Data-Based Service Networks:

A Research Framework for
Asymptotic Inference, Analysis & Control
of Service Systems

Avi Mandelbaum

Technion, Haifa, Israel

http://ie.technion.ac.il/serveng

SAMSI Workshop, August 2012

Overheads available at SAMSI and my Technion websites

1

Research Partners

Students:

Aldor*, Baron*, Carmeli*, Cohen*, Feldman*, Garnett*, Gurvich*, Khudiakov*, Maman*, Marmor*, Reich*, Rosenshmidt*, Shaikhet*, Senderovic, Tseytlin*, Yom-Tov*, Yuviler, Zaied*, Zeltyn*, Zychlinski*, Zohar*, Zviran*, ...

► Theory:

Armony, Atar, Cohen, Gurvich, Huang, Jelenkovic, Kaspi, Massey, Momcilovic, Reiman, Shimkin, Stolyar, Trofimov, Wasserkrug, Whitt, Zeltyn, . . .

► Empirical/Statistical Analysis:

Brown, Gans, Shen, Zhao; Zeltyn; Ritov, Goldberg; Gurvich, Huang, Liberman; Armony, Marmor, Tseytlin, Yom-Tov; Nardi, Plonsky; Gorfine, Ghebali; Pang, ...

► Industry:

Mizrahi Bank (A. Cohen, U. Yonissi), Rambam Hospital (R. Beyar, S. Israelit, S. Tzafrir), IBM Research (OCR Project), Hapoalim Bank (G. Maklef, T. Shlasky), Pelephone Cellular, . . .

► Technion SEE Center / Laboratory:

Contents

- ▶ Service Networks: Call Centers, Hospitals, Websites, · · ·
- Redefine the paradigm of modeling/asymptotics via Data
- ServNets: QNets, SimNets; FNets, DNets
- Ultimate Goal: Data-based creation and validation of ServNets, automatically in real-time

Contents

- Service Networks: Call Centers, Hospitals, Websites, · · ·
- Redefine the paradigm of modeling/asymptotics via Data
- ServNets: QNets, SimNets; FNets, DNets
- Ultimate Goal: Data-based creation and validation of ServNets, automatically in real-time
- Why be Optimistic? Pilot at the Technion SEELab
 - Lacking but Feasible: Dynamics, Durations, Protocols
 - Simple Models at the Service of Complex Realities
 - State-Space Collapse (Queues, Waiting Times)
 - Congestion Laws (LN, Little, ImPatience, Staffing)
 - Universal Approximations: Simplifying the Asymptotic Landscape
 - Stabilizing Time-Varying Performance (Offered-Load)
- Successes: Palm/Erlang-R (ED Feedback = FNet), Palm/Erlang-A (CC Abandonment = DNet)

Contents

- Service Networks: Call Centers, Hospitals, Websites, · · ·
- Redefine the paradigm of modeling/asymptotics via Data
- ServNets: QNets, SimNets; FNets, DNets
- Ultimate Goal: Data-based creation and validation of ServNets, automatically in real-time
- Why be Optimistic? Pilot at the Technion SEELab
 - Lacking but Feasible: Dynamics, Durations, Protocols
 - Simple Models at the Service of Complex Realities
 - State-Space Collapse (Queues, Waiting Times)
 - Congestion Laws (LN, Little, ImPatience, Staffing)
 - Universal Approximations: Simplifying the Asymptotic Landscape
 - Stabilizing Time-Varying Performance (Offered-Load)
- Successes: Palm/Erlang-R (ED Feedback = FNet), Palm/Erlang-A (CC Abandonment = DNet)
- ► Elsewhere: Process Mining (Petri Nets, BPM), Networks (Social, Biological, Complex, ...), Simulation-based, ...
- Scenic Route: Open Problems, New Directions, Uncharted Territories

On Asymptotic Research of Queueing Systems

Queueing asymptotics has grown to become a central research theme in Operations Research and Applied Probability, beyond just queueing theory. Its claim to fame has been the deep insights that it provides into the dynamics of Queueing Networks (**QNets**), and rightly so:

- Kingman's invariance principle in conventional heavy-traffic
- Whitt's sample-path (functional) framework
- Reiman's network analysis via oblique reflection
- Bramson-Williams' framework for state-space collapse
- Laws' resource pooling
- Harrison's paradigm for asymptotic control (Wein; van Mieghem's Gcμ)
- Dai's fluid-based stability
- ► Halfin-Whitt's (QED regime) ($\sqrt{-\text{staffing for many-server queues}}$
- P = NP : Atar's equivalence of Preemptive and Non-Preemptive SBR; Stolyar, Gurvich
- Massey-Whitt's research of time-varying queues

Applying Queueing Asymptotics

There are by now numerous insightful asymptotic queueing models at our disposal, and many arise from, and create, deep beautiful theory:

Has it helped one approximate or simulate a service system more efficiently, estimate its parameter more accurately, teach it to our students more effectively, perhaps even manage the system better?

I am of the opinion that the answers to such questions have been too often negative, that positive answers must have theory and applications nurture each other, which is good, and my approach to make this good happen is by marrying theory with data.

Prevalent Asymptotic Approximations

System (Data)

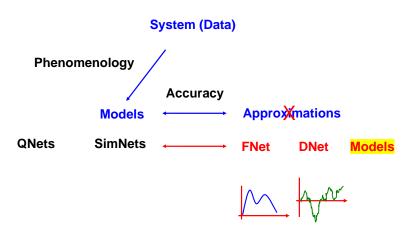
Phenomenology

Accuracy

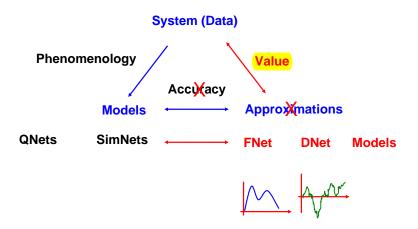
Models Approximations

QNets SimNets

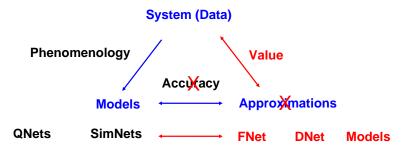
Data-Based Prevalent Asymptotic Approximations Models



Data-Based Prevelent Asymptotic Approximations Models



Data-Based Prevalent Asymptotic Approximations Models



System = Coin Tossing, **Model** = Binomial ; de Moivre 1738

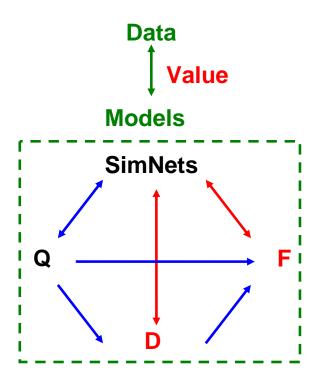
Approx. / Models: SLLN (FNets), CLT (DNets) ; Laplace 1810

Value: Exceeds Value of originating stylized model

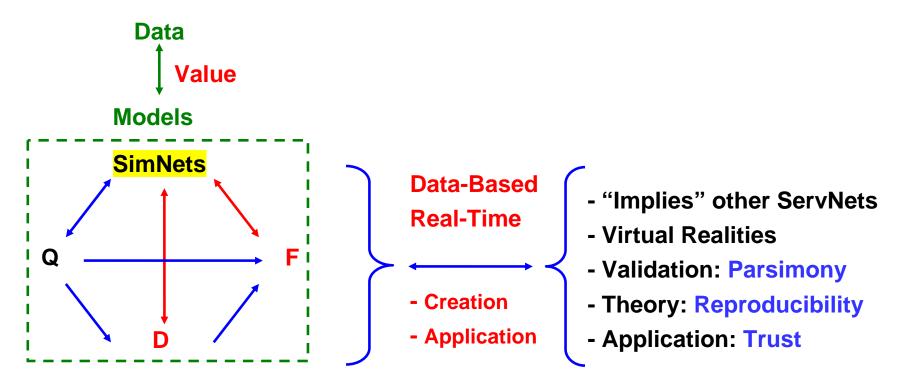
Normal, Brownian Motion ; Bachalier 1900

Poisson ; Poisson 1838

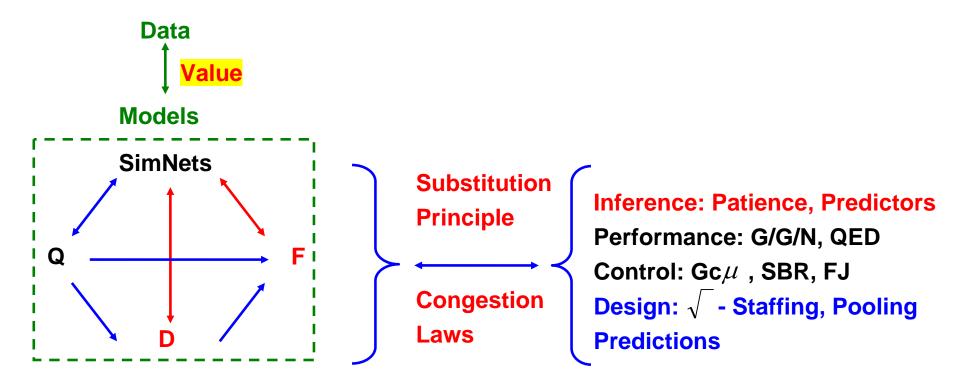
Data-Based Framework: (Almost) All Models Born Equal



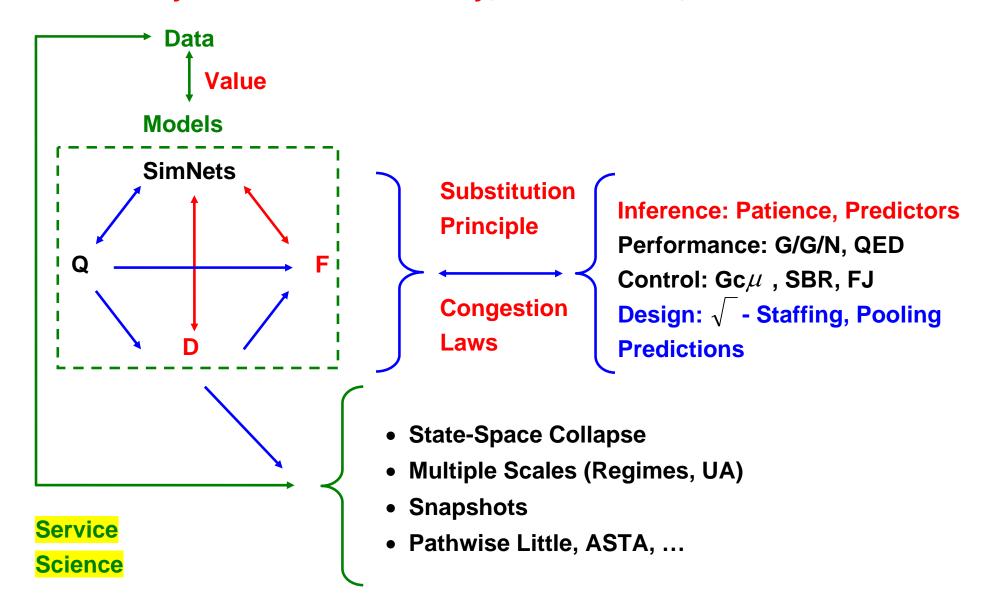
Data-Based (Asymptotic) Framework: Simulation Mining



Data-Based Asymptotic Framework: Added Value



Ultimately: Automatic "Discovery, Conformance, Enhancement"



Scope of the Service Industry

Guangzhou Railway Station, Southern China

Call Centers, Then Hospitals, Now Internet

Call Centers - U.S. Stat.

- \$200 \$300 billion annual expenditures
- ► 100,000 200,000 call centers
- "Window" into the company, for better or worse
- ► Over 3 million agents = 2% 4% workforce

Call Centers, Then Hospitals, Now Internet

Call Centers - U.S. Stat.

- \$200 \$300 billion annual expenditures
- ► 100,000 200,000 call centers
- "Window" into the company, for better or worse
- ► Over 3 million agents = 2% 4% workforce

Healthcare - similar, plus unique challenges:

- Cost-figures far more staggering
- Risks much higher
- ► ED (initial focus) = hospital-window
- Over 3 million nurses

Internet - ...

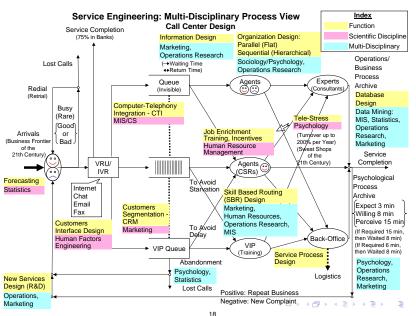
Call-Center Environment: Service Network

Operational Focus

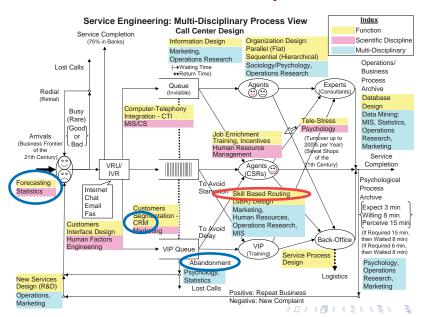
Operational Measures:

- Surrogates for overall performance: Financial, Psychological; Clinical
- Easiest to quantify, measure, track online, react upon / Research

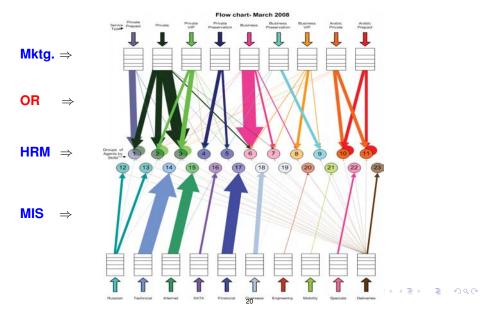
Call-Center Network: Gallery of Models



Call-Center Network: Gallery of Models



Skills-Based Routing in Call Centers EDA and OR, with I. Gurvich and P. Liberman



ER / ED Environment: Service Network

Acute (Internal, Trauma)

Walking

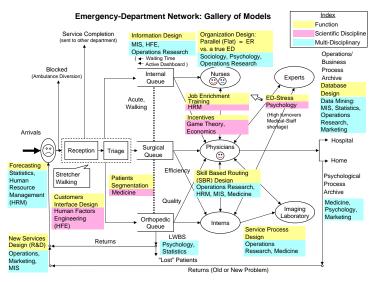
Multi-Trauma

ED-Environment in Israel

Queueing in a "Good" Hospital

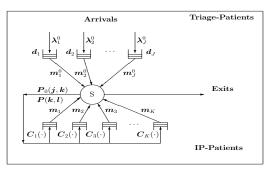
Tong-ren Hospital at 6am, Beijing

Emergency-Department Network: Gallery of Models



► Forecasting, Abandonment = LWBS, SBR ≈ Flow Control

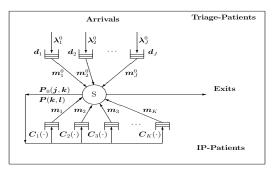
ED Patient Flow: The Physicians View with J. Huang, B. Carmeli



- ▶ Goal: Adhere to Triage-Constraints, then release In-Process Patients
- Model = Multi-class Q with Feedback: Min. convex congestion costs of IP-Patients, s.t. deadline constraints on Triage-Patients.

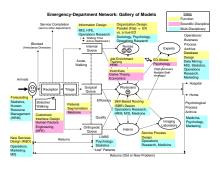
ED Patient Flow: The Physicians View

with J. Huang, B. Carmeli



- ► Goal: Adhere to Triage-Constraints, then release In-Process Patients
- Model = Multi-class Q with Feedback: Min. convex congestion costs of IP-Patients, s.t. deadline constraints on Triage-Patients.
- Solution: In <u>conventional</u> heavy-traffic, <u>asymptotic least-cost</u> s.t. <u>asymptotic compliance</u> (as in Plambeck, Harrison, Kumar, who applied admission control):
 - Triage or IP? former, if some deadline is "too" close
 - Triage Priorities: Chose the closest deadline
 - IP-Priorities: Gcμ, modified (simply) to account for feedback

Emergency-Department Network: Flow Control



- *Queueing-Science, w/ Armony, Marmor, Tseytlin, Yom-Tov
- *Fair ED-to-IW Routing (Patients vs. Staff), w/ Momcilovic, Tseytlin
- *Triage vs. InProcess/Release (Plambeck et al, van Mieghem) in EDs, w/ Carmeli, Huang; Shimkin
- *Staffing Time-Varying Q's with Re-Entrant Customers (de Vericourt & Jennings), w/ Yom-Tov
- ► The Offered-Load in Fork-Join Nets (Adlakha & Kulkarni), w/ Kaspi, Zaeid
- Synchronization Control of Fork-Join Nets, w/ Atar, Zviran

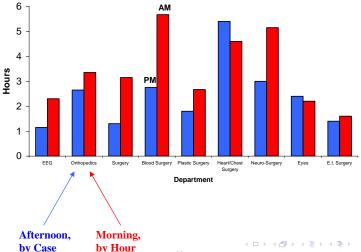
Prerequisite I: Data

Averages Prevalent (and could be useful / interesting).

But I need data at the level of the **Individual Transaction**:
For each service transaction (during a phone-service in a call center, or a patient's visit in a hospital, or browsing in a website, or ...), its **operational history** = time-stamps of events (events-log files).

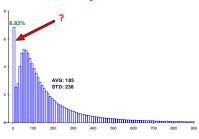
Interesting Averages: The Human Factor, or **Even "Doctors" Can Manage**

Operations Time - Morning (by Hour) vs. Afternoon (by Case):

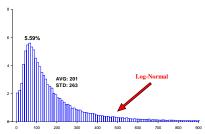


Beyond Averages: The Human Factor

Histogram of Service-Time in an Israeli Call Center, 1999



November-December

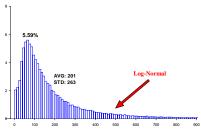


► 6.8% Short-Services:

Beyond Averages: The Human Factor

Histogram of Service-Time in an Israeli Call Center, 1999

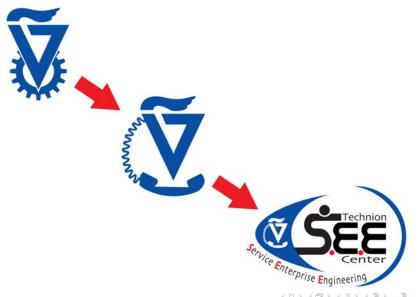
November-December



- ▶ 6.8% Short-Services: Agents' "Abandon" (improve bonus, rest), (mis)lead by incentives
- Distributions must be measured (in seconds = natural scale)
- LogNormal service-durations (???, common, more later)

Pause for a Commercial:

Pause for a Commercial: The Technion SEE Center



Technion SEE = Service Enterprise Engineering

SEELab: Data-repositories for research and teaching

- For example:
 - Bank Anonymous: 1 year, 350K calls by 15 agents in 2000. Brown, Gans, Sakov, Shen, Zeltyn, Zhao (JASA), paved the way to:
 - U.S. Bank: 2.5 years, 220M calls, 40M by 1000 agents
 - ▶ Israeli Cellular: 2.5 years, 110M calls, 25M calls by 750 agents
 - ► Israeli Bank: from January 2010, daily-deposit at a SEESafe
 - ► Home (Rambam) Hospital: 4 years, 1000 beds, ward-level flow
 - 5 EDs: gathered by the late David Sinreich, ED arrivals & LOS

Technion SEE = Service Enterprise Engineering

SEELab: Data-repositories for research and teaching

- For example:
 - Bank Anonymous: 1 year, 350K calls by 15 agents in 2000. Brown, Gans, Sakov, Shen, Zeltyn, Zhao (JASA), paved the way to:
 - U.S. Bank: 2.5 years, 220M calls, 40M by 1000 agents
 - ▶ Israeli Cellular: 2.5 years, 110M calls, 25M calls by 750 agents
 - Israeli Bank: from January 2010, daily-deposit at a SEESafe
 - ► Home (Rambam) Hospital: 4 years, 1000 beds, ward-level flow
 - 5 EDs: gathered by the late David Sinreich, ED arrivals & LOS

SEEStat: Environment for graphical EDA in real-time

Universal Design, Internet Access, Real-Time Response.

Technion SEE = Service Enterprise Engineering

SEELab: Data-repositories for research and teaching

- For example:
 - Bank Anonymous: 1 year, 350K calls by 15 agents in 2000. Brown, Gans, Sakov, Shen, Zeltyn, Zhao (JASA), paved the way to:
 - U.S. Bank: 2.5 years, 220M calls, 40M by 1000 agents
 - ► Israeli Cellular: 2.5 years, 110M calls, 25M calls by 750 agents
 - Israeli Bank: from January 2010, daily-deposit at a SEESafe
 - Home (Rambam) Hospital: 4 years, 1000 beds, ward-level flow
 - 5 EDs: gathered by the late David Sinreich, ED arrivals & LOS

SEEStat: Environment for graphical EDA in real-time

Universal Design, Internet Access, Real-Time Response.

