Uncertainty in the Demand for Service:
The Case of Call Centers and Emergency
Departments

Shimrit Maman

Technion - Israel Institute of Technology

March 16, 2009

Advisors: Prof. Avishai Mandelbaum and Dr. Sergey Zeltyn



Outline

@ Introduction
@ Motivation
@ Research Outline
@ Related Work
@ Model Definition

© Case Studies
@ Financial Call Center
@ Emergency Department

© Theoretical Results
@ QED-c Regime
@ ED Regime

@ Time-Varying Queues
© Future Research



Introduction
.

Motivation
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process is Poisson with known parameters.

Example of call centers: known arrival rates for each basic
interval (say, half-hour).
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@ Set staffing levels according to this model and service-level
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Motivation

Standard assumption in service system modeling: arrival
process is Poisson with known parameters.

Example of call centers: known arrival rates for each basic
interval (say, half-hour).

Application of standard approach to basic interval (say, next
Tuesday, 9am-9:30am):

@ Derive Poisson parameters from historical data.

@ Plug parameters into a queueing model (M|M|n, M|M|n+ M,
Skills-Based Routing models, .. .).

@ Set staffing levels according to this model and service-level
agreement.

Is standard Poisson assumption valid? As a rule it is not, one
observes larger variability of the arrival process than the one
expected from the Poisson hypothesis.
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Research Outline

@ Design model for overdispersed arrival rate.
@ Plug arrival model into M|M|n + G queueing model.

@ Derive asymptotic results relevant for real-life staffing
problems.

@ Validate our approach via analysis of real data.
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Model Definition
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@ )\ - Expected arrival rate of a Poisson arrival process.
o 1 - Exponential service rate.
@ n service agents.

@ G - Patience distribution. Assume that the patience density
exists at the origin and its value gp is strictly positive.



Introduction
°

Model Definition

The M’|M|n+ G Queue:
@ )\ - Expected arrival rate of a Poisson arrival process.
o 1 - Exponential service rate.
@ n service agents.

@ G - Patience distribution. Assume that the patience density
exists at the origin and its value gp is strictly positive.

Random Arrival Rate: Let X be a random variable with cdf F,

E[X] =0, and finite o(X). Assume that the arrival rate varies
from interval to interval in an i.i.d. fashion:

A= \+ XX, c<lI,



Introduction
°

Model Definition

The M’|M|n+ G Queue:
@ )\ - Expected arrival rate of a Poisson arrival process.
o 1 - Exponential service rate.
@ n service agents.

@ G - Patience distribution. Assume that the patience density
exists at the origin and its value gp is strictly positive.

Random Arrival Rate: Let X be a random variable with cdf F,
E[X] =0, and finite o(X). Assume that the arrival rate varies
from interval to interval in an i.i.d. fashion:

A=)+ XX, c<1,

@ ¢ < 1/2: Conventional variability ~ QED staffing regime.
@ 1/2 < ¢ < 1: Moderate variability ~ QED-c regime (new).
@ ¢ = 1: Extreme variability ~ ED regime.
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Financial Call Center: Data Description

Israeli Bank.

Arrival counts to the Retail queue are studied.

263 regular weekdays ranging between April 2007 and April
2008.

Holidays with different daily patterns are excluded.

Each day is divided into 48 half-hour intervals.
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Financial Call Center: Over-Dispersion Phenomenon
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Financial Call Center: Over-Dispersion Phenomenon
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Financial Call Center: Over-Dispersion Phenomenon
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Poisson CV = 1/v/mean arrival rate.
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Financial Call Center: Arrival Rates
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Financial Call Center: Arrival Rates

Average Arrival
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Financial Call Center:

Relation between Mean and Standard Deviation

Consider a Poisson mixture variable Y with random rate
AN =X+ - X, where E[X] =0, finite ¢(X) > 0 and
1/2 < ¢ < 1. Then,

Var(Y) = X2 Var(X) + X+ X\ - E(X)
and

lim (In(c(Y)) —cIn(A)) = In(a(X)).

A—00
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Financial Call Center:

Relation between Mean and Standard Deviation

Consider a Poisson mixture variable Y with random rate
AN =X+ - X, where E[X] =0, finite ¢(X) > 0 and
1/2 < ¢ < 1. Then,

Var(Y) = X2 Var(X) + X+ X\ - E(X)
and
Aimm(ln(a(Y)) —clIn(A)) = In(a(X)).

