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Motivation

Standard assumption in service system modeling: arrival
process is Poisson with known parameters.

Example of call centers: known arrival rates for each basic
interval (say, half-hour).

Application of standard approach to basic interval (say, next
Tuesday, 9am-9:30am):

@ Derive Poisson parameters from historical data.

@ Plug parameters into a queueing model (M|M|n, M|M|n+ M,
Skills-Based Routing models, .. .).

@ Set staffing levels according to this model and service-level
agreement.

Is standard Poisson assumption valid? As a rule it is not, one
observes larger variability of the arrival process than the one
expected from the Poisson hypothesis.
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Research Outline

@ Design model for overdispersed arrival rate.
@ Plug arrival model into M|M|n + G queueing model.

@ Derive asymptotic results relevant for real-life staffing
problems.

@ Validate our approach via analysis of real data.
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Model Definition

The M’|M|n + G Queue:
@ )\ - Expected arrival rate of a Poisson arrival process.
@ 1 - Exponential service rate.
@ n service agents.

@ G - Patience distribution. Assume that the patience density
exists at the origin and its value gp is strictly positive.

Random Arrival Rate: Let X be a random variable with cdf F,
E[X] =0, and finite o(X). Assume that the arrival rate varies
from interval to interval in an i.i.d. fashion:

A= X+ AX, c<lI,

@ ¢ < 1/2: Conventional variability ~ QED staffing regime.
@ 1/2 < ¢ < 1: Moderate variability ~ QED-c regime (new).
@ ¢ = 1: Extreme variability ~ ED regime.
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Financial Call Center: Data Description

Israeli Bank.

Arrival counts to the Retail queue are studied.

263 regular weekdays ranging between April 2007 and April
2008.

Holidays with different daily patterns are excluded.

Each day is divided into 48 half-hour intervals.



Case Studies
0®0000

Financial Call Center: Arrival Rates
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Financial Call Center: Over-Dispersion Phenomenon

Coefficient of Variation
sampled CV- solid line, Poisson CV - dashed line
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Financial Call Center: Over-Dispersion Phenomenon

Coefficient of Variation
sampled CV- solid line, Poisson CV - dashed line

0.7
0.6
c
] AL
2 051
g /[ %
2 04
o
§os P
L X
5 0.2 g‘ ‘ \ ——
o 7,
o z7
0142 .
—"
e i
0.0 T T T T T T T T T T T T T T T T T T T T T T T
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Time
‘ —Sundays —Mondays ——Tuesdays Wednesdays —— Thursdays

Poisson CV = 1/v/mean arrival rate.
Sampled CV's > Poisson CV's =- Over-Dispersion
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Financial Call Center:

Relation between Mean and Standard Deviation

Consider a Poisson mixture variable Y with random rate
AN =X+ - X, where E[X] =0, finite ¢(X) > 0 and
1/2 < ¢ < 1. Then,

Var(Y) = X2 Var(X) + X+ X\ - E[X]
and

lim (In(c(Y)) —clIn(A)) = In(a(X)).

A—00
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Financial Call Center:

Relation between Mean and Standard Deviation

Consider a Poisson mixture variable Y with random rate
AN =X+ - X, where E[X] =0, finite ¢(X) > 0 and
1/2 < ¢ < 1. Then,

Var(Y) = X2 Var(X) + X+ X\ - E[X]
and
Aimm(ln(a(Y)) —clIn(A)) = In(a(X)).

Therefore, for large A,

In(g(Y)) = c-In(A) + In(o(X)).
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Financial Call Center: Fitting Re
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Financial Call Center: Fitting Regression Model

In(Standard Deviation)
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Tue-Wed, 5 min resolution

y = 0.7228x - 0.0025
R® = 0.9937

y =0.7933x - 0.5727
R’ =0.9783

In(Average)

= 00:00-10:30 « 10:30-00:00‘

@ Two clusters exist: midnight-10:30am and 10:30am-midnight.

e Very good fit (R? > 0.97).

@ Significant linear relations for different weekdays and

time-resolution (5-30 min):

In(o(Y)) = c - In(A) + In(o(X)).
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Financial Call Center: Outline of Additional Results

o Fitting a Gamma Poisson mixture model to the data:
(Jongbloed and Koole ['01])

Assume a prior Gamma distribution for the arrival rate
AL Gamma(a, b). Then, the distribution of Y g Poiss(N)
is Negative Binomial.
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Financial Call Center: Outline of Additional Results

o Fitting a Gamma Poisson mixture model to the data:
(Jongbloed and Koole ['01])

Assume a prior Gamma distribution for the arrival rate

AL Gamma(a, b). Then, the distribution of Y g Poiss(N)
is Negative Binomial.

@ Good fit of Gamma Poisson mixture model to data of the
Financial Call Center for most intervals.

@ Relation between our main model and Gamma Poisson
mixture model is established.

@ The distribution of X is derived under Gamma assumption:
it is asymptotically normal, given A — oo.
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Emergency Department: Data Description

@ Israeli Emergency Department.

@ 194 weeks between from January 2004 till October 2007 (five
war weeks are excluded from data).

