

Queues in Hospitals: Semi-Open Queueing Networks in the QED Regime

Galit Yom-Tov

Joint work with Avishai Mandelbaum

Technion – Israel Institute of Technology

31/Dec/2008

Agenda

- Introduction
- Medical Unit Model
- Mathematical Results
- Numerical Example
- Time-varying Model
- Future Research

Work-Force and Bed Capacity Planning

- Total health expenditure as percentage of gross domestic product: Israel 8%, EU 10%, USA 14%.
- Human resource constitute 70% of hospital expenditure.
- There are 3M registered nurses in the U.S. but still a chronic shortage.
- California law set nurse-to-patient ratios such as 1:6 for pediatric care unit.
- O.B. Jennings and F. de Véricourt (2008) showed that fixed ratios do not account for economies of scale.
- Management measures average occupancy levels, while arrivals have seasonal patterns and stochastic variability (Green 2004).

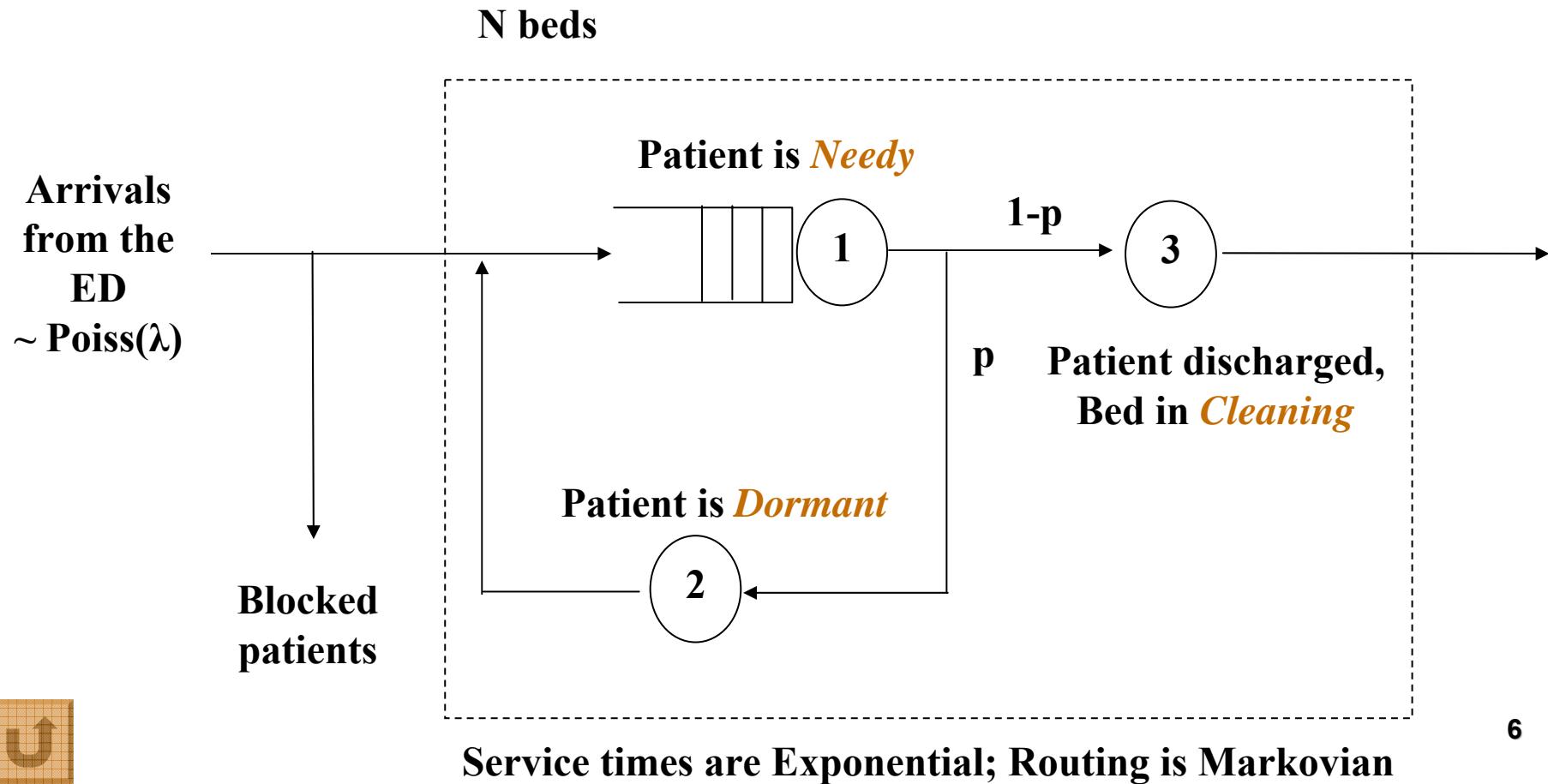
Research Objectives

- Analyzing model for a Medical Unit with s nurses and n beds, which are partly/fully occupied by patients: semi-open queueing network with multiple statistically identical customers and servers.
- Questions addressed: How many servers (nurses) are required (staffing), and how many fixed resources (beds) are needed (allocation) in order to minimize costs while sustaining a certain service level?
- Coping with time-variability

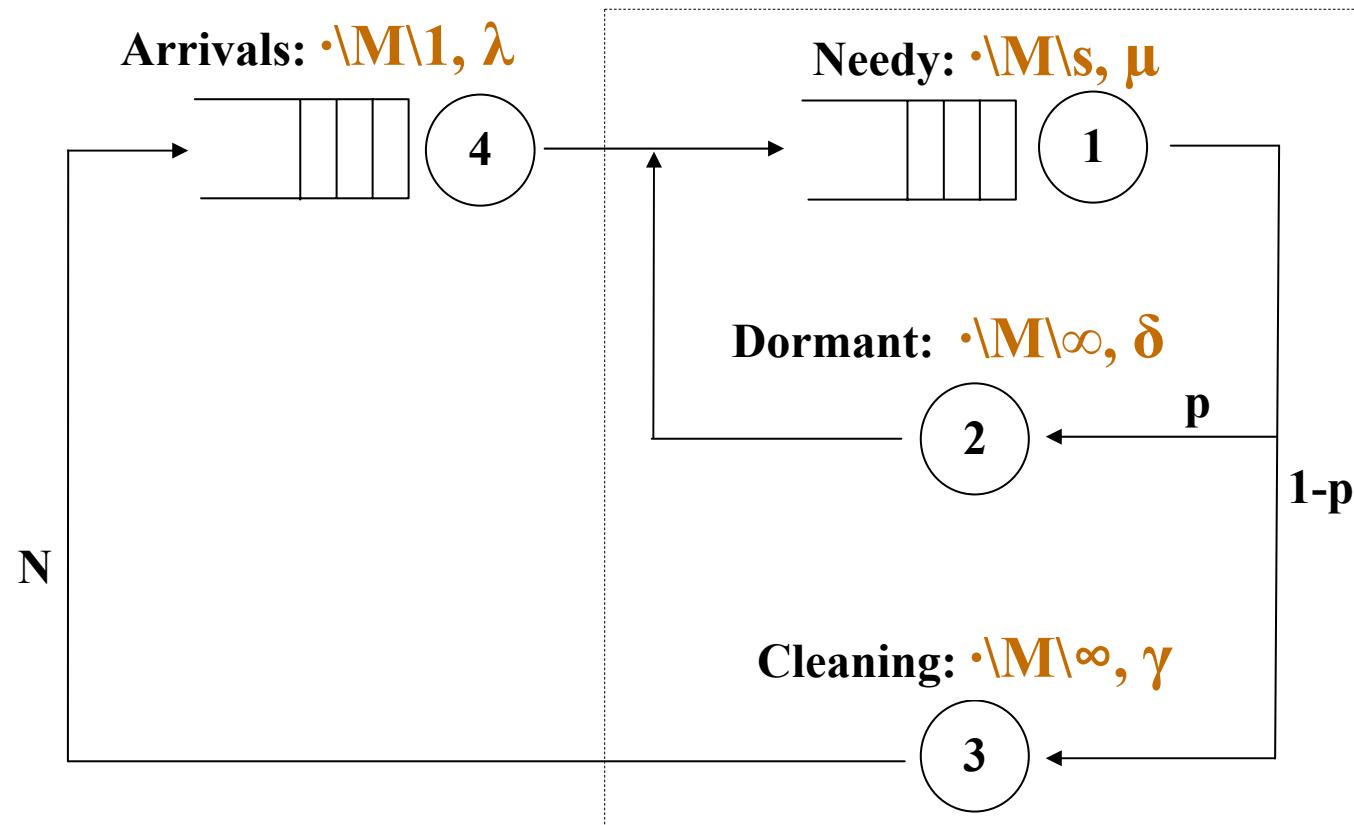
We Follow -

- **Basic:**
 - Halfin and Whitt (1981)
 - Mandelbaum, Massey and Reiman (1998)
 - Khudyakov (2006)
- **Analytical models in HC:**
 - Nurse staffing: Jennings and Véricourt (2007), Yankovic and Green (2007)
 - Beds capacity: Green (2002,2004)
- **Service Engineering (mainly call centers):**
 - Gans, Koole, Mandelbaum: “Telephone call centers: Tutorial, Review and Research prospects”

The MU Model as a Semi-Open Queueing Network



The MU Model as a Closed Jackson Network



→ Product Form - $\pi_N(n, d, c)$ stationary dist.

