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Motivation

Standard assumption in service system modeling: arrival
process is Poisson with known parameters.
Example of call centers: known arrival rates for each basic
interval (say, half-hour).

Application of standard approach to basic interval (say, next
Tuesday, 9am-9:30am):

Derive Poisson parameters from historical data.

Plug parameters into a queueing model (M|M|n, M|M|n + M,
Skills-Based Routing models, . . .).

Set staffing levels according to this model and service-level
agreement.

Is standard Poisson assumption valid? As a rule it is not, one
observes larger variability of the arrival process than the one
expected from the Poisson hypothesis.



Introduction Case Studies Theoretical Results Time-Varying Queues Future Research

Motivation

Standard assumption in service system modeling: arrival
process is Poisson with known parameters.
Example of call centers: known arrival rates for each basic
interval (say, half-hour).

Application of standard approach to basic interval (say, next
Tuesday, 9am-9:30am):

Derive Poisson parameters from historical data.

Plug parameters into a queueing model (M|M|n, M|M|n + M,
Skills-Based Routing models, . . .).

Set staffing levels according to this model and service-level
agreement.

Is standard Poisson assumption valid? As a rule it is not, one
observes larger variability of the arrival process than the one
expected from the Poisson hypothesis.



Introduction Case Studies Theoretical Results Time-Varying Queues Future Research

Motivation

Standard assumption in service system modeling: arrival
process is Poisson with known parameters.
Example of call centers: known arrival rates for each basic
interval (say, half-hour).

Application of standard approach to basic interval (say, next
Tuesday, 9am-9:30am):

Derive Poisson parameters from historical data.

Plug parameters into a queueing model (M|M|n, M|M|n + M,
Skills-Based Routing models, . . .).

Set staffing levels according to this model and service-level
agreement.

Is standard Poisson assumption valid? As a rule it is not, one
observes larger variability of the arrival process than the one
expected from the Poisson hypothesis.



Introduction Case Studies Theoretical Results Time-Varying Queues Future Research

Research Outline

Design model for overdispersed arrival rate.

Plug arrival model into M|M|n + G queueing model.

Derive asymptotic results relevant for real-life staffing
problems.

Validate our approach via analysis of real data.
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Model Definition

The M?|M|n + G Queue:

λ - Expected arrival rate of a Poisson arrival process.

µ - Exponential service rate.

n service agents.

G - Patience distribution. Assume that the patience density
exists at the origin and its value g0 is strictly positive.

Random Arrival Rate: Let X be a random variable with cdf F ,
E [X ] = 0, and finite σ(X ). Assume that the arrival rate varies
from interval to interval in an i.i.d. fashion:

Λ = λ + λcX , c ≤ 1,

c ≤ 1/2: Conventional variability ∼ QED staffing regime.

1/2 < c < 1: Moderate variability ∼ QED-c regime (new).

c = 1: Extreme variability ∼ ED regime.
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Financial Call Center: Data Description

Israeli Bank.

Arrival counts to the Retail queue are studied.

263 regular weekdays ranging between April 2007 and April
2008.

Holidays with different daily patterns are excluded.

Each day is divided into 48 half-hour intervals.
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Financial Call Center: Over-Dispersion Phenomenon

Coefficient of Variation
sampled CV- solid line, Poisson CV - dashed line
Coefficient of Variation Per 30 Minutes, seperated weekdays
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Financial Call Center: Over-Dispersion Phenomenon
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Financial Call Center: Arrival Rates

Average Number of ArrivalsAverage Arrival Per 30 Minutes, seperated weekdays
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Financial Call Center:
Relation between Mean and Standard Deviation

Consider a Poisson mixture variable Y with random rate
Λ = λ + λc · X , where E [X ] = 0, finite σ(X ) > 0 and
1/2 < c ≤ 1. Then,

Var(Y ) = λ2c · Var(X ) + λ + λc · E (X )

and
lim

λ→∞
(ln(σ(Y ))− c ln(λ)) = ln(σ(X )).

Therefore, for large λ,

ln(σ(Y )) ≈ c · ln(λ) + ln(σ(X )).
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Financial Call Center: Fitting Regression Model

Tue-Wed, 30 min resolutionln(sd) vs ln(average) per 30 minutes. Sundays
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Results:

Two clusters exist: midnight-10:30am and 10:30am-midnight.
Very good fit (R2 > 0.97).
Significant linear relations for different weekdays and
time-resolution (5-30 min):

ln(σ(Y )) = c · ln(λ) + ln(σ(X )).
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Financial Call Center: Fitting Regression Model
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Financial Call Center: Gamma Poisson Mixture Model

(Jongbloed and Koole [’01])

Assume a prior Gamma distribution for the arrival rate

Λ
d
= Gamma(a, b),

and denote E [Λ]
4
= λ.

Then, the distribution of Y
d
= Poisson(Λ) is Negative Binomial.

