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Mass Casualty Event 
An unusual event in which the number of casualties exceeds 

the capacity for taking care of them. 

The main challenges of MCEs are organizational and logistic 

problems, rather than trauma care problems [1]. 

 

Classification: 

1. Scale 

2. Cause: Human-Made events\ Natural disasters. 

3. Type: Conventional \ Unconventional. 

4. Arrival rate of casualties: sudden or sustained impact [2].  
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Literature Review 
MCE  OR  Preparedness & Response 

Mathematical Models: 

Setting priority assignment and scheduling casualties in MCEs 
E.U. Jacobson, Nilay Tank Argon, Serhan Ziya, 2011, Priority Assignment in Emergency Response, 
Forthcoming OR [17]. 
 
N. T. Argon, S. Ziya, and R. Righter, 2008, Scheduling impatient jobs in a clearing system within 
sights on patient triage in mass casualty incidents. Probability In The Engineering And Informational 
Sciences [18]. 

Planning the transportation, Supply and Evacuation from 
disaster-affected areas in MCEs 
Oh, S.C., Haghani, A., 1997. Testing and evaluation of a multi-commodity multi-modal network flow 
model for disaster relief management. Journal of Advanced Transportation. [19]. 
 
Barbarosoglu, G., Arda, Y., 2004. A two-stage stochastic programming  framework  for transportation 
planning in disaster response. Journal of the Operational Research Society. [20]. 
 
Sherali, H.D., Carter, T.B., Hobeika, A.G., 1991. A location allocation model and algorithm for 
evacuation planning under hurricane flood conditions. Transportation Research Part B- 
Methodological. [21]. 
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Literature Review 

Simulation: 

Evaluate the realistic hospital capacity in MCEs 
Hirshberg A, Holcomb JB, Mattox KL. Hospital trauma care in multiple-casualty incidents: a critical view. 
Ann Emerg Med. 2001; 37:647– 652. [3].  
 

Prediction of Waiting time in MCEs 
Paul, J.A., George, S.K., Yi, P., and Lin, L., 2006. Transient modelling in simulation of hospital  operations 
for emergency response. Prehospital and Disaster Medicine,21 (4), 223–236. [22]. 
 

Quantify the relation between casualty load & trauma care level 
Hirshberg A, Scott BG, Granchi T, Wall MJ Jr, Mattox KL, Stein M. How does casualty load affect trauma 
care in urban bombing incidents? A quantitative analysis. J Trauma. 2005;58:686–693.[5]. 
 
Hirshberg A, Frykberg ER, Mattox KL; Stein M. Triage and Trauma Workload in Mass Casualty: A 
Computer Model. Journal of Trauma-Injury Infection & Critical Care: November 2010 - Volume 69 - Issue 
5 - pp 1074-1082.[23]. 

MCE  OR  Preparedness & Response 
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Defining the optimal staff profile of trauma teams in MCEs 
Hirshberg A, Stein M, Walden R. Surgical resource utilization in urban terrorist bombing: a computer 
simulation. J Trauma. 1999;47:545–550. [24]. 



Objectives: 

1. Develop a mathematical (fluid) model for a hospital's 
Emergency Department (ED) during MCEs.  
 

2.  Determine the optimal policy for resource allocations. 
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Activity Chart of Hospital’s ED 
in conventional MCE 
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Urgent 
(15%) 

Not 
Urgent 
(85%) 



Choosing a Model - Fluid Model 
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Stochastic 
Discrete 
Arrivals 

In large 
overloaded 

systems 

Deterministic 
Continuous 

Model 

Where customers are modeled by Fluid Continuous Flow  



Choosing a Fluid Model 
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First Fluid Model 

Qi(t) – Total number of casualties in station i at time t,   i=1,2,3. 

Ni(t) – Number of Surgeons in station i at time t,  i=1,2. 

µi – Treatment Rate in station i,   i=1,2,3. 

