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Motivation

A standard assumption in the modeling of a service system
postulates that the arrival process is a Poisson process with known
parameters. For example, the prevalent approach in call centers is
to assume known arrival rates for each basic interval (say,
half-hour).

However, as a rule, call centers data contradicts this assumption
and shows a larger variability of the arrival process than the one
expected from the Poisson hypothesis.

We explain this over-dispersion by the natural uncertainty of the
arrival rate.
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Model Definition

The M?|M|n + G Queue:

λ - Expected arrival rate of a Poisson arrival process.

µ - Exponential service rate.

n service agents.

G - Patience distribution. Assume that the patience density
exist at the origin and its value g0 is strictly positive.

Random Arrival Rate: Let X be a random variable with cdf F ,
E [X ] = 0, and finite σ(X ). Assume that the arrival rate varies
from day to day in an i.i.d. fashion:

M = λ + λcX , c ≤ 1,

c ≤ 1/2: Conventional variability.

1/2 < c < 1: Moderate variability.

c = 1: Extreme variability.
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The Case of a Financial Call Center

Our study focuses on the arrival counts to the Retail queue.

We consider 263 regular weekdays ranging between April 2007
and April 2008.

Holidays which exhibit different daily patterns are excluded
from our analysis.

Each day is divided into 48 half-hour intervals.
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The Case of a Financial Call Center

Coefficient of Variation
sampled CV- solid line, Poisson CV - dashed line
Coefficient of Variation Per 30 Minutes, seperated weekdays
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The Case of a Financial Call Center

Average Number of ArrivalsAverage Arrival Per 30 Minutes, seperated weekdays
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The Case of a Financial Call Center

Basic definitions and notation:

λid - The expectation of arrival volume in the i th interval for
day type d , i = 1, 2, . . . , 48 and d = 1, 2, 3, 4.

σid - The std of arrival volume for the i th interval for day type
d .

cd - The uncertainty coefficient for day type d .

λ̂id - The average call volume in the i th interval over all days
of type d .

σ̂id - The sampled standard deviation of call volumes in the
i th interval over all days of type d .
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The Case of a Financial Call Center

1. Relation between λid and σid:

Consider a Poisson mixture variable Y with random rate
M = λ + λc · X , where E [X ] = 0, finite σ(X ) > 0 and
1/2 < c ≤ 1. Then,

Var(Y ) = λ2c · Var(X ) + λ + λc · E (X ).

Given λ →∞
σ(Y ) ∼ λc · σ(X ), 1

and
ln(σ(Y )) ∼ c · ln(λ) + ln(σ(X )).

1f (λ) ∼ g(λ) denotes that limλ→∞ f (λ)/g(λ) = 1.
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The Case of a Financial Call Center

Mondaysln(sd) vs ln(average) per 30 minutes. Sundays
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Results:

Two clusters exists. Denote j(i) = 1 for i = 1, 2, . . . , 21, and
j(i) = 1 for i = 22, 23, . . . , 48.
Very good fit (R2 > 0.97).
Significant linear relations:

ln(σid) = cdj(i) · ln(λid) + ln(σ(Xdj(i))) ∀ d , i
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The Case of a Financial Call Center
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The Case of a Financial Call Center

2. Fitting a Gamma Poisson mixture model to the data:
(Jongbloed and Koole [’01])

Assume a prior Gamma distribution for the arrival rate

λ + λcX
d
= Gamma(a, b). Then, the distribution of Y is Negative

Binomial.

1 Maximum likelihood estimators of a and b.

2 Goodness of fit test including FDR control method to correct
the multiple comparisons.
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The Case of a Financial Call Center

H0,id : Mid
d
= Gamma(âid , b̂id)
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The Case of a Financial Call Center

3. Relation between our main model and Gamma Poisson
mixture model:

Let M = λ + λcX
d
= Gamma(a, b). Then,

E [M] = ab = λ; Var(M) = λb and Var(X ) = λ1−2c · b.

We derive the following relations

b = σ2(X ) · λ2c−1,

a = σ−2(X ) · λ2−2c .

and conclude that

ln(b) = (2c − 1) · ln(λ) + ln(σ2(X )).
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The Case of a Financial Call Center

Mondaysln(sd) vs ln(average) per 30 minutes. mondays
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The Case of a Financial Call Center
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The Case of a Financial Call Center

4. Asymptotic distribution of X:

X =
M − λ

λc
=

M − ab

(ab)c
=

M − E [M]

σ(M)/σ(X )

Let Wa
d
=

Gamma(a, b)− ab

b
√

a
=

Gamma(a, 1)− a√
a

.

