The Offered-Load Process: Modeling, Inference and Applications

Michael Reich

Technion - Israel Institute of Technology

November 10, 2011

Advisors: Prof. Avishai Mandelbaum, Prof. Ya'acov Ritov

Outline

- Introduction
 - Motivation
 - Research Outline
- 2 Relationship Between Service Time and Patience
 - Definitions
 - The Model
 - Testing the Relationship
- The Offered-Load
 - Definitions
 - The Offered-Load of $M_t/GI/N_t+GI$
 - Estimation of the Offered-Load
- 4 Empirical Results
 - Staffing and Performance Measures
 - Analysis of the Relationship
 - U.S. Bank Case Study
- Future Research

Standard assumption in modeling service systems: The service-time and the patience of customers are independent

Is this assumption valid?

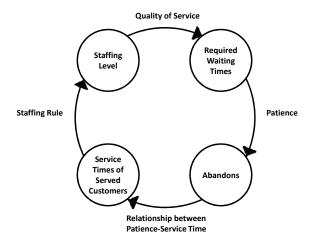
Standard assumption in modeling service systems: The service-time and the patience of customers are independent

Is this assumption valid?

- I can pay my bills on another occasion
- I must immediately consult my broker in order to protect my equities profile

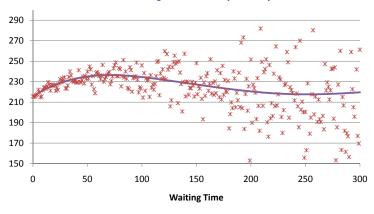
0000

Various performance measures are influenced by the presence of dependency between patience and service-time



Mean Service-Time as a Function of Waiting-Time

U.S. Bank - Retail Banking Service - Weekdays - January-June, 2006



Fitted Spline Curve × E(S|τ>W=w)

Research Outline

- A model for the relationship between patience and service-time
- Definitions of the offered-load process and function
- Estimation and prediction of the offered-load
- Performance analysis of both real and simulated data

The $M_t/GI^*/n_t + GI$ Queue:

- M_t Nonhomogeneous (time-dependent) Poisson arrivals
- GI* General service-time distribution; May depend on patience
- n_t The number of telephone agents over time
- GI General patience distribution

The parameters are assumed to be uninfluenced by system's state

Notations:

- S Service-time
- au (Im)patience
- V Virtual waiting-time, namely the time a customer is required to wait before entering service
- W Waiting-time of a customer, calculated over both served and abandoning customers

Note: $W = min\{V, \tau\}$

Assumptions:

- The pair (τ, S) is independent of V
- For those who abandon, we observe V censored by their (im)patience
- For those who are served, we observe V
- W is observable for all customers
- ullet S is observable only for customers who have au>V

Biased Sampling:

- In common applications, service-time is measured over all served customers
- The prevalent estimator for mean service-time is actually E(S| au>W)
- One tends to observes more customers with longer patience

Biased Sampling:

- In common applications, service-time is measured over all served customers
- The prevalent estimator for mean service-time is actually E(S| au>W)
- One tends to observes more customers with longer patience

What if the patience and service-times (associated with the same customer) are positively correlated ?

The Model

Consider the mean service-time of customers who were served after waiting exactly w time units:

$$g(w) = E(S|\tau > W, W = w) = E(S|\tau > w, V = w) = E(S|\tau > w)$$

Calculations show that

$$g(w) = \frac{\int_{u=w}^{\infty} f_{\tau}(u) \cdot E(S|\tau=u) du}{\int_{u=w}^{\infty} f_{\tau}(u) du}$$

or alternatively,

$$E(S|\tau=w)=g(w)-\frac{g'(w)}{h_{\tau}(w)},$$

where $f_{\tau}(w)$ and $h_{\tau}(w)$ are the cdf and the hazard-rate function of the patience, τ

We present a statistical test for the relationship between patience and service-time:

- $H_0: E(S|\tau = w) = E(S), \forall w \geq 0$
- H₁: Otherwise

Since $E(S|\tau=w)$ is not observable, the test is based on $g(w)=E(S|\tau>W,W=w)$

Under the null hypothesis:

- $g(w) = E(S|\tau = w)$
- $E(S|\tau = w)$ is constant if and only if g(w) is constant

Let g(W) be a random variable which takes the value g(w) according to the density function $f_{W|\tau>W}(w)$

