
Service Analysis and Simulation

In Process Mining

 ניתוח וסימולציה מבוססי שירות

 בכריית תהליכים

Ph.D. Research Proposal

Arik Senderovich

Adviser: Professor Avigdor Gal

Faculty of Industrial Engineering and Management

Technion - Israel Institute of Technology

February 2014

Contents

1 Introduction 1

2 Process Mining 2
2.1 Process Discovery . 2

2.2 Conformance Checking . 3

2.3 Model Enhancement . 4

2.4 Bringing It All Together . 4

3 Operational Process Mining 4
3.1 Event Log Extraction and Preprocessing . 5

3.2 Operational Goals, Model Specification and Discovery 6

3.3 Model Validation . 6

3.3.1 Conceptual Validity . 7

3.3.2 Qualitative Validity . 7

3.3.3 Operational Validity . 7

3.3.4 Model Validation: A Combined Approach 8

3.3.5 Model Validation in Literature . 8

3.4 Operational Support . 8

4 Services Analysis and Simulation in Process Mining 9
4.1 Service Characteristics and Operational Goals . 9

4.2 Service Modeling and Analysis . 10

4.3 Research Overview . 11

5 Queueing Models 12
5.1 Single-Station Queues . 13

5.2 Queueing Networks . 13

6 The Service Log 14
6.1 Definition . 14

6.2 Mapping a Database into an S-Log . 16

6.3 Service Logs with Missing Data . 17

6.3.1 Completing Missing Data in the Literature 18

6.3.2 Unobserved Events and Paths . 18

6.3.3 Missing Attribute Values . 19

6.3.4 Missing Attribute Functions . 19

7 Queue Mining 20
7.1 Online Delay Prediction . 20

7.2 The Service Log . 21

7.3 Model Specification and Discovery Queries . 21

7.3.1 Queueing Predictors . 21

7.3.2 Snapshot Predictors . 23

7.4 Model Validation . 24

7.4.1 Data Description . 25

7.4.2 Performance Measures . 25

7.4.3 Experimental Setup . 26

7.4.4 Results . 26

7.5 Discussion . 27

7.5.1 Snapshot Principle Predictors: Recent History Dominates in Time-Varying

Systems . 27

7.5.2 Queueing Predictors: Conceptual Validity Matters 28

7.6 Future Work . 29

8 Resource Mining 30
8.1 Operational Resource Mining . 30

8.2 Modeling Resource-Flow via Queueing Networks 32

8.3 Resource Mining: Service Log and Discovery Queries 33

8.4 Resource Analysis: Preliminary Experiments . 34

8.4.1 Resource Paths Analysis . 34

8.4.2 Steady-State Analysis of Time-Varying Resources 35

8.5 Future Work . 38

9 Simulation Mining 39
9.1 Simulation Models: Building Blocks and Characteristics 39

9.2 Simulation Mining of Queueing Models . 42

9.2.1 Primitives . 42

9.2.2 Dynamics . 43

9.3 A Unified Framework for Business Process Analysis and Simulation 43

9.3.1 Combining Stochastic Petri Nets and Queueing Networks 44

9.3.2 Stochastic Processing Networks . 44

1 Introduction

Modern business processes are supported by information systems that record process-related events

into event logs. Process mining is a maturing research field that aims at discovering useful information

about the business process from its corresponding event logs [76]. Recently, several works considered

process mining in an operational setting; specifically, performance-oriented models were discovered

from event data and later applied to operational analysis and support.

A central argument in the our research claims that service operations must be modeled and

analyzed via custom-tailored techniques, due to their unique characteristics. For instance, the main

concern in service operations is the balance between quality-of-service and resource efficiency

(utilization). Consequently, a natural theoretical framework for service modeling and analysis

is Queueing Theory, since it accommodates the quality-efficiency trade-off. To date, studies on

operational process mining did not consider queueing models as candidates for process discovery.

The primary goal of the proposed research is to bridge the gap between operational process

mining and service analysis; concretely, the research aims at discovering queueing models from

event logs and applying them to operational problems. The secondary objective of this research is

to provide (data-based) validity for established theoretical results in Queueing Theory. This step is

achieved by validating the discovered queueing models against their originating event logs.

A preliminary study serves as a proof-of-concept for the proposed approach. As a first step, the

work introduces the queueing perspective for process mining and defines queue mining as the set

of techniques that extracts queueing models from event logs. Then, two queue mining techniques

are used to obtain solutions to a specific operational problem, which is online delay prediction. The

queue mining predictors are compared to state-of-the-art benchmark techniques from process mining

with respect to well-established prediction measures. Empirical evaluation against real-life event

logs provides evidence that queue mining predictors are superior to other prediction techniques.

Moreover, theoretical results that were (so far) well-known in Queueing Theory gain validity through

these experiments.

Another work-in-progress is the discovery of resource networks, which is motivated by service

systems with ample servers. For example, a large call center could employ 1000’s of agents, and a

complex outpatient clinic has 100’s of physicians, nurses and administrators. Resource networks

focus on server-flow within a service system, which is in contrast to the traditional customer-centric

view of Queueing Theory. Resource networks can then address operational questions on resource

scheduling and utilization profiles. Furthermore, fitting queueing networks to resource paths is an

uncharted territory in operational service analysis and Queueing Theory; therefore, validating these

models against data will contribute to these research disciplines as well.

Future research directions beyond those mentioned above include: customer-resource models,

1

simulation mining, completing missing information in event logs and the foundation of a unified

approach modeling business processes from both control flow and queueing perspectives.

The proposal is structured as follows. We start by providing a general overview of process

mining (Section 2). In Section 3 we propose an operational paradigm to process mining that would

be the basis for our future techniques. Section 4 comprises unique characteristics of services and

operational models that account for these characteristics. The section provides a bridge between

service analysis and operational process mining. The section ends with the statement of our goals

and future research plans that follow from these goals. Section 5 describes an important preliminary

to the proposal, namely queueing models. In Section 6 we define the service log to be an event log

that comprises service events and paths. At the end of the section we discuss a research direction for

completing missing data in service logs. Section 7 presents our preliminary work on queue mining

that is based on [69], whereas Section 8 introduces the queueing perspective to operational resource

analysis. The concluding section (Section 9) describes the automatic extraction of simulation models

from service logs.

2 Process Mining

This section starts with a brief introduction to the rapidly developing field of process mining. The

idea behind process mining is to extract non-trivial information on business processes from event

data. Therefore, process mining is often viewed as a bridge that connects process modeling and

analysis with data mining [77]. Consequently, a core assumption is that information systems record

process-related events, e.g. activity executions, into so called event logs [76, Ch. 1]. Traditionally,

process mining tasks are categorized into three types: process discovery, conformance checking and

model enhancement. The three types of process mining tasks can be either performed independently

of each other [76, Ch. 1], or alternatively, they can be considered as part of a broader integrated

view [76, Ch. 8]. Below, we briefly describe the three types of tasks, then complete the introduction

with an integrated approach that unites all three types under a common roof.

2.1 Process Discovery

Conceptually, process discovery techniques aim at transforming an event log into a useful representa-

tion of the underlying business process, without imposing an a priory model [76, Ch. 1]. Practically,

every discovery technique considers at least one family of modeling languages to represent the

business process1.
1See [76, Ch. 6.5] for a historical overview of modeling languages that are relevant to business processes.

2

In early process mining literature, the goal of discovery algorithms was to extract models from

the control flow perspective (e.g. Petri nets) [76, Ch. 5]. Specifically, the most basic discovery

algorithm, the α-algorithm [79], maps event logs into workflow-nets (WF-Nets) [73], which is a

special case of the Petri net formalism [10]. The α-algorithm and other early algorithms were

limited in their applicability to real-life event logs due to several unrealistic assumptions. For

example, event logs were assumed to be free of noise and complete, which is rarely the case for real

logs (see [76, Ch. 5] for the full list of limitations and the definitions of noise and completeness).

Consequently, advanced process discovery algorithms were developed to overcome these limitations.

A representative selection of advanced discovery algorithms includes the heuristic miner [87, 88], the

fuzzy mining algorithm [29] and the genetic mining algorithm [20]. For further reading on process

discovery see [76, Ch. 5-6].

2.2 Conformance Checking

Given a process model (data-driven or conceptual), the question of its relevance to real business

processes can be raised. Process mining literature distinguishes between four model-quality notions:

fitness, simplicity, precision and generalization [76, Ch. 5]. For example, the notion of fitness

indicates how much of the observed behavior (in the event log) is feasible in the process model.

Conformance checking is a quality assurance procedure that provides measures of the distance

between a process model and its originating event log. Concretely, the goal of conformance checking

algorithms is to provide a measure for the ‘distance’ between the model and the event log with

respect to one of the quality measures [76, Ch. 7].

A common technique for conformance checking is replay [61]. The idea behind replay is that

the event log is ‘replayed’ on top of the process model (e.g. consider the token game for Petri nets,

with event data being the tokens); correspondences between moves in the log and possible moves

in the model indicate conformance, whereas discrepancies between the two provide evidence for

non-conformance. There are two discrepancy types that can be captured by replay: (1) sequences

in the log that cannot be executed in the model, i.e. the model is under-fitting the event log and

(2) behavior that is possible in the model and was not observed in the event log, i.e. the model is

over-fitting the event log. The replay technique was extended to an optimization problem with two

types of costs that correspond to the two types of discrepancies [2]. Moreover, several types of

conformance can be checked via replay, depending on the information available in the event log [19].

Another type of conformance checking that applies the replay technique is referred to as compli-

ance checking or process verification [86]. Suppose that we consider a normative model, i.e. a model

that represents a set of regulations or rules that must be enforced in the real process. Replaying the

log ‘on’ the model enables one to check for compliance of the real process to these rules [3, 55, 80].

3

For further applications of conformance checking techniques, see [76, Ch. 7].

2.3 Model Enhancement

Model enhancement procedures transform process models (data-driven or conceptual) into enhanced

models, based on additional information extracted from the event log. One special case of the

enhancement procedure is model repair. Suppose that the result of a conformance checking algorithm

is that the data-driven model is not close enough to the event log, in terms of fitness. Then, the

non-conforming model can be modified (iteratively) until it converges to a conforming model [14, 23].

Another type of model enhancement is referred to as model extension [76, Ch. 1]. As we already

mentioned, early discovery algorithms mainly considered control flow models. Model extension was

later proposed to mine event data for other perspectives, on top of the control flow perspective [76,

Ch. 8]. Some of the additional perspectives that were considered in the process mining literature

are: the time perspective (time prediction [56, 83, 84]), the organizational perspective (mining of

social networks [81]), the case perspective (decision mining [60]) and the resource perspective

(resource-aware process analysis [51]).

2.4 Bringing It All Together

In recent research on process mining, the three tasks (discovery, conformance and enhancement) are

considered to be part of an integrated view [49, 76, 77]. The concept behind the holistic approach is

as follows. An event log is used for the discovery of a control flow model that would already include

several additional perspectives (this step can be viewed as a combination of discovery and extension).

Then, the extracted model is compared to the event log (conformance checking) and the model is

repaired accordingly (in case of a non-conforming model). Lastly, the conforming (multi-perspective)

model is then applied to solve specific problems, e.g. configuring Workflow-Management Systems

(WFM) and providing operational support [76, Ch. 8-9].

3 Operational Process Mining

We refer to operational analysis techniques that are based on event data as operational process

mining2. Figure 1 presents our paradigm, which starts with a set of operational goals and an event

log. Then, the event log is transformed into data-driven models that we validate against event data;

the model, in turn, enables operational analysis and real-time support. Consequently, our methods

throughout this proposal, follow the principles that we present in the framework.
2An analogous term, performance mining, was used in [58].

4

Traditional stepEvent Log

PreprocessingModel Specification

Discovery

Business

Process

Validation

Events

Operational Goals

Model

DD-Model

Valid DD-Model

Operational

Support

Repair/Select

Improve/Recommend

Diagnostics

Updated Event Log

Event log

Event log

Optional step

Figure 1: Our framework for operational process mining

The design of our framework has its roots in the holistic approaches that we introduced at the

end of the previous section. Hence, we adjust it to operational process mining by extending current

approaches, in order to accommodate operational process mining. Moreover, as we go over our

framework, we demonstrate that recent research on operational process mining has sporadically

applied steps that are similar to our approach; we consider this to be evidence for the timidness and

value of the framework.

3.1 Event Log Extraction and Preprocessing

A central assumption in process mining is the existence of an event log that contains information

regarding the underlying business process. Extracting event logs can be a challenging task, since

information is often distributed and inaccessible. Even in cases of unlimited access to all available

data, combining the databases into a single event log can be a difficult task [76, Ch. 4].

Once the event log is obtained, and as we now explain, a preprocessing step is required to make

the log suitable for analysis. For example, Rogge-Solti et al. [57] propose a technique for repairing

event logs with missing data via stochastic Petri nets and Bose and van der Aalst [14] consider a

scenario in which event log traces are not aligned with the real process; therefore, the authors then

develop a technique that repairs these misalignments according to some predefined logical rules.

5

3.2 Operational Goals, Model Specification and Discovery

The first prerequisite for operational analysis is to specify its goals. These goals are often formulated

at a strategic level, e.g. ‘improvement in service levels’; therefore, strategic goals are to be ‘translated’

into operational goals prior to model specification. Alternatively, the goals can be formed directly as

operational goals, e.g. ‘predict waiting times for arriving customers’. Once the set of operational

goals is formulated and fed forward into the model specification phase, the actual process mining

procedure begins.

Our framework of operational process mining is model-centered, in which both discovery

procedure and operational analysis that follow are based upon operational models. These models

must be aligned with the operational goals and the available event data. Moreover, an appropriate

operational model reduces the need for the extension phase as it was presented in the previous section,

since all relevant pieces of information are considered when the model is specified.

As an example for model specification in the literature, we mention a series of recent papers by

Rogge-Solti et al. [56, 57, 58]. For operational support, they consider the stochastic Petri net (SPN)

formalism to be their model of choice. This is explained by the SPN’s ability to capture operational

elements (execution times, routing probabilities) as well as the randomness of the underlying business

processes. Moreover, SPNs can depict the control-flow perspective (e.g. conformance checking), on

top of the operational one.

