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Motivation

Standard assumption in modeling service systems: The
service-time and the patience of customers are independent

Is this assumption valid ?
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@ | can pay my bills on another occasion

@ | must immediately consult my broker in order to protect my
equities profile
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Motivation

Various performance measures are influenced by the presence of
dependency between patience and service-time
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Research Outline

@ A model for the relationship between patience and service-time

@ Definitions of the offered-load process and function

Estimation and prediction of the offered-load

Performance analysis of both real and simulated data
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Definitions

The M:/GI*/n; + Gl Queue:

M, - Nonhomogeneous (time-dependent) Poisson arrivals

@ GI* - General service-time distribution; May depend on
patience

nt - The number of telephone agents over time

@ G/ - General patience distribution

The parameters are assumed to be uninfluenced by system'’s state
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Definitions

Notations:

@ S - Service-time
o 7 - (Im)patience

@ V - Virtual waiting-time, namely the time a customer is
required to wait before entering service

e W - Waiting-time of a customer, calculated over both served
and abandoning customers

Note: W = min{V, 7}
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Definitions

Assumptions:

The pair (7, S) is independent of V

@ For those who abandon, we observe V censored by their
(im)patience

For those who are served, we observe V

W is observable for all customers

S is observable only for customers who have 7 > V
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Definitions

Biased Sampling:

@ In common applications, service-time is measured over all
served customers

@ The prevalent estimator for mean service-time is actually
E(S|T > W)

@ One tends to observes more customers with longer
patience
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Definitions

Biased Sampling:

@ In common applications, service-time is measured over all
served customers

@ The prevalent estimator for mean service-time is actually
E(S|T > W)

@ One tends to observes more customers with longer
patience

What if the patience and service-times (associated with the same
customer) are positively correlated ?
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The Model

Consider the mean service-time of customers who were served after
waiting exactly w time units:

glw)=E(S|t>W,W=w)=E(S|t>w,V=w)=E(S|T >w)

Calculations show that
[ f(u)- E(S|T=u)du

u=w T

u=w

or alternatively,

g'(w)
hy(w)’

E(SIT = w) = g(w) -

where f-(w) and h;(w) are the cdf and the hazard-rate function of
the patience, T
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Testing the Relationship

We present a statistical test for the relationship between patience
and service-time:

© Hy: E(S|t=w)=E(S),Vw >0

@ H; : Otherwise
Since E(S|T = w) is not observable, the test is based on
g(w)=E(S|t> W, W =w)
Under the null hypothesis:

° g(w) = E(S|r = w)

e E(S|T = w) is constant if and only if g(w) is constant



Relationship Between Service Time and Patience
0®00

Testing the Relationship

Let g(W) be a random variable which takes the value g(w)
according to the density function fiyy/| -y (w)

We test if the variance of g(W) can be assumed to be zero:
Var(g(W)) = E(g*(W)) — E*(g(W))

Consequently, we choose the statistic for our test to be

[e’e) 2

T:/uioogZ(u)-fWT>W(u) du — [/ g(u) - fwr>w(u) du
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Testing the Relationship

Construct a permutation distribution for the test statistic:
Q@ Data

o Take all the observations of served customers with strictly
positive waiting-time

@ Discretization

e Divide the observations into several groups of a similar size,
according to the ranking of their waiting-times
o Calculate the probability of an observation to belong to each

group
© Permutations

o Generate a large number (say 4,000) of permutations by
randomly pairing between the waiting-times and the
service-times

o For each permutation, calculate the statistic's value
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Testing the Relationship

Denote:
@ ty,ty,...,tx - The values of the test statistic in any of the
random pairing permutations

@ t* - The original sample’s statistic

The p-value is then approximated by the proportion of samples
with the value of this statistic larger than the original sample's
statistic. Explicitly:

Zlel ]I{t;>t*}

— value ~
p — value 7
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Definitions

Introduce the following definitions:

@ Resource-k Offered-Load Process - A stochastic process,
representing the amount of work being processed by resource
k at time t, under the assumptions of infinitely many
resources of type k, and that a task that reaches resource k
enters service immediately upon arrival

