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1 Introduction

This project deals with queues that have many servers and work under heavy traffic. Classical
ways of analyzing queues that have a large working load, have used approximations that
were correct as the load on the system (i.e. p) approached 1 from below. However such
an analysis is not accurate in the case that the system has many servers, as was proved
by Halfin- Whitt. Systems that reside in the Halfin- Whitt regime may have small waiting
probabilities, in contrast to the intuition that says that a system with a working load that is
close to 1 should have a waiting probability that is close to 1. The difference in the analysis
of Halfin-Whitt and the classical analysis is that in the Halfin- Whitt regime, the number of
servers is large and it increases with the load. In the classical anlysis the number of servers
is held fixed.

More formally, Halfin- Whitt claim that for each GI/M /m system the following two con-

ditions are equivalent:
limy, 400 P(Quu(00) >m)=p, 0<p<1
iff
lim,, oo (1 — p)vV/m =03, 0< < o0,

2
where p,, = 21—“; In this case p = [1 + 5\/27r¢(§)6%]_1 and £ = %, where ® is the
cummulative distribution function of a standard normal distribution. Note that if the system

is M /M /m then the first condition is equivalent, according to PASTA, to:
lityn o0 P(Wait > 0) =p, 0 < p < 1

In this work we study the behaviour of queues of the form M /GI/m that operate in the
Halfin- Whitt regime. Note that the Halfin- Whitt regime refers only to systems of the form
GI/M/m, namely with exponential service time. Thus the systems we study do not have
any theoretical analysis (as far as we know) that is similar to the one of Halfin- Whitt. So
when we say that a system of the form AM/GI/m is in the Halfin-Whitt regime, we mean
that the system has many servers and it operates under a high working load such that it has

a moderate or low waiting probability.



2 Stability and Continuous-Time Statistics

In most of this work, we will discuss what we call discrete statistics. Examples for such
statistics are: P(Wait > 0), E(W,), E(W,|[W, > 0) etc. These statistics are discrete in the
sense that they are calculated using observations such that each observation corresponds to
an element that was in the system. In our case the system is the queue and the element is
the customer. However, some statistics are not calculated per element. For example one can
think of the average number of elements in the queue (or in the system) in steady state. We
will call such statistics continuous-time statistics. In this section of the work, we will discuss
continuous-time statistics.

In order to compute a continuous-time statistic, one needs to know the desired condition
of the system at every time. For example if someone wants to calculate the average number of
elements in the system at steady state E(Lg), where Lg is a function of the time (i.e. Lg(t)),
he needs to calculate: E(Lg) = limy_,0 + fON Ls(t)dt. An equivalent way to calculate E(Lg)
is: E(Lg) =Y .2 nP(Ls =n).

We decided to check two continuous-time statistics in this section: E(Lg) (the average
number of customers in the system in steady state) and E(Lg) (the average number of
customers in the queue in steady state). We will see how their sizes change during time
(since the random variables Lg(t) and Lg(t) are time dependent). Their behaviour during
time will teach us two things. The first is whether the system reaches a steady state at all.
Second, we will learn how fast the system reaches a steady state (if it does reach such s state).
The system we have chosen to simulate is M/LN/100. We have conducted 1000 simulations
each for 10,000 time units (where a time unit is the average service rate). The parameters
we have chosen for the log-normal service time distribution are: 0 = 1 and p = —%. The
arrival rate we have chosen is 99.

We will remind that for log-normal distribution, if X ~ lognormal(o, i), then E(X) =
et27" and Var(X) = €2+ (¢°> — 1). Thus it can be concluded that the coefficient of
variation of X is CV(X) = ve?” — 1. In our simulation the coefficient of variation of the
service time is approximately 1.31083.

The reason we have chosen a system with such a high load (p = 0.99) is that if we will
obtain good results in this case, we will be able to deduce the same good results for similar
cases or cases where the load is smaller. Good results means that the system does reach a
steady state and that the time it takes the system to reach such a steady state is very small.
We will remind that each one of the 1000 simulations begins when the system is empty (no

customers are waiting in the queue and no customers are receiving service).



E(Lq(t)) and E(Ls(t))
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Figure 1: E(Lg(t)) and E(Ls(t)) (M/LN/100 with CV ~ 1.31083)

The results appear in Figure 1. Note that it is easy to see from this Figure that the
system indeed reaches a steady state. Additionaly it is easy to see that the time it takes the
system to reach this steady state is very small in comparison with the total time of each of
the 1000 simulations.

After checking the stability of the system, all that is left for us to do is to check how
reliable Figure 1 is. This can be done using confidence intervals. We will create the confidence
interval for each point in Figure 1 and for each one of the two continuous-time statistics we
are checking. The confidence interval was calculated in the following way. Consider n
observations wy, ws, ..., w, and their mean value w. We calculated the confidence interval
with reliablity of 100(1 — )% by:

where sy = W and t(n — 1,1 — §) is the 1 — § fraction of the ¢ distribution
with n — 1 freedom degrees. Notice that in order to compute the sample deviation (sy)
one needs to know all the observations at the end of the simulation, something that is
not practical in terms of memory and time. Thus we computed the sample deviation in the

n 2_ a2
following equivalent manner: sy = 4/ lelrzvflnw In order to compute the sample deviation



according to the last formula, one needs only to know the first and second moments of the
sample (a thing that is very easy to do in terms of memory and time).