SEEServer: Free for academic use

- Register
- Access U.S. Bank, Bank Anonymous, Home Hospital

eg. RFID-Based Data: Mass Casualty Event (MCE)

Drill: Chemical MCE, Rambam Hospital, May 2010

Focus on **severely wounded** casualties (\approx 40 in drill)

Note: 20 observers support real-time control (helps validation)

Data Cleaning: MCE with RFID Support

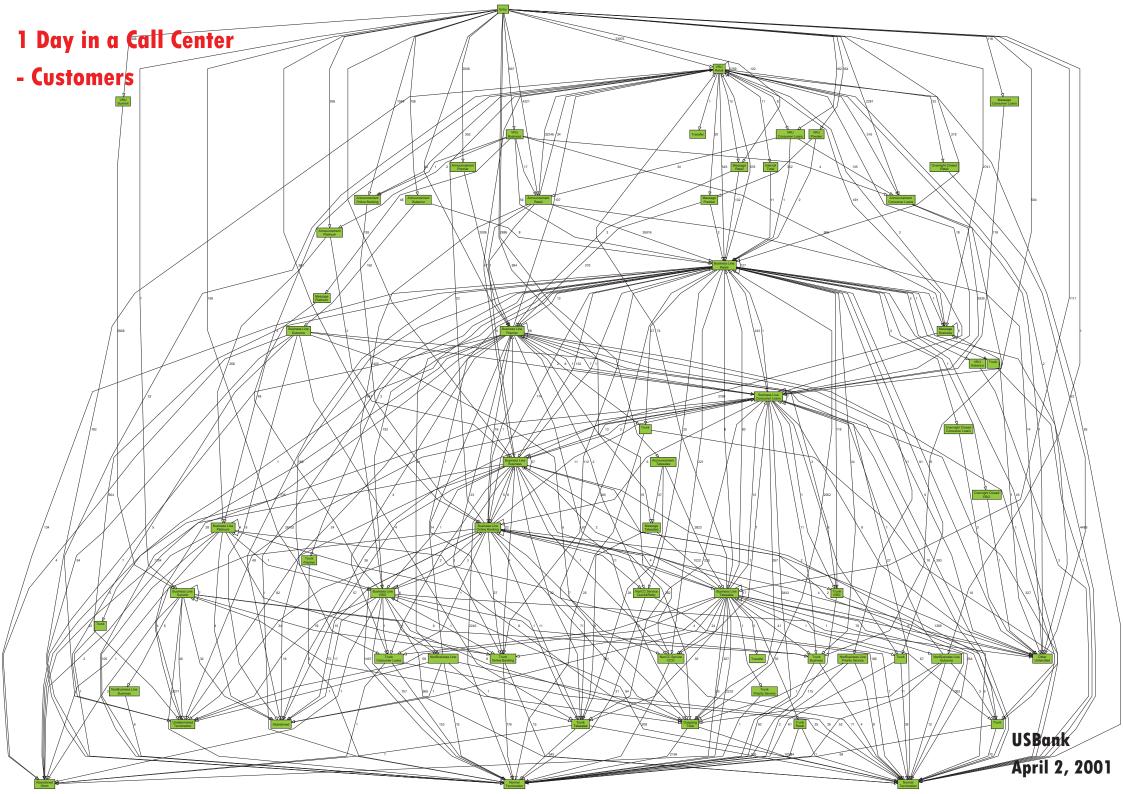
		Data-base	Compan	comment				
Asset id	order	Entry date	Exit date	Entry date	Exit date			
4	1	1:14:07 PM		1:14:00 PM				
6	1	12:02:02 PM	12:33:10 PM	12:02:00 PM	12:33:00 PM			
8	1	11:37:15 AM	12:40:17 PM	11:37:00 AM		exit is missing		
10	1	12:23:32 PM	12:38:23 PM	12:23:00 PM				
12	1	12:12:47 PM	12:35:33 PM		12:35:00 PM	entry is missing		
15	1	1:07:15 PM		1:07:00 PM				
16	1	11:18:19 AM	11:31:04 AM	11:18:00 AM	11:31:00 AM			
17	1	1:03:31 PM		1:03:00 PM				
18	1	1:07:54 PM		1:07:00 PM				
19	1	12:01:58 PM		12:01:00 PM				
20	1	11:37:21 AM	12:57:02 PM	11:37:00 AM	12:57:00 PM			
21	1	12:01:16 PM	12:37:16 PM	12:01:00 PM				
22	1	12:04:31 PM	12:20:40 PM			first customer is missing		
22	2	12:27:37 PM		12:27:00 PM		· ·		
25	1	12:27:35 PM	1:07:28 PM	12:27:00 PM	1:07:00 PM			
27	1	12:06:53 PM		12:06:00 PM				
28	1	11:21:34 AM	11:41:06 AM	11:41:00 AM	11:53:00 AM	exit time instead of entry time		
29	1	12:21:06 PM	12:54:29 PM	12:21:00 PM	12:54:00 PM			
31	1	11:40:54 AM	12:30:16 PM	11:40:00 AM	12:30:00 PM			
31	2	12:37:57 PM	12:54:51 PM	12:37:00 PM	12:54:00 PM			
32	1	11:27:11 AM	12:15:17 PM	11:27:00 AM	12:15:00 PM			
33	1	12:05:50 PM	12:13:12 PM	12:05:00 PM	12:15:00 PM	wrong exit time		
35	1	11:31:48 AM	11:40:50 AM	11:31:00 AM	11:40:00 AM			
36	1	12:06:23 PM	12:29:30 PM	12:06:00 PM	12:29:00 PM			
37	1	11:31:50 AM	11:48:18 AM	11:31:00 AM	11:48:00 AM			
37	2	12:50:21 PM		12:50:00 PM				

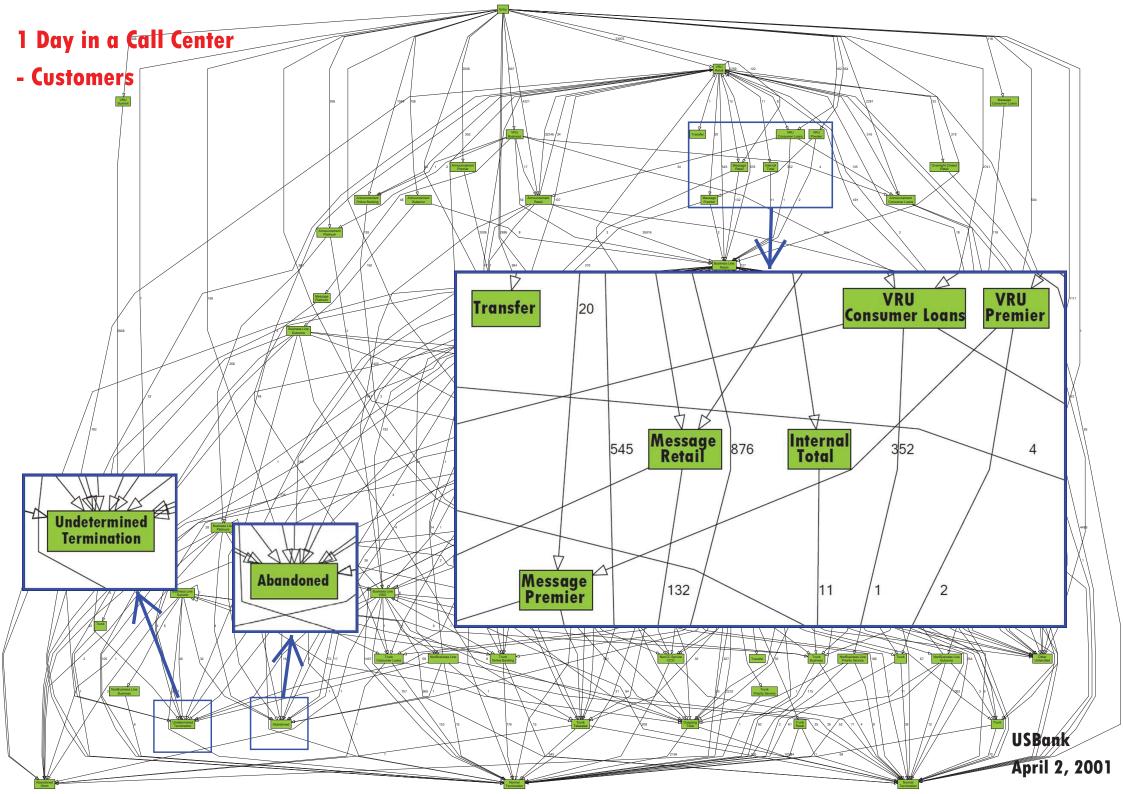
- Imagine "Cleaning" 60,000+ customers per day (call centers)!
- "Psychology" of Data Trust and Transfer (e.g. 2 years till transfer)

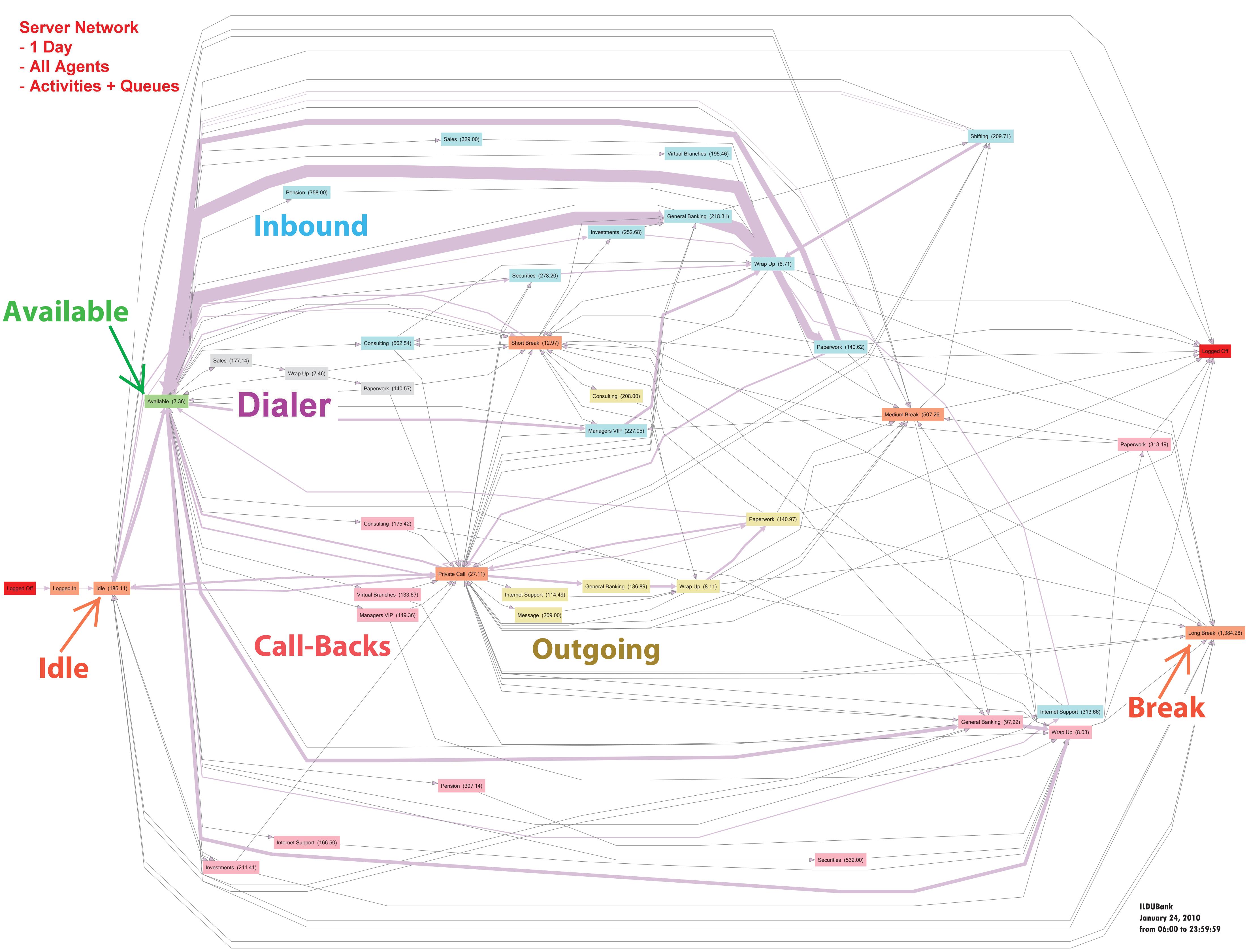
Event-Logs in a Call Center (Bank Anonymous)

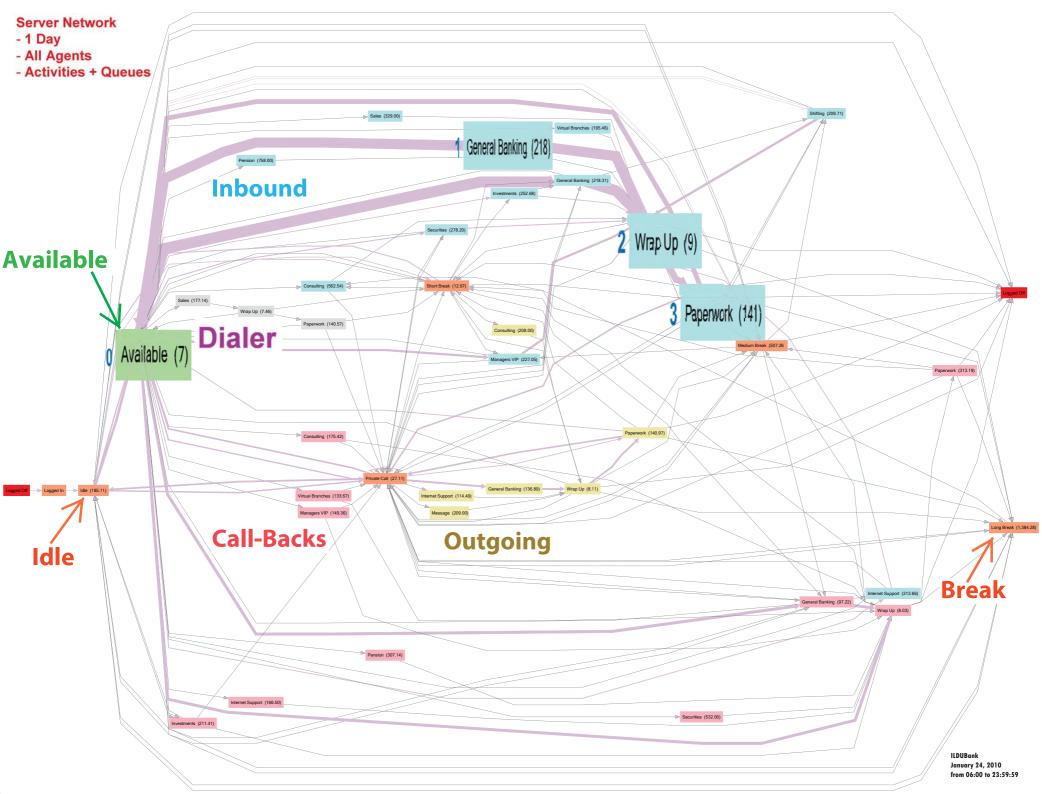
ru+line	call_id	customer_id	priority	type	date	vru_entry	vru_exit	vru_time	q_start	q_exit	q_time	outcome	ser_start	ser_exit	ser_time	server
AA0101	44749	27644400	2	PS	990901	11:45:33	11:45:39	6	11:45:39	11:46:58	79	AGENT	11:46:57	11:51:00	243	DORIT
AA0101	44750	12887816	1	PS	990905	14:49:00	14:49:06	6	14:49:06	14:53:00	234	AGENT	14:52:59	14:54:29	90	ROTH
AA0101	44967	58660291	2	PS	990905	14:58:42	14:58:48	6	14:58:48	15:02:31	223	AGENT	15:02:31	15:04:10	99	ROTH
AA0101	44968	0	0	NW	990905	15:10:17	15:10:26	9	15:10:26	15:13:19	173	HANG	00:00:00	00:00:00	0	NO_SERVER
AA0101	44969	63193346	2	PS	990905	15:22:07	15:22:13	6	15:22:13	15:23:21	68	AGENT	15:23:20	15:25:25	125	STEREN
AA0101	44970	0	0	NW	990905	15:31:33	15:31:47	14	00:00:00	00:00:00	0	AGENT	15:31:45	15:34:16	151	STEREN
AA0101	44971	41630443	2	PS	990905	15:37:29	15:37:34	5	15:37:34	15:38:20	46	AGENT	15:38:18	15:40:56	158	TOVA
AA0101	44972	64185333	2	PS	990905	15:44:32	15:44:37	5	15:44:37	15:47:57	200	AGENT	15:47:56	15:49:02	66	TOVA
AA0101	44973	3.06E+08	1	PS	990905	15:53:05	15:53:11	6	15:53:11	15:56:39	208	AGENT	15:56:38	15:56:47	9	MORIAH
AA0101	44974	74780917	2	NE	990905	15:59:34	15:59:40	6	15:59:40	16:02:33	173	AGENT	16:02:33	16:26:04	1411	ELI
AA0101	44975	55920755	2	PS	990905	16:07:46	16:07:51	5	16:07:51	16:08:01	10	HANG	00:00:00	00:00:00	0	NO_SERVER
AA0101	44976	0	0	NW	990905	16:11:38	16:11:48	10	16:11:48	16:11:50	2	HANG	00:00:00	00:00:00	0	NO_SERVER
AA0101	44977	33689787	2	PS	990905	16:14:27	16:14:33	6	16:14:33	16:14:54	21	HANG	00:00:00	00:00:00	0	NO_SERVER
AA0101	44978	23817067	2	PS	990905	16:19:11	16:19:17	6	16:19:17	16:19:39	22	AGENT	16:19:38	16:21:57	139	TOVA
AA0101	44764	0	0	PS	990901	15:03:26	15:03:36	10	00:00:00	00:00:00	0	AGENT	15:03:35	15:06:36	181	ZOHARI
AA0101	44765	25219700	2	PS	990901	15:14:46	15:14:51	5	15:14:51	15:15:10	19	AGENT	15:15:09	15:17:00	111	SHARON
AA0101	44766	0	0	PS	990901	15:25:48	15:26:00	12	00:00:00	00:00:00	0	AGENT	15:25:59	15:28:15	136	ANAT
AA0101	44767	58859752	2	PS	990901	15:34:57	15:35:03	6	15:35:03	15:35:14	11	AGENT	15:35:13	15:35:15	2	MORIAH
AA0101	44768	0	0	PS	990901	15:46:30	15:46:39	9	00:00:00	00:00:00	0	AGENT	15:46:38	15:51:51	313	ANAT
AA0101	44769	78191137	2	PS	990901	15:56:03	15:56:09	6	15:56:09	15:56:28	19	AGENT	15:56:28	15:59:02	154	MORIAH
AA0101	44770	0	0	PS	990901	16:14:31	16:14:46	15	00:00:00	00:00:00	0	AGENT	16:14:44	16:16:02	78	BENSION
AA0101	44771	0	0	PS	990901	16:38:59	16:39:12	13	00:00:00	00:00:00	0	AGENT	16:39:11	16:43:35	264	VICKY
AA0101	44772	0	0	PS	990901	16:51:40	16:51:50	10	00:00:00	00:00:00	0	AGENT	16:51:49	16:53:52	123	ANAT
AA0101	44773	0	0	PS	990901	17:02:19	17:02:28	9	00:00:00	00:00:00	0	AGENT	17:02:28	17:07:42	314	VICKY
AA0101	44774	32387482	1	PS	990901	17:18:18	17:18:24	6	17:18:24	17:19:01	37	AGENT	17:19:00	17:19:35	35	VICKY
				200	000004	10.00.00				00 00 00		1.070.00		15 10 10	-00	morr.

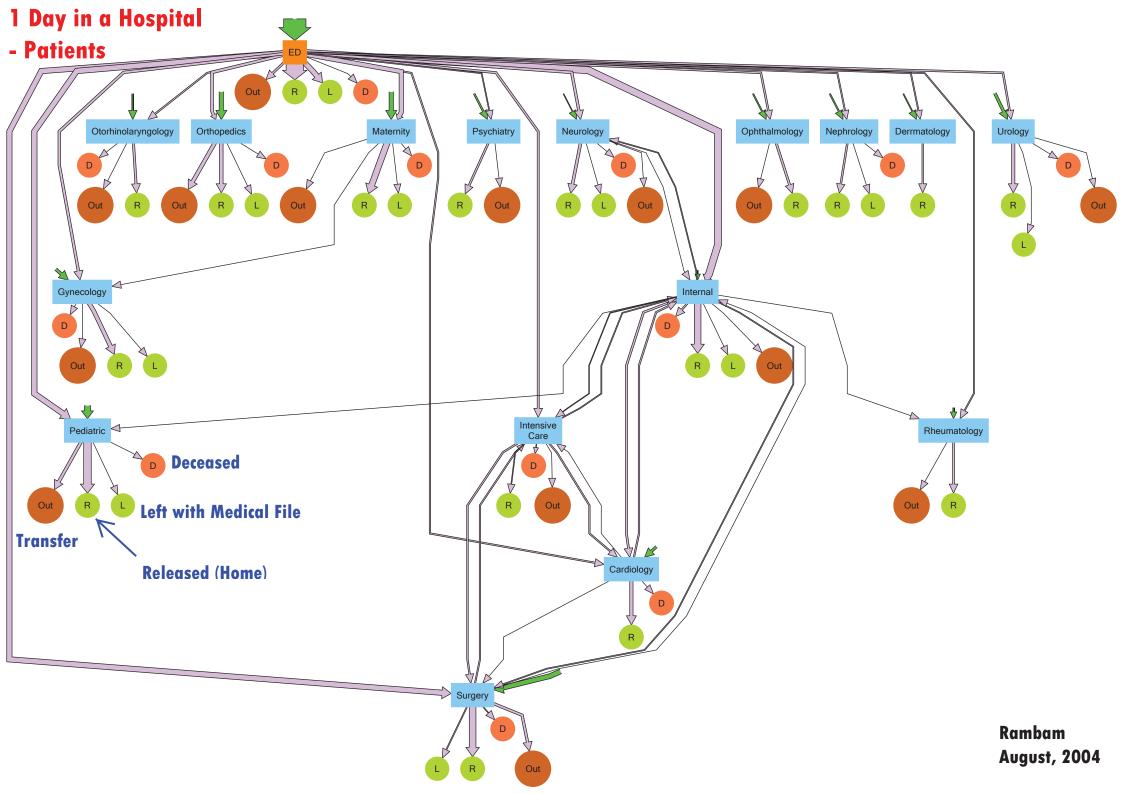
- Unsynchronized transition times, consistently

