

Service Engineering Seminar

Nurse-to-Patient Ratios in Hospital staffing: A Queuing Perspective

Véricout and Jennings

Objective

Determine Nurse-to-Patient staffing rules in order to obtain uniform quality of care across all hospitals

The solution should be...

- Simple to use
- Simple data requirements (Parameters)
- Economical

Quality of Care Measurements

- Probability of excessive delay
 - The likelihood that a needy patient's waiting period before getting access to a nurse is longer than a time threshold $T \geq 0$
- Probability of Delay ($T=0$)
- Probability of Timely Service ($T>0$)

Fixed nurse-to-patient ratios

<u>Hospital Unit</u>	<u>Minimum ratio</u>
Critical care	1:2
Pediatric care	1:4
Emergency room	1:6
Critical trauma	1:1

Nominal ratio policy: $S_n = \lceil rn \rceil$

Ratio setting

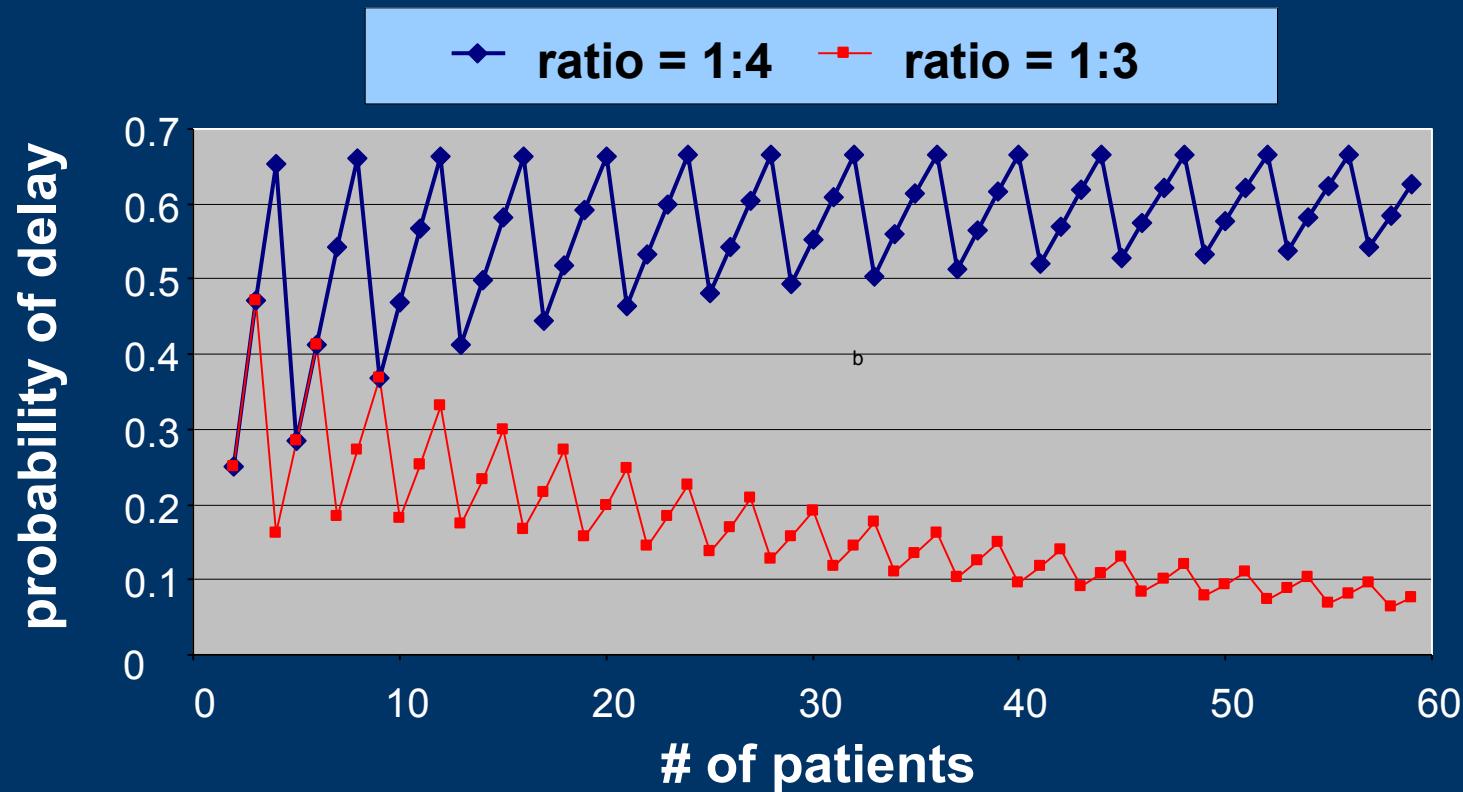
- Offered load = [Average number of nursing hours required per patient] X [number of patients]
- Categorization of patients by their direct nursing care needs.

– Physical condition / Activity studies

Average mix of patient per unit => staffing for each unit.

- Categorization of nursing skills => Staffing for each personnel category.

Theoretical Performance of Pediatric Units



Fraction of nursing time required (r) = 1/4

1st Conclusion

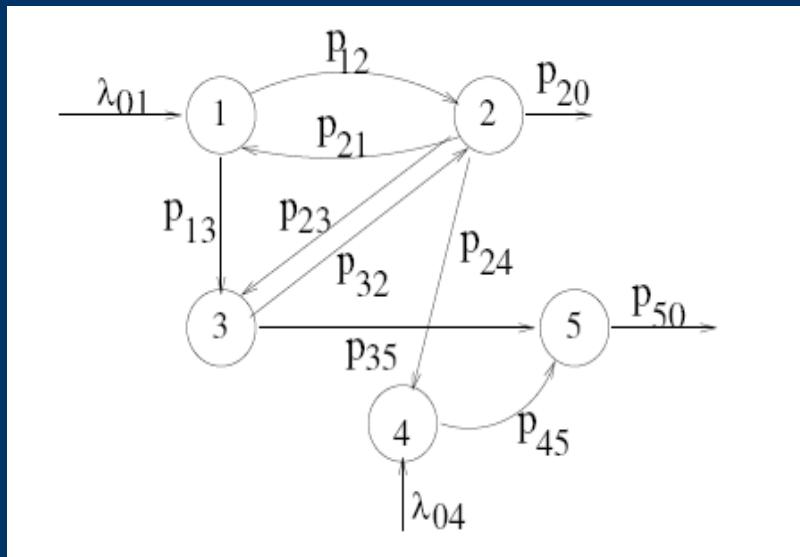
- The fixed nurse-to-patient ratio policy does not provide uniform quality-of-service across hospital

SIZE MATTERS...

Modeling Assumptions

- Patients:
 - Homogeneous patient population
 - Two states: needy or dormant
 - n (the number of patients) is constant
- Nurses:
 - Homogeneous nursing staff
 - Pooling of nursing staff
- Closed Queuing Network
 - Service time $\sim \exp(\mu)$
 - Activation time $\sim \exp(\lambda)$
 - FCFS