For each one of the two statistics we check (E(Lg(t)) and E(Lg(t))) we have made two
confidence intervals. One with a parameter of & = 0.05 and another with a parameter of

a = 0.01. The results appear in Figuers 2 to 5.
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Figure 2: Confidence interval of E(Lq(t)) (M/LN/100 with CV =~ 1.31083, a = 0.05)

Just by looking at the confidence intervals, one can see that they have the same shape
as the original line. This is a very simple and important observation the strengthens the
assertion that the results that appear in Figure 1 are indeed reliable. Another method of
checking the confidence intervals is to examine their sizes. Since we have many confidence
intervals in each Figure (a seperate confidence interval for each time unit in each Figure),
we will examine the average size of the confidence intervals in each Figure.

A good confidence interval is a small one. The smaller the confidence interval is, the
better it becomes. What is a small confidence interval ? In order to answer this question,
in addition to examining the absolute size of a confidence interval, we will also examine it’s
relative size. A confidence interval’s relative size, is its absolute size divided by w. The

results appear in Table 1.
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Figure 3: Confidence interval of E(Lg(t)) (M/LN/100 with C'V ~ 1.31083, a = 0.01)

Size Lg,a=10.05| Lo, =0.01 | Lg,a0 = 0.05 | Lg,ox = 0.01
absolute 9.31794 12.25443 9.45037 12.42859
relative 0.12811 0.16849 0.05493 0.07225

Table 1: Absolute and relative sizes of confidence intervals of Ly and Lg with parameters
a = 0.05 and a = 0.01

Notice that the relative size of the confidence intervals is very small. Thus we can conclude

that Figure 1 is indeed reliable and that the system does reach a steady state very quickly.



Confidence Interval of Ls(t)
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Figure 4: Confidence interval of E(Lg(t)) (M/LN/100 with CV = 1.31083, v = 0.05)
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Figure 5: Confidence interval of E(Lg(t)) (M/LN/100 with C'V ~ 1.31083, a = 0.01)



3 Performance of M/G/S vs. 3

In this part we will show how different distributions of the service time cause changes in
the performance of the M/G/100 system in the Halfin- Whitt regime. We will also show
that by choosing different service time distributions with equal first two moments, we can
obtain a difference in the performance. We will also show that these differences can be of
much significance. This fact is in contradiction to the ’classical’ heavy traffic approximations
(Khintchin-Polatchek for example). Thus we can conclude that these classical heavy traffic
approximations are not accurate in the Halfin- Whitt regime.

First we want to verify that the systems which we are going to deal with are indeed in
the Halfin- Whitt regime. We will show that the loads of the system M /G /100 that we are
going to experiment with, are sufficiently high for an amount of 100 servers. According to
Halfin-Whitt: py, ~ 1 — % and P(Wait > 0) =~ [1 + id)(—%)]*l. Thus we can conduct the
following check. We can increase m and p,, such that we maintain the equality p,, = 1— %,
we do this by keeping  constant. If P(Wait > 0) does not change much during this change
of values of m and p,,, we will conclude that we are indeed in the Halfin- Whitt regime.

We have conducted this check for the M/M/100 and M/D/100 systems. The results are
presented in Tables 2 and 3.

3 0.1 0.6 15
100 Servers | 0.882768 | 0.433853 | 0.0748505
400 Servers | 0.881546 | 0.433753 | 0.0799413
900 Servers | 0.881141 | 0.433687 | 0.0815614
1600 Servers | 0.880921 | 0.433648 | 0.0823574
2500 Servers | 0.880795 | 0.433622 | 0.0828305

Table 2: P(Wait > 0) of the Halfin- Whitt check for M /M /100 system

Note that for a high value of 3 in the M /M /100 system, the waiting probability increases
as we increase m and p,,. On the other hand, for the smaller values of 3 the change in the
waiting probability is very small, only about 0.224% (this is in the case where 3 = 0.1, and
the change is even smaller in the case where 5 = 0.6). In the M/D/100 system the change in
the value of the waiting probability is very small for all checked values of 3. Notice that as 3

approaches 0, p approaches 1 (since p,, ~ 1 — %) . Thus we will conclude that for § values

9



3 0.2 0.6 15
100 Servers | 0.753871 | 0.402847 | 0.0705919
200 Servers | 0.752231 | 0.412152 | 0.0687077
300 Servers | 0.751502 | 0.40169 | 0.0699783
400 Servers | 0.751067 | 0.401472 | 0.0705919

Table 3: P(Wait > 0) of the Halfin-Whitt check for M /D /100 system

that are smaller than 0.6 (i.e. p values that are larger than 0.94), the system M/G/100 is
in the Halfin- Whitt regime. An intuitive way to understand this result, is to assert that a p

of 0.94 is large enough so that a queue with a 100 servers is in the Halfin- Whitt regime.