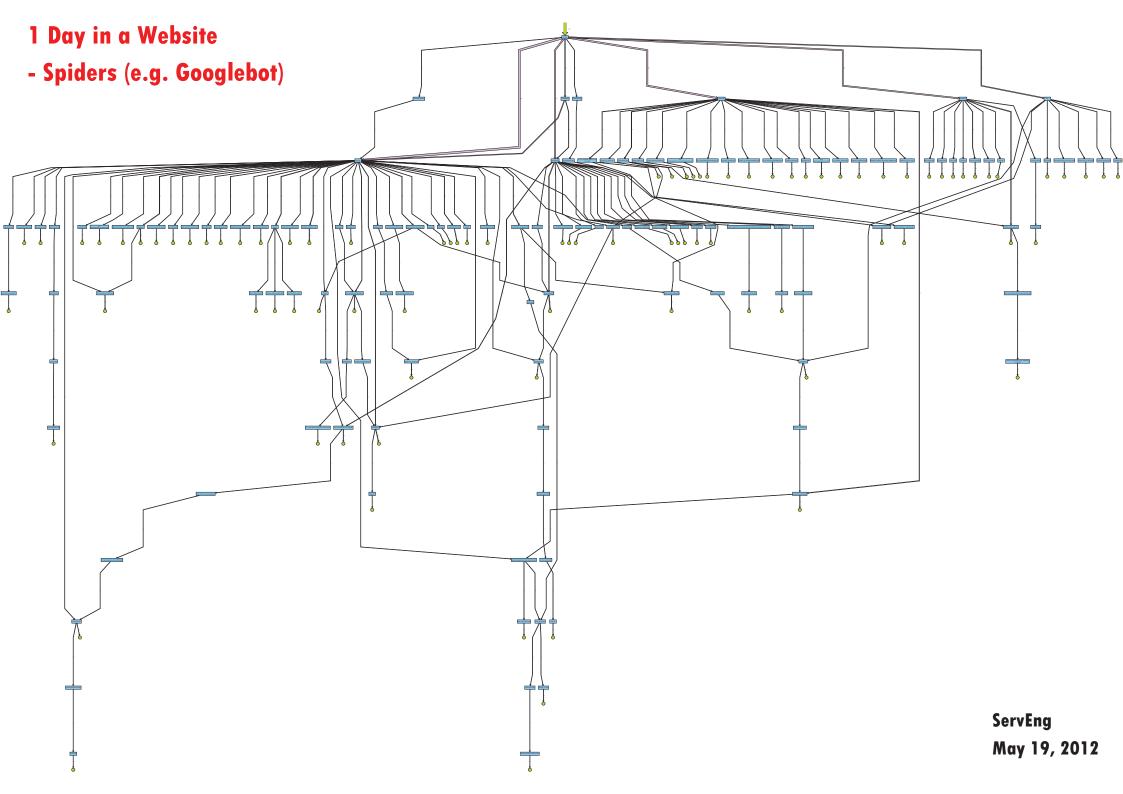


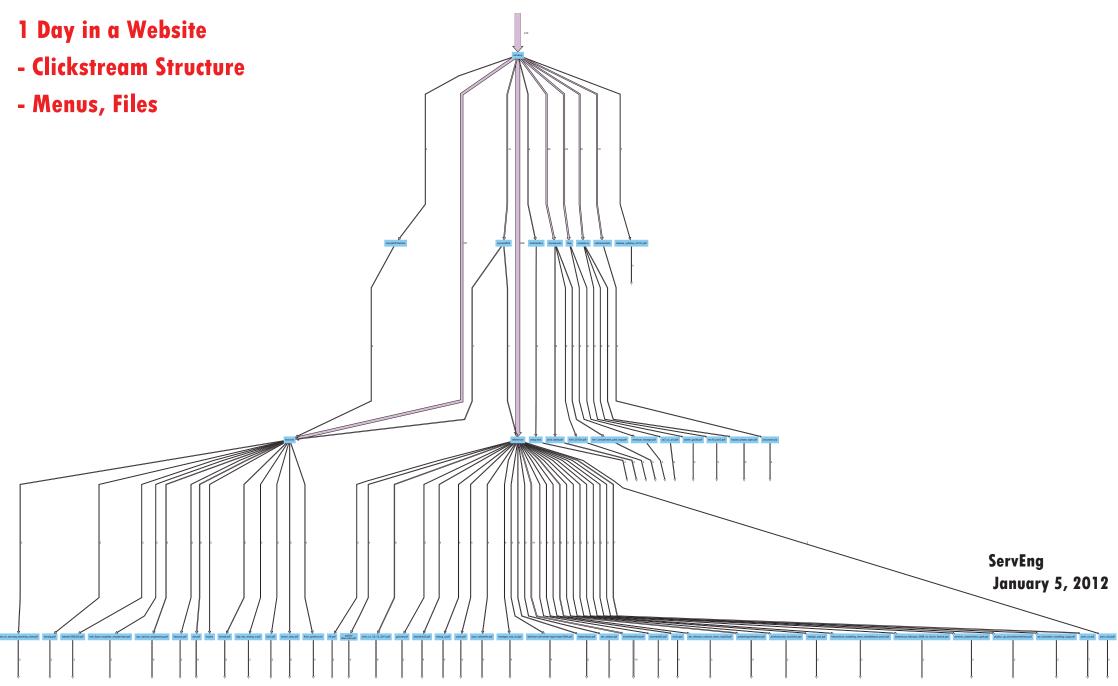


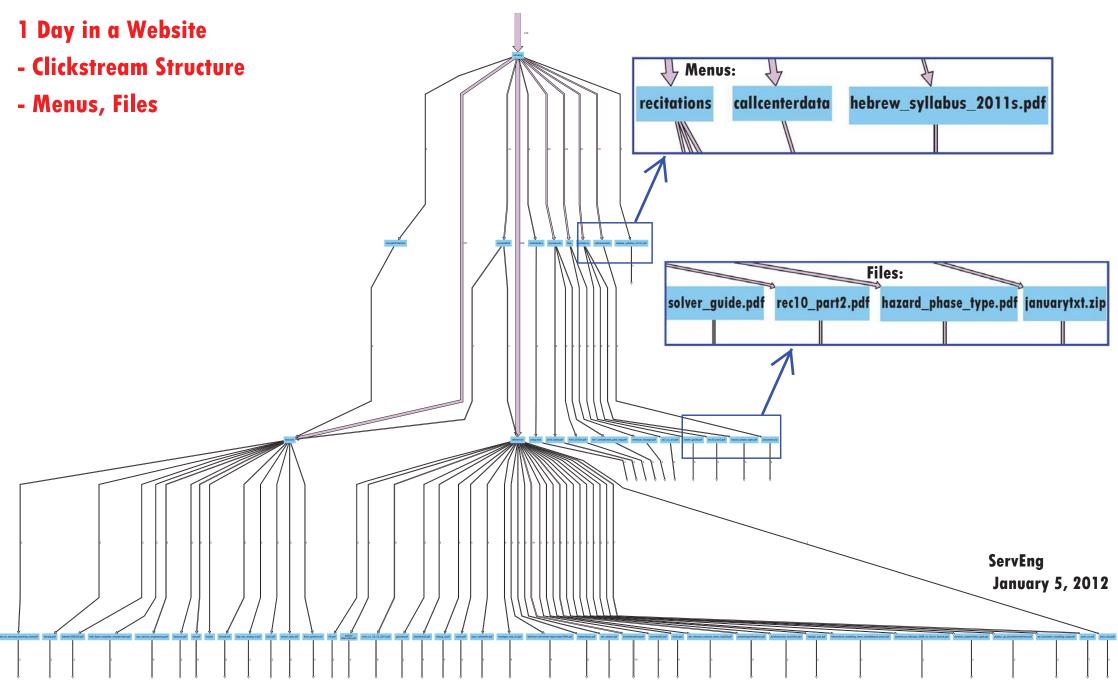




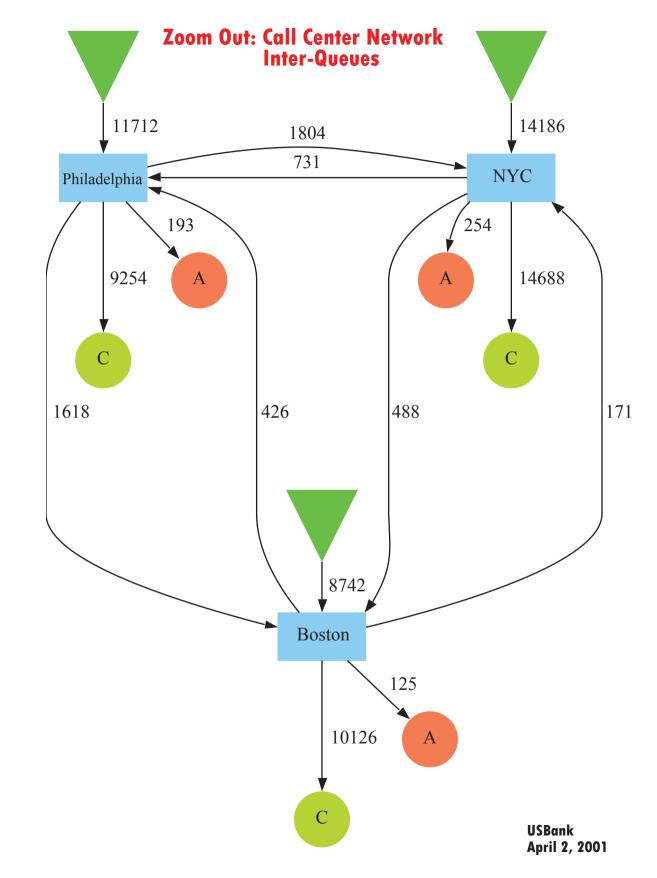


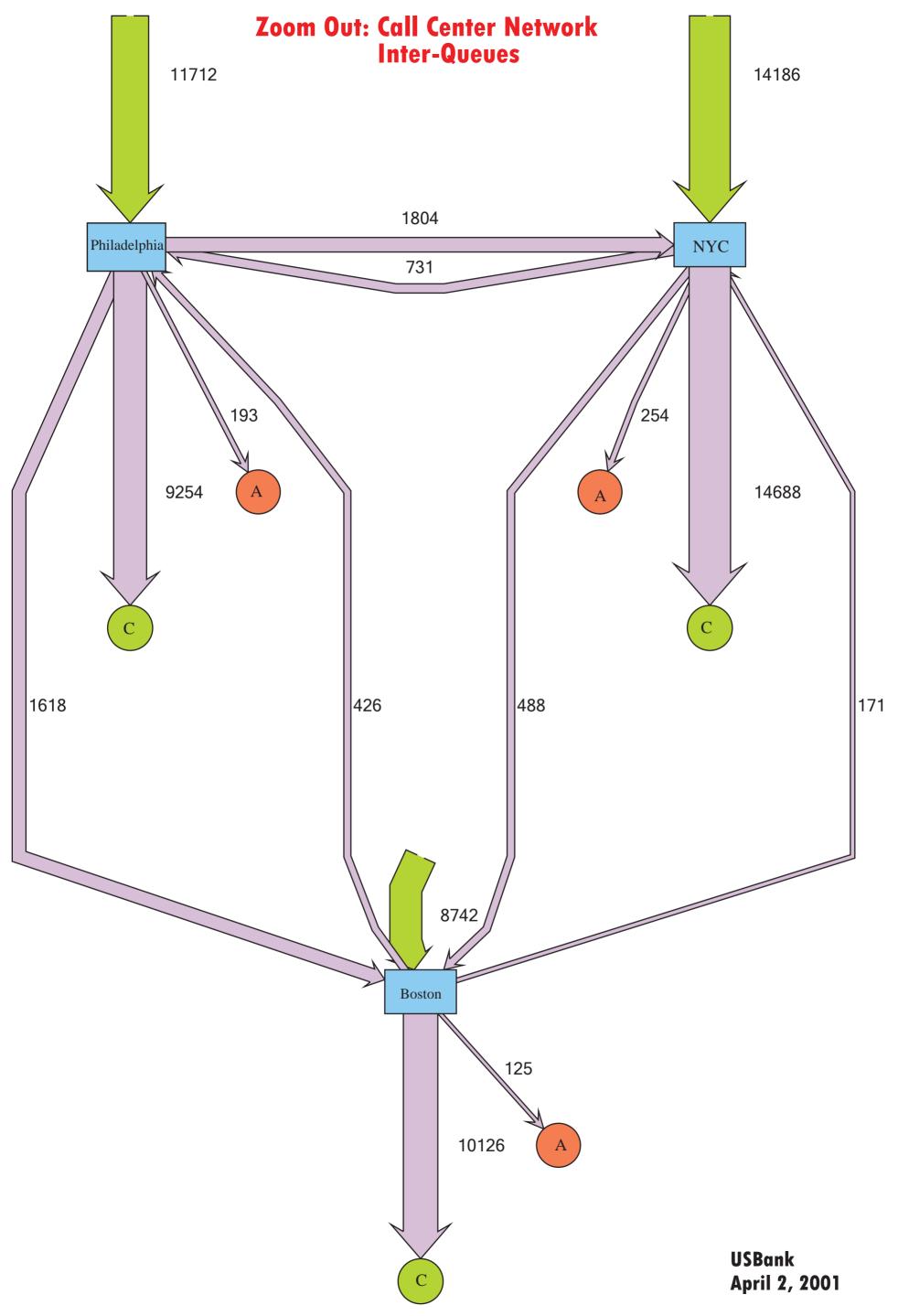




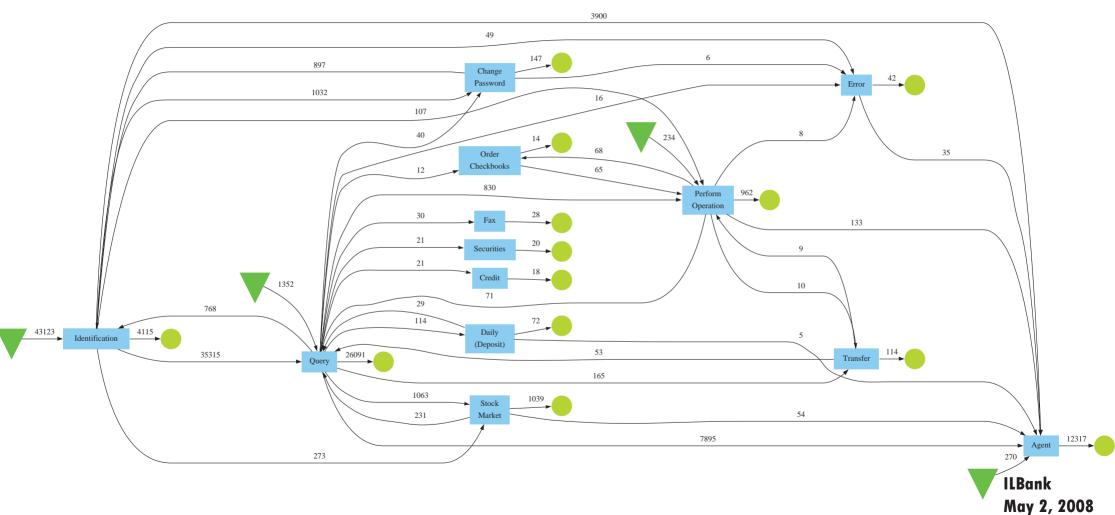


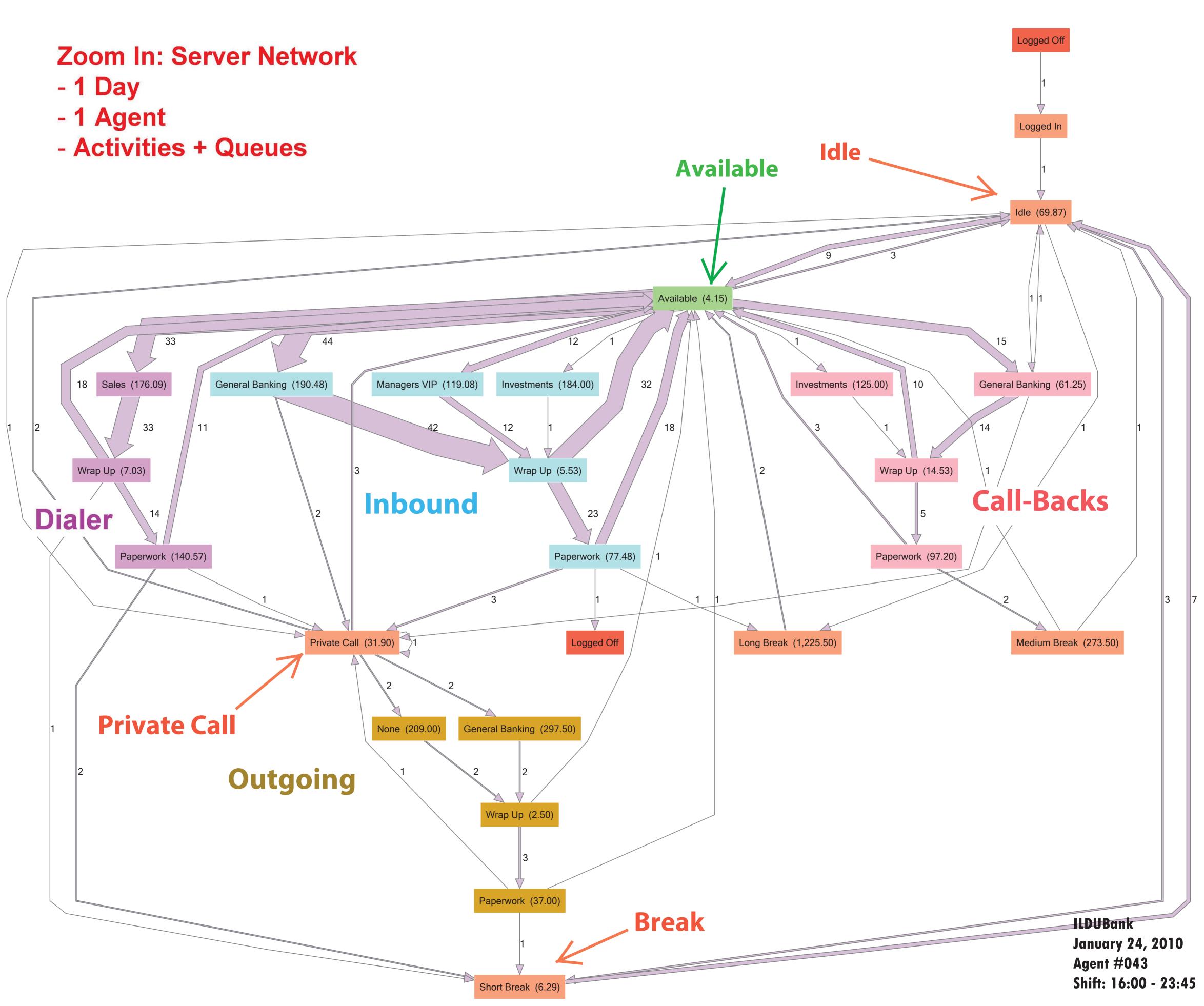
1 Hour in a Call Center - Customers - Hierarchical 🗍 3052 Consumer Loans 3005 126 30924 242 140 303 6 3314 120 155 Telesales Continued Abandoned (Branch, **Another ID**) **Completed USBank** April 2, 2001 8 AM - 9 AM



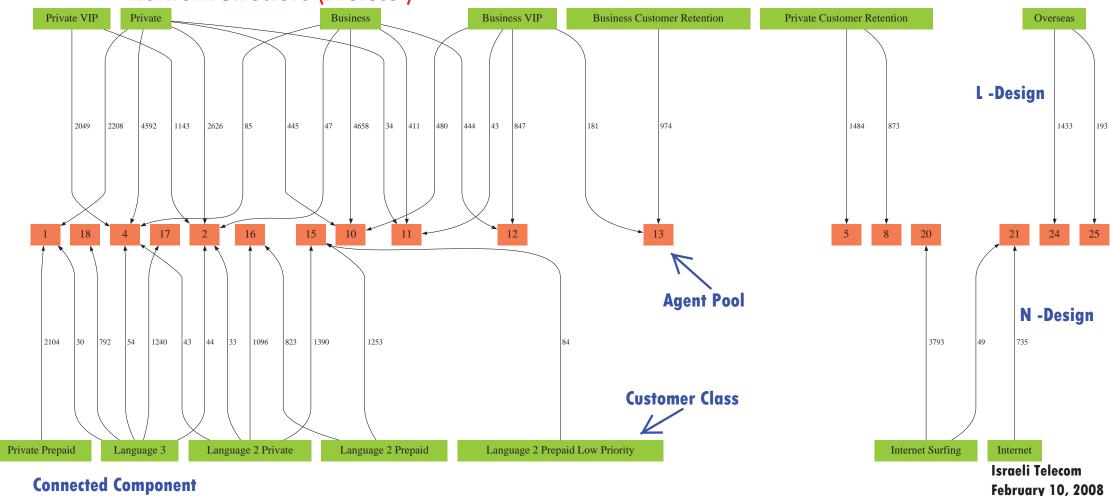


Zoom In: Interactive Voice Response (IVR)

