
Sergey Zeltyn January 2005

STAT 991. Service Engineering.

The Wharton School. University of Pennsylvania.

Classical Queueing Models.

Based on:

• Mandelbaum A. Service Engineering course, Technion.

http://iew3.technion.ac.il/serveng2005W

• General knowledge on classical queueing models.

(E.g. Wolff. Stochastic Modelling and the Theory of Queues.)

• 4CallCenters software: examples of output.

1

Birth & Death Model of a Service Station

10 2 i+1
µi+1

ii-1
λi-1λ0 λ1 λi

µ2µ1 µi

• i – number-in-system;

• λi – arrival rate given i customers in system;

• µi – service rate given i customers in system.

Cuts at i ↔ i + 1 yield:

πiλi = πi+1µi+1, i ≥ 0, and

πi+1 =
λi

µi+1
πi =

λiλi−1

µi+1µi
πi−1 = · · · = λ0λ1 . . . λi

µ1µ2 . . . µi+1
π0 .

Steady-state distribution exists iff

∞∑
i=0

λ0 . . . λi

µ1 . . . µi+1
< ∞ .

Then 
πi = λ0...λi−1

µ1...µi
π0 , i ≥ 0

π0 =
[∑

i≥0
λ0...λi

µ1...µi+1

]−1

2

Additional assumptions (classical queues):

• n statistically identical servers;

• FCFS discipline – First Come First Served;

• Work conservation: a server does not go idle if there are cus-

tomers in need of service;

• Customers do not abandon.

Measures of Performance

• L - number of customers at the service station;

• Lq - number of customers in the queue;

• W - sojourn time of a customer at the service station;

• Wq - waiting time of a customer in the queue.

In steady state,

E[L] =
∑
k≥0

k · πk = lim
T→∞

1

T
·

∫ T

0
L(t)dt .

E[Lq] =
∞∑

k=n+1
(k − n) · πk .

If λ – arrival rate to system, Little’s formula implies:

E[L] = λ · E[W]; E[Lq] = λ · E[Wq] .

3

4CallCenters Software.

Calculations based on the M.Sc. thesis of Ofer Garnett.

Will be extensively used in our course.

Install at

http://iew3.technion.ac.il/serveng2005W/4CallCenters/Downloads.htm

Service Engineering December 29, 2004

Recitation 8

 Demonstration of the 4CallCenters Software.

Getting started…

Easy to download and install.

 1

4

M/M/1 queue

• Poisson arrivals, rate λ;

• Single exponential server, rate µ, E[S] = 1/µ.

i+1
λ

µ
10 2 ii-1

λ λλ

µ µ µ

λi = λ, i ≥ 0; µi = µ · 1i≥1.

Cut equations: λπi = µπi+1 , i ≥ 0 .

Traffic intensity ρ = λ
µ < 1 (assumed for stability).

Steady-state distribution Geom(p = 1− ρ) (from 0):

πi = (1− ρ)ρi, i ≥ 0.

Properties:

• Sojourn time is exponentially distributed:

W ∼ exp

mean =
1

µ(1− ρ)
=

1

µ

1 +
ρ

1− ρ


 .

Proof: Via moment generating functions.

According to PASTA

W d=
N∑

i=1
Xi , Xi ∼ exp(µ) i.i.d. , N d= Geom(1−ρ) (from 1).

5

Moment generating function:

φW (t) ∆= E [exp{tW}] = E

exp{t ·
N∑

i=1
Xi}


= E

E
exp{t ·

N∑
i=1

Xi}
∣∣∣∣∣∣ N


= (Moment generating function of Erlang r.v.)

= E


 µ

µ− t

N
 =

∞∑
k=1

(1− ρ)ρk−1
 µ

µ− t

k

=
µ(1− ρ)

µ− t
·
∞∑

k=0

 µρ

µ− t

k

=
µ(1− ρ)

µ(1− ρ)− t
= φexp(µ(1−ρ))(t) .

• Delay probability (PASTA)

P{Wq > 0} = ρ .

• Waiting time in queue, given delay, is exp:

Wq

1/µ
d=


0 wp 1− ρ

exp
(
mean = 1

1−ρ

)
wp ρ

• Number-in-system

E[L] =
ρ

1− ρ
; E[Lq] =

ρ2

1− ρ
.

• Server’s utilization (occupancy) is ρ = λ/µ.

(Little’s formula, system = server.)

• Departure process in steady state is Poisson (λ)

(Burke theorem) – important in queueing networks.