1 1 1 1
Q (t) (t) [Q (t) N (t)]


   

First station: 

Entrance  Exit  

[A B] = min(A, B)

(1) 

Shock Rooms 

(2) 
Operation 

Rooms 

(3) 

CT Scanners 

P12 

P13 

P32 
λ(t) 

1-P12 -P13 

 



13 

1 1 1 1

2 12 1 1 1 32 3 3 3 2 2 2

3 13 1 1 1 3 3 3

Q (t) (t) [Q (t) N (t)]

Q (t) p [Q (t) N (t)] p [Q (t) N (t)] [Q (t) N (t)]

Q (t) p [Q (t) N (t)] [Q (t) N (t)]







   

       

    

(1) 

Shock Rooms 

(2) 
Operation 

Rooms 

(3) 

CT Scanners 

P12 

P13 

P32 
λ(t) 

Three stations: 

Choosing a Fluid Model 

First Fluid Model 

qi i i
L (t) [Q (t) N (t)] Queue Length: 

[A] max(A,0) 

1-P12 -P13 
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Choosing a Fluid Model 
First Scenario – Quadratic Arrival Rate 

µ1=1/30, µ2=1/100, µ3=1/20, p12 = 0.25, p13=0.25, p32=0.15 N1=10, N2=5, N3=3 
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Choosing a Fluid Model 

µ1=1/30, µ2=1/100, µ3=1/20, p12 = 0.25, p13=0.25, p32=0.15 N1=10, N2=5, N3=3 

Total Number of Casualties 
First Fluid Model vs. Simulation (quadratic arrival rate) 



Choosing a Fluid Model 
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Second Fluid Model (long service time, Hall, 1991 [25]) 

Ai(t) – Cumulative arrivals to station i until time t,     i=1,2,3. 

Dsi(t) – Cumulative Departures from Station i until time t,    i=1,2,3.  

Dqi(t) – Cumulative Departures from Queue i until time t,     i=1,2,3 

Lq(t) 

Q(t) 1/µ 

1
Ds(t ) Dq(t)

Dq(t) min(A(t),  Ds(t) N)

 


 

No Queue  Queue  

One station: 



Choosing a Fluid Model 
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Second Fluid Model- Three stations: 

1 1

1

1 1 1

1
Ds (t ) Dq (t)

Dq (t) min(A(t),  Ds (t) N )

 


 

2 2

2

2 12 1 23 3 2 2

1
Ds (t ) Dq (t)

Dq (t) min(p Ds (t) p Ds (t),  Ds (t) N )

 


  

3 3

3

3 13 3 3 3

1
Ds (t ) Dq (t)

Dq (t) min(p Ds (t),  Ds (t) N )

 


 

A2(t) 

#1 

#2 

#3 

A3(t) 

(1) 

Shock 
Rooms 

(2) 
Operation 

Rooms 

(3) 

CT Scanners 

P12 

P13 

P32 

λ(t) 

1-P12 -P13 
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Choosing a Fluid Model 
Cumulative Arrival & Departures 

Second Fluid Model vs. Simulation (quadratic arrival rate) 

µ1=1/30, µ2=1/100, µ3=1/20, p12 = 0.25, p13=0.25, p32=0.15 N1=10, N2=5, N3=3 
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Choosing a Fluid Model 
Total Number of Casualties 

Second Fluid Model vs. Simulation (quadratic arrival rate) 

µ1=1/30, µ2=1/100, µ3=1/20, p12 = 0.25, p13=0.25, p32=0.15 N1=10, N2=5, N3=3 
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Choosing a Fluid Model 
Second Scenario 

µ1=1/30, µ2=1/100, µ3=1/20, p12 = 0.25, p13=0.25, p32=0.15 N1=10, N2=8, N3=3 
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Choosing a Fluid Model 

Total Number of Casualties - First Fluid Model vs. Simulation 

µ1=1/30, µ2=1/100, µ3=1/20, p12 = 0.25, p13=0.25, p32=0.15 N1=10, N2=8, N3=3 
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Choosing a Fluid Model 

µ1=1/30, µ2=1/100, µ3=1/20, p12 = 0.25, p13=0.25, p32=0.15 N1=10, N2=8, N3=3 

Total Number of Casualties – Second Fluid Model vs. Simulation 
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Choosing a Fluid Model 
Cumulative Arrivals & Departures - Second Fluid Model 

µ1=1/30, µ2=1/100, µ3=1/20, p12 = 0.25, p13=0.25, p32=0.15 N1=10, N2=8, N3=3 
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Choosing a Fluid Model 
Cumulative Arrivals & Departures - Second Fluid Model 