@ Resource-k Offered-Load Function - A function of time
t > 0, representing the average of Resource-k Offered-Load
Process at time t
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The Offered-Load of M;/GI/N; + Gl

Theorem:
For any time t > 0, L(t) has a Poisson distribution with mean

R(¢) = E[L(8)] = E[\(¢ — S.)] - E[S] = E[/t_s )\(u)du} _
= [ ) 6t g

o
where
S is a generic service-time
Se is a generic excess service-time
R(t) is by definition the Offered-Load function
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The Offered-Load of M;/GI/N; + Gl

Insights:
The offered-load function lags after the arrival rate -
R(t) = E[L(t)] = E[M(t — Se)] - E[S]

Arrival-Rate and Offered-Load

Emergency Depatment of an Israeli Hospital - Sundays
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The Offered-Load of M,/GI/N; + G/

Insights:

The expected number of customers at time t, who arrived during
B
the time interval [s1, 5], is / Au)-[1— G(t— u)]du
s1
Alternative Arrival Process View
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Estimation of the Offered-Load

e M;/Gl/c0 queue:
@ The offered-load process, L = {L(t), t > 0}, equals the
number of customers in service (L(t) at time t)
@ The offered-load function, R, is estimated as the average
number of customers in service (over all available periods)

e M,/Gl/n; queue:
© Eliminate the customers’ waiting-times and shift their service
period to start right upon arrival
@ Then, follow the procedure of the M;/Gl /oo queue

e M./Gl/n; + Gl queue:
@ For the offered-load process, impute the service-times of
abandoning customers and follow the M,/Gl/n; queue

© We propose a method to estimate the offered-load function,
based on the expression R(t) = fjoo AMu) - [1— G(t — u)]du
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Estimation of the Offered-Load

e M./GI*/n; + Gl queue:

@ For the offered-load process
o Estimate the distribution of the conditional service-time,
Slr=t
@ Impute the service-times of abandoning customers
e Follow the M;/Gl/n; procedure

@ For the offered-load function
o Estimate the marginal service-time distribution from
non-waiting customers
o Apply the M;/GI*/n: + Gl estimation procedure with this
service-time distribution
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Staffing and Performance Measures

Iterative Staffing Algorithm (ISA), a simulation code developed
by Feldman et al. ['07]

@ Determines time-dependence staffing levels aiming to achieve

time-stable delay probability (hence time-stable performance)

@ In our implementation, we added the feature of defining the
relationship between patience and service-time in the
time-varying M;/GI*/n; + Gl queue

Remark: In this part of the thesis, we analyze only queues with
homogenous Poisson arrival rate
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Staffing and Performance Measures

ISA was applied to three types of M/M*/n+ M queueing systems:

@ Arrivals are according to a homogeneous Poisson process with
arrival rate of 100 customers per time unit

Patience is exponentially distributed with mean 1 time unit

Mean service-time (unconditional) is equal to 1 time unit

Service time, conditional on the patience of a customer, is
exponentially distributed

@ Relationship between patience and service-time differs accross
models

All performance measures are calculated as an average of 5000
replications
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Staffing and Performance Measures

Description of the Relationship:

H Increasing Monotone Function ‘ E(S|T =w) g(w) H
No Relation 1 1
Increasing Monotone Function 12— e 4w 1.2-02.-e 4"
Decreasing Monotone Function 0.84e W 0.840.2-e 4"
(a) Increasing Monotone Function (b) Decreasing Monotone Function

— Els) —E(Siew) ~ - glw) — Els) —(Sltw) - - glw)
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Staffing and Performance Measures

Comparison between the mean 112
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Staffing and Performance Measures

Analysis of the Square-Root Staffing Rule:

The rule for M/M/n+M queue is given by
n = R+BVR,

where,
@ R is the offered load function

e (3 is the Quality of Service (QoS) parameter, determined by
the Garnett function:

-1
0 h(ByV/0) o o
“\ﬁ h(—ﬁ)] TR

o =

where « is the required probability of delay
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Staffing and Performance Measures