Then lim
a→∞

MGFa(t) = et2/2, t ∈ R, and this limit is the moment

generating function of the standard normal distribution Norm(0, 1).

Conclusion: As λ →∞ (equivalent to a →∞), the random
variable X/σ(X ) converges in distribution to a standard normal
distributed variable.

X

σ(X )
D→ Norm(0, 1).
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The Case of an Emergency Department

Consider 194 weeks between from January 2004 till October
2007 (five war weeks are excluded from data).

The analysis is performed using two resolutions: hourly arrival
rates (168 intervals in a week) and three-hour arrival rates (56
intervals in a week).

Meanwhile, we do not clean our data (Jewish holidays are not
excluded as they should be).
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Coefficient of Variation

1 Arrival-Rate Variability: The Case of Emergency

Department

Consider 194 weeks between from January 2004 till October 2007 (five war weeks are excluded
from data). The analysis is performed using two resolutions: hourly arrival rates (168
intervals in a week) and three-hour arrival rates (56 intervals in a week). Meanwhile, we do
not clean our data (Jewish holidays are not excluded as they should be).

First, we redraw Figure 1.2 from Section 1.6 on Financial call center, comparing between
coefficient of variation and inverted square root of mean arrival rates. Figure 1 shows that,
in contrast to the call center study, inverted square root of mean is relatively close to CV’s.
Peaks at graphs correspond to night periods with small arrival rates.

Therefore, variability of arrival rates at this resolution is somewhat larger (but not much
larger) the the variability of iid Poisson random variables.

Figure 1: Coefficient of variation
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If we fit regression model of ln(σ) versus ln(λ), Figure 2 demonstrates a linear pattern
with the slope that is very close to 0.5.

Note. Derivation of asymptotic linear relation (1.35) in Section 1.6 is based on c > 1/2.
It is unclear how it works for c that is close to 1/2 and relatively small λ.

Finally, Figure 3 shows that if we increase time resolution, variability of arrival rates is
significantly larger than the variability of iid Poisson random variables.

1

In contrast to the call center study, inverted square root of
mean is relatively close to CV’s.

Peaks at graphs correspond to night periods with small arrival
rates.
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The Case of an Emergency Department

ln(σ) versus ln(λ) plots
Figure 2: ln(σ) versus ln(λ) plots
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Figure 3: Coefficient of variation

Eight-hour resolution One-day resolution

2

A linear pattern with the slope that is very close to 0.5.

Derivation of the asymptotic linear relation is based on
c > 1/2. It is unclear how it works for c that is close to 1/2
and relatively small λ.
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Practical Guidelines

Determine ”uncertainty coefficient c” via regression analysis.

Check if Gamma model is reasonable.

Calculate X distribution (asymptotic analysis).

Apply our QED-c results in order to determine appropriate
staffing.
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Queues Performances in a Random Environment

Assume a set of D days. At each day an arrival rate, m, is
independently generated. Let Y be a system performance measure,
and denote by YM the corresponding random performance measure
in the random environment.

Denote:

arrj - Number of arrivals on day j

yj - The value of the performance measure YM , on day j .

If the performance measure is related to system performance, e.g.
offered load and queue length, by SLLN

Ȳ =
1

D

D∑
j=1

yj
D↑∞−→ E [YM ] .
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Queues Performances in a Random Environment

We classify performance measures that relate to the customers,
e.g. delay probability and waiting time, into two classes:

Short-Term Performance Measure: What will happen
tomorrow?

Ȳ =
1

D

D∑
j=1

yj
D↑∞−→ E [YM ] .

Long-Term Performance Measure: What would be the
performances in the long-run?

Ỹ =

∑D
j=1 arrj · yj∑D

j=1 arrj

D↑∞−→ E [M · YM ]

E [M]
> Ȳ .
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performances in the long-run?

Ỹ =

∑D
j=1 arrj · yj∑D

j=1 arrj

D↑∞−→ E [M · YM ]

E [M]
> Ȳ .
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Queues Performances in a Random Environment

Lemma

Assume that the system is in steady state. The long-term value
and the short-term value of YM are asymptotically equivalent for all
c < 1.

lim
λ→∞

E [M · YM ]

E [M]
= lim

λ→∞
E [YM ] .

Remark: Note that the above does not hold for c = 1. In this
work we focus on long-term performance measures. The
techniques of solutions, when considering the short-term
performance measures, are similar.
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QED-c Regime

QED-c staffing rule:

n =
λ

µ
+ β

(
λ

µ

)c

+ o(
√

λ), β ∈ R, c ∈ (1/2, 1).

