Data-Based Service Networks:

A Research Framework for
Asymptotic Inference, Analysis & Control
of Service Systems

Avi Mandelbaum

Technion, Haifa, Israel

http://ie.technion.ac.il/serveng

Kellogg Operations Workshop, September 2012

Overheads available at my Technion website_

<ロ > < @ > < @ > < 更 > ■ ■ ● へ ② へ ②

Research Partners

Students:

Aldor*, Baron*, Carmeli*, Cohen*, Feldman*, Garnett*, Gurvich*, Khudiakov*, Maman*, Marmor*, Reich*, Rosenshmidt*, Shaikhet*, Senderovic, Tseytlin*, Yom-Tov*, Yuviler, Zaied*, Zeltyn*, Zychlinski*, Zohar*, Zviran*, ...

► Theory:

Armony, Atar, Cohen, Gurvich, Huang, Jelenkovic, Kaspi, Massey, Momcilovic, Reiman, Shimkin, Stolyar, Trofimov, Wasserkrug, Whitt, Zeltyn, . . .

► Empirical/Statistical Analysis:

Brown, Gans, Shen, Zhao; Zeltyn; Ritov, Goldberg; Gurvich, Huang, Liberman; Armony, Marmor, Tseytlin, Yom-Tov; Nardi, Plonsky; Gorfine, Ghebali; Pang, ...

► Industry:

Mizrahi Bank (A. Cohen, U. Yonissi), Rambam Hospital (R. Beyar, S. Israelit, S. Tzafrir), IBM Research (OCR Project), Hapoalim Bank (G. Maklef, T. Shlasky), Pelephone Cellular, . . .

► Technion SEE Center / Laboratory:

Contents

- ▶ Service Networks: Call Centers, Hospitals, Websites, · · ·
- Redefine the paradigm of modeling/asymptotics via Data
- ServNets: QNets, SimNets; FNets, DNets
- Ultimate Goal: Data-based creation and validation of ServNets, automatically in real-time

Contents

- Service Networks: Call Centers, Hospitals, Websites, · · ·
- Redefine the paradigm of modeling/asymptotics via Data
- ServNets: QNets, SimNets; FNets, DNets
- Ultimate Goal: Data-based creation and validation of ServNets, automatically in real-time
- Why be Optimistic? Pilot at the Technion SEELab
 - Lacking but Feasible: Dynamics, Durations, Protocols
 - Simple Models at the Service of Complex Realities
 - State-Space Collapse (Queues, Waiting Times)
 - Congestion Laws (LN, Little, ImPatience, Staffing)
 - Universal Approximations: Simplifying the Asymptotic Landscape
 - Stabilizing Time-Varying Performance (Offered-Load)
- Successes: Palm/Erlang-R (ED Feedback = FNet), Palm/Erlang-A (CC Abandonment = DNet)

Contents

- Service Networks: Call Centers, Hospitals, Websites, · · ·
- Redefine the paradigm of modeling/asymptotics via Data
- ServNets: QNets, SimNets; FNets, DNets
- Ultimate Goal: Data-based creation and validation of ServNets, automatically in real-time
- Why be Optimistic? Pilot at the Technion SEELab
 - Lacking but Feasible: Dynamics, Durations, Protocols
 - Simple Models at the Service of Complex Realities
 - State-Space Collapse (Queues, Waiting Times)
 - Congestion Laws (LN, Little, ImPatience, Staffing)
 - Universal Approximations: Simplifying the Asymptotic Landscape
 - Stabilizing Time-Varying Performance (Offered-Load)
- Successes: Palm/Erlang-R (ED Feedback = FNet), Palm/Erlang-A (CC Abandonment = DNet)
- ► Elsewhere: Process Mining (Petri Nets, BPM), Networks (Social, Biological, Complex, ...), Simulation-based, ...
- Scenic Route: Open Problems, New Directions, Uncharted Territories

Applying Queueing Asymptotics

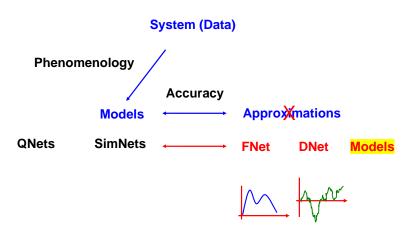
There are by now numerous insightful asymptotic queueing models at our disposal, and many arise from, and create, deep beautiful theory:

Has it helped one approximate or simulate a service system more efficiently, estimate its parameter more accurately, teach it to our students more effectively, perhaps even manage the system better?

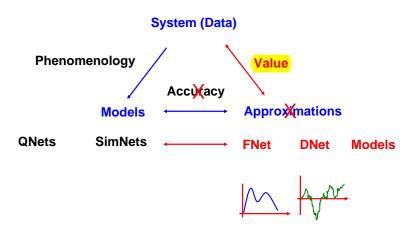
I am of the opinion that the answers to such questions have been too often negative, that positive answers must have theory and applications nurture each other, which is good, and my approach to make this good happen is by marrying theory with data.

Prevalent Asymptotic Approximations

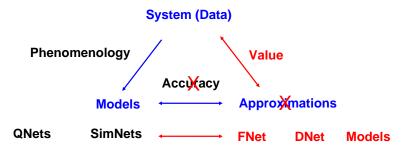
System (Data)


Phenomenology

Accuracy


Models
Approximations

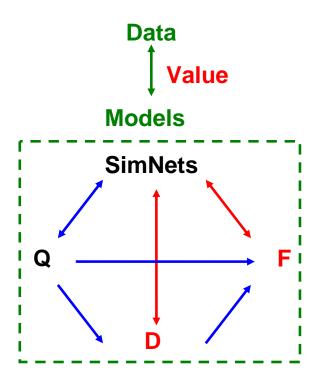
QNets SimNets


Data-Based Prevalent Asymptotic Approximations Models

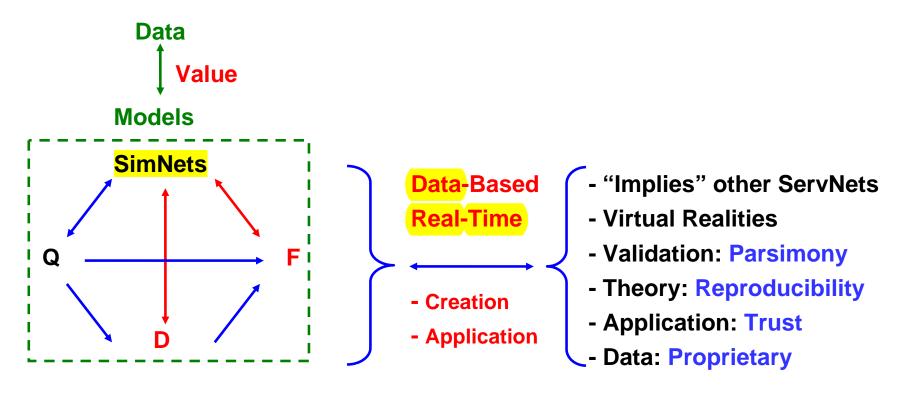
Data-Based Prevalent Asymptotic Approximations Models

Data-Based Prevalent Asymptotic Approximations Models

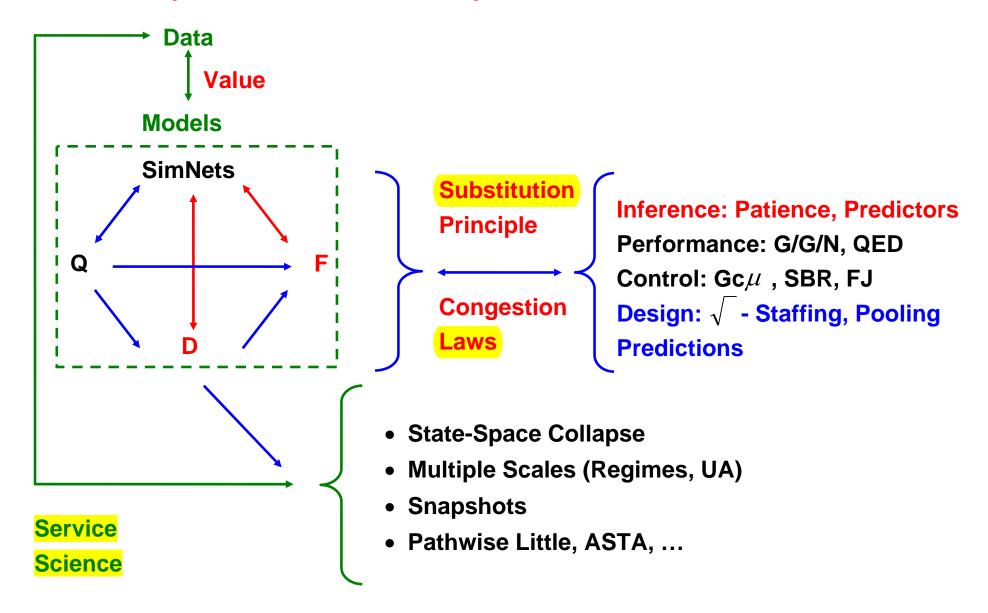
System = Coin Tossing, **Model** = Binomial ; de Moivre 1738


Approx. / Models: SLLN (FNets), CLT (DNets) ; Laplace 1810

Value: Exceeds Value of originating stylized model


Normal, Brownian Motion ; Bachalier 1900

Poisson : Poisson 1838


Data-Based Framework: (Almost) All Models Born Equal

Data-Based (Asymptotic) Framework: Simulation Mining

Ultimately: Automatic "Discovery, Conformance, Enhancement"

Scope of the Service Industry

Guangzhou Railway Station, Southern China

Call Centers, Then Hospitals, Now Internet

Call Centers - U.S. Stat.

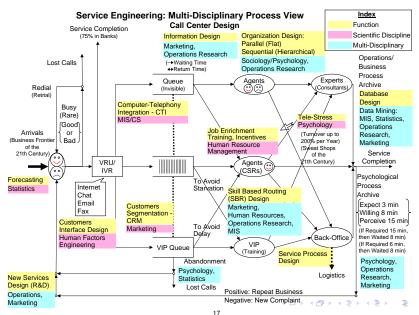
- ▶ \$200 \$300 billion annual expenditures
- ▶ 100,000 200,000 call centers
- "Window" into the company, for better or worse
- ► Over 3 million agents = 2% 4% workforce

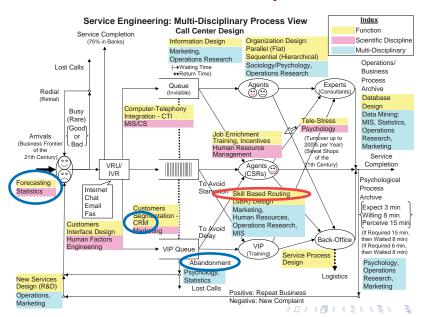
Healthcare - similar, plus unique challenges:

- Cost-figures far more staggering
- Risks much higher
- ► ED (initial focus) = hospital-window
- Over 3 million nurses

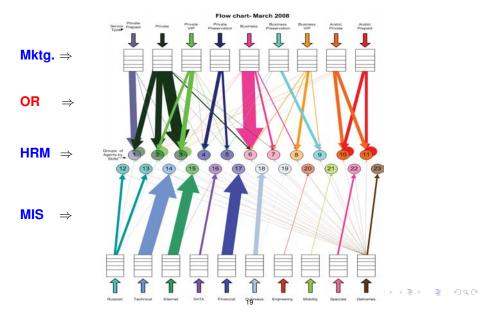
Internet - ...

Call-Center Environment: Service Network


Operational Focus


Operational Measures:

- Surrogates for overall performance: Financial, Psychological; Clinical
- Easiest to quantify, measure, track online, react upon / Research


Call-Center Network: Gallery of Models

Call-Center Network: Gallery of Models

Skills-Based Routing in Call Centers EDA and OR, with I. Gurvich and P. Liberman

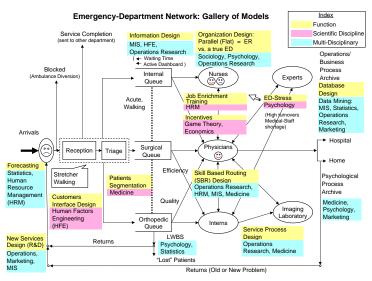
ER / ED Environment: Service Network

Acute (Internal, Trauma)

Walking

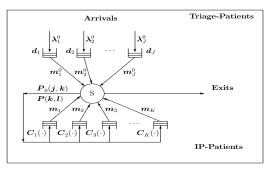
Multi-Trauma

ED-Environment in Israel



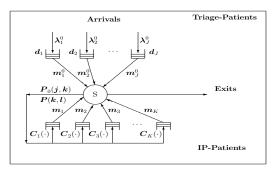
Queueing in a "Good" Hospital

Tong-ren Hospital at 6am, Beijing



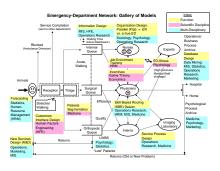
Emergency-Department Network: Gallery of Models

► Forecasting, Abandonment = LWBS, SBR ≈ Flow Control


ED Patient Flow: The Physicians View with J. Huang, B. Carmeli

- ▶ Goal: Adhere to Triage-Constraints, then release In-Process Patients
- Model = Multi-class Q with Feedback: Min. convex congestion costs of IP-Patients, s.t. deadline constraints on Triage-Patients.

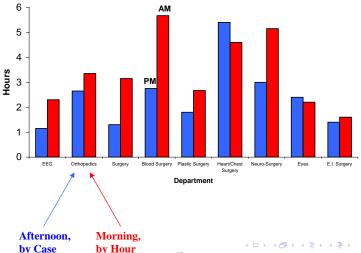
ED Patient Flow: The Physicians View


with J. Huang, B. Carmeli

- ► Goal: Adhere to Triage-Constraints, then release In-Process Patients
- Model = Multi-class Q with Feedback: Min. convex congestion costs of IP-Patients, s.t. deadline constraints on Triage-Patients.
- Solution: In <u>conventional</u> heavy-traffic, <u>asymptotic least-cost</u> s.t. <u>asymptotic compliance</u> (as in Plambeck, Harrison, Kumar, who applied admission control):
 - ► Triage or IP? former, if some deadline is "too" close (least effort)
 - if Triage: Closest deadline (or Van Mieghem's GLD)
 - if IP: Van Mieghem's Gcμ, modified for feedback

Emergency-Department Network: Flow Control

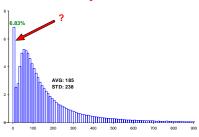
- *Queueing-Science, w/ Armony, Marmor, Tseytlin, Yom-Tov
- *Fair ED-to-IW Routing (Patients vs. Staff), w/ Momcilovic, Tseytlin
- *Triage vs. InProcess/Release (Plambeck et al, van Mieghem) in EDs, w/ Carmeli, Huang; Shimkin
- *Staffing Time-Varying Q's with Re-Entrant Customers (de Vericourt & Jennings), w/ Yom-Tov
- ► The Offered-Load in Fork-Join Nets (Adlakha & Kulkarni), w/ Kaspi, Zaeid
- Synchronization Control of Fork-Join Nets, w/ Atar, Zviran

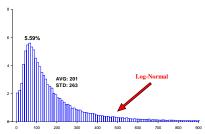

Prerequisite I: Data

Averages Prevalent (and could be useful / interesting).

But I need data at the level of the **Individual Transaction**: For each service transaction (during a phone-service in a call center, or a patient's visit in a hospital, or browsing in a website, or ...), its **operational history** = time-stamps of events (events-log files).

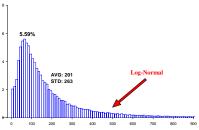
Interesting Averages: The Human Factor, or **Even "Doctors" Can Manage**


Operations Time - Morning (by Hour) vs. Afternoon (by Case):


Beyond Averages: The Human Factor

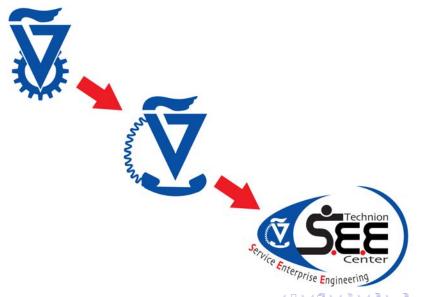
Histogram of Service-Time in an Israeli Call Center, 1999

November-December


► 6.8% Short-Services:

Beyond Averages: The Human Factor

Histogram of Service-Time in an Israeli Call Center, 1999


November-December

- ► 6.8% Short-Services: Agents' "Abandon" (improve bonus, rest), (mis)lead by incentives
- Distributions must be measured (in seconds = natural scale)
- LogNormal service-durations (???, common, more later)

Pause for a Commercial:

Pause for a Commercial: The Technion SEE Center

Technion SEE = Service Enterprise Engineering

SEELab: Data-repositories for research and teaching

- For example:
 - Bank Anonymous: 1 year, 350K calls by 15 agents in 2000. Brown, Gans, Sakov, Shen, Zeltyn, Zhao (JASA), paved the way to:
 - U.S. Bank: 2.5 years, 220M calls, 40M by 1000 agents
 - ▶ Israeli Cellular: 2.5 years, 110M calls, 25M calls by 750 agents
 - ► Israeli Bank: from January 2010, daily-deposit at a SEESafe
 - ► Home (Rambam) Hospital: 4 years, 1000 beds, ward-level flow
 - 5 EDs: gathered by the late David Sinreich, ED arrivals & LOS

Technion SEE = Service Enterprise Engineering

SEELab: Data-repositories for research and teaching

- For example:
 - Bank Anonymous: 1 year, 350K calls by 15 agents in 2000. Brown, Gans, Sakov, Shen, Zeltyn, Zhao (JASA), paved the way to:
 - U.S. Bank: 2.5 years, 220M calls, 40M by 1000 agents
 - ▶ Israeli Cellular: 2.5 years, 110M calls, 25M calls by 750 agents
 - Israeli Bank: from January 2010, daily-deposit at a SEESafe
 - ► Home (Rambam) Hospital: 4 years, 1000 beds, ward-level flow
 - 5 EDs: gathered by the late David Sinreich, ED arrivals & LOS

SEEStat: Environment for graphical **EDA** in real-time

▶ Universal Design, Internet Access, Real-Time Response.

