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Motivation

A standard assumption in the modeling of a service system
postulates that the arrival process is a Poisson process with known
parameters. For example, the prevalent approach in call centers is
to assume known arrival rates for each basic interval (say,
half-hour).

However, as a rule, call centers data contradicts this assumption
and shows a larger variability of the arrival process than the one
expected from the Poisson hypothesis.

We explain this over-dispersion by the natural uncertainty of the
arrival rate.
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Model Definition

The M’|M|n+ G Queue:
@ )\ - Expected arrival rate of a Poisson arrival process.
o 1 - Exponential service rate.
@ n service agents.

@ G - Patience distribution. Assume that the patience density
exist at the origin and its value gy is strictly positive.
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Model Definition

The M’|M|n+ G Queue:
@ )\ - Expected arrival rate of a Poisson arrival process.
o 1 - Exponential service rate.
@ n service agents.

@ G - Patience distribution. Assume that the patience density
exist at the origin and its value gy is strictly positive.

Random Arrival Rate: Let X be a random variable with cdf F,
E[X] =0, and finite o(X). Assume that the arrival rate varies
from day to day in an i.i.d. fashion:

M

A+ XX, c<1

)

e ¢ < 1/2: Conventional variability.
@ 1/2 < ¢ < 1: Moderate variability.
o ¢ = 1: Extreme variability.
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The Case of a Financial Call Center

@ Our study focuses on the arrival counts to the Retail queue.

@ We consider 263 regular weekdays ranging between April 2007
and April 2008.

@ Holidays which exhibit different daily patterns are excluded
from our analysis.

o Each day is divided into 48 half-hour intervals.
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The Case of a Financial Call Center
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The Case of a Financial Call Center

Coefficient of Variation
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The Case of a Financial Call Center
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The Case of a Financial Call Center

Average Arrival
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The Case of a Financial Call Center

Basic definitions and notation:

@ )iy - The expectation of arrival volume in the i interval for
day type d, i=1,2,...,48 and d = 1,2, 3,4.

@ iy - The std of arrival volume for the it" interval for day type
d.

@ ¢4 - The uncertainty coefficient for day type d.

® \ig - The average call volume in the it" interval over all days
of type d.

@ iy - The sampled standard deviation of call volumes in the
it interval over all days of type d.
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The Case of a Financial Call Center

1. Relation between )\iq and oiq:

Consider a Poisson mixture variable Y with random rate
M = X+ \°- X, where E[X] =0, finite o(X) > 0 and
1/2 < ¢ < 1. Then,

Var(Y) = X2 Var(X) + X + X - E(X).

Given A — o0

a(Y) ~ X a(X),!

and
In(a(Y)) ~ c-In(A\)+ In(a(X)).

L£(A) ~ g(\) denotes that limy_,oo F(A)/g(A) = 1.
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The Case of a Financial Call Center

Mondays

In(Standard Deviation)

In(Average Arrival)

In(Standard Deviation)

Tue-Wed
+4
=
* ’0"
* ’0'
*

- “ M

*
. N e
-~

3 4 5 6 7

In(Average Arrival)




Introduction
00000e00000

The Case of a Financial Call Center
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Results:

@ Two clusters exists. Denote j(i) =1 for i =1,2,...,21, and
Jj(i)=1fori=22,23,...,48.

e Very good fit (R? > 0.97).

@ Significant linear relations:

|n(0','d) = Cdj(i) : |n()\,'d) + In(a(XdJ(,))) i d.l
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The Case of a Financial Call Center

2. Fitting a Gamma Poisson mixture model to the data:
(Jongbloed and Koole ['01])

Assume a prior Gamma distribution for the arrival rate

A+ aex 2 Gamma(a, b). Then, the distribution of Y is Negative
Binomial.

@ Maximum likelihood estimators of a and b.