Model specification includes the conceptual phase of making assumptions which in turn, results

in a set of building blocks (or model primitives). Then, the operational model is discovered from the

log, i.e. its building blocks are mined according to the event data. The result of this single discovery

procedure is a data-driven model (DD-Model). The discovery stage can be repeated for several

candidate models. Thus, the input for the following stage, namely, model validation, can be a set of

DD-Models.

3.3 Model Validation

Model validation, in our context, aims at comparing the discovered operational models with the

event log. In our framework, we propose three types of model validity: conceptual, qualitative and

operational. We now discuss these three types, based on a review paper by Sargent [64] that considers

the validity of simulation models. Then, we propose a combined method for model validation

that consists of the three types. Lastly, we review the notion of model validity in the literature of

operational process mining and compare it to our approach.

6

3.3.1 Conceptual Validity

Conceptual validity is defined as analysis of the assumptions and theories that underlie the model [64].

In operational models we often make assumptions on: execution times, customer arrival rates and

routing probabilities. Moreover, some operational models rely on approximations and therefore,

should be tested for their applicability against data. To determine conceptual validity, we may use

several techniques [64]. For example, we may apply statistical tests to verify model assumptions.

Note that a model can be useful even if it fails in conceptual validity. However, if a model is not valid

in one of the other two senses that we present below, we may test its conceptual validity in attempt to

find a root-cause to this inappropriateness.

3.3.2 Qualitative Validity

To demonstrate qualitative validity we return to the fitness measure that we discussed in the previous

part. The model is said to be valid with respect to the fitness measure if model behavior corresponds

to the observed event data. Generally, fitness as well as other measures that are considered in

conformance checking are qualitative measures; therefore, conformance checking, which is used for

estimating these quality measures can be perceived as a qualitative validation procedure. Moreover,

conformance checking may also be used to correct erroneous traces in the event log (as we already

discussed), therefore, providing data validity (which is out of the scope of this discussion) [64].

We believe that qualitative validity is also essential from the operational perspective. As an

example, consider an Emergency Department (ED) simulation model that is used for optimal planning

of patient routing through the process; suppose, that the simulation outputs impossible patient paths.

In such cases, a behavioral inconsistency between the reality and the simulation is observed. This is

obviously an undesired situation that would cause the model to lose its validity.

Nonetheless, operational models can still be useful, even when they are not valid in both

qualitative and conceptual senses. For example, in large systems, simple queueing models may

capture complex realities [45, 91], however they are aggregated (i.e. may experience behavioral

inconsistency with event logs) and assume unrealistic assumptions (e.g. exponential service times).

3.3.3 Operational Validity

As we already mentioned, when considering operational analysis, conceptual and qualitative validities

do not suffice. To clarify this point, consider an operational model of a certain process. Suppose

that the corresponding event log consists of traces with a single activity, ‘Service’. Clearly, any

discovery technique would provide us with a model that would be correct in the qualitative sense: the

model would also have a single activity. Moreover, suppose that we have used appropriate statistical

techniques to fit the distribution and estimate the parameters of the time it takes to execute ‘Service’.

7

Unfortunately, the model may still end up being inaccurate in the operational sense, when

compared to the event log. Specifically, execution times that would result from the model would not

match their corresponding times from the event log. The phenomena could be caused by the fact

that the activity ‘Service’ aggregates several activities that cause discrepancies in the analysis. For

example, if the system is overloaded for the analyzed period in the log, queueing delays obviously

influence the overall throughput time of the process. Therefore, when mining operational models,

the most important notion of validity is the operational validity.

3.3.4 Model Validation: A Combined Approach

Based on the discussion of the three types of model validity, we propose the following approach for

model validation in operational process mining. First, check the operational validity of the model. If

it fails, test its conceptual validity to find possible causes for the discrepancies and repair the model

(e.g. change its assumptions). In case that qualitative aspects are important, perform a conformance

checking procedure and determine whether the model is qualitatively valid. Note that we do not

consider the notion of validity to have a binary interpretation (valid/not valid); instead validity may

satisfy a certain score function. Therefore, models can be accepted, rejected or repaired according to

predefined thresholds for model validity.

3.3.5 Model Validation in Literature

In this part, we compare our combined approach to a technique that was applied in a paper on

operational process mining. Rozinat et al. [62] proposed a method for discovering simulation models

from event data. The validation technique that was presented in this work is referred to as ‘second-

pass’ evaluation. The method is rather simple: the simulation model runs for 1000 process instances

(cases or customers); each case leaves its ‘footprints’ in a synthetic event log. Then, the synthetic

log is used to discover the simulation model once again (rediscovery); the resulting model is then

compared to the original model. The authors discussed the conceptual validity of several operational

assumptions (e.g. execution times and case arrival rates). In addition, a behavioral alignment between

the synthetic log and the original log was determined from several perspectives, i.e. some qualitative

aspects were validated. However, the paper lacks the third type of model validity, the operational

validity. Instead, the paper presents the conceptual validity as performance validation, therefore,

confounding the two types.

3.4 Operational Support

Once a set of valid models is obtained from the previous stage, we are able to use them for operational

support. We consider two types of operational support: offline ‘What-if’ analysis and real-time

8

support. When carrying out a ‘What-if?’ analysis we adjust model parameters to fit extreme or

other interesting scenarios. Insights, improvements and recommendations that result from the offline

analysis may then be applied to the real process. The offline approach does not require updated event

data, and therefore, we consider it to be beyond our operational framework, i.e. process mining tasks

end when offline analysis begins.

However, when considering real-time support, an event log that is up-to-date is required and

process mining becomes relevant again. Provided with an updated event log we may, as a first step,

tune model parameters based on new information, thus preventing the so-called concept drift [15].

As a second step, it is possible to use the updated event log to infer the current state of the process

(e.g. by observing running cases) and apply the model to support operational decisions.

Some examples for operational support in process mining include: exploring alternative futures

via simulation models [63, 75], predicting remaining execution times for running cases [56, 83, 84],

online detection of deviations from normal executions [44] and decision support via a recommenda-

tion system [66].

4 Services Analysis and Simulation in Process Mining

Services constitute the center of today’s western economics, and they include the financial, telecom-

munication and healthcare sectors [18]. In fact, the two data sets that we use for empirical evaluation

of our theories and techniques are a bank’s call center and a day-hospital. This section starts with an

introduction to services and their operational analysis. Specifically, we show that due to their unique

characteristics, services require custom-tailored modeling approaches. We conclude the section with

our research objectives and an outline of the proposal.

4.1 Service Characteristics and Operational Goals

Services are economic interactions between customers and service providers (servers) that create

(typically intangible) added value in return for the customer’s time, money and effort [25, Ch. 1].

Furthermore, services can be characterized by several features that distinguish them from non-service

activities ([25, Ch. 2]):

• Customer participation during service execution is often required, with several exceptions, e.g.

back-office services.

• Services are consumed and created simultaneously, i.e. it is usually impossible to store services

in an inventory.

9

• Inability to meet demand will cause the service to perish, i.e. resources that were not utilized

are ‘wasted’ (cannot keep inventory of service providers for safety), while customers that did

not receive service may never return (must allow customers to wait).

• Services are typically intangible, i.e. there is no actual product provided to the customer.

• Services are heterogeneous; customers may require different (customized) service when using

the same service-system. Moreover, human service providers may serve similar customers in

different fashions.

The operational goals of service analysis become apparent from these characteristics. On the one

hand, the outcome of a service is not a product (intangibility), but rather, customer (dis)satisfaction;

therefore, managers aim at maximizing the Quality-of-Service (QoS). On the other hand, resources

are expensive and their idleness cannot be stored for later use; thus, managers aim at maximizing

resource utilization. Clearly, these are competing goals, which implies that service models must

enable the control and optimization of the balance between QoS and resource efficiency (utilization)3.

4.2 Service Modeling and Analysis

The need to balance between QoS and efficiency in processes with waiting customers, points towards

Queueing Theory as a natural discipline for modeling and analysis of service operations [45].

Correspondingly, our preliminary experiments showed that extracting queueing models from event

data is indeed useful when considering operational problems [69]. Nonetheless, we do not limit the

scope of service models to Queueing Theory; for example, we also consider stochastic Petri nets

(SPN) to be appropriate for modeling services, since they capture both behavioral and operational

aspects of complex systems4 [31].

The unique characteristics of services directly affect model specifications. For example, the

participation feature implies that customers may choose to wait for service or to abandon; therefore,

operational models better account for customer (im)patience. To demonstrate the usefulness of

service models, we provide a sample of possible analyses that can be accomplished via service

models [45]:

• Capacity Analysis: Identifying resource-related bottlenecks in the current process and ana-

lyzing utilization profiles of resources.

• Time Analysis: Analyzing sojourn and waiting times of customers.
3Profitability of services is not discussed in this proposal; instead, we focus mainly on operational goals and assume

that the two are strongly correlated.
4In Section 5 we provide a formal overview of queueing models and SPNs.

10

• Sensitivity Analysis: Testing non-existent operational scenarios by alternating model param-

eters and gathering future performance measures. The purpose of sensitivity analysis is to

identify possible directions for process improvement.

• Optimization: Improving the process via some notion of optimality.

Operational service analysis can be either based on analytical solutions (if the service model is

mathematically tractable) or on simulation (see [13, Ch. 11] for a thorough discussion on the

advantages and disadvantages of the two types of analysis).

4.3 Research Overview

Modern business processes, which are the main target of process mining techniques, partially or

entirely comprises service activities [22, Ch. 1]. Process mining studies consider the analysis of

web services, which is referred to as service mining [78]. However, we are not aware of process

mining techniques that account for the unique characteristics of services that we mentioned in the

previous part. Moreover, the application of analytical service models, such as queueing networks, to

operational process mining is non-existent.

The primary goal of this research is to integrate service analysis techniques into operational

process mining. Specifically, as our step we introduce the queueing perspective that treats queues

as first-class citizens to operational process mining [69]. Furthermore, we aim to modify existing

simulation techniques in process mining, so that they accommodate service operations analysis and

fit our paradigm for operational process mining.

Although the main contribution of this integration is expected to be in the field of process mining,

we also aim to contribute to disciplines that provide conceptual service analysis (e.g. Queueing

Theory). The latter objective is a by-product of the model validation step in Figure 1, i.e. we aim to

test well-established theoretical results against real data, and identify new theoretical challenges as

they emerge. We aim to achieve our objectives by pursuing the following research directions:

• The Service Log (Future Work; Section 6): The starting point of any process mining procedure

is the event log. In Section 6, we introduce the definition of a service log, which is an event

log that consists of service events. Service logs (and event logs in general) often suffer from

data incompleteness, e.g. unobserved events and attributes. Therefore, at the end of Section 6,

we provide a research perspective on completing missing data in service logs.

• Queue Mining (Preliminary work; Section 7): We define queue mining to be the specification,

discovery, validation and operational support of services via queueing models. In a preliminary

work on queue mining, we demonstrate the applicability of queueing models and theoretical

11

results in solving operational problems [69]. The work establishes the queueing perspective in

business process mining and analysis, on top of the existing perspectives (e.g. control flow,

time).

• Resource Mining (Work-in-progress; Section 8): Service models consider customers as dy-

namic entities, while resources are often regarded as static. For example, a central performance

measure in queueing models is customer waiting time. We define resource mining as the

discovery of service models from the resource perspective with servers being the flowing

entities. In other words, resource mining is an extension to queue mining, since it introduces

the queueing perspective to the world of resource analysis.

Recent studies examined the resource perspective in process mining, yet their results were

limited to estimating the availability and busyness of resources [50]. Moreover, we are not

aware of operational service models that treat resources as dynamic entities. Therefore, this

research direction can potentially become a two-way contribution, to both process mining and

service analysis.

• Simulation Mining (Future Work; Section 9): The downside of analytical service models

(e.g. queueing networks) lies in their high-level of abstraction. In complex systems, these

models retain tractability at the expense of oversimplifying reality in a manner that reduces

their behavioral and operational validity. In such scenarios, simulation models are useful for

service analysis, since they are able to capture reality in detail and, if properly configured,

provide valuable results. We refer to the extraction and configuration of simulation models

from event data as simulation mining. Although the topic was already considered in previous

work on operational process mining [62, 63, 82], we are hoping that the adjustment of these

techniques to specifically accommodate services can be a potentially significant contribution.

Each of these research plans is described in a separate section and includes further future work that

is directly related to the discussed topic.

5 Queueing Models

Before going further into some of the research directions, we take a detour to present queueing

models. Specifically, we introduce single-station queues and their multi-station extension, namely,

queueing networks (QNs). For both types we provide notation and a guiding example that will be

used for mining queueing models. The discussion on queueing models is primarily based on [13, 32].

12

5.1 Single-Station Queues

Single-station queues are characterized by the following notation, known as Kendall’s notation [40]:

A/B/C/Y/Z.

The arrival process (A) is defined by the joint distribution of the inter-arrival times (assuming

that a single customer arrives at a time). Whenever no distributional assumption regarding the arrival

process is made, A is replaced by G for general distribution. The processing duration of a single

case (B) is described by the distribution of service time. The total number of agents at the queueing

station is denoted by C. When a case arrives and all agents are busy, the new arrival is queued.

The maximum size of the system, Y , can be finite, so that new customers are blocked if the

number of running cases is larger than Y . In large call centers, Y is practically infinite and can be

omitted. On the other hand, healthcare operations are often limited in waiting places and therefore Y
is naturally assumed finite. Once an agent becomes available and the queue is not empty, a customer

is selected according to some routing policy Z . The most common policy is the FCFS (First Come

First Served) policy and in that case Z is omitted from the notation. For a discussion on policy

types c.f. [13, Ch. 6]. An additional element that we consider is customer (im)patience. Customers

that seek a service, unlike goods in manufacturing processes, may decide to abandon the queue.

Therefore, the information on the distribution of customer (im)patience (G), is added following a ‘+’

sign at the end of Kendall’s notation.

For mathematical tractability and sometimes backed up by practice, it is often assumed that

sequences of inter-arrival times, service times and customer (im)patience are independent of each

other, and each consists of i.i.d. elements that are exponentially distributed. (In particular, this

is to say that the arrival process is a time-homogeneous Poisson process.) Then, A, B and G are

replaced by M (which apparently stands for Markovian). Figure 2 depicts a queueing model that we

consider in the queue mining section (Section 7). The model can be written as, G/M/n+M, i.e.

inter-arrival times come from a general distribution, service and (im)patience times are exponential

with n statistically identical servers, unlimited queueing capacity and an FCFS routing policy.