Therefore, for large A,

In(o(Y)) ~ c-In(\) + In(a(X)).
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Financial Call Center: Fitting Re

Tue-Wed, 30 min resolution Tue-Wed, 5 min resolution
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Financial Call Center: Fitting Regression Model

In(Standard Deviation)

Tue-Wed, 30 min resolution

y =0.8027x - 0.1235

R? = 0.9899
y = 0.8752x - 0.8589)
R? = 0.9882
1 2 3 4 5 6 7 8

In(Average Arrival)

[+ 00:00-20:30 e 10:30-00:00

Results:

In(Standard Deviation)

Tue-Wed, 5 min resolution

y = 0.7228x - 0.0025
R® = 0.9937

y =0.7933x - 0.5727
R’ =0.9783

In(Average)

= 00:00-10:30 « 10:30-00:00‘

@ Two clusters exist: midnight-10:30am and 10:30am-midnight.

e Very good fit (R? > 0.97).

@ Significant linear relations for different weekdays and

time-resolution (5-30 min):

In(o(Y)) = c - In(\) + In(o(X)).
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Financial Call Center: Gamma Poisson Mixture Model

(Jongbloed and Koole ['01])

Assume a prior Gamma distribution for the arrival rate
d
A = Gamma(a, b),
A
and denote E[A] = A.

Then, the distribution of Y £ Poisson(/) is Negative Binomial.

@ Maximum likelihood estimators of a and b.

@ Goodness of fit test including FDR control method to correct
the multiple comparisons.
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Financial Call Center: Gamma Poisson Mixture Model

Ho: Ay 4 Gamma(ay, by)
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Financial Call Center: Gamma Poisson Mixture Model

Ho: Ay 4 Gamma(ay, by)

Sundays 10:00-10:30 Monday 14:30-15:00
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Results:
@ Very good fit.
@ Only 13 hypotheses are rejected (out of 192).
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Financial Call Center: Outline of Additional Results

A+ A X £ Gamma(ay, by)
Under Gamma assumption and convergence of o(X)) to a
constant o(X):

@ Relation between our main model and Gamma Poisson
mixture model is established.
Significant linear relations:

In(by) = (2¢ —1)-In(\) + In(a?(X)).

@ Distribution of X is derived. It is asymptotically normal
given A — 00:

X, 2 Norm(0, o%(X))
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Emergency Department: Data Description

@ Israeli Emergency Department.

@ 194 weeks between from January 2004 till October 2007 (five
war weeks are excluded from data).

@ The analysis is performed using two resolutions: hourly arrival
rates (168 intervals in a week) and three-hour arrival rates (56
intervals in a week).

@ Holidays are not excluded (results with excluded holidays are
similar).
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Emergency Department: Over-Dispersion Phenomenon
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Emergency Department: Over-Dispersion Phenomenon

Coefficient of Variation
One-hour resolution Three-hour resolution

0.5
coefficient of variation
= = = inverted sq. root of mean

coefficient of variation 01
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@ Moderate over-dispersion.
@ ¢ = 1/2 seems to be reasonable assumption for hourly

resolution.



Case Studies
ooe

Emergency Department: Fitting Regression Model

In(Standard Deviation)

In(c) versus In()\) plots

One-hour resolution
y = 0.497x + 0.102, R? = 0.968

Three-hour resolution
y = 0.527x + 0.087, R? = 0.947
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Emergency Department: Fitting Regression Model

In(Standard Deviation)

In(c) versus In()\) plots

One-hour resolution
y = 0.497x + 0.102, R? = 0.968

Three-hour resolution
y = 0.527x + 0.087, R? = 0.947

In(Standard Deviation)

0 05 1 15 2 25 3 35
In(Mean Arrival Rate)

15 2 25 3 35 4 45
In(Mean Arrival Rate)

@ A linear pattern with the slope that is very close to 0.5
(derivation of asymptotic relation is based on ¢ > 1/2).

@ Overdispersion is observed at daily level = scaling problem
should be studied. (Dependence of ¢ on the interval length.)
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QED-c staffing rule:

n = 2+ﬁ<2>c+o(\f)\), BeER, ce(1/2,1).
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Take A to oc:
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QED-c Regime: Fixed Arrival Rate

QED-c staffing rule:

n = 2+/3<2>C+o(ﬁ), BEeR, ce(1/2,1).

Assume an M|M|n + G queue with fixed arrival rate \.
Take A to oc:

@ 3 > 0: Over-staffing.
@ 3 < 0: Under-staffing.