@ Goodness of fit test including FDR control method to correct
the multiple comparisons.
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The Case of a Financial Call Center
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The Case of a Financial Call Center
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Ho,ig : Mig = Gamma(aiqg, big)
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Monday 14:30-15:00

= Empirical
= GPM(29.51,58.5),1=1726.43
p.value= 0.674

00 02 04 06 08 1.0

= Empirical
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Results:
@ Very good fit.
@ Only 13 hypotheses are rejected (out of 192).
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The Case of a Financial Call Center

3. Relation between our main model and Gamma Poisson
mixture model:

Let M = A+ A°X £ Gamma(a, b). Then,
E[M)=ab=X; Var(M)=Xb and Var(X)=\"2¢.p.
We derive the following relations

b =

a —

2 X) . )\2C—17
72(X) . /\272c.

o
o
and conclude that

In(b) = (2¢ — 1) - In(\) + In(c?(X)).
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The Case of a Financial Call Center
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The Case of a Financial Call Center
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The Case of a Financial Call Center

4. Asymptotic distribution of X:

M-\ M-ab M-—E[M]

X=T% T @b T o(Mye(X)
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The Case of a Financial Call Center

4. Asymptotic distribution of X:

M-\ M-ab M-—E[M]

X=T% T @b T o(Mye(X)

Let W, & Gemma(a.b) —ab _ Gamma(a,1) —a
by/a NE

Then lim MGF,(t) = /2, t € R, and this limit is the moment
a—0o0

generating function of the standard normal distribution Norm(0,1).
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The Case of a Financial Call Center

4. Asymptotic distribution of X:

M-\ M-ab M-—E[M]

X=T% T @b T o(Mye(X)

Let W, & Gemma(a.b) —ab _ Gamma(a,1) —a
by/a NE

Then lim MGF,(t) = /2, t € R, and this limit is the moment
a—0o0

generating function of the standard normal distribution Norm(0,1).

Conclusion: As A — oo (equivalent to a — c0), the random
variable X /o (X) converges in distribution to a standard normal
distributed variable.

LA Norm(0, 1).

o(X)
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The Case of an Emergency Department

o Consider 194 weeks between from January 2004 till October
2007 (five war weeks are excluded from data).

@ The analysis is performed using two resolutions: hourly arrival
rates (168 intervals in a week) and three-hour arrival rates (56
intervals in a week).

@ Meanwhile, we do not clean our data (Jewish holidays are not
excluded as they should be).
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The Case of an Emergency Department

Coefficient of Variation
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The Case of an Emergency Department

Coefficient of Variation
One-hour resolution Three-hour resolution

coefficient of variation
= = = inverted sq. root of mean

— coefficient of variation 01 7
0.1 - = = inverted sq. root of mean g 008 |

20 40 60 80 100 120 140 160 5 10 15 20 25 30 35 40 45 50 55
interval interval

@ In contrast to the call center study, inverted square root of
mean is relatively close to CV's.

@ Peaks at graphs correspond to night periods with small arrival
rates.
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The Case of an Emergency Department

In(Standard Deviation)

In(o) versus In()\) plots

One-hour resolution
y = 0.497z + 0.102, R? = 0.968

Three-hour resolution
y = 0.527z + 0.087, R? = 0.947

In(Standard Deviation)
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The Case of an Emergency Department

In(Standard Deviation)

In(o) versus In()\) plots

One-hour resolution
y = 0.497z + 0.102, R? = 0.968

Three-hour resolution
y = 0.527z + 0.087, R? = 0.947

In(Standard Deviation)

0 05 1 15 2 25 3 35
In(Mean Arrival Rate)

0 0.5 1 15 2 25 3 35 4 45
In(Mean Arrival Rate)

@ A linear pattern with the slope that is very close to 0.5.

@ Derivation of the asymptotic linear relation is based on
¢ > 1/2. It is unclear how it works for ¢ that is close to 1/2

and relatively small .
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Practical Guidelines

@ Determine "uncertainty coefficient ¢” via regression analysis.
@ Check if Gamma model is reasonable.
e Calculate X distribution (asymptotic analysis).

@ Apply our QED-c results in order to determine appropriate
staffing.
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Queues Performances in a Random Environment

Assume a set of D days. At each day an arrival rate, m, is
independently generated. Let Y be a system performance measure,

and denote by Y), the corresponding random performance measure
in the random environment.

Denote:
@ arrj - Number of arrivals on day j

@ y; - The value of the performance measure Yy, on day j.
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Queues Performances in a Random Environment

Assume a set of D days. At each day an arrival rate, m, is
independently generated. Let Y be a system performance measure,

and denote by Y), the corresponding random performance measure
in the random environment.