5.2 Queueing Networks

The skeleton of a queueing network is an undirected graph, with each node corresponding to a

queueing station and each arc indicating whether the source and target stations are interconnected.

Single-class networks assume that a single customer class is flowing through the different nodes5.

For our purposes here, single-class queueing networks can be divided into open and closed networks.
5For the extension to mixed and multi-class networks, see [13, Ch. 7].

13

1

n

Policy

2

Abandonments

Arrivals

Figure 2: An illustration of the G/M/n+M queueing system

In open networks, customers arrive, receive a series of services and eventually depart. In closed

networks, a constant number of customers is circulating within the system. In this part, we introduce

the notation for a (single-class) closed network, since this particular model is applied to resource

mining in Section 8. A single-class closed queueing network is a tuple, (K,N,n,µ, R), where:

• K is the finite number of customers circulating the network.

• N is the number of queueing stations.

• n = (n1, ..., nN) is the number of servers in each station.

• µ = (µ1, ..., µN) is the vector of service rates per station: µi is the service rate at station i.

• R = [Ri,j] is the routing probability matrix: Ri,j represents the probability of routing to node

j, after finishing service at node i.

• The service policy is assumed FCFS (unless stated otherwise) and the servers in each station

are assumed i.i.d.

Figure 3 presents an example of a closed network, with node number 1 being a hub to which

customers return after receiving service in nodes 2, ..., N .

6 The Service Log

In this part, we define the service log (S-Log), which is an event log (c.f. [76, Ch. 4]) that consists of

service events and paths. Then, we provide an example of mapping a database into an S-Log and

lastly, we introduce a research direction for completing missing data in S-Logs.

6.1 Definition

As a first step to defining an S-Log, we make the following assumptions:

14

1

2

3

N

Figure 3: An illustration of a closed queueing network

• Service entities (e.g. customers, resources) go through service paths that consist of service

events.

• Service events and paths must have unique identifiers (events and paths cannot have the same

identifier).

• Service events and service paths both have attributes.

In order to define the service log, we shall now define service events, service paths, relate events to

paths and define their attributes. We shall refer to service events as events and to service paths as

paths.

Definition 1 (Service event, Service path). Denote by S the set of all possible service events, i.e.

unique event identifiers. Let S∗ be the set of all finite sequences over S . We define Π ⊆ S∗ as the set

of all feasible service paths, i.e. finite sequences of service events. We require that each service event

appears at most once in some path.

In other words, a path p ∈ Π , is a finite sequence of events such that pi ∈ S, i = 1, ..., n, with n

being the length of the path6.

Service events are associated with attributes, e.g., timestamps, service activities, service locations

and resources. We denote by AS the set of all event attribute spaces: AS = {Ai|i ∈ I}, with Ai
being the ith attribute space and I being the event attribute indices.

Definition 2 (Event schema, Event attribute function (EAF)). The event schema, α, is defined as

a function α : S →×
i∈I
Ai. Note that α = (αi, i ∈ I), where αi is the ith event attribute function

(EAF), namely αi : S → Ai.

6In process mining, paths are referred to as cases (that are associated with customers); in the proposed research, we
wish to capture resource paths as well, hence the extension of cases to paths.

15

For example, if Ai is the space of service activities (e.g. {service start, service end}), then for a

service event s ∈ S, αi(s) is the corresponding service activity.

Similarly, service paths are associated with attributes, such as a unique path identifier or service

entity (e.g. customer, resource) and so on. We denote by BΠ the set of all event attribute spaces

BΠ = {Bi|j ∈ J}, with Bi being the jth attribute space and J the path attribute indices.

Definition 3 (Path schema, Path attribute function). The path schema, β, is defined as a function

β : Π →×
j∈J

Bj . Denoting β = (βj , j ∈ J), each βj is the path attribute function: βj : Π → Bj .

Service paths consist of events, with each event having its set of attributes. Therefore, we may also

have path attributes that would be aggregations of event attributes. The definition of such aggregated

path attributes remains out of the scope of the current proposal.

Only subsets of events and paths will actually be observed (i.e. recorded) in the S-Log. Therefore,

we denote by S ⊆ S the set of observed events and by P ⊆ Π the set of observed paths. We are now

ready to define the service log (S-Log).

Definition 4 (S-Log). The service log is defined over S, Π,AS ,BΠ as a tuple (S, P, αS , βΠ), where

• S ⊆ S is the set of observed service events.

• P ⊆ Π is the set of observed service paths.

• αS = 〈αi〉, i ∈ L ⊆ I is the event schema.

• βΠ = 〈βj〉, j ∈ K ⊆ J is the path schema.

Note our definition of a service log generalizes the functional definition of an event log as it is defined

in [57] and that of the enriched log as it is defined in [72].

6.2 Mapping a Database into an S-Log

In real-world problems, event data is often stored in databases and must be converted into S-Logs. In

the following part we demonstrate a mapping from the database of a day-hospital into an S-Log7.

Table 1 presents a sample of records from the database. The information was recorded by a real-time

locating system (RTLS) on December 3rd, 2013. Customer 12358 started an infusion procedure at

time 12 : 33 : 00 in room 705C. The infusion end time for that customer was recorded at 17 : 41 : 04

(note that time is depicted in a universal timestamping method that counts seconds since 1/1/1970).

An infusion nurse 30395 monitored several patients in the same room, including patient number

12358. Thus, every time the nurse approached the patient, the RTLS system recorded an event into

the database. One such monitoring session started at 12 : 57 : 45 and ended at 12 : 58 : 16. The last

activity of the nurse, during that day was recorded in the staff lounge, as she was leaving the hospital.
7The datasets throughout this proposal come from the Technion laboratory for Service Enterprise Engineering (SEELab):

http://ie.technion.ac.il/Labs/Serveng.

16

http://ie.technion.ac.il/Labs/Serveng

Table 1: Day-Hospital S-Log - Sample from Dec. 3rd, 2013

Service Path Type Event Activity Location Timestamp Transaction

12358 Patient 17201 Infusion 705C 1386074035 Start
12358 Patient 944871 Infusion 705C 1386092464 End
30395 Infusion Nurse 569764 Monitor 705C 1386075465 Start
30395 Infusion Nurse 569765 Monitor 705C 1386075496 End
30395 Infusion Nurse 570998 Leave Staff Lounge 1386075465 Start

The mapping from the schema presented in Table 1 into an S-Log is straightforward. Service

events are uniquely identified by the Event attribute, and therefore, S = {17201, 944871, ...}. The

set of service paths, P , contains several types of elements—those of patients and those of various

resources. The path schema comprises a single path attribute function that maps paths into their

types (e.g. patient, infusion nurse). The event schema constitutes unique identifier, activity, location,

timestamp and transaction attribute functions.

6.3 Service Logs with Missing Data

The first step of any mining technique (e.g. queue mining, resource mining) is to state assumptions on

the available information in the S-Log, i.e. provide an event schema and a path schema. In practice,

essential information for the mining task is often missing due to incomplete data recordings. In this

part, we propose a future research direction on completing missing data in S-Logs; however, the

proposed approaches are not specific to service logs and can be applied to general event logs as well.

For motivation, consider the task of estimating the queue length of a single-station queue at a

certain point in time. (Queue length is a proxy of system load and is useful in operational analysis.)

Now, suppose that the event log does not contain queueing activities (e.g. queue start and queue

end); therefore, we are unable to obtain queue length directly from event data. However, it is possible

to infer the queue length, based only on events that correspond to service activities (e.g. service

start and service end). For single-station queues, under certain assumptions (e.g. Poisson arrivals),

Larson [43] developed the so-called ‘queue inference engine’ (QIE). The QIE provides estimates for

several queueing parameters, including the queue length, based solely on service events. Furthermore,

in [46] the method was extended to queueing networks.

Missing information is strongly related to the mining question at hand. Suppose that the queueing

data is missing, as before; however, the task is to estimate the number of busy servers at a certain

point in time. In this case, service events provide sufficient information to complete the task, even

though event data is missing. Therefore, the same S-Log with missing data can have complete or

incomplete information, with respect to different mining tasks.

17

6.3.1 Completing Missing Data in the Literature

The general problem of completing missing values in data samples was thoroughly investigated in

Statistics. State-of-the-art statistical techniques for completing missing data can be found in [65].

However, these techniques primarily target surveys and do not account for dependencies that often

occur in event logs of business processes (e.g. activity precedence relation). In process mining, a

recent work by Rogge-Solti et al. [57], used stochastic Petri nets to complete missing events and

their attributes (e.g. timestamps). Another work on the subject by Bertoli et al. [12], considered a

logic-based approach to event logs with missing events.

In the remainder of this section, we follow our definition of an S-Log to categorize missing

data into three types: (1) unobserved events and paths, (2) missing values and (3) missing attribute

functions. For each category, we consider solution strategies and do not provide concrete techniques

for now. Our proposed strategies for data completion correspond to the predictive approach that is

described in [90].

6.3.2 Unobserved Events and Paths

Consider an S-Log that contains a service start event for a certain customer. At the end of the day, we

observe the log and discover that the service end event was not recorded. If such an error is prevalent

throughout the S-Log then mining techniques that are applied to the log are bound to be inaccurate.

For example, consider the online delay prediction problem from Section 7; the lack of service end

time would bias the estimate for average service time, which is essential in both transition system

methods and in queueing predictors.

Formally, we define the set of the observed events as S ⊆ S and the set of the events that actually

occurred as S′ ⊆ S (clearly, S ⊆ S′). Unfortunately, the S-Log is defined over observed events

(and not over S′). The conceptual problem of completing unobserved events is to find a method that

expands S with new elements from S′ until we get, or estimate that S = S′.

We propose an approach to complete missing events, in the spirit of [12]. Suppose that there

exists a set of implication functions, F , with each implication function f ∈ F being a function

f : S∗ → S. Formally, the occurrence of s1, ..., sn ∈ S implies the occurrence of r ∈ S with respect

to F , if and only if there exists an implication function f ∈ F such that f(s1, ..., sn) = r.

For example, a simple implication function would be the following. An activity with an observed

start event must have an end event. Another option for deducing F is to use a normative model, i.e. a

set of regulations. For example, in the day-hospital case data, a patient is to go through a series of

tests. Suppose that each of the test results is required for the patient to proceed and receive treatment.

If the treatment started (its start event is observable) then it is implied that all these tests were indeed

completed. However, an alternative hypothesis of medical misconduct may arise, thus turning the set

18

of unobserved events (S′ \ S) into the set of possible medical irregularities.

Once F is properly defined, we may use structural induction to obtain the set of the observed and

implied events, S′′. Note that S ⊆ S′′ ⊆ S′ and ideally, S′′ = S′. Formally, let S be the basis and F

the set of implication functions. Then, we may define S′′ as the closure of S over F .

A similar procedure can be performed for unobserved paths. Here, we only provide motivation

for completing missing paths, but do not go into detail due to space limitation. Suppose that we only

observe service events from the customer’s perspective, yet we are interested in resource mining.

We have only partial recordings for the resources, i.e. given a service, we know which resource

handled the customer; however, we are missing the full service paths of these resources. Completion

of resource paths, given traces of customer events, is a challenging task that often arises when mining

real-life S-Logs.

6.3.3 Missing Attribute Values

After completing unobserved events, one must assign values to each of its EAFs (and similarly for

paths and PAFs). Even when considering a complete set of events, i.e. every event that occurred was

also observed, S-Logs often suffer from missing values for some of the event attributes. In practice,

completing events without their relevant attributes could turn out not very useful. We are now ready

to state the problem of completing event-attribute values.

Problem 1 (Completing Event-Attribute Values). Let (S, P, αS , βΠ) be an S-Log. Given an event

attribute function, αi, and an event, s ∈ S, such that αi(s) = null, find a value α̂i(s), such that

α̂i(s) accurately substitutes for the real value of αi(s).

A similar problem statement can be written for completing path-attribute values.

As a motivating example to Problem 1, consider a process in which only start times of services

are recorded, while service completion timestamps are censored, e.g. we have only a lower bound

on the service time. For example, when customers abandon from queue, the time until they would

have to wait before entering service is censored. In order to analyze service duration, techniques

from statistical Survival Analysis can be applied to complete the missing timestamps [39]. Moreover,

other statistical techniques, such as missing data imputations [65], are applicable as well.

6.3.4 Missing Attribute Functions

The last type of missingness in the S-Log is that of an entire attribute function. This is a generalization

of Problem 1, for all s ∈ S. As a guiding example, consider the location attribute in Table 1. In case

of missing EAF, none of the service events contains information on its location. Therefore, if we

19

aim at mining a queueing network, where we ought to distinguish between service stations, we must

complete the location attribute for every service event.

We propose the following definition of a composite EAF, as a possible approach to completing

missing attribute functions.

Definition 5 (Composite EAF). Let f : S → D be an EAF and let g : D → A be some function;

then f ◦ g : S → A is a composite EAF.

Therefore, it is enough to possess an EAF, f : S → D, and a function g such that g(f(s)) ∈ A,

in order to indirectly obtain the missing EAF function that maps events into attribute space A.

Returning to our example, suppose that service names include locations in a unique form, e.g.

InfusionRoom705C. Therefore, a transformation from the attribute service name into a location

identifier (e.g. a string parsing operation) can serve as a composite function that provides the location

of the service.

7 Queue Mining

This section is based on our preliminary work, in which we establish a queueing perspective in

process mining [69]. We propose to consider queues as first-class citizens and refer to the various

tasks of process mining that involve the queueing perspective as queue mining; specifically, queue

mining is defined as specification, discovery and validation and analysis of queueing models based

on event data.

To demonstrate the value of queue mining, we follow our operational mining paradigm (Figure 1),

i.e. we state the operational problem of online delay prediction, then we specify our models and

provide corresponding discovery techniques. Consequently, we validate the models against the S-Log

and conclude the section with a discussion on our empirical insights into queue mining and future

research directions.

7.1 Online Delay Prediction

The phenomena of delay has been a popular research subject in queueing theory, see [52]. The

interest in delay prediction is motivated by psychological insights on the negative effect of waiting

on customer satisfaction [37]. Field studies have found that seeing the line ahead moving and getting

initial information on the expected delay, both have a positive effect on the waiting experience [17, 42].

Thus, announcing the expected delay in an online fashion improves customer satisfaction.