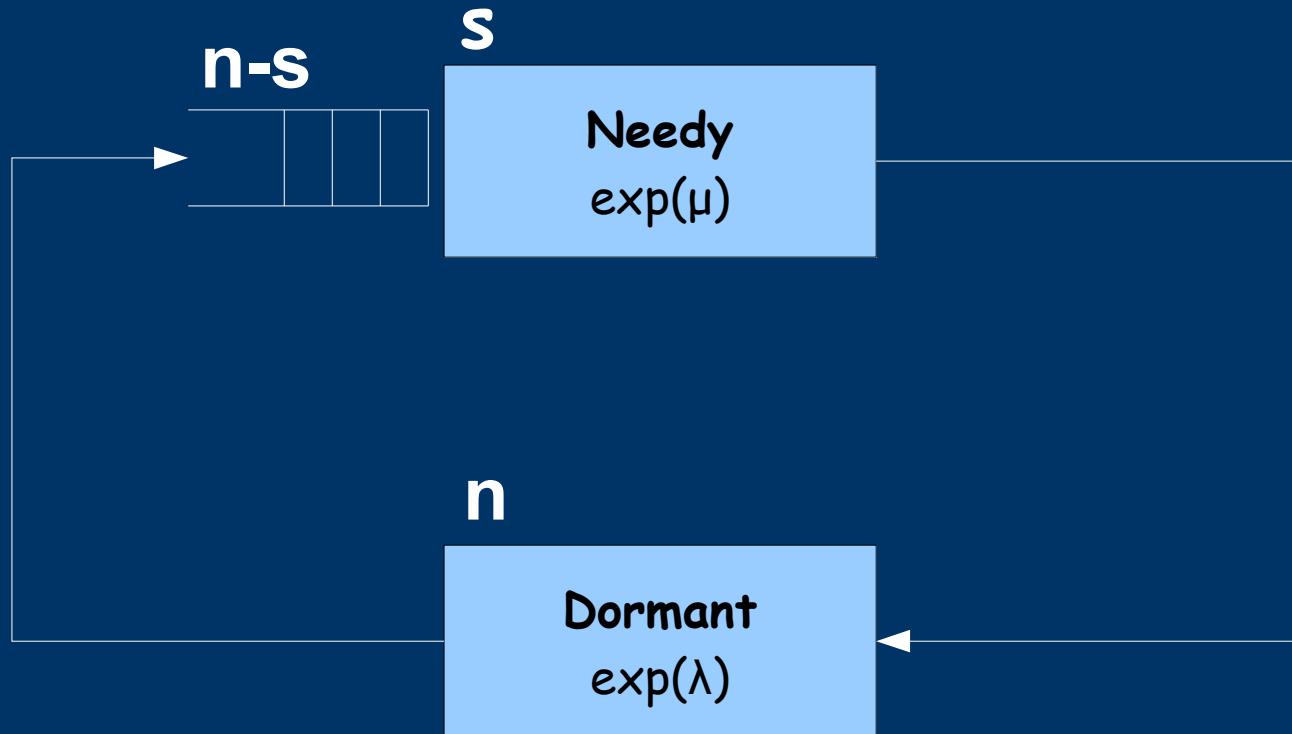
Closed Queuing Network *(Closed Jackson Network)*



1. Arrivals from 'outside' to node i follow Poisson Process (PP) with an arrival rate λ_{0i} ;
2. Service times for each server at node i are independent, exponentially distributed with parameter λ_i ;
3. The probability of moving from node i to node j (after the service at node i is completed) is P_{ij} and it is state-independent;
4. P_{i0} - probability the customer will leave the system from node i .

If $\lambda_{0i} = 0$; for all i , and $P_{i0} = 0$ - the network is called a **Closed Jackson Network**.

Our Closed Queuing Network ($M/M/s/\infty/n$ queue)

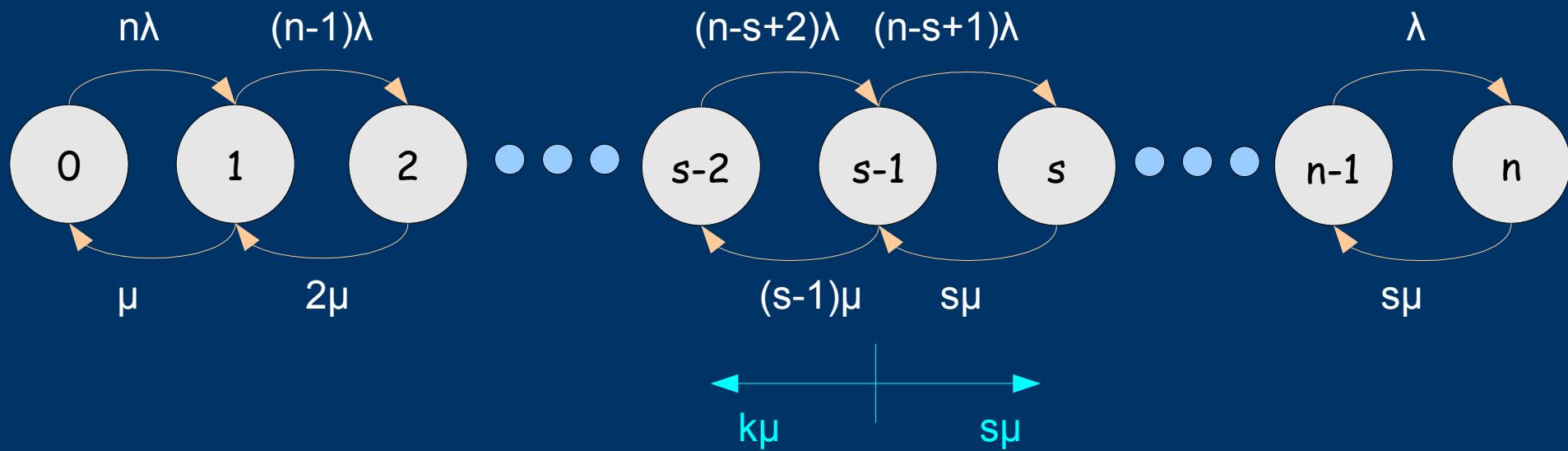


n - Number of beds

s - Number of nurses

The model as a birth-death process

X_t - Number of needy patients



PASTA does not hold for small n !

Virtual hitting time \neq Needy patient waiting time

(The Arrival Theorem: In closed network system with m customers, the system as seen by arrivals to server j is distributed as the steady-state distribution in the same network with only $m-1$ customers)

Product form solution of the stationary distribution

$$\pi^0(\alpha, \beta) = \begin{cases} \frac{\pi^1(\alpha)\pi^2(\beta)}{\sum\limits_{i+j=N} \pi^1(i)\pi^2(j)}, & \alpha + \beta = n; \\ 0 & \text{otherwise.} \end{cases}$$

$\pi^l(\cdot)$ is the steady state probability for node $l=1, 2$;
 l is an M/M/s or M/M/n system.

Steady state probability distribution of the number of needy patients in the system

$$\pi_1 \mu = \pi_0 n \lambda$$

$$\pi_1 = \frac{n \lambda}{\mu} \pi_0 = N \rho \pi_0$$

$$\pi_2 2 \mu = \pi_1 (n-1) \lambda$$

$$\pi_2 = \frac{(n-1) \lambda}{2 \mu} \pi_1 = \frac{n(n-1) \lambda^2}{2 \mu^2} \pi_0 = \binom{n}{2} \rho^2 \pi_0$$

⋮

$$\pi_s s \mu = \pi_{s-1} (n-s+1) \lambda$$

$$\pi_s = \frac{(n-s+1) \lambda}{s \mu} \pi_1 = \binom{n}{s} \rho^s \pi_0$$

$$\pi_{s+1} s \mu = \pi_s (n-s) \lambda$$

$$\pi_{s+1} = \frac{(n-s) \lambda}{(s+1) \mu} \pi_1 = \binom{n}{s+1} \frac{(s+1)!}{s! s} \rho^{s+1} \pi_0$$

Steady state probability distribution of the number of needy patients in the system

$$\pi(k) = \begin{cases} \pi_0 \binom{n}{k} \rho^k & \text{if } k < s; \\ \pi_0 \binom{n}{k} \frac{k!}{s!} s^{s-k} \rho^k & \text{if } k \geq s. \end{cases}$$

$$\rho := \lambda / \mu = r / \bar{r}$$

$$r := \lambda / (\lambda + \mu); \quad \bar{r} := 1 - r$$

The probability of excessive delay

- Virtual hitting time (V)
 - V is the time required for the number of busy servers to fall below s , provided no new jobs arrive in the interim. Thus, this is an objective measure of the system.
 - $P(V>t|N=k) \sim \text{Erlang } (k-s+1, s\mu) \quad (k \geq s)$
 - The tail of steady state distribution is:

$$P(V>t) = e^{-s\mu t} \sum_{k=s}^n \pi_k \sum_{j=0}^{k-s} \frac{(s\mu t)^j}{j!}$$

The probability of excessive delay

- Virtual hitting time (W)
 - W denote the steady state, in-queue waiting time for a hypothetical newly needy patient. Thus, this is a subjective measure, from the point of view of the patient
 - Activation rate: $\lambda_k := \lambda \cdot (n - k)$
 - The tail of steady state distribution is:
$$p_n(s, t) := P(W > t) = \sum_{k=s}^n \frac{\lambda_k \pi_k}{\sum_{i=0}^n \lambda_i \pi_i} P(V > t | N = k)$$
$$= e^{-s \mu T} \sum_{k=s}^n \frac{(n - k) \pi_k}{\sum_{i=0}^n (n - i) \pi_i} \sum_{j=0}^{k-s} \frac{(s \mu T)^j}{j!}$$
- Data required: r and μT