Denote:
@ arrj - Number of arrivals on day j

@ y; - The value of the performance measure Yy, on day j.

If the performance measure is related to system performance, e.g.
offered load and queue length, by SLLN

D
= 1 D1oo
Y = BZ}/j — E[Yum].

j=t
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e.g. delay probability and waiting time, into two classes:
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Queues Performances in a Random Environment

We classify performance measures that relate to the customers,
e.g. delay probability and waiting time, into two classes:

@ Short-Term Performance Measure: What will happen
tomorrow?

D
- 1 Dtoo
Y = =Yy == E[Yul.

o Long-Term Performance Measure: What would be the
performances in the long-run?

D
< Zj:la”j'yj Dioo E[M-Yum] v

Y =
ZjDzl arr; E[M]
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Queues Performances in a Random Environment

Assume that the system is in steady state. The long-term value
and the short-term value of Y}, are asymptotically equivalent for all

c<l1. [M y ]
lim ol AL = |im .
A—»I 00 E[M] )\l—>l o E [YM]
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Queues Performances in a Random Environment

Assume that the system is in steady state. The long-term value
and the short-term value of Y}, are asymptotically equivalent for all

c<l E[M - Y]
. SYm|l .
am =g am EDYml-

Remark: Note that the above does not hold for ¢ = 1. In this
work we focus on long-term performance measures. The
techniques of solutions, when considering the short-term
performance measures, are similar.
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QED-c Regime

QED-c staffing rule:

A A\ €
n = ;—hﬁ’ (M) +o(V), BeR, ce(1/2,1).
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QED-c Regime

QED-c staffing rule:

A A\ €
n = ;—h@ (M) +o(V), BeR, ce(1/2,1).

Assume an M|M|n+ G queue with fixed arrival rate \.

Take A to oc.
e 3> 0: Over-staffing.
@ 3 < 0: Under-staffing.

For both cases we provided asymptotically equivalent expressions
(or bounds) for P{W, > 0}, P{Ab|V > 0} and E[V|V > 0].
Calculations, based on building blocks from Zeltyn['05], are carried
out via the Laplace Method.
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Square-Root Staffing versus QED-c staffing

QED-c Staffing

c=0.75 | c=09
) | 116  (+10%) | 132 (+25%)
) | 132 (+20%) | 163  (+48%)
) | 147 (+28%) | 195 (4+69%)
) | 553  (4+8%) | 634 (+24%)
500 1 | 522 | 542  (+4%) | 606 (+16%) | 769 (+47%)
15| 534 | 562 (+5%) | 659 (4+23%) | 903 (+69%)
0.5 | 1016 | 1032 (+2%) | 1089  (+7%) | 1251 (+23%)
) )
) )
) )
) )
) )

R=)\/u| B | SRS? B |

05 105 | 108 (+3%
100 1 | 110 | 116  (+5%
15| 115 | 124  (+8%
05| 511 | 521 (+2%

1000 1 | 1032 | 1063 (+3%) | 1178 (+14%) | 1501 (+46%
15 | 1047 | 1095 (+5%) | 1267 (4+21%) | 1752 (+67%
05 | 2022 | 2048 (+1%) | 2150 (+6%) | 2468 (+22%
2000 1 | 2045 | 2006 (+2%) | 2300 (+12%) | 2936 (+43%
1.5 | 2067 | 2143  (+4%) | 2449 (+18%) | 3403 (+65%

2Square-Root-Staffing
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QED-c Regime

Theorem

Assume random arrival rate M = X\ + \ul X, ¢ € (1/2,1),
E[X] = 0, finite o(X) > 0, and staffing according to the QED-c
staffing rule with the corresponding c. Then, as A — oo,

a. Delay probability: Py a{Wy >0} ~ 1—F(B).
E[X —
b. Abandonment probability:  Pp ,{Ab} ~ [nl_cﬂ]+
E[X —
c. Average waiting time: Em n[Wgq] ~ ,El_cﬂgh
- 80

Remark: For simplifying the formulae we take
M = X+ pr=¢- XX instead of M = X\ 4+ \°X.
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QED-c Regime

Examples: Consider two distributions of X
e Uniform distribution on [-1,1],
e Standard Normal distribution.

