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Work-Force and Bed Capacity Planning

Total health expenditure as percentage of gross
domestic product: Israel 8%, EU 10%, USA 14%.

Human resource constitute 70% of hospital expenditure.

There are 3M registered nurses in the U.S. but still a
chronic shortage.

California law set nurse-to-patient ratios such as 1:6 for
pediatric care unit.

O.B. Jennings and F. de Véricourt (2008) showed that
fixed ratios do not account for economies of scale.

Management measures average occupancy levels,
while arrivals have seasonal patterns and stochastic
variability (Green 2004).
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Research Objectives

= Analyzing model for a Medical Unit with s nurses
and n beds, which are partly/fully occupied by
patients: semi-open queueing network with multiple
statistically identical customers and servers.

m Questions addressed: How many servers (nurses)
are required (staffing), and how many fixed
resources (beds) are needed (allocation) in order to
minimize costs while sustaining a certain service
level?

= Coping with time-variability
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We Follow -

m Basic:
e Halfin and Whitt (1981)
e Mandelbaum, Massey and Reiman (1998)
e Khudyakov (2006)

m Analytical models in HC:

e Nurse staffing: Jennings and Véricourt (2007), Yankovic
and Green (2007)

e Beds capacity: Green (2002,2004)

m Service Engineering (mainly call centers):

e Gans, Koole, Mandelbaum: “Telephone call centers:
Tutorial, Review and Research prospects”



The MU Model as
a Semi-Open Queueing Network

N beds

_________________________________________________________________________________

Patient is Needy
Arrivals
from the
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Bed in Cleaning
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. Service times are Exponential; Routing is Markovian
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The MU Model as a

Closed Jackson Network
Arrivals: -\M\1, A
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Needy: \M\s, 1

Dormant: *\M\co, O
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Statlonary Distribution

‘ k
ﬂL( : )l(_&)]l(ﬁ) . 0<i+j+k<n,
(i, j, k}:{ D“VH -p) T \T—p18) #\5 <itj+k<

, otherwise.

Here (i) is defined as

. i! i<s,
v(i) =
sle' ™% Q= s,

where 7 is given by (see Appendix A)
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Service Level Objectives
(Function of A,u,38,y,p,s,n)

= Blocking probability

m Delay probability

= Probability of timely service (wait more than t)
m Expected waiting time

m Average occupancy level of beds

m Average utilization level of nurses
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Blocklng probability

m The probability to have / occupied beds in
the ward:

- .
Pio= ) wlijk)=) 3 w(ijl—i-j)

k=0 i=0 j=0

k=l
(1 A pA A\
& (f‘((l P (- P}5+_)

A 1/ pr )y 1 (E)*“ﬂ
21;(5- )(fl—}?‘}ﬂ) J'((l—plé) (I—i=3) \ )
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Probablllty of tlmely service and the Delay
Probability

= What happens when a patient becomes needy ? -

e He will need to wait an in-queue random waiting time that
follows an Erlang distribution with (i-s+1)* stages, each

with rate ps.
= What is the probability that this patient will find ¢

other needy patients? 0|
e We need to use the Arrival Theorem

11



i Needy patients
A
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Patient become Needy ——
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The Arrival Theorem

The Arrival Theorem. In a closed Jackson network, the arrival at (or the departure

Ja

from) any node observes time averages, with the job itself excluded. In particular, the
probability that the network is in state’ x — e; immediately before an arrival (or imme-

diately after a departure) epoch at node i is equal to the ergodic distribution, of a closed

network with one fewer job, in state ¥ — e;.

