasts that are sufficiently precise.
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Appendix A

Analysis of Interval Resolution

An interesting debate might be held between practitioners and theoreticians as to what
is the appropriate interval resolution to analyze. Theoreticians might say that in order to
fully maintain the homogeneity assumption the intervals should be as small as possible.
Alternatively, from a practitioner point of view, the resolution should be determined as a
function of the possible shift starting times. If it is possible to change the number of avail-
able agents every 5 minutes then this should be the appropriate interval resolution. This
may occur, for example, in large call centers where there are also agents who are occupied
doing different off-line tasks and who can become immediately available. However, it is
fairly common that call centers plan their daily schedule according to either half-hour or
15-minute resolutions.

As previously shown, our Gaussian mixed model can be easily modified to deal with
different interval resolutions. An interesting question is by how much predictions based
on lower-level resolutions are worse than 15 minute predictions as evaluated at the 15
minute period level. For example, if one predicted accurately the total arrivals over a half-
hour period, but in that period the first 15 minutes had 0.5 times the average arrival rate,
and the second 15 minutes had 1.5 times the average arrival rate, then using the half-hour
prediction would lead one to seriously overstaff in the first 15 minutes and understaff in
the second 15 minutes. This problem would not happen if one had good predictions at
the 15 minute resolution. Hence, we are interested in analyzing the effect of the interval
resolution on the forecast accuracy at the finest practical resolution.

In order to examine this last subject we used the Israeli Cellular data and predicted the
arrival counts between 7AM and 11PM during the 203 regular weekdays between April
11 and December 24, 2004. The forecast procedure is the same as implemented by the
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company; meaning that we used 6 weeks of past data as learning data to predict the week
which begins ten days ahead.

Our baseline data resolution is 15-minute intervals. We compared 15-minute intervals
with three additional interval resolutions: half-hour, one-hour and four-hours. In order
to fairly assess the behavior of the different interval widths we compared their 15-minute
predictions. The lower resolution forecasts were simply uniformly distributed between
the 15-minutes intervals. For example, we took the predicted arrival count for a specific
hour (on a certain day) and equally divided it into the four quarter hours. TAblesnd

A.2 describe the results for both the RMSE and APE, respectively. The results show that
the most precise predictions are obtained using the highest resolution. However, it is also
noticeable that the differences between the half-hour resolution and the 15-minute one are
quite small. The four-hour resolution results are quite bad in comparison with the other
interval resolutions. These results can be used to justify the use of half-hour intervals
in our study — only a minor practical improvement to the precision can be achieved by
using a higher resolution.

RMSE
15-minutes half-hour One-Hour Four-Hour

Min 12.28 12.07 14.13 32.18

15t Quartile 19.67 19.81 20.86 38.18
Median 22.48 22.59 23.56 41.37
Mean 24.97 25.06 25.87 42.80
374 Quartile 28.45 28.29 29.18 46.14
Max 60.00 60.01 60.21 73.12

Table A.1: Prediction accuracy as a function of interval resolution. We compare the
RMSE result of the mixed model for four different resolutions: 15-minute, half-hour,
one-hour and four-hour
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APE
15-minutes half-hour One-Hour Four-Hour

Min 6.28 6.71 7.48 20.29

15t Quartile 9.28 11.05 12.38 14.26
Median 11.05 11.43 12.64 28.42
Mean 12.38 12.70 14.01 30.97
374 Quartile 14.26 14.39 15.14 32.58
Max 53.19 60.32 80.88 217.00

Table A.2:Prediction accuracy comparison as a function of interval resolution. We com-

pare the APE result of the mixed model with four different resolutions: 15-minute, half-
hour, one-hour and four-hour

92



Appendix B

Computer Code for Two Models

This section presents the codes used to implement the mixed model and the Poisson
Bayesian model.

B.1 Mixed Model — SAS Code

ods listing close ;
ods output CovParms = CovP ;
proc mixed data= forpred method= ml ;
class weekday kperiod date ;
model y = weekday Sun*kperiod kperiod Fri*kperiod /noint ddfm= satterth outp= predict solution
random date / type=SP(POW)(numDate) ;
repeated kperiod / subject= numDate type= AR(1) ;
run ;
ods output close ;
ods listing ;

B.2 Poisson Bayesian Model - OpenBugs Code

The source code for implementing the Beta-Gamma Bayesian model is presented below.
Remarks were colored in green for readers convenience.

model{
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The following loop defines the daily Gamma-Beta Process
for (iin 2:D) {
GJ[i] « GJi-1]*BJi] + WI[i]
B[i] ~ dbeta(argl,arg2)
WI[i] ~ dgamma(arg2,gam)
}
The following three lines define the Gamma-Beta Process priors
G[1] ~ dgamma(gam,gam)
argl«< rho*gam
arg2+ gam*(1-rho)
The following loop defines the daily counts distributions for the learning data
for (iin 1:(D-1) ) {
VIi] — G[i]* mu[QD[i]]
for (j in 1:K) {
lambdali,j] «— V[i]*p[QDIil.]]
NDK{i, j] ~ dpois(lambdali,j])

}

The following loop defines the daily counts distributions for the predicted values
V[D] < G[D]* mu[QDI[D]]
for (j in 1:K) {

lambdalD,j] — V[D]*p[QDI[DI,j]

NDD[j] ~ dpois(lambda[D,j])
}
The following loop defines the vectors of proportion of daily volume on each of the weekdays
for(qinl:7){

p[g,1:K] ~ ddirch(alphalq,])
}
The following loop defines the vectors of proportion of daily volume on each of the weekdays priors
for(qinl:7){

mu[q] ~ dnorm(mnl[q], precis[q])

precis[q]« 100*pow(mn][q],-2)

M[qg] ~ dnorm(5,0.2)

for (j in 1:K) {
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alphalg,j] < exp(M[a])*pi[q,]]

}

The following loop defines the vectors of proportion of daily volume on
each of the weekdays parameters priors

gam~ dgamma(0.01,0.01)

rho < exp(-prerho)

prerho~ dgamma(2,5)

ki
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