Stationary Distribution

$$\pi(i, j, k) = \begin{cases} \pi_0 \frac{1}{\nu(i)} \left(\frac{\lambda}{(1-p)\mu} \right)^i \frac{1}{j!} \left(\frac{p\lambda}{(1-p)\delta} \right)^j \frac{1}{k!} \left(\frac{\lambda}{\gamma} \right)^k & , \quad 0 \leq i + j + k \leq n, \\ 0 & , \quad \text{otherwise.} \end{cases}$$

Here $\nu(i)$ is defined as

$$\nu(i) := \begin{cases} i! & , \quad i \leq s, \\ s!s^{i-s} & , \quad i \geq s, \end{cases}$$

where π_0 is given by (see Appendix A)

$$\begin{aligned} \pi_0^{-1} &= \sum_{0 \leq i+j+k \leq n} \frac{1}{\nu(i)} \left(\frac{\lambda}{(1-p)\mu} \right)^i \frac{1}{j!} \left(\frac{p\lambda}{(1-p)\delta} \right)^j \frac{1}{k!} \left(\frac{\lambda}{\gamma} \right)^k \\ &= \sum_{l=0}^n \frac{1}{l!} \left(\frac{\lambda}{(1-p)\mu} + \frac{p\lambda}{(1-p)\delta} + \frac{\lambda}{\gamma} \right)^l \\ &+ \sum_{l=s+1}^n \sum_{m=s+1}^l \sum_{i=s+1}^m \left(\frac{1}{s!s^{i-s}} - \frac{1}{i!} \right) \frac{1}{(m-i)!(l-m)!} \left(\frac{\lambda}{(1-p)\mu} \right)^i \\ &\quad \left(\frac{p\lambda}{(1-p)\delta} \right)^{m-i} \left(\frac{\lambda}{\gamma} \right)^{l-m}. \end{aligned} \quad (2.1)$$

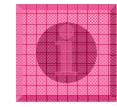
Service Level Objectives (Function of $\lambda, \mu, \delta, \gamma, p, s, n$)

- Blocking probability
- Delay probability
- Probability of timely service (wait more than t)
- Expected waiting time
- Average occupancy level of beds
- Average utilization level of nurses

Blocking probability

- The probability to have ℓ occupied beds in the ward:

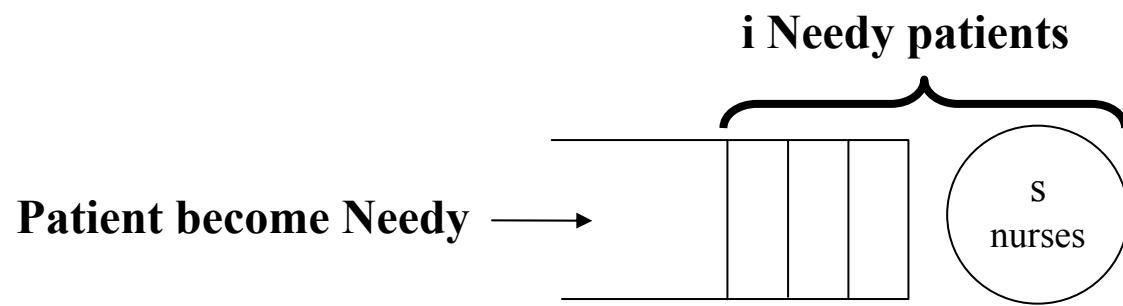
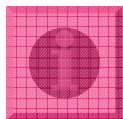
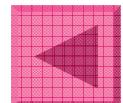
$$P_l := \sum_{\substack{i,j,k \geq 0 \\ i+j+k=l}} \pi(i, j, k) = \sum_{i=0}^l \sum_{j=0}^{l-i} \pi(i, j, l-i-j)$$



$$P_l = \pi_0 \left(\frac{1}{l!} \left(\frac{\lambda}{(1-p)\mu} + \frac{p\lambda}{(1-p)\delta} + \frac{\lambda}{\gamma} \right)^l \right. \\ \left. + I_{\{l>s\}} \sum_{i=s+1}^l \sum_{j=0}^{l-i} \left(\frac{1}{s!s^{i-s}} - \frac{1}{i!} \right) \left(\frac{\lambda}{(1-p)\mu} \right)^i \frac{1}{j!} \left(\frac{p\lambda}{(1-p)\delta} \right)^j \frac{1}{(l-i-j)!} \left(\frac{\lambda}{\gamma} \right)^{l-i-j} \right)$$

Probability of timely service and the Delay Probability

- What happens when a patient becomes needy ?
 - He will need to wait an in-queue random waiting time that follows an Erlang distribution with $(i-s+1)^+$ stages, each with rate μ_s .
- What is the probability that this patient will find i other needy patients?
 - We need to use the Arrival Theorem



The Arrival Theorem

The Arrival Theorem. *In a closed Jackson network, the arrival at (or the departure from) any node observes time averages, with the job itself excluded. In particular, the probability that the network is in state² $x - e_i$ immediately before an arrival (or immediately after a departure) epoch at node i is equal to the ergodic distribution, of a closed network with one fewer job, in state $x - e_i$.*

Thus, the probability that a patient that become needy will see i needy patients in the system is $\pi_{n-1}(i, j, k)$

Probability of timely service and the Delay Probability

$$P(W = 0) = \sum_{l=0}^{n-1} \sum_{m=0}^l \sum_{i=0}^{\min\{m, s-1\}} \pi^A(i, m-i, l-m).$$

$$P(W \leq t) = P(W = 0) + \sum_{i=s}^{n-1} P(\text{there are } (i-s+1) \text{ patients who ended}$$

their service on time} \leq t | \text{Arrival at the needy state found } i \text{ needy patients}).

$$\cdot \pi^A(i, m-i, l-m) = \\ = 1 - \sum_{l=s}^{n-1} \sum_{m=s}^l \sum_{i=s}^m \pi_{n-1}(i, m-i, l-m) \sum_{h=0}^{i-s} \frac{(\mu st)^h}{h!} e^{-\mu st}.$$

$$P(W > t) = \sum_{l=s}^{n-1} \sum_{m=s}^l \sum_{i=s}^m \pi_{n-1}(i, m-i, l-m) \sum_{h=0}^{i-s} \frac{(\mu st)^h}{h!} e^{-\mu st}$$

$$P(W > 0) = \sum_{i \geq s} \pi_{n-1}(i, j, k) = \sum_{l=s}^{n-1} \sum_{m=s}^l \sum_{i=s}^m \pi_{n-1}(i, m-i, l-m)$$

Expected waiting time

- via the tail formula:

$$\begin{aligned} E[W] &= \int_0^\infty P(W > t) dt = \int_0^\infty \sum_{l=s}^{n-1} \sum_{m=s}^l \sum_{i=s}^m \pi_{n-1}(i, m-i, l-m) \sum_{h=0}^{i-s} \frac{(\mu st)^h}{h!} e^{-\mu st} dt \\ &= \sum_{l=s}^{n-1} \sum_{m=s}^l \sum_{i=s}^m \pi_{n-1}(i, m-i, l-m) \sum_{h=0}^{i-s} \int_0^\infty \frac{(\mu st)^h}{h!} e^{-\mu st} dt \\ &= \sum_{l=s}^{n-1} \sum_{m=s}^l \sum_{i=s}^m \pi_{n-1}(i, m-i, l-m) \sum_{h=0}^{i-s} \frac{1}{\mu s} \\ &= \frac{1}{\mu s} \sum_{l=s}^{n-1} \sum_{m=s}^l \sum_{i=s}^m \pi_{n-1}(i, m-i, l-m) (i-s+1). \end{aligned}$$

QED Q's:

Quality- and Efficiency-Driven Queues

- Traditional queueing theory predicts that **service-quality** and **server's efficiency** **must** trade off against each other.
- Yet, one can balance both requirements carefully (Example: in well-run call-centers, 50% served “immediately”, along with over 90% agent’s utilization, is not uncommon)
- This is achieved in a special asymptotic operational regime – the QED regime