(1) 3=—05, c=0.7

Delay Probability Abandonment Probability

0.9 0.35

ji Ishorl—termUL.E(—llﬁ) * short-term U(-1,1)
long-term -1, -1 -.
0.85| — approx UL 1 0.3 — oD
C i ? ity
, long-term N(O,
0.8} —— approx N(0.1) 1 *0'25 — approx N(0,1)
— c
I e B e e T TR e £ )
§0.75‘ W**************x**x* %
= ?#+
a orl R e L T e | g
' W*******************e o
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0'60 ldOO 2600 3050 4600 5000
3000 4000 5000
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QED-c Regime

(2) 8=05, c=0.6

Delay Probability Abandonment Probability
0.5 0.1
* short-term U(-1,1) * short-term U(-1,1)
+ long-term U(-1,1) + long-term U(-1,1)
0.45+ = approx U(-1,1) 4 = approx U(-1,1)
* short-term N(0,1) 0.08 * short-term N(0,1)
+ long-term N(0,1) + long-term N(0,1)
0.4} = approx N(0,1) 1 = — approx N(0,1)
5 | S 0.06f
% 0.0 go
2 0357 Mty ] s i
= ++ 1 o
a W**********Iiiﬁiiii%e $004+
0.3 1 a T

e
o o S |

o
o
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Constraint Satisfaction

Formulation of the Problem:

Define the optimal staffing level by

ny = argmin {:E’Mm{Wq >0} < a} .

The staffing level ny is called asymptotically feasible if

lim sup IBM,,,A{Wq >0} <o

A—00

In addition, ny is asymptotically optimal if

M\ = ma| = o(f(X))-
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QED Regime

c=1/2
Assume M = A+ /uX- X, E[X] =0 and finite o(X) > 0. Let
A — 00.

Theorem (Staffing)

a. The optimal staffing level satisfies

n" = )\+6*\/;+O(\/X)7
12 12

where (3* is the unique solution of the equation

a = Efa(8 - X)]

with respect to the unknown 3.
a(-) is the Garnett function

14,/B. h(ﬁx/u/go)] -
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QED Regime

Theorem (Staffing). Continued.

b. Introduce the staffing level

ng = L);Jrﬂ*\/g-‘.

Then the staffing level n; is both asymptotically feasible and
asymptotically optimal (f(\) = /)

Proof Outline

Given X=x,

A A A A A A
= 2k o | DA ey AR 25
jz W I ju

= asA— oo, b(B,x)~ —x
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QED Regime

Theorem (Performance Measures)

Under the square-root staffing level, as A\ — oo,
P Ab L E(~vx
a. M,n;{ b~ ﬁ “E(vx)-
B 1
b. o= 1—= .
AR
PMJ,;{Ab}
C. 5 .
Ent,ns [Wal &
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QED Regime

c<1/2

Assume A = \ + pl 7\ X, ¢ < 1/2, E[X] = 0 and finite
o(X) > 0. Let A — oc.

Lemma

Assume the square-root staffing level

n = /\+ﬁ\/x+o(\&), —00 < f3< o0
p p

Then, asymptotically, the random part of the arrival rate does not
affect the system'’s performances. Namely, the queue is asymptoti-
cally equivalent to the M|M|n + G queue with deterministic arrival
rate A, for all c < 1/2.

The M|M|n+ G queue was analyzed comprehensively by Zeltyn['05].
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o(X) > 0. Let A — oc.
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Assume the square-root staffing level

n = /\+ﬁ\/x+o(\&), —00 < f3< o0
p p

Then, asymptotically, the random part of the arrival rate does not
affect the system'’s performances. Namely, the queue is asymptoti-
cally equivalent to the M|M|n + G queue with deterministic arrival
rate A, for all c < 1/2.

The M|M|n+ G queue was analyzed comprehensively by Zeltyn['05].
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ED Regime

c = 1, Discrete Random Arrival Rate

Assume M = A X, where X is a discrete random variable which
takes values x; > x» > ... > x; > 0, with probabilities

p1, P2, - -, P, respectively. In addition, let E[X] =1, o(X) < o0
and A\ — oo.
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c = 1, Discrete Random Arrival Rate

Assume M = A X, where X is a discrete random variable which
takes values x; > x» > ... > x; > 0, with probabilities

p1, P2, - -, P, respectively. In addition, let E[X] =1, o(X) < o0
and A\ — oo.