Technion SEE = Service Enterprise Engineering

SEELab: Data-repositories for research and teaching

- For example:
 - Bank Anonymous: 1 year, 350K calls by 15 agents in 2000. Brown, Gans, Sakov, Shen, Zeltyn, Zhao (JASA), paved the way to:
 - U.S. Bank: 2.5 years, 220M calls, 40M by 1000 agents
 - ▶ Israeli Cellular: 2.5 years, 110M calls, 25M calls by 750 agents
 - Israeli Bank: from January 2010, daily-deposit at a SEESafe
 - Home (Rambam) Hospital: 4 years, 1000 beds, ward-level flow
 - 5 EDs: gathered by the late David Sinreich, ED arrivals & LOS

SEEStat: Environment for graphical EDA in real-time

Universal Design, Internet Access, Real-Time Response.

SEEServer: Free for academic use

- Register
- Access U.S. Bank, Bank Anonymous, Home Hospital

eg. RFID-Based Data: Mass Casualty Event (MCE)

Drill: Chemical MCE, Rambam Hospital, May 2010

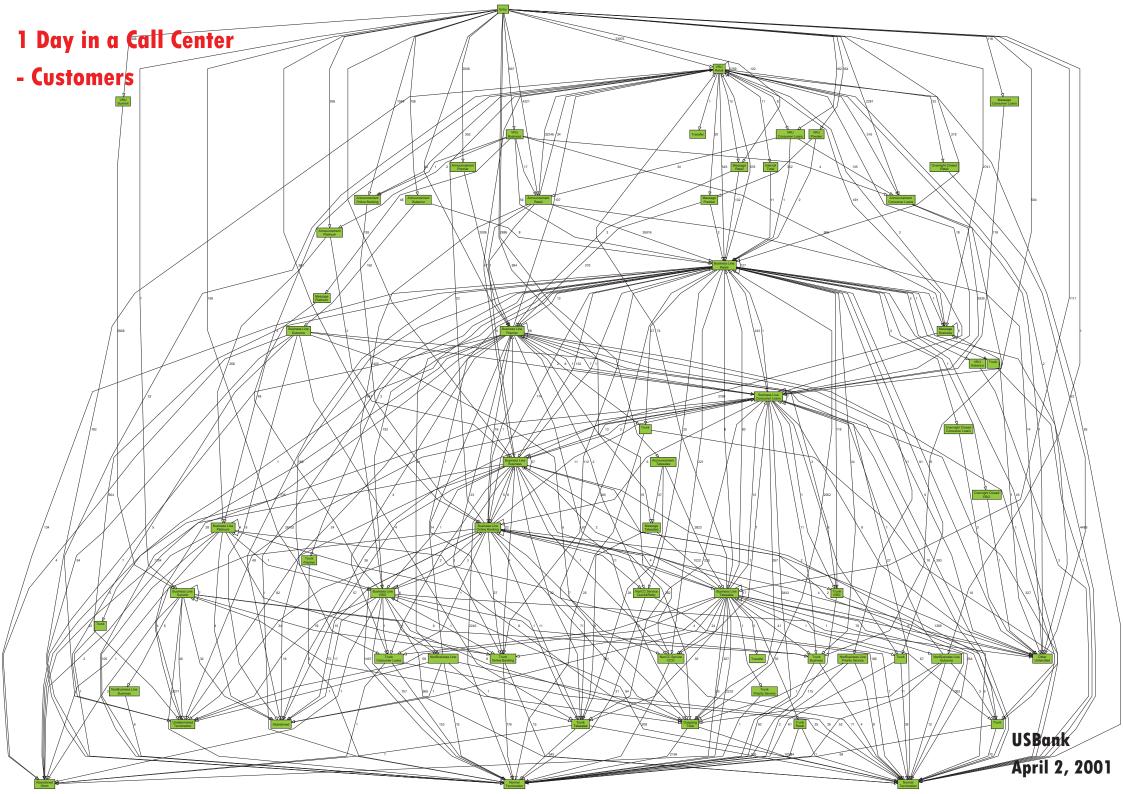
Focus on **severely wounded** casualties (\approx 40 in drill)

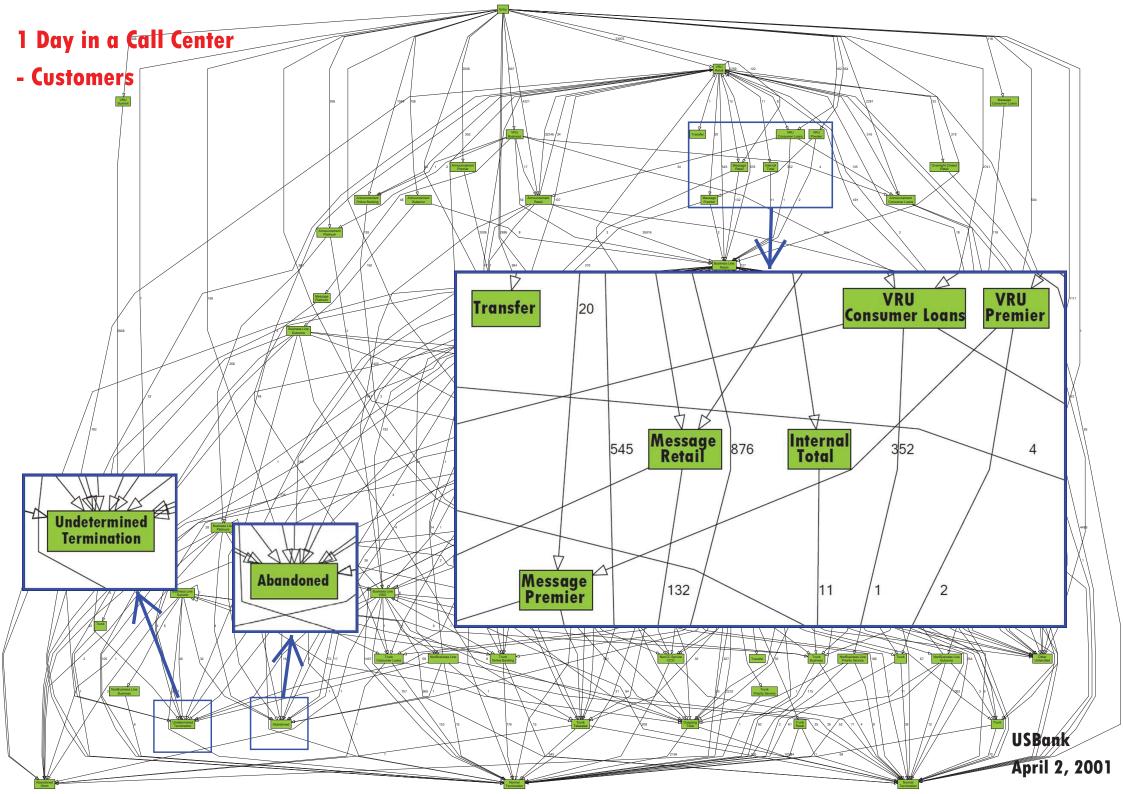
Note: 20 observers support real-time control (helps validation)

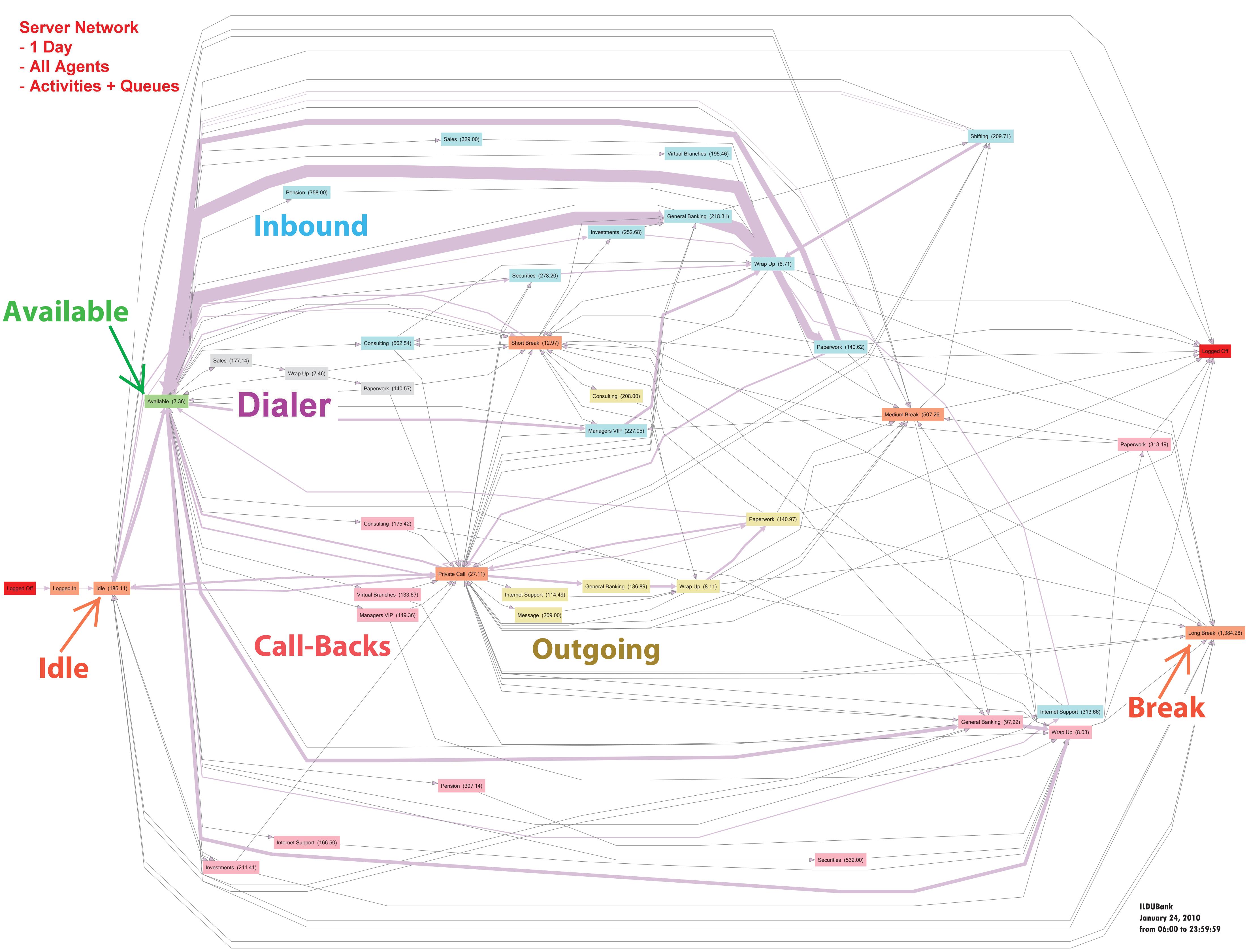
Data Cleaning: MCE with RFID Support

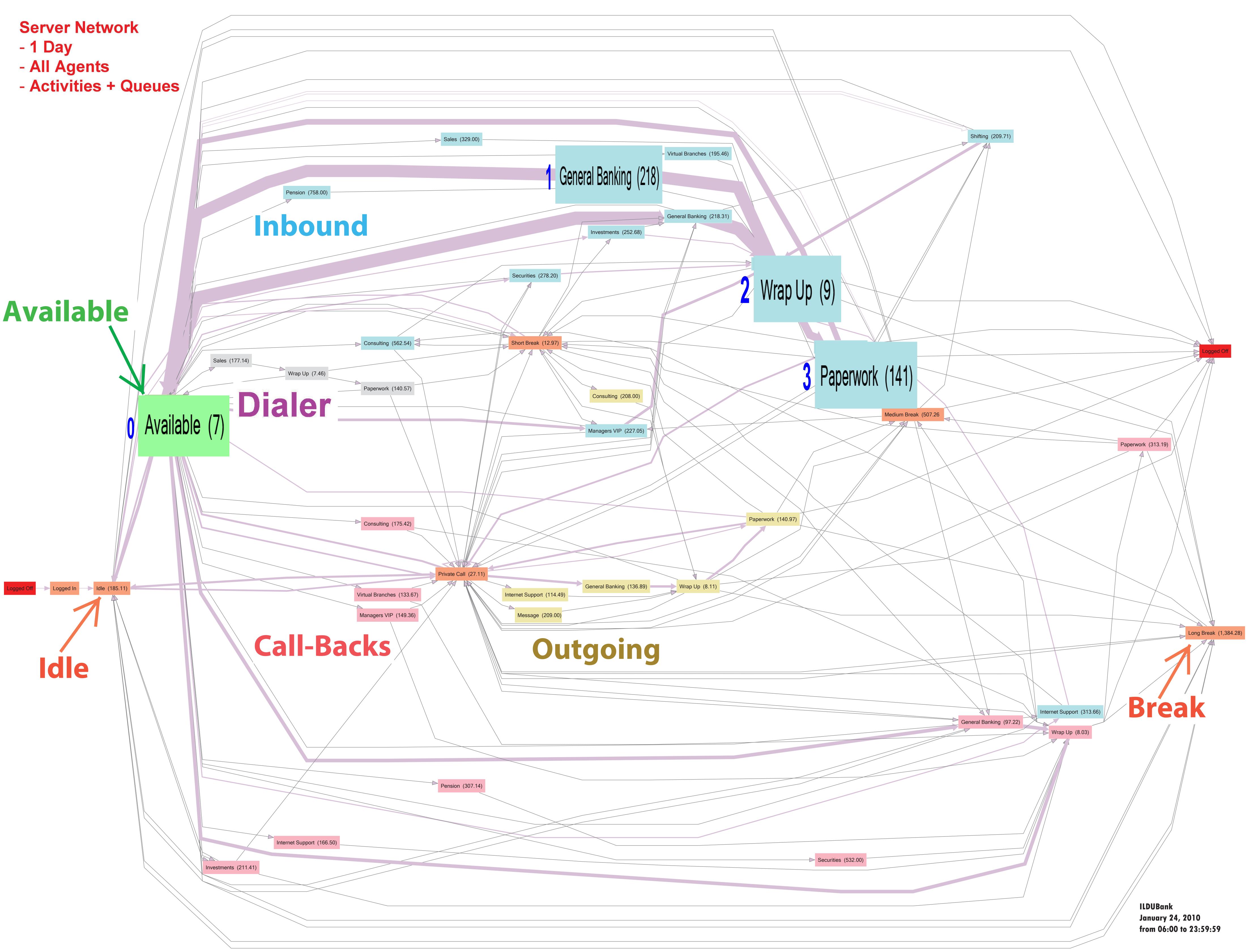
		Data-base	Compan	comment		
Asset id	order	Entry date	Exit date	Entry date	Exit date	
4	1	1:14:07 PM		1:14:00 PM		
6	1	12:02:02 PM	12:33:10 PM	12:02:00 PM	12:33:00 PM	
8	1	11:37:15 AM	12:40:17 PM	11:37:00 AM		exit is missing
10	1	12:23:32 PM	12:38:23 PM	12:23:00 PM		
12	1	12:12:47 PM	12:35:33 PM		12:35:00 PM	entry is missing
15	1	1:07:15 PM		1:07:00 PM		
16	1	11:18:19 AM	11:31:04 AM	11:18:00 AM	11:31:00 AM	
17	1	1:03:31 PM		1:03:00 PM		
18	1	1:07:54 PM		1:07:00 PM		
19	1	12:01:58 PM		12:01:00 PM		
20	1	11:37:21 AM	12:57:02 PM	11:37:00 AM	12:57:00 PM	
21	1	12:01:16 PM	12:37:16 PM	12:01:00 PM		
22	1	12:04:31 PM	12:20:40 PM			first customer is missing
22	2	12:27:37 PM		12:27:00 PM		· ·
25	1	12:27:35 PM	1:07:28 PM	12:27:00 PM	1:07:00 PM	
27	1	12:06:53 PM		12:06:00 PM		
28	1	11:21:34 AM	11:41:06 AM	11:41:00 AM	11:53:00 AM	exit time instead of entry time
29	1	12:21:06 PM	12:54:29 PM	12:21:00 PM	12:54:00 PM	
31	1	11:40:54 AM	12:30:16 PM	11:40:00 AM	12:30:00 PM	
31	2	12:37:57 PM	12:54:51 PM	12:37:00 PM	12:54:00 PM	
32	1	11:27:11 AM	12:15:17 PM	11:27:00 AM	12:15:00 PM	
33	1	12:05:50 PM	12:13:12 PM	12:05:00 PM	12:15:00 PM	wrong exit time
35	1	11:31:48 AM	11:40:50 AM	11:31:00 AM	11:40:00 AM	
36	1	12:06:23 PM	12:29:30 PM	12:06:00 PM	12:29:00 PM	
37	1	11:31:50 AM	11:48:18 AM	11:31:00 AM	11:48:00 AM	
37	2	12:50:21 PM		12:50:00 PM		