Thus, the probability that a patient that
become needy will see / needy patients Iin

the systemis __ (i,],k)

13



Probablllty of timely serwce‘and the Delay
Probability

n—1 1 min{ms—1}

PW=0=> Y Y wim-il-m)

[=0 m=0 =0
n—1
PW<t)=PW=0)+ Z P(there are (i — s 4 1) patients who ended

their service on time < t|Arrival at the needy state found i needy patients)-

f?rA(i,m—i,.-!—m} =
n—1 I m i—s (,‘.L.S’t)h
=1- Z Z Zﬁﬂ_l(a’,m — 1,1 — m}z o e Hst,

E:S =5 'i=S h:ﬂ

n—1 | m

- S(“St)h —pist
P(W >t) = YYYﬂn_lﬂm—ﬂﬁ— }Z N e M
h=0 ’

=5 m=s i=s

n—1 1 m

PW >0) = Z?Tn_l(i,j, E)y=>» >» » mna(i,m—i,l—m)

i>s =5 M=s i=s

14




Expected waiting time

= via the tail formula:

oo con—1 I m ils ,
EW]= / P(W > t)dt = / S5 N meaiom— it -m) Y (#zf) st gy
v 0 =5 m=s i=s b0 1
n—1 ! s i—a . A
:S:Ya?:ﬂn—l(?::m-_?:,i—m)hzn A %E—ﬁ.ﬁttﬂ:
=5 m=s i1=s —
n—1 I m ils
- S: S: S: TITir:,—l(?::-?'ﬂ- — 3,1 — m)z i
=5 M=s j=3s P

n—1 1 m

:iy:S:;:Trn_l(i,m—i,ﬁ—m}(i—s—k 1).

g
K =8 m=s i=s
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QED Q’s:
Quality- and Efficiency-Driven Queues

m [raditional queueing theory predicts that service-
quality and server’s efficiency must trade off
against each other.

m Yet, one can balance both requirements carefully
(Example: in well-run call-centers, 50% served
“immediately”, along with over 90% agent’s
utilization, is not uncommon)

m This is achieved in a special asymptotic operational
regime — the QED regime

16
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QED Regime characteristics

High service quality
High resource efficiency
Square-root staffing rule

| A )
(i) s J\/(l — +o(VA), /

The offered load at
service station 1 (needy)

The offered load at non-
service station 2+3
(dormant + cleaning)

—o0 < B < o0

DA A
(ii) n—s n\/(lpp)(‘i + er O(\T)\): —00 < 1) < 00

Many-server asymptotic
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Probability of Delay
n—1 | m
PW > 0) Z?Tn 1(2, 9, k) y:yy:?rn_l(i,m—i?l—m)

Theorem 2. Let the variables A, s and n tend to oo simultaneously and satisfy the QE D conditions.

Then

1

fio@(ﬁﬂﬁ—t f)d@t )

lim P(W >0)= |1+
( o) _ M) ot gy )

A—oo

J&]

. _ Ry by — . —1
where B = RG‘F\IRD = Tpad ey M =1 Gy B—1L.

m The probability is a function of three
parameters: beta, eta, and offered-load-ratio
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Expected Waiting Time

EW]| = —> > > Tno1(t,m —i,l —m)(i —s+ 1)

I—: m=s j—c¢

Theorem 4. Let the variables A, s and n tend to oo simultaneously and satisfy the QFE ) conditions.
Then

¢~(6}‘1’(ﬁ') 1 Ly £ 5'?1@ (m) (_ ~ VB l)

L 1 B 6
lim /sE[W]=
e M@ (04 (8- )x/B) d(t) + 22— A o3 g (o)

where B = w2 = #m+(i_p)5); m=n—p3vBL

R+ FRp

= Waiting time is one order of magnitude
less then the service time. 10



Probability of Blocking

1 A A A)f
P= -+ + —
f “(f* ((1—;0);: (1=p) "~

I 1= i ' l—i—j

1 1 A 1 pA )-? 1 (A) J
+ I —— = || ] = — | =
= }2521; (3131‘5 %!) ((1—17’)»“) 7! ((1—19)5 (== \~

Theorem 6. Let the variables A, s and n tend to oo simultaneously and satisfy the QFE D conditions.

d~y
Define B = Rc+RD = A=) then
W 0y .J?z
lim /sP(block) = v6(1)2(2) + GV + )T m) (5.9)
A—oo 3 d(3)P(n) d(v/2+32) 1,2 >
f‘_m@(ﬁ—k(,@—t)x/ﬁ) d(t) + A AT et (i)
. I - _ 1 oW B-143 _ﬁv’B—l—n

where my =n— 5 V= e = g V2 = gt

= P(Blocking) << P(Waiting) “



Approximation vs. Exact Calculation —
Medium system (n=35,50), P(W=>0)