No Queue 
Dq(t) = A(t) 

Ds(t) =0 

1
Ds(t ) Dq(t)

Dq(t) min(A(t),  Ds(t) N)

 


 

No Queue  Queue  

µ1=1/30  
N1=10 
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Queue > 0 
Dq(t) = N 
Ds(t) =0 

1
Ds(t ) Dq(t)

Dq(t) min(A(t),  Ds(t) N)

 


 

No Queue  Queue  

µ1=1/30  
N1=10 

Choosing a Fluid Model 
Cumulative Arrivals & Departures - Second Fluid Model 
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Queue > 0 
Ds(t+1/µ)=Dq(t) 
Dq(t) =Ds(t) +N 

1
Ds(t ) Dq(t)

Dq(t) min(A(t),  Ds(t) N)

 


 

No Queue  Queue  

µ1=1/30  
N1=10 

Choosing a Fluid Model 
Cumulative Arrivals & Departures - Second Fluid Model 
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Choosing a Fluid Model 
Second Fluid Model - Cumulative Arrivals & Departures 

First Scenario Second Scenario 

No Queue 
No Queue 

A(t)=N when t<1/µ 

Queue > 0 before one service time 



Optimization Problem 
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The main goal of the hospital's emergency response 

in MCEs is to reduce mortality of casualties [3] 

We model mortalities as abandons, which can occur while 

waiting or while receiving  treatment. 

i – Mortality rate from station i,   i=1,2. 

(1) 

Shock 
Rooms 

(2) 
Operation 

Rooms 

P12µ1 λ(t) 

2 1 
(1-P12)µ1 

µ2 



Optimization Problem 
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1 1 1 1 1 1

2 12 1 1 1 2 2 2 2 2

1 2

1 2

1 2

1 2

s.t.

Q (t) (t) (Q (t) N (t)) Q (t)

Q (t) p (Q (t) N (t)) (Q (t) N (t)) Q (t)

            

N (t) N (t) N

N (t) 0,   N (t) 0

Q (t) 0,   Q (t) 0     

Q (0)=Q (0)=0





     

      

 

 

 

1 2

T

1 1 2 2
N (t), N (t ) 0

   [ Q (t) Q (t)] dt         Min   

Continuous time 



Optimization Problem 
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1 1 1 1 1 1 1

2 2 12 1 1 1 2 2 2 2 2

1 2

s.t.

Q (t 1) Q (t) (t) (Q (t) N (t)) Q (t)                                    

Q (t 1) Q (t) p (Q (t) N (t))  (Q (t) N (t)) Q (t)      

          

N (t) N (t) N                              

        

          

 

1 2

1 2

1 2

                                                       

N (t) 0,   N (t) 0

Q (t) 0,   Q (t) 0                                                                  

Q (0) 0,   Q (0) 0

 

 

 

Discrete time 

1 2

T 1

1 1 2 2
N (t), N (t ) t 0

   [ Q (t 1) Q (t 1)]       Min




    

Replacing                            with              and 

adding the constraints                                  

will not affect the objective function 

i i
N (t) Q (t)

i i
N (t) Q (t) i

N (t)
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1 1 1 1 1 1

2 2 12 1 1 2 2 2 2

1 2

1 1

2 2

s.t.

Q (t 1) Q (t) (t) N (t) Q (t)                                    

Q (t 1) Q (t) p N (t)  N (t) Q (t)      

          

N (t) N (t) N 

N (t) Q (t)  

N (t) Q (t)                             

       

        

 





1 2

1 2

1 2

                                                      

N (t) 0,   N (t) 0

Q (t) 0,   Q (t) 0                                                                

Q (0) 0,   Q (0) 0

 

 

 

1 2

T 1

1 1 2 2
N (t), N (t ) t 0

   [ Q (t 1) Q (t 1)]       Min




    

Optimization Problem 
Discrete time 



Optimization Problem 
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Linear Programming Problem 

1 2

T 1
T t T t T t

1 1 1 12 2 2 2 2
N (t), N (t ) t 1

   {N (t) (1 ) 1  p (1 ) 1 [ ] N (t) (1 ) 1 }

          

[ ]

       

             

[

    

]

 

Min


  



            

1

1 1 1

1 1 1 1 1 1 1

T 3 T 4 T 3 T 4

1 1 1 1 1 1 1 1 1

2

2 2

s.t.