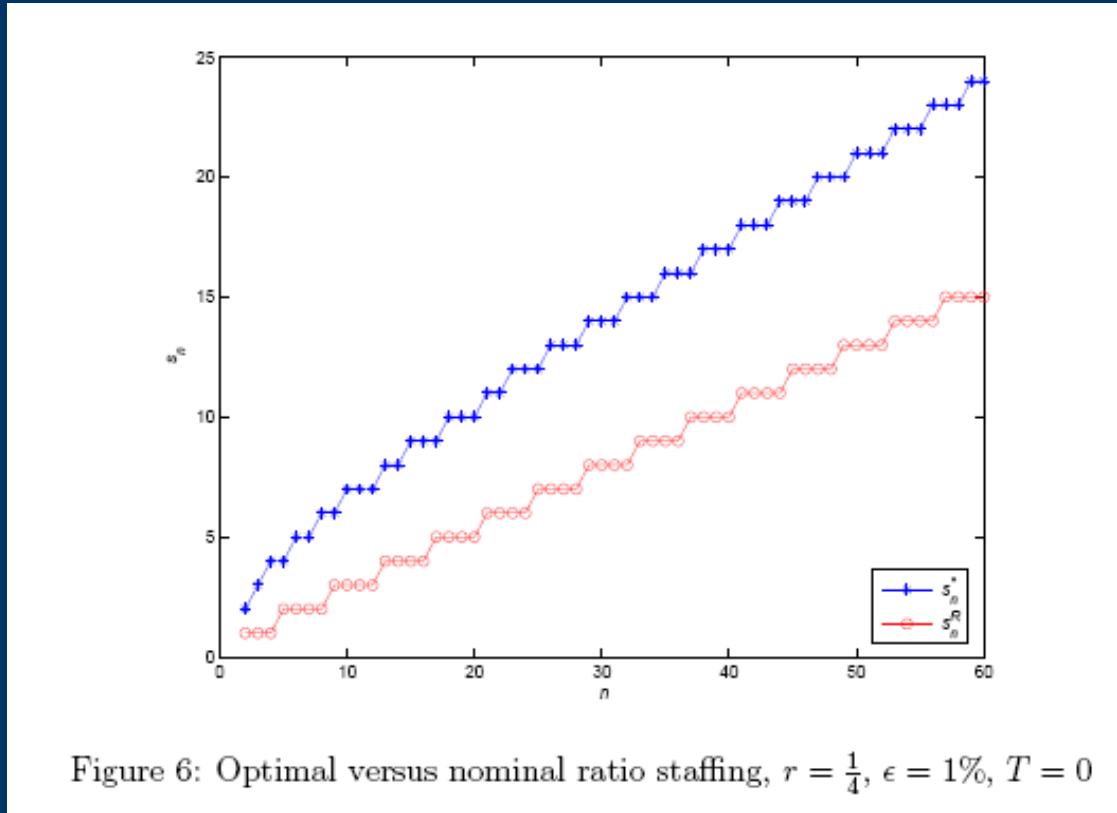
The optimization Problem

- Given a target probability of delay, ϵ , for each potential unit size n , select the staffing level s_n , such that the probability of delay (or the probability of timely service) is less than ϵ .

$$\begin{aligned} & \text{Minimize } s_n, \quad \text{for } s_n \in [1, \dots, n] \\ & \text{s.t.} \quad p_n(s_n, T) < \epsilon \end{aligned}$$

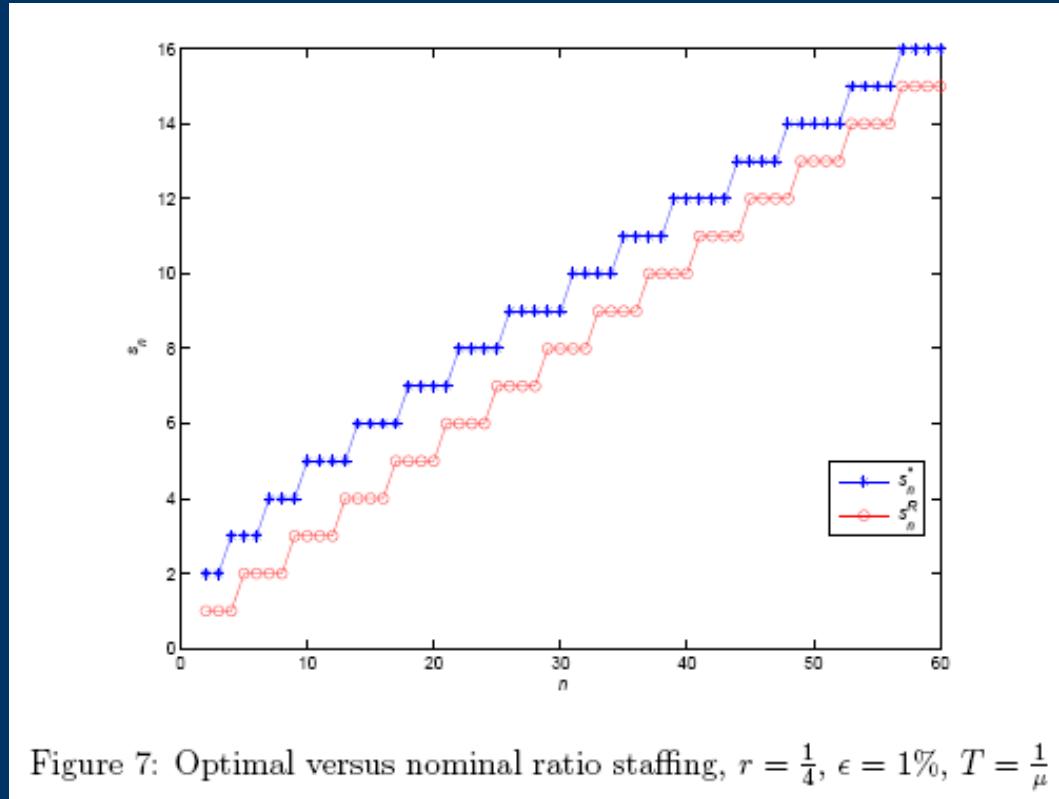
- What's the problem?

Optimal Vs. Nominal ration staffing



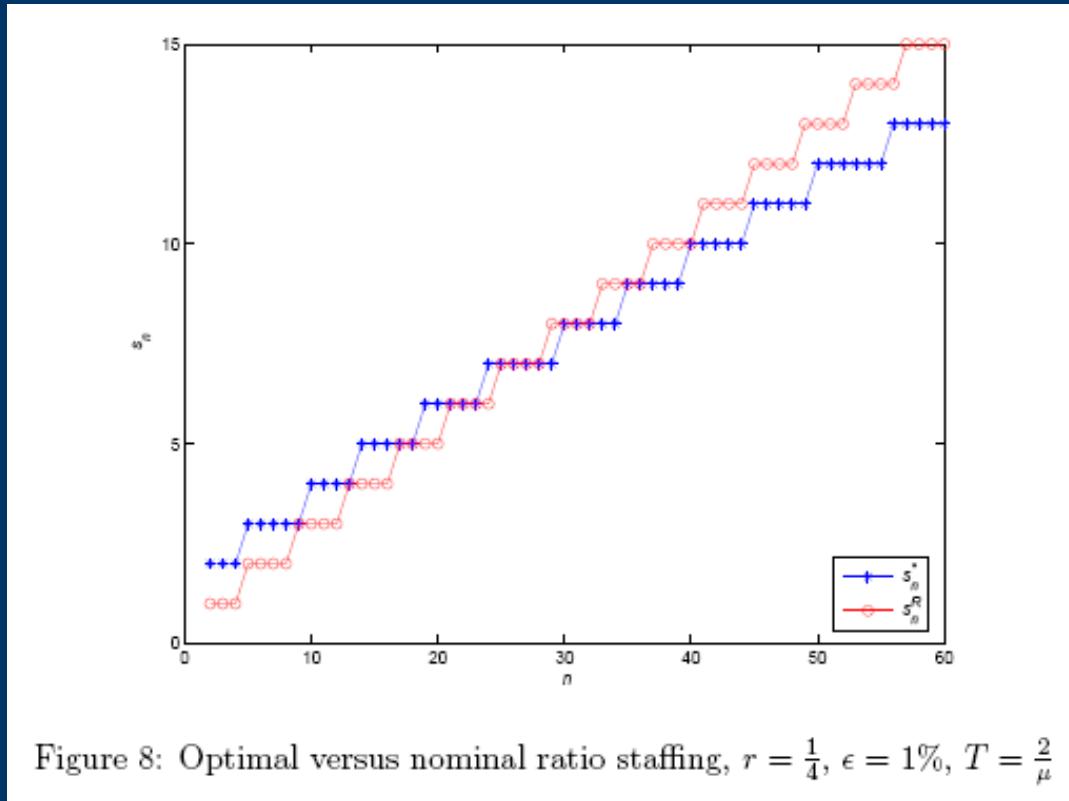
$T=0$, $\text{Epsilon} = 1\%$, $r=1/4$

Optimal Vs. Nominal ration staffing



$T=1/\mu$, Epsilon = 1%, r=1/4

Optimal Vs. Nominal ration staffing



$T=2/\mu$, Epsilon = 1%, r=1/4

More conclusion (2nd set of c.)