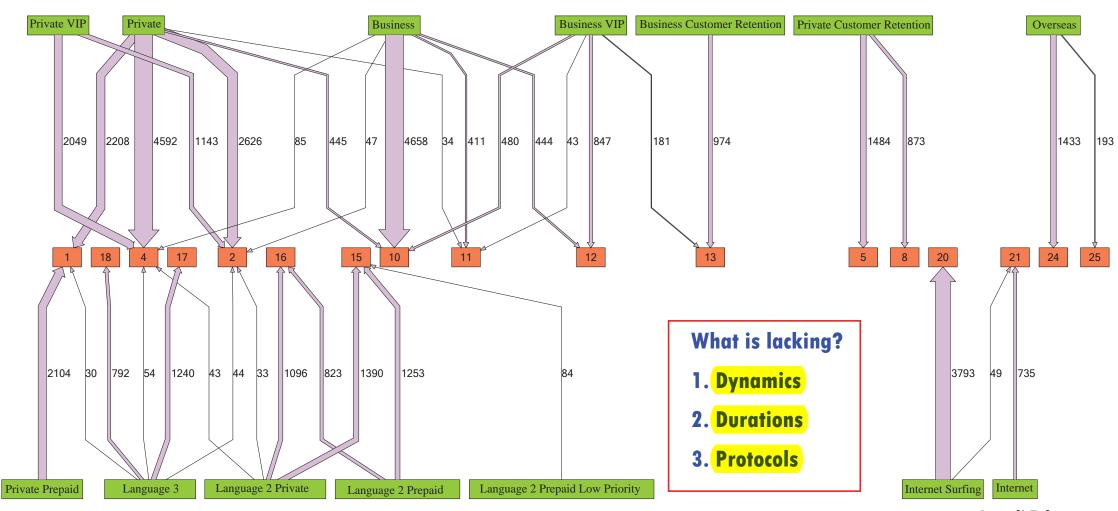




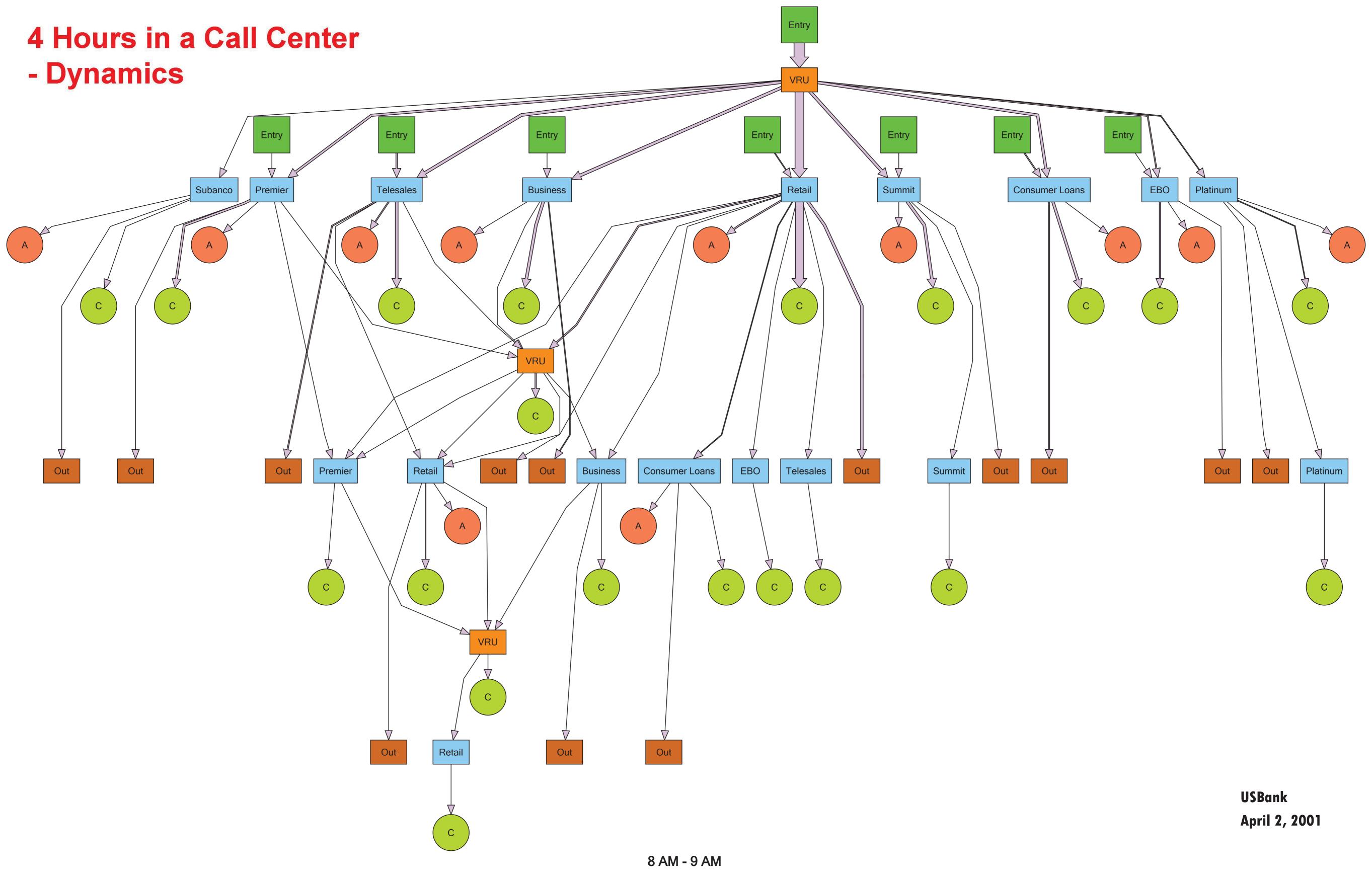
Zoom In: Skills - Based Routing (SBR)
Network Structure (Protocol)

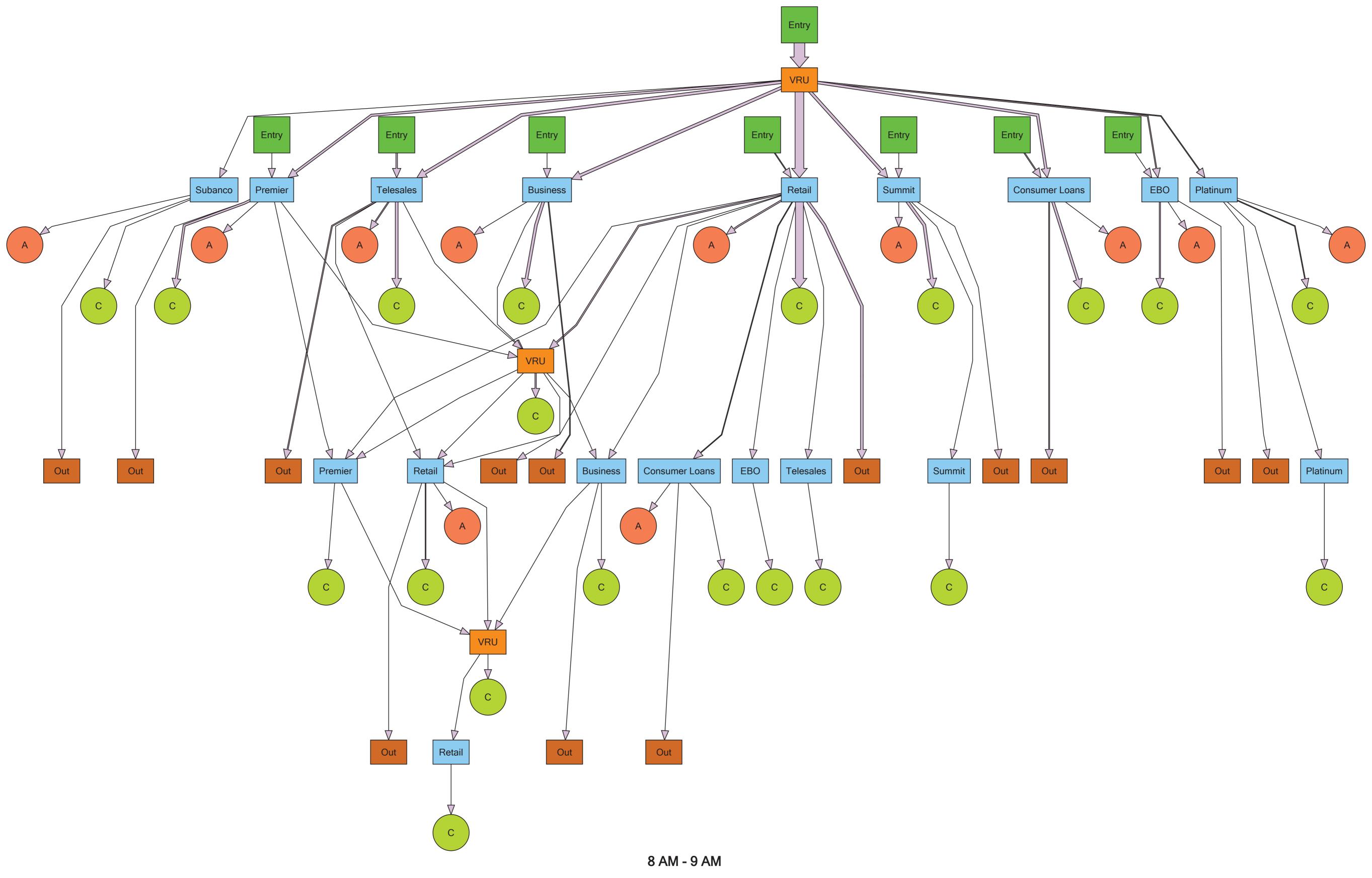


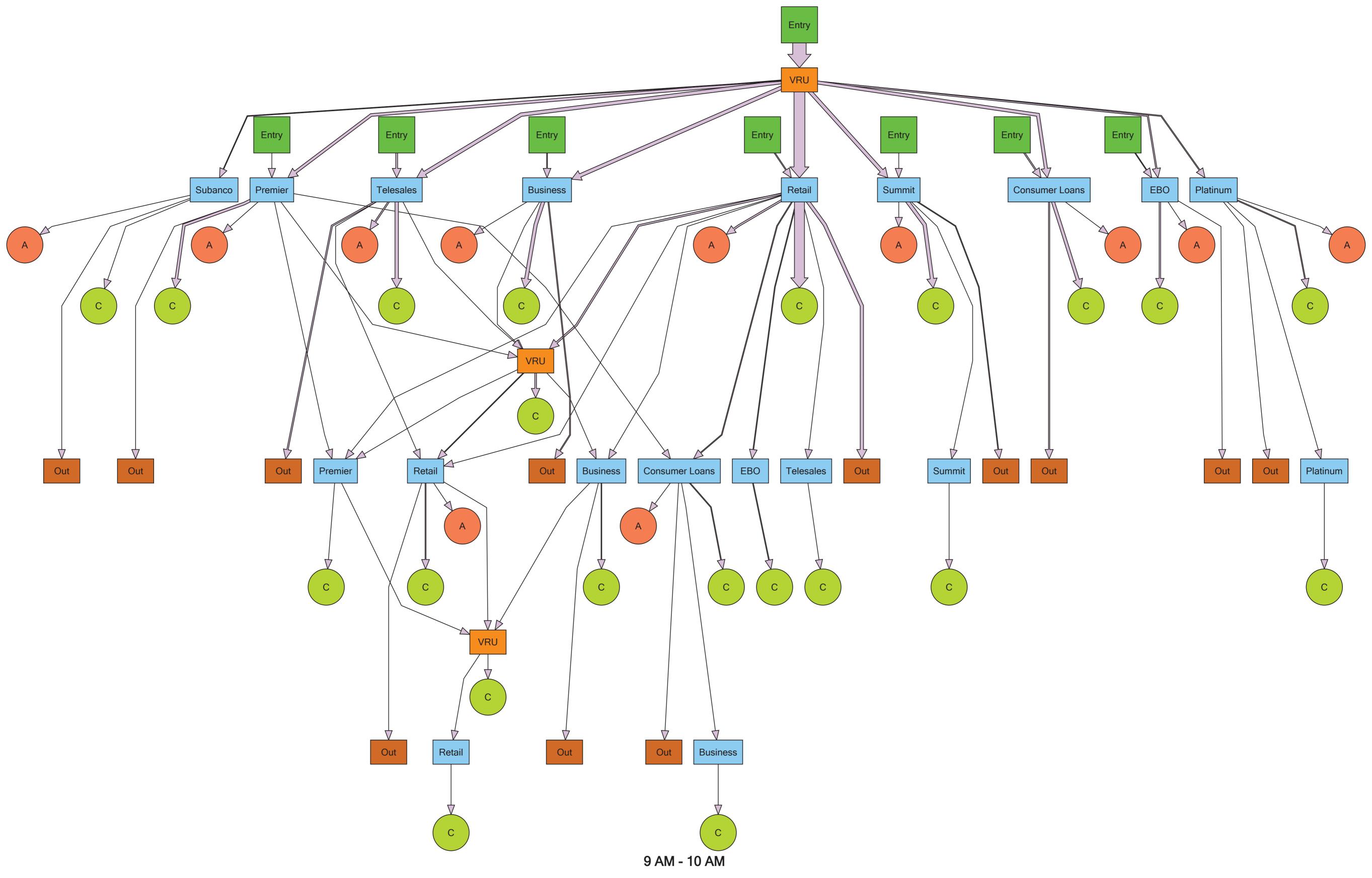
Goal: Data-Based Real-Time Simulation (SimNet)

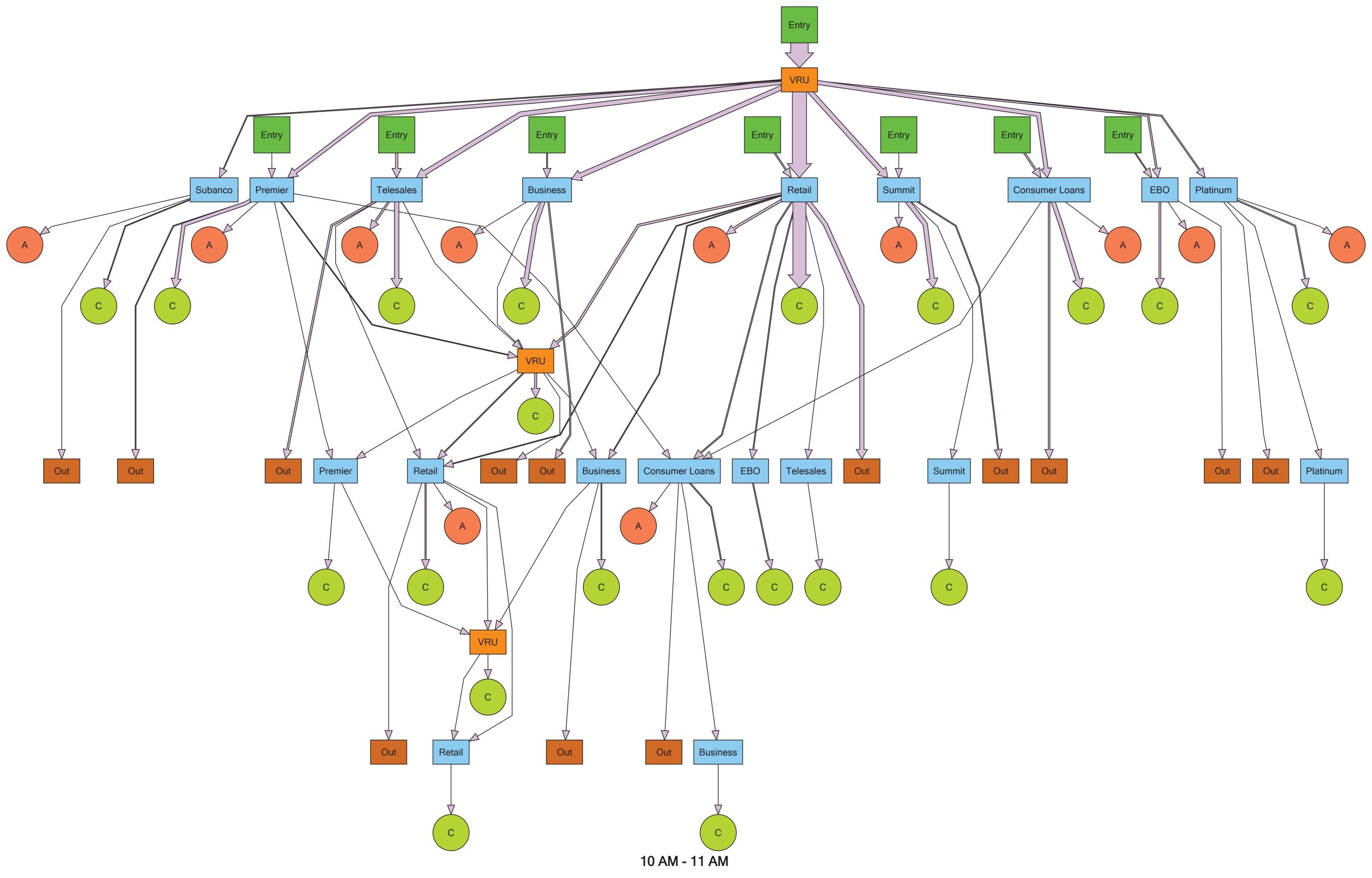


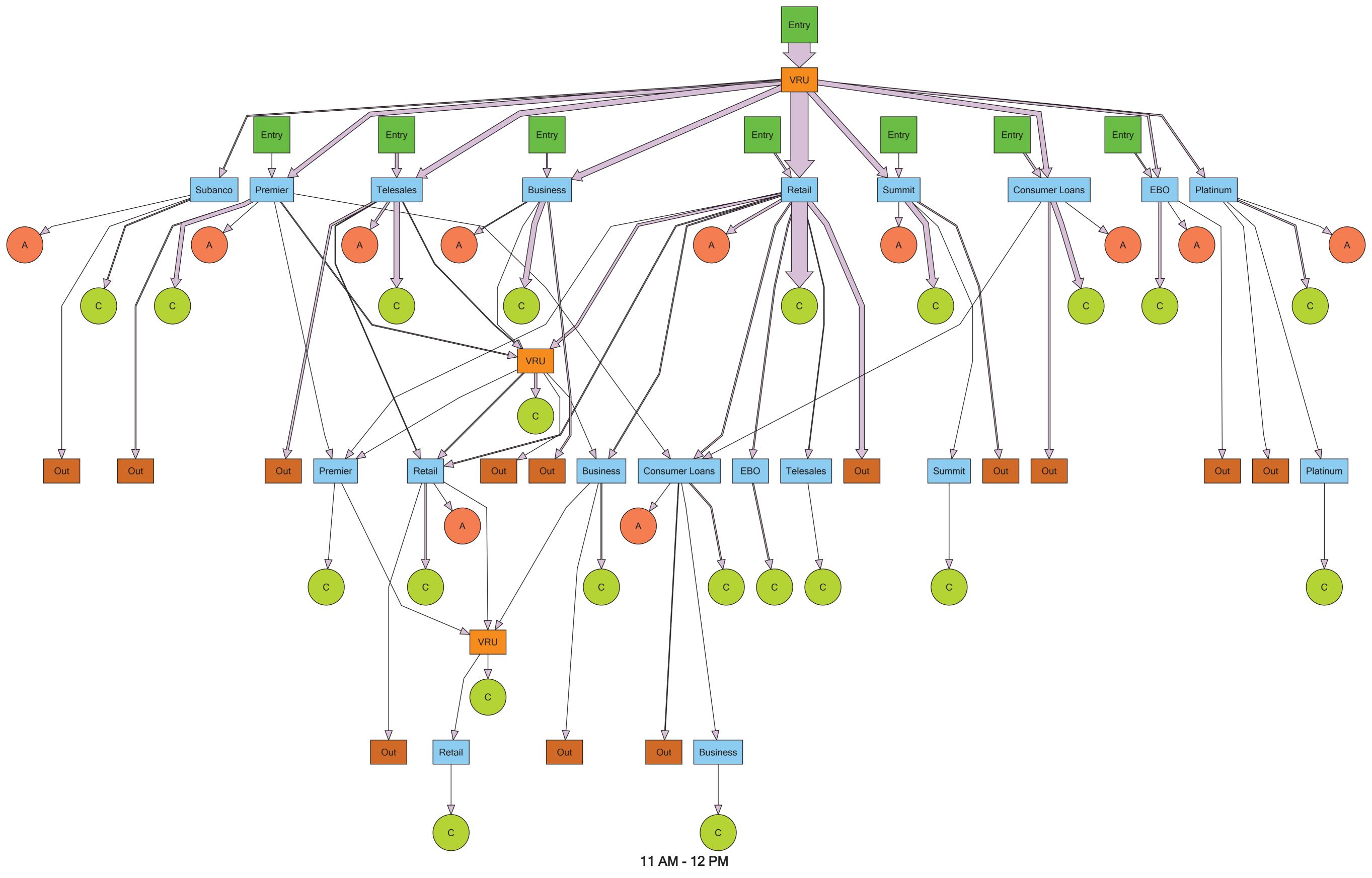
Israeli Telecom February 10, 2008







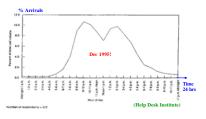




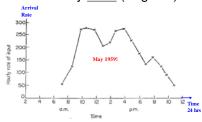
Dynamics: Time-Varying Arrival-Rates

2 Daily Peaks

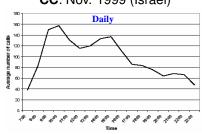
CC: Dec. **1995**, (USA, 700 Helpdesks)



CC: May <u>1959</u> (England)



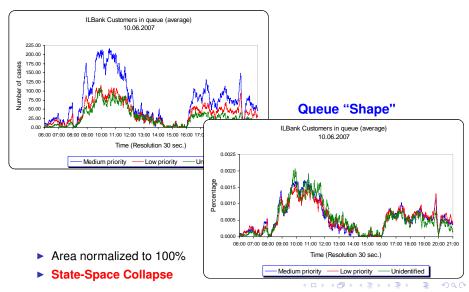
CC: Nov. 1999 (Israel)



ED: Jan.-July 2007 (Israel)

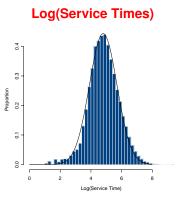
Dynamics: Parsimonious Models (Congestion Laws)

3 Queue-Lengths at 30 sec. resolution (ILBank, 10/6/2007)

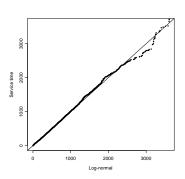


Durations: Phone Calls (2 Surprises)

Israeli Call Center, Nov-Dec, 1999



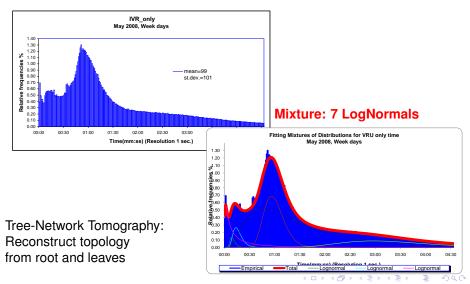
LogNormal QQPlot



- ▶ Practically Important: (mean, std)(log) characterization
- ► Theoretically Intriguing: Why LogNormal? Naturally multiplicative but, in fact, also Infinitely-Divisible (Generalized Gamma-Convolutions)

Durations: Answering Machine

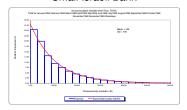
Israeli Bank: IVR/VRU Only, May 2008



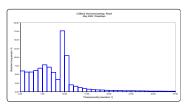
Durations: Waiting Times in a Call Center

⇒ Protocols

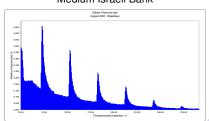
Exponential in Heavy-Traffic (min.) Small Israeli Bank



Routing via Thresholds (sec.) Large U.S. Bank

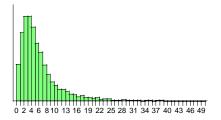


Scheduling Priorities (sec.) [compare Hospital LOS (hours)] Medium Israeli Bank



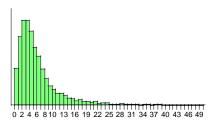
LogNormal & Beyond: Length-of-Stay in a Hospital

Israeli Hospital, in Days: LN

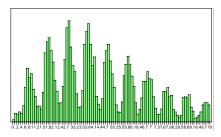


LogNormal & Beyond: Length-of-Stay in a Hospital

Israeli Hospital, in Days: LN

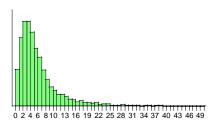


Israeli Hospital, in Hours: Mixture



LogNormal & Beyond: Length-of-Stay in a Hospital

Israeli Hospital, in Days: LN



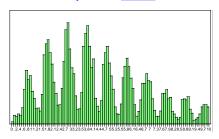
Explanation: Patients released around **3pm** (1pm in Singapore)

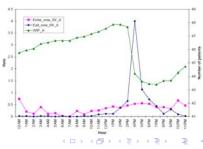
Why Bother?