We refer to the customer, whose delay time we wish to predict as the target-customer. The

target-customer is assumed to have infinite patience, i.e. the target customer will wait patiently for

20

service, without abandoning, otherwise our prediction becomes useless. However, the influence of

abandonments of other customers on the delay time of the target-customer is taken into account. We

are ready to state the online delay prediction problem.

Problem 2 (Online delay prediction). Let W be a random variable that measures the first delay time

of a target-customer. Denote by Ŵ the predictor for W . Then, the online delay prediction problem

aims at identifying an accurate and precise predictor Ŵ .

Accuracy and precision are common measures for prediction (see, for example, the use of precision

and recall in information retrieval [47]). In our empirical evaluation, we use, as concrete measures,

absolute bias for accuracy and root mean squared error (RMSE) for precision. Note that the

problem statement phase corresponds to the stage when operational goals are passed to enact model

specification, according to the operational mining paradigm (Figure 1).

7.2 The Service Log

Below, we define the (single-station) S-Log that corresponds to event data from single-station queues.

Specifically, we provide the assumed attributes for both service events and service paths. Although

the S-Log is adapted to single-station queueing models, its definition can be easily extended to more

general queueing models (e.g. queueing networks).

Definition 6 (Single-Station S-Log). The single-station service log is the tuple (S, P, αS , βΠ) over

S, Π,AS ,BΠ , where

• αS = (τ, α) is the event schema.

• τ : S → N+ is the timestamp EAF.

• α : S → A = {qEntry, qAbandon, sStart, sEnd} is the service activities EAF.

Note that service paths in the S-Log are assumed to be structured, e.g. a qAbandon event cannot

occur before qEntry. In other words, we assume that the log corresponds to the logical order of

events in a single-station queue.

7.3 Model Specification and Discovery Queries

In order to solve the delay prediction problem, we propose two queue mining techniques that have

grounds in Queueing Theory: one is based on an exact analysis of queueing models, while the other

is based on a result from heavy-traffic approximations.

7.3.1 Queueing Predictors

Idea We define two delay predictors based on the G/M/n and the G/M/n+M models, respec-

tively. We refer to the first predictor as queue-length (based) predictor (QLP) and to the second as

21

queue-length (based) Markovian (abandonments) Predictor (QLMP) [38]. As their names imply,

these predictors use the queue length (in front of the target customer) to predict its expected delay.

We define the queue-length, L(t), to be a random variable that quantifies the number of cases that

are delayed at time t. The QLP for a target customer arriving at time t is:

ŴQLP (L(t)) =
(L(t) + 1)

nµ
(1)

with n being the number of agents and µ being the service rate of an individual agent. The QLMP

predictor assumes finite patience and is defined as:

ŴQLMP (L(t)) =

L(t)∑
i=0

1

nµ+ iθ
. (2)

Intuitively, when a target-customer arrives, it may progress in queue only if customers that are ahead

of him enter service (when an agent becomes available, at rate nµ) or abandon (at rate iθ with i

being the number of customers in queue). For the QLP, θ = 0 and thus the QLMP predictor (Eq. 2)

reduces to the QLP predictor (1).

Queue Mining Provided with an S-Log that is up-to-date, at time t, we extract the primitives

required for calculating the QLP and QLMP. We denote by kp the length of path p. We start with

L(t) and n:

L̂(t) = |{p ∈ P |α(pkp) = qEntry}|,

n̂ = |{p ∈ P |α(pkp) = sStart}|.

In other words, the queue length is estimated by the number of paths that have experienced only a

qEntry event, while the number of servers online is estimated by the number of customers that are

in service at time t. Note that the latter estimator can be inaccurate, when the queue is empty, since

it does not account for idle servers. To obtain µ and θ we first define a predicate Q(·, ·) and three

relations, namely, R1, R2, R3:

Q(s1, s2) = ∃p ∈ P, i ∈ N+(s1 = pi ∧ s2 = pi+1),

R1 = {(s1, s2) ∈ S × S|α(s1) = sStart ∧ α(s2) = sEnd ∧Q(s1, s2)},

R2 = {(s1, s2) ∈ S × S|α(s1) = qEntry ∧ (α(s2) = sStart ∨ α(s2) = qAbandon) ∧Q(s1, s2)},

R3 = {p ∈ P |α(pkp) = qAbandon}.

22

The predicate, Q, indicates that two events s1, s2 ∈ S are sequential in the same path. The first

relation, R1, contains pairs of events from the same path that correspond to service start and end

activities, respectively. Similarly, R2 contains pairs of events that are sequential in the same path and

indicate waiting in queue (until abandonment or service). Lastly, R3 contains paths that ended with

an abandonment. We use R1 to estimate the average service time, m, as follows:

m̂ =

∑
(s1,s2)∈R1

(τ(s2)− τ(s1))
|R1|

, (3)

and deduce a naive moment estimator for µ̂, µ̂ = 1/m̂ [67]. Lastly, we estimate θ based on a

statistical result that relates it to the total number of abandonments and the total delay time for both

served and abandoned customers, cf., [16]. Formally,

θ̂ =

∑
(s1,s2)∈R2

(τ(s2)− τ(s1))
|R3|

. (4)

7.3.2 Snapshot Predictors

Idea An important result in queueing theory is the (heavy-traffic) snapshot principle (see [89],

p. 187). A heavy-traffic approximation refers to the behaviour of a queue model under limits of

its parameters, as the workload converges to capacity. In the context of Problem 2, the snapshot

principle implies that under the heavy-traffic approximation, delay times (of other customers) tend

to change negligibly during the waiting time of a single customer [38]. We define two snapshot

predictors: Last-customer-to-Enter-Service (LES or ŴLES) and Head-Of-Line (HOL or ŴHOL).

The LES predictor is the delay of the most recent service entrant, while the HOL is the delay of the

first customer in line.

In real-life settings, the heavy-traffic approximation is not always plausible and thus if the

operational validity of the approximation is low then its conceptual validity is to be tested. The

applicability of the snapshot principle predictors should be tested ad-hoc, when working with real

data sets. Results of synthetic simulation runs, conducted in [38], show that the LES and HOL are

indeed appropriate for predicting delays.

Queue Mining Given an S-Log that is up-to-date, at time t we mine the snapshot predictors as

follows. Assuming the FCFS policy, we estimate HOL as follows:

ŴHOL = min
s∈R4

t− τ(s),

23

where,

R4 = {s ∈ S|α(s) = qEntry ∧ ∃p ∈ P (pkp = s)},

which corresponds to customers that are currently waiting. The LES is estimated in two phases. First,

we obtain the path that has sStart as the most recent event:

υ = argmax
p∈R5

τ(pkp),

where,

R5 = {p ∈ P |α(pkp) = sStart}.

In other words, υ contains the path of the LES. (Here, we assume that every event has a unique

timestamp; the difference can be in milliseconds.) Finally, in order to obtain the LES, we calculate

the waiting time for υ:

ŴLES = τ(pυ)− τ(pυ−1).

7.4 Model Validation

To test the operational validity of our delay predictors we ran a set of experiments on a real-life

S-Log. We compared the results of our predictors against two benchmark predictors that were

based on the transition system method proposed by van der Aalst, et al. [83]; first, we considered

the plain transition system predictor (PTS), which performed poorly, in relation to our predictors.

Then, we enhanced the state-space of the PTS with queueing information (queue length), to make

the transition system method comparable to our queue mining techniques. We used the K-means

algorithm to cluster the queue length into K classes and hence named the algorithm as K transition

system, or KTS.

Our experiments show that the snapshot predictors outperform other predictors, in virtually

every experimental setting considered. For the predictors based on transition systems we observe

that the KTS leads to a significant improvement over the PTS. Both queueing predictors, in turn,

performed worse than the snapshot predictors, since the queueing model assumptions suffered from

low conceptual validity.

Below, we first describe the data that was used for our experiments (Section 7.4.1). Then, we

define the evaluation’s performance measures (Section 7.4.2) and provide our experimental setup

(Section 7.4.3). Lastly, we report on the main results (Section 7.4.4).

24

7.4.1 Data Description

For our delay prediction experiments, we selected three months of data: January 2011–March 2011

(a queue log of 879591 records) from the ILDUBank data set, which contains operational event data

of an Israeli bank’s call center (see [68, pp. 149-157] for further description of the ILDUBank data

set). This amount of data enables us to gain useful insights into the prediction problem, while easing

the computational complexity (as opposed to analyzing the entire data set). The three months were

selected since they are free of Israeli holidays. In our experiments, we focused only on cases that

demanded ‘general banking’ services, which is the majority of calls arriving into the call center

(89%). This case selection is appropriate, since our queueing models assume that customers are

homogeneous.

We divided the experimental S-Log into two subsets: a training log and a test log. This is

common practice when performing statistical model assessment [36]. The training log comprises

all calls that arrived between January 1st, 2011 and February 28th, 2011; a total of 250488 delays

and 247281 completed services. The test log consisted of delays that occurred during March 2011; a

total of 117709 delays. We pretended that the test log customers are target-customers and predicted

their expected delay. These predictions were then evaluated against the real delays via appropriate

performance measures.

7.4.2 Performance Measures

To evaluate the quality of the delay predictors, we introduce two performance measures: absolute

bias, for accuracy, and root mean squared error (RMSE), for precision. The absolute bias is defined

as:

|Bias(Ŵ)| = |E[Ŵ]−W |, (5)

with W being the delay and Ŵ being the delay predictor. We define a point estimate for the absolute

bias as:

|B̂ias| = |1
k

k∑
i=1

(di − pi)|, (6)

with i = 1, ..., k being the i-th test-log delay out of k delays, di the real duration of the i-th delay and

pi the corresponding predicted delay; |Bias(Ŵ)| > 0 indicates a systematic error in our predictor,

thus low accuracy.

For precision define RMSE as:

RMSE(Ŵ) =

√
E[(W − Ŵ)2]. (7)

25

We consider a point estimate for the RMSE to be the root average squared error (RASE), namely,

RASE =

√√√√1

k

k∑
i=1

(di − pi)2, (8)

with di and pi defined as before. Low RMSE indicates that the corresponding predictor is precise.

We consider the RMSE (and precision) to be more significant, penalizing for any type of deviation

from the real delay. In contrast, the absolute bias may result in 0 (high accuracy), but deviate strongly

from the delay predictor (e.g., deviating strongly both above and below the real delay). We thus use

accuracy as a ‘compass’ to detect systematic errors in model assumptions, but consider precision to

be the indicator for quality of prediction.

7.4.3 Experimental Setup

The controlled variable in our experiments is the prediction method (or the delay predictor). Six

various methods are used according to the predictors earlier defined, namely the QLP, QLMP, LES,

HOL, PTS and KTS predictors. The uncontrolled variables are the two performance measures |B̂ias|
and RASE.

As a preliminary step, we mined the K-loads transition system (applied the KTS) from the

training log with K = 3. The result was a clustering of the queue-length (L(t)) into 3 classes: ‘heavy

load’, ‘moderate load,’ and ‘typical load’. Given the partition into the three classes, we tested our

predictors on four different experimental scenarios. Scenario I considered the entire test log and thus

we refer to it as the ‘all loads’ scenario, while Scenarios II–IV relate to the three load-clusters and to

delays that are associated with these clusters.

7.4.4 Results

Figure 4 presents the absolute bias for all six predictors under the four load scenarios. The PTS

predictor presents a near-zero bias in Scenario I, but when observing its bias across scenarios we

note a much larger bias. This originates in the insensitivity of the PTS predictor to system load. The

KTS has a negligible bias in all scenarios, except for the one representing heavy load. This result

hints at the existence of a finer partitioning of the heavy load scenario.

For the queue-length based predictors (QLP and QLMP), we observe that both predictors appear

to be biased. This may point towards violations in the queueing model assumptions. The bias of the

snapshot predictors (LES and HOL) is small across scenarios, indicating an absence of a systematic

error in these predictors. This observation supports the applicability of the snapshot predictors to

service processes in call centers.

26

8

17

49
45

2

23

3 3

37

100

33

44

22

2

9

28

4

16
13

0

6

14
12

2

0

20

40

60

80

100

120

All Loads Heavy Load Moderate Load Typical Load

A
b

so
lu

te
 B

ia
s

(s
e

c.
)

PTS

KTS

QLP

QLMP

LES

HOL

Figure 4: Sampled bias - Test set delays

Figure 5 presents the RASE in seconds. Snapshot predictors are superior across all scenarios,

improving over the PTS by 34%–46%. Note that both snapshot predictors perform identically in

terms of RASE. This empirical proximity between the LES and the HOL, under certain assumptions,

has a theoretical background in [38] (Theorem 4.4).

The QLP performed worse than PTS across scenarios, except the moderate load scenario, while

the QLMP outperformed the PTS in all scenarios except the typical load scenario. In the moderate

load scenario, the QLMP performs almost as well as the snapshot predictors. The KTS outperforms

both the PTS and queueing model predictors, in all scenarios, except the moderate load scenario.

7.5 Discussion

In this part we discuss the insights into queue mining that we gathered from our experiments.

7.5.1 Snapshot Principle Predictors: Recent History Dominates in Time-Varying Systems

Throughout our experiments, snapshot predictors have shown the largest improvement over the PTS

method and outperformed the rest in terms of precision. Thus, we conclude that for the considered

queueing process (of a call center), an adequate delay prediction for a newly enqueued customer

would be the delay of either the current head-of-the-line (HOL) or the delay of the last-customer-to-

enter-service (LES). Our main insight is that in time-varying systems, such as a call center, one must

27

84

212

88

6359

126

73

44

103

308

81 78
68

137

59
65

50

115

58

37
49

115

57

36

0

50

100

150

200

250

300

All Loads Heavy Load Moderate Load Typical Load

R
A

S
E

 (
se

c.
)

PTS

KTS

QLP

QLMP

LES

HOL

Figure 5: Root-average squared error in seconds

consider only recent delay history when inferring on arriving cases.

7.5.2 Queueing Predictors: Conceptual Validity Matters

The queueing predictors consider the time-varying behaviour of the system and attempt to quantify

the system-state based on the number of delayed cases. The QLP fails in accuracy and precision for

most scenarios, since it assumes that customers have infinite patience, which is seldom the case in

call center processes. We presume that the QLP would perform better for processes with negligible

abandonment rates.