1. Optimal staffing is not a ratio policy
2. Optimal Staffing depends on T
3. At least for Large T - Small units are understaffed and large units are overstuffed by ratio policy

Heuristics

- Based on many-server asymptotics ($n \rightarrow \infty$)
- Define: $\bar{s} = \lim_{n \rightarrow \infty} s_n / n$
- If $\bar{s} < r$: ED staffing regime ($T > 0$)
- If $\bar{s} = r$: QED staffing regime ($T \geq 0$ and small)
- If $\bar{s} > r$: QD staffing regime ($T = 0$)

QED Staffing regime

- Optimal staffing levels are slight deviations from the nominal ratio policy

$$s_n^{QED} = \lceil rn + \beta \sqrt{n} \rceil$$

$$\epsilon = \alpha(\beta) \Phi \left(\frac{-\beta(1 + r \mu T)}{r \sqrt{r}} \mu r T \sqrt{\frac{n}{r}} \right) / \Phi \left(\frac{-\beta}{r \sqrt{r}} \right)$$

$$\alpha(\beta) = \left(1 + e^{\frac{-\beta^2}{2r^2}} \sqrt{r} \frac{\Phi \left(\frac{\beta}{\sqrt{r \bar{r}}} \right)}{\Phi \left(\frac{-\beta}{r \sqrt{r}} \right)} \right)^{-1} = \left(1 + \sqrt{r} \frac{h \left(\frac{\beta}{r \sqrt{r}} \right)}{h \left(\frac{-\beta}{\sqrt{r \bar{r}}} \right)} \right)^{-1}$$

(See proof at the end)

ED Staffing regime

- Optimal staffing level is an order \sqrt{n} deviation from $\hat{r}_T n$:
$$s_n^{ED} = \lceil \hat{r}_T n + \beta_T \sqrt{n} \rceil$$

$$\hat{r}_T = \frac{r}{1 + r \mu T}$$

$$\beta_T = -r \Phi^{-1}(\epsilon) \sqrt{\frac{\bar{r} + r \mu T}{(1 + r \mu T)^3}}$$

$$\Rightarrow \epsilon = \Phi \left(\frac{-\beta}{r} \sqrt{\frac{(1 + r \mu T)^3}{\bar{r} + r \mu T}} \right)$$

Open systems staffing rules (reminder)

- Erlang- A : $M/M/N + M$ queue, as $N \rightarrow \infty$

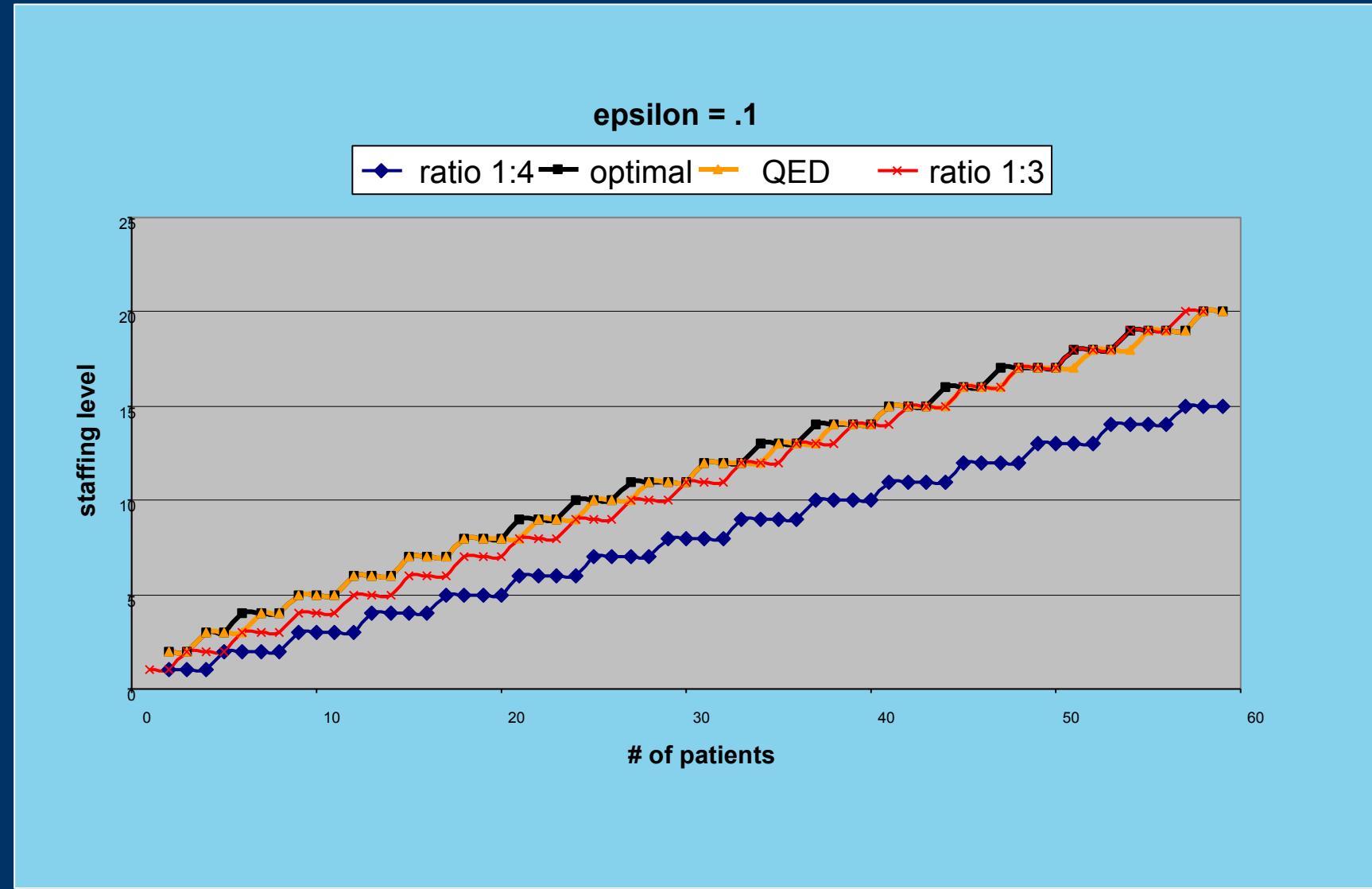
$$N^{QED} = R + \beta \sqrt{R}, \text{ for some } \beta, \quad -\infty < \beta < \infty$$

$$\text{QED} \iff \lim_{N \rightarrow \infty} P(\text{Wait}) = \left[1 + \frac{h(\delta)/\delta}{h(\beta)/\beta} \right]^{-1}$$