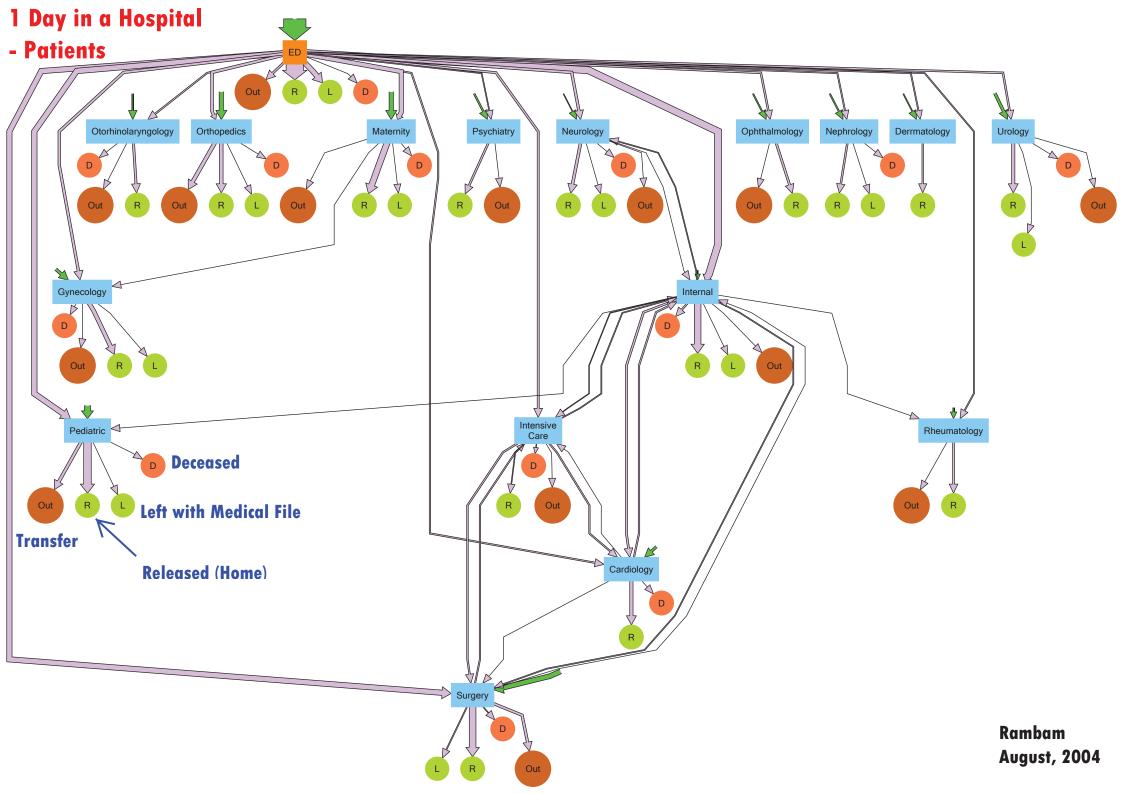
- Imagine "Cleaning" 60,000+ customers per day (call centers)!
- "Psychology" of Data Trust and Transfer (e.g. 2 years till transfer)

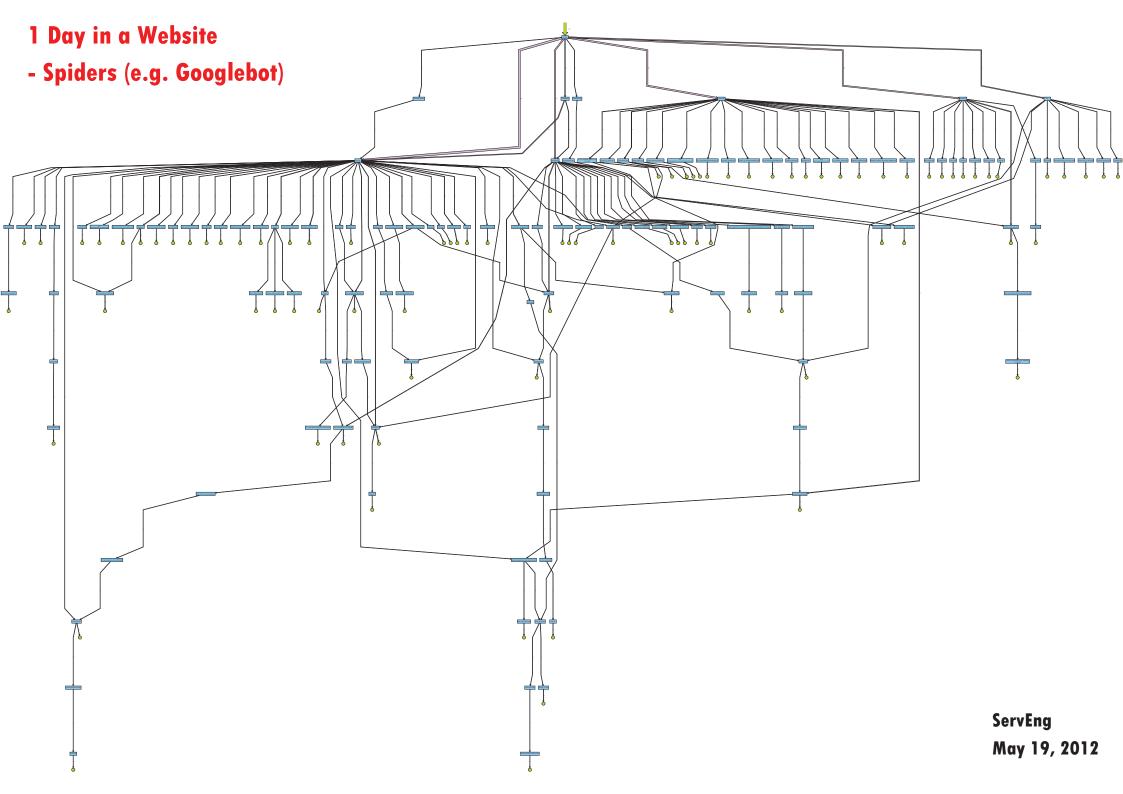

Event-Logs in a Call Center (Bank Anonymous)

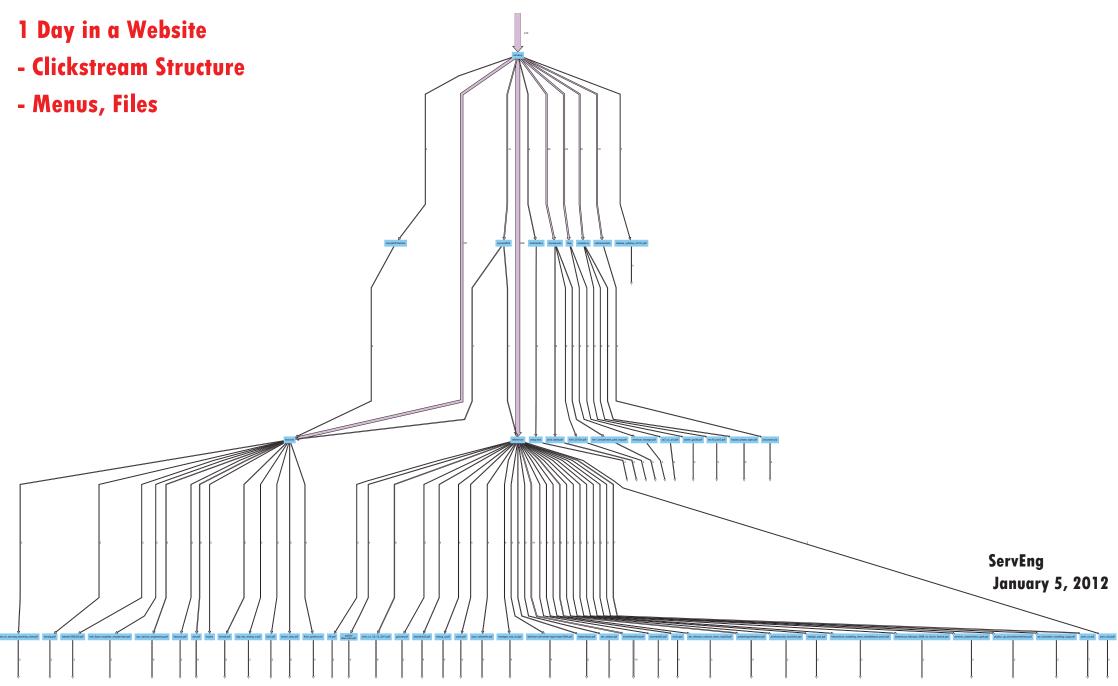

A Data Sample (Excel worksheet)

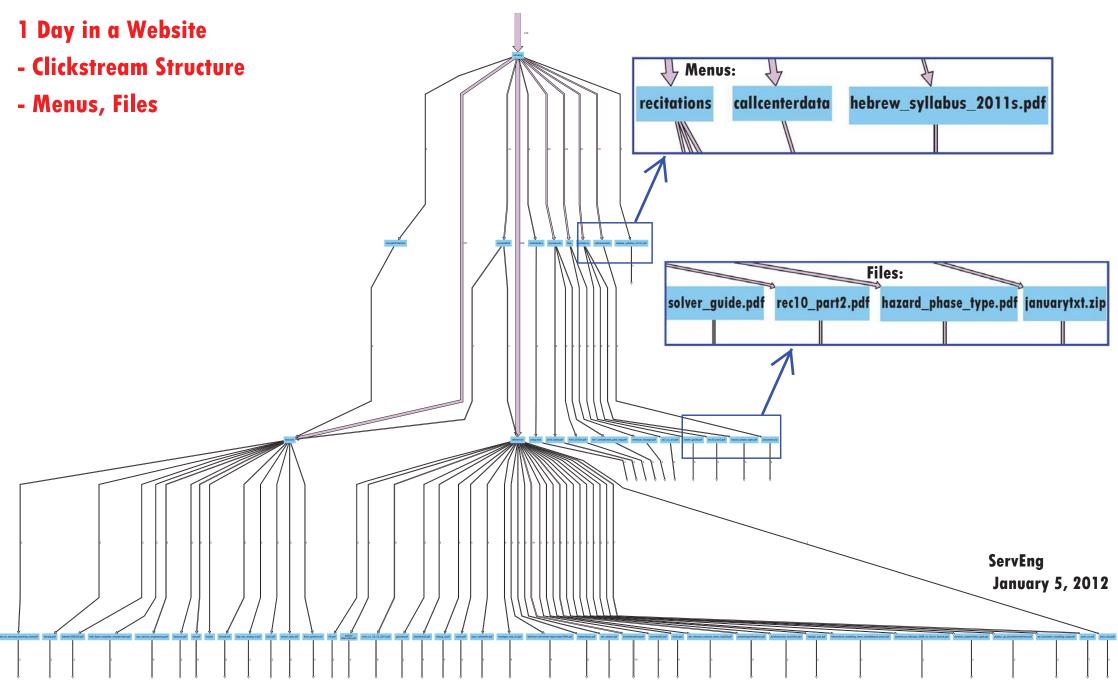

vru+line	call_id	customer_id	priority	type	date	vru_entry	vru_exit	vru_time	q_start	q_exit	q_time	outcome	ser_start	ser_exit	ser_time	server
AA0101	44749	27644400	2	PS	990901	11:45:33	11:45:39	6	11:45:39	11:46:58	79	AGENT	11:46:57	11:51:00	243	DORIT
AA0101	44750	12887816	1	PS	990905	14:49:00	14:49:06	6	14:49:06	14:53:00	234	AGENT	14:52:59	14:54:29	90	ROTH
AA0101	44967	58660291	2	PS	990905	14:58:42	14:58:48	6	14:58:48	15:02:31	223	AGENT	15:02:31	15:04:10	99	ROTH
AA0101	44968	0	0	NW	990905	15:10:17	15:10:26	9	15:10:26	15:13:19	173	HANG	00:00:00	00:00:00	0	NO_SERVER
AA0101	44969	63193346	2	PS	990905	15:22:07	15:22:13	6	15:22:13	15:23:21	68	AGENT	15:23:20	15:25:25	125	STEREN
AA0101	44970	0	0	NW	990905	15:31:33	15:31:47	14	00:00:00	00:00:00	0	AGENT	15:31:45	15:34:16	151	STEREN
AA0101	44971	41630443	2	PS	990905	15:37:29	15:37:34	5	15:37:34	15:38:20	46	AGENT	15:38:18	15:40:56	158	TOVA
AA0101	44972	64185333	2	PS	990905	15:44:32	15:44:37	5	15:44:37	15:47:57	200	AGENT	15:47:56	15:49:02	66	TOVA
AA0101	44973	3.06E+08	1	PS	990905	15:53:05	15:53:11	6	15:53:11	15:56:39	208	AGENT	15:56:38	15:56:47	9	MORIAH
AA0101	44974	74780917	2	NE	990905	15:59:34	15:59:40	6	15:59:40	16:02:33	173	AGENT	16:02:33	16:26:04	1411	ELI
AA0101	44975	55920755	2	PS	990905	16:07:46	16:07:51	5	16:07:51	16:08:01	10	HANG	00:00:00	00:00:00	0	NO_SERVER
AA0101	44976	0	0	NW	990905	16:11:38	16:11:48	10	16:11:48	16:11:50	2	HANG	00:00:00	00:00:00	0	NO_SERVER
AA0101	44977	33689787	2	PS	990905	16:14:27	16:14:33	6	16:14:33	16:14:54	21	HANG	00:00:00	00:00:00	0	NO_SERVER
AA0101	44978	23817067	2	PS	990905	16:19:11	16:19:17	6	16:19:17	16:19:39	22	AGENT	16:19:38	16:21:57	139	TOVA
AA0101	44764	0	0	PS	990901	15:03:26	15:03:36	10	00:00:00	00:00:00	0	AGENT	15:03:35	15:06:36	181	ZOHARI
AA0101	44765	25219700	2	PS	990901	15:14:46	15:14:51	5	15:14:51	15:15:10	19	AGENT	15:15:09	15:17:00	111	SHARON
AA0101	44766	0	0	PS	990901	15:25:48	15:26:00	12	00:00:00	00:00:00	0	AGENT	15:25:59	15:28:15	136	ANAT
AA0101	44767	58859752	2	PS	990901	15:34:57	15:35:03	6	15:35:03	15:35:14	11	AGENT	15:35:13	15:35:15	2	MORIAH
AA0101	44768	0	0	PS	990901	15:46:30	15:46:39	9	00:00:00	00:00:00	0	AGENT	15:46:38	15:51:51	313	ANAT
AA0101	44769	78191137	2	PS	990901	15:56:03	15:56:09	6	15:56:09	15:56:28	19	AGENT	15:56:28	15:59:02	154	MORIAH
AA0101	44770	0	0	PS	990901	16:14:31	16:14:46	15	00:00:00	00:00:00	0	AGENT	16:14:44	16:16:02	78	BENSION
AA0101	44771	0	0	PS	990901	16:38:59	16:39:12	13	00:00:00	00:00:00	0	AGENT	16:39:11	16:43:35	264	VICKY
AA0101	44772	0	0	PS	990901	16:51:40	16:51:50	10	00:00:00	00:00:00	0	AGENT	16:51:49	16:53:52	123	ANAT
AA0101	44773	0	0	PS	990901	17:02:19	17:02:28	9	00:00:00	00:00:00	0	AGENT	17:02:28	17:07:42	314	VICKY
AA0101	44774	32387482	1	PS	990901	17:18:18	17:18:24	6	17:18:24	17:19:01	37	AGENT	17:19:00	17:19:35	35	VICKY
AA0101	44775	0	0	PS	990901	17:38:53	17:39:05	12	00:00:00	00:00:00	0	AGENT	17:39:04	17:40:43	99	TOVA