QED Regime characteristics

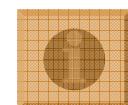
- High service quality
- High resource efficiency
- Square-root staffing rule

The offered load at service station 1 (needy)

The offered load at non-service station 2+3 (dormant + cleaning)

$$(i) s = \frac{\lambda}{(1-p)\mu} + \beta \sqrt{\frac{\lambda}{(1-p)\mu}} + o(\sqrt{\lambda}), \quad -\infty < \beta < \infty$$
$$(ii) n - s = \eta \sqrt{\frac{p\lambda}{(1-p)\delta} + \frac{\lambda}{\gamma}} + \frac{p\lambda}{(1-p)\delta} + \frac{\lambda}{\gamma} + o(\sqrt{\lambda}), \quad -\infty < \eta < \infty$$

- Many-server asymptotic



Probability of Delay

$$P(W > 0) = \sum_{i \geq s} \pi_{n-1}(i, j, k) = \sum_{l=s}^{n-1} \sum_{m=s}^l \sum_{i=s}^m \pi_{n-1}(i, m-i, l-m)$$

Theorem 2. Let the variables λ , s and n tend to ∞ simultaneously and satisfy the QED conditions.
Then

$$\lim_{\lambda \rightarrow \infty} P(W > 0) = \left(1 + \frac{\int_{-\infty}^{\beta} \Phi \left(\eta + (\beta - t) \sqrt{B} \right) d\Phi(t)}{\frac{\phi(\beta)\Phi(\eta)}{\beta} - \frac{\phi(\sqrt{\eta^2 + \beta^2})}{\beta} e^{\frac{1}{2}\eta_1^2} \Phi(\eta_1)} \right)^{-1}$$

where $B = \frac{R_N}{R_C + R_D} = \frac{\delta\gamma}{\mu(p\gamma + (1-p)\delta)}$, $\eta_1 = \eta - \beta\sqrt{B^{-1}}$.

- The probability is a function of three parameters: beta, eta, and offered-load-ratio

Expected Waiting Time

$$E[W] = \frac{1}{\mu s} \sum_{l=s}^{n-1} \sum_{m=s}^l \sum_{i=s}^m \pi_{n-1}(i, m-i, l-m)(i-s+1)$$

Theorem 4. Let the variables λ , s and n tend to ∞ simultaneously and satisfy the QED conditions.

Then

$$\lim_{\lambda \rightarrow \infty} \sqrt{s}E[W] = \frac{1}{\mu} \frac{\frac{\phi(\beta)\Phi(\eta)}{\beta} \frac{1}{\beta} + \frac{\phi(\sqrt{\eta^2+\beta^2})}{\beta} e^{\frac{1}{2}\eta_1^2} \Phi(\eta_1) \left(\frac{\beta}{B} - \frac{\eta}{\sqrt{B}} - \frac{1}{\beta} \right)}{\int_{-\infty}^{\beta} \Phi \left(\eta + (\beta-t)\sqrt{B} \right) d\Phi(t) + \frac{\phi(\beta)\Phi(\eta)}{\beta} - \frac{\phi(\sqrt{\eta^2+\beta^2})}{\beta} e^{\frac{1}{2}\eta_1^2} \Phi(\eta_1)}$$

where $B = \frac{R_N}{R_C+R_D} = \frac{\delta\gamma}{\mu(p\gamma+(1-p)\delta)}$, $\eta_1 = \eta - \beta\sqrt{B^{-1}}$.

- Waiting time is one order of magnitude less then the service time.

Probability of Blocking

$$P_l = \pi_0 \left(\frac{1}{l!} \left(\frac{\lambda}{(1-p)\mu} + \frac{p\lambda}{(1-p)\delta} + \frac{\lambda}{\gamma} \right)^l + I_{\{l>s\}} \sum_{i=s+1}^l \sum_{j=0}^{l-i} \left(\frac{1}{s!s^{i-s}} - \frac{1}{i!} \right) \left(\frac{\lambda}{(1-p)\mu} \right)^i \frac{1}{j!} \left(\frac{p\lambda}{(1-p)\delta} \right)^j \frac{1}{(l-i-j)!} \left(\frac{\lambda}{\gamma} \right)^{l-i-j} \right)$$

Theorem 6. Let the variables λ , s and n tend to ∞ simultaneously and satisfy the QED conditions.

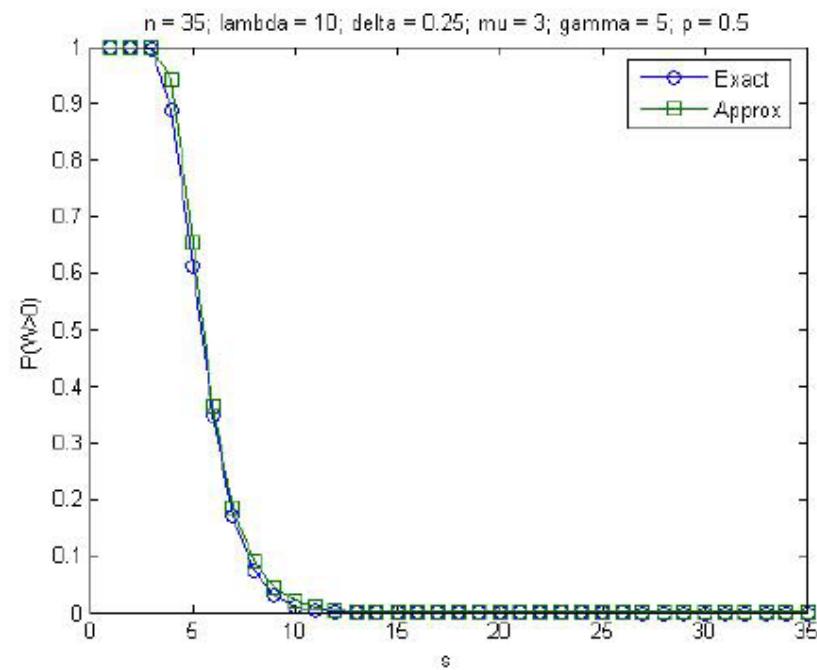
Define $B = \frac{R_N}{R_C+R_D} = \frac{\delta\gamma}{\mu(p\gamma+(1-p)\delta)}$, then

$$\lim_{\lambda \rightarrow \infty} \sqrt{s}P(block) = \frac{\nu\phi(\nu_1)\Phi(\nu_2) + \phi(\sqrt{\eta^2 + \beta^2})e^{\frac{\eta_1^2}{2}}\Phi(\eta_1)}{\int_{-\infty}^{\beta} \Phi\left(\eta + (\beta - t)\sqrt{B}\right) d\Phi(t) + \frac{\phi(\beta)\Phi(\eta)}{\beta} - \frac{\phi(\sqrt{\eta^2 + \beta^2})}{\beta}e^{\frac{1}{2}\eta_1^2}\Phi(\eta_1)} \quad (5.9)$$

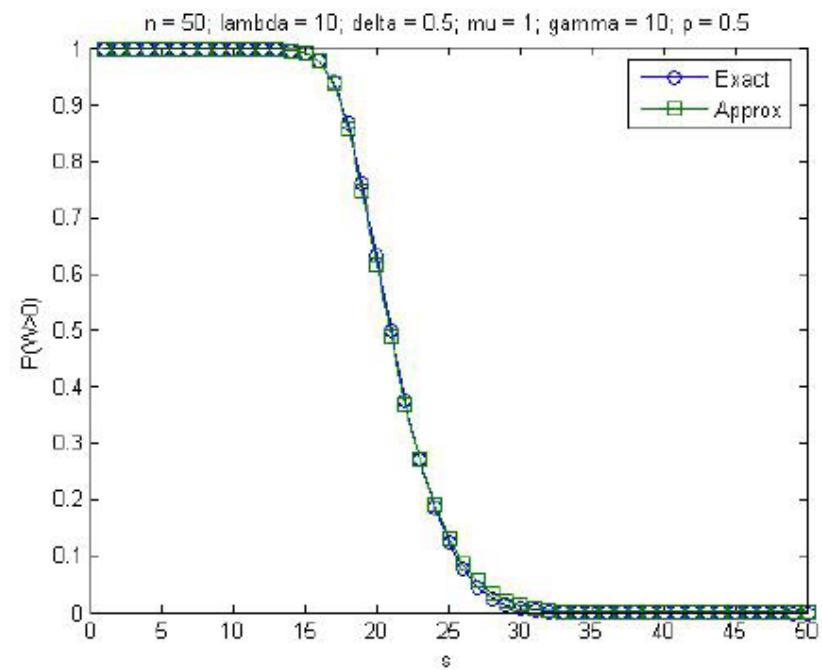
where $\eta_1 = \eta - \frac{\beta}{\sqrt{B}}$, $\nu = \frac{1}{\sqrt{1+B^{-1}}}$, $\nu_1 = \frac{\eta\sqrt{B^{-1}} + \beta}{\sqrt{1+B^{-1}}}$, $\nu_2 = \frac{\beta\sqrt{B^{-1}} - \eta}{\sqrt{1+B^{-1}}}$.

