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Objective

Determine Nurse-to-Patient 
staffing rules in order to obtain 
uniform quality of care across all 

hospitals



The solution should be...

● Simple to use 
● Simple data requirements (Parameters)
● Economical



Quality of Care Measurements

● Probability of excessive delay
– The likelihood that a needy patient's waiting 

period before getting access to a nurse is 
longer than a time threshold T≥0

● Probability of Delay (T=0)
● Probability of Timely Service (T>0)



Fixed nurse-to-patient ratios

Hospital Unit
Critical care
Pediatric care
Emergency room
Critical trauma

Minimum ratio
         1:2
         1:4
         1:6
         1:1

Nominal ratio policy: S n=⌈rn⌉



Ratio setting
● Offered load = [Average number of nursing 

hours required per patient] X [ number of 
patients]

● Categorization of patients by their direct 
nursing care needs. 
– Physical condition / Activity studies

  Average mix of patient per unit => staffing 
for each unit.

● Categorization of nursing skills => Staffing 
for each personnel category.



Theoretical Performance of 
Pediatric Units 

Fraction of nursing time required (r) = 1/4
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1st Conclusion

● The fixed nurse-to-patient ratio policy 
does not provide uniform quality-of-service 
across hospital

SIZE MATTERS...



Modeling Assumptions
● Patients:

– Homogeneous patient population
– Two states: needy or dormant
– n (the number of patients) is constant

● Nurses:
– Homogeneous nursing staff
– Pooling of nursing staff

● Closed Queuing Network
– Service time ~ exp(μ)
– Activation time ~ exp(λ)
– FCFS



Closed Queuing Network 
(Closed Jackson Network)

If λ0i = 0; for all i, and Pi0 = 0 - the network is called a closed closed 
Jackson NetworkJackson Network.

1. Arrivals from 'outside' to node i follow 
Poisson Process (PP) with an arrival 
rate λoi;

2. Service times for each server at node i 
are independent, exponentially 
distributed with parameter λi;

3. The probability of moving from node i to 
node j (after the service at node i is 
completed) is Pij and it is state-
independent;

4. Pi0 - probability the customer will leave 
the system from node i.



Our Closed Queuing Network 
(M/M/s/∞/n queue) 

s
Needy
exp(μ)

Dormant
exp(λ)

n 

n-s

n - Number of beds
s – Number of nurses



The model as a birth-death process

0 1 2 n-1 n

  nλ          (n-1)λ                             (n-s+2)λ   (n-s+1)λ                                   λ

   μ               2μ                                     (s-1)μ       sμ                                    sμ

PASTA does not hold for small n!
Virtual hitting time ≠ Needy patient waiting time
(The Arrival Theorem: In closed network system with m customers, the 

system as seen by arrivals to server j is distributed as the steady-state 
distribution in the same network with only m -1 customers)

ss-1s-2

kμ                  sμ

Xt – Number of needy patients



         is the steady state probability for node l=1,2;
 l is an M/M/s or M/M/n system.

Product form solution of the 
stationary distribution

0  ,={ 12

∑
i j=N

1i2 j 
, =n ;

0 otherwise.
}

l .



Steady state probability distribution 
of the number of needy patients in 
the system
1=0n 1=

n


0=N 0

2 2=1n−1 2=
n−1
2

1=
nn−12

22 0=n220

s s=s−1n−s1 s=
n−s1
s

1=nss0

s1 s=s n−s s1=
n−s
s1

1=ns1s1!
s ! s

s10



Steady state probability distribution 
of the number of needy patients in 
the system

k ={0nkk if ks ;

0nkk !s ! ss−k k if k≥s. }
:=/=r /r
r :=/ ; r :=1−r



The probability of excessive delay
● Virtual hitting time (V) 

– V is the time required for the number of busy 
servers to fall below s, provided no new jobs 
arrive in the interim. Thus, this is an objective 
measure of the system.

– P(V>t|N=k) ~ Erlang (k-s+1, sμ)       (k≥s)
– The tail of steady state distribution is:

P Vt =e−s t∑
k=s

n

k∑
j=0

k−s s t  j

j !



The probability of excessive delay
● Virtual hitting time (W) 

– W denote the steady state, in-queue waiting 
time for a hypothetical newly needy patient. 
Thus, this is a subjective measure, from the 
point of view of the patient

– Activation rate: 
– The tail of steady state distribution is:

● Data required: r and μT

k :=⋅n−k 

pn s , t :=P Wt =∑
k=s

n kk

∑i=0

n
ii

P Vt∣N=k 

=e−s t∑
k=s

n n−k k

∑i=0

n
n−i i

∑
j=0

k−s sT  j

j !