6

M/M/1. 4CallCenters output

Note large waiting times:

E[S] for ρ = 50%, 9 ·E[S] for ρ = 90%, 19 ·E[S] for ρ = 95%.

4CallCenters: performance measures.

• Average Speed of Answer = E[Wq]

(will be different in queues with abandonment);

• %Answer within Target = P{Wq < T};

• Average Queue Length = E[Lq].

7

M/M/∞ queue

• Poisson arrivals, rate λ;

• Infinite number of exponential servers, rate µ.

10 2 i+1
(i+1)µ
ii-1

λ λ λλ

µ 2µ iµ

λi = λ, i ≥ 0; µi = i · µ, i > 0.

Cut equations:

λπi = (i + 1) · µπi+1 , i ≥ 0 .

Always stable.

Steady-state distribution is Poisson:

πi = e−R · R
i

i!
, i ≥ 0 ,

where R =
λ

µ
is the offered load (measured in Erlangs).

E[L] = E(# busy servers) = λ · 1

µ
= R .

(Little’s formula, system = service.)

Very useful: ∞-server models provide bounds (next lecture: queues

with abandonment).

Results above valid for M/G/∞ – generally distributed service

times.

8

M/M/n (Erlang-C) queue

• Poisson arrivals, rate λ;

• n exponential servers, rate µ.

Widely used in call centers.

5

Erlang-C

arrivals queue
ACD

agents

Erlang-B

arrivals

agents

Lost Calls

Transition-rate diagram

n+1 n+2
λ λ

nµ nµ
10 2 nn-1

nµ

λ λλ

µ 2µ

λj = λ, j ≥ 0,

µj = (j ∧ n)µ, j ≥ 1.

Agents’ utilization

ρ =
λ

nµ
.

Assume ρ < 1 (R < n) to ensure stability (as in M/M/1).

9

4CallCenters output: Instability, ρ ≥ 1

Steady-state distribution:

πi =
Ri

i!
π0, i ≤ n,

=
nnρi

n!
π0, i ≥ n,

π0 =

n−1∑
j=0

Rj

j!
+

Rn

n!(1− ρ)


−1

,

where R =
λ

µ
is the offered load.

10

Erlang-C Formula (1917):

Delay probability:

P{W > 0} ∆= E2,n =
∑
i≥n

πi =
Rn

n!

1

1− ρ
· π0 .

Erlang-C computation: recursion, see Erlang-B below.

Number-in-queue:

P{Lq = i} = E2,n · (1− ρ)ρi , i > 0,

or

Lq =


0 wp 1− E2,n

Geom(1− ρ) wp E2,n

Waiting time distribution:

Wq

1/µ
=


0 wp 1− E2,n

exp
(
mean = 1

n ·
1

1−ρ

)
wp E2,n

Compare with M/M/1!

Departure process: Poisson(λ) in steady-state.

Proof via reversibility.

11

M/M/n: derivation of waiting-time distribution

P{Wq > t} =
∞∑

k=1
P{Lq = k − 1} · P{Ek > t}

(where Ek ∼ Erlang(k, nµ))

= E2,n ·
∞∑

k=1

(1− ρ)ρk−1 ·
∫ ∞
t

nµ(nµx)k−1

(k − 1)!
e−nµxdx



= E2,n · nµ(1− ρ) ·
∫ ∞
t

e−nµx ·
∞∑

k=1

(nµρx)k−1

(k − 1)!

 dx

= E2,n · nµ(1− ρ) ·
∫ ∞
t

e−nµ(1−ρ)xdx

= E2,n · e−nµ(1−ρ)t

12

Pooling

Example: Kleinrock, L. Vol.II, Chapter 5 (1976)

Kleinrock, L. Vol. II, Chapter 5 (1976) (Pelephone’s Call Center)

Resource Sharing

m

(a)

C m

C m

m

m

(b)

m

C m

C m

(c)

 C

m

(d)
C

 C

(e)

m
 m

C

 C

(f)

mC

m

Simplest is Best! Do not model complicated undesirable scenarios!

m×M/M/1
scale-up−→ M/M/m

technology−→ M/M/1
λ, µ mλ, µ mλ, mµ

Combine: queues servers
Saved inefficiency idleness lost capacity

(1 long queue, 2 idle) (rate mµ at all times)

Remark EWq

(
m,λ, µ

m

)
≤ EWq(1, λ, µ)

while EWs

(
m,λ, µ

m

)
≥ EWs(1, λ, µ)

↑
individual server’s capacity

(Explain, via Pm(Wait > 0), noting Wq | Wq > 0.)