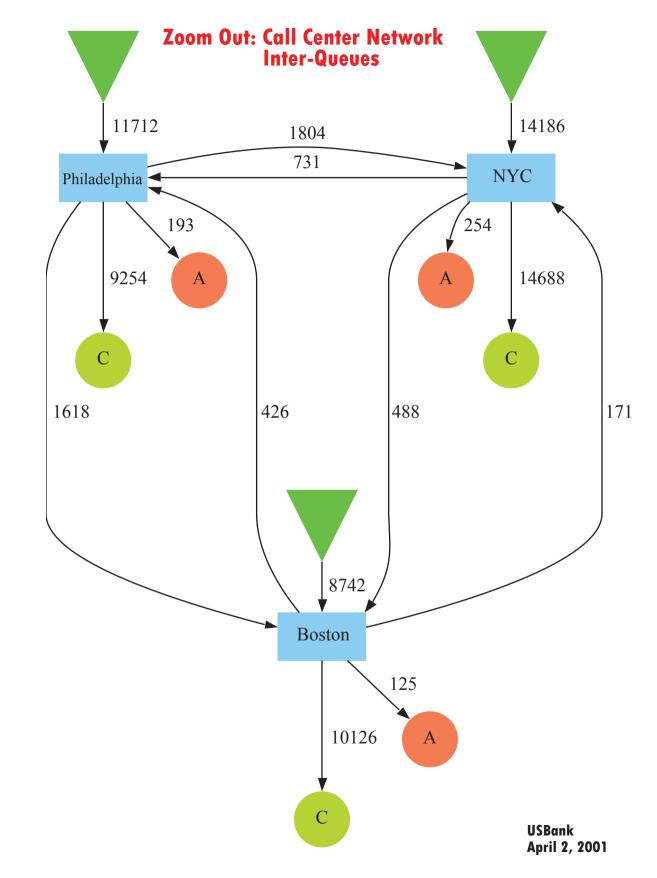

⁻ Unsynchronized transition times,

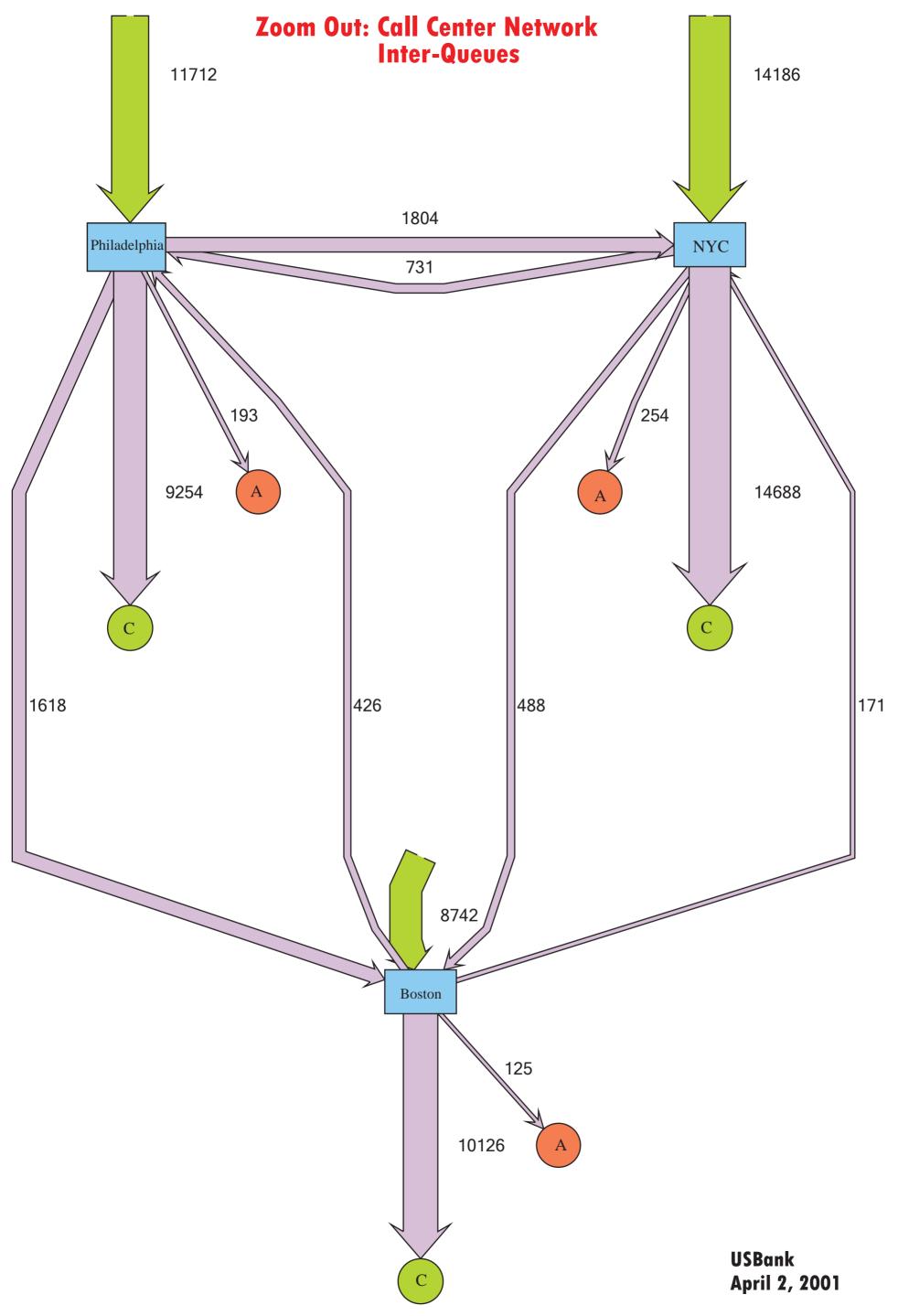


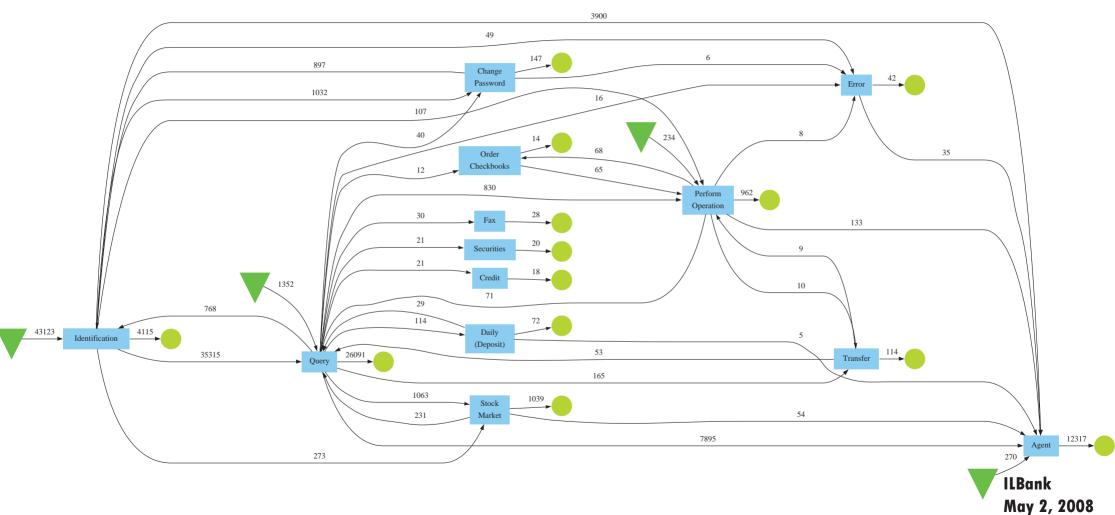


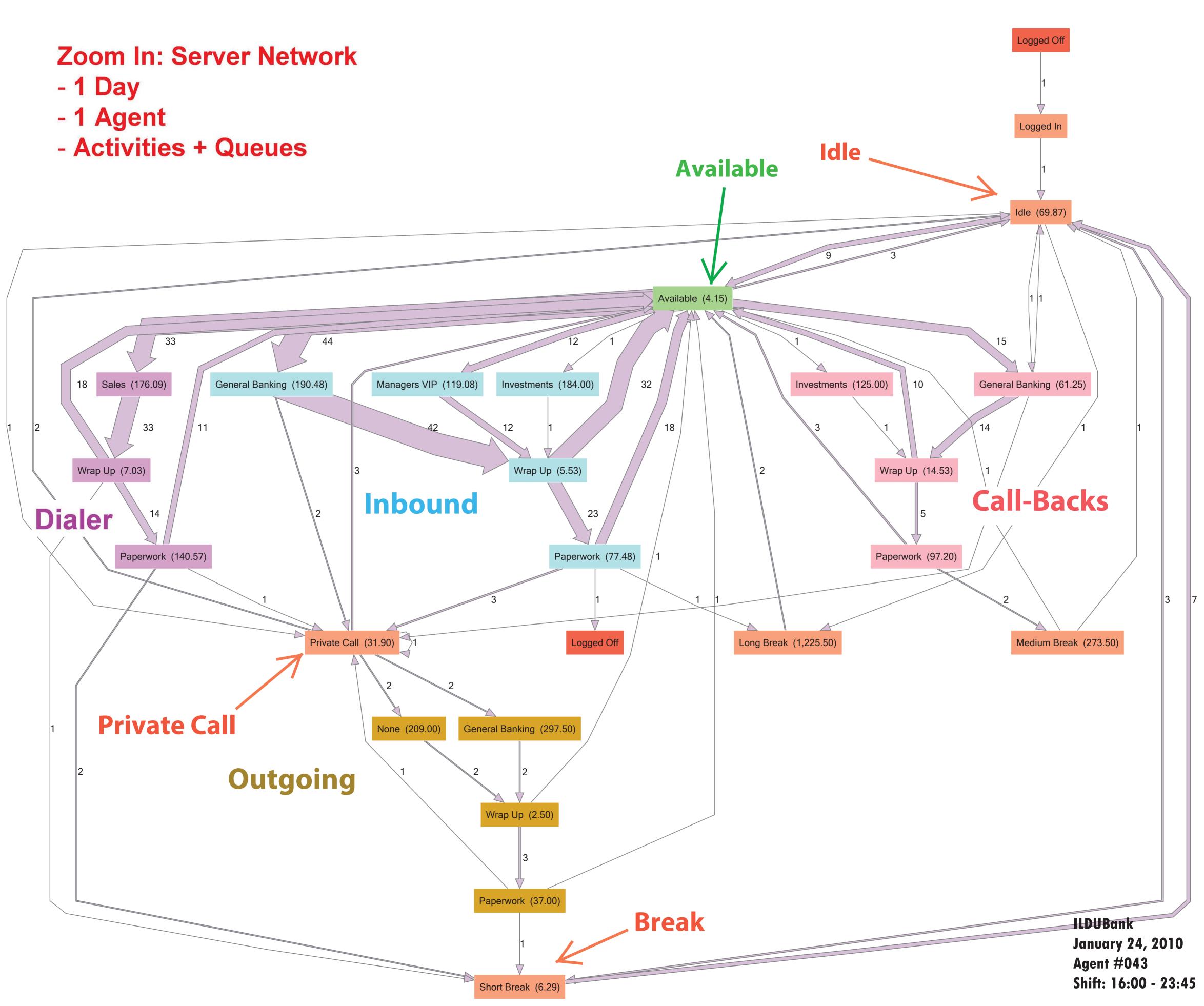


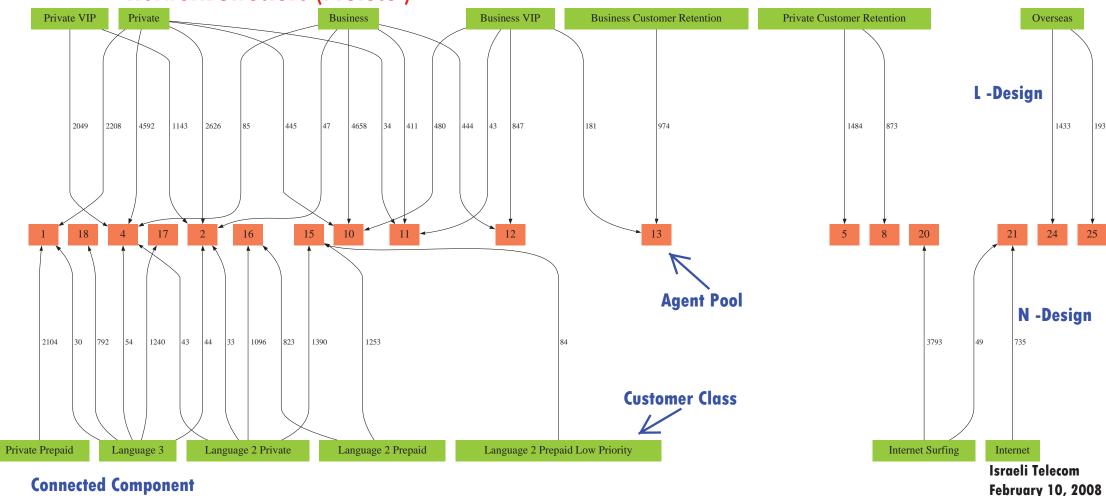




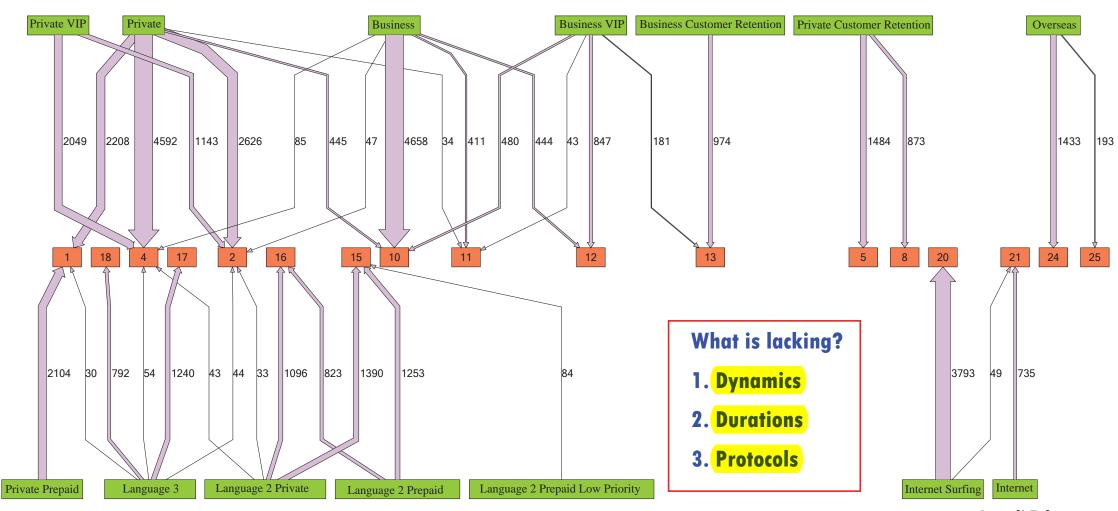


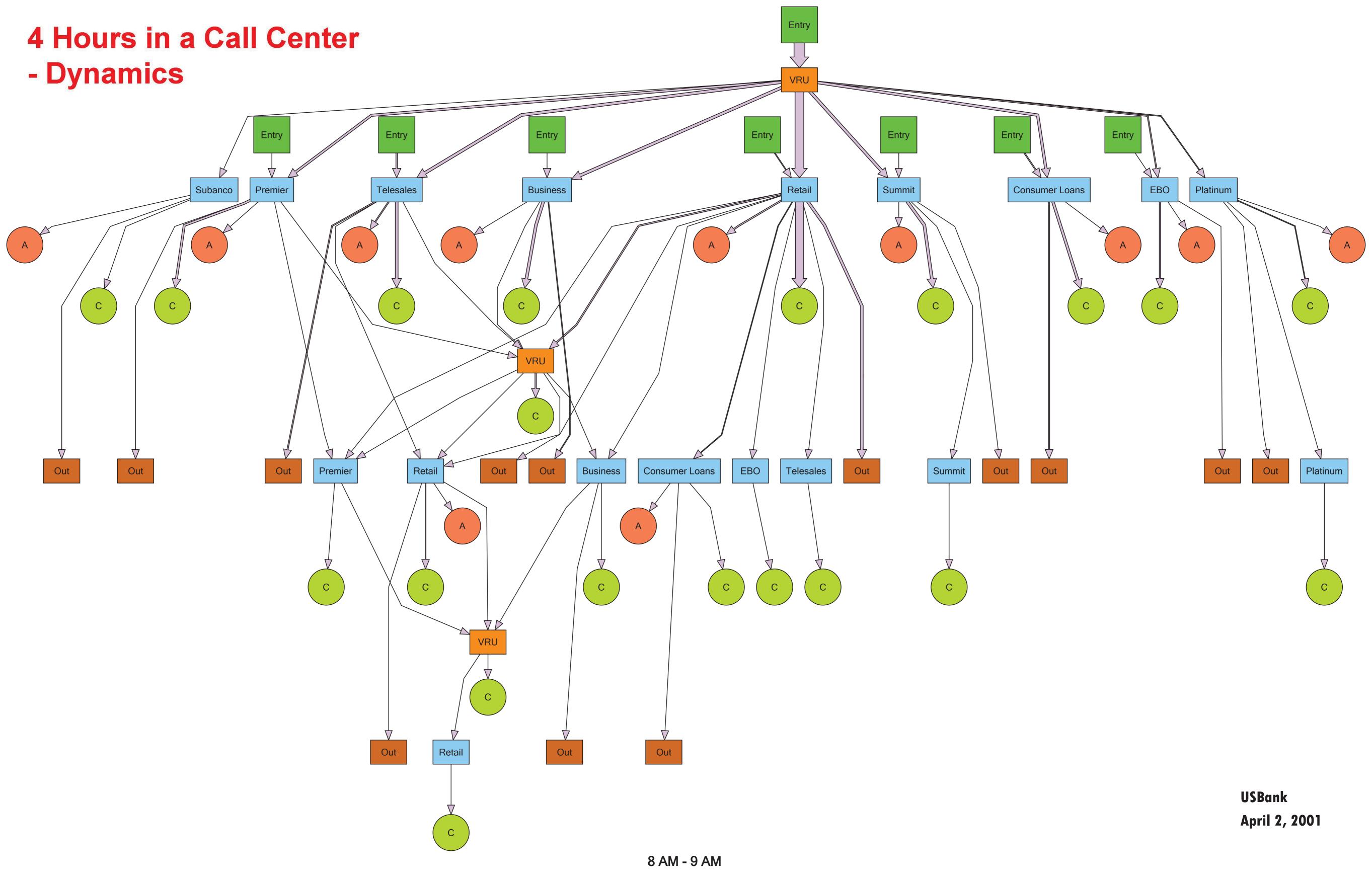


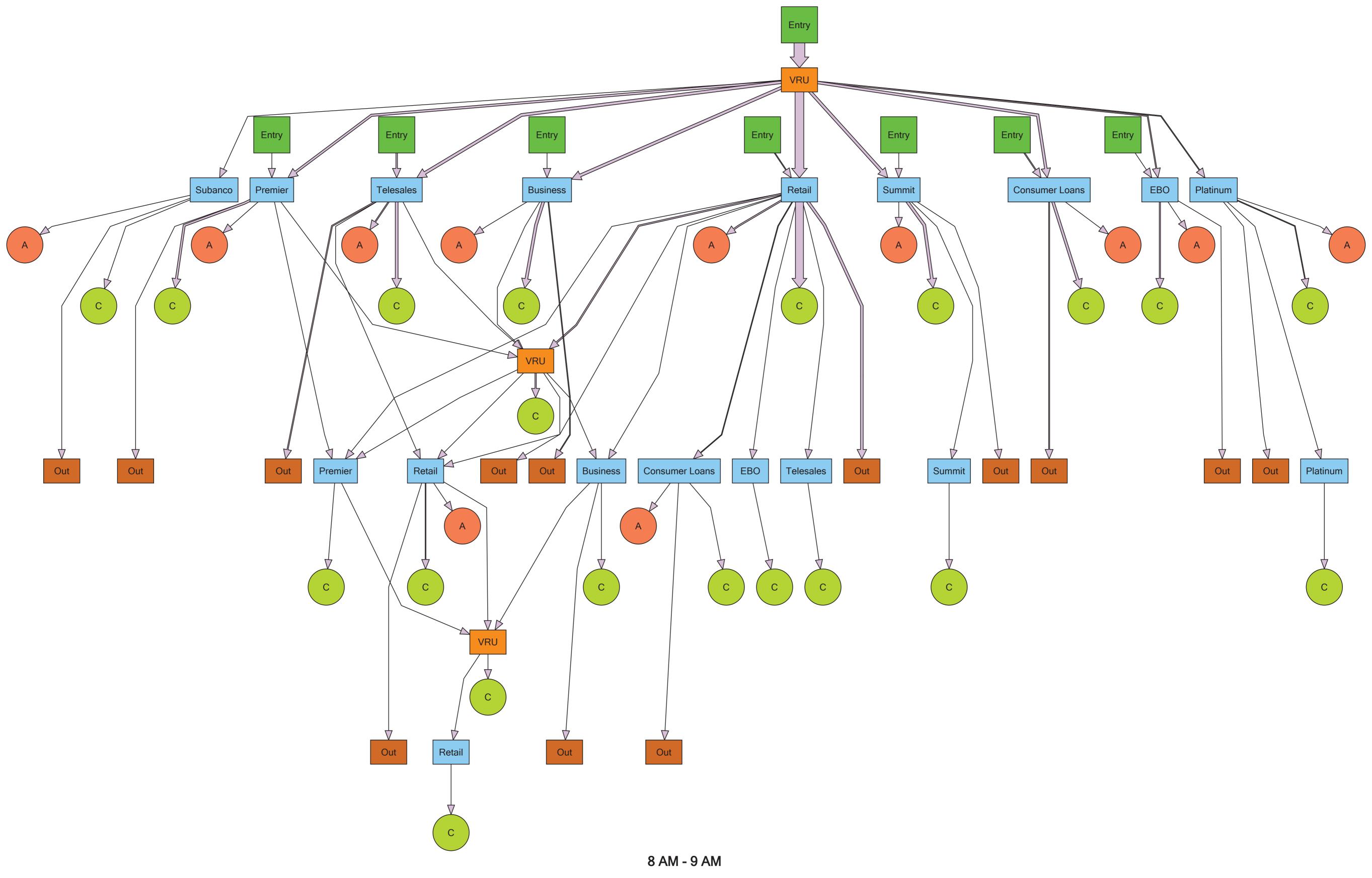

1 Hour in a Call Center - Customers - Hierarchical 🗍 3052 Consumer Loans 3005 126 30924 242 140 303 6 3314 120 155 Telesales Continued Abandoned (Branch, **Another ID**) **Completed USBank** April 2, 2001 8 AM - 9 AM