3.1 P(Wait >0) vs. g

According to Halfin-Whitt: P(Wait > 0) ~ [1 + id)(—%)]*l. We will first would like to check
whether we obtain this theoretical result in the case of the M/M/100 system. We will
remind that all the results in this part were obtained by running 1000 simulations each
for 10,000 time units (a time unit is the average service time). Results for the A//M /100
and M/D/100 systems were obtained via Tijm’s software. The theoretical result and the
empirical result appear in Figure 6. One can see that the empirical result is virtually identical
to the theoretical result.

Now we can turn our attention to the main part of this section, comparison of P(Wait >
0) of systems which have different distributions of service time. We first check the de-
terministic service time distribution. Note that according to the traditional heavy traffic
approximations, not only does P(Wait > 0) depend on the first two moments of the service
time distribution, but P(Wait > 0) is an increasing function of these two moments (i.e.
if at least one of these moments increases, P(Wait > 0) also increases). Thus we would
expect that the M/D/100 system in the Halfin-Whitt regime would have a smaller waiting
probability in comparison to the M /M /100 system with the same [ value (i.e. the same p).
The results appear in Figure 7.

One can see that the results are indeed as predicted by the traditional approximations.
The waiting probability is indeed smaller in the M/D/100 system in comparison with the
M /M /100 system, for each value of 3.

The second step was checking log-normal service time distribution. Not like the exponen-
tial and deterministic service time distributions, the log-normal distribution has moments

the depend on the distribution parameters (u and o) such that we can set both moments to

10



P(Wait) vs. Beta (M/M/100)
rho=1-(Beta/10)
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Figure 6: P(Wait > 0) vs. [ - empirical and theoretical results

any size. To our purposes we would like to have the first moment equal to 1, as was in all
the other service time distribution that we have checked and will be in the ones we would
check. Regarding the second moment, we can choose a value for it such that we receive
any coefficient of variation we want. This can be obtained by choosing: u = —%(72 and
o = /In(CV + 1), where C'V is the requested coefficient of variation. We have chosen the
following values of the coefficient of variation: 1, 10 and approximately 1.3. We present re-
sults only for the first two values, since the results of the third value fall between the results
of the first two. The results appear in Figure 8.

Notice that for the log-normal service time distribution the traditional approximations
are correct in the sense that the waiting probability is higher in the M/LN/100 system with
CV =10 in comparison with the system M/LN/100 with CV = 1. However, according to
these approximations the systems M /M /100 and M/LN/100 with CV = 1 are supposed
to behave the same, since these systems have the exact same two first moments of service
time distribution. However, one can easily see that these systems have different waiting
probabilities. The waiting probability is smaller in the M/LN/100 system with CV = 1
in comparison with the M/M/100 system for each value of 5. Thus we have obtained an

example in which the waiting probability does not depend only on the first two moments of
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P(Wait) vs. Beta (M/M/100 and M/D/100)
rho=1-(Beta/10)
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Figure 7: P(Wait > 0) vs. 8 (M/M/100 and M/D/100)

the service time distribution, thus we conclude that the traditional heavy traffic approxima-
tions are not correct in the Halfin- Whitt regime. In part 5 we present a special service time

distribution that achieved these results in a much clearer fashion.

3.2 E(W,) and E(W,|W,>0) vs. 8

One can extend the Khintchin-Polatchek approximation for the M /G /1 system to more than

one server in the following way (where m is the number of servers):

1+C?2

E(W,) ~ iiﬁ +2s
E(W, W, > 0) n L1114
q1"Vq ~ mul-rho 2

We will check how the different service time distributions affect E(W,) and E(W,|W, > 0)
as a function of 3. The results appear in Figures 9 and 10 (these results are for the same
systems that were checked when dealing with waiting probability).

Note that for the systems M/LN/100 with coefficient of variation 1 and 10, E(V,) and

12



P(Wait) vs. Beta (M/M/100 and M/D/100 and M/LN/100 with CV=1,10)
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Figure 8: P(Wait > 0) vs. 3 (M/M/100, M/D/100 and M/LN/100 with CV = 1 and
OV = 10)

E(W,|W, > 0) are larger when C'V = 10 than in the case when C'V = 1. However, E(W,)
and E(W,|W, > 0) are smaller in the M/LN/10 with C'V =1 than in the system M /M /100
for each value of 3. This gap between the systems becomes more apparent as  approaches
0 (i.e. p approaches 1). Thus even where p approaches 1, the traditional approximations
are not accurate since they claim that E(W,) and E(W,|W, > 0) depend only on the first
two moments of the service time distribution. That is clearly not the case in the example
presented for systems that are in the Halfin- Whitt regime. Thus we can conclude that
there is at least one additional factor that is missing in order to approximate E(WV,) and
E(W,W, > 0). Presented are graphs without the system A /LN/100 with CV = 10, so
that these phenomena can be seen more easily. These results appear in Figures 11 and 12.
One can see from these two Figures that the traditional approximation is correct for the
two systems M /M /100 and M/D/100. Note that according to the traditional heavy traffic
approximation, E(W,) and E(W,|W, > 0) is supposed to be half in the A//D /100 system in
comparison to the M/M /100 system. The reason for this is that the coefficient of variation
of a deterministic service time is 0 and the coefficient of variation of an exponential service

time is 1. Thus we obtain a factor of 2 as a result from the term % Indeed for E(W,) and

13



E(Wq) vs. Beta
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Figure 9: E(W,) vs. 8 (M/M/100, M/D/100 and M/LN/100 with CV =1 and CV = 10)

= 0.1 we receive a value of 0.88277 for the M /M /100 system and a value of 0.445543 for
the M/D/100 system. For E(W,|W, > 0) and § = 0.1 we receive a value of 1.000002266 for
the M /M /100 system and a value of 0.511930683 for the M/D/100 system. In both cases,
E(W,) and E(W,|W, > 0) are about half in the M/D/100 system in comparison with the
M /M /100 system, as the traditional heavy traffic approximation predicts.

