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Objective

Determine Nurse-to-Patient
staffing rules in order to obtain
uniform quality of care across all

hospitals



The solution should be. ..

* Simple to use

* Simple data requirements (Parameters)
* Economical



Quality of Care Measurements

* Probability of excessive delay
- The likelihood that a needy patient's waiting
period before getting access to a nurse is
longer than a time threshold T30

* Probability of Delay (T=0)
* Probability of Timely Service (T>0)



Fixed nurse-to-patient ratios

Hospital Unit
Critical care
Pediatric care
Emergency room
Critical trauma

Nominal ratio policy:

Minimum ratio
|
1:4
1:6
1:1

S =|rn]



Ratio setting

* Offered load = [Average number of nursing
hours required per patient] X [ number of
patients]

* Categorization of patients by their direct

nursing care needs.
- Physical condition / Activity studies

Average mix of patient per unit => staffing
for each unit.

* Categorization of nursing skills => Staffing
for each personnel category.



Theoretical Performance of
Pediatric Units

- ratio=1:4 - ratio=1:3
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1" Conclusion

* The fixed nurse-to-patient ratio policy
does not provide uniform quality-of-service
across hospital

SIZE MATTERS...



Modeling Assumptions

* Patients:
- Homogeneous patient population
- Two states: needy or dormant
- n (the number of patients) is constant

* Nurses:
- Homogeneous nursing staff
- Pooling of nursing staff

* Closed Queuing Network
- Service time ~ exp(u)
- Activation time ~ exp(A)
- FCFS



Closed Queuing Network
(Closed Jackson Network)

1. Arrivals from 'outside' to node i follow
Poisson Process (PP) with an arrival
rate A,;;

2. Service times for each server at node i
are independent, exponentially
distributed with parameter A;

3. The probability of moving from node i to
node j (after the service at node i is
completed) is P;; and it is state-

independent;
4. P,, - probability the customer will leave

the system from node .
If A\g; = O; for all i, and P,; = O - the network is called a closed

Jackson Network.



Our Closed Queuing Network
(M/M/s/>/n queue)

n-s

Needy

4>

exp(u)

Dormant

exp(A)

ER
n

n - Number of beds
s - Number of nurses



The model as a birth-death process
Xi = Number of needy patients
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PASTA does not hold for small n!
Virtual hitting time # Needy patient waiting time

(The Arrival Theorem: In closed network system with m customers, the

system as seen by arrivals to server j is distributed as the steady-state
distribution in the same network with only m -7 customers)



Product form solution of the
stationary distribution

( )
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\O otherwise. J

' (.) is the steady state probability for node [=1,2;
[ 1s an M/M/s or M/M/n system.



Steady state probability distribution
of the number of needy patients in
the system
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Steady state probability distribution
of the number of needy patients in

the system
|
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The probability of excessive delay

* Virtual hitting time (V)

- V is the time required for the number of busy
servers to fall below s, provided no new jobs
arrive in the interim. Thus, this is an objective
measure of the system.

- P(V>t|N=k) ~ Erlang (k-s+1, sp)  (k2s)

- The tail of steady state distribution is:

e o (spr)
P(V>t)=e"" > m,
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The probability of excessive delay

* Virtual hitting time (W)

- W denote the steady state, in-queue waiting
time for a hypothetical newly needy patient.
Thus, this is a subjective measure, from the
point of view of the patient

- Activation rate: A, :=A-(n—k)

- The tail of steady state distribution is:

- ApTT,

Pn(S,f)-'=P(W>t)=Z

k= ZLO AT, ) |
=e—Suth: (n—k)m, Z_f (spuT)

P(V>tIN=k)

k=s n —7)717. /=0 j./
* Data required: rand puT 2o tn=i)m



The optimization Problem

* Given a target probability of delay, ¢,
for each potential unit size n, select the
staffing level s,, such that the probability

of delay (or the probability of timely
service) is less than «.

Minimize s,, fors €|[1,...,n]
s.t.  p (s, T)<e

* What's the problem?



Optimal Vs. Nominal ration
staffing

T=0, Epsilon = 1%, r=1/4



Optimal Vs. Nominal ration
staffing

T=1/y, Epsilon = 1%, r=1/4



Optimal Vs. Nominal ration
staffing

T=2/y, Epsilon = 1%, r=1/4



More conclusion (2 set of c.)

1. Optimal staffing is not a ratio policy
. Optimal Staffing depends on T

3. At least for Large T - Small units are
understaffed and large units are
overstaffed by ratio policy

N



Heuristics

* Based on many-server asymptotics (n->)

* Define: s=lim, s /n

* If s<r: ED staffing regime (T>0)

* If s=r: QED staffing regime (T>0 and small)
* If 3>r: QD staffing regime (T=0)



QED Staffing regime

* Optimal staffing levels are slight deviations

from the nominal ratio policy Rz Npy
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(See proof at the end)



ED Staffing regime

* Optimal staffing level is an order /n

deviation from v n: Eaeiia
. v 1 r+rul
V= =—r® (e
3
= e€=¢ _[3\/(1_+ruT)
v r+rul




Open systems staffing rules
(reminder)

* Erlang-A: M/M/N + M queue, as N->o

NQED=R—I—[3\/§, for somef, —oo<f<ow©

1+

-1
QED <=> lim, _ P(Wait)= h(5>/6]

h(B)/B

where 6=B+\ulo,
B=lim, . VN (1—p,).