Let
S
K= argmsin {Zx,-p; > a} .
i=1

Assume that the inequality is strict.

Define

*
>

k—1
a — Zi:l XiPi
Xk Pk
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Theorem (Staffing)

a. The optimal staffing level satisfies

o AX
Nt o=

+ 8% 2 4 o(VA):

o n

here B* is the unique solution of the equation

& hBVile)|
18 A0S ] |

*
[0 =

b. Introduce the staffing level

x A | e [ AXe
= 2 g 2|
j 2

Then the staffing level nz; is both asymptotically feasible, as
well as asymptotically optimal with f(\) = v/\.
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K
What if o = Zx,-p,- ?
i=1

/\Xn—i-l

s
|
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K
What if o = Zx,-p,- ?
i=1

_ /\Xn—i-l

s
|

o

— constant

()
VA
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K
What if o = Zx,-p,- ?
i=1

AX
n= TG RO,

(1) — constant = ﬁM,n{Wq>0} > a. (feR)

()
VA
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K
What if o = Zx,-p,- ?
i=1

/\Xn—i-l

= 7 - h(A
n p + B+ h(N),
(1) h\(};\) — constant = ﬁM,n{Wq>0} > a. (BeR)

s
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K
What if o = Zx,-p,- ?
i=1

/\Xn—i-l

= AT - h(A

n p + 8- h(A),
(1) h\(f))\\) — constant = Py {W,>0} > a. (B€R)
[2) h(}) — o0 = ;E)M,n{Wq >0} = a. (6>0)

s
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Theorem (Performance Measures)

Under the staffing level n/’g, as A — oo,

a. The long-term abandonment probability:

r—1

Puns {AB} ~ > pi(xi — xx)

i=1
b. Mean server's utilization:

EMy,,;;[U] ~ ZP: Z pi -
=il

i=k+1

c. Assume that for each / < x the equation G(y) = 1— = has

a unique solution y*, and g(y/) > 0. Then, the Iong—term
average waiting time

Euvg We] ~ [x,p, I G(u)du]
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long-term P{W>0}

O000@000000

Example: X takes the values 1.5, 1 and 0.5, with probability 1/3
for each.

0.8}

0.6}

0.4f

0.2t

Delay Probability

long-term P{Abandon}

0.7
0.6
0.5
0.4
0.3
0.2
0.1

Abandonment Probability

0.5
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Delay Probability Abandonment Probability
Y v — ‘ 1
AR j j + exactX =15
L J — approx X =1.5
0.9 = 0.8 + exac!XK:Kl
> o — APProx XK:1
é 0.8, N . 1 % 4+ exactX :?.5
o + exactX =15 '2 0. ++++ — approx X =0.5
e 0.7r — approx§K=1.5 1 T R e e S S S SRS
> + exactX =1
‘Q".J — APProx §<K:l é 0.4
8’ 0.6} + exactX =0.5 1 $
o — approx X,=0.5 87 ++
05} J S o2t Mt v v by oy o4 o4 o
e — =t + + + +
0.4 - . - by -
0 500 1000 1500 2000 0 e

0 500 1000 1500 2000

* )



Theoretical Results
000000®0000

ED Regime

¢ = 1, Continuous Random Arrival Rate

Assume M = M\ X, where X is a continuous random variable with
strictly continuous cdf F over the distribution support. Let

E[X] =1 and o(X) < co. Assume A\ — oo.

Theorem (Staffing)

a. The optimal staffing level satisfies

nt = A 5" +o(A), 0" € supp(f),
%

where §* is the unique solution of the equation

o :/5 xdF(x).

b. Introduce the staffing level n; =

o |-
Then the staffing level nj is both asymptotically feasible, as
well as asymptotically optimal (f(\) = ).