However, according to this approximation we were supposed to get the same results for
the systems M /M /100 and M/LN/100 with CV = 1. That is clearly not the case as one
can see in the Figures. Thus we conclude that the traditional heavy traffic approximations
are not accurate in the Halfin-Whitt regime. In part 5 we present a special service time

distribution that achieved these results in a much clearer fashion.
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E(Wq|Wg>0) vs. Beta
(W(Wq|Wg>0) is simulated when possible)
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Figure 10: E(W,|W, > 0) vs. § (M/M/100, M/D/100 and M/LN/100 with CV = 1 and
OV = 10)
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E(Wq) vs. Beta
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Figure 11: E(W,) vs. § (M/M/100, M/D/100 and M/LN/100 with CV = 1)
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Partial graph of E(Wq|Wq>0) vs. Beta
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Figure 12: E(W,|W, > 0) vs. 3 (M/M/100, M/D/100 and M/LN/100 with CV = 1)
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4 Histograms of W,|W, > 0 for M/LN/S with coeflicient

of variation of 1 and 10

In the previous parts, we presented results concerning various statistics (all "byproducts’ of
some steady-state distribution) but we have never displayed the distribution itself. In this
part we try to do just that. We will present histograms for the waiting time given wait (i.e.
W,|W, > 0) in several cases. Of course we are interested in histograms of systems that are
in the Halfin- Whitt regime.

In the case of the M/M/S system it is known that waiting time given wait is distributed
exponentially, hence we do not present results for such systems. It is also known from
Kingman’s law that, in the classical heavy traffic regime, W,|W, > 0 9 exp(mean =
ﬁ%i%) for any GI/GI/S system as p approaches 1 (equivalently 3 approaches 0).
The question is, whether this approximation still prevails in the Halfin- Whitt regime (and
also for p’s that approach 1). We will present results in which W, |[W, > 0 is clearly not dis-
tributed exponentially in this regime. As seen in the previous part, interesting phenomena
appeared in the case of M/LN/100 systems. Thus we start with results for these systems.
Then, in the next part we introduce a special service time distribution, for which we will
also present histograms of W,|W, > 0.

We will conduct the analysis of each histogram in two phases. In the first phase we com-
pare the histogram with a theoretical exponential density function. The parameter chosen
for this theoretical exponential function is: m (ie. A= W) E(W,|W, > 0)
is obtained via the simulation. This phase enables us to see if the empirical histogram of
W,|W, > 0 resembles an exponential density function.

The second phase consists of an additional check. First, if f is an exponential density
function with parameter A (i.e. f(t) = Ae™*, V¢ > 0), and F is the corresponding cumulative
distribution function (i.e. F(t) = fst:() f(s)ds = 1—e™ Vt > 0), then it can be easily shown
that —5 In(1—F(¢)) = ¢, V¢ > 0. This fact provides us with an additional method of checking
whether a given empirical density function is an exponential density function. The method is

the following: computing the empirical cumulative distribution function (which we will refer

A A

to as F) from the empirical density function (histogram), then calculating —% In(1 — F(t)).

Since A = ——L_—_we can conclude that: (—+In(1 — F(t))) = (—E(W,|W, > 0)In(1 —

E(Wq [W,>0)’
F(t))). The final stage of this method is thus to check whether the function (—E(W,|W, >

~

0)In(1 — F(t))) is a straight line with a slope of 1. As in previous parts, the results were

obtained by running 1000 simulations, each for a period of 10,000 time units (where a time
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unit is the average service time).
First we will present results for the M/LN/100 system when the coefficient of variation

CV of the service time is 1. These results appear in Figures 13 and 14.

Histogram of Wq|Wq>0 (M/LN/100 with cv=1,rh0=0.99)
E(Wqg|Wq>0)=0.680954
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‘- Empirical Density —— Exponentail Density with Empirical Parameter ‘

Figure 13: Histogram of W,|W, > 0 and exponential density (M/LN/100, p = 0.99, cv = 1)

Note that the histogram in this case does not seem to be an exponential density function.
Indeed, the histogram seems to be more concave than that of the exponential. This is ex-
pressed by the fact that there is less distribution mass near 0 in the histogram in comparison
to the theoretical exponential density function, and as a consequence there is more distri-
bution mass away from 0 in the histogram in comparison with the theoretical exponential
density function. Note also that in the graph that presents our second phase check, it can
be seen more clearly that this histogram is not an exponential density function. The line
that represents (—E(Wq|Wq > 0)In(1 — F(t))) is not a straight line as it curves upwards for
large t values.