● Given a target probability of delay, ε,
for each potential unit size n, select the 
staffing level sn, such that the probability 
of delay (or the probability of timely 
service) is less than ε.

● What's the problem?

The optimization Problem

Minimize sn , for sn∈[1,. .. , n]
s.t. pnsn ,T 



Optimal Vs. Nominal ration 
staffing

T=0, Epsilon = 1%, r=1/4



Optimal Vs. Nominal ration 
staffing

T=1/μ, Epsilon = 1%, r=1/4



Optimal Vs. Nominal ration 
staffing

T=2/μ, Epsilon = 1%, r=1/4



1. Optimal staffing is not a ratio policy
2. Optimal Staffing depends on T
3. At least for Large T - Small units are 

understaffed and large units are 
overstaffed by ratio policy

More conclusion (2nd set of c.)



● Based on many-server asymptotics (n->∞)
● Define:

● If s<r: ED staffing regime (T>0)
● If s=r: QED staffing regime (T≥0 and small)
● If s>r: QD staffing regime (T=0)

Heuristics

s=limn∞ sn /n



● Optimal staffing levels are slight deviations 
from the nominal ratio policy

QED Staffing regime

sn
QED=⌈ rnn ⌉

=−1r T r r
 rT  nr / −r r 

=1e−2

2r2

r
 
r r 

 −r  r 
−1

=1r h 
r  r 

h −r r 
−1

(See proof at the end)



ED Staffing regime
● Optimal staffing level is an order √n 

deviation from rTn: sn
ED=⌈ rT nT n ⌉

⇒ =−r  1r T 3rr T 

rT=
r

1rT T=−r
−1 rrT

1rT 3



Open systems staffing rules 
(reminder)
● Erlang-A: M/M/N + M queue,    as N->∞

QED  <=> limN∞ P Wait =[1 h/h/ ]
−1

where =/ ,
=limN∞ N 1−N  .

N QED=RR , for some  , −∞∞



Staffing:
Ratio vs. Optimal vs. QED (T=0)
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Performance:
Ratio vs. Optimal vs. QED (T=0)
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Staffing:
Ratio vs. Optimal vs. QED (T=0)

epsilon = .05
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Performance:
Ratio vs. Optimal vs. QED (T=0)
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Timely Service Staffing:
Ratio vs. Optimal vs. Heuristic ED

T = 1/mu   epsilon = .1
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Timely Service Performance:
Ratio vs. Optimal vs. Heuristic ED

T  =  1 / m u   e p s i l o n  =  . 1
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Timely Service Staffing:
Ratio vs. Optimal vs. Heuristic ED
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Timely Service Performance:
Ratio vs. Optimal vs. Heuristic ED
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Conclusions / Managerial Insights

● Size Matters  
– Under mild nurse pooling assumptions, the ratios will not provide 

uniform QOS across units of varying sizes.

● Typically, small units are understaffed and large units are 
overstaffed. 

● Inconsistencies under ratio policies worsen as T increases 
and ε decreases.

 
● QED and ED Staffing Rules

– Nurse-patient ratios provide a (first order) starting point. QED 
and ED staffing rules provide the necessary adjustments so that 
uniform QOS is achieved.



Future research
● Heterogeneous workforce
● Heterogeneous patients - Acuity levels
● Different probability distribution for 

service and activation times
● Varying N and S simultaneously



QED Staffing Policy
Proposition: The approximate probability of 

delay has a nondegenerate limit α∈(0,1) if 
and only if 

for some β∈(-∞,∞), with

n= snn −rn , as n∞ ,

=1e−2

r 2

r
 
r r 

 −r r 
−1



QED Staffing Policy 

Proof: A. Represent the probability of delay 
as combination of two random variable (Xn 
and Yn)

B. Apply CLT for each one.
C. Determine the limit of each variable as n 

tend to infinity.
D. Determine the limit of the probability of 

delay.
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Appendix A: Proof of Proposition 1

Proof: Assume first that Condition (2) holds. Note then that

P (Qn ≥ sn) =
(

1+
An

Bn

)−1

(29)

with

An =
sn−1∑
k=0

(
n
k

)
ρk

Bn =
n∑

k=sn

(
n
k

)
k!
sn!

ssn−k
n ρk

Using the definitions of r and r, note that An can be rewritten as follows,

An = (1+ ρ)n

sn−1∑
k=0

(
n
k

)
rkrn−k

= (1+ ρ)nP (X ≤ sn− 1)

where X is a binomial random variable with parameters n and r, i.e. X ∼Bi(n, r). Similarly, Bn

is equal to

Bn =
n!
sn!