=35; lambda = 10; delts = 0.25; mu Elgmm =5 p=05

—G—E ct

0ar i —=— Approx |

EDImhd =10; delts = 0.5; mu 1gmm 1I:I|:| 0.5

1] 5 1EI 15 EEI 25 SD 35 aiEI dE i
g

(b)



Approximation vs. Exact Calculation —

P(blocking) and E[W]

Piblockinog)

0.7

=1
fal

= = =
(5] =5 LT
T

=
[

=
—_

1]
10

n =20; lambda = 10; delta = 0.5; mu=1; garmma = 10; p=0.5

—i— Euact

—HE— Lpprox (|

n =20; lambda = 10; delta = 0.5, mu=1; gamma =10, p=0.5

—ia— Exact

—HE— &pprox [7
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The influence of B and n?

sqrt(s1*F(Blocking)

Blocking

Ratio of offered load = 2

0.4

Waiting

Ratio of offered load = 2
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Numerical Example
(based on Lundgren and Segesten 2001 + Yankovic and Green 2007 )

m N=42 with 78% occupancy

m ALOS =4.3 days

m Average service time = 15 min

= 0.4 requests per hour

m =>)=0.32, u=4, 6=04, y=4, p=0.975
m => Ratio of offered load = 0.1

25
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How to flnd the reqmred B and n?

Ratio of offered load = 01023 Ratio of offered load = 0.1023
T T T T 1 T T T

(IR=]

beta

3=0.5 and n=0.5 (s=4, n=38): P(block)=0.07, P(wait) = 0.4
3=1.5 and n = 0 (s=6, n=37): P(block)=0.068, P(wait) =~ 0.084

3=-0.1 and n = 0 (s=3, n=34): P(block)=0.21, P(wait) = 0.70

26
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Regime N|S P(walt) P(blocklng) E[W]
Nurses — QED; Beds-ED 0.32 0.84 0.11
Nurses — QD ; Beds-ED 7 0 0.83 0
Nurses — QED; Beds-QED |20 |10| 0.44 0.55 0.11
Nurses — QD ; Beds-QED | 20|15 0 0.53 0
Nurses - ED ; Beds-ED 30| 3 1 0.85 7.89
Nurses — QED; Beds-QED | 30|14 | 0.55 0.35 0.13
Nurses —- QD ; Beds-QED |30 |21 0 0.31 0
Nurses - ED ; Beds-ED 50| 3 1 0.85 14.56
Nurses - ED ; Beds-QED |50 10 1 0.5 2.85
Nurses — QED; Beds-QD 50|21 0.5 0.05 0.12
Nurses — QD ; Beds-QD 50|31 0 0.02 0

Lambda-10; Delta-0.5; Mu-1; Gamma-10; p-0.5; Ratio=1.05

27
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Modeling time-variability

m Procedures at mass-casualty event
m Blocking cancelled -> open system

Arrivals from/to Patient is Needy 1-p

the EW I R 1
~ Poiss(A,) '

Patient is Dormant

28



Fluid and Diffusion limits ...

Patient is Needy

v

Arrivals from/to 1-p
the EW A S @

~ Poiss(A)

Patient is Dormant

Q1(t) = Q1(0) + Af (f Asds) — A (Epus (Q1(s) A ns)ds) — Ao (Eu — pps (Q1(s) A ng) ds)

+ Aat (/: 53Q2(3)d3)

Q2(t) = Q2(0) + A (/;(1 — plps (Q1(s) A ﬂa)ds) — Ay (/Dt 53Q2(3)d5) ;

where A%, A4, Aj5 and Agy are four mutually independent, standard (mean rate 1), Poisson processes.
29
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Scaling

m The arrival rate and the number of nurses
grow together to infinity, i.e. scaled up by n.