On the other hand, the QLMP outperforms the PTS for most scenarios both in accuracy and

precision. Therefore, accounting for customer (im)patience is indeed relevant in the context of call

centers, and other processes in which abandonments occur [26]. In contrast, the QLMP is inferior

when compared to snapshot predictors or the KTS predictor. This phenomena can be explained

by deviations between model assumptions and reality. We demonstrate one possible deviation by

conducting a short (descriptive) statistical analysis that is relevant for both the QLP and the QLMP.

Figure 6 presents the mean service time over a single day (January 2nd, 2011, which is a typical

Sunday in our training log).

The horizontal axis presents the time-of-day in a 30-minute resolution and the vertical axis

presents the mean service time in seconds, during each of the 30 minutes. We see that the mean

service time is mostly stable, but nonetheless violations do occur during several time points. This

28

0.00

25.00

50.00

75.00

100.00

125.00

150.00

175.00

200.00

225.00

250.00

07:00 09:00 11:00 13:00 15:00 17:00 19:00 21:00 23:00

M
e

an
s

Time (Resolution 30 min.)

Figure 6: Mean service time during a typical Sunday (January 2nd, 2011)

fluctuation over the day may cause deterioration in overall performance of both QLP and QLMP,

since these predictors assume constant mean service time. We have shown similar violations for both

the constant (im)patience time and the exponential service times assumptions, but we do not present

them in this paper, due to space considerations.

7.6 Future Work

The lack of conceptual validity of single-station queues and the empirical success of the snapshot

principle, motivate several directions for future research. First, we aim at relaxing some of the model

assumptions for the queueing predictors, e.g. exponential distribution of individual service times and

(im)patience. This relaxation can cause the models to be intractable for exact analysis. Therefore,

the analysis of these models often resorts to simulation (c.f. Section 9) or approximation methods in

the spirit of the snapshot principle.

Most business processes actually consist of multiple service stations. Therefore, another research

direction involves the extension of single-station models to queueing networks. Once discovered

from data, queueing networks, similarly to single-station queues, can be then validated via exact

analysis (e.g. product-form solutions), approximations (e.g. in heavy-traffic) and simulation. For

example, in theory, the snapshot principle was shown to work well in queueing networks [53, 89].

Therefore, investigating the use of this principle to queueing networks with a complex underlying

process may provide competent delay prediction.

Lastly, we aim at developing an algorithm that, given several candidate queueing models, would

search for the one that is most fitting, according to measures that relate to the three validity types that

we discussed in Section 4. This research direction can be viewed as a special type of model selection

in statistical learning [36, Ch. 7].

29

8 Resource Mining

This section focuses on resource mining, which is the specification, discovery and validation of

resource networks, i.e. queueing networks of resources8. In other words, we aim at integrating

the queueing perspective in the analysis of resources in process mining. This can be viewed as

the complementary side of queue mining, which brings the queueing perspective into the analysis

of cases (or customers). Fitting queueing networks to resource paths is an uncharted territory in

operational service analysis and Queueing Theory; therefore, validating these models against data

will contribute to these research disciplines as well.

In operational process mining, resource-aware techniques were recently introduced; these studies

analyze the performance of business processes from the resource perspective [50, 51]. In [51], for

example, the authors used a regression analysis to show that speed of service is indeed affected by the

workload. However, we are not aware of previous work in process mining that discovers server-flow

from event data. In [68, Ch .2], server networks were defined as directed graphs that depicted

server-flow through service activities or customer queues. Once these networks were discovered

from event data they were used to estimate resource absenteeism rate, i.e. the rate at which servers

become unavailable during their shifts. Consequently, the estimated absenteeism was used as an

input to long and short-term workforce planning in call centers, i.e. as an input to strategical and

tactical decisions for a service organization. We plan to continue this line of work by extracting

queueing models for operational analysis of resources.

The remainder of the section follows our operational paradigm (c.f. Figure 1). First, we define the

operational goals of resource mining; then, we mine the building blocks of a queueing network that

serves as our model for the resource perspective. Consequently, we analyze server-paths on the basis

of the transition matrix that corresponds to the queueing network. Furthermore, we demonstrate how

a simple steady-state analysis to resource-flow can be useful to analyze time-varying performance

measures. We conclude the section with an overview of future research on resource mining.

8.1 Operational Resource Mining

Before stating the operational goals of resource mining, we consider a guiding example that will

serve us throughout this section. We think of the service process that is described in Figure 7.

Several classes of customers arrive into class-dependent queues and wait until they are served by

homogeneous servers (i.e. servers have an identical skills and service rates). In our example, customer

paths are simple: customers arrive, wait in queue, receive service (or abandon) and depart. Servers

however, handle several types of customers, perform ‘back-office’ work and consult with other
8Throughout the section we shall use resources and servers, interchangeably.

30

Class 1 Class 2

Servers

Figure 7: A multi-class queueing station with homogeneous servers

servers. Hence, in the described setting, server paths have more variety than customer paths (as our

service log shall demonstrate later in the section).

Now, we return to defining the operational goals of resource mining. Operational resource mining

is the discovery and analysis of (operational) service models from service logs with an emphasis on

the queueing perspective. The analysis can be performed at several levels of detail. At the aggregate

level, we consider flow-models, such as queueing networks to describe operational resource behavior.

For example, such models enable us to perform protocol mining, which is the discovery of predefined

rules for scheduling multi-skilled servers to multi-class customers. An analogous step, of mining

routing protocols, can be considered for rules of matching customers to resources.

Protocols serve as an important input to service analysis techniques. For example, consider

a simulation model that describes the system that we depicted in Figure 7. Suppose that a server

finishes serving a class i customer and there are two customers waiting: one of type j (6= i) and the

other is of type i. The discovered protocol will enable us to generate a matching event between the

server and a customer according to the discovered rules, thus allowing the simulator to execute a

more realistic realization of scheduling decisions. Protocols can be used as input for both simulation

and analytical service models (e.g. the transition matrix in a queueing network can be viewed as a

simple routing protocol).

Service models such as queueing networks are appropriate to describe systems at the aggregate

level, i.e. these models assume that the flowing entities are either homogeneous or can be divided

31

into several entity classes. However, operational questions that are related to the individual level of

resource behavior are also relevant. For example, consider the task of clustering resources into several

skill classes according to some performance parameter (e.g. the type of customers that these resources

can serve). This task can be performed only via individual path analysis of resources. Clustering

of resource paths is related to previous work in process mining on clustering cases of customers

according to their recorded paths of activities, c.f. [24, 71]. Another task that is a generalization

of resource clustering is resource ranking, i.e. inducing a total order over the discovered clusters

according to predefined parameters, such as service speed (for the cluster) and individual resource

protocols. Ranking of servers according to operational parameters can be viewed as an extension

to the analysis of learning curves (for resources) in Industrial Engineering, c.f. [30]. The resulting

operational analysis, at both the aggregate and individual levels, can be fed as input to both tactical

decisions (e.g. utilization profiles) and strategic planning (e.g. long-term resource planning) [68].

8.2 Modeling Resource-Flow via Queueing Networks

We return to the service process in Figure 7, but this time we reverse the view and observe it from the

resource perspective. Specifically, we consider a closed queueing network with servers being the

flowing entities, c.f. Figure 3 in Section 5. We make the following set of assumptions:

• Arriving customers can be divided into N − 2 classes; each customer-class requires a unique

type of service.

• There are K servers circulating within the system.

• Customers and resources are independent and identically distributed. Moreover, they change

roles with customers serving the resources.

• Resources can be in one of the following three states: (1) serving a customer (from one of the

classes), (2) ready (i.e. waiting for customers to arrive) or (3) unavailable (e.g. on a break).

• When a service ends, the newly available resource is routed to serve the next customer class,

based on a stochastic routing rule that is independent of time and system state.

The closed network that we consider is characterized by the tuple,

(K,N,n(t),µ, R), (9)

where K is the number of servers that flow through N stations, namely N − 2 (service) class

stations and 2 non-service stations, namely ready and unavailable. Individual service rates per

station are denoted by µ = (µ1, ..., µN) and R denotes the individual transition matrix. The

number of customers in node i at time t is denoted by ni(t) with n(t) = (n1(t), ..., nN (t)), with

nN−1(t) = nN (t) = 0,∀t.

32

Remark 1. The queueing model enables us to capture the individual transition matrix and service

rates for each station. However, the model assumes that individual transition matrices, denoted Rk

(k = 1, ...,K), are identical to R. Therefore, following our assumptions once R is discovered, both

the aggregated and individual path analysis is complete.

Remark 2. The queueing model is inspired by the service process in Figure 7. However, it is general

enough to capture resource-flow in any setting that lacks concurrent (parallel) activities. In other

words, the model represents servers that perform a finite set of serial activities {1, ..., N} without a

predefined order (transitions between activities are stochastic).

8.3 Resource Mining: Service Log and Discovery Queries

For resource mining, we assume the existence of an S-Log, (S, P, αS , βΠ), that contains resource

events and paths, where:

• αS = (τ, η, δ, α) is the event schema and βΠ = (φ) is the path schema.

• φ : Π → N+ being a unique path identifier path attribute function (PAF).

• τ : S → N+ being a timestamp event attribute function (EAF).

• η : S → N+ being a (customer) class identifier EAF.

• δ : S → T being a transaction type EAF, with T = {Start, End}.
• α : S → A being the activity EAF, with A = {Serving,Ready, Unavailable}.

We assume that for s ∈ S with α(s) = Unavailable⇒ η(s) = N ; similarly, for α(s) = Ready ⇒
η(s) = N − 1. In other words, class N represents unavailability, while class N − 1 stands for

readiness to serve customers.

To analyze the queueing network we must discover its building blocks, namely K, R, µ and n.

However, for the preliminary analysis that we conduct further in the section, we require the discovery

of R and K. For future research, in order to estimate n(t) (for future research) we can use the sum

of L(t) (number of delayed customers at time t) and n(t) (number of served customers at time t)

from the corresponding queries in Section 7.3.1. The service rates vector, µ, can be obtained in

analogy to the estimation of µ in the single-station model presented in Section 7.3.1.

To discover R, we estimate each of its elements, Ri,j :

R̂i,j =
|{s ∈ S|η(s) = i ∧ ∃p ∈ P, k ∈ N+(pk = s ∧ η(pk+1) = j)}|

|{s ∈ S|η(s) = i ∧ δ(s) = Start}|
. (10)

In other words, the estimator is the number of times that servers moved from state i to j out of the

total number of visits in state i. Note that for models that require an individual transition matrix per

server (Rk, k = 1, ...,K) we can define a similar query and use φ(p) to distinguish between resource

paths.

33

Now, we turn to estimating the number of servers (K) in our closed system. In practice, the

number of servers is constant only over certain periods of time (e.g. busy hours). Therefore, in real

service logs, we expect to observe a time-varying number of servers in the system. Denote K(t) the

number of servers at time t, with K(t) = K in closed network settings. Then, given an up-to-date

service log at time t, K(t) can be estimated as,

K̂(t) = |{p ∈ P |δ(pkp) = Start}, (11)

with kp being the length of path p. In other words, we assume that a server must be in one of the N

positions at all times and that servers that left the system present δ(pkp) = End in their paths.

8.4 Resource Analysis: Preliminary Experiments

In this part we provide preliminary results of service analysis from the resource perspective. The

discovery queries were applied to a single day of the ILDUBank data. We start the analysis with

discovering the transition matrix (R). We consider R as a naive example for resource path analysis,

since model assumptions imply that R represents both the aggregated and individual protocols. Then,

we demonstrate how a steady-state analysis of the time spent in a station captures the predictable

variability of the time-varying probability to visit that station.

8.4.1 Resource Paths Analysis

Figure 8 presents the discovered transition matrix R. The nodes correspond to the possible server

states, namely: (N − 2) customer classes (blue), ready (green) and unavailable (orange). Every arc

corresponds to a positive probability of going from the source node to the sink node. The number

that is written next to the arcs is the estimated Ri,j , which is the transition probability from source i

to sink j.

We observe that the dominant three states, with respect to probability estimators are ready,

unavailable and General Banking. The latter is the prevalent customer class in terms of number

of incoming calls (about 70% of customers are classified as General Banking). After completing a

call, about 50% of calls become either ready or unavailable. From these two states, about 50% of

calls go into the General Banking state. Servers that complete service in General Banking return to

another General Banking call with probability of 0.44. This type of analysis is incomplete without

information on length-of-stay in each state; the complementary analysis is provided in the next part.

The resulting transition matrix can feed the queueing model and serve as one of its building

blocks. Moreover, as we already mentioned, the process that is depicted by the transition matrix can

be observed as a (naive) protocol for server-flow: given that a server completed his visit in state i we

34

have an estimate for the ‘jump’ probability to state j (i, j ∈ {1, ..., N}). However, for an advanced

individual analysis, we would apply resource mining queries to each server path.

8.4.2 Steady-State Analysis of Time-Varying Resources

Beyond understanding routing protocols and individual paths of resources, we are interested in an

operational analysis of server-related performance measures. We demonstrate an approach to analyze

resource operational behavior based on time averages, i.e. times that resources spend in various states

(serving, ready, unavailable). The analysis corresponds to the transition process that is described in

Figure 8; the formal technique is based on [34].

We consider a set of independent and identically distributed (i.id.) stochastic processes, Xi =

{Xi(t); t ≥ 0} such that Xi(t) ∈ {1, ..., N}; each of the processes corresponds to a single server

(i = 1, ...,K), while their values correspond to the N network nodes (or server states). We assume

that all processes start at node N , which is the unavailable state (i.e. Xi(0) = N) and that the

processes regenerate after time T (e.g. all servers return to the unavailable state). The semantics of

Xi(t) = j is that the ith server is occupying the jth station at time t. Note that the assumption of i.id.

processes is strong, since Xi are dependent through the number of customers in the system, i.e. if

there is a single type j customer in the system and Xi = j then P (Xk = j) = 0,∀k : k 6= i.

Denote by pj(t) = P (Xi(t) = j), i = 1, ...,K the probability of any of the processes (since

they are i.id.) to be in state j at time t. Denote by τj the time that servers spend in the jth node

between two consequent regenerations, and let τ = E(T) <∞. Then, it can be shown that

pj(t)→
τj
τ
≡ πj , (12)

as t → ∞ [34], with πj (j = 1, ..., N) being the average proportion of time that servers spend in

node j over the regeneration period. In other words, when observing the system in steady-state, the

probability to find a process in the jth node converges to the average proportion of time that this

process spends in state j.