We test if the variance of g(W) can be assumed to be zero:

$$Var(g(W)) = E(g^{2}(W)) - E^{2}(g(W))$$

Consequently, we choose the statistic for our test to be

$$T = \int_{u=0}^{\infty} g^2(u) \cdot f_{W|\tau>W}(u) du - \left[\int_{u=0}^{\infty} g(u) \cdot f_{W|\tau>W}(u) du \right]^2$$

Construct a permutation distribution for the test statistic:

Data

 Take all the observations of served customers with strictly positive waiting-time

Oiscretization

- Divide the observations into several groups of a similar size, according to the ranking of their waiting-times
- Calculate the probability of an observation to belong to each group

Permutations

- Generate a large number (say 4,000) of permutations by randomly pairing between the waiting-times and the service-times
- For each permutation, calculate the statistic's value

Denote:

- t_1, t_2, \dots, t_K The values of the test statistic in any of the random pairing permutations
- t* The original sample's statistic

The p-value is then approximated by the proportion of samples with the value of this statistic larger than the original sample's statistic. Explicitly:

$$p - value pprox rac{\sum_{i=1}^{K} 1\!\!1_{\{t_i > t^*\}}}{K}$$

Introduce the following definitions:

- Resource-k Offered-Load Process A stochastic process, representing the amount of work being processed by resource k at time t, under the assumptions of infinitely many resources of type k, and that a task that reaches resource k enters service immediately upon arrival
- **2** Resource-k Offered-Load Function A function of time $t \ge 0$, representing the average of Resource-k Offered-Load Process at time t

The Offered-Load of $M_t/GI/N_t + GI$

Theorem:

For any time t > 0, L(t) has a Poisson distribution with mean

$$R(t) = E[L(t)] = E[\lambda(t - S_e)] \cdot E[S] = E\left[\int_{t-S}^{t} \lambda(u) du\right] =$$

$$= \int_{-\infty}^{t} \lambda(u) \cdot [1 - G(t - u)] du,$$

where

S is a generic service-time S_e is a generic excess service-time R(t) is by definition the Offered-Load function

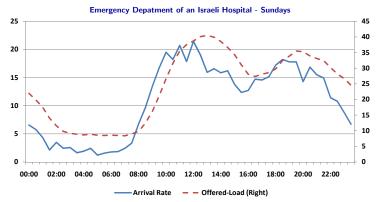
The Offered-Load of $M_t/GI/N_t+GI$

Insights:

The offered-load function lags after the arrival rate -

$$R(t) = E[L(t)] = E[\lambda(t - S_e)] \cdot E[S]$$

Arrival-Rate and Offered-Load

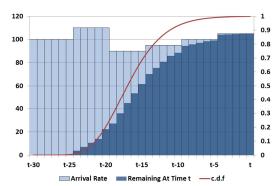


The Offered-Load of $M_t/GI/N_t+GI$

Insights:

The expected number of customers at time t, who arrived during the time interval $[s_1, s_2]$, is $\int_{s_1}^{s_2} \lambda(u) \cdot [1 - G(t-u)] du$

Alternative Arrival Process View



Estimation of the Offered-Load

- $M_t/GI/\infty$ queue:
 - **1** The offered-load process, $L = \{L(t), t \ge 0\}$, equals the number of customers in service (L(t)) at time t
 - The offered-load function, R, is estimated as the average number of customers in service (over all available periods)
- M_t/GI/n_t queue:
 - Eliminate the customers' waiting-times and shift their service period to start right upon arrival
 - ② Then, follow the procedure of the $M_t/GI/\infty$ queue
- M_t/GI/n_t + GI queue:
 - For the offered-load process, impute the service-times of abandoning customers and follow the $M_t/GI/n_t$ queue
 - We propose a method to estimate the offered-load function, based on the expression $R(t) = \int_{-\infty}^{t} \lambda(u) \cdot [1 G(t u)] du$

Estimation of the Offered-Load

- \bullet $M_t/GI^*/n_t+GI$ queue:
 - For the offered-load process
 - \bullet Estimate the distribution of the conditional service-time, $S|\tau=t$
 - Impute the service-times of abandoning customers
 - Follow the $M_t/GI/n_t$ procedure
 - 2 For the offered-load function
 - Estimate the marginal service-time distribution from non-waiting customers
 - Apply the $M_t/GI^*/n_t + GI$ estimation procedure with this service-time distribution

Iterative Staffing Algorithm (ISA), a simulation code developed by Feldman et al. ['07]

- Determines time-dependence staffing levels aiming to achieve time-stable delay probability (hence time-stable performance)
- In our implementation, we added the feature of defining the relationship between patience and service-time in the time-varying $M_t/GI^*/n_t+GI$ queue