Notice that for ¢ values for which (—E(Wq|Wq > 0)In(1 — F(t))) <t (i.e. the function
(—E(Wq|Wq > 0)In(1 — F(t))) is smaller than the identity function), we can conclude that
F(t) < F(t) where F is the cumulative exponential distribution function. Similarly, for ¢
values for which (—E(Wq|Wq > 0)In(1— F(t))) > t we can conclude that F(t) > F(t). Thus
the function F(t) for waiting time given wait in the M/LN/100 system with C'V = 1, for a
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-E(Wg|Wqg>0)*lan(1-F_empirical(t))
and Theoretical Result in case Wq|Wq>0 is exponential
M/LN/100, rho=0.99, cv=1

time
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time

‘QTheoreticaJ line in case Wq|Wqg>0 exponential B E(Wq|W g>0)*(-lan(1-F(t))) ‘

Figure 14: Second phase check (M/LN/100, p = 0.99, cv = 1)

value of ¢ that is away from 0, is larger than F'(t) (where F is the cumulative distribution
function in the exponential case). Hence we conclude that the distribution of waiting time
given wait in the M/LN/100 system with C'V = 1 has a lighter tail than an exponential
distribution (which is no surprise since in the results presented in the previous part we
showed that E(W,|W, > 0) is smaller in the A//LN/100 system with CV = 1 and with
p = 0.99 in comparison with the M/M/100 system with the same p, and in the latter it
is known that W,|W, > 0 is distributed exponentially). Thus we can conclude that in the
Halfin- Whitt regime with high p, waiting time given wait in the M/LN/100 system when
the C'V of the service time is 1 is clearly not distributed exponentially.

We will now examine the results for the A//LN/100 system when the C'V of the service
time is 10. We will show that in this case, even for not very high values of p (but the system
is still in the Halfin- Whitt regime) the distribution of W,|W, > 0 is not exponential. We have
arbitrarily chosen to show results for the following p values: 0.94, 0.96 and 0.98. For each
p we will present two graphs, each one corresponds to the appropriate phase. The results

appear in Figures 15 to 20.
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Histogram of Wq|wWqg>0
(M/LN/100, cv=10, rho=0.94)
and Exponential Theoretical Density with empirical parameter

frequency

time

‘- Empirical Density —— Theoretical Exponential Density with Empirical Parameter ‘

Figure 15: Histogram of W, |[W, > 0 and exponential density (M/LN/100, p = 0.94, cv = 10)

Note that it is clear from this graphs, that the histograms of W,|WW, > 0 do not represent
exponential distribution functions. It can be seen that each one of the histograms has at
least one local maximum point that is not 0. As a result these histograms are concave and
convex alternatively. Also it can be seen in the graphs that present the second phase check,
that the function (—E(Wq|Wq > 0)In(1 — F(t))) is convex near 0 and concave afterwards.
Thus this function is clearly not a straight line with slope 1. If we try to conduct the same
tail analysis as done in the case of the M/LN/100 system with C'V = 1, we can state that as
p approaches 1, the distribution of waiting time given wait in the M/LN/100 system with
CV =10 has a heavier tail than the exponential distribution. Note that this is no surprise
since in the previous part we showed that E(W,|W, > 0) is larger in the M/LN/100 system
with CV = 10 in comparison with the M /M /100 system, in which it is known that waiting
time given wait is exponential. So we can conclude that in the Halfin- Whitt regime, waiting
time given wait in the M/LN/100 system when the C'V of the service time is 10 is not
distributed exponentially.

Summing up, we conclude that the Kingman approximation is probably not accurate in
the Halfin- Whitt regime, since we have shown a system for which this approximation does

not hold (i.e. W,|W, > 0 is not distributed exponentially).
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time

-E(Wg|Wqg>0)*lan(1-F_empirical(t))
and Theoretical Result in case Wq|Wq>0 is exponential
(M/LN/100, cv=10, rho=0.94)
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time

‘ @ Theoretical line in case Wq|W >0 exponential M E(Wq|Wg>0)*(-(lan(1-F(t))) ‘

Figure 16: Second phase check (M/LN/100, p = 0.94, cv = 10)
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Histogram of Wqg|Wqg>0 (M/LN/100, cv=10, rho=0.96) and Theoretical
Exponential Density with empirical parameter
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‘- Empirical Freqency —e— Theoretical Exponential Frequency with Empirical Parameter ‘

Figure 17: Histogram of W, |W, > 0 and exponential density (M/LN/100, p = 0.96, cv = 10)
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time

-E(Wg|Wg>0)*lan(1-F-empirical(t)) and Theoretical Result in case Wq|Wg>0 is exponential
(M/LN/100, cv=10, rho=0.96)
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time

‘ @ Theoretical line in case Wq|Wg>0 exponential B E(Wq|Wg>0)*(-lan(1-F_empirical(t))) ‘

Figure 18: Second phase check (M/LN/100, p = 0.96, cv = 10)
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Histogram of Wqg|Wq>0 and Theoretical Exponential Density with
Empirical Parameter (M/LN/100, cv=10, rho=0.98)
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Figure 19: Histogram of W, |W, > 0 and exponential density (M/LN/100, p = 0.98, cv = 10)
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-E(Wg|Wg>0)*lan(1-F_empirical(t)) and Theoretical Result in case Wq|Wq>0 is exponential
(M/LN/100, cv=10, rho=0.98)
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‘ @ Theoretical line in case Wq|Wg>0 exponential B E(Wq|Wg>0)*(-lan(1-F-empirical(t))) ‘

Figure 20: Second phase check (M/LN/100, p = 0.98, cv = 10)
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5 Performance of M/G/S vs. [ and W, W, > 0 His-

tograms for Special Service Time Distribution

As mentioned in the part that contains the performance of M/G /100 vs. 3, we will now
present a special distribution that we will use as a service time distribution. Using this
special distribution we will be able to show in a much clearer fashion the phenomena which
appeared in the two previous parts.