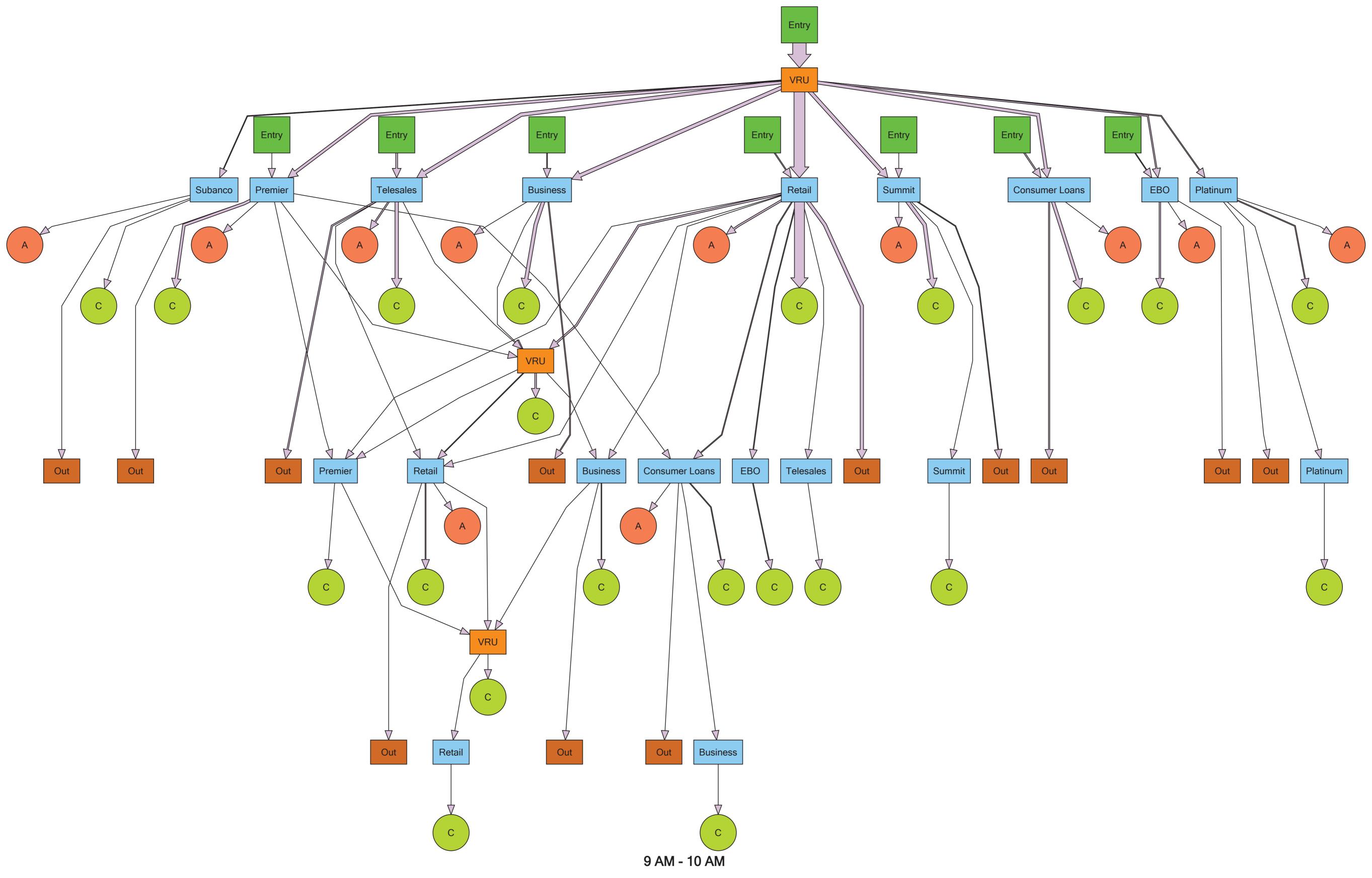


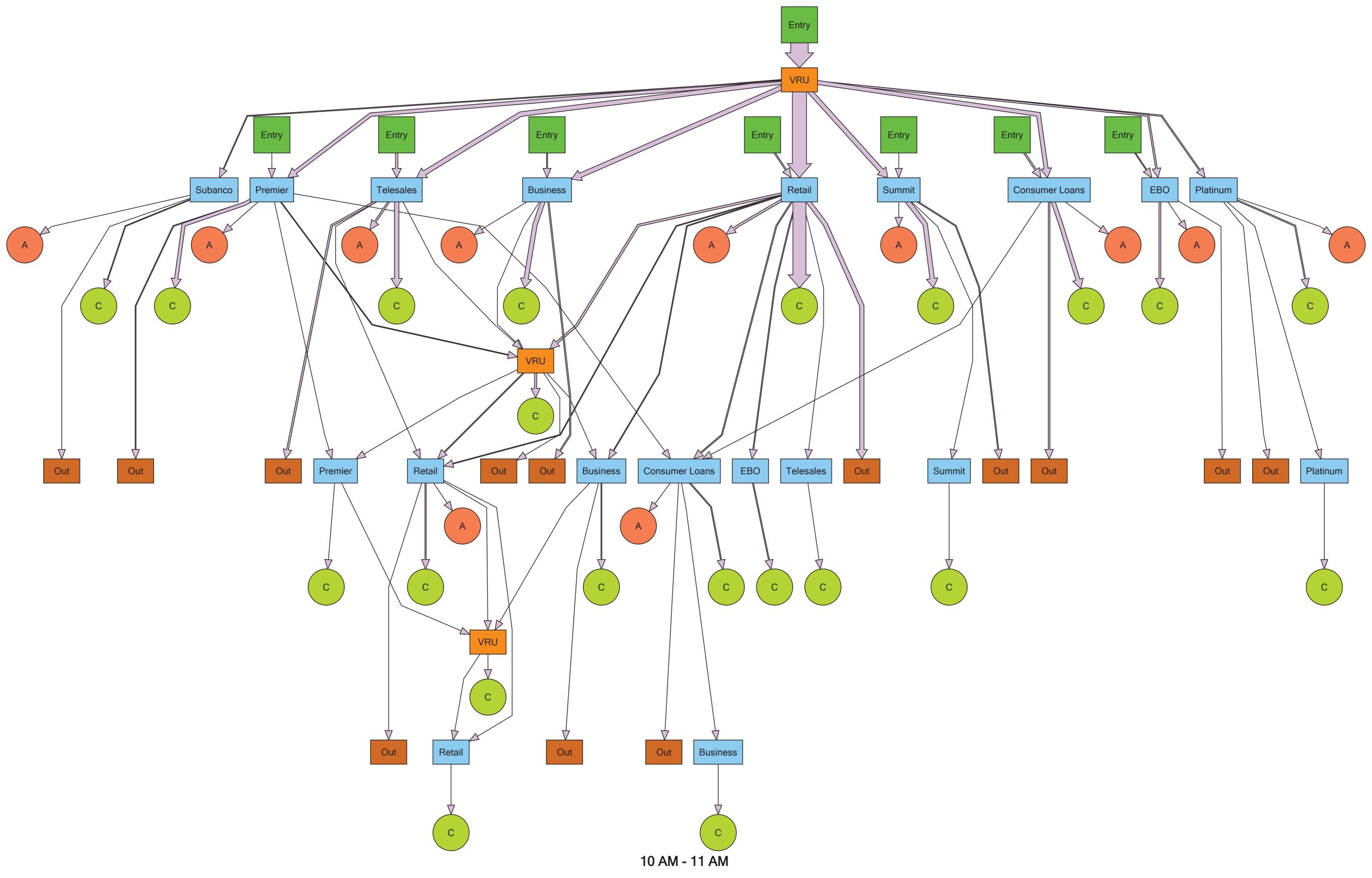
Zoom In: Interactive Voice Response (IVR)

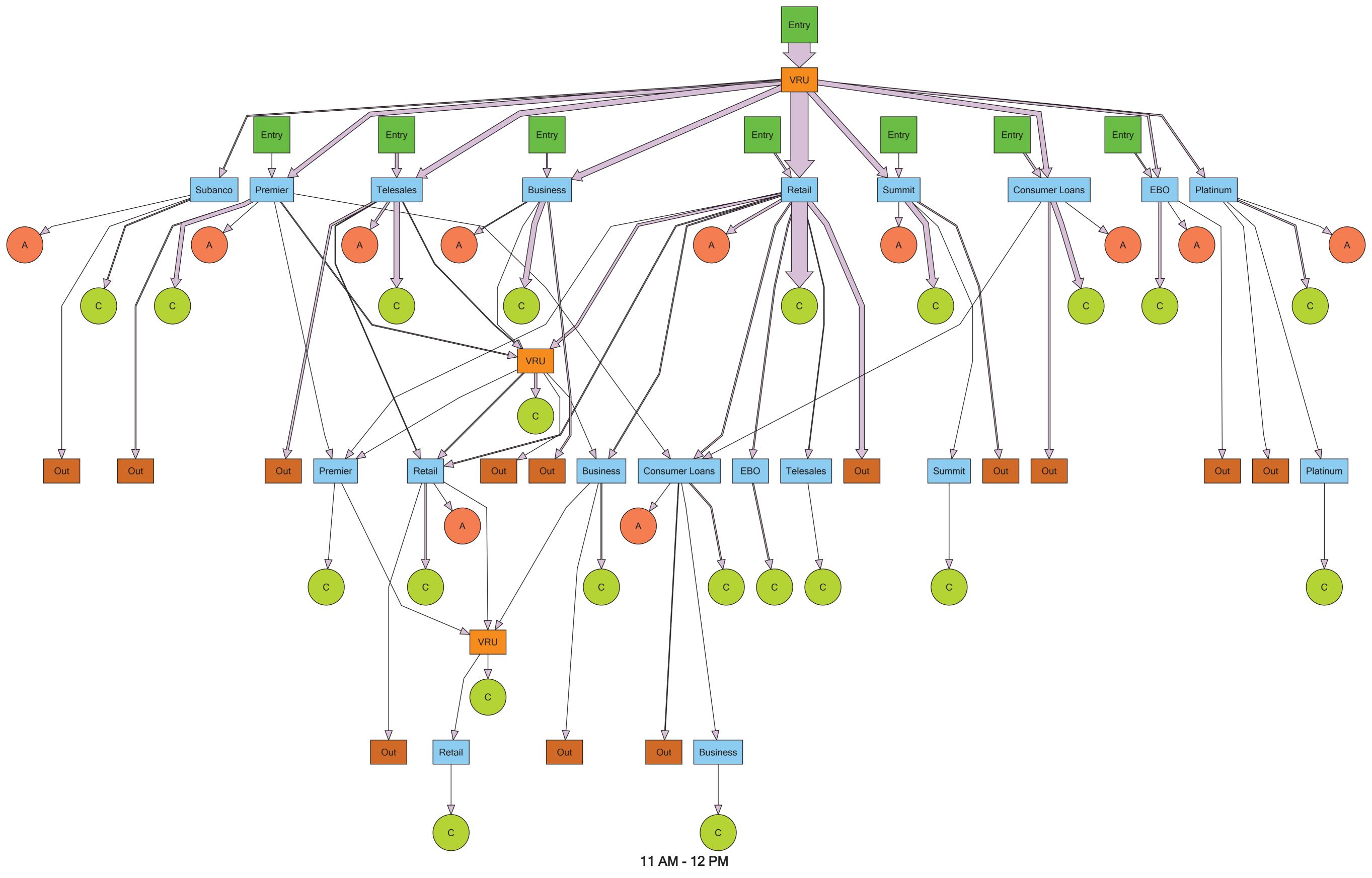


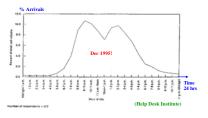

Zoom In: Skills - Based Routing (SBR)
Network Structure (Protocol)

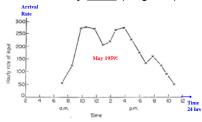



Goal: Data-Based Real-Time Simulation (SimNet)

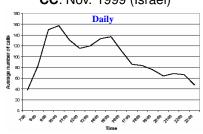



Israeli Telecom February 10, 2008



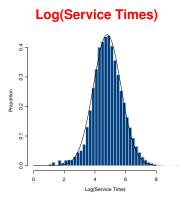

Dynamics: Time-Varying Arrival-Rates

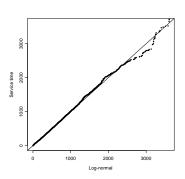
2 Daily Peaks


CC: Dec. **1995**, (USA, 700 Helpdesks)