For both cases we provide asymptotically equivalent expressions (or
bounds) for P{W, > 0}, P{Ab} and E[V], where
Wy - waiting time, V - offered wait (wait given infinite patience).

Proofs: based on M|M|n+ G building blocks from Zeltyn and
Mandelbaum['05], carried out via the Laplace Method for
asymptotic calculation of integrals.
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QED-c Regime: Fixed Arrival Rate

Square-Root Staffing versus QED-c staffing

1.5 1047 1095

SRS QED-c Staffing
A
R_ﬁ A (c=1/2) c=06 c=0.75 c=09
0.5 105 108 (+3%) | 116  (+10%) | 132 (+25%)
100 1 110 116 (+5%) | 132 (4+20%) | 163  (+48%)
15 115 124 (+8%) | 147  (4+28%) | 195  (4+69%)
05 511 521 (+2%) | 553  (+8%) | 634 (+24%)
500 1 522 542  (+4%) | 606 (+16%) | 769  (+47%)
1.5 534 562 (45%) | 659  (+23%) | 903  (4+69%)
0.5 1016 1032 (+2%) | 1089  (+7%) | 1251 (4+23%)
1000 1 1032 1063 (+3%) | 1178 (+14%) | 1501 (+46%)
(

+5%) | 1267 (+21%) | 1752 (+67%)

1Square-Root-Staffing: n= R + 8V R
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QED-c Regime: Random Arrival Rate

Theorem

Assume random arrival rate A = X\ + A\ul=°X, ¢ € (1/2,1),
E[X] = 0, finite o(X) > 0, and staffing according to the QED-c
staffing rule with the corresponding c¢. Then, as A — oo,

a. Delay probability: Pan{Wq >0} ~ 1—F(B).2
E[X —
b. Abandonment probability: Pann{Ab} ~ [nl_cﬂh
E[X —
c. Average offered waiting time: Enn[V] ~ n[l_cﬁg]Jr
- 80

?f(\) ~ g(\) denotes that limy_, . f(\)/g(\) = 1.

Proofs: based on conditioning on values of X and results for
QED-c staffing rule.
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QED-c Regime: Numerical Experiments

Examples: Consider two distributions of X
e Uniform distribution on [-1,1],
o Standard Normal distribution.

8 =-0.5 ¢c=07

Delay Probability

Abandonment Probability

* short-term U(-1,1)
+ long-term U(-1,1)
= approx U(-1,1)

* short-term N(0,1)
+ long-term N(0,1)
= approx N(0,1)

0.9 0.35
* short-term U(-1,1)
+ long-term U(-1,1)
0.85 = approx U(-1,1) 1 0.3
* short-term N(0,1)
+ long-term N(0,1)
osl — approx NO.) i ’MO-25
=) S
I e B e e T TR e £ o
= 0.750 R R R T XXX I FFFFFFHFT T S
= -+
a sl **++++++++++++++++++++«» g
' gwﬁ%m%******************6 a
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QED-c Regime: Practical Guidelines

@ Determine "uncertainty coefficient ¢" via regression analysis.
@ Check if Gamma Poisson mixture model is reasonable.

@ Assume that X is asymptotically normal, calculate standard
deviation from regression model.

@ Apply our QED-c asymptotic results in order to determine
appropriate staffing.
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Formulation of the Problem:

Define the optimal staffing level by

ny = argmin {Pp ,{ Wy > 0} < a}.
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The staffing level ny is called asymptotically feasible if

limsup Py n, {Wq > 0} < .
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Constraint Satisfaction Problem

Formulation of the Problem:

Define the optimal staffing level by

ny = argmin {Pp ,{ Wy > 0} < a}.

The staffing level ny is called asymptotically feasible if

limsup Py n, {Wq > 0} < .

A—00

In addition, ny is asymptotically optimal if
M\ = | = o(f (X)),

() is defined separately for every special case..
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ED Regime: ¢ = 1, Discrete Random Arrival Rate

Assume A = )\ X, where X is a discrete random variable which
takes values x; > x> > ... > x; > 0, with probabilities

p1, P2, - .-, Py, respectively. In addition, let E[X] =1, o(X) < o0
and A\ — oo.