We use this result to demonstrate that a steady-state (empirical) analysis of resource paths is

useful to describe the time-varying behavior of resources. We estimate each πj directly from event

data as the total time servers spend in node j out of the total time recorded in the S-Log. The resulting

vector of time averages complements the proportions that we analyzed after the discovery of R

(Figure 9). Although we have seen that ready is a highly visited state, the average visit duration in

ready is only 7 seconds. Moreover, servers spend in the ready state only 0.76% of their total time.

However, visits to General Banking constitute 53% of the total time and servers are unavailable to

receive calls for 20% of their work time. Such an analysis can serve as grounds to constructing a

utilization profile that is useful for, e.g. workforce planning.

35

Resource network (ILSmallBank)
24 January 2010

0.12

0.14

0.32

0.03

0.4

0.41

0.24

0.01

0.05

0.23

0.01

0.05

0.01

0.46

0.01

0.46

0.01

0.02

0.04

0.04

0.29

0.24

0.07

0.28

0.08 0.01

0.36

0.17

0.13

0.24

0.01

0.09

0.03

0.58

0.1

0.02

0.09

0.04

0.09

0.04

0.04

0.08

0.01

0.86

0.02
0.32

0.2

0.04

0.01

0.31

0.09

0.01

0.39

0.15

0.01

0.09

0.22

0.01

0.14

0.14

0.34

0.44

0.010.07

General_Banking

Securities

Support

Promos

Investments

Shifting

Managers

Consultants

Ready

Unavailable

Figure 8: The discovered transition matrix

36

We now turn to compare the steady-state probabilities (πj) to the time-varying probability of a

server to visit node j at time t. The latter can obviously change over the day, while πj remain constant.

Denote Kj(t) the number of servers at node j at time t, i.e. KN (t) the number of unavailable servers,

KN−1(t) the number of servers that wait to serve customers and K1(t), ...KN−2(t) the number

that serve the respective customer class. We are now ready to present our preliminary results on

operational resource analysis.

Figure 9 presents two empirical curves: one corresponds to K3(t) (blue), while the other

corresponds to π3 ·K(t) (red). In other words, the blue line corresponds to the number of resources

that serve the 3rd customer class (General Banking), whereas the red line corresponds to the number

of servers that serve General Banking customers out of total number of servers (at time t). The

vertical axis measures number of servers, while the horizontal axis depicts time between 07 : 00

(beginning of the day) and 00 : 00 (end of the day), in 15 minutes intervals.

0

5

10

15

20

25

30

35

40

45

50

7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

General Banking - Time-Varying General Banking- Steady state

Figure 9: The discovered transition matrix

The result is somewhat surprising, since π3 corresponds to the long-run probability to find a server at

the 3rd node. However, we observe that for a time-varying K3(t), there is a small difference between

π3 ·K(t) and K3(t) (mean absolute error of 3 servers, for 15 minute intervals). We observe that

steady-state probability (πj) that relies on strong assumptions account for the predictable variability

of the time-varying probability (pj(t)), i.e. the proportion of resources in the various states remains

near-constant over the day. A similar phenomena is observed for the other customer classes and the

two non-service nodes.

37

8.5 Future Work

In the concluding part of this section we consider several research directions for resource mining.

First, we aim at providing further techniques for discovery and validation of models for operational

service analysis. For example, the steady-state analysis that we presented did not rely directly on the

structure of the queueing network. However, when one wishes to analyze advanced performance

measures, (e.g. waiting times of servers to customers), the dependencies between queueing stations

must be considered.

Another research direction is further developing protocol mining, i.e. the discovery of rules by

which systems match customers to appropriate servers. These rules can be at the individual level

(single customer/server) or at the aggregated level (customer classes/server skills). Moreover, these

rules can be time and state dependent, e.g. they may vary over the day or depend on the number

of customers in the different queues. At the individual level we wish to discover service patterns

of resources. Consequently, the clustering and ranking of servers according to service patterns and

other performance parameters (e.g. service times) can follow.

Resource mining introduces the queueing perspective into the world of servers, whereas queue

mining considers queues of customers that wait for resources. We propose a third perspective that

combines customers and servers under a single roof. In services, queues that form due to scarce

resources are not the only cause for customer delay. For instance, synchronization delays often

originate when customers are delayed until precedence constraints between several activities are

fulfilled [5, 92]. We argue that by discovering the process from a combined (customer-service)

perspective, we may gain insights into synchronizations between customers and resources.

For example, consider a scenario in which a resource becomes available and there is a customer

waiting for service. However, the resource decides to work on back-office tasks, instead of serving

that customer. This may reflect a problem in the scheduling protocol or that the specific customer

was not important enough (i.e. the protocol was actually correct). Such behavioral aspects can be

detected from event logs only via the hybrid perspective. Furthermore, understanding protocols that

capture both customer routing and resource scheduling from service logs can turn out useful, possibly

essential, when constructing data-based simulation (Section 9).

Lastly, we plan to contribute to the development of both statistical and queueing models for

aggregated and individual analysis from the resource perspective. We aim to achieve this by providing

statisticians and operations researchers with empirical insights into resource analysis that would

originate from our mining experiments.

38

9 Simulation Mining

This section proposes a future research direction in simulation mining, which is the extraction of

simulation models from event logs. The advantages and disadvantages of simulation with respect to

analytical solutions to service models are well-known, c.f. [13, pp. 608]. Discovering simulation

models from event data is the most challenging task in process mining; it was considered in several

studies on operational process mining, c.f. [62, 75, 82]. Rozinat et al. [62] proposed a comprehensive

approach that combines multiple process perspectives, e.g. control flow, time, resource, to deal with

the complex discovery of simulation models from event data. However, as we mentioned earlier in the

proposal, these works do not accommodate service characteristics, e.g. the queueing perspective is

not considered. Our first potential contribution to simulation mining is the discovery of the queueing

perspective (for both customers and resources). Then, we plan to integrate the queueing perspective

into a single modeling framework, thus complementing the work of [62].

The section is structured as follows. We start with an introduction to the building blocks of

simulation models and review the characteristics of these models across several dimensions. Then,

we provide a birds-eye view of our plan for simulation mining from the queueing perspective. Lastly,

business process simulation is discussed at a broader scope and we propose approaches that combine

multiple process perspectives. This unified framework would provide the basis for business process

simulation and for other types of operational process mining.

9.1 Simulation Models: Building Blocks and Characteristics

The building blocks of a simulation model comprise primitives and dynamics. The primitives are

system states (referred to as states) and timed events. At each state, only a subset of all possible

events are active and may cause a change in state. The dynamics of simulation models are defined by

the distributions of remaining times-to-events and of state transitions that these events cause. The

distribution of state transitions is typically a function of the current state and the event that influences

the state.

To demonstrate simulation primitives and dynamics we consider a simple single-station queue

with single-class customers and single server, i.e. G/G/1. The state can be represented by the

number of customers in the service station; events can be either service completions (intrinsic) or

customer arrivals (extrinsic). An arrival event increases the state by one, while a service completion

event reduces the state by one (both with probability one). This influence of events on states is

what we referred to as state transitions. The events are described by inter-arrival and service time

distributions. Therefore, in order to mine a simulation model for a single-station queue we need to

generate a trace of arrival and completion events.

39

Prior to the discussion on simulation mining from the queueing perspective, we list several

dimensions that classify simulation models and their analysis. We demonstrate how each dimension

is related to the theme of business process simulation, and specifically to simulating queueing models.

Other dimensions for simulation model classification can be considered, c.f. [13, pp. 610], yet we

choose to focus only on those listed below, due to their relevance to our agenda.

Time scale The time scale at which events are considered in simulations can be either discrete or

continuous. Discrete simulation is appropriate for systems where events and thus, state transitions,

occur at discrete points in time. Continuous simulation is used when a flow of events occur over time,

without the ability to separate the time of consequent events. Business processes typically produce

events at discrete points in time. However, continuous simulation can be relevant to services, since

fluid and diffusion approximations of queueing models are continuous-time models.

Simulation horizon The running horizon of simulations is categorized into long-term (steady-state

analysis) or short-term (transient analysis). Long-term analysis is appropriate for systems with a

stable behavior (sometimes stable over certain time periods). This type of simulation models have

a warm-up period (that is transient); then, once the steady-state is reached, a statistical analysis of

the simulated sample paths may be used to estimate performance measures, e.g. waiting times and

queue-lengths. Performance measures in long-term simulation are typically considered in terms of

time averages.

Short-term simulation is suitable for analyzing systems that do not reach a steady-state due to

time constraints (short-term simulation, no time to warm-up) or system dynamics (e.g. a time-varying

system). This type of simulation can be useful for predicting system behavior in the ‘near future’.

Therefore, deciding on the simulation horizon depends mainly on the type of analysis that one wishes

to perform. For example, when considering bottleneck identification in a process we may prefer

long-term simulation, whereas for online operational support, e.g. time prediction, we shall adopt a

transient approach.

Event generation The event schedule in simulation models is a trace of timestamped events.

These traces can be distribution-driven, i.e. produced synthetically based on distributions of the time

between events (e.g. Poisson arrivals correspond to exponentially distributed i.id. inter-arrival times).

The other option is to schedule events from real data (e.g. service logs) as an input to the model; this

technique is referred to as trace-driven simulation. The replay method for conformance checking

(see Section 2) applies the latter approach based on the corresponding event log.

In our research on simulation mining, we plan to combine the two approaches. First, a trace-

based approach would be used to test the conceptual validity of inter-event time distributions. For

40

example, the simulation will receive a real trace of arrival events from the service log and a trace

of synthetic service-completion events that would come from a theoretical distribution (e.g. a log-

normal distribution that is fit to the event data). Accurate performance measures would support the

conceptual validity of the service time distribution. However, for operational support, the entire trace

of events would be generated from distributions, thus avoiding the risk of over-fitting future events to

historical event data.

Modeling orientation Simulation models can be either event-oriented or process-oriented. In an

event-oriented setting, the system evolves over time by executing events from a single event trace,

without awareness of processes that produce these events. On the other hand, process-oriented

simulation considers process-related constraints, e.g. the precedence of activities in the process.

Clearly, a process oriented approach is more suitable for business process simulation. However, for

simulating the queueing perspective that underlies the business process, event-driven approaches can

be simpler to implement, since they do not require the discovery of control-flow models.

Modeling formalism The primitives of the simulation model can be directly written as a computer

program without the use of mathematical formalisms. However, there are good reasons to use such

formalism to describe the building blocks of simulation models. For example, a formalism that is

traditionally used to model discrete-event simulation of complex systems (e.g. queueing networks) is

generalized semi-Markov processes (GSMP’s) [28, 31]. The GSMP is mathematically tractable and

provides with exact tools, such as variance reduction methods, improved sampling techniques and an

exact analysis of simulation output. However, the GSMP is event-oriented and does not explicitly

accommodate process-related constraints such as precedence relations, synchronized activities and

concurrency.

Generalized stochastic Petri nets (GSPN, or SPN) are suitable for modeling processes from the

control flow perspective; they explicitly and graphically account for the process-related constraints

that we mentioned above [31, Ch. 1]. Moreover, they provide tools for a qualitative analysis and

verification of the simulation model prior to its use for analysis [74]. In addition, many of the existing

process mining techniques were developed on the basis of traditional Petri nets (which underlies the

GSPN). The modeling power of these two formalisms, in terms of the underlying stochastic process,

was proven to be equal in [31, Ch. 4].

Furthermore, as we show in the next part of this section, one can discover a queueing network

from event data and transform it, either to a computer program or the one of the above formalisms,

for simulation analysis. Moreover, a formalism that combines queueing networks and stochastic Petri

nets, namely queueing Petri nets (QPN), was proposed by Bause in [9]. In [8], Bause demonstrated

(by construction) that any queueing network and stochastic Petri net can be converted into a QPN.

41

This provides positive evidence for the expressive power of QPN. We consider the decision on a

suitable formalism for simulation mining and operational process mining in general, as a future

challenge of the proposed research.

9.2 Simulation Mining of Queueing Models

As we stated throughout the proposal, our first-choice modeling formalism for operational service

analysis (from the queueing perspective) is queueing networks (with single-station queues as a

special case). Once these models are discovered from service logs they can be solved analytically or

simulated, when an analytic solution is not available.

However, simulating the discovered queueing network is not straightforward; a transformation

step is required to convert a queueing network into a formalism (or a computer program) that would

explicitly express the building blocks, i.e. primitives and dynamics. In other words, in order to

simulate the queueing perspective from event data we must adopt one of the following approaches: (1)

transform the discovered model into a lower-level formalism (e.g. GSPN) or (2) discover a low-level

formalism directly from data. In our context, we prefer the former approach, since discovering

processes from the queueing perspective is, in our view, an essential step towards operational analysis,

regardless of the eventual technique of choice (analytic solution or simulation).

We consider the transformation step to be analogous to the model specification and discovery

phases in Figure 1, since the transformation specifies the data-driven building blocks of the simulation

model. The method for validating the simulation is not different than validation of the originating

queueing network, c.f. Section 7.4. Below, we describe some of the issues that must be addressed

when transforming queueing networks into simulation primitives and dynamics.

9.2.1 Primitives

When determining simulation primitives, i.e. states and events, we must consider the type of queueing

model that we are facing. As an example, we return to the single-station queue with a single customer

type served by homogeneous servers with FCFS routing policy. The state in such case can be

represented by the number of customers in the system. However, in complex queueing stations, with

skills-based routing mechanisms [27], multi-class customers seek service from multi-skilled servers.

The policy in such stations is not FCFS and thus, enrichment of the state is required. For example, the

state must distinguish between customer classes and septate delays from services. Correspondingly,

the set of events in such complex stations is not limited to arrivals and departures of customers, e.g.,

the simulation model must distinguish between types of arrivals (multi-class customers). Moreover,

resource-related events influence system state and thus, the corresponding resource perspective (e.g.

mining resource paths) must be taken into account.

42

9.2.2 Dynamics

The specification of dynamics that correspond to a queueing network can be categorized into inter-

node dynamics and intra-node dynamics. Inter-node dynamics are related to customer-flow between

different service stations (assuming that servers do not switch stations). For example, inter-node

dynamics can be represented by the transition matrix of the queueing network.

For intra-node dynamics both server events and customer events may trigger state transition.

Intra-node dynamics require the specification of event schedules for arrivals, service-completions

and abandons. Moreover, intra-node dynamics require protocols for customer routing and server

scheduling for each service-station. Note that system dynamics can be either distribution-driven or

trace-driven, as we discussed above.