CC: May <u>1959</u> (England)

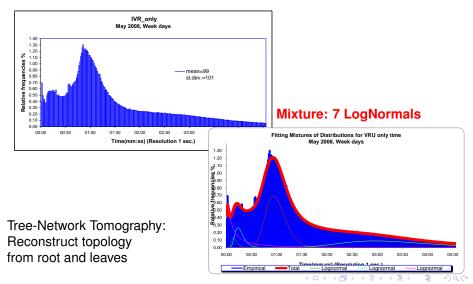
CC: Nov. 1999 (Israel)


ED: Jan.-July 2007 (Israel)



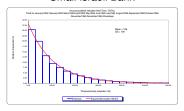
Durations: Phone Calls (2 Surprises)

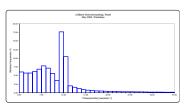
Israeli Call Center, Nov-Dec, 1999


LogNormal QQPlot

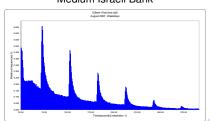
- ▶ **Practically Important**: (mean, std)(log) characterization
- ► Theoretically Intriguing: Why LogNormal? Naturally multiplicative but, in fact, also Infinitely-Divisible (Generalized Gamma-Convolutions)

Durations: Answering Machine

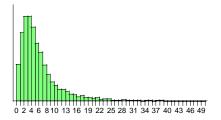

Israeli Bank: IVR/VRU Only, May 2008


Durations: Waiting Times in a Call Center

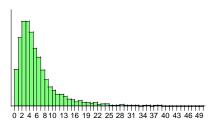
⇒ Protocols


Exponential in Heavy-Traffic (min.) Small Israeli Bank

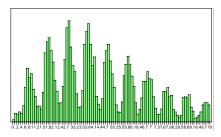
Routing via Thresholds (sec.) Large U.S. Bank



Scheduling Priorities (sec.) [compare Hospital LOS (hours)] Medium Israeli Bank

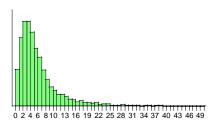

LogNormal & Beyond: Length-of-Stay in a Hospital

Israeli Hospital, in Days: LN



LogNormal & Beyond: Length-of-Stay in a Hospital

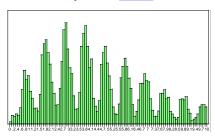
Israeli Hospital, in Days: LN

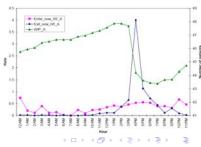


Israeli Hospital, in Hours: Mixture

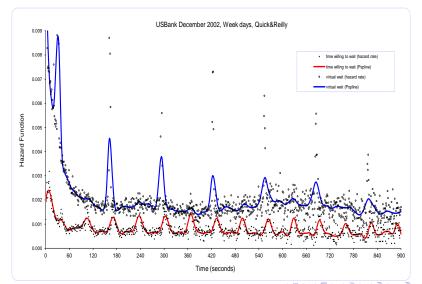
LogNormal & Beyond: Length-of-Stay in a Hospital

Israeli Hospital, in Days: LN

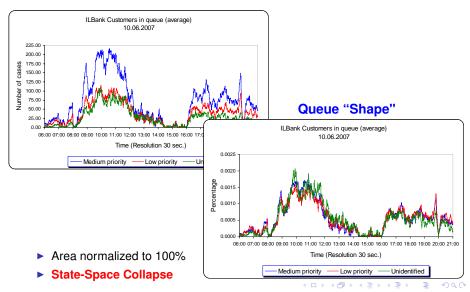



Explanation: Patients released around **3pm** (1pm in Singapore)

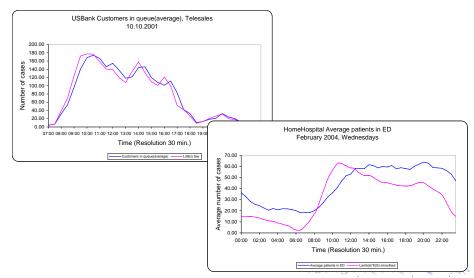
Why Bother?


- Hourly Scale: Staffing,...
- ▶ Daily: Flow / Bed Control,...

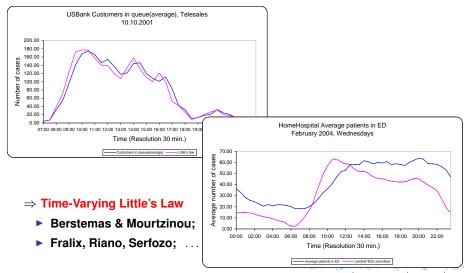
Israeli Hospital, in Hours: Mixture



Protocols + PsychologyPatient Customers, Announcements, Priority Upgrades


Dynamics: Parsimonious Models (Congestion Laws)

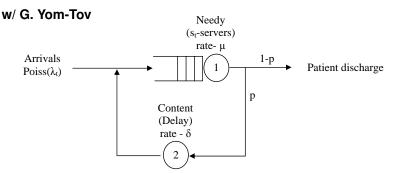
3 Queue-Lengths at 30 sec. resolution (ILBank, 10/6/2007)


Little's Law: Call Center & Emergency Department

Time-Gap: # in System lags behind Piecewise-Little ($L = \lambda \times W$)

Little's Law: Call Center & Emergency Department

Time-Gap: # in System lags behind Piecewise-Little ($L = \lambda \times W$)

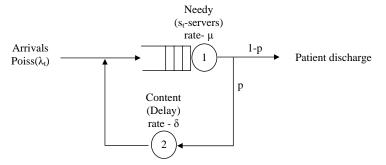


Prerequisite II: Models (FNets)

"Laws of Large Numbers" capture Predictable Variability

Deterministic Models: Scale Averages-out Stochastic Individualism

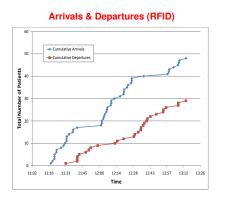
The Basic Service-Network Model: Erlang-R

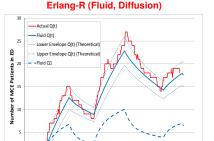


Erlang-R (IE: Repairman Problem 50's; CS: Central-Server 60's) = **2-station "Jackson" Network** = $(M/M/S, M/M/\infty)$:

- $ightharpoonup \lambda_t$ Time-Varying Arrival rate
- \triangleright S_t Number of **Servers** (Nurses / Physicians)
- μ **Service** rate ($E[Service] = \frac{1}{\mu}$)
- p ReEntrant (Feedback) fraction
- ▶ δ Content-to-Needy rate ($E[Content] = \frac{1}{\delta}$)

Fluid Model ↔ (Time-Varying) Erlang-R System

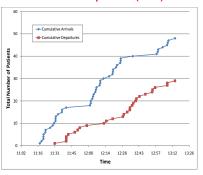



FNet of a 2-station "Jackson" Network:

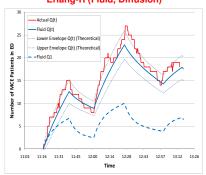
$$\frac{d}{dt}q_t^1 = \lambda_t - \mu \cdot (q_t^1 \wedge s_t) + \delta \cdot q_t^2,
\frac{d}{dt}q_t^2 = p \cdot \mu \cdot (q_t^1 \wedge s_t) - \delta \cdot q_t^2.$$
(1)

Erlang-R: Fitting a Simple Model to a Complex Reality

Chemical MCE Drill (Israel, May 2010)


Time

▶ Recurrent/Repeated services in MCE Events: eg. Injection every 15 minutes


Erlang-R: Fitting a Simple Model to a Complex Reality

Chemical MCE Drill (Israel, May 2010)

Erlang-R (Fluid, Diffusion)

- ▶ Recurrent/Repeated services in MCE Events: eg. Injection every 15 minutes
- ► Fluid (Sample-path) Modeling, via Functional Strong Laws of Large Numbers
- Stochastic Modeling, via Functional Central Limit Theorems
 - ► ED in MCE: Confidence-interval, usefully narrow for Control
 - ED in normal (time-varying) conditions: Personnel Staffing

An Asymptotic Framework: Erlang-R in the ED

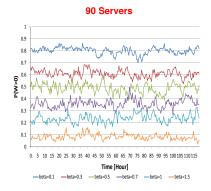
System = Emergency Department (eg. Rambam Hospital)

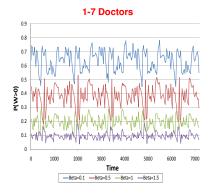
- SimNet = Customized ED-Simulator (Marmor & Sinreich)
- ► **QNet** = Erlang-R (time-varying 2-station Jackson; **w**/ **Yom-Tov**)
- ► FNets = 2-dim dynamical system (Massey & Whitt)
- DNets = 2-dim Markovian Service Net (w/ Massey and Reiman)

An Asymptotic Framework: Erlang-R in the ED

System = Emergency Department (eg. Rambam Hospital)

- SimNet = Customized ED-Simulator (Marmor & Sinreich)
- ► **QNet** = Erlang-R (time-varying 2-station Jackson; **w**/ **Yom-Tov**)
- ► FNets = 2-dim dynamical system (Massey & Whitt)
- DNets = 2-dim Markovian Service Net (w/ Massey and Reiman)

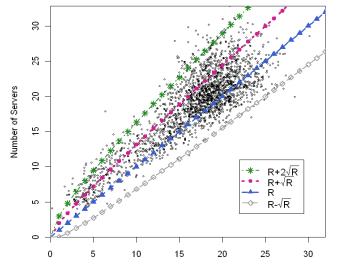

Asymptotic Framework

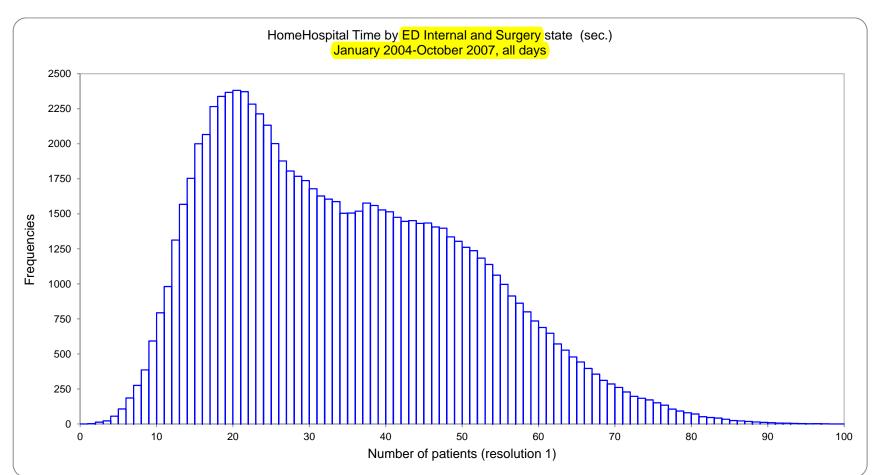

- Data and Measurements
- Fit a simple model (time-varying Erlang-R) to a complex reality (ED Physicians)
- Develop FNets (Offered-Load of Physicians) and (relevant) DNet (if needed)
- ▶ Use FNet / DNet for Design (√-Staffing), Analysis, . . .
- ► Simulate reality (ED with √-staffing of Physicians)
- ▶ Validation: stable performance, confidence intervals, . . .

Case Study: Emergency Ward Staffing

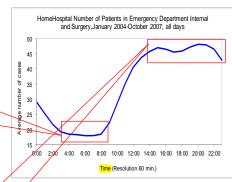
Many-Server ($\uparrow \infty$) Approximations for Small Systems (1-7)

- Staffing resolution: 1 hour
- Lower bound: 1 doctor per type
- ► Flexible (time-varying square-root) staffing: Yunan's Lecture
- ▶ Rounding effects ⇒ Not all performance levels achievable

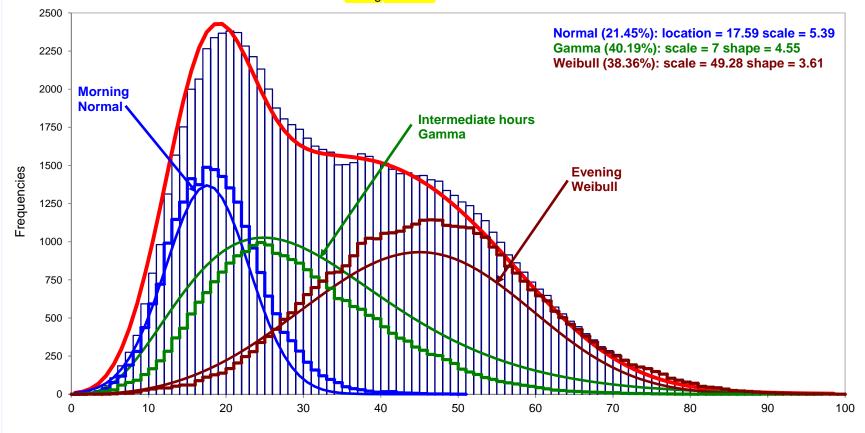



Protocols: Staffing (N) vs. Offered-Load (R = $\lambda \times E(S)$)

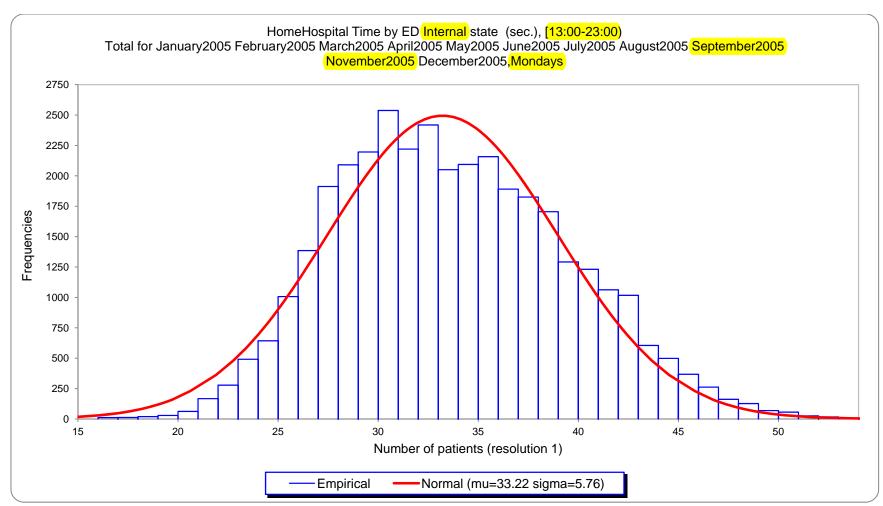

IL Telecom; June-September, 2004; w/ Nardi, Plonski, Zeltyn



2205 half-hour intervals (13 summer weeks, week-days)


Number of patients in ED

HomeHospital Time by ED Internal and Surgery state (sec.) January 2004-October 2007, all days Fitting Mixtures of Distributions



Number of patients (resolution 1)

Time by ED Internal and Surgery state (sec.) Sta	tistics
N	120960000
N(average per day)	86400
Mean Mean	34.1
Standard Deviation	16.34
Variance	266.87
Median	32
Minimum	0
Maximum	99
Skewness	0.524
Kurtosis	-0.44452
Standard Error Mean	0.00149
Interquartile Range	25
Mean Absolute Deviation	13.7
Median Absolute Deviation(MAD)	12
Coefficient of Variation (CV) (%)	47.9
L-moment 2 (half of Gini's Mean Difference)	9.25
L-Skewness	0.121
L-Kurtosis	0.0561
Coefficient of L-variation (L-CV)(%) (Gini's Coefficient)	27.12

Parameter Estimates								
Components	Mixing Proportions (%)	Location	Scale	Shape	Mean	Standard Deviation		
1. Normal	21.45	17.59	5.39		17.59	5.39		
2. Gamma	40.19		7.00	4.55	31.83	14.99		
3. Weibull	38.36		49.28	3.61	44.42	13.679		

Goodness-of-Fit Tests								
Tests	Statistic	DF	p Value					
Residuals Std	0.011							
Kolmogorov-Smirnov	0.028		<.0001					
Cramer-von Mises	14953.04		<.0001					
Andersen-Darling	96156.09		<.0001					
Chi-Square	460741.3	94	<.0001					

N	,	1656000		
N(average per day	()	36000		
Mean	33.22			
Standard Deviation	5.756			
Variance	33.13			
Median		33		
Minimum		16		
Maximum		54		
Skewness		0.282		
Kurtosis		-0.31791		
Standard Error Me	an	0.00447		
Interquartile Range	9	8		
Mean Absolute De	viation	4.712		
Median Absolute D	4			
Coefficient of Varia	17.33			
L-moment 2 (half of	3.263			
L-Skewness	0.0601			
L-Kurtosis		0.0924		
Coefficient of L-va	9.82			
Parameters for	Normal Distribution			
Parameter	Estimate			
mu				
sigma	5.76			
mean	33.22			
std	5.756			
Conducto of Fit	Tooto for Normal Distribution			

Time by ED Internal state (sec.), [13:00-23:00) Statistics

Goodness-of-Fit Tests for Normal Distribution									
Test	Statistic	DF	p Value						
Residuals Std	0.025								
Kolmogorov-Smirnov	0.069		<.0001						
Cramer-von Mises	1068.72		<.0001						
Anderson-Darling	6193.27		<.0001						
Chi-Square	>1000	34	<.0001						

Internal ED, non-holiday Mondays, 13:00-23:00

Our EDA "implies" (w/ Armony, Marmor, Tseytlin, Yom-Tov):

▶ Israeli ED census $\stackrel{d}{=} M/M/\infty$: "Secret" behind $\sqrt{-}$ Staffing

Internal ED, non-holiday Mondays, 13:00-23:00

Our EDA "implies" (w/ Armony, Marmor, Tseytlin, Yom-Tov):

- ▶ Israeli ED census $\stackrel{d}{=} M/M/\infty$: "Secret" behind $\sqrt{-}$ Staffing
- ► ED $\stackrel{d}{=}$ Reversible Birth-Death process, hence conditioning on finite capacity, say *B*, gives rise to M/M/B/B (Erlang-B)
- ▶ U.S. ED census $\stackrel{d}{=} M/M/B/B$, which can be (has been) used to analyze Ambulance Diversion (ED Blocking)

Internal ED, non-holiday Mondays, 13:00-23:00

Our EDA "implies" (w/ Armony, Marmor, Tseytlin, Yom-Tov):

- ▶ Israeli ED census $\stackrel{d}{=} M/M/\infty$: "Secret" behind $\sqrt{-}$ Staffing
- ► ED $\stackrel{d}{=}$ Reversible Birth-Death process, hence conditioning on finite capacity, say *B*, gives rise to M/M/B/B (Erlang-B)
- ▶ **U.S. ED census** $\stackrel{d}{=} M/M/B/B$, which can be (has been) used to analyze Ambulance Diversion (ED Blocking)
- Puzzle (getting ahead): Is the ED an Erlang-A system with $\mu = \theta$? then the "effective number of servers" can be, perhaps, deduced via those LWBS = Left Without Being Seen (or LAMA)

Simple models at the service of complex realities

Traditional Queueing Theory predicts that **Service-Quality** and **Servers' Efficiency must** be traded off against each other.