6™
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Theorem (Performance Measures)

Under the staffing level n§, as A\ — oo,

a. The short-term delay probability:
Puns{Wq >0} ~ F(5).
b. The long-term abandonment probability:
Punz {Ab} ~ (E[X]|X > 8] —8) - F(5).

c. The short-term abandonment probability:

Pu,ns{Ab} ~ E[1—6/X|X > 6] F(5).
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Theorem (Performance Measures). Continued.

d. Mean server's utilization:

1

Emn:[U] ~ <-E[X|X <] F(8)+ F(6).

|

e. Assume that for each x > ¢ the equation G(yx) = 1— g has

a unique solution y;, and g(y;) > 0. Then, the long-term
average waiting time

BvnslWo ~ [ [x: " Gy ) dF ().
[ [ )
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Examples: Consider three distributions of X

@ Uniform distribution on

[0.2].

@ Uniform distribution on [0.5,1.5].
@ Normal distribution with mean=1 and std=0.25.
§=0.75
Long-Term P{W, > 0} Short-Term P{W, > 0}
1 1
+ exact U(0,2)
= approx U(0,2)
+ exactU(0.5,1.5)
= = u u —_ = approx U(0.5,1.5)
(R 0.9 +++H_ﬂ_r ? 09 + exact Norm(1,0.25%)
= B e s s s s S S N 5 = —— approx Norm(1,0.25%)
o s e o e S T B e s < e R
£ 08 T exact U(0,2) £038 -
Q — approx U(0,2) o
: tU(0.5,1.5, bo! —
2 2 oo o518 5 i T
2 0.7t + exact Norm(1,0.25%) <07
— approx Norm(1,0.25%) e
%% 500 1000 1500 2000 06—
2 o 500 1000 1500 2000

I8
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0 =0.75

Long-Term P{Ab} Short-Term P{Ab}
0.4 0.4
T T T T T T _ T ;IJOZ+ T T s Ug’g)z
exact U(0, _— \
= —— approx EJ(O,)Z) = + 2522?3((;.5,1).5)
_8 0.35¢ + exact U{?g;f)s 8 0.35 — approx U(0.5,1.5) R
% — approx U(0.5,1.5) . 2 + exact Norm(1,0.25%)
+ exact Norm(1,0.25%) I — approx Norm(1,0.252
'3: — approx Norm(1,0.25%) -2
T 03[ i 03
5 T T T T T %
> | =
g2 0.25 £ (5 [THH————————
- S b . . . .
AR EERE SR L L i
0'20 500 1000 1500 2000 0.2
2 o) 500 1000 1500 2000

A
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Time - Varying Queues

@ Based on the ISA (lterative Staffing Algorithm), a simulation
code developed by Feldman['04] with the features of random
arrival rate in the time varying M/M/n+ G queue.

@ The goal is to determine time-dependence staffing levels
aiming to achieve a given constant-over-time long- term delay
delay probability, a.
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Time - Varying Queues

@ Based on the ISA (lterative Staffing Algorithm), a simulation
code developed by Feldman['04] with the features of random
arrival rate in the time varying M/M/n+ G queue.

@ The goal is to determine time-dependence staffing levels
aiming to achieve a given constant-over-time long- term delay
delay probability, a.

@ Example 1: ¢ = 1, Discrete Random Arrival Rate
o Mt:)\t'Xv where

15 w.p.1/3
At =100 — 20 - cos(t), and X = 1 wp.1/3
05 w.p.1/3

@ Service time and patience are distributed exponentially with
mean 1 (u=6=1).
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Time - Varying Queues

Target o=0.1

Arrivals, Offered Load and -
Staffing Level p

w

»

o

P A
[ —sams —oreoiom |

Target a=0.5 Target a=0.9

160 140
140 120

120
100

100
80

0
60

5
W “
2 2
0 o

0123456 78 91011121314 151617 18 19 20 21 22 23
Time

0123456 7 8 9101112131415 16 17 18 19 20 21 22 23
Time

“Arived  —Stafng  —Offered Load —Arived  —Staffing  —Offered Load
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Time - Varying Queues

@ Theoretical staffing level (homogenous arrival rate) depends
both on X and :

M | g | 2%

n=—+427
[ [

0B for x, = 1.5

123 4 5.6 7.8 9 10 11 1213 14 15 16 17 18 19 20 21 22,23

= [ is stabilized for target
« 0.1,0.2,0.3 and 0.4.

Time.