In this part we will present the various statistics vs. [ for different parameter values of
the special distribution. We will compare the results received for the special distribution with
the results received for the reqular distributions (exponential, deterministic and log-normal).
Additionally we will compare these results of the special distribution for several parameter
values of the special distribution itself. Finally we will present histograms for W,|WW, > 0 for
the different parameter values of the special distribution, compare these histograms between
the different parameter values and compare the special distribution case with the regular

distributions cases.

5.1 Special Service Time Distribution

Definition 1 We will say that a random variable X is distributed Special(p) for any p such
that 3 < p < 1iff P(X = a) = p and P(X =b) = 1 — p where a = 1—,/1],%” and

b=1+,/:.

We will use the notation X ~ Special(p) to indicate that X is distributed Special(p), i.e.

N
¥ 1—4/ o Wpp 1
1+,/i& wpl-p 2
Lemma 1 If X ~ Special(p) for some p such that % < p <1, than E(X) = 1 and
Var(X) =1.

<p<l.

Can be easily shown using simple arithmetics.

In our simulations we used three special cases of the special distribution, each case cor-
responds to a different value of the parameter p. Two of these cases were chosen as extreme
cases, in which the special distribution behaves in a manner that is close to some simple
distribution. The third case is an intermediate case between these two extreme cases. Here

are the three cases:

27



e p = 0.9999. In this case a ~ 0.9899995 and b ~ 100.9949999. Note that in this case
the special distribution resembles a deterministic distribution of the value 1. With a
probability that is very close to 1 (more accurately a probability of p = 0.9999) the
special distribution returns a value that is very close to 1 (in similar to the deterministic
distribution of the value 1). Note that with a very small probability, the special

distribution with p = 0.9999 returns a very large value.

e p = 0.5001. In this case a ~ 0.0002 and b ~ 2.0002. Note that the case in which
p = 0.5, the special distribution is exactly a distribution that with probability of %
returns a value of 0 and with a probability of % returns a value of 2. Since we are
dealing with service times, we want to keep all service times to be of positive values.
Thus we have chosen p to be close to 0.5, and not to be exactly 0.5. Note that even
though p is not exactly 0.5, the special distribution with p = 0.5001 is still very similar

to the distribution that with equal probabilities returns the values of 0 or 2.

e p = 0.75. In this case a ~ 0.4226497 and b ~ 2.7320508. Note that this case where
p = 0.75 is not similar to some other interesting case. We have chosen this value of p

as a third case, since it is an intermediate case of the two first cases.

5.2 Performance of M/G/100 vs. (3

In this section we will examine the performance of the M /G /100 system. We will present
the results obtained from the simulation for the various statistics in the three different cases
of the special distribution. Like previous parts, the results were obtained by running 1000
simulations, each for 10000 time units (where a time unit is equal to the average service
time). (8 was calculated as before: 3 = /N(1 — py) (for more accuracy we used p, since p
is almost always virtually identical to p).

Recall that for the regular distributions we received the surprising result that in the
Halfin- Whitt regime, E(W,|W, > 0) does not depend only on the first two moments of the
distribution of the service time (was shown two parts before). We showed results in which
the system M/LN/100 (where the C'V of the service time distribution is 1) had lower waiting
probabilities than the M /M /100 system (where the CV of the service time distribution is
also 1) for each value of 3. This difference became much clearer as p was closer to 1 (which
is equivalent to (3 getting closer to 0). We received similar results for P(Wait > 0) and
for E(W,) statistics. According to the Khintchin Polatchek approximation, as p is closer
to 1, E(W,) (and also E(W,|W, > 0)) are supposed to be approximately the same for the
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M/M/100 and M/LN/100 systems mentioned above. However our results show that for
systems in the Halfin- Whitt regime this is not necessarily accurate.

Let us first examine P(Wait > 0) vs. . Recall that for the regular service time distri-
butions, we received only one surprising result in the case of the M/LN/100 system (where
the C'V of the service time distribution is 1). In that case, P(Wait > 0) was slightly smaller
in the M/LN/100 system in comparison to the A//M /100 system for each value of 3. The
results for the three cases of the special service time distribution are presented in Figure 21.

Special Dist P(Wait>0) vs. Beta
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| ——P(Wait) (M/G/100,p=0.75) —— P(Wait) (M/G/100,p=0.9999) P(Wait) (M/G/100,p=0.5001) |

Figure 21: P(Wait > 0) vs. [ for special service time distribution

Additionally, the full results for the special service time distribution and the regular
distributions appear in Figure 22.