For example, M/M/1 (single-server queue): 91% server's utilization goes with

Congestion Index =
$$\frac{E[Wait]}{E[Service]}$$
 = 10,

and only 9% of the customers are served immediately upon arrival.

Traditional Queueing Theory predicts that **Service-Quality** and **Servers' Efficiency must** be traded off against each other.

For example, M/M/1 (single-server queue): 91% server's utilization goes with

Congestion Index =
$$\frac{E[Wait]}{E[Service]}$$
 = 10,

and only 9% of the customers are served immediately upon arrival.

Yet, **heavily-loaded** queueing systems with **Congestion Index = 0.1** (Waiting one order of magnitude less than Service) are prevalent:

- ► Call Centers: Wait "seconds" for minutes service;
- Transportation: Search "minutes" for hours parking;
- ▶ Hospitals: Wait "hours" in ED for days hospitalization in IW's.

Traditional Queueing Theory predicts that **Service-Quality** and **Servers' Efficiency must** be traded off against each other.

For example, M/M/1 (single-server queue): 91% server's utilization goes with

Congestion Index =
$$\frac{E[Wait]}{E[Service]}$$
 = 10,

and only 9% of the customers are served immediately upon arrival.

Yet, **heavily-loaded** queueing systems with **Congestion Index = 0.1** (Waiting one order of magnitude less than Service) are prevalent:

- ► Call Centers: Wait "seconds" for minutes service;
- Transportation: Search "minutes" for hours parking;
- ► Hospitals: Wait "hours" in ED for days hospitalization in IW's.

Moreover, a significant fraction not delayed in queue: e.g. in well-run

- CCs: 50% served "immediately" & 90% utilization ⇒ QED
- ► EDs + IWs: ?

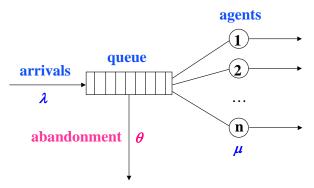
Traditional Queueing Theory predicts that **Service-Quality** and **Servers' Efficiency must** be traded off against each other.

For example, M/M/1 (single-server queue): 91% server's utilization goes with

Congestion Index =
$$\frac{E[Wait]}{E[Service]}$$
 = 10,

and only 9% of the customers are served immediately upon arrival.

Yet, **heavily-loaded** queueing systems with **Congestion Index = 0.1** (Waiting one order of magnitude less than Service) are prevalent:


- ► Call Centers: Wait "seconds" for minutes service;
- Transportation: Search "minutes" for hours parking;
- ► Hospitals: Wait "hours" in ED for days hospitalization in IW's.

Moreover, a significant fraction not delayed in queue: e.g. in well-run

- CCs: 50% served "immediately" & 90% utilization ⇒ QED
- ► EDs + IWs: ? Multiple scales! IW-"Beds" (10's) are QED while IW-Doctors (1's) are in conventional heavy-traffic (hours wait for minutes service), hence the bottlenecks

The Basic Staffing Model: Erlang-A (M/M/N + M)

Erlang-A (Palm 1940's) = Birth & Death Q, with parameters:

- $\rightarrow \lambda$ **Arrival** rate (Poisson)
- μ **Service** rate (Exponential; $E[S] = \frac{1}{\mu}$)
- θ Patience rate (Exponential, $E[Patience] = \frac{1}{\theta}$)
- N − Number of Servers (Agents).

Erlang-A: Practical Relevance?

Experience:

- ► Arrival process **not pure Poisson** (time-varying, σ^2 too large)
- Service times not Exponential (typically close to LogNormal)
- ▶ Patience times **not** Exponential (various patterns observed).

Erlang-A: Practical Relevance?

Experience:

- ► Arrival process **not pure Poisson** (time-varying, σ^2 too large)
- Service times not Exponential (typically close to LogNormal)
- ▶ Patience times **not Exponential** (various patterns observed).
- Building Blocks need not be independent (eg. long wait associated with long service; w/ M. Reich and Y. Ritov)
- Customers and Servers not homogeneous (classes, skills)
- Customers return for service (after busy, abandonment; dependently; P. Khudiakov, M. Gorfine, P. Feigin)
- ..., and more.

Erlang-A: Practical Relevance?

Experience:

- ► Arrival process **not pure Poisson** (time-varying, σ^2 too large)
- Service times not Exponential (typically close to LogNormal)
- Patience times not Exponential (various patterns observed).
- Building Blocks need not be independent (eg. long wait associated with long service; w/ M. Reich and Y. Ritov)
- Customers and Servers not homogeneous (classes, skills)
- Customers return for service (after busy, abandonment; dependently; P. Khudiakov, M. Gorfine, P. Feigin)
- ..., and more.

Question: Is Erlang-A Relevant?

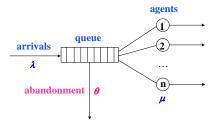
YES! Fitting a Simple Model to a Complex Reality, both Theoretically and Practically

Asymptotic Landscape: 9 Operational Regimes, and then some

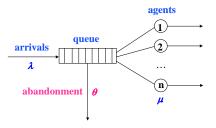
Erlang-A, w/ I. Gurvich & J. Huang

Enland A		4! 1 1!.	Many-Server scaling NDS scaling							
Erlang-A	Conventional scaling									
$\mu \& \theta$ fixed	Sub	Critical	Over	QD	QED	ED	Sub	Critical	Over	
Offered load	1	1 β	1	1	$1-\frac{\beta}{2}$	1	1	$1-\frac{\beta}{2}$	1	
per server	$\frac{1}{1+\delta}$	$1 - \frac{\beta}{\sqrt{n}}$	$\frac{1}{1-\gamma}$	$\frac{1}{1+\delta}$	$1 - \frac{\beta}{\sqrt{n}}$	$\frac{1}{1-\gamma}$	$\frac{1}{1+\delta}$	$1-\frac{L}{n}$	$\frac{1}{1-\gamma}$	
Arrival rate λ	$\frac{\mu}{1+\delta}$	$\mu - \frac{\beta}{\sqrt{n}}\mu$	$\frac{\mu}{1-\gamma}$	$\frac{n\mu}{1+\delta}$	$n\mu - \beta\mu\sqrt{n}$	$\frac{n\mu}{1-\gamma}$	$\frac{n\mu}{1+\delta}$	$n\mu - \beta\mu$	$\frac{n\mu}{1-\gamma}$	
# servers		1			n			n		
Time-scale		n			1		n			
Impatience rate		θ/n		θ			θ/n			
Staffing level	$\frac{\lambda}{\mu}(1+\delta)$	$\frac{\lambda}{\mu}(1+\frac{\beta}{\sqrt{n}})$	$\frac{\lambda}{\mu}(1-\gamma)$	$\frac{\lambda}{\mu}(1+\delta)$	$\frac{\lambda}{\mu} + \beta \sqrt{\frac{\lambda}{\mu}}$	$\frac{\lambda}{\mu}(1-\gamma)$	$\frac{\lambda}{\mu}(1+\delta)$	$\frac{\lambda}{\mu} + \beta$	$\frac{\lambda}{\mu}(1-\gamma)$	
Utilization	$\frac{1}{1+\delta}$	$1 - \sqrt{\frac{\theta}{\mu}} \frac{h(\hat{\beta})}{\sqrt{n}}$	1	$\frac{1}{1+\delta}$	$1 - \sqrt{\frac{\theta}{\mu}} \frac{\hat{h}(\hat{\beta})}{\sqrt{n}}$	1	$\frac{1}{1+\delta}$	$1 - \sqrt{\frac{\theta}{\mu}} \frac{h(\hat{\beta})}{n}$	1	
$\mathbb{E}(Q)$	$\frac{1}{\delta(1+\delta)}$	$\sqrt{n}g(\hat{eta})$	$\frac{n\mu\gamma}{\theta(1-\gamma)}$	$\frac{1}{\delta}\varrho_n$	$\sqrt{n}g(\hat{\beta})\alpha$	$\frac{n\mu\gamma}{\theta(1-\gamma)}$	o(1)	$ng(\hat{eta})$	$\frac{n^2 \mu \gamma}{\theta(1-\gamma)}$	
$\mathbb{P}(Ab)$	$\frac{1}{n} \frac{1}{\delta} \frac{\theta}{\mu}$	$\frac{\theta}{\sqrt{n}\mu}g(\hat{\beta})$	γ	$\frac{1}{n} \frac{(1+\delta)}{\delta} \frac{\theta}{\mu} \varrho_n$	$\frac{\theta}{\sqrt{n}\mu}g(\hat{\beta})\alpha$	γ	$o(\frac{1}{n^2})$	$\frac{\theta}{n\mu}g(\hat{\beta})$	γ	
$\mathbb{P}(W_q>0)$	$\frac{1}{1+\delta}$	≈1		ϱ_n	$\alpha \in (0,1)$	≈1	≈ 0	≈ 1		
$\mathbb{P}(W_q > T)$	$\frac{1}{1+\delta}e^{-\frac{\delta}{1+\delta}\mu T}$	$1 + O(\frac{1}{\sqrt{n}})$	$1 + O(\tfrac{1}{n})$	I I		f(T)	≈ 0	$\frac{\bar{\Phi}(\hat{\beta}+\sqrt{\theta\mu}T)}{\bar{\Phi}(\hat{\beta})}$	$1 + O(\tfrac{1}{n})$	
Congestion $\frac{\mathbb{E}W_q}{\mathbb{E}S}$	$\frac{1}{\delta}$	$\sqrt{n}g(\hat{eta})$	$n\mu\gamma/ heta$	$\frac{1}{n} \frac{(1+\delta)}{\delta} \varrho_n$	$\frac{\alpha}{\sqrt{n}}g(\hat{\beta})$	$\frac{\mu\gamma}{\theta}$	$o(\frac{1}{n})$	$g(\hat{eta})$	$n\mu\gamma/ heta$	

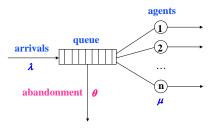
- ► Conventional: Ward & Glynn (03, G/G/1 + G)
- ► Many-Server:
 - QED: Halfin-Whitt (81), Garnett-M-Reiman (02)
 - ► ED: Whitt (04)
 - NDS: Atar (12)


Asymptotic Landscape: 9 Operational Regimes, and then some

Erlang-A, w/ I. Gurvich & J. Huang


Erlang-A	Conve	entional scalii	ng	Many-Server scaling			NDS scaling				
$\mu \& \theta$ fixed	Sub	Critical	Over	QD	QED	ED	Sub	Critical	Over		
Offered load per server	$\frac{1}{1+\delta}$	$1 - \frac{\beta}{\sqrt{n}}$	$\frac{1}{1-\gamma}$	$\frac{1}{1+\delta}$	$1 - \frac{\beta}{\sqrt{n}}$	$\frac{1}{1-\gamma}$	$\frac{1}{1+\delta}$	$1-\frac{\beta}{n}$	$\frac{1}{1-\gamma}$		
Arrival rate λ	$\frac{\mu}{1+\delta}$	$\mu - \frac{\beta}{\sqrt{n}}\mu$	$\frac{\mu}{1-\gamma}$	$\frac{n\mu}{1+\delta}$	$n\mu - \beta\mu\sqrt{n}$	$\frac{n\mu}{1-\gamma}$	$\frac{n\mu}{1+\delta}$	$n\mu - \beta\mu$	$\frac{n\mu}{1-\gamma}$		
# servers		1			n			n			
Time-scale		n			1		n				
Impatience rate		θ/n		θ			θ/n				
Staffing level	$\frac{\lambda}{\mu}(1+\delta)$	$\frac{\lambda}{\mu}(1+\frac{\beta}{\sqrt{n}})$	$\frac{\lambda}{\mu}(1-\gamma)$	$\frac{\lambda}{\mu}(1+\delta)$	$\frac{\lambda}{\mu} + \beta \sqrt{\frac{\lambda}{\mu}}$	$\frac{\lambda}{\mu}(1-\gamma)$	$\frac{\lambda}{\mu}(1+\delta)$	$\frac{\lambda}{\mu} + \beta$	$rac{\lambda}{\mu}(1-\gamma)$		
Utilization	$\frac{1}{1+\delta}$	$1 - \sqrt{\frac{\theta}{\mu}} \frac{h(\hat{\beta})}{\sqrt{n}}$	1	$\frac{1}{1+\delta}$	$1 - \sqrt{\frac{\theta}{\mu}} \frac{\hat{h}(\hat{\beta})}{\sqrt{n}}$	1	$\frac{1}{1+\delta}$	$1 - \sqrt{\frac{\theta}{\mu}} \frac{h(\hat{\beta})}{n}$	1		
$\mathbb{E}(Q)$	$\frac{1}{\delta(1+\delta)}$	$\sqrt{n}g(\hat{eta})$	$\frac{n\mu\gamma}{\theta(1-\gamma)}$	$\frac{1}{\delta} \varrho_n$	$\sqrt{n}g(\hat{\beta})\alpha$	$\frac{n\mu\gamma}{\theta(1-\gamma)}$	o(1)	$ng(\hat{eta})$	$\frac{n^2 \mu \gamma}{\theta(1-\gamma)}$		
$\mathbb{P}(Ab)$	$\frac{1}{n} \frac{1}{\delta} \frac{\theta}{\mu}$	$\frac{\theta}{\sqrt{n}\mu}g(\hat{\beta})$	γ	$\frac{1}{n} \frac{(1+\delta)}{\delta} \frac{\theta}{\mu} \varrho_n$	$\frac{\theta}{\sqrt{n}\mu}g(\hat{\beta})\alpha$	γ	$o(\frac{1}{n^2})$	$\frac{\theta}{n\mu}g(\hat{\beta})$	γ		
$\mathbb{P}(W_q>0)$	$\frac{1}{1+\delta}$	≈ 1	[ϱ_n	$\alpha \in (0,1)$	≈1	≈ 0	≈ 1			
$\mathbb{P}(W_q > T)$	$\frac{1}{1+\delta}e^{-\frac{\delta}{1+\delta}\mu T}$	$1 + O(\frac{1}{\sqrt{n}})$	$1 + O(\tfrac{1}{n})$			f(T)	≈ 0	$\frac{\bar{\Phi}(\hat{\beta}+\sqrt{\theta\mu}T)}{\bar{\Phi}(\hat{\beta})}$	$1 + O(\tfrac{1}{n})$		
Congestion $\frac{\mathbb{E}W_q}{\mathbb{E}S}$	$\frac{1}{\delta}$	$\sqrt{n}g(\hat{eta})$	$n\mu\gamma/ heta$	$\frac{1}{n} \frac{(1+\delta)}{\delta} \varrho_n$	$\frac{\alpha}{\sqrt{n}}g(\hat{\beta})$	$\frac{\mu\gamma}{\theta}$	$o(\frac{1}{n})$	$g(\hat{eta})$	$n\mu\gamma/ heta$		

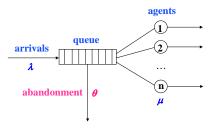
- ► Conventional: Ward & Glynn (03, G/G/1 + G)
- Many-Server:
 - QED: Halfin-Whitt (81), Garnett-M-Reiman (02)
 - ► ED: Whitt (04)
 - NDS: Atar (12)
- "Missing": ED+QED; Hazard-rate scaling (M/M/N+G); Time-Varying, Non-Parametric; Moderate- and Large-Deviation; Networks; Control


w/ I. Gurvich & J. Huang

w/ I. Gurvich & J. Huang

▶ QNet: Birth & Death Queue, with B - D rates

$$F(q) = \lambda - \mu \cdot (q \wedge n) - \theta \cdot (q - n)^+, \quad q = 0, 1, \dots$$


w/ I. Gurvich & J. Huang

▶ QNet: Birth & Death Queue, with B - D rates

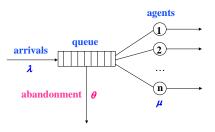
$$F(q) = \lambda - \mu \cdot (q \wedge n) - \theta \cdot (q - n)^+, \quad q = 0, 1, \dots$$

► FNet: Dynamical (Deterministic) System – ODE

$$dx_t = F(x_t)dt, t \geq 0$$

w/ I. Gurvich & J. Huang

QNet: Birth & Death Queue, with B - D rates


$$F(q) = \lambda - \mu \cdot (q \wedge n) - \theta \cdot (q - n)^+, \quad q = 0, 1, \dots$$

► **FNet**: Dynamical (Deterministic) System – ODE $dx_t = F(x_t)dt$, t > 0

DNet: Universal (Stochastic) Approximation – SDE

$$dY_t = F(Y_t)dt + \sqrt{2\lambda} dB_t, t \ge 0$$

w/ I. Gurvich & J. Huang

QNet: Birth & Death Queue, with B - D rates

$$F(q) = \lambda - \mu \cdot (q \wedge n) - \theta \cdot (q - n)^+, \quad q = 0, 1, \dots$$

► FNet: Dynamical (Deterministic) System – ODE

$$dx_t = F(x_t)dt, t \geq 0$$

DNet: Universal (Stochastic) Approximation – SDE

$$dY_t = F(Y_t)dt + \sqrt{2\lambda} dB_t, t \ge 0$$

eg.
$$\mu = \theta$$
: $\dot{\mathbf{x}} = \lambda - \mu \cdot \mathbf{x}$, $\mathbf{Y} = \mathsf{OU}$ process

Accuracy increases as $\lambda \uparrow \infty$ (no additional assumptions)

Value of Universal Approximation

- Tractable closed-form stable expressions
- Accurate more than heavy traffic limits
- Robust all many-server regimes, and beyond, with hardly any assumptions
- Value
 - Performance Analysis
 - Optimization (Staffing)
 - ► Inference (w/ G. Pang)
 - Simulation (w/ J. Blanchet)
- Limitation: Steady-State (but working on it)

Why does it work so well?