■ **P(Blocking) << P(Waiting)**

Approximation vs. Exact Calculation – Medium system ($n=35,50$), $P(W>0)$

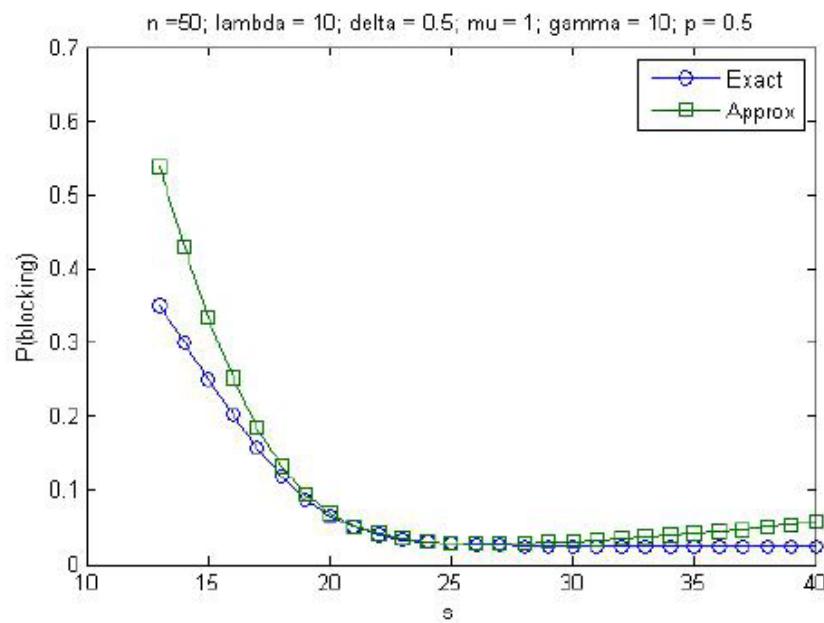
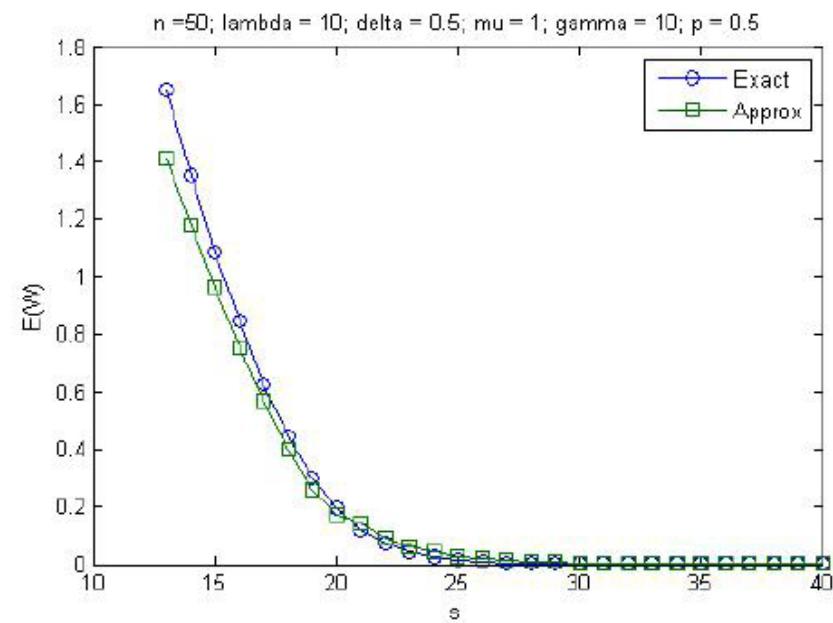


(a)



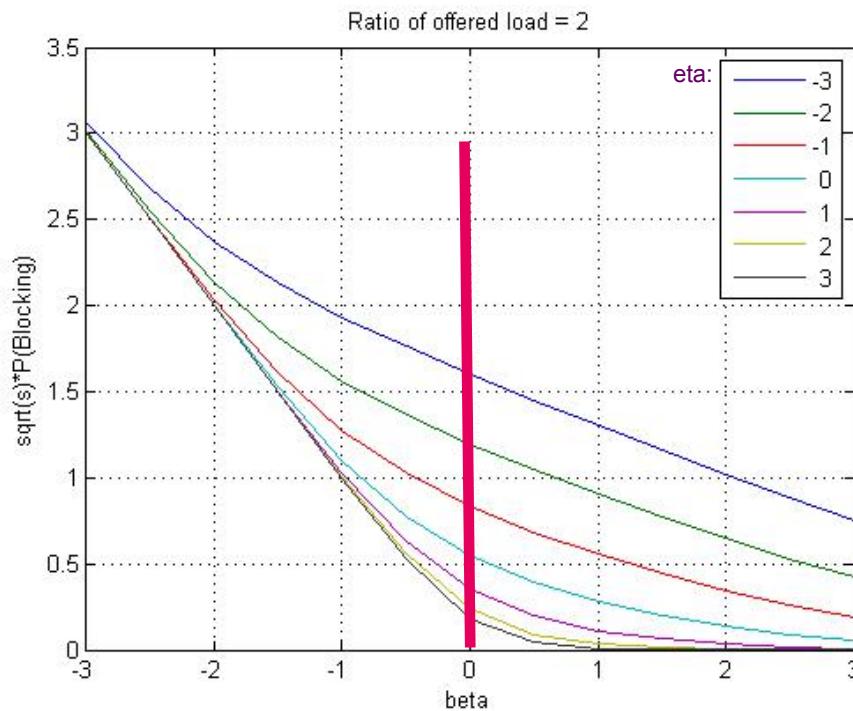
(b)

Approximation vs. Exact Calculation – $P(\text{blocking})$ and $E[W]$

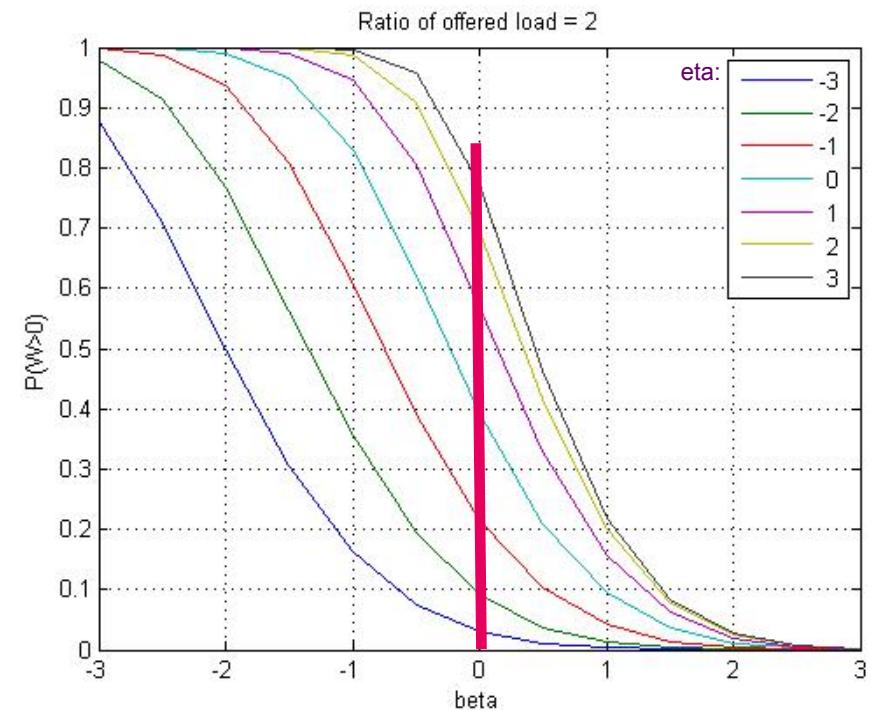


The influence of β and η ?