N (1) = 0

N (1) + N (2)    (1)   

(1 ) N (1) + N (2)  + N (3)   (1 ) (1)  + (2) 

(1 ) N (1) + (1 ) N (2)  +N (T 1)  (1 ) (1)  + (1 ) (2) + + (T 1)  

N (1) = 0

N

   

  

        

                


12 1 1 2

2 2 2 2 12 1 1 2 2 12 1 1 2

T 3 T 3 T 4 T 4

2 2 2 2 12 1 1 2 2 2 2 12 1 1

2 2 12 1 1 2

(1) -p N (1)+ N (2) 0   

(1 ) N (1) -(1 )p N (1)+ N (2) - p N (2)+ N (3) 0 

(1 ) N (1) + (1 ) p N (1) (1 ) N (2) - (1 ) p N (2)

N (T 2) - p N (T 2) +N

   

 

        

             

    

1 2

1 2

(T-1) 0               

                                                          

N (t) N (t) N                               

N (t),  N (t) 0                                     



 





Optimization Problem 
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First Example – priority is given to Station 1 

µ1=1/30, µ2=1/100, 1=1/180, 2=1/300, p12 = 0.25, N=10 



Optimization Problem 

34 

Second Example – priority is given to Station 2 

µ1=1/30, µ2=1/100, 1=1/180, 2=1/180, p12 = 0.9, N=10 



Optimization Problem 
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Second Example – priority is given to Station 2 

12 1 1 2 2 2
p N (t) ( ) N (t)     

2 2

1 1 2 2 1

1

N R N (t)
R N (t) R N (t) N     N (t)

R


   

Entrance Rate 
to Station 2 

Exit Rate from 
Station 2 

 
When the system is overloaded: 

2 2

1

1 2 2 2 12 1

N( )
N (t)

R ( ) R p

  


     
12 1

2

1 2 2 2 12 1

N p
N (t)

R ( ) R p

 


     



Optimization Problem 
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Third Example – priority is switching 

µ1=1/30, µ2=1/100, 1=1/180, 2=1/300, p12 = 0.8, N=10 



Greedy Optimization Problem 
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Objective:  Determine surgeons allocation every minute, 

in order to minimize the mortality in the next minute. 

For every t[0, T-1] : 

1 2

1 1 2 2
N (t), N (t)

   Q (t 1) Q (t 1)            Min     

1 1 1 1 1 1 1

2 2 12 1 1 1 2 2 2 2 2

1 2

1 2 1 2

1 2

s.t.

Q (t 1) Q (t) (t) (Q (t) N (t)) Q (t)

Q (t 1) Q (t) p (Q (t) N (t))  (Q (t) N (t)) Q (t)

           

N (t) N (t) N

N (t),   N (t),  Q (t 1),   Q (t 1) 0

Q (0) 0,    Q (0) 0

        

          

 

  

 



Greedy Optimization Problem 
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1 2

1 2 12 1 1 2 2 2
N (t), N (t )

   [ p ] N (t)  N (t)           Max      

1 2

1 1 2 2

1 2

s.t.

N (t) N (t) N

N (t) Q (t),  N (t) Q (t)

N (t),   N (t) 0

 

 



A two variables 

LP problem 

According to the continuous Knapsack Problem: 

If                                                 Priority is given to station 1  

                                                        N1(t) = min(Q1(t), N) 

                                                        N2(t) = min(Q2(t), N-N1(t)) 

If                                                Priority is given to station 2  

                                                        N1(t) = min(Q1(t), N-N2(t)) 

                                                        N2(t) = min(Q2(t), N) 

If                                                No Difference 

1 2 12 1 2 2
[ p ]                

1 2 12 1 2 2
[ p ]                

1 2 12 1 2 2
[ p ]                



Greedy Optimization Problem 
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1 2

1 2 12 1 1 2 2 2
N (t), N (t)

   [ p ] N (t)  N (t)           Max      

1 1 2 2

1 1 2 2

1 2

s.t.