Coupling "Busy" + "Idle" Excursions of B&D and the corresponding Diffusion (durations order $\frac{1}{\sqrt{\lambda}}$)

Universal Diffusion: Tractability

▶ Density function of $Y(\infty) - n$:

$$\pi(x) = \begin{cases} \frac{\sqrt{\mu}}{\sqrt{\lambda}} \frac{\phi(\sqrt{\mu}(x/\sqrt{\lambda} + \beta/\mu))}{\Phi(\beta/\sqrt{\mu})} p(\beta, \mu, \theta), & \text{if } x \leq 0, \\ \frac{\sqrt{\theta}}{\sqrt{\lambda}} \frac{\phi(\sqrt{\theta}(x/\sqrt{\lambda} + \beta/\theta))}{1 - \Phi(\beta/\sqrt{\theta})} (1 - p(\beta, \mu, \theta)), & \text{if } x > 0, \end{cases}$$

Here
$$\beta := (n\mu - \lambda)/\sqrt{\lambda}$$
 and

$$p(\beta,\mu,\theta) = \left[1 + \sqrt{\frac{\mu}{\theta}} \frac{\phi(\beta/\sqrt{\mu})}{\Phi(\beta/\sqrt{\mu})} \frac{1 - \Phi(\beta/\sqrt{\theta})}{\phi(\beta/\sqrt{\theta})}\right]^{-1}.$$

Universal Approximation: Accuracy

 $ightharpoonup \Delta^{\lambda}$ is the "balancing" state, obtained by solving

$$\lambda = \mu(\mathbf{n} \wedge \Delta^{\lambda}) + \theta(\Delta^{\lambda} - \mathbf{n})^{+}.$$

Solution:
$$\Delta^{\lambda} = \frac{\lambda}{\mu} - \left(\frac{\lambda}{\mu} - n\right)^{+} \left(1 - \frac{\mu}{\theta}\right)$$
.
Specifically: $QD = \frac{\lambda}{\mu}$; $ED = n + \frac{1}{\theta}(\lambda - n\mu)$; $QED = n + \mathcal{O}(\sqrt{\lambda})$)

Centered processes (excursions):

$$\tilde{Q}^{\lambda}(\cdot) = Q(\cdot) - \Delta^{\lambda}, \quad \tilde{Y}^{\lambda}(\cdot) = Y(\cdot) - \Delta^{\lambda}.$$

Theorem

For f bounded by an m-degree polynomial ($m \ge 0$):

$$\mathbb{E} f(\tilde{Q}^{\lambda}(\infty)) - \mathbb{E} f(\tilde{Y}^{\lambda}(\infty)) = \mathcal{O}(\sqrt{\lambda}^{m-1}).$$

Accuracy: higher than heavy-traffic limits

Universal Approximation: Why 2λ ?

- Semi-martingale representation of the B&D process:
 Fluid + Martingale
- Predictable quadratic variation:

$$\int_0^t [\lambda + \mu(Q_s \wedge n) + \theta(Q_s - n)^+] ds$$

In steady-state, arrival rate ≡ departure rate:

$$\lambda = \mathbb{E}[\mu(Q_s \wedge n) + \theta(Q_s - n)^+]$$

Expectation of the predictable quadratic variation:

$$\mathbb{E}\int_0^t [\lambda + \mu(Q_s \wedge n) + \theta(Q_s - n)^+] ds = 2\lambda t$$

▶ dMartingale_t $\approx \sqrt{2\lambda}$ · dBrownian_t

Reconciling Steady-State and Time-Varying Models

- ► **Challenge**: Accommodate time-varying demand (routine)
- Prerequisite: Flexible Capacity
 - As in Call Centers and to a degree in Healthcare,
 - In contrast to rigid (fixed) staffing level during a shift: doomed to alternate between overloading and underloading

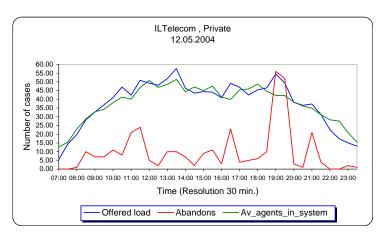
Reconciling Steady-State and Time-Varying Models

- ► **Challenge**: Accommodate time-varying demand (routine)
- Prerequisite: Flexible Capacity
 - As in Call Centers and to a degree in Healthcare,
 - In contrast to rigid (fixed) staffing level during a shift: doomed to alternate between overloading and underloading
- ► Idea/Goal: In the face of time-varying demand, design time-varying staffing which accommodates demand such that performance is stable over time
- Solution: In fact, a time-varying system with Steady-State performance, at all times, via (Modified) Offered-Load (Square-Root) Staffing.

Reconciling Steady-State and Time-Varying Models

- ► **Challenge**: Accommodate time-varying demand (routine)
- Prerequisite: Flexible Capacity
 - As in Call Centers and to a degree in Healthcare,
 - ▶ In contrast to **rigid** (fixed) staffing level during a shift: doomed to alternate between overloading and underloading
- ▶ Idea/Goal: In the face of time-varying demand, design time-varying staffing which accommodates demand such that performance is stable over time
- Solution: In fact, a time-varying system with Steady-State performance, at all times, via (Modified) Offered-Load (Square-Root) Staffing.
- History:
 - ▶ Jennings, M., Reiman, Whitt (1996): Emergence of the phenomenon, via infinite-server heuristics
 - ► Feldman, M., Massey, Whitt (2008): Stabilize delay probability via QED staffing (justified theoretically only for Erlang-A with $\mu = \theta$)
 - Liu and Whitt (ongoing): Stabilize abandonment probability by ED staffing, via a corresponding network, theoretically and empirically
 - ► Huang, Gurvich, M. (ongoing): QED theory

The Offered-Load $R(t), t \ge 0$ $(R(t) \leftrightarrow R)$

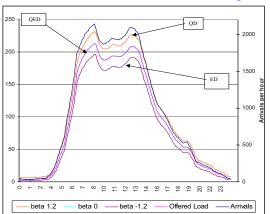

Empirically (in SEEStat):

- ▶ Process: $L(\cdot)$ = Least number of servers that guarantees no delay.
- ▶ Offered-Load Function $R(\cdot) = E[L(\cdot)]$

The Offered-Load $R(t), t \ge 0$ $(R(t) \leftrightarrow R)$

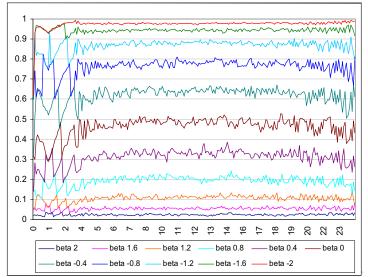
Empirically (in SEEStat):

- ▶ Process: $L(\cdot)$ = Least number of servers that guarantees no delay.
- ▶ Offered-Load Function $R(\cdot) = E[L(\cdot)]$


Time-Varying Arrival Rates

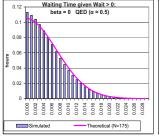
Square-Root Staffing:

$$N(t) = R(t) + \beta \sqrt{R(t)}, -\infty < \beta < \infty.$$


R(t) is the **Offered-Load** at time $t (R(t) \neq \lambda(t) \times E[S])$

Arrivals, Offered-Load and Staffing

Time-Stable Performance of Time-Varying Systems


Delay Probability = as in the **Stationary Erlang-A** / **R**



Time-Stable Performance of Time-Varying Systems

Waiting Time, Given Waiting: Empirical vs. Theoretical Distribution

- **Empirical**: Simulate time-varying $M_t/M/N_t + M$ $(\lambda(t), N(t) = R(t) + \beta \sqrt{R(t)})$
- Theoretical: Naturally-corresponding stationary Erlang-A, with QED β-staffing (some Averaging Principle?)
- Generalizes up to a single-station within a complex network (eg. Doctors in an Emergency Department, modeled as Erlang-R).

- ▶ Offered-Load Process: $L(\cdot)$ = Least number of servers that guarantees no delay.
- ▶ Offered-Load Function $R(t) = E[L(t)], t \ge 0.$ Think $M_t/G/N_t^2 + G$ vs. $M_t/G/\infty$: Ample-Servers.

- ▶ Offered-Load Process: $L(\cdot)$ = Least number of servers that guarantees no delay.
- ▶ Offered-Load Function $R(t) = E[L(t)], t \ge 0.$ Think $M_t/G/N_t^2 + G$ vs. $M_t/G/\infty$: Ample-Servers.

Four (all useful) representations, capturing "workload before t":

$$R(t) = E[L(t)] = \int_{-\infty}^{t} \lambda(u) \cdot P(S > t - u) du = E\left[A(t) - A(t - S)\right] =$$

$$= E\left[\int_{t-S}^{t} \lambda(u) du\right] = E[\lambda(t - S_e)] \cdot E[S] \approx \dots.$$

- {A(t), $t \ge 0$ } Arrival-Process, rate $\lambda(\cdot)$;
- ▶ **S** (**S**_e) generic Service-Time (Residual Service-Time).

- ▶ Offered-Load Process: $L(\cdot)$ = Least number of servers that guarantees no delay.
- ▶ Offered-Load Function $R(t) = E[L(t)], t \ge 0$. Think $M_t/G/N_t^? + G$ vs. $M_t/G/\infty$: Ample-Servers.

Four (all useful) representations, capturing "workload before t":

$$R(t) = E[L(t)] = \int_{-\infty}^{t} \lambda(u) \cdot P(S > t - u) du = E\left[A(t) - A(t - S)\right] =$$

$$= E\left[\int_{t-S}^{t} \lambda(u) du\right] = E[\lambda(t - S_e)] \cdot E[S] \approx \dots.$$

- $\{A(t), t \ge 0\}$ Arrival-Process, rate $\lambda(\cdot)$;
- ▶ **S** (**S**_e) generic Service-Time (Residual Service-Time).
- ▶ Relating L, λ, S ("W"): Time-Varying Little's Formula. Stationary models: $\lambda(t) \equiv \lambda$ then $R(t) \equiv \lambda \times E[S]$.

- ▶ Offered-Load Process: $L(\cdot)$ = Least number of servers that guarantees no delay.
- ▶ Offered-Load Function $R(t) = E[L(t)], t \ge 0.$ Think $M_t/G/N_t^2 + G$ vs. $M_t/G/\infty$: Ample-Servers.

Four (all useful) representations, capturing "workload before t":

$$R(t) = E[L(t)] = \int_{-\infty}^{t} \lambda(u) \cdot P(S > t - u) du = E\left[A(t) - A(t - S)\right] =$$

$$= E\left[\int_{t-S}^{t} \lambda(u) du\right] = E[\lambda(t - S_e)] \cdot E[S] \approx \dots.$$

- $\{A(t), t \ge 0\}$ Arrival-Process, rate $\lambda(\cdot)$;
- ▶ **S** (**S**_e) generic Service-Time (Residual Service-Time).
- ▶ Relating L, λ, S ("W"): Time-Varying Little's Formula. Stationary models: $\lambda(t) \equiv \lambda$ then $R(t) \equiv \lambda \times E[S]$.

QED-c:
$$N_t = R_t + \beta R_t^c$$
, $1/2 \le c < 1$; $(c = 1 \text{ separate analysis})$.

Extending the Notion of the "Offered-Load"

- Business (Banking Call-Center): Offered Revenues
- ► Healthcare (Maternity Wards): Fetus in stress
 - 2 patients (Mother + Child) = high operational and cognitive load
 - ► Fetus dies ⇒ emotional load dominates
- ightharpoonup
 - Offered Operational Load
 - Offered Cognitive Load
 - Offered Emotional Load
 - ► ⇒ Fair Division of Load (Routing) between 2 Maternity Wards: One attending to complications <u>before</u> birth, the other to complications after birth, and both share normal birth

- ServNets = QNets, SimNets, FNets, DNets
- ► SimNets of Service Systems = Virtual Realities
- SimNets also of QNEts, FNets, DNets eg. ED MD (Physics): Where are the Differential Equations?

- ServNets = QNets, SimNets, FNets, DNets
- ► SimNets of Service Systems = Virtual Realities
- SimNets also of QNEts, FNets, DNets eg. ED MD (Physics): Where are the Differential Equations?
- Ultimately, Research Labs will become necessary (hence must be funded!): offering universal access to data and ServNets, and their analysis

- ServNets = QNets, SimNets, FNets, DNets
- ► SimNets of Service Systems = Virtual Realities
- SimNets also of QNEts, FNets, DNets eg. ED MD (Physics): Where are the Differential Equations?
- Ultimately, Research Labs will become necessary (hence must be funded!): offering universal access to data and ServNets, and their analysis
- Data-based Research: Tradition in Physics, Chemistry, Biology;
 Psychology (now also in Transportation (Science) and (Behavioral) Economics)
- **▶ Why not in Service Science / Engineering / Management ?**

- ServNets = QNets, SimNets, FNets, DNets
- ► SimNets of Service Systems = Virtual Realities
- SimNets also of QNEts, FNets, DNets eg. ED MD (Physics): Where are the Differential Equations?
- Ultimately, Research Labs will become necessary (hence must be funded!): offering universal access to data and ServNets, and their analysis
- Data-based Research: Tradition in Physics, Chemistry, Biology;
 Psychology (now also in Transportation (Science) and (Behavioral) Economics)
- Why not in Service Science / Engineering / Management ?
- Moreover, address the Reproducibility and Proprietary Crisis in Scientific Research

Data-Based Creation ServNets: some Technicalities

- ServNets = QNets, SimNets, FNets, DNets
- ▶ **Graph Layout**: Adapted from but significantly extends Graphviz (AT&T, 90's); eg. *edge-width*, which must be restricted to *poly-lines*, since there are "no parallel Bezier (Cubic) curves $(B_n(p) = E_p F[B(n, p)], 0 \le p \le 1)$
- Algorithm: Dot Layout (but with cycles), based on Sugiyama, Tagawa, Toda ('81): "Visual Understanding of Hierarchical System Structures"

Data-Based Creation ServNets: some Technicalities

- ServNets = QNets, SimNets, FNets, DNets
- ▶ **Graph Layout**: Adapted from but significantly extends Graphviz (AT&T, 90's); eg. *edge-width*, which must be restricted to *poly-lines*, since there are "no parallel Bezier (Cubic) curves $(B_n(p) = E_p F[B(n, p)], 0 \le p \le 1)$
- Algorithm: Dot Layout (but with cycles), based on Sugiyama, Tagawa, Toda ('81): "Visual Understanding of Hierarchical System Structures"
- Draws data directly from SEELab data-bases:
 - Relational DBs (Large! eg. USBank Full Binary = 37GB, Summary Tables = 7GB)
 - Structure: Sequence of events/states, which (due to size) partitioned (yet integrated) into days (eg. call centers) or months (eg. hospitals)
 - Differs from industry DBs (in call centers, hospitals, websites)