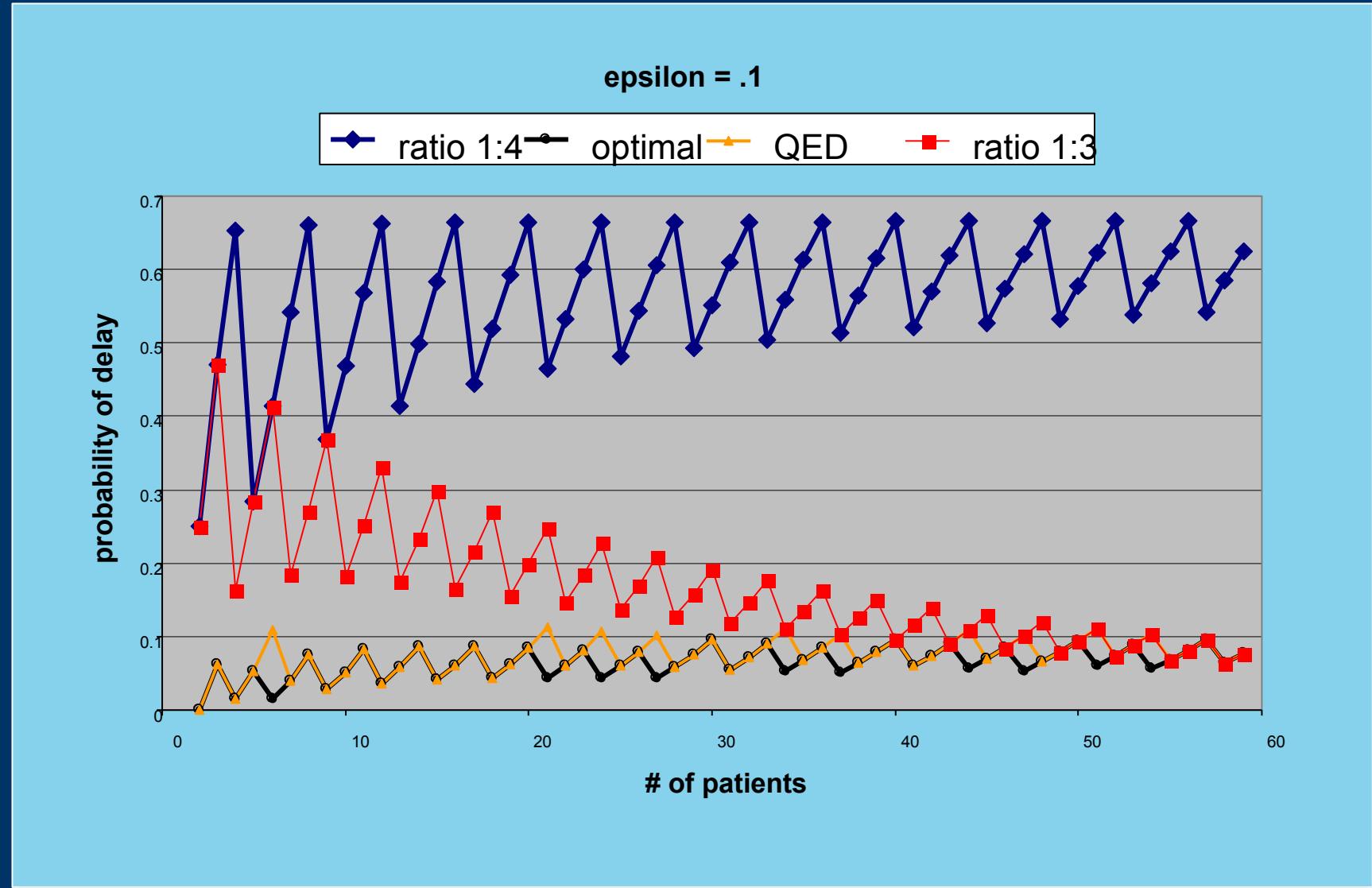
where $\delta = \beta \sqrt{\mu/\theta}$,

$$\beta = \lim_{N \rightarrow \infty} \sqrt{N} (1 - \rho_N).$$

Staffing: Ratio vs. Optimal vs. QED ($T=0$)