Summary (pg. 287)

Large systems (scaling up input rate and system capacity) yield improvements
(in average response-time) that are proportional to the scaling factor.

For a given scale factor, the single-server (fast) system is superior to the
multiple-server (slow) system, as far as total time a system in concerned.
The opposite is true, however, when restricting to only waiting time. (See
Homework).

27

4CallCenters output

13

1 2 3

n×M/M/1
pooling−→ M/M/n

technology−→ M/M/1

λ, µ nλ, µ nλ, nµ

P{Wq > 0} ρ E2,n ρ

E[Wq]
1

µ
· ρ

1− ρ

1

µ
· E2,n

n(1− ρ)

1

nµ
· ρ

1− ρ

E[S]
1

µ

1

µ

1

nµ

E[W]
1

µ
· 1

1− ρ

1

µ
·

 E2,n

n(1− ρ)
+ 1

 1

nµ
· 1

1− ρ

Statement: 1− ρ < 1− E2,n < n(1− ρ) .

Proof: Consider M/M/n.

1− ρ = P{server i idle}, for i = 1, . . . , n ;

1− E2,n = P{at least one server idle} = P


n⋃

i=1
{i idle}


n(1− ρ) =

n∑
i=1

P{server i idle}

14

Conclusions

1 → 2 : Pooling yields E[Wq] decrease by more than factor n;

1 → 3 : Fast server yields E[W] and E[Wq] decrease by factor n;

2 → 3 : Fast server better for E[W];

Pooling better for E[Wq].

15

M/M/n/K queue

• Poisson arrivals, rate λ;

• n exponential servers, rate µ;

• K trunks (K ≥ n);

• If all trunks busy, arriving customer blocked (busy signal).

10 K
nµ

K-1n+1
λ λ

nµ

λ λ
n-1 n

µ nµ

λj = λ, 0 ≤ j ≤ K − 1,

µj = (j ∧ n)µ, 1 ≤ j ≤ K.

Formulae straightforward but cumbersome (simply truncate M/M/n).

Always reaches steady state.

16

4CallCenters output.

Use Change Settings =⇒ Features =⇒ Trunks.

Note new indicators:

Average Trunks Utilized and %Blocked.

4CallCenters: Advanced Profiling

Arrival rate varied from 900 to 1017 per hour, in step 9.

Excel interface: graphs and spreadsheets.

17

M/M/n/K vs. Erlang-C

Average service time = 6 min, 100 agents, 150 trunks

0

50

100

150

200

250

300

350

400

900 920 940 960 980 1000

Calls per Interval

A
ve

ra
ge

 S
pe

ed
 o

f A
ns

w
er

 (s
ec

s)

M/M/100/150 M/M/100

Similar performance for light loads.

Erlang-C “explodes” as ρ =
λ

nµ
↑ 1.

18

M/M/n/n (Erlang-B) queue

10 2 nn-1
nµ

λ λλ

µ 2µ

λi ≡ λ, 0 ≤ i ≤ n− 1 ,

µi = i · µ, 1 ≤ i ≤ n .

No queue ⇒ no wait.

πi =
Ri

i!

/ n∑
j=0

Rj

j!
, 0 ≤ i ≤ n.

19

M/M/n/K vs. Erlang-B

Average service time = 6 min, 100 agentsl

0%

5%

10%

15%

20%

25%

30%

35%

40%

900 1000 1100 1200 1300 1400

Calls per Interval

%
B

lo
ck

M/M/100/150 M/M/100/100

Moderate load: additional trunks prevent blocking.

Heavy load: % blocking ≈ 1− 1/ρ (“fluid limit”).

Erlang-B Formula (1917):

Loss probability

E1,n = πn =
Rn

n!

/ n∑
j=0

Rj

j!
(2)

Follows from PASTA.

(2) valid for M/G/n/n! (Generally distributed service time.)

λπn – rate of lost customers,

λ(1− πn) – effective throughput.

20

Erlang-B computation: via recursion

E1,n =
RE1,n−1

n + RE1,n−1
=

ρE1,n−1

1 + ρE1,n−1
E1,0 = 1 .

Note:

E1,n =
(n−R)E2,n

n−RE2,n
; E2,n =

E1,n

(1− ρ) + ρE1,n
;

E2,n > E1,n, as expected: why?

21

Schematic representation of a telephone
call center

arrivals

lost calls

retrials

retrials

abandonment

returns

queue
ACD

agents
busy

1

2

n

…
1 2 3 k

lost calls

How to model Abandonment?

22