Hourly Scale: Staffing,...

Daily: Flow / Bed Control,...

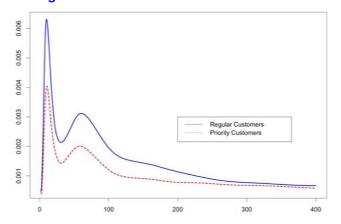
Israeli Hospital, in Hours: Mixture





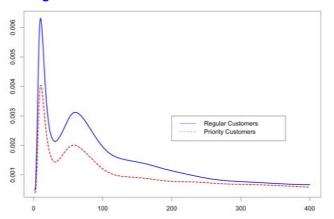
Durations: (Im)Patience while Waiting (Psychology)

Palm: (1943–53): Irritation \propto Hazard Rate Regular over VIP Customers – Israeli Bank



Durations: (Im)Patience while Waiting (Psychology)

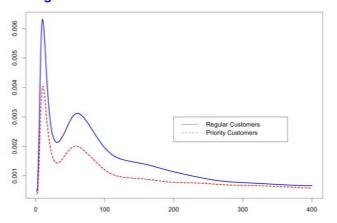
Palm: (1943–53): Irritation \propto Hazard Rate Regular over VIP Customers – Israeli Bank



Challenges: Un-Censoring, Dependence, Smoothing
 requires Call-by-Call Data

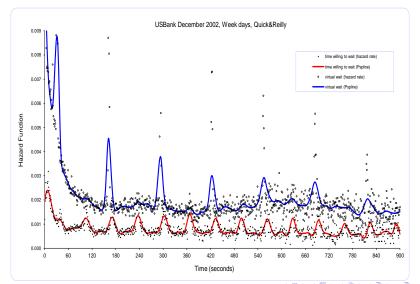
Durations: (Im)Patience while Waiting (Psychology)

Palm: (1943–53): Irritation ∝ Hazard Rate Regular over VIP Customers – Israeli Bank



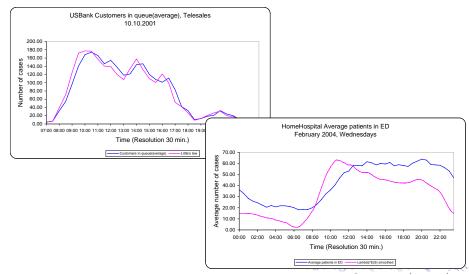
- Challenges: Un-Censoring, Dependence, Smoothing
 requires Call-by-Call Data
- Here: VIP Customers are more Patient (Needy)
- ▶ Peaks of abandonment at times of Announcements > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > <

Protocols + Psychology Patient Customers, Announcements, Priority Upgrades



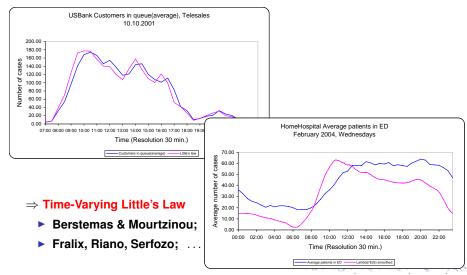
Little's Law: Call Center & Emergency Department

Time-Gap: # in System lags behind Piecewise-Little ($L = \lambda \times W$)



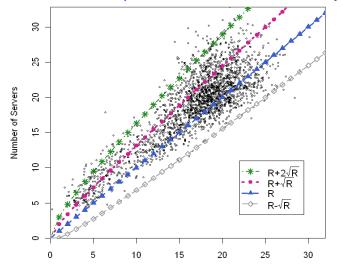
Little's Law: Call Center & Emergency Department

Time-Gap: # in System lags behind Piecewise-Little ($L = \lambda \times W$)



Protocols: Staffing (N) vs. Offered-Load (R = $\lambda \times E(S)$)

IL Telecom; June-September, 2004; w/ Nardi, Plonski, Zeltyn



2205 half-hour intervals (13 summer weeks, week-days)

Technion - Israel Institute of Technology

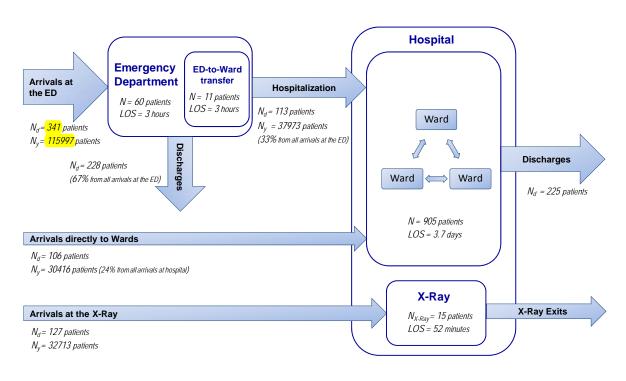
The William Davidson Faculty of Industrial Engineering and Management Center for Service Enterprise Engineering (SEE) http://ie.technion.ac.il/Labs/Serveng/

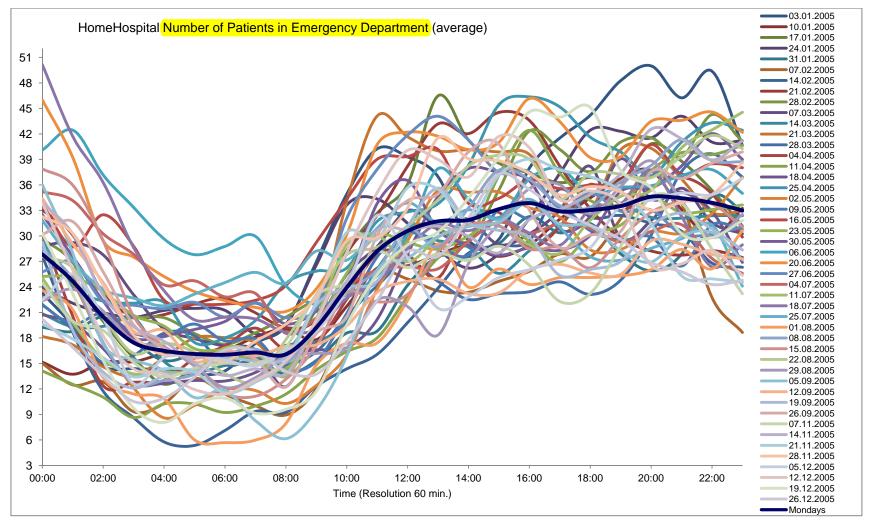
SEEStat 3.0 Tutorial

August 23, 2012

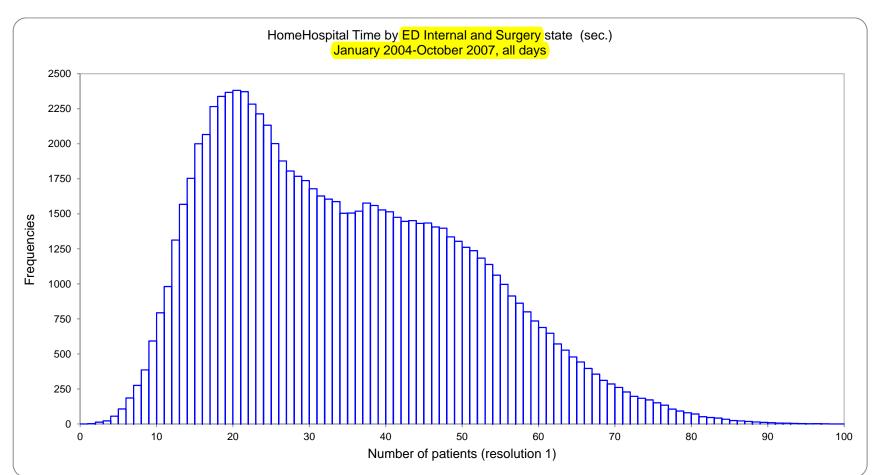
HomeHospital Data

<u>Background</u>: The data we rely on was collected at a large Israeli hospital. This hospital consists of about 1000 beds and 45 medical units. The data includes detailed information on patient flow throughout the hospital, over a period of several years (January 2004–October 2007). In particular, the data allows one to follow the paths of individual patients throughout their stay at the hospital, including admission, discharge, and transfers between hospital units. The data does not acknowledge resolutions within the ED or within wards.

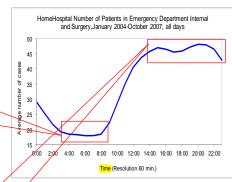




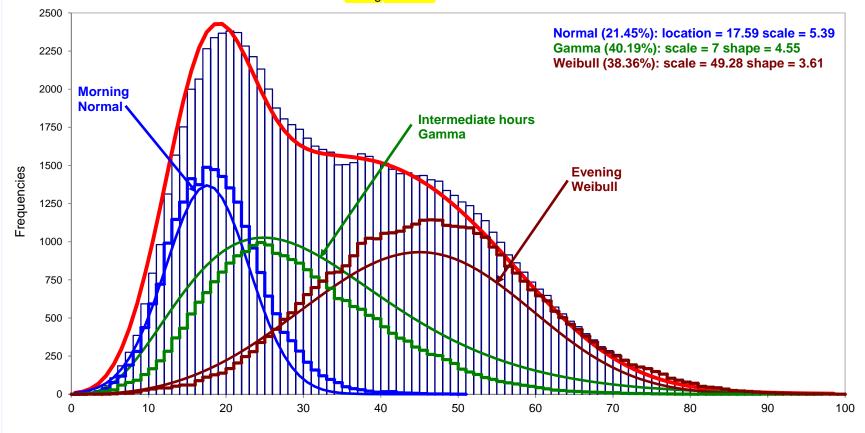
Number of patients in ED







HomeHospital Time by ED Internal and Surgery state (sec.) January 2004-October 2007, all days Fitting Mixtures of Distributions

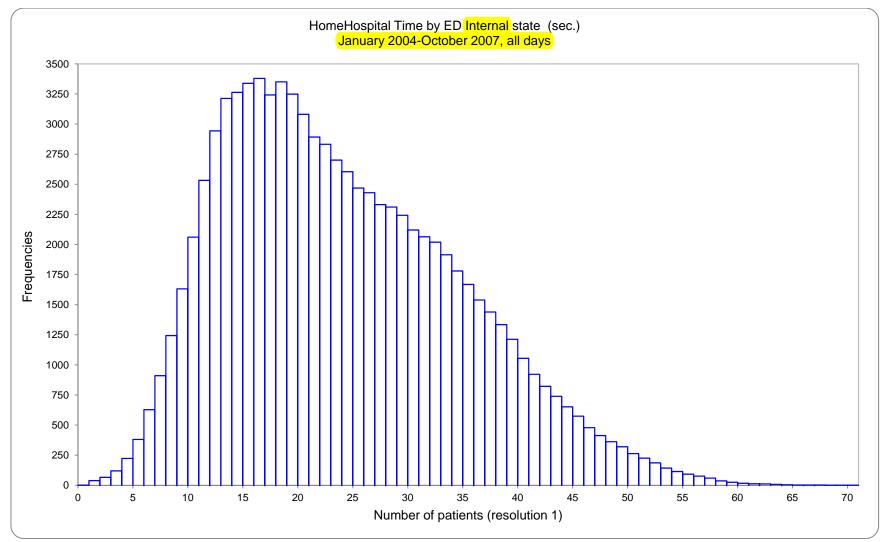


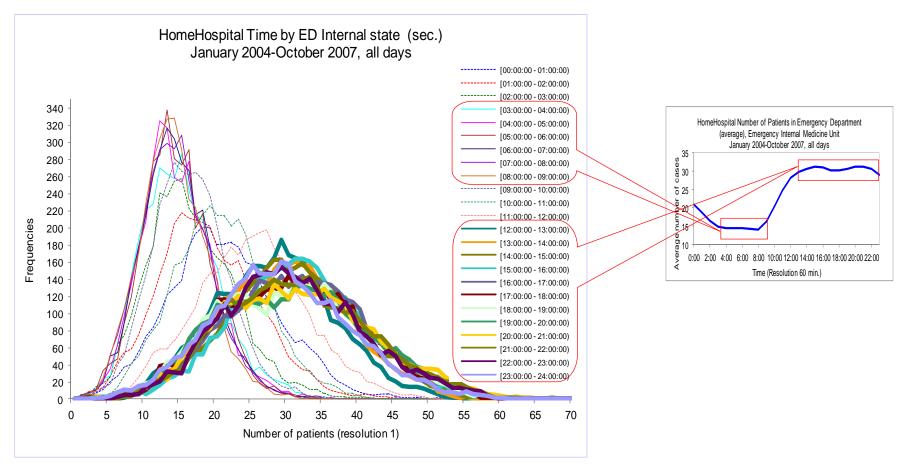
Number of patients (resolution 1)

Time by ED Internal and Surgery state (sec.) Sta	tistics
N	120960000
N(average per day)	86400
Mean	34.1
Standard Deviation	16.34
Variance	266.87
Median	32
Minimum	0
Maximum	99
Skewness	0.524
Kurtosis	-0.44452
Standard Error Mean	0.00149
Interquartile Range	25
Mean Absolute Deviation	13.7
Median Absolute Deviation(MAD)	12
Coefficient of Variation (CV) (%)	47.9
L-moment 2 (half of Gini's Mean Difference)	9.25
L-Skewness	0.121
L-Kurtosis	0.0561
Coefficient of L-variation (L-CV)(%) (Gini's Coefficient)	27.12

Parameter Estimates						
Components	Mixing Proportions (%)	Location	Scale	Shape	Mean	Standard Deviation
1. Normal	21.45	17.59	5.39		17.59	5.39
2. Gamma	40.19		7.00	4.55	31.83	14.99
3. Weibull	38.36		49.28	3.61	44.42	13.679

Goodness-of-Fit Tests				
Tests	Statistic	DF	p Value	
Residuals Std	0.011			
Kolmogorov-Smirnov	0.028		<.0001	
Cramer-von Mises	14953.04		<.0001	
Andersen-Darling	96156.09		<.0001	
Chi-Square	460741.3	94	<.0001	





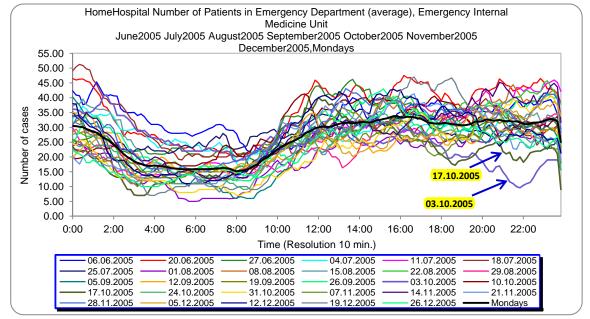
HomeHospital Time by ED Internal state (sec.) January 2004-October 2007, all days Fitting Mixtures of Distributions Normal (26.47%): location = 13 scale = 4.15 Normal (24.17%): location = 20 scale = 6.09 Normal (49.36%): location = 30 scale = 9.84 **Morning Normal** Intermediate hours **Evening Normal Normal** -requencies

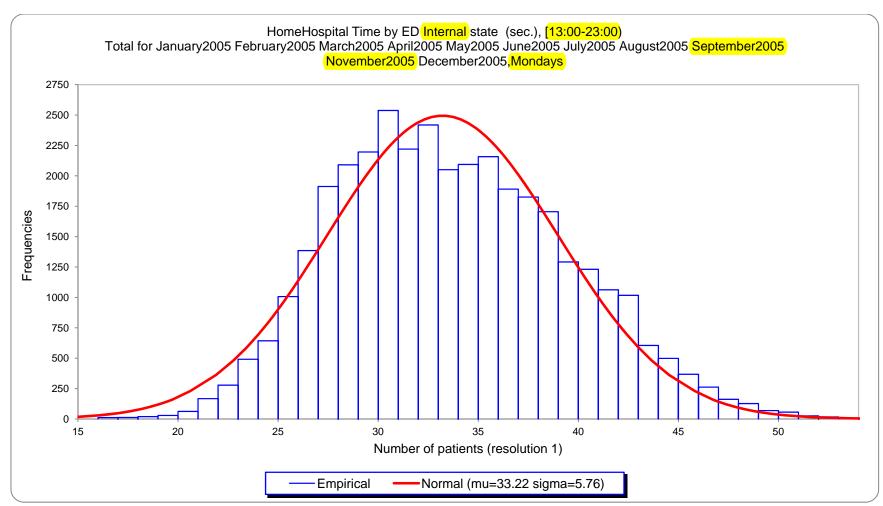
Number of patients (resolution 1)

Time by ED Internal state (sec.) Statistics	
N	120960000
N(average per day)	86400
Mean	23.63
Standard Deviation	10.7
Variance	114.4
Median	22
Minimum	0
Maximum	70
Skewness	0.557
Kurtosis	-0.23178
Standard Error Mean	0.00097
Interquartile Range	16
Mean Absolute Deviation	8.808
Median Absolute Deviation(MAD)	8
Coefficient of Variation (CV) (%)	45.27
L-moment 2 (half of Gini's Mean Difference)	6.031
L-Skewness	0.121
L-Kurtosis	0.0813
Coefficient of L-variation (L-CV)(%) (Gini's Coefficient)	25.53

Parameter Estimates						
Components	Mixing Proportions (%)	Location	Scale	Shape	Mean	Standard Deviation
1. Normal	26.47	13.01	4.15		13.01	4.15
2. Normal	24.17	20.00	6.09		20.00	6.09
3. Normal	49.36	30.04	9.84		30.04	9.84

Goodness-of-Fit Tests				
Tests	Statistic	DF	p Value	
Residuals Std	0.017			
Kolmogorov-Smirnov	0.04		<.0001	
Cramer-von Mises	34138.3		<.0001	
Andersen-Darling	200657.9		<.0001	
Chi-Square	584234.3	65	<.0001	





Time by ED Interna	al state (sec.), [13:00-23:00) Statisti	cs
N	,,,,	1656000
N(average per day	()	36000
Mean		33.22
Standard Deviation	1	5.756
Variance		33.13
Median		33
Minimum		16
Maximum		54
Skewness		0.282
Kurtosis		-0.31791
Standard Error Me	an	0.00447
Interquartile Range	9	8
Mean Absolute De	viation	4.712
Median Absolute D		4
Coefficient of Varia	ation(CV) (%)	17.33
L-moment 2 (half of	of Gini's Mean Difference)	3.263
L-Skewness		0.0601
L-Kurtosis		0.0924
Coefficient of L-var	riation(L-CV)(%) (Gini's Coefficient)	9.82
Parameters for I	Normal Distribution	
Parameter	Estimate	
mu	33.22	
sigma	5.76	
mean	33.22	
std	5.756	
0 1 153	T (

Goodness-of-Fit Tests for Normal Distribution				
Test	Statistic	DF	p Value	
Residuals Std	0.025			
Kolmogorov-Smirnov	0.069		<.0001	
Cramer-von Mises	1068.72		<.0001	
Anderson-Darling	6193.27		<.0001	
Chi-Square	>1000	34	<.0001	

"Recall":

- ▶ Arrivals processes to EDs "are" inhomogeneous Poisson (≈ piecewise Poisson)
- ▶ $M/M/\infty$ (ample-server queue) has Poisson steady-state
- Birth-Death processes are time-reversible hence steady-state invariant under state-conditioning

"Recall":

- ▶ Arrivals processes to EDs "are" inhomogeneous Poisson (≈ piecewise Poisson)
- ▶ $M/M/\infty$ (ample-server queue) has Poisson steady-state
- Birth-Death processes are time-reversible hence steady-state invariant under state-conditioning

Our EDA "implies" (w/ Armony, Marmor, Tseytlin, Yom-Tov):

▶ Israeli ED census $\stackrel{d}{=} M/M/\infty$

"Recall":

- ▶ Arrivals processes to EDs "are" inhomogeneous Poisson (≈ piecewise Poisson)
- ▶ $M/M/\infty$ (ample-server queue) has Poisson steady-state
- Birth-Death processes are time-reversible hence steady-state invariant under state-conditioning

Our EDA "implies" (w/ Armony, Marmor, Tseytlin, Yom-Tov):

- ▶ Israeli ED census $\stackrel{d}{=} M/M/\infty$
- ► ED $\stackrel{d}{=}$ Reversible Birth-Death process, hence conditioning on finite capacity, say *B*, gives rise to M/M/B/B (Erlang-B)
- ▶ U.S. ED census $\stackrel{d}{=} M/M/B/B$, which can be (has been) used to analyze Ambulance Diversion (ED Blocking)

"Recall":

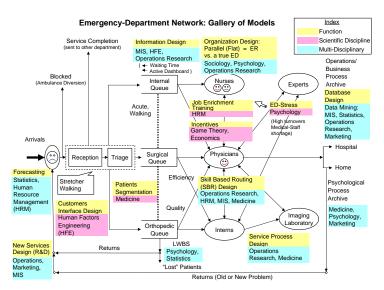
- ▶ Arrivals processes to EDs "are" inhomogeneous Poisson (≈ piecewise Poisson)
- ▶ $M/M/\infty$ (ample-server queue) has Poisson steady-state
- Birth-Death processes are time-reversible hence steady-state invariant under state-conditioning