—Targetalpha=0.1  — Target alpha=0.2 Target alpha=03
= — = — 6

—Targetalpha=0.7 _ —Targelalpha=0.8  — Target alpha=0.9
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G for x, =1

e

j —
Ni 2 & 4 5 6.7,8 9 101112 13 14 15 16 17 18 19 20 21 22 23
\

N T T T
Time
—Targelaphaz0.1  — Target aipha=0.2 Targetalpha=0.3
Targetalphaz0.4  — Targetalpha=05  — Targetalpha=0
—Target alpha=0.7 _ — Targetalpha=08 _ — Target alpha=09

08 for x, = 0.5

0 1 2 3 4 5 65 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23
Time

—Targetalpha=0.2 Target alpha=0.3

—Targetalpha=0.1
Targetalphaz0.4  — Target alpha=0.5  —Target alpha=0.6

—Targetalpha=0.7 _ — Target alpha=08 _ — Target alpha=0.9

Time-Varying Queues

[e]e]e] le]e]

= [ is stabilized for target
0.6,0.7 and 0.8.

o =

= [ is stabilized for target
0.9

o =
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G for x, =1

e

= e
Ni 2 & 4 5 6.7,8 9 101112 13 14 15 16 17 18 19 20 21 22 23
\

\\\M T ﬁ‘\«,ﬁ,,/’“’\/\\ ~ ‘/A/V“\Hwy N
08 for x, = 0.5

0 1 2 3 4 5 65 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23
Time

Target alpha=0.3

Targetalpha=0.4  — Target

‘ —Targetalpha=0.1  — Target alpha=0.2

—Targetalpha=0.7 _ — Target alpha=08 _ — Target alpha=0.9

Time-Varying Queues
000000

= [ is stabilized for target
0.6,0.7 and 0.8.

o =
What about target a = 0.5 7

Extreme values (-2.3, 2.1 &
10) and noisy

= [ is stabilized for target
0.9

o =
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1
09
08
07
06
05
04
03
02
01

0

Delay Probability (Target)

0 1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23
Time

—Targetalpha=0.1 —Targetalpha=0.2  Target alpha=0.3

Target alpha=0.4 — Target alpt — Target alpha=0.6

— Target alpha=0.7 — Target alpha=0.8 — Target alpha=0.9

Delay Probability

Time-Varying Queues

[e]e]e]e] Te]

Theoretical and Empirical Delay

Probability vs. x. and 3

\ Xk=0.5
Xk=1
Xk=15
-2 -1 o 1 3
Beta

— Theoretical © Empirical
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Time - Varying Queues

Abandonment Probability Abandonment Probability - Low a’s

0s 008
0s 00s
04 004
0s 008

PYPR Y SR A4 N AR VN4 M S =
02

001 WN’\WV‘V’\W\V/J‘W
o1 e e N et N N s

0
0 0 1 23 45 6 7 8 9 1011121314 1516 1718 10 20 21 22 28
01 2 3 45 6 7 8 910111213 1415 16 17 18 19 20 21 22 23 Time

Time
— Targetalpha=0.1 —Targetalpha=0.2  Target alpha=0.3

—Targetapha-o1 — Target aphaso.2 ‘

Target alpha=0.3 Target alpha=0.4
Target alpha=0.4 ——Target alpha=0.5 ——Target alpha=0.6 arget alpha rget alpha

—Target alpha=0.7 —Target alpha=0.8 —— Target alpha=0.9
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Time - Varying Queues

Abandonment Probability Abandonment Probability - Low a’s

06 008
0s 00s
04 004
0s 008
PYPR Y SR A4 N AR VN4 M S =
02
001 WMM\WWW
o1 e e N et N N s
0
0 0 1 23 45 6 7 8 9 1011121314 1516 1718 10 20 21 22 28
01 2 3 45 6 7 8 910111213 1415 16 17 18 19 20 21 22 23 Time
Time
— Target apha0.1 — Tagetapha=02
——Target alpha=0.1 ——Target alpha=0.2 Target alpha=0.3
Target aiphaz03 Targetapha=o 4
Target alpha=0.4 ——Target alpha=0.5 ——Target alpha=0.6 oet ale! get alp!
— Targetalpha=0.7 —Target apha=08 — Target alpha=0.9

Servers’ Utilization

04
03
02
01
0
0 1 2 3 45 6 7 8 9 1011 1213 14 15 16 17 18 19 20 21 22 23
Time
—Targetalpha=01 —Targetalpha=02  Target alpha=0.3
Target alpha=04 — Target alpha=0.5 —— Target alpha=0.6

— Targetalpha=0.7 —Target alpha=0.8 — Target alpha=0.9
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Time - Varying Queues

@ Example 2: ¢ =1, Continuous Random Arrival Rate
Q M; =\ X, where
A¢ =100 — 20 - cos(t), and X ~ Uni[0.5,1.5].