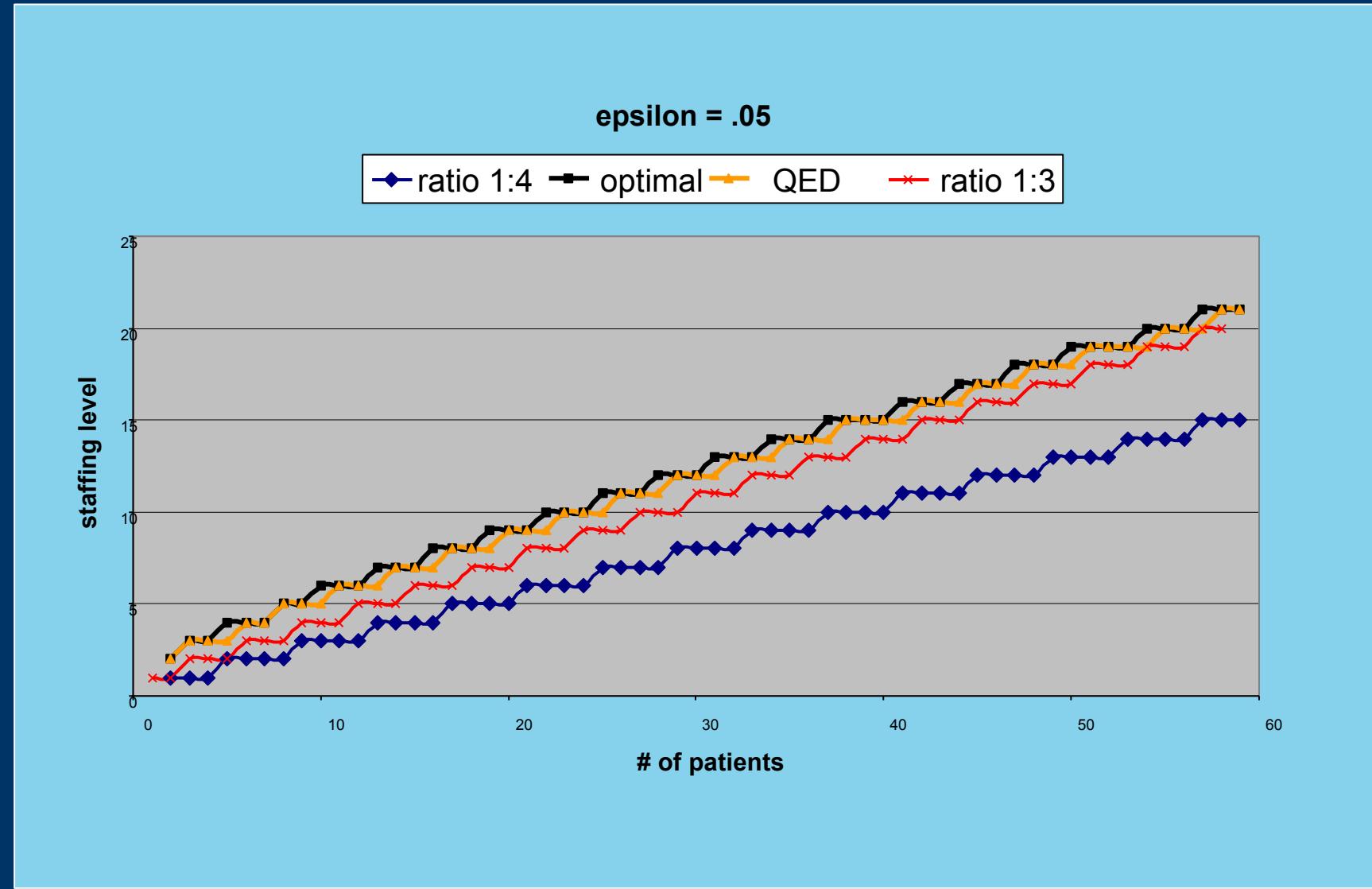


Performance: *Ratio vs. Optimal vs. QED ($T=0$)*

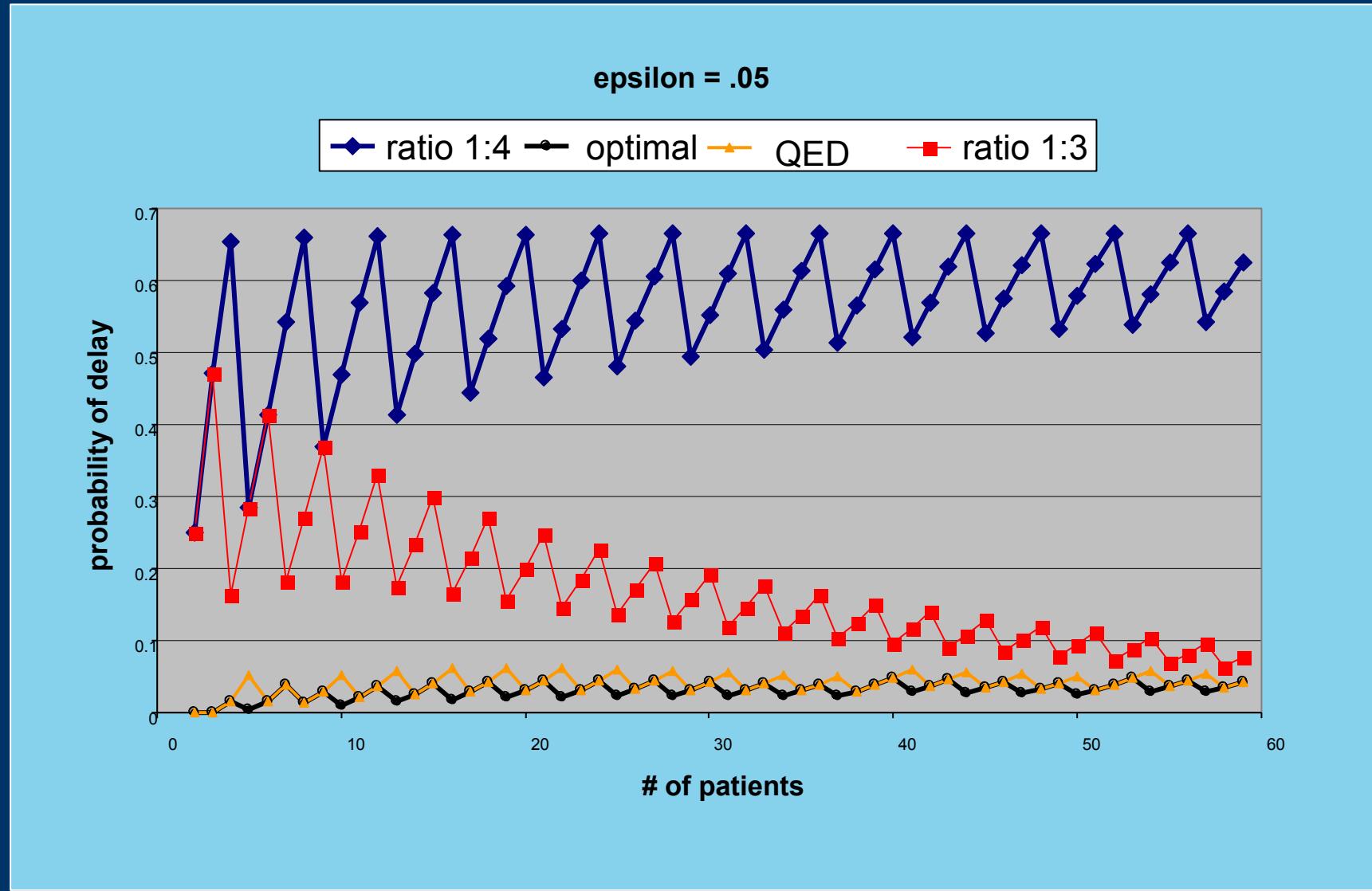


Staffing:

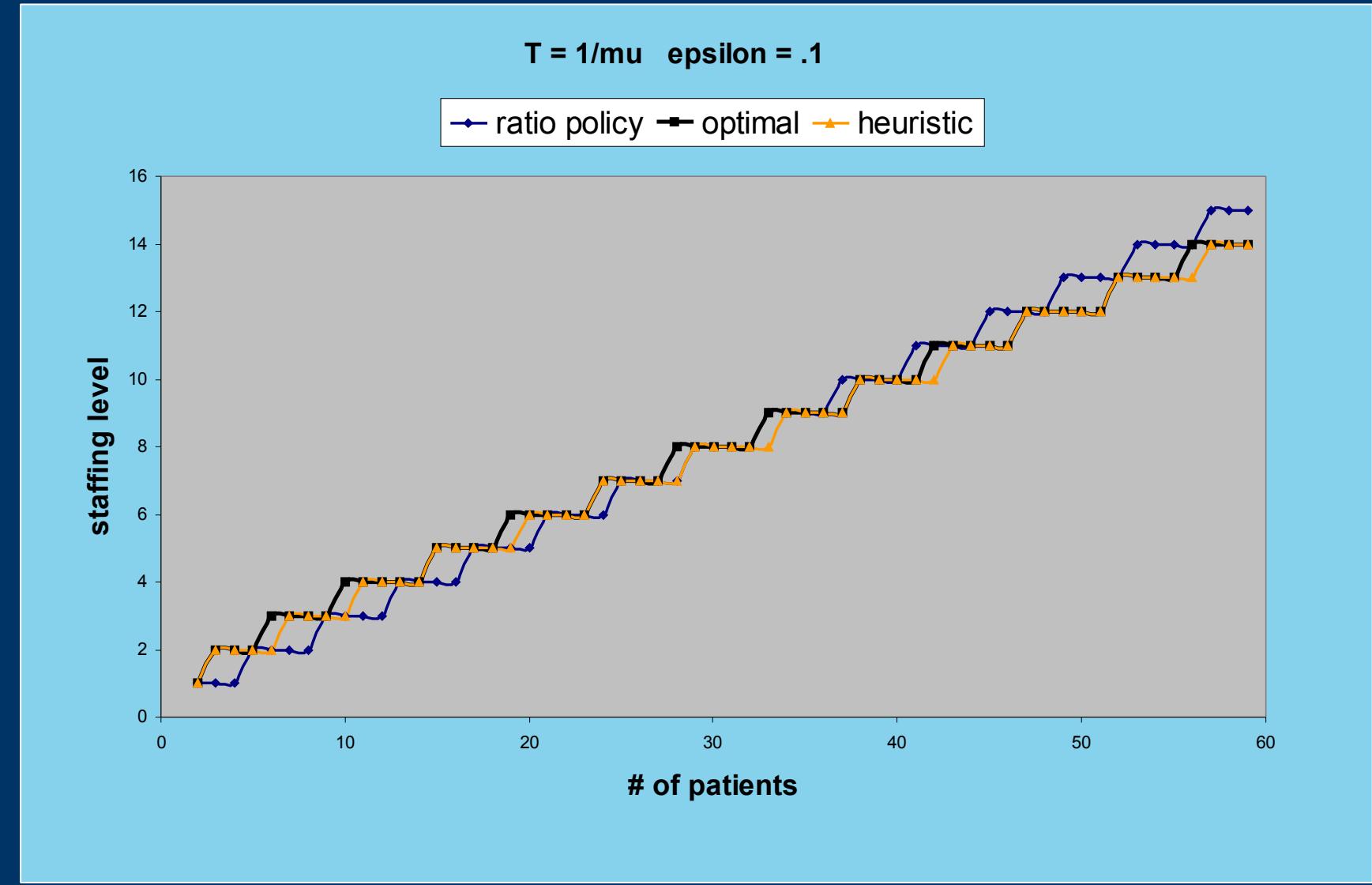
Ratio vs. Optimal vs. QED ($T=0$)



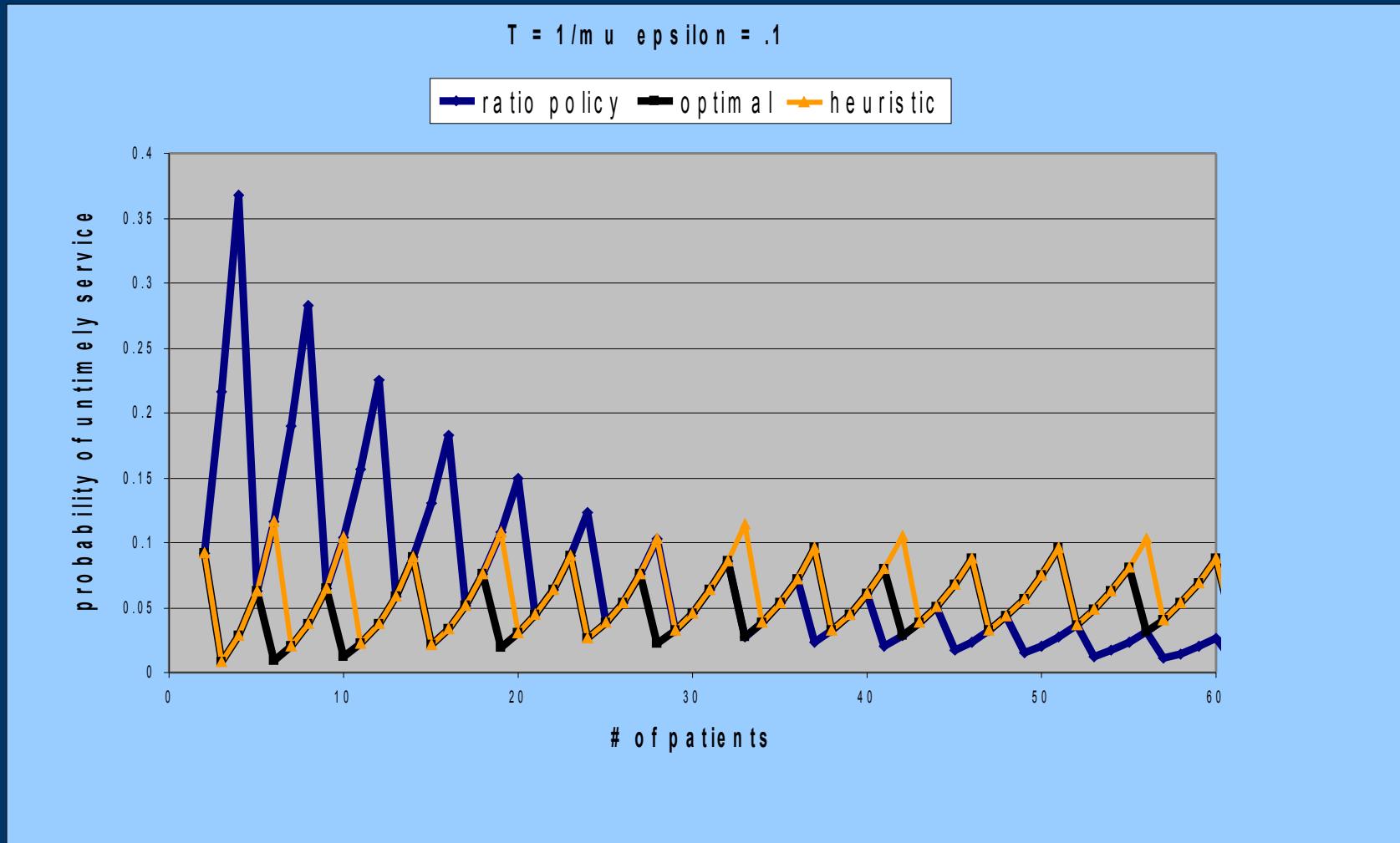
Performance: *Ratio vs. Optimal vs. QED ($T=0$)*