Remark: In this part of the thesis, we analyze only queues with homogenous Poisson arrival rate

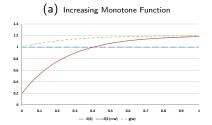
ISA was applied to three types of $M/M^*/n + M$ queueing systems:

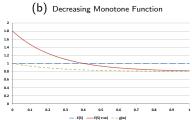
- Arrivals are according to a homogeneous Poisson process with arrival rate of 100 customers per time unit
- Patience is exponentially distributed with mean 1 time unit
- Mean service-time (unconditional) is equal to 1 time unit
- Service time, conditional on the patience of a customer, is exponentially distributed
- Relationship between patience and service-time differs accross models

All performance measures are calculated as an average of 5000 replications

Description of the Relationship:

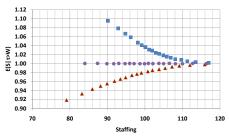
Increasing Monotone Function	$E(S \tau=w)$	g(w)
No Relation	1	1
Increasing Monotone Function	$1.2 - e^{-4 \cdot w}$	$1.2 - 0.2 \cdot e^{-4 \cdot w}$
Decreasing Monotone Function	$0.8 + e^{-4 \cdot w}$	$0.8 + 0.2 \cdot e^{-4 \cdot w}$

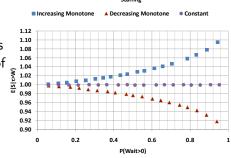




Comparison between the mean service-times of served customers as a function of the staffing level

Comparison between the mean service-times of served customers as a function of the probability of waiting





Decreasing Monotone

Increasing Monotone

Constant

Analysis of the Square-Root Staffing Rule:

The rule for M/M/n+M queue is given by

$$n = R + \beta \sqrt{R}$$
,

where,

- R is the offered load function
- β is the Quality of Service (QoS) parameter, determined by the **Garnett function**:

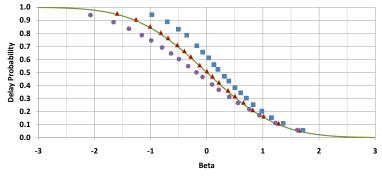
$$\alpha = \left[1 + \sqrt{\frac{\theta}{\mu}} \cdot \frac{h(\beta\sqrt{\mu/\theta})}{h(-\beta)}\right]^{-1}, \quad -\infty < \beta < \infty,$$

where α is the required probability of delay

For any target α , we ran an ISA simulation for each model Define the implied quality of service grade

$$\beta^{\it ISA} \equiv \frac{n^{\it ISA} - R}{\sqrt{R}} \, , \label{eq:betaISA}$$

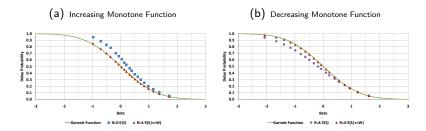
where n^{ISA} denotes the result staffing level of the simulation



In fact, the mean service-time that the system faces, S^* , (due to served customers) is different from the unconditional mean service-time and is affected by the quality of service (determined by staffing level, N)

We define a modified offered-load expression, given by:

$$R^* = \lambda \cdot E(S^*(N))$$



Notice that the offered-load is not influenced by the relationship

Consider a simulation model:

The service-time of a customer with patience $\tau=t$ is a Log-Normal random variable, $S|\tau=t\sim LogNorm(\mu(t),\sigma^2)$, with pdf

$$f_{S|\tau}(s|t) = \frac{1}{s\sqrt{2\pi\sigma^2}} e^{-\frac{(\ln s - \mu(t))^2}{2\sigma^2}}, \, s, t > 0$$

Then,

$$\bullet \ E(S|\tau=t)=e^{\mu(t)+\frac{\sigma^2}{2}}$$

•
$$E(S^2|\tau=t) = e^{\sigma^2} e^{\mu(t) + \frac{\sigma^2}{2}} = e^{\sigma^2} E^2(S|\tau=t)$$

•
$$Var(S|\tau=t) = (e^{\sigma^2}-1)e^{\mu(t)+\frac{\sigma^2}{2}} = (e^{\sigma^2}-1)E^2(S|\tau=t)$$

Assume that:

- ullet au is exponentially distributed, with mean $rac{1}{ heta}$
- $E(S|\tau=t)$ be of the form:

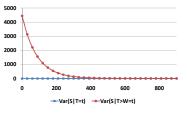
$$E(S|\tau=t)=a\cdot(b-e^{-t\cdot(\beta-\theta)}),\,\beta>\theta,\,a>0,\,b>1$$