R N (t) R N (t) N

N (t) Q (t),  N (t) Q (t)

N (t),   N (t) 0

 

 



Generalization for 

any R1 and R2 

According to the continuous Knapsack Problem: 

If                                                      Priority is given to station 1  

                                                             N1(t) = min(Q1(t), N) 

                                                             N2(t) = min(Q2(t), (N-R1N1(t))/R2) 

If                                                      Priority is given to station 2  

                                                             N1(t) = min(Q1(t), (N- R2 N2(t))/R1) 

                                                             N2(t) = min(Q2(t), N) 

1 2 12 1 2 2

1 2

[ p ]
          

R R

    


1 2 12 1 2 2

1 2

[ p ]
          

R R

    

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First Example – priority is given to Station 1 

µ1=1/30, µ2=1/100, 1=1/180, 2=1/300, p12 = 0.25, N=10 

Greedy Optimization Problem 

1 2 12 1 2 2
[ p ]                
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Second Example – priority is given to Station 2 

µ1=1/30, µ2=1/100, 1=1/180, 2=1/180, p12 = 0.9, N=10 

Greedy Optimization Problem 

1 2 12 1 2 2
[ p ] <              
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Third Example – priority is given to Station 1 (not switching) 

µ1=1/30, µ2=1/100, 1=1/180, 2=1/300, p12 = 0.8, N=10 

1 2 12 1 2 2
[ p ]                

Greedy Optimization Problem 
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1. When 1=2  Greedy solution is optimal. 

 

2. Greedy solution can be predicted by the problem 

parameters. 

3. If station 1 gets priority when 1=2  then when 1 > 2 

station 1 will still get priority. 

4. If station 2 gets priority when 1=2  then when 1 < 2 

station 2 will still get priority 

Optimal vs. Greedy Solution 

Proof 
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• Allocation can be changed every S minutes. 

• N1(t), N2(t) remain constant for S minutes: 

  for example, if S= 30: 

• N1(0) = N1(1)= N1(2)=…= N1(29) 

• N2(0) = N2(1)= N2(2)=…= N2(29) 

 

• The constraint                          cannot be added.  

• Auxiliary variables  Zi(t) replace the statement                                 

   and the following constraints are added for i=1,2:  

Minimal Time Window for Resource Allocation 

i i
N (t) Q (t)

i i

i i

Z (t) Q (t)

Z (t) N (t)





i i
N (t) Q (t)
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1 1 1 1 1 1

2 2 12 1 1 2 2 2 2

1 2

1 1 1 1

2 2 2 2

1 1 1

s.t.

Q (t 1) Q (t) (t) Z (t) Q (t)  

Q (t 1) Q (t) p Z (t)  Z (t) Q (t) 

          

N (t) N (t) N 
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          
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 

1 2

T 1
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N (t), N (t ) t 0

   [ Q (t 1) Q (t 1)]       Min




    

Minimal Time Window for Resource Allocation 
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First Example: Priority is given to Station 1 

µ1=1/30, µ2=1/100, 1=1/180, 2=1/300, p12 = 0.25, N=10, S=60 

Minimal Time Window for Resource Allocation 



58 µ1=1/30, µ2=1/100, 1=1/180, 2=1/180, p12 = 0.9, N=10, S=60 

Second Example: Priority is given to Station 2 

Minimal Time Window for Resource Allocation 
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Third Example: Priority is switching 

µ1=1/30, µ2=1/100, 1=1/180, 2=1/300, p12 = 0.8, N=10, S=60 

Minimal Time Window for Resource Allocation 
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Summary & Conclusions 

  The suggested model predicts the number of casualties in 

a hospital’s ED during an MCE. 

 

  Our solution approach finds the dynamic allocation of 

surgeons that minimizes mortality during an MCE. 

 

  We formulated a greedy counterpart for the original 

problem and found the conditions under which its solution 

solves also the original problem. 
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Summary & Conclusions 

  We defined a general approach to predict the structure of 

the optimal solution of the original problem. 

 

   The model is simple enough yet able to describe a broad 

range of different MCE scenarios. As such, it can be used to 

help in preparing for, and managing an MCE. 

 

   The model can be expanded also to non-conventional 

MCEs (biological, chemical, nuclear and radiation), each 

requires different  emergency plan and different resources. 
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