Our EDA "implies" (w/ Armony, Marmor, Tseytlin, Yom-Tov):

- ▶ Israeli ED census $\stackrel{d}{=} M/M/\infty$
- ► ED $\stackrel{d}{=}$ Reversible Birth-Death process, hence conditioning on finite capacity, say *B*, gives rise to M/M/B/B (Erlang-B)
- ▶ U.S. ED census $\stackrel{d}{=} M/M/B/B$, which can be (has been) used to analyze Ambulance Diversion (ED Blocking)
- Puzzle (getting ahead): Is the ED an Erlang-A system with $\mu=\theta$? then the "effective number of servers" can be, perhaps, deduced via those LWBS = Left Without Being Seen (or LAMA)

Simple models at the service of complex realities

Emergency-Department Network



Prerequisite II: Models (FNets)

"Laws of Large Numbers" capture Predictable Variability

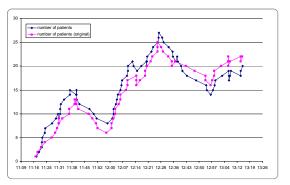
Deterministic Models: Scale Averages-out Stochastic Individualism

Prerequisite II: Models (FNets)

"Laws of Large Numbers" capture Predictable Variability

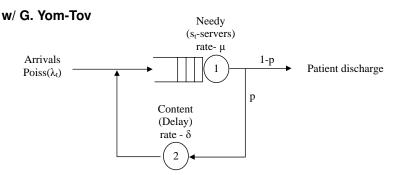
Deterministic Models: Scale Averages-out Stochastic Individualism

Severely-Wounded Patients, 11:00-13:00 (Censored LOS)



- Transient Q's:
 - Control of Mass Casualty Events (w/ I. Cohen, N. Zychlinski)
 - Staffing Chemical MCE (w/ G. Yom-Tov)

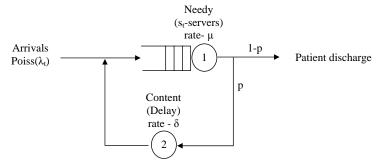
The Basic Service-Network Model: Erlang-R



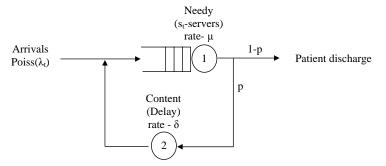
Erlang-R (IE: Repairman Problem 50's; CS: Central-Server 60's) = **2-station "Jackson" Network** = $(M/M/S, M/M/\infty)$:

- $ightharpoonup \lambda_t$ Time-Varying Arrival rate
- \triangleright S_t Number of **Servers** (Nurses / Physicians)
- μ **Service** rate ($E[Service] = \frac{1}{\mu}$)
- p ReEntrant (Feedback) fraction
- ▶ δ Content-to-Needy rate ($E[Content] = \frac{1}{\delta}$)

Fluid Model ↔ (Time-Varying) Erlang-R System



Fluid Model ↔ (Time-Varying) Erlang-R System

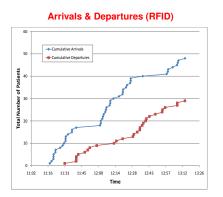


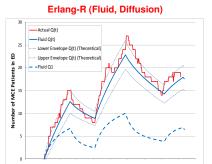
FNet of a 2-station "Jackson" Network:

$$\frac{d}{dt}q_t^1 = \lambda_t - \mu \cdot (q_t^1 \wedge s_t) + \delta \cdot q_t^2,
\frac{d}{dt}q_t^2 = p \cdot \mu \cdot (q_t^1 \wedge s_t) - \delta \cdot q_t^2.$$
(1)

Erlang-R: Fitting a Simple Model to a Complex Reality

Chemical MCE Drill (Israel, May 2010)



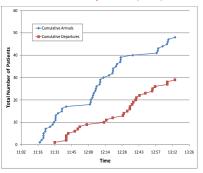


Time

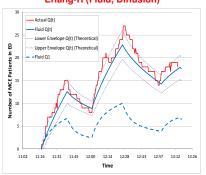
▶ Recurrent/Repeated services in MCE Events: eg. Injection every 15 minutes

Erlang-R: Fitting a Simple Model to a Complex Reality

Chemical MCE Drill (Israel, May 2010)



Erlang-R (Fluid, Diffusion)



- ▶ Recurrent/Repeated services in MCE Events: eg. Injection every 15 minutes
- ► Fluid (Sample-path) Modeling, via Functional Strong Laws of Large Numbers
- ▶ Stochastic Modeling, via Functional Central Limit Theorems
 - ► ED in MCE: Confidence-interval, usefully narrow for Control
 - ED in normal (time-varying) conditions: Personnel Staffing

An Asymptotic Framework: Erlang-R in the ED

System = Emergency Department (eg. Rambam Hospital)

- SimNet = Customized ED-Simulator (Marmor & Sinreich)
- ► QNet = Erlang-R (time-varying 2-station Jackson; w/ Yom-Tov)
- ► FNets = 2-dim dynamical system (Massey & Whitt)
- DNets = 2-dim Markovian Service Net (w/ Massey and Reiman)

An Asymptotic Framework: Erlang-R in the ED

System = Emergency Department (eg. Rambam Hospital)

- SimNet = Customized ED-Simulator (Marmor & Sinreich)
- ► **QNet** = Erlang-R (time-varying 2-station Jackson; **w**/ **Yom-Tov**)
- ► FNets = 2-dim dynamical system (Massey & Whitt)
- DNets = 2-dim Markovian Service Net (w/ Massey and Reiman)

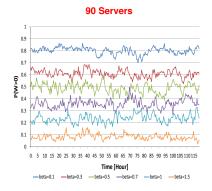
Asymptotic Framework

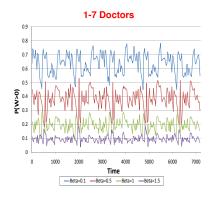
- Data and Measurements
- Fit a simple model (time-varying Erlang-R) to a complex reality (ED Physicians)
- Develop FNets (Offered-Load of Physicians) and (relevant) DNet (if needed)
- ▶ Use FNet / DNet for Design (√-Staffing), Analysis, . . .
- ➤ Simulate reality (ED with √-staffing of Physicians)
- ▶ Validation: stable performance, confidence intervals, . . .

Case Study: Emergency Ward Staffing

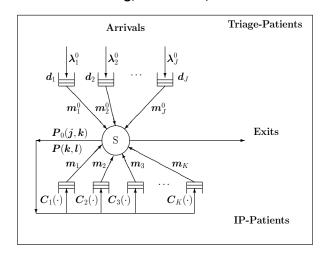
Many-Server ($\uparrow \infty$) Approximations for Small Systems (1-7)

- Staffing resolution: 1 hour
- Lower bound: 1 doctor per type
- ► Flexible (time-varying square-root) staffing: Yunan's Lecture
- ▶ Rounding effects ⇒ Not all performance levels achievable





ED Patient Flow: The Physicians View with J. Huang, B. Carmeli; N. Shimkin



Goal: Adhere to **Triage-Constraints**, then **release In-Process** Patients **Models**: Time-Varying (FNet) - in process; Stationary (DNet) - v. soon

Prerequisite II: Models (DNets, QED Q's)

Traditional Queueing Theory predicts that **Service-Quality** and **Servers' Efficiency must** be traded off against each other.

For example, M/M/1 (single-server queue): 91% server's utilization goes with

Congestion Index =
$$\frac{E[Wait]}{E[Service]}$$
 = 10,

and only 9% of the customers are served immediately upon arrival.

Prerequisite II: Models (DNets, QED Q's)

Traditional Queueing Theory predicts that **Service-Quality** and **Servers' Efficiency must** be traded off against each other.

For example, M/M/1 (single-server queue): 91% server's utilization goes with

Congestion Index =
$$\frac{E[Wait]}{E[Service]}$$
 = 10,

and only 9% of the customers are served immediately upon arrival.

Yet, **heavily-loaded** queueing systems with **Congestion Index = 0.1** (Waiting one order of magnitude less than Service) are prevalent:

- ► Call Centers: Wait "seconds" for minutes service;
- Transportation: Search "minutes" for hours parking;
- ▶ Hospitals: Wait "hours" in ED for days hospitalization in IW's.

Prerequisite II: Models (DNets, QED Q's)

Traditional Queueing Theory predicts that **Service-Quality** and **Servers' Efficiency must** be traded off against each other.

For example, M/M/1 (single-server queue): 91% server's utilization goes with

Congestion Index =
$$\frac{E[Wait]}{E[Service]}$$
 = 10,

and only 9% of the customers are served immediately upon arrival.

Yet, **heavily-loaded** queueing systems with **Congestion Index = 0.1** (Waiting one order of magnitude less than Service) are prevalent:

- ► Call Centers: Wait "seconds" for minutes service;
- Transportation: Search "minutes" for hours parking;
- ► Hospitals: Wait "hours" in ED for days hospitalization in IW's.

Moreover, a significant fraction not delayed in queue: e.g. in well-run

- CCs: 50% served "immediately" & 90% utilization ⇒ QED
- ► EDs + IWs: ?

Prerequisite II: Models (DNets, QED Q's)

Traditional Queueing Theory predicts that **Service-Quality** and **Servers' Efficiency must** be traded off against each other.

For example, M/M/1 (single-server queue): 91% server's utilization goes with

Congestion Index =
$$\frac{E[Wait]}{E[Service]}$$
 = 10,

and only 9% of the customers are served immediately upon arrival.

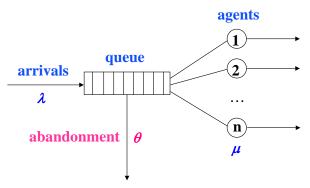
Yet, **heavily-loaded** queueing systems with **Congestion Index = 0.1** (Waiting one order of magnitude less than Service) are prevalent:

- ► Call Centers: Wait "seconds" for minutes service;
- Transportation: Search "minutes" for hours parking;
- ► Hospitals: Wait "hours" in ED for days hospitalization in IW's.

Moreover, a significant fraction not delayed in queue: e.g. in well-run

- CCs: 50% served "immediately" & 90% utilization ⇒ QED
- ► EDs + IWs: ? Multiple scales! IW-"Beds" (10's) are QED while IW-Doctors (1's) are in conventional heavy-traffic (hours wait for minutes service), hence the bottlenecks

The Basic Staffing Model: Erlang-A (M/M/N + M)



Erlang-A (Palm 1940's) = Birth & Death Q, with parameters:

- $\rightarrow \lambda$ **Arrival** rate (Poisson)
- ▶ μ **Service** rate (Exponential; $E[S] = \frac{1}{\mu}$)
- θ Patience rate (Exponential, $E[Patience] = \frac{1}{\theta}$)
- N − Number of Servers (Agents).

Erlang-A: Practical Relevance?

Experience:

- ▶ Arrival process **not pure Poisson** (time-varying, σ^2 too large)
- Service times not Exponential (typically close to LogNormal)
- ▶ Patience times **not** Exponential (various patterns observed).

Erlang-A: Practical Relevance?

Experience:

- ► Arrival process **not pure Poisson** (time-varying, σ^2 too large)
- Service times not Exponential (typically close to LogNormal)
- Patience times not Exponential (various patterns observed).
- Building Blocks need not be independent (eg. long wait associated with long service; w/ M. Reich and Y. Ritov)
- Customers and Servers not homogeneous (classes, skills)
- Customers return for service (after busy, abandonment; dependently; P. Khudiakov, M. Gorfine, P. Feigin)
- ..., and more.

Erlang-A: Practical Relevance?

Experience:

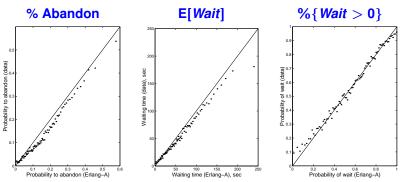
- ► Arrival process **not pure Poisson** (time-varying, σ^2 too large)
- Service times not Exponential (typically close to LogNormal)
- Patience times not Exponential (various patterns observed).
- Building Blocks need not be independent (eg. long wait associated with long service; w/ M. Reich and Y. Ritov)
- Customers and Servers not homogeneous (classes, skills)
- Customers return for service (after busy, abandonment; dependently; P. Khudiakov, M. Gorfine, P. Feigin)
- ..., and more.

Question: Is Erlang-A Relevant?

YES! Fitting a Simple Model to a Complex Reality, both Theoretically and Practically

Erlang-A: Fitting a Simple Model to a Complex Reality

Hourly Performance vs. Erlang-A Predictions (1 year)



- ► Empirically-Based & Theoretically-Supported Estimation of (Im)Patience: $\hat{\theta} = P\{Ab\}/E[W_a]$)
- Small Israeli Bank (more examples in progress)
- Hourly performance vs. Erlang-A predictions, 1 year: aggregated groups of 40 similar hours

QED Theory (Erlang '13; Halfin & Whitt '81; w/Garnett & Reiman '02)

Consider a sequence of **steady-state** M/M/N + M queues, N = 1, 2, 3, ...Then the following points of view are **equivalent**, as $N \uparrow \infty$:

- Customers $\{ \text{Abandon} \} pprox rac{\gamma}{\sqrt{N}} \,, \qquad \qquad 0 < \gamma;$
- Agents $OCC \approx 1 \frac{\beta + \gamma}{\sqrt{N}}$ $-\infty < \beta < \infty$;
- Managers $N \approx R + \beta \sqrt{R}$, $R = \lambda \times E(S)$ not small;

Here
$$R =$$
Offered Load eg. $R = 25$ call/min. \times 4 min./call $= 100$

Erlang-A: QED Approximations (Examples)

Assume **Offered Load** R not small $(\lambda \to \infty)$.

Let
$$\hat{\beta} = \beta \sqrt{\frac{\mu}{\theta}}$$
, $h(\cdot) = \frac{\phi(\cdot)}{1 - \Phi(\cdot)} = \text{hazard rate of } \mathcal{N}(0, 1)$.

▶ Delay Probability:

$$P\{W_q > 0\} \approx \left[1 + \sqrt{\frac{\theta}{\mu}} \cdot \frac{h(\hat{\beta})}{h(-\beta)}\right]^{-1}.$$

Probability to Abandon:

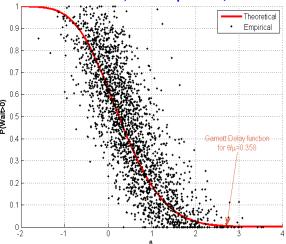
$$\mathsf{P}\{\mathsf{Ab}|W_q>0\} \ pprox \ rac{1}{\sqrt{N}}\cdot\sqrt{rac{ heta}{\mu}}\cdot\left[h(\hat{eta})-\hat{eta}
ight] \ .$$

▶ $P{Ab}$ \propto $E[W_q]$, both order $\frac{1}{\sqrt{N}}$:

$$\frac{\mathsf{P}\{\mathsf{Ab}\}}{\mathsf{E}[W_a]} \ = \ \theta \quad (\approx g(0) > 0).$$

QED Theory vs. Data: $P(W_q > 0)$

IL Telecom; June-September, 2004



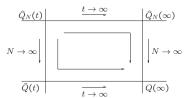
- 2205 half-hour intervals (13 summer weeks, week-days)
- lacktriang Erlang-A approximations for the appropriate $\mu/\theta \approx 3$

Process Limits (Queueing, Waiting)

• $\hat{Q}_N=\{\hat{Q}_N(t), t\geq 0\}$: stochastic process obtained by centering and rescaling:

$$\hat{Q}_N = \frac{Q_N - N}{\sqrt{N}}$$

- $\hat{Q}_N(\infty)$: stationary distribution of \hat{Q}_N
- $\hat{Q} = {\hat{Q}(t), t \ge 0}$: process defined by: $\hat{Q}_N(t) \stackrel{d}{\to} \hat{Q}(t)$.



Approximating (Virtual) Waiting Time

$$\hat{V}_N = \sqrt{N} \ V_N \Rightarrow \hat{V} = \left[\frac{1}{\mu} \ \hat{Q}\right]_{q_5}^+$$

- 1. Why **subtle**: Consider a large service system (e.g. call center).
 - ► Fix λ and let $N \uparrow \infty$: $P\{W_q > 0\} \downarrow 0$, $P(I > 0) \uparrow 1$.

- 1. Why **subtle**: Consider a large service system (e.g. call center).
 - ► Fix λ and let $N \uparrow \infty$: $P\{W_q > 0\} \downarrow 0$, $P(I > 0) \uparrow 1$.
 - ▶ Fix N and let $\lambda \uparrow \infty$: $P\{W_q > 0\} \uparrow 1$, $P(I > 0) \downarrow 0$.

- 1. Why **subtle**: Consider a large service system (e.g. call center).
 - ► Fix λ and let $N \uparrow \infty$: $P\{W_q > 0\} \downarrow 0$, $P(I > 0) \uparrow 1$.
 - ▶ Fix N and let $\lambda \uparrow \infty$: $P\{W_q > 0\} \uparrow 1$, $P(I > 0) \downarrow 0$.
 - ▶ \Rightarrow **Must** have both λ and N increase simultaneously:
 - ⇒ (CLT) Square-root staffing: $\mathbf{N} \approx \mathbf{R} + \beta \sqrt{\mathbf{R}}$ $\left(\lambda \approx \mathbf{N}\mu - \beta \sqrt{\mathbf{N}\mu}\right)$

- 1. Why **subtle**: Consider a large service system (e.g. call center).
 - ► Fix λ and let $N \uparrow \infty$: $P\{W_q > 0\} \downarrow 0$, $P(I > 0) \uparrow 1$.
 - ▶ Fix *N* and let $\lambda \uparrow \infty$: $P\{W_q > 0\} \uparrow 1$, $P(I > 0) \downarrow 0$.
 - ▶ \Rightarrow **Must** have <u>both</u> λ and *N* increase simultaneously:
 - ⇒ (CLT) Square-root staffing: $N \approx R + \beta \sqrt{R}$ $\left(\lambda \approx N\mu - \beta \sqrt{N\mu}\right)$
- 2. **Erlang-A** (M/M/N+M), with parameters λ, μ, θ ; N, in which $\mu = \theta$: (Im)Patience and Service-times are equally distributed.

- 1. Why **subtle**: Consider a large service system (e.g. call center).
 - ► Fix λ and let $N \uparrow \infty$: $P\{W_q > 0\} \downarrow 0$, $P(I > 0) \uparrow 1$.
 - ▶ Fix *N* and let $\lambda \uparrow \infty$: $P\{W_q > 0\} \uparrow 1$, $P(I > 0) \downarrow 0$.
 - ▶ \Rightarrow Must have both λ and N increase simultaneously:
 - ⇒ (CLT) Square-root staffing: $N \approx R + \beta \sqrt{R}$ $\left(\lambda \approx N\mu - \beta \sqrt{N\mu}\right)$
- 2. **Erlang-A** (M/M/N+M), with parameters λ, μ, θ ; N, in which $\mu = \theta$: (Im)Patience and Service-times are equally distributed.
 - ► Steady-state: $L(M/M/N + M) \stackrel{d}{=} L(M/M/\infty) \stackrel{d}{=} Poisson(R)$, with $R = \lambda/\mu$ (Offered-Load)

- 1. Why **subtle**: Consider a large service system (e.g. call center).
 - ► Fix λ and let $N \uparrow \infty$: $P\{W_q > 0\} \downarrow 0$, $P(I > 0) \uparrow 1$.
 - ▶ Fix *N* and let $\lambda \uparrow \infty$: $P\{W_q > 0\} \uparrow 1$, $P(I > 0) \downarrow 0$.
 - ▶ \Rightarrow **Must** have <u>both</u> λ and *N* increase simultaneously:
 - ► ⇒ (CLT) Square-root staffing: $N \approx R + \beta \sqrt{R}$ $\left(\lambda \approx N\mu - \beta \sqrt{N\mu}\right)$
- 2. **Erlang-A** (M/M/N+M), with parameters λ, μ, θ ; N, in which $\mu = \theta$: (Im)Patience and Service-times are equally distributed.
 - ► Steady-state: $L(M/M/N + M) \stackrel{d}{=} L(M/M/\infty) \stackrel{d}{=} Poisson(R)$, with $R = \lambda/\mu$ (Offered-Load)
 - ▶ Poisson(R) $\stackrel{d}{\approx} R + Z\sqrt{R}$, with $Z \stackrel{d}{=} N(0,1)$.