We obtained that for the two first cases (where p = 0.9999 and p = 0.5001), P(Wait > 0)
is smaller then in the case of p = 0.75, for each value of 3. It can be intuitively explained
why P(Wait > 0) in the case where p = 0.9999 is smaller than the case where p = 0.75.
The reason is that in the case in which p = 0.9999, the service time distribution is similar to
a deterministic distribution concentrated 1. And since we obtained the lowest P(Wait > 0)

for a deterministic time service distribution for each 3, among all the regular distributions,
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P(Wait) vs. Beta (M/M/100, M/D/100, M/G/100 with p=0.75 and p=0.9999 and p=0.5001
and M/LN/100 with cv=1)
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Figure 22: P(Wait > 0) vs. [ for special service time distribution and regular distributions

this result is no surprise. Additionally notice that the results of the special distribution in
the case that p = 0.75 are almost identical to the results of the M/M/100 system, thus
making the intuitive explanation more relevant.

Another surprising result concerns the special distribution in the case where p = 0.5001.
In this case P(Wait > 0) is low relative to all the other systems checked for all values of
B. Though the difference can be negligible when comparing with A//D/100 and M /G /100
(where p = 0.9999) systems, it is still surprising that this in fact occurs. We have no
explanation as to why this phenomenon happens (but it might be argued that since the case
where p = 0.5001 is similar to a distribution with values 0 or 2 in equal probabilities, then
such a distribution might cause the system to behave in a similar fashion to the system
where the service time distribution is deterministic and equals to 1).

Let us examine now E(W,|W, > 0) vs. (. Recall that for the regular service time
distributions, like in the case of P(Wait > 0) vs. (3, we got only one surprising result in
the case of the M/LN/100 system (where the C'V of the service time distribution is 1). In
that case, E(W,|W, > 0) for the M/LN/100 system mentioned above was smaller than in
the M /M /100 system, for each value of . The conclusions of this phenomenon appear in

a previous part (and were mentioned in this part only brief by). The results for the special
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service time distribution appear in Figure 23.

Special Dist E(Wqg|Wg>0) vs. Beta
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Figure 23: E(W,|W, > 0) vs. [ for special service time distribution

In addition, the total results for the special service time distribution and the reqular
distributions appear in Figure 24.

Note that for E(W,|W, > 0), the order between the three cases of the special service
time distribution has changed in comparison to the P(Wait > 0) statistic (we define order
according to the height of the lines in the graph). In P(Wait > 0), the highest values aroused
for the case p = 0.75 and the lowest for the case p = 0.5001. However, with E(W,|W, > 0)
the highest values are for p = 0.5001 and the lowest for p = 0.9999. The intuitive explanation
for the fact that the lowest results were for p = 0.9999 is the same explanation that was given
before as to why the case p = 0.9999 yields smaller waiting probabilities in comparison to
the case where p = 0.75 (that the case p = 0.9999 is similar to the deterministic distribution
with value of 1 and we know that such a deterministic distribution has yielded the lowest
results for the regular distributions). However, we do not have any explanation as to why

the case p = 0.5001 has the highest results in the E(W,|W, > 0) case.
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E(Wg|Wg>0) vs. Beta (M/M/100, M/D/100, M/G/100 with p=0.75 and p=0.9999 and p=0.5001
and M/LN/100 with cv=1)
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Figure 24: E(W,|W, > 0) vs. 3 for special service time distribution and regular distributions

Notice that in all three cases of the special distribution, the slope of the corresponding
line of each case becomes steeper as p gets closer to 1 (equivalently as 3 gets closer to 0)
than the slope of the lines that correspond to the regular distributions. It might be worth
mentioning that E(W,|W, > 0) is the only statistic for which we have obtained lines that
intersect with each other, when making graphs for a statistic vs. 3 (i.e. the only instance that
line intersect is in Figure 24). Again, we have no explanation for this phenomenon (it might
be some error in the simulation or a numerical inaccuracy , but we have not been successful
in finding one). We would like to point out, that this intersection of lines is most significant
in the three following systems: M/LN/100 (with coefficient-variance of 1), M/D/100 and
M/G /100 (where p = 0.9999). Note that the line that represents E(W,|W, > 0) in the
case of M/G/100 (where p = 0.9999), for small p’s is very close to the line that represents
the case of M/D/100. However for high p’s, this line is higher than that of the M/LN/100
system.

As in P(Wait > 0), notice that the case p = 0.75 is very close to the M /M /100 sys-
tem. Notice also that in the case p = 0.5001, E(W,|W, > 0) is slightly higher, for each §
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value, than the M /M /100 case (as it was mentioned before, the order between the cases has
changed).

The graph of E(W,) vs. [ appears in Figure 25. Notice that the order of the lines in this
graph is the same as the order of the lines in the graph of E(W,|W, > 0).

Special Dist E(Wq) vs. Beta
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| —— E(Waq) (M/G/100,p=0.75) —B— E(W() (M/G/100,p=0.9999) E(Wq) (M/G/100,p=0.5001) |

Figure 25: E(W,) vs. (3 for special service time distribution

5.3 Histograms of W,|W, > 0 for Special Service Time Distribution

In this section we will review the histograms of W,|W, > 0 which were obtained from the
simulations. Since approximations of the distribution of W,|[W, > 0 are asymptotically
correct in classical heavy traffic as p is closer to 1 (for example take into consideration
Kingman’s approximation), we will present the histograms for systems in the Halfin- Whitt
regime with the highest p simulated (equivalent to the smallest § that appeared in the
previous graphs).