Assume an M|M|n + G queue with fixed arrival rate λ.

Take λ to ∞.

β > 0: Over-staffing.

β < 0: Under-staffing.

For both cases we provided asymptotically equivalent expressions
(or bounds) for P{Wq > 0}, P{Ab|V > 0} and E [V |V > 0].
Calculations, based on building blocks from Zeltyn[’05], are carried
out via the Laplace Method.
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Square-Root Staffing versus QED-c staffing

QED-c Staffing
R = λ/µ β SRS2

c = 0.6 c = 0.75 c = 0.9

100
0.5 105 108 (+3%) 116 (+10%) 132 (+25%)
1 110 116 (+5%) 132 (+20%) 163 (+48%)

1.5 115 124 (+8%) 147 (+28%) 195 (+69%)

500
0.5 511 521 (+2%) 553 (+8%) 634 (+24%)
1 522 542 (+4%) 606 (+16%) 769 (+47%)

1.5 534 562 (+5%) 659 (+23%) 903 (+69%)

1000
0.5 1016 1032 (+2%) 1089 (+7%) 1251 (+23%)
1 1032 1063 (+3%) 1178 (+14%) 1501 (+46%)

1.5 1047 1095 (+5%) 1267 (+21%) 1752 (+67%)

2000
0.5 2022 2048 (+1%) 2150 (+6%) 2468 (+22%)
1 2045 2096 (+2%) 2300 (+12%) 2936 (+43%)

1.5 2067 2143 (+4%) 2449 (+18%) 3403 (+65%)

2Square-Root-Staffing
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QED-c Regime

Theorem

Assume random arrival rate M = λ + λcµ1−cX , c ∈ (1/2, 1),
E [X ] = 0, finite σ(X ) > 0, and staffing according to the QED-c
staffing rule with the corresponding c . Then, as λ →∞,

a. Delay probability: PM,n{Wq > 0} ∼ 1− F (β).

b. Abandonment probability: PM,n{Ab} ∼ E [X − β]+
n1−c

.

c. Average waiting time: EM,n[Wq] ∼
E [X − β]+
n1−c · g0

Remark: For simplifying the formulae we take
M = λ + µ1−c · λcX instead of M = λ + λcX .
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QED-c Regime

Examples: Consider two distributions of X

Uniform distribution on [-1,1],

Standard Normal distribution.
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QED-c Regime

(2) β = 0.5, c = 0.6
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Constraint Satisfaction

Formulation of the Problem:

Define the optimal staffing level by

n∗λ = argmin
n

{
P̃M,n{Wq > 0} ≤ α

}
.

The staffing level nλ is called asymptotically feasible if

lim sup
λ→∞

P̃M,nλ
{Wq > 0} ≤ α.

In addition, nλ is asymptotically optimal if

|n∗λ − nλ| = o(f (λ)).
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QED Regime

c = 1/2
Assume M = λ +

√
µλ · X , E [X ] = 0 and finite σ(X ) > 0. Let

λ →∞.

Theorem (Staffing)

a. The optimal staffing level satisfies

n∗ =
λ

µ
+ β∗

s
λ

µ
+ o(

√
λ),

where β∗ is the unique solution of the equation

α = E [α(β − X )]

with respect to the unknown β.
α(·) is the Garnett function

α(β) =

"
1 +

r
g0

µ
·
h(β
p

µ/g0)

h(−β)

#−1

.
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QED Regime

Theorem (Staffing). Continued.

b. Introduce the staffing level

n∗β =

&
λ

µ
+ β∗

s
λ

µ

’
.

Then the staffing level n∗β is both asymptotically feasible and

asymptotically optimal (f (λ) =
√

λ)

Proof Outline

Given X=x,

nβ =
λ

µ
+ β ·

s
λ

µ
=

λ +
√

µλ · x
µ

+ b(β, x) ·

s
λ +

√
µλ · x

µ

⇒ as λ →∞, b(β, x) ∼ β − x .
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QED Regime

Theorem (Performance Measures)

Under the square-root staffing level, as λ →∞,

a. PM,n∗β
{Ab} ∼ 1√

n
· E (γ∗X ). γ∗X

b. ρn∗β
= 1− β∗√

n
+ o

(
1√
n

)
.

c.
PM,n∗β

{Ab}
EM,n∗β

[Wq]
∼ g0.
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QED Regime

c < 1/2

Assume Λ = λ + µ1−cλc · X , c < 1/2, E [X ] = 0 and finite
σ(X ) > 0. Let λ →∞.