Blocking

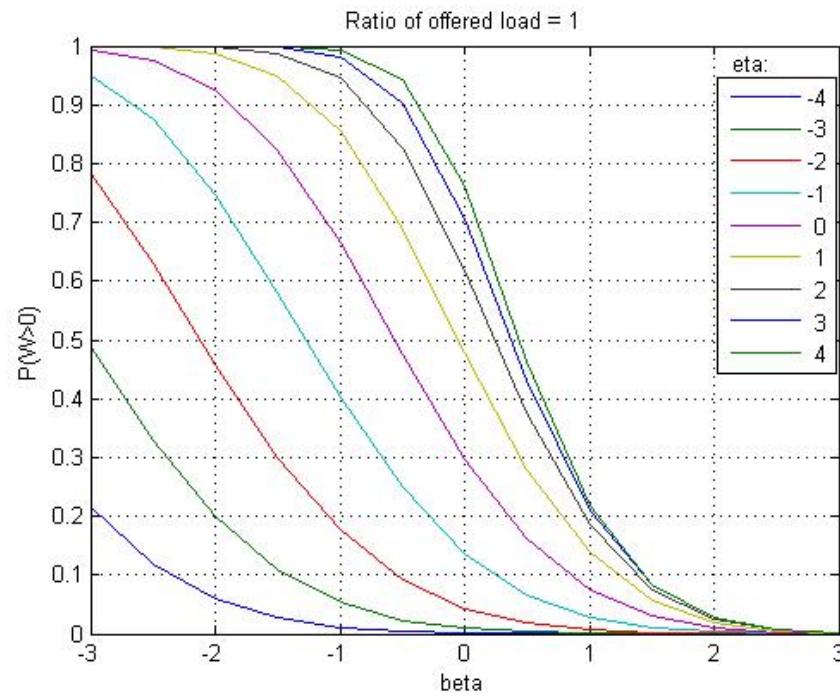
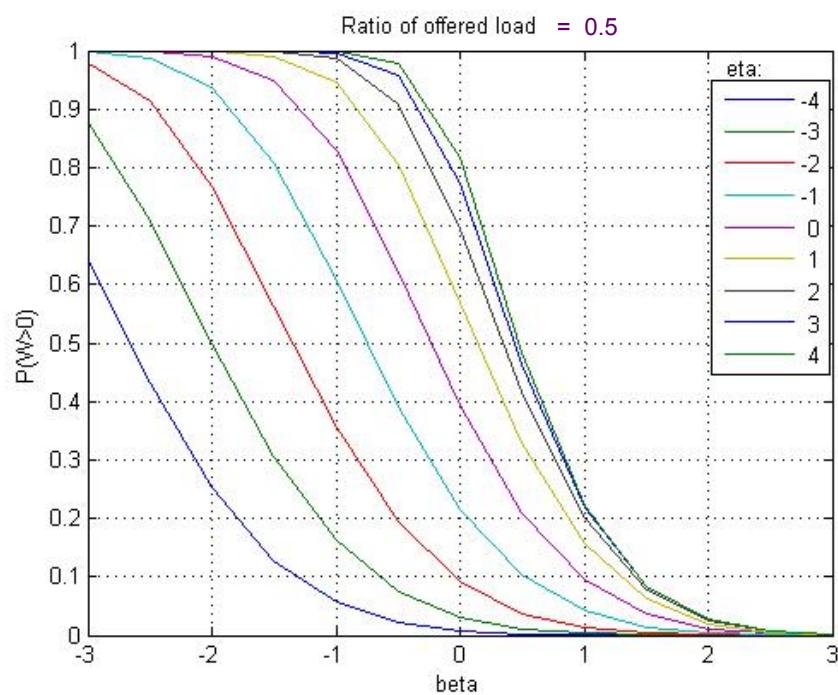
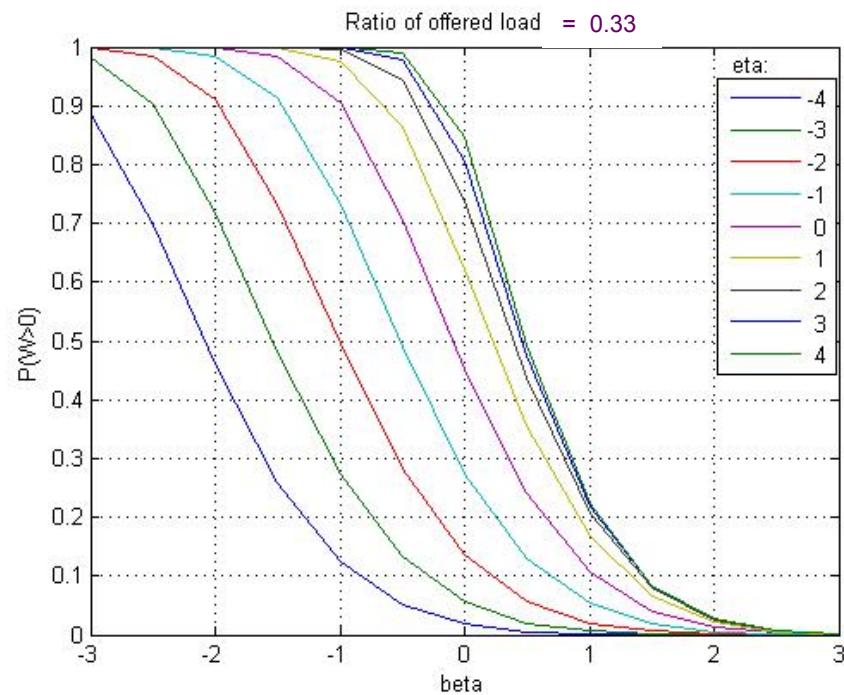


Waiting



$$(i) s = \frac{\lambda}{(1-p)\mu} + \beta \sqrt{\frac{\lambda}{(1-p)\mu}} + o(\sqrt{\lambda}), \quad -\infty < \beta < \infty$$

$$(ii) n - s = \eta \sqrt{\frac{p\lambda}{(1-p)\delta} + \frac{\lambda}{\gamma}} + \frac{p\lambda}{(1-p)\delta} + \frac{\lambda}{\gamma} + o(\sqrt{\lambda}), \quad -\infty < \eta < \infty \quad 23$$

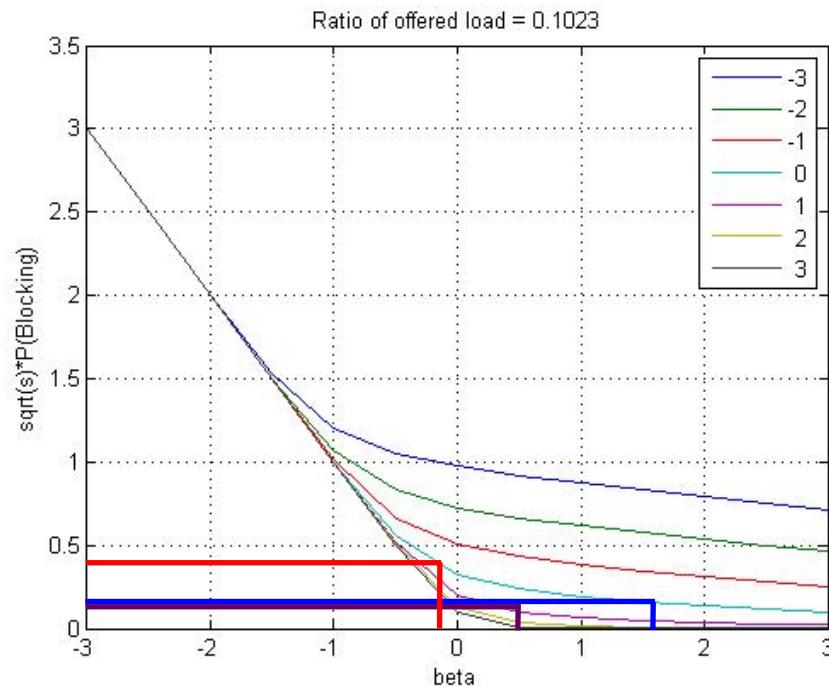
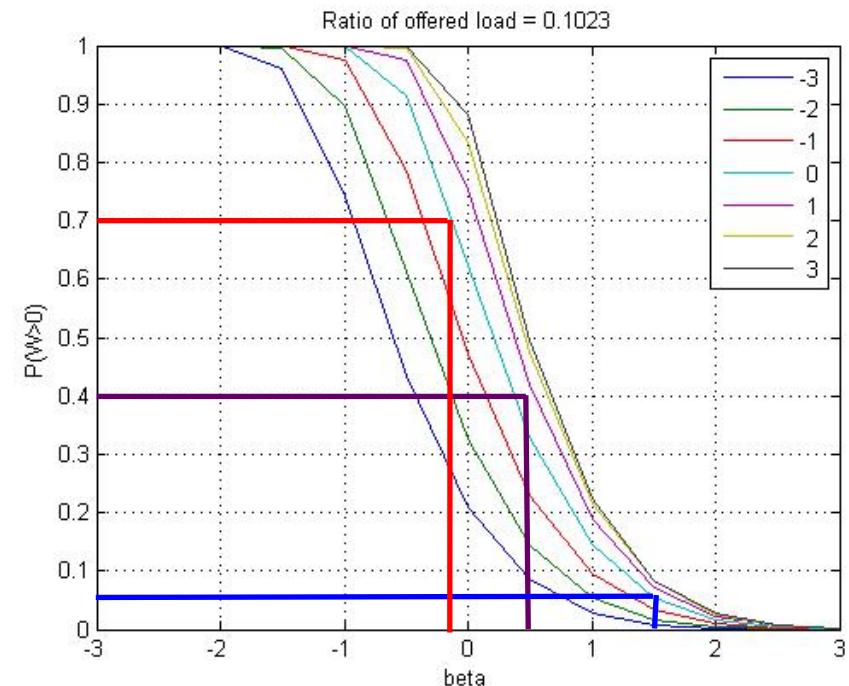