ρn

sn−sn
n

esn/ρ

n∑
k=sn

1
(n− k)!

(
sn

ρ

)n−k

e−sn/ρ

=
n!
sn!

ρn

sn−sn
n

esn/ρP (Y ≤ n− sn)

where Y is a Poisson random variable with rate sn/ρ, i.e. Y ∼ P (sn/ρ). As a result the probability
of delay can be written as

P (Qn ≥ sn) =
(

1+Cn

P (X ≤ sn− 1)
P (Y ≤ n− sn)

)−1

(30)

where
Cn =

sn!
n!

(
sn

ρ

)n (1+ ρ)n

ssn
n

e−sn/ρ (31)

Note first that
P (X ≤ sn− 1) = P

(
X −nr√

nrr
≤ sn− 1−nr√

nrr

)
(32)

where the convergence of (sn− 1−nr)/
√

n to the limit β is equivalent to Condition (2). It follows
that, using the central limit theorem,

P (X ≤ sn− 1)→Φ
(
β/
√

rr
)

. (33)

Similarly,

P (Y ≤ n− sn) = P

(
Y − sn/ρ√

sn/ρ
≤ n− sn− sn/ρ√

sn/ρ

)

= P

(
Y − sn/ρ√

sn/ρ
≤ rn− sn√

rr
√

sn

)
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where the second equality is obtained using ρ = r/r. From Condition (2), (rn− sn)/
√

sn →−β/
√

r
when n→+∞. Using again the central limit theorem, we have then

P (Y ≤ n− sn)→Φ
( −β

r
√

r

)
. (34)

It remains to study the limit of Cn as n → +∞. To that end, we apply the Stirling’s formula
n!∼ (2πn)1/2nne−n twice, to n and to sn. It follows then from the definition of Cn (Equation 31),

Cn ∼
√

r

(
1+

β

r
√

n

)n+1/2

en−sn/r. (35)

Since (1 + β/(r
√

n))n+1/2 ∼ eβ
√

n/r−β2/r2
and n− sn/r =−β

√
n/r from Condition (2), we deduce

that Cn → e−β2/r2√
r and

P (Qn ≥ sn)→ f(β) (36)

where f : IR 7→ (0,1) is a strictly decreasing function such that

f(β) =


1+ e−β2/r2√

r
Φ

(
β√
rr

)

Φ
(
−β

r
√

r

)


−1

(37)

Assume now that an has a limit α, 0 < α < 1 and that β 6= f−1(α) is a (possibly infinite) limit point
of {(sn/n− r)

√
n}. Assume for now that β > f−1(α). Construct a sequence {s′n} such that s′n ≤ sn

and (s′n/n−r)
√

n→ β′ = min((β +f−1(α))/2, f−1(α)+1), as n→∞. Notice that f−1(α) < β′ <∞,
which implies α > f(β′). Let Q′

n denote the number of users in the nth system with s′n servers.
Since s′n ≤ sn, P (Q′

n ≥ s′n)≥ P (Qn ≥ sn). However, taking the limit of both sides yields f(β′)≥ α, a
contradiction. A similar argument shows that β < f−1(α) is also impossible. Hence, the convergence
an → α∈ (0,1) implies {(sn/n− r)

√
n} has a unique limit as well.¤

Appendix B: Asymptotic PASTA

If the arrival process were Poisson, then the steady state value of any quantity could be accurately
estimated by averaging the values of the quantity sampled over arrival instances. This phenomenon
is referred to as PASTA (Poisson arrivals see time-averages). In our system the arrivals can be
thought of a Poisson whose rate is modulated by the number of available dormant users. So long
run quantities are different in general than their arrival process sampled counterparts. In particular,
the probability that all servers are occupied is different from the probability that a newly activated
user is delayed, because all servers are occupied. In this paper, our theorems provide limits for the
former when, arguably, the later is the quantity of interest, at least from the perspective of users
of the system. Fortunately for us, in the limit, as the population size goes to infinity, the limiting
probability and delay and limiting probability that all servers are occupied are the same.

Theorem 6. (asymptotically, the state-dependent arrival stream sees time averages) Assume
Nn(0)/n → b, where b obeys (7), and let γn be the (true) steady state probability of delay for a
system with n members. In the limit this quantity coincides with α, the long run probability that
all servers are busy:

γn → α, as n→∞. (38)

Proof: The delay probability is equal to the long run fraction of total activations that witness a
full system upon arrival:

γn = lim
t→∞

∫ t

0
1(Nn(s)≥sn)dAn(s)

An(t)
,