@ Service time and patience are distributed exponentially with
mean 1 (u=460=1).
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Time - Varying Queues

@ Example 2: ¢ =1, Continuous Random Arrival Rate
Q M; =\ X, where
A¢ =100 — 20 - cos(t), and X ~ Uni[0.5,1.5].
@ Service time and patience are distributed exponentially with

mean 1 (u=460=1).

@ Theoretical staffing level (homogenous arrival rate) depends
on the QOS parameter §:



T

09
08
07
06
05
04
03
02
01

ime - Varying Queues

Delay Probability (Target)

0 1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23
Time
— Targetalpha=0.1 — Targetalpha=0.2  Target alpha=0.3
Target alpha=0.4 — Targetalpha=0.5 ——Target alpha=0.6

— Target alpha=0.7 —Target alpha=0.8 — Target alpha=0.9

Time-Varying Queues
oe0

QOSs ¢

0 1 2 3 4 5 6 7 8 9 1011 1213 14 15 16 17 18 19 20 2 22 23

Time
—Targetalpha=0.1  — Target alpha=0.2 Target alpha=0.3

Targetalpha=04  — Targetalpha=05  — Target alpha=0.6
—Targetalpha=0.7  —Targetalpha=08 _ — Target alpha=09
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Time - Varying Queues

Delay Probability (Target) QOS §

1
10
09
16
08
14
07
12
06
'
0s
o8
04 A A e e e e e A et e e e
0a s
03
0s
02 A A A AN e P e Ao
02
01 f At s s e e
o
0 0 1 2 8 4 5 6 7 5 5 i i3 i s 16 p 181w ; 2
0 1 2 3 45 6 7 8 0 10111213 141516 17 18 19 20 21 22 23 Time
Time a0l —Tageapaoz | Tagelapos
e AT Tagm ez Tageammo Targetapha=04  — Target aphaz0s  — Target apha=0.5
—Targetapha=07 _ —Targetalpha=08 _ — Target apha=0.3
Target alpha=0.4 — Target alpha=0.5 —Target alpha=0.6

— Target alpha=0.7 —Target alpha=0.8 — Target alpha=0.9

Delay Probability vs. §
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08
07
06

0s

Delay Probability
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Appendix 1

Denote

Then,




Appendix 2

Proof Outline (c = 1, Discrete Random Arrival Rate)
L n= e gg M o) = ML o0
n p p

Xi
= for i < k (xi > xi) we are in the ED regime, for i = k in the QED
regime, and for i > K (xi < x,;) in the QD regime.

2. Jim Py {W, >0} = Jim_E[XPu»{ W, > 0}]
k—1
= E)\Ii_)moo {XPu,{Wy > 0}} = ;X,'p,' + XuPr - .
3. For a certain value xs of X, the asymptotic long-term delay probability is
bounded in the open interval A; = (Zf;ll XiPi, Y oiq x,-p,-). = There is a
unique s which for a € As.




Appendix 2

Proof Outline (c = 1, Discrete Random Arrival Rate)

4. For some ¢ > 0 define

m £ ’V)\Xm-f—(ﬂ*—(f) )\XN-‘; ny z {m+(ﬂ*+€) )\XNJ,
1 1 1 \/ 1

o Garnett function is strictly decreasing in (3

= ﬁM,nl{Wq >0} —a+m7; ﬁl\/l,nz{Wq >0} > a—1.
= For large A
'BM,m{Wq >0} >a+m7/2; :E’M,nz{Wq >0} <a—m1m/2

e Delay probability is monotonically decreasing in number of
servers

= m < n*<n.

e ¢ > 0 is arbitrary = q.e.d.
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