- 1. Why **subtle**: Consider a large service system (e.g. call center).
 - ► Fix λ and let $N \uparrow \infty$: $P\{W_q > 0\} \downarrow 0$, $P(I > 0) \uparrow 1$.
 - ▶ Fix *N* and let $\lambda \uparrow \infty$: $P\{W_q > 0\} \uparrow 1$, $P(I > 0) \downarrow 0$.
 - ▶ \Rightarrow **Must** have <u>both</u> λ and *N* increase simultaneously:
 - ▶ ⇒ (CLT) Square-root staffing: $N \approx R + \beta \sqrt{R}$ $\left(\lambda \approx N\mu - \beta \sqrt{N\mu}\right)$
- 2. **Erlang-A** (M/M/N+M), with parameters λ, μ, θ ; N, in which $\mu = \theta$: (Im)Patience and Service-times are equally distributed.
 - ▶ Steady-state: $L(M/M/N + M) \stackrel{d}{=} L(M/M/\infty) \stackrel{d}{=} Poisson(R)$, with $R = \lambda/\mu$ (Offered-Load)
 - ▶ Poisson(R) $\stackrel{d}{\approx} R + Z\sqrt{R}$, with $Z \stackrel{d}{=} N(0,1)$.
 - $P\{W_q(M/M/N+M)>0\} \stackrel{PASTA}{=} P\{L(M/M/N+M)\geq N\} \stackrel{\mu=\theta}{=}$

$$P\{L(M/M/\infty) \ge N\} \approx P\{R + Z\sqrt{R} \ge N\} =$$

$$P\{Z \geq (N-R)/\sqrt{R}\} \stackrel{\sqrt{\cdot} \text{ staffing}}{\approx} P\{Z \geq \beta\} = 1 - \Phi(\beta).$$

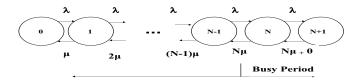
- 1. Why **subtle**: Consider a large service system (e.g. call center).
 - ► Fix λ and let $N \uparrow \infty$: $P\{W_q > 0\} \downarrow 0$, $P(I > 0) \uparrow 1$.
 - ► Fix N and let $\lambda \uparrow \infty$: $P\{W_q > 0\} \uparrow 1$, $P(I > 0) \downarrow 0$.
 - ▶ \Rightarrow **Must** have <u>both</u> λ and *N* increase simultaneously:
 - ► ⇒ (CLT) Square-root staffing: $N \approx R + \beta \sqrt{R}$ $\left(\lambda \approx N\mu - \beta \sqrt{N\mu}\right)$
- 2. **Erlang-A** (M/M/N+M), with parameters λ, μ, θ ; N, in which $\mu = \theta$: (Im)Patience and Service-times are equally distributed.
 - ► Steady-state: $L(M/M/N + M) \stackrel{d}{=} L(M/M/\infty) \stackrel{d}{=} Poisson(R)$, with $R = \lambda/\mu$ (Offered-Load)
 - ▶ Poisson(R) $\stackrel{d}{\approx} R + Z\sqrt{R}$, with $Z \stackrel{d}{=} N(0,1)$.
 - $P\{W_q(M/M/N+M)>0\} \stackrel{PASTA}{=} P\{L(M/M/N+M)\geq N\} \stackrel{\mu=\theta}{=}$

$$P\{L(M/M/\infty) \ge N\} \approx P\{R + Z\sqrt{R} \ge N\} =$$

$$P\{Z \geq (N-R)/\sqrt{R}\} \stackrel{\sqrt{\cdot} \text{ staffing }}{\approx} P\{Z \geq \beta\} = 1 - \Phi(\beta).$$

3. QED Excursions

QED Intuition via Excursions: Busy-Idle Cycles



Q(0) = N: all servers busy, no queue.

Let
$$T_{N,N-1}$$
 = E[Busy Period] down-crossing $N\downarrow N-1$
$$T_{N-1,N}$$
 = E[Idle Period] up-crossing $N-1\uparrow N$)

Then
$$P(\text{Wait} > 0) = \frac{T_{N,N-1}}{T_{N,N-1} + T_{N-1,N}} = \left[1 + \frac{T_{N-1,N}}{T_{N,N-1}}\right]^{-1}$$
.

QED Intuition via Excursions: Asymptotics

Calculate
$$T_{N-1,N} = \frac{1}{\lambda_N E_{1,N-1}} \sim \frac{1}{N\mu \times h(-\beta)/\sqrt{N}} \sim \frac{1}{\sqrt{N}} \cdot \frac{1/\mu}{h(-\beta)}$$

$$T_{N,N-1} = \frac{1}{N\mu\pi_+(0)} \sim \frac{1}{\sqrt{N}} \cdot \frac{\beta/\mu}{h(\delta)/\delta}, \ \delta = \beta\sqrt{\mu/\delta}$$
 Both apply as $\sqrt{N}(1-\rho_N) \to \beta, -\infty < \beta < \infty$.

Hence,
$$P(\text{Customer Wait} > 0) \sim \left[1 + \frac{h(\delta)/\delta}{h(-\beta)/\beta}\right]^{-1}$$
, and $P(\text{Server Wait} > 0) = P(\text{Customer Wait} = 0)$

QED Intuition via Excursions: Asymptotics

Calculate
$$T_{N-1,N} = \frac{1}{\lambda_N E_{1,N-1}} \sim \frac{1}{N\mu \times h(-\beta)/\sqrt{N}} \sim \frac{1}{\sqrt{N}} \cdot \frac{1/\mu}{h(-\beta)}$$

$$T_{N,N-1} = \frac{1}{N\mu\pi_+(0)} \sim \frac{1}{\sqrt{N}} \cdot \frac{\beta/\mu}{h(\delta)/\delta}, \ \delta = \beta\sqrt{\mu/\delta}$$
 Both apply as $\sqrt{N}(1-\rho_N) \to \beta, -\infty < \beta < \infty$.

Hence,
$$P(\text{Customer Wait} > 0) \sim \left[1 + \frac{h(\delta)/\delta}{h(-\beta)/\beta}\right]^{-1}$$
, and
$$P(\text{Server Wait} > 0) = P(\text{Customer Wait} = 0)$$

Special case: $\mu = \theta$ (Impatient):

Then $\mathbf{Q} \stackrel{d}{=} \mathbf{M}/\mathbf{M}/\infty$, since sojourn-time is $\exp(\mu = \theta)$.

If also
$$\beta = 0$$
 (Prevalent): $P\{Wait > 0\} \approx 1/2$,

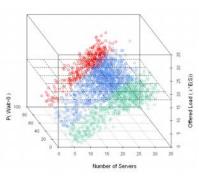
QED Erlang-X (Markovian Q's: Performance Analysis)

- Pre-History, 1914: Erlang (Erlang-B = M/M/n/n, Erlang-C = M/M/n)
- Pre-History, 1974: Jagerman (Erlang-B)
- ► History Milestone, 1981: Halfin-Whitt (Erlang-C, Gl/M/n)
- ► Erlang-A (M/M/N+M), 2002: w/ Garnett & Reiman
- Erlang-A with General (Im)Patience (M/M/N+G), 2005: w/ Zeltyn
- Frlang-C (ED+QED), 2009: w/ Zeltyn
- Erlang-B with Retrial, 2010: Avram, Janssen, van Leeuwaarden
- Refined Asymptotics (Erlang A/B/C), 2008-2011: Janssen, van Leeuwaarden, Zhang, Zwart
- Production Q's, 2011: Reed & Zhang
- Universal Erlang-A, ongoing: w/ Gurvich & Huang
- Queueing Networks:
 - (Semi-)Closed: Nurse Staffing (Jennings & de Vericourt), CCs with IVR (w/ Khudiakov), Erlang-R (w/ Yom-Tov)
 - CCs with Abandonment and Retrials: w. Massey, Reiman, Rider, Stolyar
 - Markovian Service Networks: w/ Massey & Reiman
- Leaving out:
 - Non-Exponential Service Times: M/D/n (Erlang-D), G/Ph/n, · · · , G/GI/n+GI, Measure-Valued Diffusions
 - ▶ **Dimensioning** (Staffing): M/M/n, · · · , time-varying Q's, V- and Reversed-V, · · ·
 - Control: V-network, Reversed-V, · · · , SBRNets

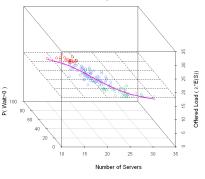
Operational Regimes: Q(uality) vs. E(fficiency)

CC in a Large Israeli Bank

 $P\{W_q>0\}$ vs. (R, N)



R-Slice: $P\{W_q > 0\}$ vs. N



3 Operational Regimes:

- **▶ QD**: ≤ 25%
- ► QED: 25% 75%
- **► ED**: ≥ 75%

R: Offered Load

Def. \mathbf{R} = Arrival-rate \times Average-Service-Time = $\frac{\lambda}{\mu}$

eg. R = 25 calls/min. \times 4 min./call = 100

N = #Agents **? Intuition**, as **R** or **N** increase unilaterally.

R: Offered Load

Def. \mathbf{R} = Arrival-rate × Average-Service-Time = $\frac{\lambda}{\mu}$ eg. \mathbf{R} = 25 calls/min. × 4 min./call = **100**

N =#Agents ? Intuition, as R or N increase unilaterally.

QD Regime: $N \approx R + \delta R$, 0.1 < δ < 0.25 (eg. N = 115)

- ► Framework developed in **O. Garnett**'s MSc thesis
- ▶ Rigorously: $(N R)/R \rightarrow \delta$, as $N, \lambda \uparrow \infty$, with μ fixed.
- Performance: Delays are rare events

R: Offered Load

Def. \mathbf{R} = Arrival-rate × Average-Service-Time = $\frac{\lambda}{\mu}$ eg. \mathbf{R} = 25 calls/min. × 4 min./call = **100**

N = #Agents ? Intuition, as R or N increase unilaterally.

QD Regime: $N \approx R + \delta R$, 0.1 < δ < 0.25 (eg. N = 115)

- Framework developed in O. Garnett's MSc thesis
- ▶ Rigorously: $(N R)/R \rightarrow \delta$, as $N, \lambda \uparrow \infty$, with μ fixed.
- Performance: Delays are rare events

ED Regime: $N \approx R - \gamma R$, $0.1 < \gamma < 0.25$ (eg. N = 90)

- ► Essentially all customers are delayed
- ▶ Wait same order as service-time; γ % Abandon (10-25%).

R: Offered Load

Def. \mathbf{R} = Arrival-rate × Average-Service-Time = $\frac{\lambda}{\mu}$ eg. \mathbf{R} = 25 calls/min. × 4 min./call = **100**

N =#Agents ? Intuition, as R or N increase unilaterally.

QD Regime: $N \approx R + \delta R$, $0.1 < \delta < 0.25$ (eg. N = 115)

- Framework developed in **O. Garnett**'s MSc thesis
- ▶ Rigorously: $(N R)/R \rightarrow \delta$, as $N, \lambda \uparrow \infty$, with μ fixed.
- Performance: Delays are rare events

ED Regime: $N \approx R - \gamma R$, $0.1 < \gamma < 0.25$ (eg. N = 90)

- Essentially all customers are delayed
- Wait same order as service-time; γ% Abandon (10-25%).

QED Regime: $N \approx R + \beta \sqrt{R}$, $-1 < \beta < +1$ (eg. N = 100)

- ► Erlang 1913-24, Halfin & Whitt 1981 (for Erlang-C)
- ▶ %Delayed between 25% and 75%
- ► E[Wait] $\propto \frac{1}{\sqrt{N}} \times$ E[Service] (sec vs. min); 1-5% Abandon.

Asymptotic Landscape: 9 Operational Regimes, and then some

Erlang-A, w/ I. Gurvich & J. Huang

Erlang-A	Conventional scaling			Many-Server scaling			NDS scaling			
$\mu \& \theta$ fixed	Sub	Critical	Over	QD	QED	ED	Sub	Critical	Over	
Offered load	$\frac{1}{1+\delta}$	$1 - \frac{\beta}{\sqrt{n}}$	$\frac{1}{1-\gamma}$	$\frac{1}{1+\delta}$	$1 - \frac{\beta}{\sqrt{n}}$	$\frac{1}{1-\gamma}$	$\frac{1}{1+\delta}$	$1-\frac{\beta}{2}$	$\frac{1}{1-\gamma}$	
per server	1+δ	\sqrt{n}	$1-\gamma$	1+8	\sqrt{n}			* n	,	
Arrival rate λ	$\frac{\mu}{1+\delta}$	$\mu - \frac{\beta}{\sqrt{n}}\mu$	$\frac{\mu}{1-\gamma}$	$\frac{n\mu}{1+\delta}$	$n\mu - \beta\mu\sqrt{n}$	$\frac{n\mu}{1-\gamma}$	$\frac{n\mu}{1+\delta}$	$n\mu - \beta\mu$	$\frac{n\mu}{1-\gamma}$	
# servers		1			n			n		
Time-scale	n			1			n			
Impatience rate	θ/n			θ			θ/n			
Staffing level	$\frac{\lambda}{\mu}(1+\delta)$	$\frac{\lambda}{\mu}(1+\frac{\beta}{\sqrt{n}})$	$\frac{\lambda}{\mu}(1-\gamma)$	$\frac{\lambda}{\mu}(1+\delta)$	$\frac{\lambda}{\mu} + \beta \sqrt{\frac{\lambda}{\mu}}$	$\frac{\lambda}{\mu}(1-\gamma)$	$\frac{\lambda}{\mu}(1+\delta)$	$\frac{\lambda}{\mu} + \beta$	$\frac{\lambda}{\mu}(1-\gamma)$	
Utilization	$\frac{1}{1+\delta}$	$1 - \sqrt{\frac{\theta}{\mu}} \frac{h(\hat{\beta})}{\sqrt{n}}$	1	$\frac{1}{1+\delta}$	$1 - \sqrt{\frac{\theta}{\mu}} \frac{\hat{h}(\hat{\beta})}{\sqrt{n}}$	1	$\frac{1}{1+\delta}$	$1 - \sqrt{\frac{\theta}{\mu}} \frac{h(\hat{\beta})}{n}$	1	
$\mathbb{E}(Q)$	$\frac{1}{\delta(1+\delta)}$	$\sqrt{n}g(\hat{eta})$	$\frac{n\mu\gamma}{\theta(1-\gamma)}$	$\frac{1}{\delta} \varrho_n$	$\sqrt{n}g(\hat{\beta})\alpha$	$\frac{n\mu\gamma}{\theta(1-\gamma)}$	o(1)	$ng(\hat{eta})$	$\frac{n^2 \mu \gamma}{\theta(1-\gamma)}$	
$\mathbb{P}(Ab)$	$\frac{1}{n} \frac{1}{\delta} \frac{\theta}{\mu}$	$\frac{\theta}{\sqrt{n}\mu}g(\hat{\beta})$	γ	$\frac{1}{n} \frac{(1+\delta)}{\delta} \frac{\theta}{\mu} \varrho_n$	$\frac{\theta}{\sqrt{n}\mu}g(\hat{\beta})\alpha$	γ	$o(\frac{1}{n^2})$	$\frac{\theta}{n\mu}g(\hat{\beta})$	γ	
$\mathbb{P}(W_q>0)$	$\frac{1}{1+\delta}$	≈1		ϱ_n	$\alpha \in (0,1)$	≈1	≈ 0	≈1		
$\mathbb{P}(W_q > T)$	$\frac{1}{1+\delta}e^{-\frac{\delta}{1+\delta}\mu T}$	$1 + O(\frac{1}{\sqrt{n}})$	$1 + O(\tfrac{1}{n})$	≈ 0		f(T)	≈ 0	$\frac{\bar{\Phi}(\hat{\beta}+\sqrt{\theta\mu}T)}{\bar{\Phi}(\hat{\beta})}$	$1 + O(\tfrac{1}{n})$	
Congestion $\frac{\mathbb{E}W_q}{\mathbb{E}S}$	$\frac{1}{\delta}$	$\sqrt{n}g(\hat{eta})$	$n\mu\gamma/\theta$	$\frac{1}{n} \frac{(1+\delta)}{\delta} \varrho_n$	$\frac{\alpha}{\sqrt{n}}g(\hat{\beta})$	$\frac{\mu\gamma}{\theta}$	$o(\frac{1}{n})$	$g(\hat{eta})$	$n\mu\gamma/ heta$	

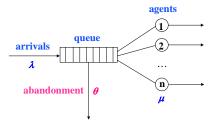
- ► Conventional: Ward & Glynn (03, G/G/1 + G)
- ► Many-Server:
 - QED: Halfin-Whitt (81), Garnett-M-Reiman (02)
 - ► ED: Whitt (04)
 - ► NDS: Atar (12)

Asymptotic Landscape: 9 Operational Regimes, and then some

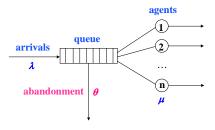
Erlang-A, w/ I. Gurvich & J. Huang

Erlang-A	Conventional scaling			Many-Server scaling			NDS scaling			
$\mu \& \theta$ fixed	Sub	Critical	Over	QD	QED	ED	Sub	Critical	Over	
Offered load per server	$\frac{1}{1+\delta}$	$1 - \frac{\beta}{\sqrt{n}}$	$\frac{1}{1-\gamma}$	$\frac{1}{1+\delta}$	$1 - \frac{\beta}{\sqrt{n}}$	$\frac{1}{1-\gamma}$	$\frac{1}{1+\delta}$	$1 - \frac{\beta}{n}$	$\frac{1}{1-\gamma}$	
Arrival rate λ	$\frac{\mu}{1+\delta}$	$\mu - \frac{\beta}{\sqrt{n}}\mu$	$\frac{\mu}{1-\gamma}$	$\frac{n\mu}{1+\delta}$	$n\mu - \beta\mu\sqrt{n}$	$\frac{n\mu}{1-\gamma}$	$\frac{n\mu}{1+\delta}$	$n\mu - \beta\mu$	$\frac{n\mu}{1-\gamma}$	
# servers		1			n			n		
Time-scale	n			1			n			
Impatience rate	θ/n			θ			θ/n			
Staffing level	$\frac{\lambda}{\mu}(1+\delta)$	$\frac{\lambda}{\mu}(1+\frac{\beta}{\sqrt{n}})$	$\tfrac{\lambda}{\mu}(1-\gamma)$	$\frac{\lambda}{\mu}(1+\delta)$	$\frac{\lambda}{\mu} + \beta \sqrt{\frac{\lambda}{\mu}}$	$\frac{\lambda}{\mu}(1-\gamma)$	$\tfrac{\lambda}{\mu}(1+\delta)$	$\frac{\lambda}{\mu} + \beta$	$\frac{\lambda}{\mu}(1-\gamma)$	
Utilization	$\frac{1}{1+\delta}$	$1 - \sqrt{\frac{\theta}{\mu}} \frac{h(\hat{\beta})}{\sqrt{n}}$	1	$\frac{1}{1+\delta}$	$1 - \sqrt{\frac{\theta}{\mu}} \frac{\hat{h}(\hat{\beta})}{\sqrt{n}}$	1	$\frac{1}{1+\delta}$	$1 - \sqrt{\frac{\theta}{\mu}} \frac{h(\hat{\beta})}{n}$	1	
$\mathbb{E}(Q)$	$\frac{1}{\delta(1+\delta)}$	$\sqrt{n}g(\hat{eta})$	$\frac{n\mu\gamma}{\theta(1-\gamma)}$	$\frac{1}{\delta}\varrho_n$	$\sqrt{n}g(\hat{\beta})\alpha$	$\frac{n\mu\gamma}{\theta(1-\gamma)}$	o(1)	$ng(\hat{eta})$	$\frac{n^2 \mu \gamma}{\theta(1-\gamma)}$	
$\mathbb{P}(Ab)$	$\frac{1}{n} \frac{1}{\delta} \frac{\theta}{\mu}$	$\frac{\theta}{\sqrt{n}\mu}g(\hat{\beta})$	γ	$\frac{1}{n} \frac{(1+\delta)}{\delta} \frac{\theta}{\mu} \varrho_n$	$\frac{\theta}{\sqrt{n}\mu}g(\hat{\beta})\alpha$	γ	$o(\frac{1}{n^2})$	$\frac{\theta}{n\mu}g(\hat{\beta})$	γ	
$\mathbb{P}(W_q>0)$	$\frac{1}{1+\delta}$	≈1		ϱ_n	$\alpha \in (0,1)$	≈1	≈ 0	≈1		
$\mathbb{P}(W_q > T)$	$\frac{1}{1+\delta}e^{-\frac{\delta}{1+\delta}\mu T}$	$1 + O(\frac{1}{\sqrt{n}})$	$1 + O(\tfrac{1}{n})$	≈ 0		f(T)	≈ 0	$\frac{\bar{\Phi}(\hat{\beta}+\sqrt{\theta\mu}T)}{\bar{\Phi}(\hat{\beta})}$	$1 + O(\tfrac{1}{n})$	
Congestion $\frac{\mathbb{E}W_q}{\mathbb{E}S}$	$\frac{1}{\delta}$	$\sqrt{n}g(\hat{eta})$	$n\mu\gamma/\theta$	$\frac{1}{n} \frac{(1+\delta)}{\delta} \varrho_n$	$\frac{\alpha}{\sqrt{n}}g(\hat{\beta})$	$\frac{\mu\gamma}{\theta}$	$o(\frac{1}{n})$	$g(\hat{eta})$	$n\mu\gamma/ heta$	

- ► Conventional: Ward & Glynn (03, G/G/1 + G)
- Many-Server:
 - QED: Halfin-Whitt (81), Garnett-M-Reiman (02)
 - ► ED: Whitt (04)
 - NDS: Atar (12)
- "Missing": ED+QED; Hazard-rate scaling (M/M/N+G); Time-Varying, Non-Parametric; Moderate- and Large-Deviation; Networks; Control



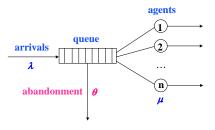
w/ I. Gurvich & J. Huang



w/ I. Gurvich & J. Huang

▶ QNet: Birth & Death Queue, with B - D rates

$$F(q) = \lambda - \mu \cdot (q \wedge n) - \theta \cdot (q - n)^+, \quad q = 0, 1, \dots$$

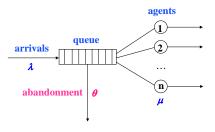


w/ I. Gurvich & J. Huang

▶ QNet: Birth & Death Queue, with B - D rates

$$F(q) = \lambda - \mu \cdot (q \wedge n) - \theta \cdot (q - n)^+, \quad q = 0, 1, \dots$$

► **FNet**: Dynamical (Deterministic) System – ODE $dx_t = F(x_t)dt$, t > 0



w/ I. Gurvich & J. Huang

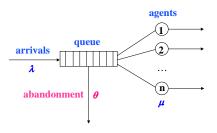
▶ QNet: Birth & Death Queue, with B - D rates

$$F(q) = \lambda - \mu \cdot (q \wedge n) - \theta \cdot (q - n)^+, \quad q = 0, 1, \dots$$

► **FNet**: Dynamical (Deterministic) System – ODE $dx_t = F(x_t)dt$, t > 0

DNet: Universal (Stochastic) Approximation – SDE

$$dY_t = F(Y_t)dt + \sqrt{2\lambda} dB_t, t \ge 0$$



w/ I. Gurvich & J. Huang

QNet: Birth & Death Queue, with B - D rates

$$F(q) = \lambda - \mu \cdot (q \wedge n) - \theta \cdot (q - n)^+, \quad q = 0, 1, \dots$$

► FNet: Dynamical (Deterministic) System – ODE

$$dx_t = F(x_t)dt, t \ge 0$$

DNet: Universal (Stochastic) Approximation – SDE

$$dY_t = F(Y_t)dt + \sqrt{2\lambda} dB_t, t \ge 0$$

eg. $\mu = \theta$: $\dot{\mathbf{x}} = \lambda - \mu \cdot \mathbf{x}$, $\mathbf{Y} = \mathsf{OU}$ process

Accuracy increases as $\lambda \uparrow \infty$ (no additional assumptions)

Value of Universal Approximation

- Tractable closed-form stable expressions
- Accurate more than heavy traffic limits
- Robust all many-server regimes, and beyond, with hardly any assumptions
- Value
 - Performance Analysis
 - Optimization (Staffing)
 - ► Inference (w/ G. Pang)
 - Simulation (w/ J. Blanchet)
- Limitation: Steady-State (but working on it)

Why does it work so well?

