

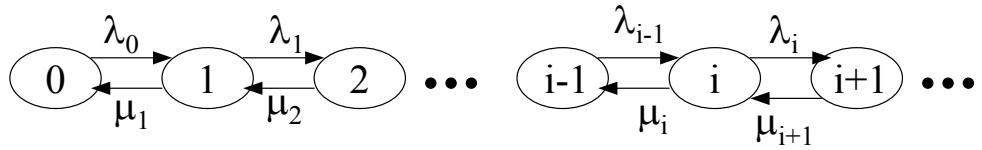
**STAT 991. Service Engineering.
The Wharton School. University of Pennsylvania.**

Classical Queueing Models.

Based on:

- Mandelbaum A. *Service Engineering* course, Technion.
<http://iew3.technion.ac.il/serveng2005W>
- General knowledge on classical queueing models.
(E.g. Wolff. *Stochastic Modelling and the Theory of Queues.*)
- 4CallCenters software: examples of output.

Birth & Death Model of a Service Station



- i – number-in-system;
- λ_i – arrival rate given i customers in system;
- μ_i – service rate given i customers in system.

Cuts at $i \leftrightarrow i + 1$ yield:

$$\pi_i \lambda_i = \pi_{i+1} \mu_{i+1}, \quad i \geq 0, \text{ and}$$

$$\pi_{i+1} = \frac{\lambda_i}{\mu_{i+1}} \pi_i = \frac{\lambda_i \lambda_{i-1}}{\mu_{i+1} \mu_i} \pi_{i-1} = \dots = \frac{\lambda_0 \lambda_1 \dots \lambda_i}{\mu_1 \mu_2 \dots \mu_{i+1}} \pi_0 .$$

Steady-state distribution exists iff

$$\sum_{i=0}^{\infty} \frac{\lambda_0 \dots \lambda_i}{\mu_1 \dots \mu_{i+1}} < \infty .$$

Then

$$\begin{cases} \pi_i = \frac{\lambda_0 \dots \lambda_{i-1}}{\mu_1 \dots \mu_i} \pi_0, & i \geq 0 \\ \pi_0 = \left[\sum_{i \geq 0} \frac{\lambda_0 \dots \lambda_i}{\mu_1 \dots \mu_{i+1}} \right]^{-1} \end{cases}$$

Additional assumptions (classical queues):

- n statistically identical servers;
- FCFS discipline – First Come First Served;
- Work conservation: a server does not go idle if there are customers in need of service;
- Customers do not abandon.

Measures of Performance

- L - number of customers at the service station;
- L_q - number of customers in the queue;
- W - sojourn time of a customer at the service station;
- W_q - waiting time of a customer in the queue.

In steady state,

$$E[L] = \sum_{k \geq 0} k \cdot \pi_k = \lim_{T \rightarrow \infty} \frac{1}{T} \cdot \int_0^T L(t) dt .$$

$$E[L_q] = \sum_{k=n+1}^{\infty} (k - n) \cdot \pi_k .$$

If λ – arrival rate to system, Little's formula implies:

$$E[L] = \lambda \cdot E[W]; \quad E[L_q] = \lambda \cdot E[W_q] .$$

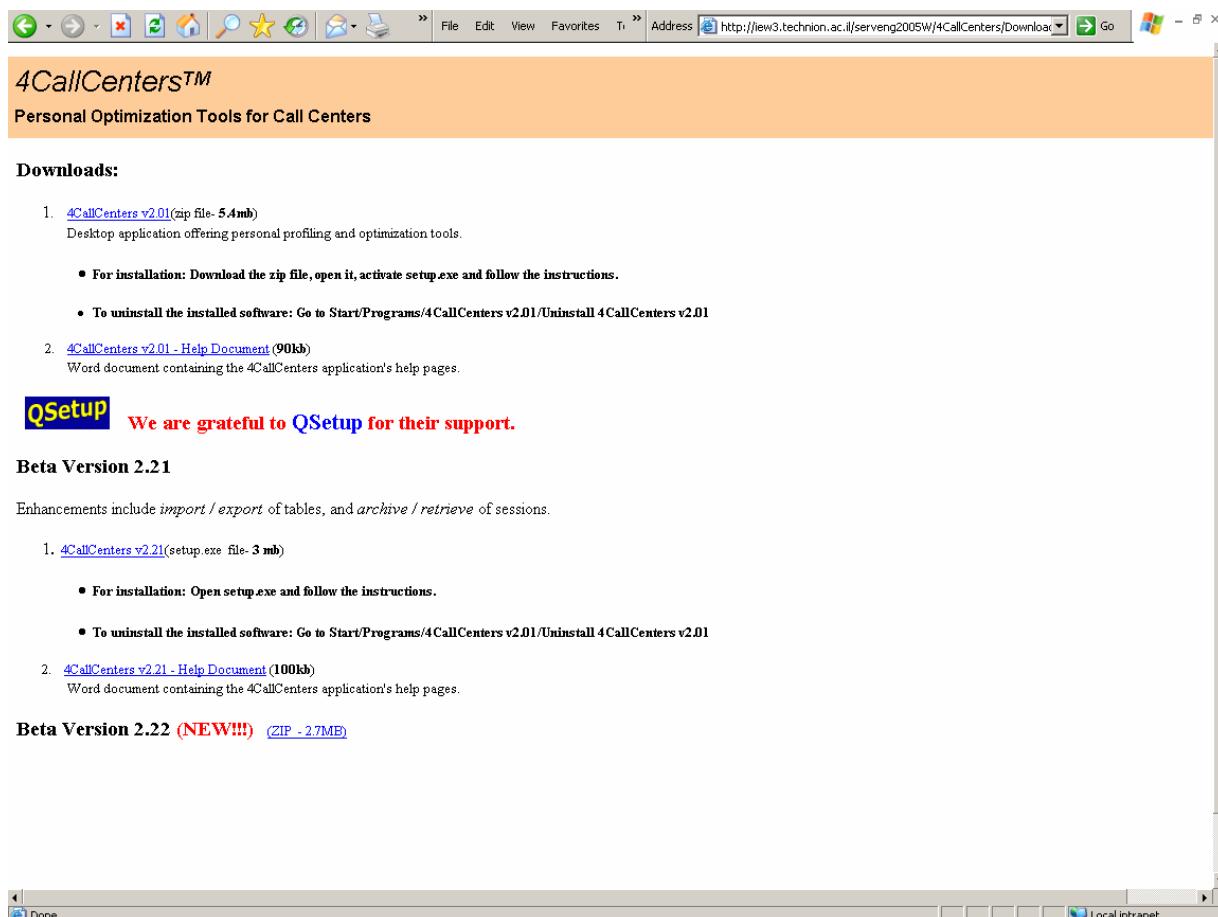
4CallCenters Software.

Calculations based on the M.Sc. thesis of Ofer Garnett.

Will be extensively used in our course.

Install at

<http://iew3.technion.ac.il/serveng2005W/4CallCenters/Downloads.htm>



The screenshot shows a Microsoft Internet Explorer browser window with the following details:

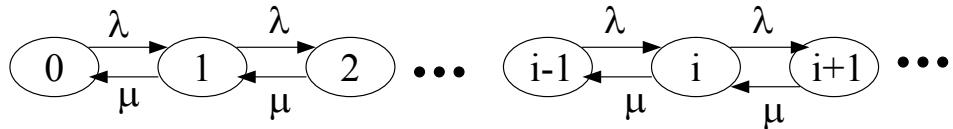
- Title Bar:** The title bar displays the URL <http://iew3.technion.ac.il/serveng2005W/4CallCenters/Downloads.htm>.
- Header:** The page header includes the 4CallCenters logo and the text "Personal Optimization Tools for Call Centers".
- Section:** A "Downloads:" section is present, listing two items:

 - 4CallCenters v2.01** (zip file - 5.4mb):
Desktop application offering personal profiling and optimization tools.
 - For installation: Download the [zip file](#), open it, activate [setup.exe](#) and follow the instructions.
 - To uninstall the installed software: Go to Start/Programs/4CallCenters v2.01/Uninstall 4CallCenters v2.01
 - 4CallCenters v2.01 - Help Document** (90kb):
Word document containing the 4CallCenters application's help pages.