Numerical Example

(based on Lundgren and Segesten 2001 + Yankovic and Green 2007)

- $N=42$ with 78% occupancy
- ALOS = 4.3 days
- Average service time = 15 min
- 0.4 requests per hour
- $\Rightarrow \lambda = 0.32, \mu=4, \delta=0.4, \gamma=4, p=0.975$
- \Rightarrow Ratio of offered load = 0.1

How to find the required β and η ?



if $\beta=0.5$ and $\eta=0.5$ ($s=4$, $n=38$): $P(\text{block}) \approx 0.07$, $P(\text{wait}) \approx 0.4$

if $\beta=1.5$ and $\eta \approx 0$ ($s=6$, $n=37$): $P(\text{block}) \approx 0.068$, $P(\text{wait}) \approx 0.084$

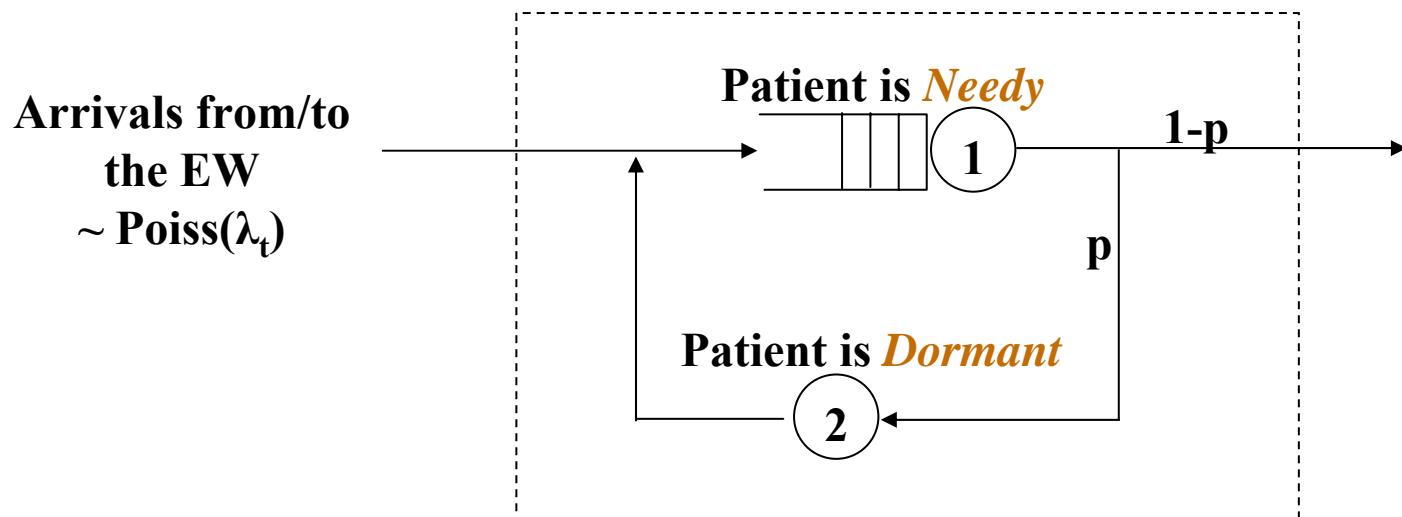
if $\beta=-0.1$ and $\eta \approx 0$ ($s=3$, $n=34$): $P(\text{block}) \approx 0.21$, $P(\text{wait}) \approx 0.70$

Regime	N	S	P(wait)	P(blocking)	E[W]
Nurses – QED; Beds-ED	7	4	0.32	0.84	0.11
Nurses – QD ; Beds-ED	7	7	0	0.83	0
Nurses – QED; Beds-QED	20	10	0.44	0.55	0.11
Nurses – QD ; Beds-QED	20	15	0	0.53	0
Nurses – ED ; Beds-ED	30	3	1	0.85	7.89
Nurses – QED; Beds-QED	30	14	0.55	0.35	0.13
Nurses – QD ; Beds-QED	30	21	0	0.31	0
Nurses – ED ; Beds-ED	50	3	1	0.85	14.56
Nurses – ED ; Beds-QED	50	10	1	0.5	2.85
Nurses – QED; Beds-QD	50	21	0.5	0.05	0.12
Nurses – QD ; Beds-QD	50	31	0	0.02	0

Lambda-10; Delta-0.5; Mu-1; Gamma-10; p-0.5; Ratio=1.05

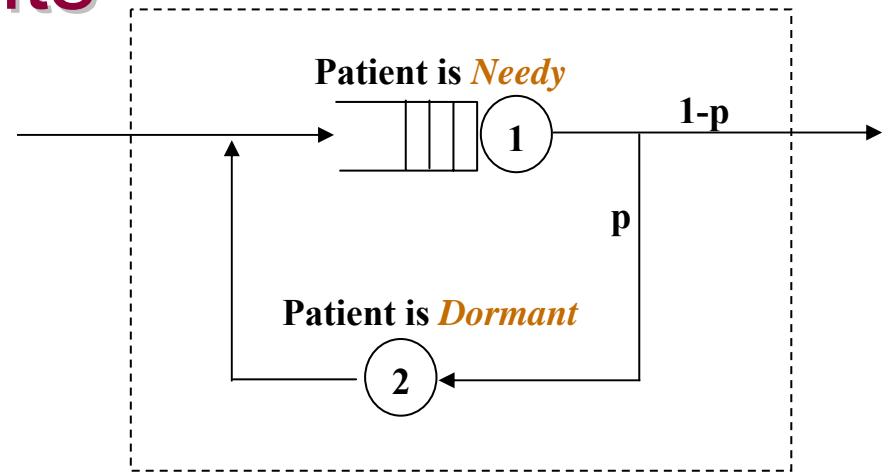
Modeling time-variability

- Procedures at mass-casualty event
- Blocking cancelled -> open system



Fluid and Diffusion limits

Arrivals from/to
the EW
~ Poiss(λ_t)



$$Q_1(t) = Q_1(0) + A_1^a \left(\int_0^t \lambda_s ds \right) - A_2^d \left(\int_0^t p \mu_s (Q_1(s) \wedge n_s) ds \right) - A_{12} \left(\int_0^t (1-p) \mu_s (Q_1(s) \wedge n_s) ds \right) + A_{21} \left(\int_0^t \delta_s Q_2(s) ds \right)$$

$$Q_2(t) = Q_2(0) + A_{12} \left(\int_0^t (1-p) \mu_s (Q_1(s) \wedge n_s) ds \right) - A_{21} \left(\int_0^t \delta_s Q_2(s) ds \right),$$

where A_1^a , A_2^d , A_{12} and A_{21} are four mutually independent, standard (mean rate 1), Poisson processes.

Scaling

- The arrival rate and the number of nurses grow together to infinity, i.e. scaled up by η .

$$\begin{aligned} Q_1^\eta(t) &= Q_1^\eta(0) + A_1^a \left(\int_0^t \eta \lambda_s ds \right) - A_2^d \left(\int_0^t p \mu_s (Q_1^\eta(s) \wedge \eta n_s) ds \right) \\ &\quad - A_{12} \left(\int_0^t (1-p) \mu_s (Q_1^\eta(s) \wedge \eta n_s) ds \right) + A_{21} \left(\int_0^t \delta_s Q_2^\eta(s) ds \right) \\ &= Q_1^\eta(0) + A_1^a \left(\int_0^t \eta \lambda_s ds \right) - A_2^d \left(\int_0^t \eta p \mu_s \left(\frac{1}{\eta} Q_1^\eta(s) \wedge n_s \right) ds \right) \\ &\quad - A_{12} \left(\int_0^t \eta (1-p) \mu_s \left(\frac{1}{\eta} Q_1^\eta(s) \wedge n_s \right) ds \right) + A_{21} \left(\int_0^t \eta \delta_s \left(\frac{1}{\eta} Q_2^\eta(s) \right) ds \right), \\ Q_2^\eta(t) &= Q_2^\eta(0) + A_{12} \left(\int_0^t (1-p) \mu_s (Q_1^\eta(s) \wedge \eta n_s) ds \right) - A_{21} \left(\int_0^t \delta_s Q_2^\eta(s) ds \right) \\ &= Q_2^\eta(0) + A_{12} \left(\int_0^t \eta (1-p) \mu_s \left(\frac{1}{\eta} Q_1^\eta(s) \wedge n_s \right) ds \right) - A_{21} \left(\int_0^t \eta \delta_s \left(\frac{1}{\eta} Q_2^\eta(s) \right) ds \right). \end{aligned}$$