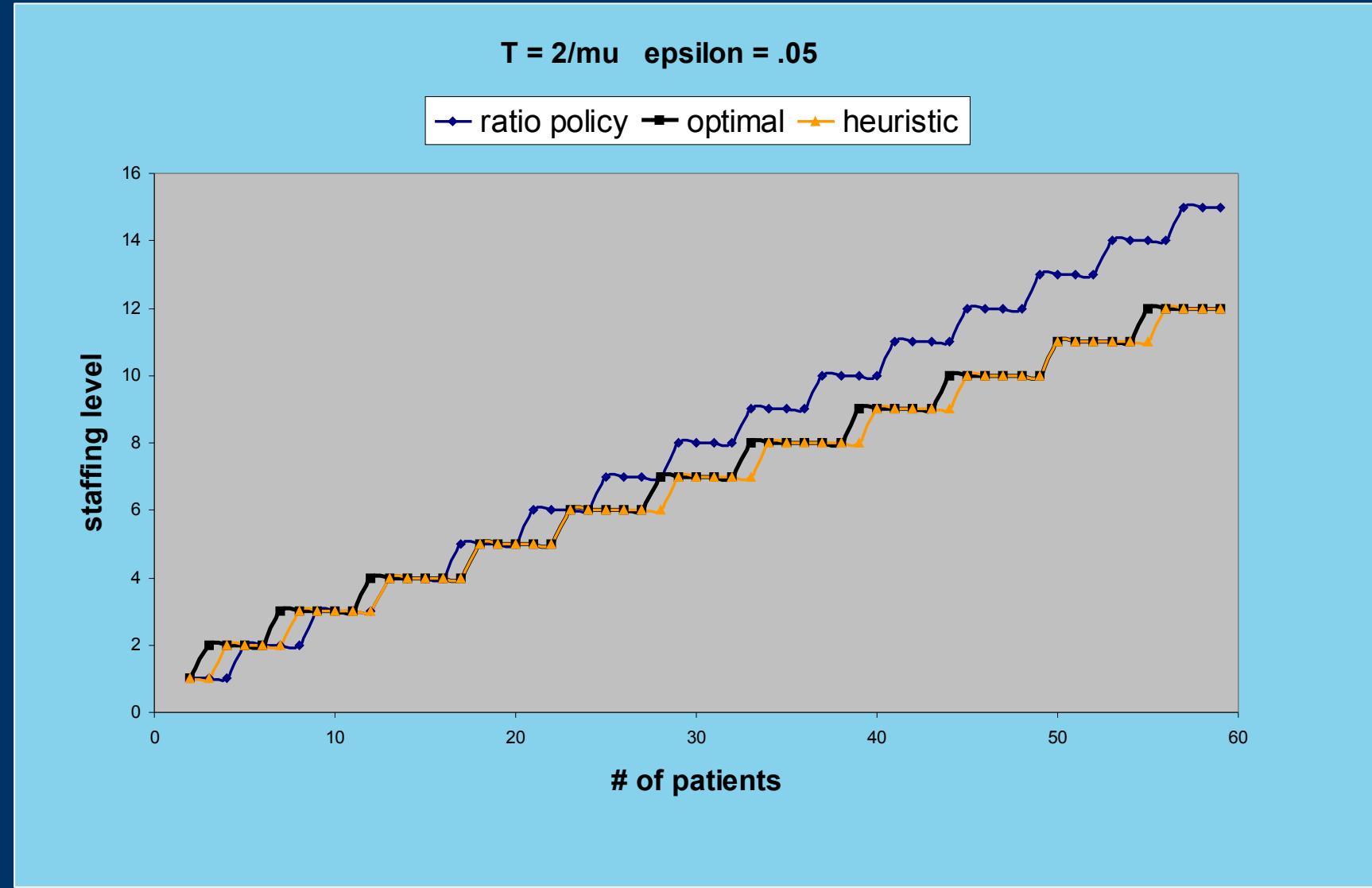
Timely Service Staffing: Ratio vs. Optimal vs. Heuristic ED



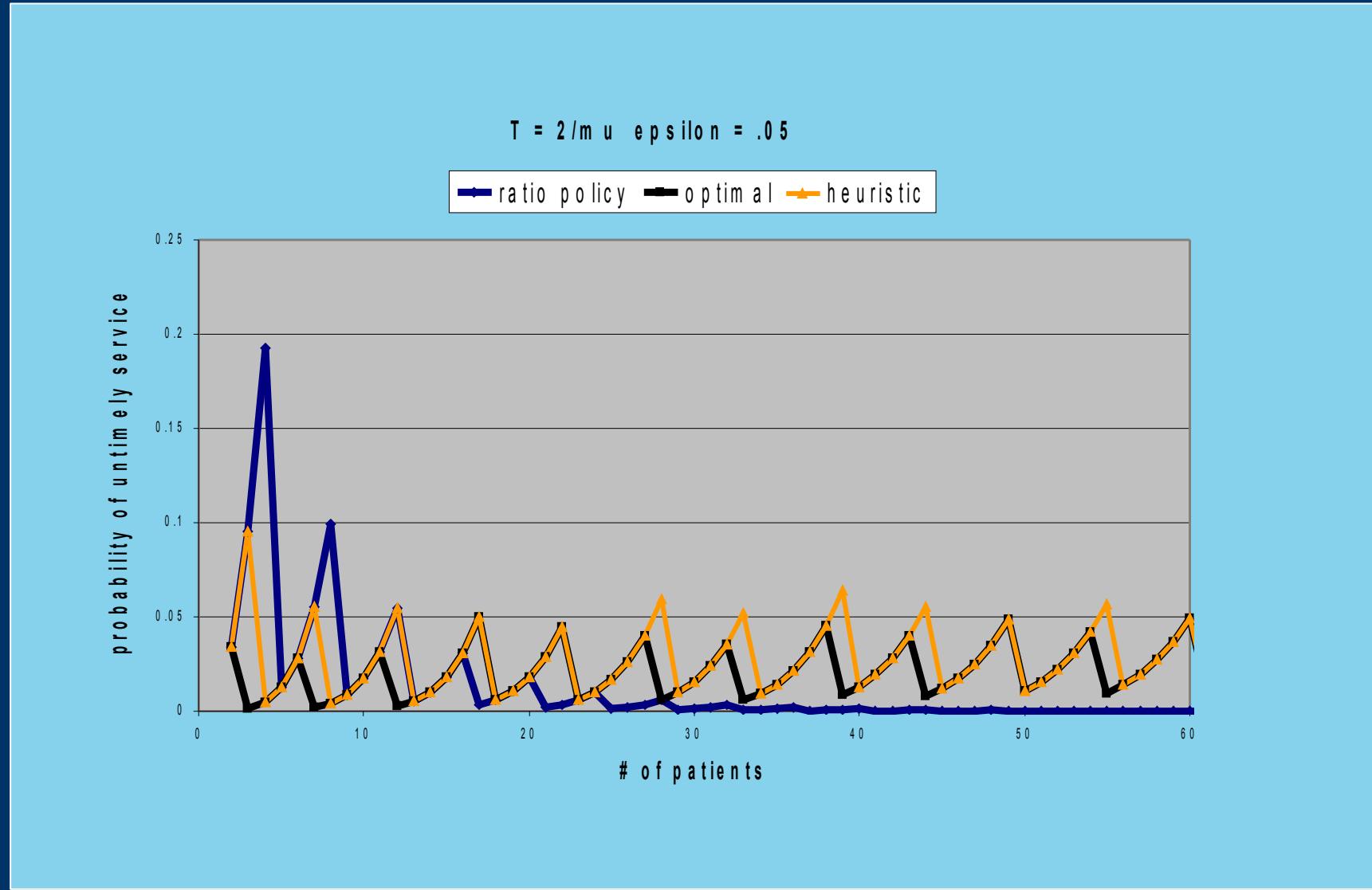
Timely Service Performance: Ratio vs. Optimal vs. Heuristic ED