Coupling "Busy" + "Idle" Excursions of B&D and the corresponding Diffusion (durations order $\frac{1}{\sqrt{\lambda}}$)

Universal Diffusion: Tractability

▶ Density function of $Y(\infty) - n$:

$$\pi(x) = \begin{cases} \frac{\sqrt{\mu}}{\sqrt{\lambda}} \frac{\phi(\sqrt{\mu}(x/\sqrt{\lambda} + \beta/\mu))}{\Phi(\beta/\sqrt{\mu})} p(\beta, \mu, \theta), & \text{if } x \leq 0, \\ \frac{\sqrt{\theta}}{\sqrt{\lambda}} \frac{\phi(\sqrt{\theta}(x/\sqrt{\lambda} + \beta/\theta))}{1 - \Phi(\beta/\sqrt{\theta})} (1 - p(\beta, \mu, \theta)), & \text{if } x > 0, \end{cases}$$

Here
$$\beta := (n\mu - \lambda)/\sqrt{\lambda}$$
 and

$$p(\beta,\mu,\theta) = \left[1 + \sqrt{\frac{\mu}{\theta}} \frac{\phi(\beta/\sqrt{\mu})}{\Phi(\beta/\sqrt{\mu})} \frac{1 - \Phi(\beta/\sqrt{\theta})}{\phi(\beta/\sqrt{\theta})}\right]^{-1}.$$

Universal Approximation: Accuracy

 $ightharpoonup \Delta^{\lambda}$ is the "balancing" state, obtained by solving

$$\lambda = \mu(\mathbf{n} \wedge \Delta^{\lambda}) + \theta(\Delta^{\lambda} - \mathbf{n})^{+}.$$

Solution:
$$\Delta^{\lambda} = \frac{\lambda}{\mu} - \left(\frac{\lambda}{\mu} - n\right)^{+} \left(1 - \frac{\mu}{\theta}\right)$$
.
Specifically: $QD = \frac{\lambda}{\mu}$; $ED = n + \frac{1}{\theta}(\lambda - n\mu)$; $QED = n + \mathcal{O}(\sqrt{\lambda})$)

Universal Approximation: Accuracy

 $ightharpoonup \Delta^{\lambda}$ is the "balancing" state, obtained by solving

$$\lambda = \mu(\mathbf{n} \wedge \Delta^{\lambda}) + \theta(\Delta^{\lambda} - \mathbf{n})^{+}.$$

Solution:
$$\Delta^{\lambda} = \frac{\lambda}{\mu} - \left(\frac{\lambda}{\mu} - n\right)^{+} \left(1 - \frac{\mu}{\theta}\right)$$
.
Specifically: $QD = \frac{\lambda}{\mu}$; $ED = n + \frac{1}{\theta}(\lambda - n\mu)$; $QED = n + \mathcal{O}(\sqrt{\lambda})$)

Centered processes (excursions):

$$\tilde{Q}^{\lambda}(\cdot) = Q(\cdot) - \Delta^{\lambda}, \quad \tilde{Y}^{\lambda}(\cdot) = Y(\cdot) - \Delta^{\lambda}.$$

Theorem

For f bounded by an m-degree polynomial ($m \ge 0$):

$$\mathbb{E} f(\tilde{Q}^{\lambda}(\infty)) - \mathbb{E} f(\tilde{Y}^{\lambda}(\infty)) = \mathcal{O}(\sqrt{\lambda}^{m-1}).$$

Accuracy: higher than heavy-traffic limits

Universal Approximation: Why 2λ ?

- Semi-martingale representation of the B&D process:
 Fluid + Martingale
- Predictable quadratic variation:

$$\int_0^t [\lambda + \mu(Q_s \wedge n) + \theta(Q_s - n)^+] ds$$

In steady-state, arrival rate ≡ departure rate:

$$\lambda = \mathbb{E}[\mu(Q_s \wedge n) + \theta(Q_s - n)^+]$$

Expectation of the predictable quadratic variation:

$$\mathbb{E} \int_0^t [\lambda + \mu(Q_s \wedge n) + \theta(Q_s - n)^+] ds = 2\lambda t$$

▶ dMartingale_t $\approx \sqrt{2\lambda}$ · dBrownian_t

Reconciling Steady-State and Time-Varying Models

- ► **Challenge**: Accommodate time-varying demand (routine)
- Prerequisite: Flexible Capacity
 - As in Call Centers and to a degree in Healthcare,
 - In contrast to rigid (fixed) staffing level during a shift: doomed to alternate between overloading and underloading

Reconciling Steady-State and Time-Varying Models

- ► **Challenge**: Accommodate time-varying demand (routine)
- Prerequisite: Flexible Capacity
 - As in Call Centers and to a degree in Healthcare,
 - In contrast to rigid (fixed) staffing level during a shift: doomed to alternate between overloading and underloading
- ► Idea/Goal: In the face of time-varying demand, design time-varying staffing which accommodates demand such that performance is stable over time
- Solution: In fact, a time-varying system with Steady-State performance, at all times, via (Modified) Offered-Load (Square-Root) Staffing.

Reconciling Steady-State and Time-Varying Models

- ► **Challenge**: Accommodate time-varying demand (routine)
- Prerequisite: Flexible Capacity
 - As in Call Centers and to a degree in Healthcare,
 - In contrast to rigid (fixed) staffing level during a shift: doomed to alternate between overloading and underloading
- Idea/Goal: In the face of time-varying demand, design time-varying staffing which accommodates demand such that performance is stable over time
- Solution: In fact, a time-varying system with Steady-State performance, at all times, via (Modified) Offered-Load (Square-Root) Staffing.
- History:
 - Jennings, M., Reiman, Whitt (1996): Emergence of the phenomenon, via infinite-server heuristics
 - ▶ Feldman, M., Massey, Whitt (2008): Stabilize delay probability via QED staffing (justified theoretically only for Erlang-A with $\mu = \theta$)
 - Liu and Whitt (ongoing): Stabilize abandonment probability by ED staffing, via a corresponding network, theoretically and empirically
 - ► Huang, Gurvich, M. (ongoing): QED theory

The Offered-Load $R(t), t \ge 0$ $(R(t) \leftrightarrow R)$

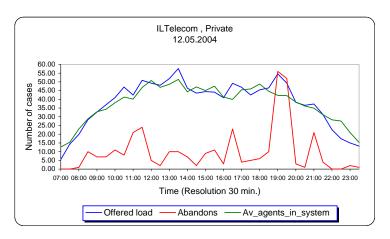
Empirically (in SEEStat):

- ▶ Process: $L(\cdot)$ = Least number of servers that guarantees no delay.
- ▶ Offered-Load Function $R(\cdot) = E[L(\cdot)]$

The Offered-Load $R(t), t \ge 0$ $(R(t) \leftrightarrow R)$

Empirically (in SEEStat):

- ▶ Process: $L(\cdot)$ = Least number of servers that guarantees no delay.
- ▶ Offered-Load Function $R(\cdot) = E[L(\cdot)]$



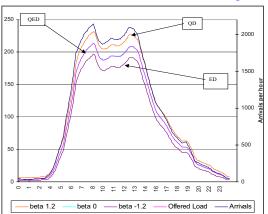
Time-Varying Arrival Rates

Square-Root Staffing:

$$N(t) = R(t) + \beta \sqrt{R(t)}, -\infty < \beta < \infty.$$

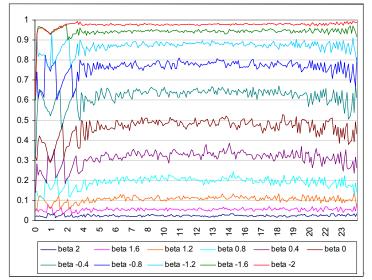
R(t) is the **Offered-Load** at time $t (R(t) \neq \lambda(t) \times E[S])$

Arrivals, Offered-Load and Staffing



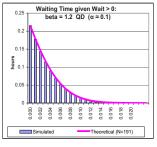
Time-Stable Performance of Time-Varying Systems

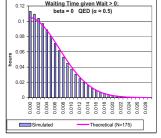
Delay Probability = as in the **Stationary Erlang-A** / **R**

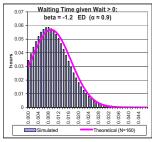


Time-Stable Performance of Time-Varying Systems

Waiting Time, Given Waiting: Empirical vs. Theoretical Distribution







- **Empirical**: Simulate time-varying $M_t/M/N_t + M$ $(\lambda(t), N(t) = R(t) + \beta \sqrt{R(t)})$
- Theoretical: Naturally-corresponding stationary Erlang-A, with QED β-staffing (some Averaging Principle?)
- Generalizes up to a single-station within a complex network (eg. Doctors in an Emergency Department, modeled as Erlang-R).

- ▶ Offered-Load Process: $L(\cdot)$ = Least number of servers that guarantees no delay.
- ▶ Offered-Load Function $R(t) = E[L(t)], t \ge 0.$ Think $M_t/G/N_t^2 + G$ vs. $M_t/G/\infty$: Ample-Servers.

- ▶ Offered-Load Process: $L(\cdot)$ = Least number of servers that guarantees no delay.
- ▶ Offered-Load Function $R(t) = E[L(t)], t \ge 0.$ Think $M_t/G/N_t^2 + G$ vs. $M_t/G/\infty$: Ample-Servers.

Four (all useful) representations, capturing "workload before t":

$$R(t) = E[L(t)] = \int_{-\infty}^{t} \lambda(u) \cdot P(S > t - u) du = E\left[A(t) - A(t - S)\right] =$$

$$= E\left[\int_{t-S}^{t} \lambda(u) du\right] = E[\lambda(t - S_e)] \cdot E[S] \approx \dots.$$

- {A(t), $t \ge 0$ } Arrival-Process, rate $\lambda(\cdot)$;
- ▶ **S** (**S**_e) generic Service-Time (Residual Service-Time).

- ▶ Offered-Load Process: $L(\cdot)$ = Least number of servers that guarantees no delay.
- ▶ Offered-Load Function $R(t) = E[L(t)], t \ge 0.$ Think $M_t/G/N_t^2 + G$ vs. $M_t/G/\infty$: Ample-Servers.

Four (all useful) representations, capturing "workload before t":

$$R(t) = E[L(t)] = \int_{-\infty}^{t} \lambda(u) \cdot P(S > t - u) du = E\left[A(t) - A(t - S)\right] =$$

$$= E\left[\int_{t-S}^{t} \lambda(u) du\right] = E[\lambda(t - S_e)] \cdot E[S] \approx \dots.$$

- {A(t), $t \ge 0$ } Arrival-Process, rate $\lambda(\cdot)$;
- ▶ **S** (**S**_e) generic Service-Time (Residual Service-Time).
- ▶ Relating L, λ, S ("W"): Time-Varying Little's Formula. Stationary models: $\lambda(t) \equiv \lambda$ then $R(t) \equiv \lambda \times E[S]$.

- ▶ Offered-Load Process: $L(\cdot)$ = Least number of servers that guarantees no delay.
- ▶ Offered-Load Function $R(t) = E[L(t)], t \ge 0.$ Think $M_t/G/N_t^2 + G$ vs. $M_t/G/\infty$: Ample-Servers.

Four (all useful) representations, capturing "workload before t":

$$R(t) = E[L(t)] = \int_{-\infty}^{t} \lambda(u) \cdot P(S > t - u) du = E\left[A(t) - A(t - S)\right] =$$

$$= E\left[\int_{t-S}^{t} \lambda(u) du\right] = E[\lambda(t - S_e)] \cdot E[S] \approx \dots.$$

- $\{A(t), t \ge 0\}$ Arrival-Process, rate $\lambda(\cdot)$;
- ▶ **S** (**S**_e) generic Service-Time (Residual Service-Time).
- ▶ Relating L, λ, S ("W"): Time-Varying Little's Formula. Stationary models: $\lambda(t) \equiv \lambda$ then $R(t) \equiv \lambda \times E[S]$.

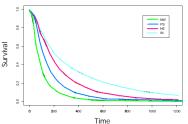
QED-c: $N_t = R_t + \beta R_t^c$, $1/2 \le c < 1$; (c = 1 separate analysis).

Estimating / Predicting the Offered-Load

Must account for "service times of abandoning customers".

- ▶ Prevalent Assumption: Services and (Im)Patience independent.
- But recall Patient VIPs: Willing to wait longer for more services.

Survival Functions by Type (Small Israeli Bank)



Service times stochastic order: $S_{New} \stackrel{st}{<} S_{Rea} \stackrel{st}{<} S_{VIP}$

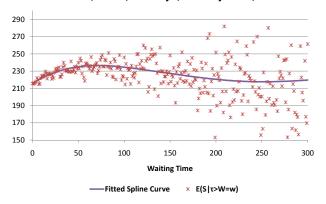
Patience times stochastic order: $au_{\text{\tiny New}} \stackrel{\text{st}}{<} au_{\text{\tiny Reg}} \stackrel{\text{st}}{<} au_{\text{\tiny VIP}}$

Dependent Primitives: Service- vs. Waiting-Time

Average Service-Time as a function of Waiting-Time U.S. Bank, Retail, Weedays, January-June, 2006

Dependent Primitives: Service- vs. Waiting-Time

Average Service-Time as a function of Waiting-Time U.S. Bank, Retail, Weedays, January-June, 2006



 \Rightarrow Focus on (Patience, Service-Time) jointly , w/ Reich and Ritov. $E[S \mid \text{Patience} = w], \ w \ge 0$: Service-Time of the Unserved.

(Imputing) Service-Times of Abandoning Customers

w/ M. Reich, Y. Ritov:

- 1. **Estimate** $g(w) = E[S | \text{Patience} > \text{Wait} = w], w \ge 0$: Mean service time of those **served after waiting exactly** w units of time (via non-linear regression: $S_i = g(W_i) + \varepsilon_i$);
- 2. Calculate

$$E[S | \text{Patience} = w] = g(w) - \frac{g'(w)}{h_{\tau}(w)};$$

 $h_{\tau}(w)$ = hazard-rate of (im)patience (via un-censoring);

3. Offered-load calculations: Impute E[S | Patience = w] (or the conditional distribution).

Challenges: Stable and accurate inference of g, g', h_{τ} .

Extending the Notion of the "Offered-Load"

- Business (Banking Call-Center): Offered Revenues
- ► Healthcare (Maternity Wards): Fetus in stress
 - ▶ 2 patients (Mother + Child) = high operational and cognitive load
 - ► Fetus dies ⇒ emotional load dominates
- ightharpoonup
 - Offered Operational Load
 - Offered Cognitive Load
 - Offered Emotional Load
 - ► ⇒ Fair Division of Load (Routing) between 2 Maternity Wards: One attending to complications <u>before</u> birth, the other to complications after birth, and both share normal birth

Server Networks

w/ A. Senderovic: Planning then joined A. Gal, M. Weid, Y. Goldberg: Process Mining



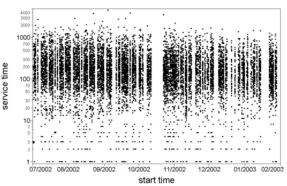
- ► As Challenging in theory and practice as Customer Networks
- Uncharted territory: e.g. Gnedenko/Palm's Machine Repair model, Armony and Ward (Asymptotic Little & ASTA)

Individual Agents: Service-Duration, Variability

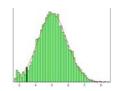
w/ Gans, Liu, Shen & Ye

Agent 14115

Service-Time Evolution: 6 month



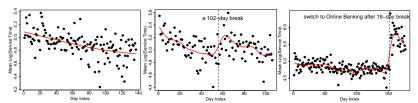
Log(Service-Time)



- ► Learning: Noticeable decreasing-trend in service-duration
- ► LogNormal Service-Duration, individually and collectively

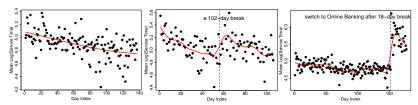
Individual Agents: Learning, Forgetting, Switching

Daily-Average Log(Service-Time), over 6 months Agents 14115, 14128, 14136

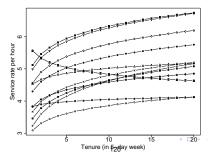


Individual Agents: Learning, Forgetting, Switching

Daily-Average Log(Service-Time), over 6 months Agents 14115, 14128, 14136



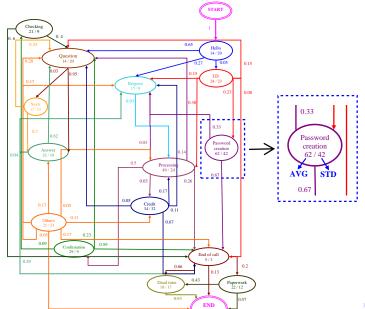
Weakly Learning-Curves for 12 Homogeneous(?) Agents



Tele-Service Process (Beyond present SEE Data)

Retail Service (Israeli Bank)

Statistics OR IE Psychol. MIS



121

Why Bother?

- Server Networks: Unchartered Research Territory
- In large call centers:
 +One Second to Service-Time implies +Millions in costs, annually
 - ⇒ Time and "Motion" Studies (Classical IE with New-age IT)

Why Bother?

- Server Networks: Unchartered Research Territory
- In large call centers:
 +One Second to Service-Time implies +Millions in costs, annually
 - ⇒ Time and "Motion" Studies (Classical IE with New-age IT)
- Service-Process Model: Customer-Agent Interaction
 - Work Design (w/ Khudiakov)
 eg. Cross-Selling: higher profit vs. longer (costlier) services;
 Analysis yields (congestion-dependent) cross-selling protocols
 - "Worker" Design (w/ Gans, Liu, Shen & Ye) eg. Learning, Forgetting, . . . : Staffing & individual-performance prediction, in a heterogenous environment

Why Bother?

- Server Networks: Unchartered Research Territory
- In large call centers:
 +One Second to Service-Time implies +Millions in costs, annually
 - ⇒ Time and "Motion" Studies (Classical IE with New-age IT)
- Service-Process Model: Customer-Agent Interaction
 - Work Design (w/ Khudiakov)
 eg. Cross-Selling: higher profit vs. longer (costlier) services;
 Analysis yields (congestion-dependent) cross-selling protocols
 - "Worker" Design (w/ Gans, Liu, Shen & Ye) eg. Learning, Forgetting, . . . : Staffing & individual-performance prediction, in a heterogenous environment
- IVR-Process Model: Customer-Machine Interaction 75% bank-services, poor design, yet scarce research; Same approach, automatic (easier) data (w/ N. Yuviler)

- ServNets = QNets, SimNets, FNets, DNets
- ► SimNets of Service Systems = Virtual Realities
- SimNets also of QNEts, FNets, DNets eg. ED MD (Physics): Where are the Differential Equations?

- ServNets = QNets, SimNets, FNets, DNets
- SimNets of Service Systems = Virtual Realities
- SimNets also of QNEts, FNets, DNets eg. ED MD (Physics): Where are the Differential Equations?
- Ultimately: Research Labs, offering universal access to data and ServNets, will become necessary (hence must be funded!)

- ServNets = QNets, SimNets, FNets, DNets
- SimNets of Service Systems = Virtual Realities
- SimNets also of QNEts, FNets, DNets eg. ED MD (Physics): Where are the Differential Equations?
- Ultimately: Research Labs, offering universal access to data and ServNets, will become necessary (hence must be funded!)
- Data-based Research: Tradition in Physics, Chemistry, Biology;
 Psychology (now also in Transportation (Science) and (Behavioral) Economics)
- Why not in Service Science / Engineering / Management ?

- ServNets = QNets, SimNets, FNets, DNets
- SimNets of Service Systems = Virtual Realities
- SimNets also of QNEts, FNets, DNets eg. ED MD (Physics): Where are the Differential Equations?
- Ultimately: Research Labs, offering universal access to data and ServNets, will become necessary (hence must be funded!)
- Data-based Research: Tradition in Physics, Chemistry, Biology;
 Psychology (now also in Transportation (Science) and (Behavioral) Economics)
- Why not in Service Science / Engineering / Management ?
- ► Moreover, address the Reproducibility Crisis in Scientific Research (Computation, Massive-data, ...)

Data-Based Creation ServNets: some Technicalities

- ServNets = QNets, SimNets, FNets, DNets
- ▶ **Graph Layout**: Adapted from but significantly extends Graphviz (AT&T, 90's); eg. *edge-width*, which must be restricted to *poly-lines*, since there are "no parallel Bezier (Cubic) curves $(B_n(p) = E_p F[B(n, p)], 0 \le p \le 1)$
- Algorithm: Dot Layout (but with cycles), based on Sugiyama, Tagawa, Toda ('81): "Visual Understanding of Hierarchical System Structures"

Data-Based Creation ServNets: some Technicalities

- ServNets = QNets, SimNets, FNets, DNets
- ▶ **Graph Layout**: Adapted from but significantly extends Graphviz (AT&T, 90's); eg. *edge-width*, which must be restricted to *poly-lines*, since there are "no parallel Bezier (Cubic) curves $(B_n(p) = E_p F[B(n, p)], 0 \le p \le 1)$
- Algorithm: Dot Layout (but with cycles), based on Sugiyama, Tagawa, Toda ('81): "Visual Understanding of Hierarchical System Structures"
- Draws data directly from SEELab data-bases:
 - Relational DBs (Large! eg. USBank Full Binary = 37GB, Summary Tables = 7GB)
 - Structure: Sequence of events/states, which (due to size) partitioned (yet integrated) into days (eg. call centers) or months (eg. hospitals)
 - Differs from industry DBs (in call centers, hospitals, websites)