Fluid limits

By Theorem 2.2 (FSLLN) in [37]

$$\lim_{\eta \rightarrow \infty} \frac{Q^\eta(t)}{\eta} = Q^{(0)}(t) \quad a.s.$$

where $Q^{(0)}(t)$ is called the *fluid approximation* and is the solution of the following ODE:

$$Q_1^{(0)}(t) = Q_1^{(0)}(0) + \int_0^t \left(\lambda_s - \mu_s \left(Q_1^{(0)}(s) \wedge n_s \right) + \delta_s Q_2^{(0)}(s) \right) ds$$
$$Q_2^{(0)}(t) = Q_2^{(0)}(0) + \int_0^t \left((1-p)\mu_s \left(Q_1^{(0)}(s) \wedge n_s \right) - \delta_s Q_2^{(0)}(s) \right) ds.$$

Special case – Fixed parameters

- The differential equations become:

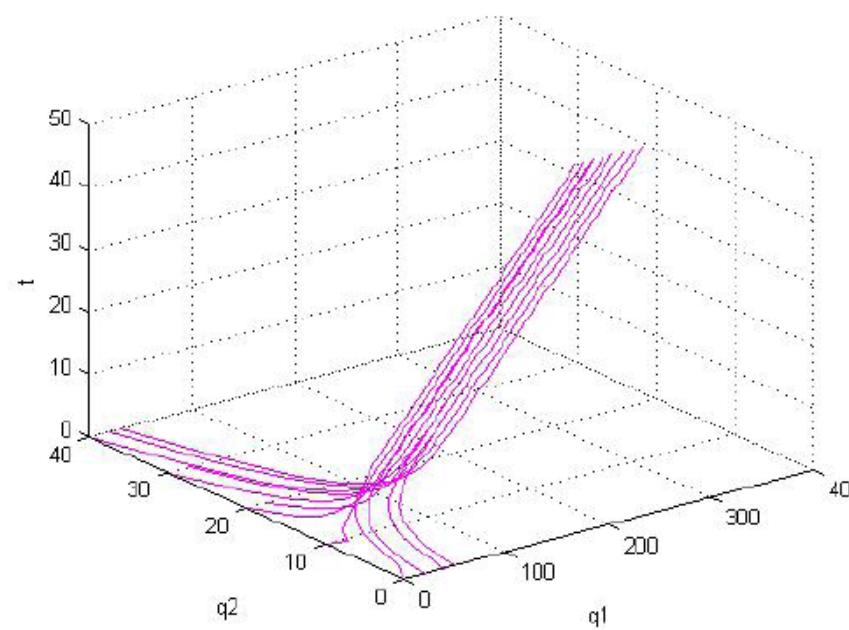
$$\frac{\partial q_1}{\partial t}(t) = \lambda + \delta q_2(t) - \mu(\bar{s} \wedge q_1(t))$$

$$\frac{\partial q_2}{\partial t}(t) = -\delta q_2(t) + p\mu(\bar{s} \wedge q_1(t))$$

- Steady-state analysis: What happens when $t \rightarrow \infty$?

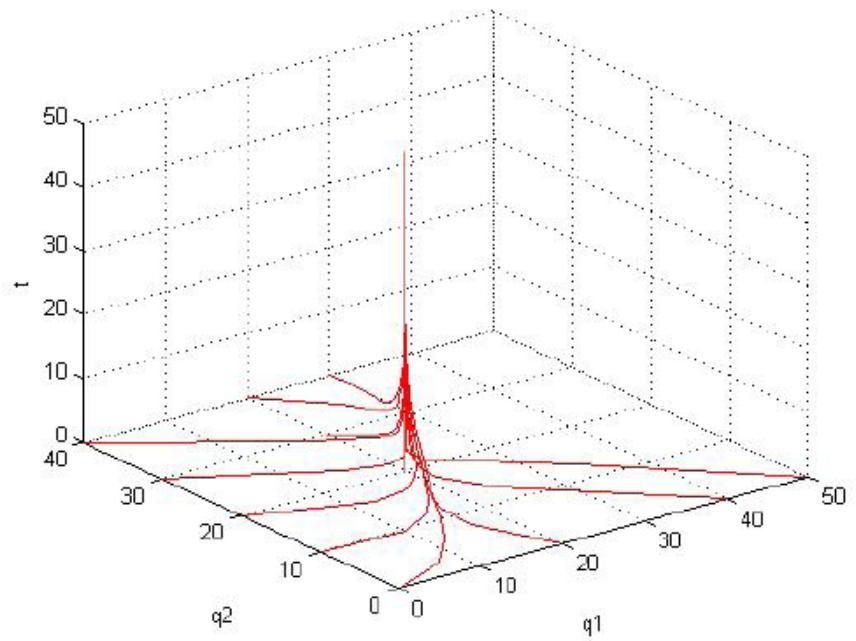
Steady-state analysis

■ Overloaded - $\bar{s} < \frac{\lambda}{(1-p)\mu}$



(overloaded)

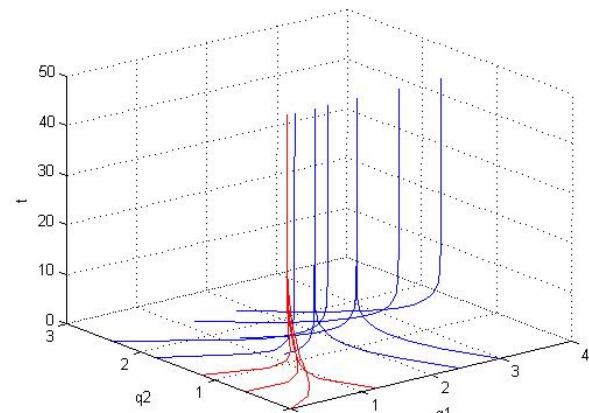
Underloaded - $\bar{s} > \frac{\lambda}{(1-p)\mu}$



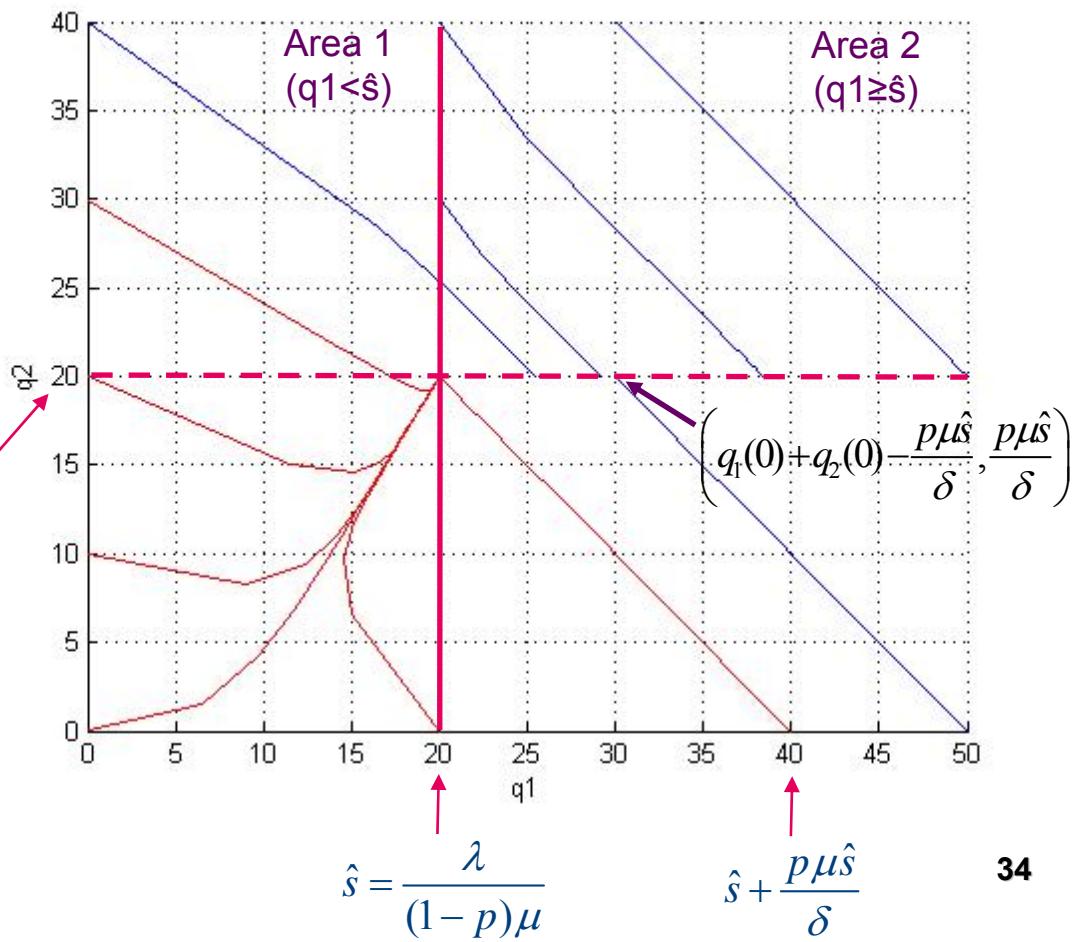
(underloaded)