@ The analysis is performed using two resolutions: hourly arrival
rates (168 intervals in a week) and three-hour arrival rates (56
intervals in a week).

e Holidays are not excluded (results with excluded holidays are
similar).
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Emergency Department: Over-Dispersion Phenomenon

Coefficient of Variation
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Emergency Department: Over-Dispersion Phenomenon

Coefficient of Variation

One-hour resolution Three-hour resolution
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@ Moderate over-dispersion.
@ Overdispersion is observed at daily level = scaling problem
should be studied. (Dependence of ¢ on the interval length.)

@ ¢ = 1/2 seems to be reasonable assumption for hourly
resolution.



Case Studies
ocoeo

Emergency Department: Fitting Regression Model

Linear Regression: In(o(Y)) = c - In(A\) + In(a (X))

One-hour resolution Three-hour resolution
y = 0.497z 4+ 0.102, R* = 0.968 y = 0.527x + 0.087, R? = 0.947

In(Standard Deviation)
In(Standard Deviation)
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@ A linear pattern with the slope that is very close to 0.5 while
derivation of the asymptotic relation is based on ¢ > 1/2.
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Emergency Department: Fitting Regression Model

Non-Linear Regression: In(o(Y)) = 0.5 - In(A%°5?(X) + \)

I | One-hour resolution || Three-hour resolution ||

¢ é(X) ¢ é(X)
Linear Regression 0.497 1.108 0.527 1.087
Non-Linear Regression || 0.481 0.476 0.595 0.466

e Estimates for ¢ are close but the estimates for o(X) are
significantly higher in the case of linear regression.

@ The two regression curves are almost identical.
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e 3> 0: Over-staffing.
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QED-c Regime: Fixed Arrival Rate

QED-c staffing rule:
A A\ €
n = H+,8(H> +0o(VA), BER, ce (1/2,1).

Assume an M|M|n + G queue with fixed arrival rate \.
Take A to oc:

e 3> 0: Over-staffing.
o 3 < 0: Under-staffing.

For both cases we provide asymptotically equivalent expressions (or
bounds) for P{W, > 0}, P{Ab} and E[V], where
Wy - waiting time, V - offered wait (wait given infinite patience).

Proofs: based on M|M|n+ G building blocks from Zeltyn and
Mandelbaum ['05], carried out via the Laplace Method for
asymptotic calculation of integrals.
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QED-c Regime: Random Arrival Rate

Theorem

Assume random arrival rate A = X\ + A\ul=°X, ¢ € (1/2,1),
E[X] = 0, finite o(X) > 0, and staffing according to the QED-c
staffing rule with the corresponding c¢. Then, as A — oo,

a. Delay probability: Pan{Wq >0} ~ 1—F(B).2
E[X —
b. Abandonment probability: Pnn{Ab} ~ [nl_cﬂh
E[X —
c. Average offered waiting time: Enn[V] ~ n[l_cﬁg]Jr
- 80

?f(\) ~ g(\) denotes that limy_, . f(\)/g(\) = 1.

Proofs: based on conditioning on values of X and results for
QED-c staffing rule.
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QED-c Regime: Numerical Experiments

Examples: Consider two distributions of X
e Uniform distribution on [-1,1],
o Standard Normal distribution.

8=-0.5 ¢c=07

Delay Probability

Abandonment Probability

* short-term U(-1,1)
+ long-term U(-1,1)
= approx U(-1,1)

* short-term N(0,1)
+ long-term N(0,1)
= approx N(0,1)

0.9 0.35
* short-term U(-1,1)
+ long-term U(-1,1)
0.85 = approx U(-1,1) 1 0.3
* short-term N(0,1)
+ long-term N(0,1)
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QED-c Regime: Practical Guidelines

@ Determine "uncertainty coefficient ¢" via regression analysis.
@ Check if Gamma Poisson mixture model is reasonable.

@ Assume that X is asymptotically normal, calculate standard
deviation from regression model.

@ Apply our QED-c asymptotic results in order to determine
appropriate staffing.



Theoretical Results
°

Outline of Additional Results

@ Queueing Theory. Asymptotic performance measures derived
and constraint satisfaction problems solved for:

o QED regime (c = 1/2).

o ED regime (c = 1), discrete and continuous distribution of X.
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Outline of Additional Results

@ Queueing Theory. Asymptotic performance measures derived
and constraint satisfaction problems solved for:

o QED regime (c = 1/2).
o ED regime (c = 1), discrete and continuous distribution of X.

@ Numerical Experiments. Very good fit between asymptotic
results and the exact ones.

o lterative Staffing Algorithm (ISA), a simulation code
developed by Feldman et al. ['07] with the features of random
arrival rate in the time-varying M|M|n+ G queue.

Goal: determine time-dependent staffing levels aiming to
achieve a time-stable delay probability.
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Future Research Challenges

@ Incorporating forecasting errors into our model (in the spirit
of Steckley et al. ['07]).

@ Scaling problem: dependence of ¢ on the basic interval
duration.

@ ISA: achieving time-stable performance measures (probability
to abandon, average wait).

o Validation of M?|M|n+ M (or M?|M|n + G) model in call
center environment (and probably other service systems).
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