Timely Service Staffing: Ratio vs. Optimal vs. Heuristic ED



Timely Service Performance: Ratio vs. Optimal vs. Heuristic ED



Conclusions / Managerial Insights

- Size Matters
 - Under mild nurse pooling assumptions, the ratios will not provide uniform QOS across units of varying sizes.
- Typically, small units are understaffed and large units are overstaffed.
- Inconsistencies under ratio policies worsen as T increases and ε decreases.
- QED and ED Staffing Rules
 - Nurse-patient ratios provide a (first order) starting point. QED and ED staffing rules provide the necessary adjustments so that uniform QOS is achieved.

Future research

- Heterogeneous workforce
- Heterogeneous patients - Acuity levels
- Different probability distribution for service and activation times
- Varying N and S simultaneously

QED Staffing Policy

Proposition: The approximate probability of delay has a nondegenerate limit $\alpha \in (0,1)$ if and only if

$$\beta_n = \left(\frac{s_n}{n} - r \right) \sqrt{n} \rightarrow \beta, \quad \text{as } n \rightarrow \infty,$$

for some $\beta \in (-\infty, \infty)$, with

$$\alpha = \left(1 + e^{\frac{-\beta^2}{r^2}} \sqrt{r} \frac{\Phi\left(\frac{\beta}{\sqrt{r}}\right)}{\Phi\left(\frac{-\beta}{r\sqrt{r}}\right)} \right)^{-1}$$

QED Staffing Policy

- Proof:
- A. Represent the probability of delay as combination of two random variable (X_n and Y_n)
 - B. Apply CLT for each one.
 - C. Determine the limit of each variable as n tend to infinity.
 - D. Determine the limit of the probability of delay.
-

Appendix A: Proof of Proposition 1

Proof: Assume first that Condition (2) holds. Note then that

$$P(Q_n \geq s_n) = \left(1 + \frac{A_n}{B_n}\right)^{-1} \quad (29)$$

with

$$\begin{aligned} A_n &= \sum_{k=0}^{s_n-1} \binom{n}{k} \rho^k \\ B_n &= \sum_{k=s_n}^n \binom{n}{k} \frac{k!}{s_n!} s_n^{s_n-k} \rho^k \end{aligned}$$

Using the definitions of r and \bar{r} , note that A_n can be rewritten as follows,

$$\begin{aligned} A_n &= (1 + \rho)^n \sum_{k=0}^{s_n-1} \binom{n}{k} r^k \bar{r}^{n-k} \\ &= (1 + \rho)^n P(X \leq s_n - 1) \end{aligned}$$

where X is a binomial random variable with parameters n and r , i.e. $X \sim Bi(n, r)$. Similarly, B_n is equal to

$$\begin{aligned} B_n &= \frac{n!}{s_n!} \frac{\rho^n}{s_n^{n-s_n}} e^{s_n/\rho} \sum_{k=s_n}^n \frac{1}{(n-k)!} \left(\frac{s_n}{\rho}\right)^{n-k} e^{-s_n/\rho} \\ &= \frac{n!}{s_n!} \frac{\rho^n}{s_n^{n-s_n}} e^{s_n/\rho} P(Y \leq n - s_n) \end{aligned}$$

where Y is a Poisson random variable with rate s_n/ρ , i.e. $Y \sim P(s_n/\rho)$. As a result the probability of delay can be written as

$$P(Q_n \geq s_n) = \left(1 + C_n \frac{P(X \leq s_n - 1)}{P(Y \leq n - s_n)}\right)^{-1} \quad (30)$$

where

$$C_n = \frac{s_n!}{n!} \left(\frac{s_n}{\rho}\right)^n \frac{(1 + \rho)^n}{s_n^{s_n}} e^{-s_n/\rho} \quad (31)$$

Note first that

$$P(X \leq s_n - 1) = P\left(\frac{X - nr}{\sqrt{nr\bar{r}}} \leq \frac{s_n - 1 - nr}{\sqrt{nr\bar{r}}}\right) \quad (32)$$

where the convergence of $(s_n - 1 - nr)/\sqrt{n}$ to the limit β is equivalent to Condition (2). It follows that, using the central limit theorem,

$$P(X \leq s_n - 1) \rightarrow \Phi\left(\beta/\sqrt{r\bar{r}}\right). \quad (33)$$

Similarly,

$$\begin{aligned} P(Y \leq n - s_n) &= P\left(\frac{Y - s_n/\rho}{\sqrt{s_n/\rho}} \leq \frac{n - s_n - s_n/\rho}{\sqrt{s_n/\rho}}\right) \\ &= P\left(\frac{Y - s_n/\rho}{\sqrt{s_n/\rho}} \leq \frac{rn - s_n}{\sqrt{r\bar{r}}\sqrt{s_n}}\right) \end{aligned}$$

where the second equality is obtained using $\rho = r/\bar{r}$. From Condition (2), $(rn - s_n)/\sqrt{s_n} \rightarrow -\beta/\sqrt{r}$ when $n \rightarrow +\infty$. Using again the central limit theorem, we have then

$$P(Y \leq n - s_n) \rightarrow \Phi\left(\frac{-\beta}{r\sqrt{r}}\right). \quad (34)$$

It remains to study the limit of C_n as $n \rightarrow +\infty$. To that end, we apply the Stirling's formula $n! \sim (2\pi n)^{1/2} n^n e^{-n}$ twice, to n and to s_n . It follows then from the definition of C_n (Equation 31),

$$C_n \sim \sqrt{r} \left(1 + \frac{\beta}{r\sqrt{n}}\right)^{n+1/2} e^{n-s_n/r}. \quad (35)$$

Since $(1 + \beta/(r\sqrt{n}))^{n+1/2} \sim e^{\beta\sqrt{n}/r - \beta^2/r^2}$ and $n - s_n/r = -\beta\sqrt{n}/r$ from Condition (2), we deduce that $C_n \rightarrow e^{-\beta^2/r^2} \sqrt{r}$ and

$$P(Q_n \geq s_n) \rightarrow f(\beta) \quad (36)$$

where $f: \mathbb{R} \mapsto (0, 1)$ is a strictly decreasing function such that

$$f(\beta) = \left(1 + e^{-\beta^2/r^2} \sqrt{r} \frac{\Phi\left(\frac{\beta}{\sqrt{r}}\right)}{\Phi\left(\frac{-\beta}{r\sqrt{r}}\right)}\right)^{-1} \quad (37)$$

Assume now that a_n has a limit α , $0 < \alpha < 1$ and that $\beta \neq f^{-1}(\alpha)$ is a (possibly infinite) limit point of $\{(s_n/n - r)\sqrt{n}\}$. Assume for now that $\beta > f^{-1}(\alpha)$. Construct a sequence $\{s'_n\}$ such that $s'_n \leq s_n$ and $(s'_n/n - r)\sqrt{n} \rightarrow \beta' = \min((\beta + f^{-1}(\alpha))/2, f^{-1}(\alpha) + 1)$, as $n \rightarrow \infty$. Notice that $f^{-1}(\alpha) < \beta' < \infty$, which implies $\alpha > f(\beta')$. Let Q'_n denote the number of users in the n th system with s'_n servers. Since $s'_n \leq s_n$, $P(Q'_n \geq s'_n) \geq P(Q_n \geq s_n)$. However, taking the limit of both sides yields $f(\beta') \geq \alpha$, a contradiction. A similar argument shows that $\beta < f^{-1}(\alpha)$ is also impossible. Hence, the convergence $a_n \rightarrow \alpha \in (0, 1)$ implies $\{(s_n/n - r)\sqrt{n}\}$ has a unique limit as well. \square