According to Kingman’s law, the distribution of waiting time given wait will be expo-

nential as p gets closer to 1. We will try and see if this is indeed the case with the different
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three cases of the special distribution of the service time in the Halfin- Whitt regime. Like
in the previous part, we will conduct this check in two phases. In the first phase we will
compare the histogram with a theoretical exponential density function and in the second
phase we will check whether the function (—E(Wq|Wq > 0)In(1 — F(t))) is a straight line
with a slope of 1 (the detailed description of these two check phases appeared in the previous
part).

We will now present the results for the different three cases of the special distribution.

We will start with the case p = 0.9999 which appears in Figures 26 and 27.

Histogram of Wq|Wqg>0 (M/G/100,p=0.9999,rh0=0.99)
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Figure 26: Histogram of W,|W, > 0 (M/G/100, p = 0.9999, p = 0.99)

Note that the empirical histogram of the density of W,|WW, > 0 seems more concave
than the theoretical exponential density function with the empirical parameter. This is
manifested by the fact that the empirical histogram has a larger amount of distribution
mass near 0 in comparison with theoretical exponential density function. However, note
that the histogram still keeps its concave shape. In the second graph we can see that the
line that represents (—E(Wq|Wq > 0)In(1 — F(t))) is not a straight line with an inclination
of 1, since it has a smaller inclination than 1 (even though it seems like a straight line except
near 0). Conducting the analysis of the tail of the distribution of W,|W, > 0 as done in

the previous part, it can be concluded that the distribution of waiting time given wait in
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Figure 27: Checking Histogram of W,|W, > 0 (M/G/100, p = 0.9999, p = 0.99)

the case p = 0.9999 has a heavier tail than an exponential distribution. The reason for this
conclusion is that (—E(Wq|Wq > 0)In(1 — F(t))) < t for almost every ¢ (except maybe for
t values that are very close to 0), hence F'(t) < F(t) (where F is a cumulative exponential
distribution function).

The results for the case p = 0.5001 appear in Figures 28 and 29.

Note that the empirical histogram of the density of W,|W, > 0 does not seem to be
similar to an exponential distribution. The reason is that there is less distribution mass
near 0 in comparison with the theoretical exponential density function with the empirical
parameter. The histogram does not have the concave shape that an exponential distribution
function has, near 0 it is convex and far from 0 it is concave. To strengthen the assertion that
in the case where p = 0.5001 the histogram of W,|WW, > 0 is not exponential, we can look at
the second graph and see whether the function (—E(Wq|Wq > 0)In(1 — F(t))) is a straight
line with an inclination of 1. It can be clearly seen that the mentioned function is not such
a straight line, since for large values of ¢ it curves upwards (thus the above function is not
even a straight line). Conducting the analysis of the tail of the distribution of W,|WW, > 0
as done before, we can conclude that the distribution of waiting time given wait in the case

p = 0.5001 has a lighter tail than an exponential distribution.
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Histogram of Wq|Wqg>0 (M/G/100,p=0.5001,rh0=0.99)
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Figure 28: Histogram of W,|W, > 0 (M/G/100, p = 0.5001, p = 0.99)

Summing the two first cases of the special service time distribution, it can be stated
that waiting time given wait is not necessarily exponentially distributed. Thus we have
strengthened the claim that was made in the previous part, that in the Halfin- Whitt regime
Kingman’s approximation may not be accurate.

The results for the case p = 0.75 appear in Figures 30 and 31.

Note that the empirical histogram of the density of W,|WW, > 0 seems to be very close
to an exponential density function. By looking at the two graphs, one can see that in
the first graph the empirical histogram and the theoretical exponential density with the
empirical parameter seem almost identical. In the second graph one can see that the function
(—E(Wq|Wq > 0)In(1— F(£))) seems like a straight line with an inclination of about 1. Even
though it seems that the inclination is slightly larger than 1, we can say in general fashion
that the histogram of the density of W,|W, > 0 seems to be an exponential distribution.

Summing the results of this part, one can say that there are still many phenomena that
do not have an explanation (by explanation we of course mean a mathematical proof). Not
only do the checked statistics not behave as predicted in the Halfin- Whitt regime, but the

distribution of W,|W, > 0 seems to be not exponential in several cases.
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time

-E(Wq|Wg>0)*lan(1-F(t))
and Theoretical Result in case Wq|Wg>0 is exponential
M/G/100, rho=0.99, p=0.5001
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Figure 29: Checking Histogram of W,|W, > 0 (M/G/100, p = 0.5001, p = 0.99)
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Figure 30: Histogram of W,|W, > 0 (M /G /100, p = 0.75, p = 0.99)
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-E(Wq|Wg>0)*lan(1-F(t))
and Theoretical Result in case Wq|Wg>0 is exponential
M/G/100, rho=0.99, p=0.75
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‘QTheoreticaI line in case Wq|Wqg>0 exponential B E(Wq|W g>0)*(-lan(1-F(t))) ‘

Figure 31: Checking Histogram of W,|W, > 0 (M/G/100, p = 0.75, p = 0.99)
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