For any target o, we ran an ISA simulation for each model
Define the implied quality of service grade

IBISA _ nISA - R
VR

where n’># denotes the result staffing level of the simulation
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Staffing and Performance Measures

In fact, the mean service-time that the system faces, S*, (due to
served customers) is different from the unconditional mean
service-time and is affected by the quality of service (determined
by staffing level, N)

We define a modified offered-load expression, given by:

R* = \- E(S*(N))
(a) Increasing Monotone Function (b) Decreasing Monotone Function

zo7 zo7

7 04
& 03

304
2 o3

Beta Beta

—Garnett Function  ® R=NE(S) A R=NE(S| W) —Garnett Function  ® R=NE(S) 4 R=NE(S|oW)

Notice that the offered-load is not influenced by the relationship
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Analysis of the Service-Time vs Patience Relationship

Consider a simulation model:

The service-time of a customer with patience 7 =t is a
Log-Normal random variable, S|7 = t ~ LogNorm(u(t), o?),

with pdf
o (s]t) 1 _ (ns—p(1)? o0
(s|t) = e 22 | s,
Sl sV 2mo?
Then,

2
o E(S|r=1t) = e+
0_2
°o E(S*Ir=1t)= e et = e"2E2(5!T =t)

&2
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Analysis of the Service-Time vs Patience Relationship

Assume that:
@ 7 is exponentially distributed, with mean %
e E(S|T = t) be of the form:

ESlIr=t)=a-(b—e 5N 550, a>0,b>1

The analysis covers the following:
o E(S|r=w) =230 (1.2 — e (5~ 5))
_ 8
o 9 = 3600
@ Four values for o are considered
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Analysis of the Service-Time vs Patience Relationship

A comparison between Var(S|t = w) and Var(S|t > W = w)

with different values of o
(a) 0 =0.01 (b) c=0.1
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Analysis of the Service-Time vs Patience Relationship

95% percent confidence intervals of the spline estimator for
g(w)=E(S|T> W =w)
(a) o =0.01 (b) o =0.1
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(c) o=0.5 (d) c=0.8
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Analysis of the Service-Time vs Patience Relationship

95% percent confidence intervals of the derivative of the spline
estimator for g(w)
(a) o =0.01 (b) o =0.1
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Analysis of the Service-Time vs Patience Relationship

95% percent confidence intervals of the estimator for E(S|T = w)
(a) o = 0.01 (b) o =0.1
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(c) o=0.5 (d) o =0.8
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U.S. Bank Case Study

Data Description:

@ A large North American commercial bank (U.S. Bank)
@ Analysis is of the Retail Banking service

@ Period - all weekdays (Monday through Friday) between
January-June, 2006

@ Observe arrivals between 10:00 and 16:00

@ Total number of observations is 2,722,129,
out of which 2,683,418 calls where served
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U.S. Bank Case Study

Mean Service-Time as a Function of the Waiting-Time

mean service-time - points, fitted spline - solid line
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U.S. Bank Case Study

Testing the relationship between patience and service-time
@ Consider only served calls
@ Omit all non-waiting observations
@ Divide the observations into 9 groups, by the ranking their
waiting times
@ Perform a random pairing permutation test (4000 replications)
@ The value of the original permutation statistic is 46,140.62

A histogram for the distribution of the test statistic
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U.S. Bank Case Study

In order to estimate E(S|7 = w) we use the formula

E(SIr = w) = g(w) -

We fit a cubic smooth spline for g(w) - the mean service-time, as
a function of the waiting-time

@ Designed to handle smooth functions

@ Enables to simply extract the derivatives

We choose a spline with only 5 knots - smoothness of the derivative
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U.S. Bank Case Study

(a) Splines Derivative (b) Hazard-Rate of the Patience
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Future Research

@ A refinement of the estimation procedure of the mean
service-time as a function of the patience

@ Further research and modeling of the staffing rules and
performance measures in the M;/GI*/n; + Gl queue

@ Apply the presented model to other databases
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