Critically Loaded System:

$$\hat{s} = \frac{\lambda}{(1-p)\mu}$$



$$\frac{p\mu\hat{s}}{\delta} = \frac{p\lambda}{(1-p)\delta}$$



Steady-state analysis - Summary

$$\lim_{t \rightarrow \infty} q_1(t) = \begin{cases} q_2(0) - \frac{p\mu\bar{s}}{\delta} + q_1(0) & \text{if } \lambda - (1-p)\mu\bar{s} = 0, \\ \infty & \text{if } \lambda - (1-p)\mu\bar{s} > 0, \\ q_1(t_\infty) = \bar{s}, \quad t_\infty < \infty & \text{otherwise.} \end{cases}$$

$$\lim_{t \rightarrow \infty} q_2(t) = \frac{p\mu\bar{s}}{\delta}.$$

Diffusion limits

Theorem 2.3 (FCLT) in [37]

$$\lim_{\eta \rightarrow \infty} \sqrt{\eta} \left[\frac{Q^\eta(t)}{\eta} - Q^{(0)}(t) \right] \stackrel{d}{=} Q^{(1)}(t) \quad (10.2)$$

where $Q^{(1)}(t)$ is called the *diffusion approximation* and is the solution of the following SDE (Stochastic Differential Equation):

$$\begin{aligned} Q_1^{(1)}(t) &= Q_1^{(1)}(0) + \int_0^t \left(\mu_s 1_{\{Q_1^{(0)}(s) \leq n_s\}} Q_1^{(1)}(s)^- - \mu_s 1_{\{Q_1^{(0)}(s) < n_s\}} Q_1^{(1)}(s)^+ + \delta_s Q_2^{(1)}(s) \right) ds \\ &\quad + B_1^a \left(\int_0^t \lambda_s ds \right) - B_2^d \left(\int_0^t p \mu_s (Q_1^{(0)}(s) \wedge n_s) ds \right) - B_{12} \left(\int_0^t (1-p) \mu_s (Q_1^{(0)}(s) \wedge n_s) ds \right) \\ &\quad + B_{21} \left(\int_0^t \delta_s Q_2^{(0)}(s) ds \right), \\ Q_2^{(1)}(t) &= Q_2^{(1)}(0) + \int_0^t \left((1-p) \mu_s 1_{\{Q_1^{(0)}(s) < n_s\}} Q_1^{(1)}(s)^+ - (1-p) \mu_s 1_{\{Q_1^{(0)}(s) \leq n_s\}} Q_1^{(1)}(s)^- - \delta_s Q_2^{(1)}(s) \right) ds \\ &\quad + B_{12} \left(\int_0^t (1-p) \mu_s (Q_1^{(0)}(s) \wedge n_s) ds \right) - B_{21} \left(\int_0^t \delta_s Q_2^{(0)}(s) ds \right), \end{aligned} \quad (10.3)$$

where B_1^a, B_2^d, B_{12} and B_{21} are four mutually independent, standard (mean is 0 and the variance at time t is t) Brownian motions, $x^+ \equiv \max(x, 0)$, and $x^- \equiv \max(-x, 0) = -\min(x, 0)$.

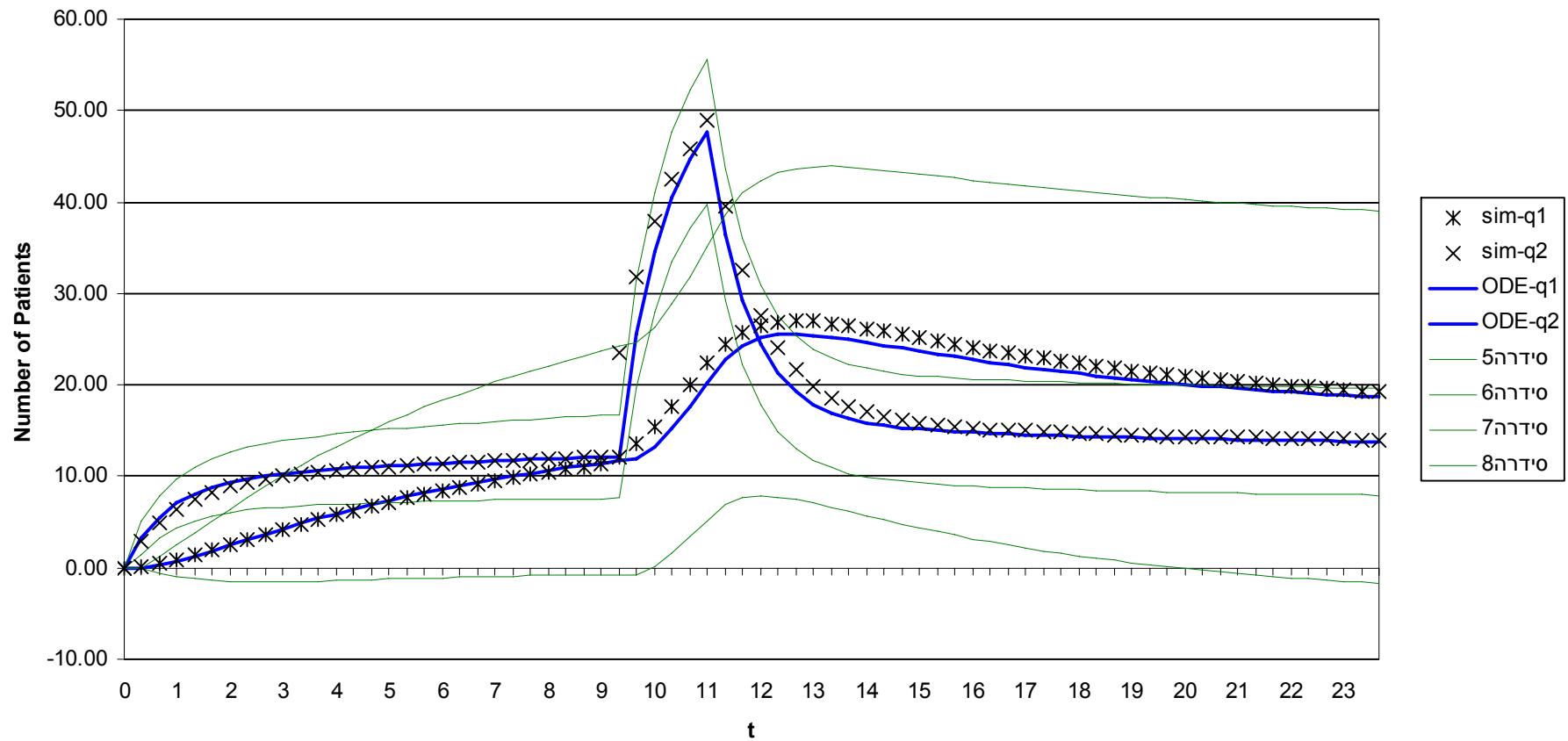
Diffusion limits

- Using the ODE one can find equations for:

$$\begin{aligned} \frac{d}{dt} \mathbb{E} [Q_1^{(1)}(t)] &= \frac{d}{dt} \text{Var} [Q_1^{(1)}(t)] \\ \frac{d}{dt} \mathbb{E} [Q_2^{(1)}(t)] &= \frac{d}{dt} \text{Cov} [Q_1^{(1)}(t), Q_2^{(1)}(t)] \\ \frac{d}{dt} \text{Var} [Q_2^{(1)}(t)] & \end{aligned}$$

- And to use them in analyzing time-variabil system. For example:

Delta = 0.2; Mu = 1; p = 0.25; s = 50; Lambda=10 (t<9 or t>11), Lambda=50 (9< t <11)



Future Research

- Investigating approximation of closed system
 - From which n are the approximations accurate?
(simulation vs. rates of convergence)
- Optimization
 - Solving the bed-nurse optimization problem
 - Difference between hierarchical and simultaneous planning methods
- Validation of model using RFID data
- Expanding the model (Heterogeneous patients;
adding doctors)