Lemma

Assume the square-root staffing level

n =
λ

µ
+ β

s
λ

µ
+ o(

√
λ), −∞ < β < ∞

Then, asymptotically, the random part of the arrival rate does not
affect the system’s performances. Namely, the queue is asymptoti-
cally equivalent to the M|M|n + G queue with deterministic arrival
rate λ, for all c < 1/2.
The M|M|n+G queue was analyzed comprehensively by Zeltyn[’05].
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ED Regime

c = 1, Discrete Random Arrival Rate

Assume M = λX , where X is a discrete random variable which
takes values x1 > x2 > . . . > xI > 0, with probabilities
p1, p2, . . . , pI , respectively. In addition, let E [X ] = 1, σ(X ) < ∞
and λ →∞.

Let

κ = argmin
s

{
s∑

i=1

xipi ≥ α

}
.

Assume that the inequality is strict.

Define

α∗
4
=

α−
∑κ−1

i=1 xipi

xκpκ
.
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ED Regime

Theorem (Staffing)

a. The optimal staffing level satisfies

n∗ =
λxκ

µ
+ β∗

s
λxκ

µ
+ o(

√
λ);

here β∗ is the unique solution of the equation

α∗ =

"
1 +

r
g0

µ
·
h(β
p

µ/g0)

h(−β)

#−1

.

b. Introduce the staffing level

n∗β =

&
λxκ

µ
+ β∗

s
λxκ

µ

’
.

Then the staffing level n∗β is both asymptotically feasible, as

well as asymptotically optimal with f (λ) =
√

λ.
Proof
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ED Regime

What if α =
κ∑

i=1

xipi ?

n =
λxκ+1

µ
+ β · h(λ),

1
h(λ)√

λ
→ constant ⇒ P̃M,n{Wq > 0} > α. (β ∈ R)

2
h(λ)√

λ
→ ∞ ⇒ P̃M,n{Wq > 0} = α. (β > 0)
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ED Regime

Theorem (Performance Measures)

Under the staffing level n∗β, as λ →∞,

a. The long-term abandonment probability:

ePM,n∗
β
{Ab} ∼

κ−1X
i=1

pi

`
xi − xκ).

b. Mean server’s utilization:

EM,n∗
β
[U] ∼

κX
i=1

pi +
IX

i=κ+1

pi ·
xi

xκ
.

c. Assume that for each i < κ the equation G (y) = 1− xκ
xi

has

a unique solution y∗i , and g(y∗i ) > 0. Then, the long-term
average waiting time

eEM,n∗
β
[Wq] ∼

κ−1X
i=1

"
xipi ·

Z y∗i

0

Ḡ(u)du

#
.
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ED Regime

Example: X takes the values 1.5, 1 and 0.5, with probability 1/3
for each.
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ED Regime

β = −1
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ED Regime

c = 1, Continuous Random Arrival Rate

Assume M = λX , where X is a continuous random variable with
strictly continuous cdf F over the distribution support. Let
E [X ] = 1 and σ(X ) < ∞. Assume λ →∞.

Theorem (Staffing)

a. The optimal staffing level satisfies

n∗ =
λ

µ
· δ∗ + o(λ), δ∗ ∈ supp(f ),

where δ∗ is the unique solution of the equation

α =

Z ∞
δ

xdF (x).

b. Introduce the staffing level n∗δ =

‰
λδ∗

µ

ı
.

Then the staffing level n∗δ is both asymptotically feasible, as
well as asymptotically optimal (f (λ) = λ).
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ED Regime

Theorem (Performance Measures)

Under the staffing level n∗δ , as λ →∞,

a. The short-term delay probability:

P̄M,n∗
δ
{Wq > 0} ∼ F̄ (δ).

b. The long-term abandonment probability:

ePM,n∗
δ
{Ab} ∼ (E [X |X > δ]− δ) · F̄ (δ).

c. The short-term abandonment probability:

P̄M,n∗
δ
{Ab} ∼ E [1− δ/X |X > δ] · F̄ (δ).
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ED Regime

Theorem (Performance Measures). Continued.

d. Mean server’s utilization:

EM,n∗
δ
[U] ∼ 1

δ
· E [X |X < δ] · F (δ) + F̄ (δ).

e. Assume that for each x > δ the equation G (yx) = 1− δ
x has

a unique solution y∗x , and g(y∗x ) > 0. Then, the long-term
average waiting time

eEM,n∗
δ
[Wq] ∼

Z ∞
δ

 
x ·
Z y∗x

0

Ḡ(u)du

!
dF (x).



Introduction Theoretical Results Time-Varying Queues

ED Regime

Examples: Consider three distributions of X

Uniform distribution on [0,2].