Q10 = @0+ ¢ ([ nnas) = a8 ([ e (@166 2 s
~au ([ (L= ) Q) A ) is) [ 5.0800005)

0

= Q7(0) + A} (/; n/\sds) — Ag (f; NPILs (%Q?(S) A n) d-s)
Ay ( /D "ol — ). (%Q?(s) A n) ds) + Aoy ( fﬂ "y (%Qg(s)) @) |

@) = @30+ A [ (L= ) (QU(s) A ) i) 2 ([ t 5.0} (s)ds)

— QU(0) + Ars ( A (L= s (%@?(s) A ) ds) ~ Ay ( L . (%@g(s)) ds) +




Fluid limits

By Theorem 2.2 (FSLLN) in [37]

Q"(t)

= Q) a.s.

lim
n—oo )

where Q) (t) is called the fluzd approximation and is the solution of the following ODE:

Q" (t) = Q" (0) + f t (ne = 1 (@ (5) A 1) + 6,08 (s) ) s

0

2 (1) = QY (0) + / t (1= p)pes (R0 () 7 ne) = 0,087 (5)) ds.

0

31
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Special case — Fixed parameters

= The differential equations become:

%(t) = A+ 0q2(t) — pu(5 A qu(t))
%42 (1) = —8qa(t) + pp(5 A qu(t))

m Steady-state analysis: What happens when

t—0?

32



Steady-state analysis

m QOverloaded - 5< 4 Underloaded -5 > 4
(I-p)u (1-p)u

L B0

(overloaded) (underloaded)
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Steady-state analysis - Summery

f

@2(0) = BE5 4 qi(0)  if A—(1—p)us=

G1(tao) = 5, too <00  otherwise.

35



Diffusion limits

Theorem 2.3 (FCLT) in [37]

lim /7 [Qi) - Q(O)(t)] LW (10.2)

n—00 7
where Q) (t) is called the diffusion approximation and is the solution of the following SDE (Stochas-

tic Differential Equation):
t
Dy — oD (1) (1) + (1)
1 () =0 (U)+/0 (”Sl{qi‘”(s)gn }Q1 (s)” {Q(O)(3)< } 17 ()7 + 050y (3)) ds

+Be (f )\Sds) — Bd (/Otp,u,s ( ©(5) A n) ds) ~ B (/Otu ) ( O (s5) A n) ds)
—0—321( (0} ) .
(

{1)( ) Q (1) []) —|—/ (( )#31{Q§0)(s)<n }Q(l}( ) — (1 _p)”SI{QEO)(sjgns}QEU( ) -3 Q(l)( )) ds

w8 ([ =i (@) ) ) = ([ 608700,

(10.3)

where Bf,BQd, Bis and Bgy are four mutually independent, standard (mean is 0 and the variance 36

+

at time ¢ is ¢) Brownian motions, 7 = max(z,0), and 27 = max(—xz.0) = —min(z, 0).
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Diffusion limits
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m Using the ODE one can find equations for:

P TR T P E)
j j d . [ (1)
EE Q‘EEIJH] EC’D‘;’[ 1 (t}! 2 “’]]

dt 1 - %V&r[ élj(t)}

= And to use them in analyzing time-variabll
system. For example:

37
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Number of Patients

-

60.00

b 3

Delta=0.2; Mu=1; p=0.25; s =50; Lambda=10 (t<9 or t>11), Lambda=50 (9<t<11)

50.00

40.00

A

A

30.00

I\

X sim-q1
X sim-q2
ODE-q1

20.00

%%XXXXX
X XXXk XXX
X
X

S
XSO NN N

> XXX A4

10.00

0.00

-10.00

r o+ 11 rr+ 11 r 1T 11 T T T T T T =1 r T 11 T 11T T 11 T° 1T 1T 1T T 1T T T T T T T T T T7T \M

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

t

—ODE-q2

50110

6n1T10

7N 10

8naT10
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Future Research

= Investigating approximation of closed system

e From which n are the approximations accurate?
(simulation vs. rates of convergence)

m Optimization
e Solving the bed-nurse optimization problem

e Difference between hierarchical and simultaneous
planning methods

= Validation of model using RFID data

m Expanding the model (Heterogeneous patients;
adding doctors) 39