Lastly, events can be viewed as a continuous flow, rather than occurring in discrete times (e.g.

when a fluid network is considered). However, the simulation model must then be distribution-based

and not trace-based (real events occur at discrete points in time).

Simulation mining of queueing models provides a framework for performance analysis and

online operational support. However, describing the control flow perspective via queueing networks

is not practical in processes with large activity spaces, since one must define the number of customer

classes according to the size of the activity space. Therefore, we propose a unified framework for

modeling business processes that would accommodate both control flow and queueing perspectives.

9.3 A Unified Framework for Business Process Analysis and Simulation

Business processes can be viewed from three perspectives: the control flow perspective (activity-

centric), the queueing perspective (resource-centric) and the combined control flow and queueing

perspective [1]. We claim that other perspectives, e.g. case, resource and organizational, can be

embedded within the latter view. For example, the case perspective that corresponds to service

paths can be viewed from the control flow perspective (which activities will comprise the path), the

queueing perspective (which resources will be involved in the path) and the combined perspective

(which resources and activities were related to the path).

Models that correspond to the control flow perspective include stochastic PERT [41], stochastic

Petri nets [10], UML activity diagrams [21] and BPMN [54]. We hope that we convinced the reader

that queueing networks are first-choice models for the queueing perspective (for both customers

and resources). We claim that complex data-driven analysis, such as simulation mining, requires a

comprehensive view that would unite these two perspectives under a common roof.

We conclude this proposal by naming two frameworks as candidates for the combined approach.

The first framework is a combination of stochastic Petri nets (for the control flow perspective)

and queueing networks (for the queueing perspective). The second framework, namely stochastic

43

processing networks, provides a single general formalism that includes many of the models that we

mentioned throughout the proposal (e.g. stochastic Petri nets, stochastic PERT, queueing networks).

9.3.1 Combining Stochastic Petri Nets and Queueing Networks

Stochastic Petri nets (SPNs) have been proven to provide a strong basis for both control flow analysis

(e.g. conformance checking) and operational support (e.g. predicting remaining times) [56]. The

formalism is highly expressive and is able to model complex system behavior (e.g. synchronizations,

time-outs) [85]. Moreover, SPN is a formal method that enables model verification to ensure its

correctness; this feature is useful when considering simulation models [31]. A major drawback of the

SPN formalism is its computational inefficiency for operational analysis, especially when it concerns

the modeling of large systems [85]. To solve this inefficiency, fluid and product-form stochastic Petri

nets were developed by [70] and [7], respectively.

However, these formalisms do not explicitly consider the queueing perspective and are not

as well-developed theoretically as the corresponding product-form and fluid queueing networks.

Analytically tractable (product-form) queueing networks (QNs) are efficient for operational analysis,

even when complex systems are considered [13, 85]. Moreover, fluid and diffusion approximations

to queueing networks result the so-called ‘state-space collapse’ [35], which makes these methods

efficient and useful in practical use (e.g. our snapshot predictors from Section 7).

This research direction is related to previous works that considered the combination of stochastic

Petri nets and queueing networks for modeling complex systems [6, 9, 11]. Moreover, a recent work

by Menasce [48] presented an automated methodology for combining the two formalisms into a

single model. We hope that combining these two formalisms into a single model would capture

both the control flow perspective and queueing perspective. As we already discussed in the context

of simulation formalisms, queueing petri nets (QPN) combine the benefits of SPN and QN [9].

Therefore, we may choose between a model that preserves notation from both formalisms or use

QPN as a single framework.

9.3.2 Stochastic Processing Networks

Stochastic processing networks is a general family of models that were considered in the context of

process management in [1] and formalized in [33]. These networks include both the control flow

(activity) and queueing perspectives (resources) in a single model. A processing network takes inputs

of materials (e.g. customers, jobs, packets, servers) and produces other materials as outputs. For

example, in stochastic processing networks, customers may be consumed by resources or resources

can be consumed by customers, which corresponds to our approach in Section 8. Since the definition

of stochastic processing networks is lose, these models can be viewed as a generalization to the

44

stochastic PERT and to any of the Petri net formalisms that are suitable for modeling business

processes (e.g. Workflow net, stochastic Petri net). Moreover, multi-class queueing networks,

which is the most complex type of queueing models are a special case of a stochastic processing

network [33].

On one hand, this generality of stochastic processing networks makes the formalism attractive

for its discovery from event logs, since it provides a single model for all perspectives. On the other

hand, the abstractness of stochastic processing networks requires further assumptions and thus, may

drive us back to the previous formalisms (e.g. Petri nets, queueing networks) for practical analysis.

We leave the selection of a unified framework, as an open question for further research.

References

[1] Paul S Adler, Avi Mandelbaum, Viên Nguyen, and Elizabeth Schwerer. From project to

process management: an empirically-based framework for analyzing product development time.

Management Science, 41(3):458–484, 1995.

[2] Arya Adriansyah, Boudewijn F. van Dongen, and Wil M. P. van der Aalst. Conformance

Checking Using Cost-Based Fitness Analysis. In EDOC, pages 55–64. IEEE Computer Society,

2011. ISBN 978-1-4577-0362-1.

[3] Arya Adriansyah, Jorge Munoz-Gama, Josep Carmona, Boudewijn F. van Dongen, and Wil

M. P. van der Aalst. Alignment Based Precision Checking. In Rosa and Soffer [59], pages

137–149. ISBN 978-3-642-36284-2.

[4] Gustavo Alonso, Peter Dadam, and Michael Rosemann, editors. Business Process Manage-

ment, 5th International Conference, BPM 2007, Brisbane, Australia, September 24-28, 2007,

Proceedings, volume 4714 of Lecture Notes in Computer Science, 2007. Springer. ISBN

978-3-540-75182-3.

[5] Rami Atar, Avi Mandelbaum, and Asaf Zviran. Control of Fork-Join Networks in heavy traffic.

In Allerton Conference, pages 823–830. IEEE, 2012. ISBN 978-1-4673-4537-8.

[6] Gianfranco Balbo, Steven C. Bruell, and Subbarao Ghanta. Combining queueing networks

and generalized stochastic Petri nets for the solution of complex models of system behavior.

Computers, IEEE Transactions on, 37(10):1251–1268, 1988.

[7] Simonetta Balsamo, Peter G Harrison, and Andrea Marin. Methodological construction of

product-form stochastic Petri nets for performance evaluation. Journal of Systems and Software,

85(7):1520–1539, 2012.

45

[8] Falko Bause. ”QN+PN=QPN” - Combining Queueing Networks and Petri Nets. Technical

report, 1993.

[9] Falko Bause and Peter Kemper. QPN - Tool for Qualitative and Quantitative Analysis of

Queueing Petri Nets. In Günter Haring and Gabriele Kotsis, editors, Computer Performance

Evaluation, volume 794 of Lecture Notes in Computer Science, pages 321–334. Springer, 1994.

ISBN 3-540-58021-2.

[10] Falko Bause and Pieter S Kritzinger. Stochastic Petri Nets. Springer, 2002.

[11] Matthias Becker and Helena Szczerbicka. PNiQ: Intergration of queuing networks in generalised

stochastic Petri nets. IEE Proceedings - Software, 146(1):27–32, 1999.

[12] Piergiorgio Bertoli, Chiara Di Francescomarino, Mauro Dragoni, and Chiara Ghidini.

Reasoning-Based Techniques for Dealing with Incomplete Business Process Execution Traces.

In Matteo Baldoni, Cristina Baroglio, Guido Boella, and Roberto Micalizio, editors, AI*IA,

volume 8249 of Lecture Notes in Computer Science, pages 469–480. Springer, 2013. ISBN

978-3-319-03523-9.

[13] Gunter Bolch, Stefan Greiner, Hermann de Meer, and Kishor S. Trivedi. Queueing Networks and

Markov Chains - Modeling and Performance Evaluation with Computer Science Applications;

2nd Edition. Wiley, 2006. ISBN 978-0-471-56525-3.

[14] R. P. Jagadeesh Chandra Bose and Wil M. P. van der Aalst. Process diagnostics using trace

alignment: Opportunities, issues, and challenges. Inf. Syst., 37(2):117–141, 2012.

[15] R. P. Jagadeesh Chandra Bose, Wil M. P. van der Aalst, Indre Zliobaite, and Mykola Pechenizkiy.

Handling Concept Drift in Process Mining. In Haralambos Mouratidis and Colette Rolland,

editors, CAiSE, volume 6741 of Lecture Notes in Computer Science, pages 391–405. Springer,

2011. ISBN 978-3-642-21639-8.

[16] Lawrence Brown, Noah Gans, Avi Mandelbaum, Anat Sakov, Haipeng Shen, Sergey Zeltyn,

and Linda Zhao. Statistical Analysis of a Telephone Call Center. Journal of the American

Statistical Association, 100(469):36–50, 2005. doi: 10.1198/016214504000001808. URL

http://www.tandfonline.com/doi/abs/10.1198/016214504000001808.

[17] Ziv Carmon and Daniel Kahneman. The experienced utility of queuing: real time affect

and retrospective evaluations of simulated queues. Technical report, Working paper, Duke

University, 1996.

[18] Mark S Daskin. Service Science. Wiley. com, 2011.

46

http://www.tandfonline.com/doi/abs/10.1198/016214504000001808

[19] Massimiliano de Leoni, Wil M. P. van der Aalst, and Boudewijn F van Dongen. Data-and

Resource-Aware Conformance Checking of Business Processes. In Business Information

Systems, pages 48–59. Springer, 2012.

[20] Ana Karla A. de Medeiros, A. J. M. M. Weijters, and Wil M. P. van der Aalst. Genetic process

mining: an experimental evaluation. Data Min. Knowl. Discov., 14(2):245–304, 2007.

[21] Marlon Dumas and Arthur H. M. ter Hofstede. UML Activity Diagrams as a Workflow

Specification Language. In Martin Gogolla and Cris Kobryn, editors, UML, volume 2185 of

Lecture Notes in Computer Science, pages 76–90. Springer, 2001. ISBN 3-540-42667-1.

[22] Marlon Dumas, Marcello La Rosa, Jan Mendling, and Hajo A. Reijers. Fundamentals of

Business Process Management. Springer, 2013. ISBN 978-3-642-33142-8.

[23] Dirk Fahland and Wil M. P. van der Aalst. Model RepairAligning Process Models to Reality.

Information Systems, 2013.

[24] Diogo R. Ferreira, Marielba Zacarias, Miguel Malheiros, and Pedro Ferreira. Approaching

Process Mining with Sequence Clustering: Experiments and Findings. In Alonso et al. [4],

pages 360–374. ISBN 978-3-540-75182-3.

[25] James A Fitzsimmons and Mona J Fitzsimmons. Service Management: Operations, Strategy,

Information technology. McGraw-Hill/Irwin Boston, 2004.

[26] Noah Gans, Ger Koole, and Avi Mandelbaum. Telephone call centers: Tutorial, review, and

research prospects. Manufacturing & Service Operations Management, 5(2):79–141, 2003.

[27] Ofer Garnett and Avi Mandelbaum. An introduction to skills-based routing and its operational

complexities. Teaching notes, 2000.

[28] Peter W. Glynn and Donald L. Iglehart. Simulation Methods for Queues: An Overview.

Queueing Syst., 3(3):221–255, 1988.

[29] Christian W. Günther and Wil M. P. van der Aalst. Fuzzy Mining - Adaptive Process Sim-

plification Based on Multi-perspective Metrics. In Alonso et al. [4], pages 328–343. ISBN

978-3-540-75182-3.

[30] HW Gustafson. Force-loss analysis. Employee turnover: Causes, consequences, and control,

pages 139–185, 1982.

[31] Peter J Haas. Stochastic Petri Nets: Modelling, Stability, Simulation. Springer, 2002.

47

[32] Randolph W Hall. Queueing Methods: For Services and Manufacturing. Prentice Hall,

Englewood Cliffs NJ, 1991.

[33] J Michael Harrison. Stochastic networks and activity analysis. Translations of the American

Mathematical Society-Series 2, 207:53–76, 2002.

[34] J. Michael Harrison and Austin J. Lemoine. A Note on Networks of Infinite-Server Queues.

Journal of Applied Probability, 18(2):pp. 561–567, 1981. ISSN 00219002. URL http:

//www.jstor.org/stable/3213306.

[35] J Michael Harrison and Jan A Van Mieghem. Dynamic control of Brownian networks: state

space collapse and equivalent workload formulations. The Annals of Applied Probability, pages

747–771, 1997.

[36] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical Learning.

Springer Series in Statistics. Springer New York Inc., New York, NY, USA, 2001.

[37] Mark B. Houston, Lance A. Bettencourt, and Sutha Wenger. The relationship between

waiting in a service queue and evaluations of service quality: A field theory perspective.

Psychology and Marketing, 15(8):735–753, 1998. ISSN 1520-6793. doi: 10.1002/(SICI)

1520-6793(199812)15:8〈735::AID-MAR2〉3.0.CO;2-9. URL http://dx.doi.org/10.

1002/(SICI)1520-6793(199812)15:8<735::AID-MAR2>3.0.CO;2-9.

[38] Rouba Ibrahim and Ward Whitt. Real-Time Delay Estimation Based on Delay His-

tory. Manufacturing and Service Operations Management, 11(3):397–415, 2009. doi:

10.1287/msom.1080.0223. URL http://msom.journal.informs.org/content/

11/3/397.abstract.

[39] John D Kalbfleisch and Ross L Prentice. The Statistical Analysis of Failure Time Data, volume

360. John Wiley & Sons, 2011.

[40] David G. Kendall. Stochastic Processes Occurring in the Theory of Queues and their Analysis

by the Method of the Imbedded Markov Chain. The Annals of Mathematical Statistics, 24(3):

pp. 338–354, 1953. URL http://www.jstor.org/stable/2236285.

[41] V. G. Kulkarni and V. G. Adlakha. Markov and Markov-Regenerative PERT Networks. Oper-

ations Research, 34(5):pp. 769–781, 1986. ISSN 0030364X. URL http://www.jstor.

org/stable/170733.