Uniform distribution on [0.5,1.5].

Normal distribution with mean=1 and std=0.25.
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ED Regime

δ = 0.75
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Time - Varying Queues

Based on the ISA (Iterative Staffing Algorithm), a simulation
code developed by Feldman[’04] with the features of random
arrival rate in the time varying M/M/n + G queue.

The goal is to determine time-dependence staffing levels
aiming to achieve a given constant-over-time long- term delay
delay probability, α.

Example 1: c = 1, Discrete Random Arrival Rate
1 Mt = λt · X , where

λt = 100− 20 · cos(t), and X =

 1.5 w .p. 1/3
1 w .p. 1/3
0.5 w .p. 1/3

2 Service time and patience are distributed exponentially with
mean 1 (µ = θ = 1).
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Time - Varying Queues

Arrivals, Offered Load and
Staffing Level

Target α=0.1Target alpha=0.1: Arrivals, Offered Load and Staffing Level
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Time - Varying Queues

Theoretical staffing level (homogenous arrival rate) depends
both on X and β:

n =
λxκ

µ
+ β

√
λxκ

µ
.

β for xκ = 1.5Beta for X=1.5
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⇒ β is stabilized for target
α = 0.1, 0.2, 0.3 and 0.4.
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Time - Varying Queues

β for xκ = 1Beta for X=1
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Time - Varying Queues
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Time - Varying Queues

Delay Probability (Target)Delay Probability

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Time

Target alpha=0.1 Target alpha=0.2 Target alpha=0.3

Target alpha=0.4 Target alpha=0.5 Target alpha=0.6

Target alpha=0.7 Target alpha=0.8 Target alpha=0.9

Theoretical and Empirical Delay

Probability vs. xκ and βTheoretical and Empirical Delay Probability vs. Beta

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-3 -2 -1 0 1 2 3

Beta

D
el

ay
 P

ro
ba

bi
lit

y

Theoretical Empirical

Xk=0.5

Xk=1

Xk=1.5



Introduction Theoretical Results Time-Varying Queues

Time - Varying Queues
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Time - Varying Queues

Example 2: c = 1, Continuous Random Arrival Rate

1 Mt = λt · X , where

λt = 100− 20 · cos(t), and X ∼ Uni[0.5, 1.5].

2 Service time and patience are distributed exponentially with
mean 1 (µ = θ = 1).

Theoretical staffing level (homogenous arrival rate) depends
on the QOS parameter δ:

n =
λ

µ
· δ
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Time - Varying Queues
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Time - Varying Queues
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Thank You
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Appendix 1

c = 1/2, γ∗X

Denote

β∗x = β∗ − x ,

β̂∗x = β∗x

r
µ

g0
= (β∗ − x) ·

r
µ

g0
.

Then,

γ∗x = α · β∗x ·

"
h(β̂∗x )

β̂∗x
− 1

#
.

Back
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Appendix 2

Proof Outline (c = 1, Discrete Random Arrival Rate)

1. n =
λxκ

µ
+ β

s
λxκ

µ
+ o(

√
λ) =

λxi

µ
· xκ

xi
+ o(λ)

⇒ for i < κ (xi > xκ) we are in the ED regime, for i = κ in the QED
regime, and for i > κ (xi < xκ) in the QD regime.

2. lim
λ→∞

ePM,n{Wq > 0} = lim
λ→∞

E [XPM,n{Wq > 0}]

= E lim
λ→∞

{XPM,n{Wq > 0}} =
κ−1X
i=1

xipi + xκpκ · α∗.

3. For a certain value xs of X , the asymptotic long-term delay probability is
bounded in the open interval As =

`Ps−1
i=1 xipi ,

Ps
i=1 xipi

´
. ⇒ There is a

unique s which for α ∈ As .
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Appendix 2

Proof Outline (c = 1, Discrete Random Arrival Rate)

4. For some ε > 0 define

n1
4
=

&
λxκ

µ
+ (β∗ − ε)

s
λxκ

µ

’
; n2

4
=

$
λxκ

µ
+ (β∗ + ε)

s
λxκ

µ

%
.

Garnett function is strictly decreasing in β

⇒ P̃M,n1{Wq > 0} → α + τ1 ; P̃M,n2{Wq > 0} → α− τ2.

⇒ For large λ

P̃M,n1{Wq > 0} > α + τ1/2 ; P̃M,n2{Wq > 0} < α− τ2/2.

Delay probability is monotonically decreasing in number of
servers

⇒ n1 ≤ n∗ ≤ n2.

ε > 0 is arbitrary ⇒ q.e.d. Back
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