The analysis covers the following:

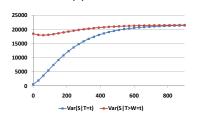
- $E(S|\tau=w) = 230 \cdot (1.2 e^{-w \cdot (\frac{29}{3600} \frac{8}{3600})})$
- $\theta = \frac{8}{3600}$
- Four values for σ are considered

A comparison between $Var(S|\tau=w)$ and $Var(S|\tau>W=w)$ with different values of σ

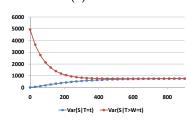
(a)
$$\sigma = 0.01$$



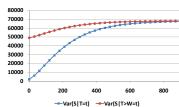
(c)
$$\sigma = 0.5$$



(b)
$$\sigma = 0.1$$

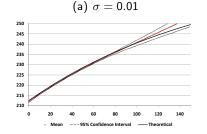


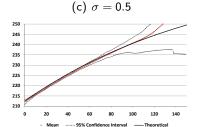
(d)
$$\sigma = 0.8$$



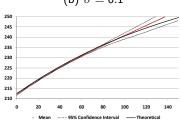
95% percent confidence intervals of the spline estimator for

$$g(w) = E(S|\tau > W = w)$$

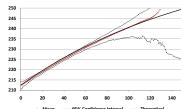




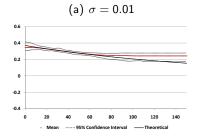
(b) $\sigma = 0.1$

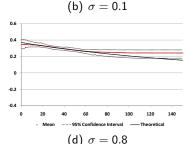


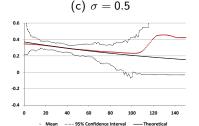
(d)
$$\sigma = 0.8$$



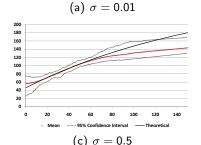
95% percent confidence intervals of the derivative of the spline estimator for g(w)



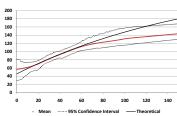


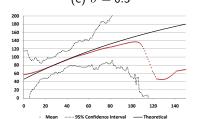


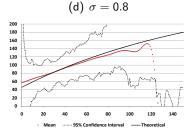
95% percent confidence intervals of the estimator for E(S| au=w)



(b)
$$\sigma=0.1$$





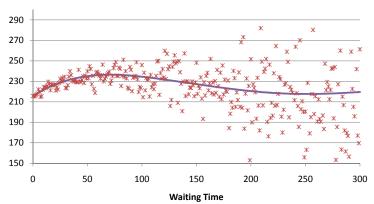


Data Description:

- A large North American commercial bank (U.S. Bank)
- Analysis is of the Retail Banking service
- Period all weekdays (Monday through Friday) between January-June, 2006
- Observe arrivals between 10:00 and 16:00
- Total number of observations is 2,722,129, out of which 2,683,418 calls where served

Mean Service-Time as a Function of the Waiting-Time

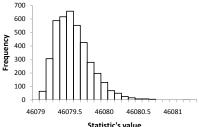
mean service-time - points, fitted spline - solid line



Testing the relationship between patience and service-time

- Consider only served calls
- Omit all non-waiting observations
- Divide the observations into 9 groups, by the ranking their waiting times
- Perform a random pairing permutation test (4000 replications)
- The value of the original permutation statistic is 46,140.62

A histogram for the distribution of the test statistic



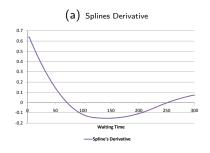
In order to estimate $E(S|\tau=w)$ we use the formula

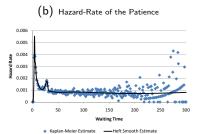
$$E(S|\tau=w)=g(w)-\frac{g'(w)}{h_{\tau}(w)}$$

We fit a cubic smooth spline for g(w) - the mean service-time, as a function of the waiting-time

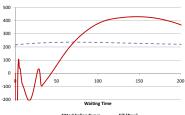
- Designed to handle smooth functions
- Enables to simply extract the derivatives

We choose a spline with only 5 knots - smoothness of the derivative





Estimator for the mean service-time as a function of the patience of a customer



Future Research

- A refinement of the estimation procedure of the mean service-time as a function of the patience
- Further research and modeling of the staffing rules and performance measures in the $M_t/GI^*/n_t+GI$ queue
- Apply the presented model to other databases

Thank You