1 Maximum likelihood estimators of a and b.

2 Goodness of fit test including FDR control method to correct
the multiple comparisons.
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Financial Call Center: Gamma Poisson Mixture Model

H0 : Λλ
d
= Gamma(aλ, bλ)
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Financial Call Center: Outline of Additional Results

λ + λc · Xλ
d
= Gamma(aλ, bλ)

Under Gamma assumption and convergence of σ(Xλ) to a

constant σ(X ):

Relation between our main model and Gamma Poisson
mixture model is established.
Significant linear relations:

ln(bλ) = (2c − 1) · ln(λ) + ln(σ2(X )).

Distribution of X is derived. It is asymptotically normal
given λ →∞:

Xλ
D→ Norm(0, σ2(X ))
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Emergency Department: Data Description

Israeli Emergency Department.

194 weeks between from January 2004 till October 2007 (five
war weeks are excluded from data).

The analysis is performed using two resolutions: hourly arrival
rates (168 intervals in a week) and three-hour arrival rates (56
intervals in a week).

Holidays are not excluded (results with excluded holidays are
similar).
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Emergency Department: Over-Dispersion Phenomenon

Coefficient of Variation

1 Arrival-Rate Variability: The Case of Emergency

Department

Consider 194 weeks between from January 2004 till October 2007 (five war weeks are excluded
from data). The analysis is performed using two resolutions: hourly arrival rates (168
intervals in a week) and three-hour arrival rates (56 intervals in a week). Meanwhile, we do
not clean our data (Jewish holidays are not excluded as they should be).

First, we redraw Figure 1.2 from Section 1.6 on Financial call center, comparing between
coefficient of variation and inverted square root of mean arrival rates. Figure 1 shows that,
in contrast to the call center study, inverted square root of mean is relatively close to CV’s.
Peaks at graphs correspond to night periods with small arrival rates.

Therefore, variability of arrival rates at this resolution is somewhat larger (but not much
larger) the the variability of iid Poisson random variables.

Figure 1: Coefficient of variation
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If we fit regression model of ln(σ) versus ln(λ), Figure 2 demonstrates a linear pattern
with the slope that is very close to 0.5.

Note. Derivation of asymptotic linear relation (1.35) in Section 1.6 is based on c > 1/2.
It is unclear how it works for c that is close to 1/2 and relatively small λ.

Finally, Figure 3 shows that if we increase time resolution, variability of arrival rates is
significantly larger than the variability of iid Poisson random variables.

1

Moderate over-dispersion.

c = 1/2 seems to be reasonable assumption for hourly
resolution.
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Emergency Department: Fitting Regression Model

ln(σ) versus ln(λ) plots
Figure 2: ln(σ) versus ln(λ) plots
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Figure 3: Coefficient of variation

Eight-hour resolution One-day resolution

2

A linear pattern with the slope that is very close to 0.5
(derivation of asymptotic relation is based on c > 1/2).

Overdispersion is observed at daily level ⇒ scaling problem
should be studied. (Dependence of c on the interval length.)
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QED-c Regime: Fixed Arrival Rate

QED-c staffing rule:

n =
λ

µ
+ β

(
λ

µ

)c

+ o(
√

λ), β ∈ R, c ∈ (1/2, 1).

Assume an M|M|n + G queue with fixed arrival rate λ.
Take λ to ∞:

β > 0: Over-staffing.

β < 0: Under-staffing.

For both cases we provide asymptotically equivalent expressions (or
bounds) for P{Wq > 0}, P{Ab} and E [V ], where
Wq - waiting time, V - offered wait (wait given infinite patience).

Proofs: based on M|M|n + G building blocks from Zeltyn and
Mandelbaum[’05], carried out via the Laplace Method for
asymptotic calculation of integrals.
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QED-c Regime: Fixed Arrival Rate

Square-Root Staffing versus QED-c staffing

SRS1 QED-c Staffing

R =
λ

µ
β

(c = 1/2) c = 0.6 c = 0.75 c = 0.9

100
0.5 105 108 (+3%) 116 (+10%) 132 (+25%)
1 110 116 (+5%) 132 (+20%) 163 (+48%)

1.5 115 124 (+8%) 147 (+28%) 195 (+69%)

500
0.5 511 521 (+2%) 553 (+8%) 634 (+24%)
1 522 542 (+4%) 606 (+16%) 769 (+47%)

1.5 534 562 (+5%) 659 (+23%) 903 (+69%)

1000
0.5 1016 1032 (+2%) 1089 (+7%) 1251 (+23%)
1 1032 1063 (+3%) 1178 (+14%) 1501 (+46%)

1.5 1047 1095 (+5%) 1267 (+21%) 1752 (+67%)

1Square-Root-Staffing: n = R + β
√

R
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QED-c Regime: Random Arrival Rate

Theorem

Assume random arrival rate Λ = λ + λcµ1−cX , c ∈ (1/2, 1),
E [X ] = 0, finite σ(X ) > 0, and staffing according to the QED-c
staffing rule with the corresponding c . Then, as λ →∞,

a. Delay probability: PΛ,n{Wq > 0} ∼ 1− F (β).a

b. Abandonment probability: PΛ,n{Ab} ∼ E [X − β]+
n1−c

.

c. Average offered waiting time: EΛ,n[V ] ∼ E [X − β]+
n1−c · g0

.

af (λ) ∼ g(λ) denotes that limλ→∞ f (λ)/g(λ) = 1.