Theorem

a. The optimal staffing level satisfies

A //\Xk
n—,u—i-ﬁ + o(V\);

q g e A a—) ‘-(:11 X pi
where k = argmin E Xipi>ap; o = — == "
s

X
= kP

and B* is the unique solution of the equation

h(B+/ 11/ 80)
1+ A0 ]

*
(0% =
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ED Regime: Staffing

b. Introduce the staffing level

s o= (2% g 2%
% %

Then the staffing level ng is both asymptotically feasible, as

well as asymptotically optimal with f(\) = v/\.
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ED Regime: Performance Measures

Under the staffing level ng, as A — oq,

a. The abandonment probability:

k—1

P/\n{Ab} szl IiXk
b. Mean server's utilization:

EA,nE, [U] ZP; + Z pi -

i=k+1

c. Assume that for each i < k the equation G(y) = 1— 3k has
a unique solution y*, and g(y’) > 0. Then, the average

waiting time
k—1 v
Enns [Wo] ~ Z |:Xipi'/ G(u)du}.
i=1 0
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ED Regime: Numerical Experiment

Example: X takes the values 1.5, 1 and 0.5, with probability 1/3

for each.
o)
% Y

Delay Probability Abandonment Probability
0.7

0.6

0.5

0.4

0.3

long-term P{W>0}

0.2

01 I
0

0.5 1 15

long-term P{Abandon}
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ED Regime: Numerical Experiment

Delay Probability Abandonment Probability
Y v — ‘ 1
AR j j + exactX =15
L J — approx X =1.5
0.9 = 0.8 + exac!XK:Kl
> o — APProx XK:1
4 08, . . . bl 2 4+ exactX =05
%_{ = = S— g 0 ++ — approx X, =0.5
tX =1 .
e 071 i :;:$°X§<K=l-5 4 E" T 4 p b o L o
> + exactX =1
‘Q".J — APProx §<K:l é 0.4
8’ 0.6} + exactX =0.5 1 $
o — approx X,=0.5 87 ++
05} J S o2t Mt v v by oy o4 o4 o
e — =t + + + +
0.4 - . - by -
0 500 1000 1500 2000 0 e

0 500 1000 1500 2000

* )
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Outline of Additional Results

@ Queueing Theory. Asymptotic performance measures derived
and constraint satisfaction problems solved for:

o QED regime (c =1/2).
o ED regime (¢ = 1), continuous distribution of X.

@ Numerical Experiments. Very good fit between asymptotic
results and the exact ones.
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Time - Varying Queues

o lterative Staffing Algorithm (ISA), a simulation code
developed by Feldman et al. ['07] with the features of random
arrival rate in the time-varying M|M|n + G queue.

@ Goal: determine time-dependent staffing levels aiming to
achieve a time-stable delay probability.
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Time - Varying Queues

o lterative Staffing Algorithm (ISA), a simulation code
developed by Feldman et al. ['07] with the features of random
arrival rate in the time-varying M|M|n + G queue.

@ Goal: determine time-dependent staffing levels aiming to
achieve a time-stable delay probability.

o Example: ¢ =1, Discrete Random Arrival Rate

QO A(t) = A(t) - X, where

15 w.p. 1/3
A(t) =100 — 20 - cos(t), and X = 1 wp 1/3
05 w.p.1/3

@ Service time and patience are distributed exponentially with
mean 1 (u =6 =1).
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Time - Varying Queues

Arrivals, Offered Load and
Staffing Level

R =E {/tisz\(u)du}

R =E [E [/tis (Au) - X)du” =R..

Target a=0.5

0 L s s LN s e e
0 2 4 6 8 10 12 14 16 18 20 22
Time

--- Arrivals — —Offered Load — Staffing

Target a=0.1

0 2 4 6 8 10 12 14 16 18 20 22

Time

‘ --- Arrivals — -Offered Load — Staffing

Target a=0.9

2 4 6 8 10 12 14 16 18 20 22
Time

--- Arrivals — -Offered Load — Staffing
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Time - Varying Queues

Delay Probability (Target)

Stable delay probability
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Time - Varying Queues

Delay Probability (Target)

Stable delay probability
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Time - Varying Queues

Delay Probability (Target)

Stable delay probability
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Future Research

Future Research Challenges

@ Incorporating forecasting errors into our model (in the spirit
of Steckley et al., 2007).

@ Scaling problem: dependence of ¢ on the basic interval
duration.

@ ISA: achieving time-stable performance measures (probability
to abandon, average wait).

e Validation of M?|M|n+ M (or M?|M|n + G) model in call
center environment (and probably other service systems).
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