Staffing:
Ratio vs. Optimal vs. QED (T=0)

epsilon = .1

—— ratio 1:4== optimal QED ——ratio 1:3

o
>
il
(o)}
=
=
1]
-t
(7))

# of patients




Performance:
Ratio vs. Optimal vs. QED (T=0)

epsilon = .1

== ratio 1:4™* optimal QED ™ ratio 1:3
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Staffing:
Ratio vs. Optimal vs. QED (T=0)

epsilon = .05

——ratio 1:4 —= optimal QED -+ ratio 1:3
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Performance:
Ratio vs. Optimal vs. QED (T=0)

epsilon = .05

- ratio 1:4 =~ optimal QED = ratio 1:3
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Timely Service Staffing:
Ratio vs. Optimal vs. Heuristic ED

T=1/mu epsilon=.1

—— ratio policy == optimal heuristic
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Timely Service Performance:
Ratio vs. Optimal vs. Heuristic ED

T=1Imu epsilon = 1

w1340 policy ===optimal heuristic
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Timely Service Staffing:
Ratio vs. Optimal vs. Heuristic ED

T=2/mu epsilon =.05

—— ratio policy == optimal heuristic
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Timely Service Performance:
Ratio vs. Optimal vs. Heuristic ED

probability of untimely
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Conclusions / Managerial Insights

Size Matters

- Under mild nurse pooling assumptions, the ratios will not provide
uniform QOS across units of varying sizes.

Typically, small units are understaffed and large units are
overstaffed.

Inconsistencies under ratio policies worsen as T increases
and € decreases.

QED and ED Staffing Rules

- Nurse-patient ratios provide a (first order) starting point. QED
and ED staffing rules provide the necessary adjustments so that
uniform QOS is achieved.



Future research

* Heterogeneous workforce
* Heterogeneous patients - Acuity levels

* Different probability distribution for
service and activation times

* Varying N and S simultaneously



QED Staffing Policy

Proposition: The approximate probability of
delay has a nondegenerate limit a€(0,1) if

and only if
3,;(%-:» Jn—>B, as now,
for some pe(-,o), with |
x=|1+e




QED Staffing Policy

Proof: A. Represent the probability of delay
as combination of fwo random variable (Xn
and Yn)

B. Apply CLT for each one.

C. Determine the limit of each variable as n
tend to infinity.

D. Determine the limit of the probability of
delay.
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Appendix A: Proof of Proposition 1
Proof: Assume first that Condition (2) holds. Note then that

P(Q, > ) = (1+§> (29)

with

k=0
& n\ k! sn—k k
B.= ), <k> PR
k=sn ne

Using the definitions of r and 7, note that A, can be rewritten as follows,

sp—1
Ay =(1+4p)" > <Z> Rk

=0

— (14 )" P(X < 50— 1)

where X is a binomial random variable with parameters n and r, i.e. X ~ Bi(n,r). Similarly, B,
is equal to

nl p" - 1 PN
—_ sn/p on —sn/p
Bn = Spl sn—sn ¢ Z (n—k)! ( ) °

k=sn p
| n
_n_r eS”/pP(YSn—Sn)

Syl sn—n

where Y is a Poisson random variable with rate s, /p, i.e. Y ~ P(s,/p). As a result the probability
of delay can be written as

P(X<s,—1)\ "
P > =11 = " 7
(Qn > Sn) ( +C"P(Y§n—sn)> (30)
where | "o .
ey =2 (L) B e (31)
n: o\ p son
Note first that x .
—nr _s,—1—nr
P(X<s,—-1)=P < 32
(X <o) (m N ) (32)

where the convergence of (s, —1—mnr)/\/n to the limit 3 is equivalent to Condition (2). It follows
that, using the central limit theorem,

P(X<s,—1)—® (ﬂ/\/r?). (33)

Similarly,

Y_ n T 9n " 9n
P(Y<n-—s,) =P Snfp M8 S/p>
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where the second equality is obtained using p = r /7. From Condition (2), (rn—s,)//$n — —8//T
when n — +oo. Using again the central limit theorem, we have then

P(Y <n—s,)— & (ﬁ) (34)

It remains to study the limit of C,, as n — 4o00. To that end, we apply the Stirling’s formula
n!~ (27n)Y?n"e ™ twice, to n and to s,. It follows then from the definition of C, (Equation 31),

,8 n+1/2
C, ~/T (1 - r\/ﬁ> enen/T, (35)

Since (14 B/(ry/n))" /2 ~ eOVi/r=8%/r* and n — s, /r = —B/n/r from Condition (2), we deduce
that C,, — e~/ /r and

P(Qn>5,)— f(B) (36)
where f:IR+ (0,1) is a strictly decreasing function such that
—1
P (L
F@)= 1+ e-ﬁww’«(f) (37)
® (%)

Assume now that a,, has a limit o, 0 < a < 1 and that 8 # f~!(«) is a (possibly infinite) limit point
of {(s,/n—r)y/n}. Assume for now that 8> f~!(«). Construct a sequence {s/,} such that s/, <s,
and (s, /n—r)y/n— F =min((B+ ' (a))/2, f'(a)+1), as n — oo. Notice that f~!(a) < ' < oo,
which implies a > f('). Let Q! denote the number of users in the nth system with s, servers.
Since s/, < s, P(Q!, > ) > P(Q.,, > s,). However, taking the limit of both sides yields f(5') > a, a
contradiction. A similar argument shows that 5 < f~*(«) is also impossible. Hence, the convergence
a, — a € (0,1) implies {(s,/n —r)y/n} has a unique limit as well.(J