Proofs: based on conditioning on values of X and results for
QED-c staffing rule.
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QED-c Regime: Numerical Experiments

Examples: Consider two distributions of X

Uniform distribution on [-1,1],

Standard Normal distribution.

β = −0.5, c = 0.7
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QED-c Regime: Practical Guidelines

Determine ”uncertainty coefficient c” via regression analysis.

Check if Gamma Poisson mixture model is reasonable.

Assume that X is asymptotically normal, calculate standard
deviation from regression model.

Apply our QED-c asymptotic results in order to determine
appropriate staffing.
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Constraint Satisfaction Problem

Formulation of the Problem:

Define the optimal staffing level by

n∗λ = argmin
n
{PΛ,n{Wq > 0} ≤ α} .

The staffing level nλ is called asymptotically feasible if

lim sup
λ→∞

PΛ,nλ
{Wq > 0} ≤ α.

In addition, nλ is asymptotically optimal if

|n∗λ − nλ| = o(f (λ)),

f (λ) is defined separately for every special case..
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ED Regime: c = 1, Discrete Random Arrival Rate

Assume Λ = λX , where X is a discrete random variable which
takes values x1 > x2 > . . . > xI > 0, with probabilities
p1, p2, . . . , pI , respectively. In addition, let E [X ] = 1, σ(X ) < ∞
and λ →∞.

Theorem

a. The optimal staffing level satisfies

n∗ =
λxk

µ
+ β∗

s
λxk

µ
+ o(

√
λ);

where k = argmin
s

(
sX

i=1

xipi ≥ α

)
; α∗

4
=

α−
Pk−1

i=1 xipi

xkpk
;

and β∗ is the unique solution of the equation

α∗ =

"
1 +

r
g0

µ
·
h(β

p
µ/g0)

h(−β)

#−1

.
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ED Regime: Staffing

Theorem

b. Introduce the staffing level

n∗β =

&
λxk

µ
+ β∗

s
λxk

µ

’
.

Then the staffing level n∗β is both asymptotically feasible, as

well as asymptotically optimal with f (λ) =
√

λ.
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ED Regime: Performance Measures

Theorem

Under the staffing level n∗β, as λ →∞,

a. The abandonment probability:

PΛ,n∗
β
{Ab} ∼

k−1X
i=1

pi

`
xi − xk).

b. Mean server’s utilization:

EΛ,n∗
β
[U] ∼

kX
i=1

pi +
IX

i=k+1

pi ·
xi

xk
.

c. Assume that for each i < k the equation G (y) = 1− xk
xi

has

a unique solution y∗i , and g(y∗i ) > 0. Then, the average
waiting time

EΛ,n∗
β
[Wq] ∼

k−1X
i=1

"
xipi ·

Z y∗i

0

Ḡ(u)du

#
.
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ED Regime: Numerical Experiment

Example: X takes the values 1.5, 1 and 0.5, with probability 1/3
for each.

n =

&
λxk

µ
+ β

s
λxk

µ

’
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ED Regime: Numerical Experiment

β = −1
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Outline of Additional Results

Queueing Theory. Asymptotic performance measures derived
and constraint satisfaction problems solved for:

QED regime (c = 1/2).

ED regime (c = 1), continuous distribution of X .

Numerical Experiments. Very good fit between asymptotic
results and the exact ones.
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Time - Varying Queues

Iterative Staffing Algorithm (ISA), a simulation code
developed by Feldman et al. [’07] with the features of random
arrival rate in the time-varying M|M|n + G queue.

Goal: determine time-dependent staffing levels aiming to
achieve a time-stable delay probability.

Example: c = 1, Discrete Random Arrival Rate

1 Λ(t) = λ(t) · X , where

λ(t) = 100− 20 · cos(t), and X =

 1.5 w .p. 1/3
1 w .p. 1/3
0.5 w .p. 1/3

2 Service time and patience are distributed exponentially with
mean 1 (µ = θ = 1).
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Time - Varying Queues

Arrivals, Offered Load and
Staffing Level
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Time - Varying Queues
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Time - Varying Queues
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Future Research Challenges

Incorporating forecasting errors into our model (in the spirit
of Steckley et al., 2007).

Scaling problem: dependence of c on the basic interval
duration.

ISA: achieving time-stable performance measures (probability
to abandon, average wait).

Validation of M?|M|n + M (or M?|M|n + G ) model in call
center environment (and probably other service systems).
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Thank You
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