48

http://www.jstor.org/stable/3213306
http://www.jstor.org/stable/3213306
http://dx.doi.org/10.1002/(SICI)1520-6793(199812)15:8<735::AID-MAR2>3.0.CO;2-9
http://dx.doi.org/10.1002/(SICI)1520-6793(199812)15:8<735::AID-MAR2>3.0.CO;2-9
http://msom.journal.informs.org/content/11/3/397.abstract
http://msom.journal.informs.org/content/11/3/397.abstract
http://www.jstor.org/stable/2236285
http://www.jstor.org/stable/170733
http://www.jstor.org/stable/170733

[42] Richard C. Larson. Perspectives on Queues: Social Justice and the Psychology of Queueing.

Operations Research, 35(6):895–905, 1987. doi: 10.1287/opre.35.6.895. URL http://or.

journal.informs.org/content/35/6/895.abstract.

[43] Richard C Larson. The queue inference engine: Deducing queue statistics from transactional

data. Management Science, 36(5):586–601, 1990.

[44] Fabrizio Maria Maggi, Marco Montali, Michael Westergaard, and Wil M. P. van der Aalst.

Monitoring Business Constraints with Linear Temporal Logic: An Approach Based on Colored

Automata. In Stefanie Rinderle-Ma, Farouk Toumani, and Karsten Wolf, editors, BPM, volume

6896 of Lecture Notes in Computer Science, pages 132–147. Springer, 2011. ISBN 978-3-642-

23058-5.

[45] Avi Mandelbaum. Service engineering (science, management): A subjective view. Technical

report, Technical report, Technion-Israel Institute of Technology, 2007.

[46] Avi Mandelbaum and Sergey Zeltyn. Estimating characteristics of queueing networks using

transactional data. Queueing systems, 29(1):75–127, 1998.

[47] Christopher D Manning, Prabhakar Raghavan, and Hinrich Schütze. Introduction to Information

Retrieval. Cambridge University, Press Cambridge, 2008.

[48] D Menascé. A Methodology for Combinining GSPNs and QNs. In Computer Measurement

Group Conference, 2011.

[49] IEEE TASK FORCE ON PROCESS MINING. Process Mining Manifesto. In Florian Daniel,

Kamel Barkaoui, and Schahram Dustdar, editors, Business Process Management Workshops

(1), volume 99 of Lecture Notes in Business Information Processing, pages 169–194. Springer,

2011. ISBN 978-3-642-28107-5.

[50] Joyce Nakatumba. Resource-Aware Business Process Management: Analysis and Support.

PhD thesis, Technische Universiteit Eindhoven, Eindhoven, 12 2013.

[51] Joyce Nakatumba and Wil M. P. van der Aalst. Analyzing Resource Behavior Using Process

Mining. In Stefanie Rinderle-Ma, Shazia Wasim Sadiq, and Frank Leymann, editors, Busi-

ness Process Management Workshops, volume 43 of Lecture Notes in Business Information

Processing, pages 69–80. Springer, 2009. ISBN 978-3-642-12185-2.

[52] Efrat Nakibly. Predicting waiting times in telephone service systems. Master’s thesis, Technion–

Israel Institute of Technology, 2002.

49

http://or.journal.informs.org/content/35/6/895.abstract
http://or.journal.informs.org/content/35/6/895.abstract

[53] Viên Nguyen. The trouble with diversity: Fork-join networks with heterogeneous customer

population. The Annals of Applied Probability, pages 1–25, 1994.

[54] Business Process Model OMG. Notation (BPMN) 2.0. Object Management Group: Needham,

MA, 2494:34, 2011.

[55] Elham Ramezani, Dirk Fahland, and Wil M. P. van der Aalst. Where Did I Misbehave?

Diagnostic Information in Compliance Checking. In Alistair P. Barros, Avigdor Gal, and Ekkart

Kindler, editors, BPM, volume 7481 of Lecture Notes in Computer Science, pages 262–278.

Springer, 2012. ISBN 978-3-642-32884-8.

[56] Andreas Rogge-Solti and Mathias Weske. Prediction of Remaining Service Execution Time

Using Stochastic Petri Nets with Arbitrary Firing Delays. In Samik Basu, Cesare Pautasso,

Liang Zhang, and Xiang Fu, editors, ICSOC, volume 8274 of Lecture Notes in Computer

Science, pages 389–403. Springer, 2013. ISBN 978-3-642-45004-4.

[57] Andreas Rogge-Solti, Ronny Mans, Wil M. P. van der Aalst, and Mathias Weske. Repairing

Event Logs Using Timed Process Models. In Yan Tang Demey and Hervé Panetto, editors,

OTM Workshops, volume 8186 of Lecture Notes in Computer Science, pages 705–708. Springer,

2013. ISBN 978-3-642-41032-1.

[58] Andreas Rogge-Solti, Wil M. P. van der Aalst, and Mathias Weske. Discovering stochastic

Petri nets with arbitrary delay distributions from event logs. In BPM Workshops, 2013.

[59] Marcello La Rosa and Pnina Soffer, editors. Business Process Management Workshops -

BPM 2012 International Workshops, Tallinn, Estonia, September 3, 2012. Revised Papers,

volume 132 of Lecture Notes in Business Information Processing, 2013. Springer. ISBN

978-3-642-36284-2.

[60] Anne Rozinat and Wil M. P. van der Aalst. Decision Mining in ProM. In Schahram Dustdar,

José Luiz Fiadeiro, and Amit P. Sheth, editors, Business Process Management, volume 4102 of

Lecture Notes in Computer Science, pages 420–425. Springer, 2006. ISBN 3-540-38901-6.

[61] Anne Rozinat and Wil M. P. van der Aalst. Conformance checking of processes based on

monitoring real behavior. Inf. Syst., 33(1):64–95, 2008.

[62] Anne Rozinat, RS Mans, Minseok Song, and Wil M. P. van der Aalst. Discovering simulation

models. Information Systems, 34(3):305–327, 2009.

50

[63] Anne Rozinat, Moe Thandar Wynn, Wil M. P. van der Aalst, Arthur HM ter Hofstede, and

Colin J Fidge. Workflow simulation for operational decision support. Data & Knowledge

Engineering, 68(9):834–850, 2009.

[64] Robert G. Sargent. Verification and validation of simulation models. In S. Jain, Roy R. Creasey

Jr., Jan Himmelspach, K. Preston White, and Michael C. Fu, editors, Winter Simulation

Conference, pages 183–198. WSC, 2011.

[65] Joseph L Schafer and John W Graham. Missing data: our view of the state of the art. Psycho-

logical methods, 7(2):147, 2002.

[66] Helen Schonenberg, Barbara Weber, Boudewijn F. van Dongen, and Wil M. P. van der Aalst.

Supporting Flexible Processes through Recommendations Based on History. In Marlon Dumas,

Manfred Reichert, and Ming-Chien Shan, editors, BPM, volume 5240 of Lecture Notes in

Computer Science, pages 51–66. Springer, 2008. ISBN 978-3-540-85757-0.

[67] Lee Schruben and Radhika Kulkarni. Some consequences of estimating parameters for the

M/M/1 queue . Operations Research Letters, 1(2):75 – 78, 1982. ISSN 0167-6377. doi:

http://dx.doi.org/10.1016/0167-6377(82)90051-7. URL http://www.sciencedirect.

com/science/article/pii/0167637782900517.

[68] Arik Senderovich. Multi-Level Workforce Planning in Call Centers. Master’s thesis, 2012.

[69] Arik Senderovich, Matthias Weidlich, Avigdor Gal, and Avi Mandelbaum. Queue Mining–

Predicting Delays in Service Processes. Technical report, 2013.

[70] Manuel Silva and Laura Recalde. On fluidification of Petri Nets: from discrete to hybrid and

continuous models. Annual Reviews in Control, 28(2):253–266, 2004.

[71] Minseok Song, Christian W. Günther, and Wil M. P. van der Aalst. Trace Clustering in Process

Mining. In Danilo Ardagna, Massimo Mecella, and Jian Yang, editors, Business Process

Management Workshops, volume 17 of Lecture Notes in Business Information Processing,

pages 109–120. Springer, 2008. ISBN 978-3-642-00327-1.

[72] Suriadi Suriadi, Chun Ouyang, Wil M. P. van der Aalst, and Arthur H. M. ter Hofstede. Root

Cause Analysis with Enriched Process Logs. In Rosa and Soffer [59], pages 174–186. ISBN

978-3-642-36284-2.

[73] Wil M. P. van der Aalst. Verification of workflow nets. In Application and Theory of Petri Nets

1997, pages 407–426. Springer, 1997.

51

http://www.sciencedirect.com/science/article/pii/0167637782900517
http://www.sciencedirect.com/science/article/pii/0167637782900517

[74] Wil M. P. van der Aalst. The application of Petri nets to workflow management. Journal of

circuits, systems, and computers, 8(01):21–66, 1998.

[75] Wil M. P. van der Aalst. Business process simulation revisited. In Enterprise and Organizational

Modeling and Simulation, pages 1–14. Springer, 2010.

[76] Wil M. P. van der Aalst. Process Mining - Discovery, Conformance and Enhancement of

Business Processes. Springer, 2011. ISBN 978-3-642-19344-6.

[77] Wil M. P. van der Aalst. Process Mining: Overview and Opportunities. ACM Trans. Manage-

ment Inf. Syst., 3(2):7, 2012.

[78] Wil M. P. van der Aalst. Challenges in Service Mining: Record, Check, Discover. In Florian

Daniel, Peter Dolog, and Qing Li, editors, ICWE, volume 7977 of Lecture Notes in Computer

Science, pages 1–4. Springer, 2013. ISBN 978-3-642-39199-6.

[79] Wil M. P. van der Aalst, Ton Weijters, and Laura Maruster. Workflow Mining: Discovering

Process Models from Event Logs. IEEE Trans. Knowl. Data Eng., 16(9):1128–1142, 2004.

[80] Wil M. P. van der Aalst, H. T. de Beer, and Boudewijn F. van Dongen. Process Mining and

Verification of Properties: An Approach Based on Temporal Logic. In Robert Meersman, Zahir

Tari, Mohand-Said Hacid, John Mylopoulos, Barbara Pernici, Özalp Babaoglu, Hans-Arno

Jacobsen, Joseph P. Loyall, Michael Kifer, and Stefano Spaccapietra, editors, OTM Conferences

(1), volume 3760 of Lecture Notes in Computer Science, pages 130–147. Springer, 2005. ISBN

3-540-29736-7.

[81] Wil M. P. van der Aalst, Hajo A. Reijers, and Minseok Song. Discovering Social Networks

from Event Logs. Computer Supported Cooperative Work, 14(6):549–593, 2005.

[82] Wil M. P. van der Aalst, J Nakatumba, A Rozinat, and N Russell. Business Process Simulation:

How to get it right. BPM Center Report BPM-08-07, BPMcenter. org, 2008.

[83] Wil M. P. van der Aalst, MH Schonenberg, and Minseok Song. Time prediction based on

process mining. Information Systems, 36(2):450–475, 2011.

[84] Boudewijn F van Dongen, RA Crooy, and Wil M. P. van der Aalst. Cycle Time Prediction:

When Will This Case Finally Be Finished? In On the Move to Meaningful Internet Systems:

OTM 2008, pages 319–336. Springer, 2008.

[85] Mary Vemon, John Zahorjan, and Edward D Lazowska. A comparison of performance Petri

nets and queueing network models. Technical report, Technical Report 86-09-09, University of

Washington, Dept. of Computer Science, 1986.

52

[86] Matthias Weidlich, Artem Polyvyanyy, Nirmit Desai, Jan Mendling, and Mathias Weske.

Process compliance analysis based on behavioural profiles. Information Systems, 36(7):1009–

1025, 2011.

[87] A. J. M. M. Weijters and J. T. S. Ribeiro. Flexible Heuristics Miner (FHM). In CIDM, pages

310–317. IEEE, 2011. ISBN 978-1-4244-9925-0.

[88] Anton JMM Weijters and Wil M. P. van der Aalst. Rediscovering workflow models from

event-based data using little thumb. Integrated Computer-Aided Engineering, 10(2):151–162,

2003.

[89] Ward Whitt. Stochastic-process limits: an introduction to stochastic-process limits and their

application to queues. Springer, 2002.

[90] Lars Wohlrab and Johannes Fürnkranz. A review and comparison of strategies for handling

missing values in separate-and-conquer rule learning. Journal of Intelligent Information Systems,

36(1):73–98, 2011.

[91] G Yom-Tov and A Mandelbaum. The Erlang-R queue: time-varying QED queues with re-entrant

customers in support of healthcare staffing. preprint, 2010.

[92] Itamar Zaied. The Offered Load in Fork Join Networks: Calculations and Applications to

Service Engineering of Emergency Department. Master’s thesis, 2012.

53

	Introduction
	Process Mining
	Process Discovery
	Conformance Checking
	Model Enhancement
	Bringing It All Together

	Operational Process Mining
	Event Log Extraction and Preprocessing
	Operational Goals, Model Specification and Discovery
	Model Validation
	Conceptual Validity
	Qualitative Validity
	Operational Validity
	Model Validation: A Combined Approach
	Model Validation in Literature

	Operational Support

	Services Analysis and Simulation in Process Mining
	Service Characteristics and Operational Goals
	Service Modeling and Analysis
	Research Overview

	Queueing Models
	Single-Station Queues
	Queueing Networks

	The Service Log
	Definition
	Mapping a Database into an S-Log
	Service Logs with Missing Data
	Completing Missing Data in the Literature
	Unobserved Events and Paths
	Missing Attribute Values
	Missing Attribute Functions

	Queue Mining
	Online Delay Prediction
	The Service Log
	Model Specification and Discovery Queries
	Queueing Predictors
	Snapshot Predictors

	Model Validation
	Data Description
	Performance Measures
	Experimental Setup
	Results

	Discussion
	Snapshot Principle Predictors: Recent History Dominates in Time-Varying Systems
	Queueing Predictors: Conceptual Validity Matters

	Future Work

	Resource Mining
	Operational Resource Mining
	Modeling Resource-Flow via Queueing Networks
	Resource Mining: Service Log and Discovery Queries
	Resource Analysis: Preliminary Experiments
	Resource Paths Analysis
	Steady-State Analysis of Time-Varying Resources

	Future Work

	Simulation Mining
	Simulation Models: Building Blocks and Characteristics
	Simulation Mining of Queueing Models
	Primitives
	Dynamics

	A Unified Framework for Business Process Analysis and Simulation
	Combining Stochastic Petri Nets and Queueing Networks
	Stochastic Processing Networks