- QSetup:** A blue button with the text "We are grateful to QSetup for their support." in red.
- Beta Version 2.21:** A section describing enhancements and listing two items:
 - 4CallCenters v2.21** (setup.exe file - 3 mb):
For installation: Open [setup.exe](#) and follow the instructions.
 - 4CallCenters v2.21 - Help Document** (100kb):
Word document containing the 4CallCenters application's help pages.
- Beta Version 2.22 (NEW!!!) (ZIP - 2.7MB):** A section with a large red "NEW!!!".

M/M/1 queue

- Poisson arrivals, rate λ ;
- Single exponential server, rate μ , $E[S] = 1/\mu$.



$$\lambda_i = \lambda, \quad i \geq 0; \quad \mu_i = \mu \cdot 1_{i \geq 1}.$$

Cut equations: $\lambda\pi_i = \mu\pi_{i+1}, \quad i \geq 0.$

Traffic intensity $\rho = \frac{\lambda}{\mu} < 1$ (assumed for stability).

Steady-state distribution $\text{Geom}(p = 1 - \rho)$ (from 0):

$$\pi_i = (1 - \rho)\rho^i, \quad i \geq 0.$$

Properties:

- Sojourn time is exponentially distributed:

$$W \sim \exp \left(\text{mean} = \frac{1}{\mu(1 - \rho)} = \frac{1}{\mu} \left[1 + \frac{\rho}{1 - \rho} \right] \right).$$

Proof: Via moment generating functions.

According to PASTA

$$W \stackrel{d}{=} \sum_{i=1}^N X_i, \quad X_i \sim \exp(\mu) \text{ i.i.d.}, \quad N \stackrel{d}{=} \text{Geom}(1 - \rho) \text{ (from 1)}.$$

Moment generating function:

$$\begin{aligned}
\phi_W(t) &\triangleq \mathbb{E}[\exp\{tW\}] = \mathbb{E}\left[\exp\left\{t \cdot \sum_{i=1}^N X_i\right\}\right] \\
&= \mathbb{E}\left[\mathbb{E}\left[\exp\left\{t \cdot \sum_{i=1}^N X_i\right\} \middle| N\right]\right] \\
&= \text{(Moment generating function of Erlang r.v.)} \\
&= \mathbb{E}\left[\left(\frac{\mu}{\mu-t}\right)^N\right] = \sum_{k=1}^{\infty} (1-\rho)\rho^{k-1} \left(\frac{\mu}{\mu-t}\right)^k \\
&= \frac{\mu(1-\rho)}{\mu-t} \cdot \sum_{k=0}^{\infty} \left(\frac{\mu\rho}{\mu-t}\right)^k = \frac{\mu(1-\rho)}{\mu(1-\rho)-t} \\
&= \phi_{\exp(\mu(1-\rho))}(t).
\end{aligned}$$

- Delay probability (PASTA)

$$\mathbb{P}\{W_q > 0\} = \rho.$$

- Waiting time in queue, given delay, is exp:

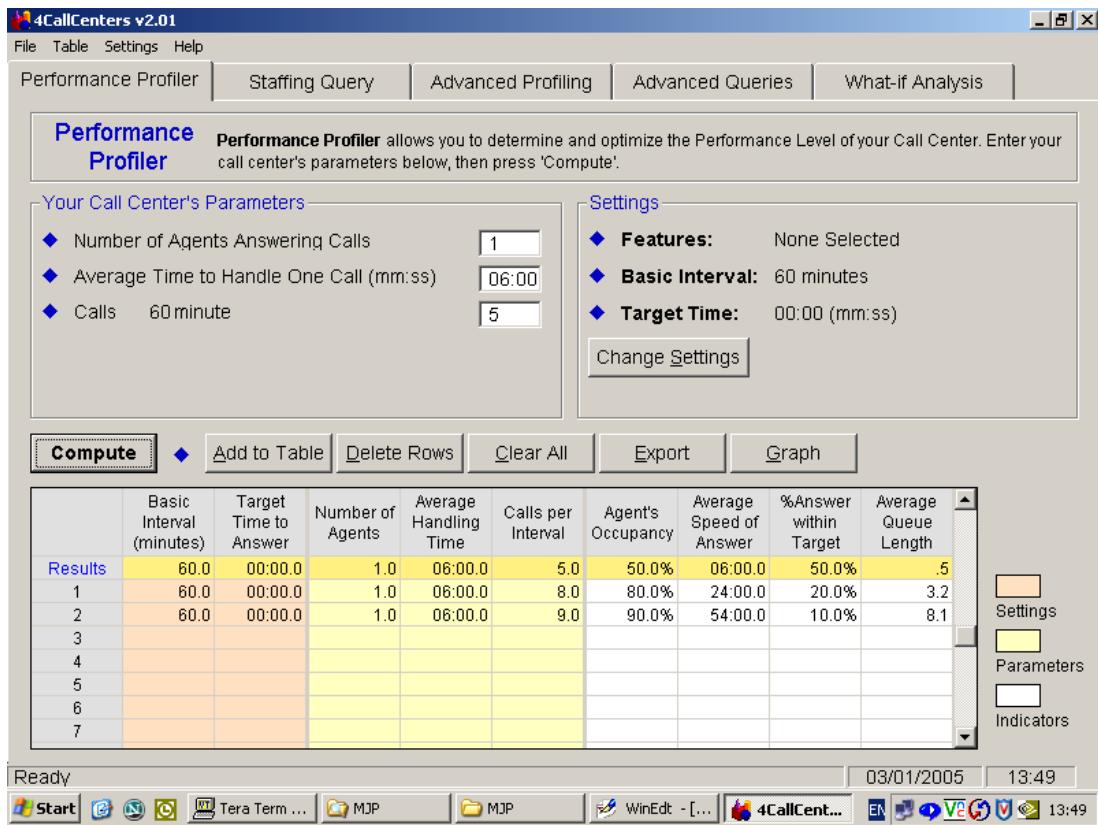
$$\frac{W_q}{1/\mu} \stackrel{d}{=} \begin{cases} 0 & \text{wp } 1-\rho \\ \exp\left(\text{mean} = \frac{1}{1-\rho}\right) & \text{wp } \rho \end{cases}$$

- Number-in-system

$$\mathbb{E}[L] = \frac{\rho}{1-\rho}; \quad \mathbb{E}[L_q] = \frac{\rho^2}{1-\rho}.$$

- Server's utilization (occupancy) is $\rho = \lambda/\mu$.
(Little's formula, system = server.)
- Departure process in steady state is Poisson (λ)
(Burke theorem) – important in queueing networks.

M/M/1. 4CallCenters output



Note large waiting times:

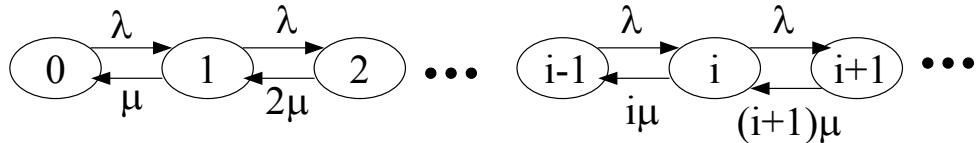
$E[S]$ for $\rho = 50\%$, $9 \cdot E[S]$ for $\rho = 90\%$, $19 \cdot E[S]$ for $\rho = 95\%$.

4CallCenters: performance measures.

- Average Speed of Answer = $E[W_q]$
(will be different in queues with abandonment);
- %Answer within Target = $P\{W_q < T\}$;
- Average Queue Length = $E[L_q]$.

M/M/ ∞ queue

- Poisson arrivals, rate λ ;
- Infinite number of exponential servers, rate μ .



$$\lambda_i = \lambda, \quad i \geq 0; \quad \mu_i = i \cdot \mu, \quad i > 0.$$

Cut equations:

$$\lambda \pi_i = (i+1) \cdot \mu \pi_{i+1}, \quad i \geq 0.$$

Always stable.

Steady-state distribution is Poisson:

$$\pi_i = e^{-R} \cdot \frac{R^i}{i!}, \quad i \geq 0,$$

where $R = \frac{\lambda}{\mu}$ is the **offered load** (measured in Erlangs).

$$\mathbb{E}[L] = \mathbb{E}(\# \text{ busy servers}) = \lambda \cdot \frac{1}{\mu} = R.$$

(Little's formula, system = service.)

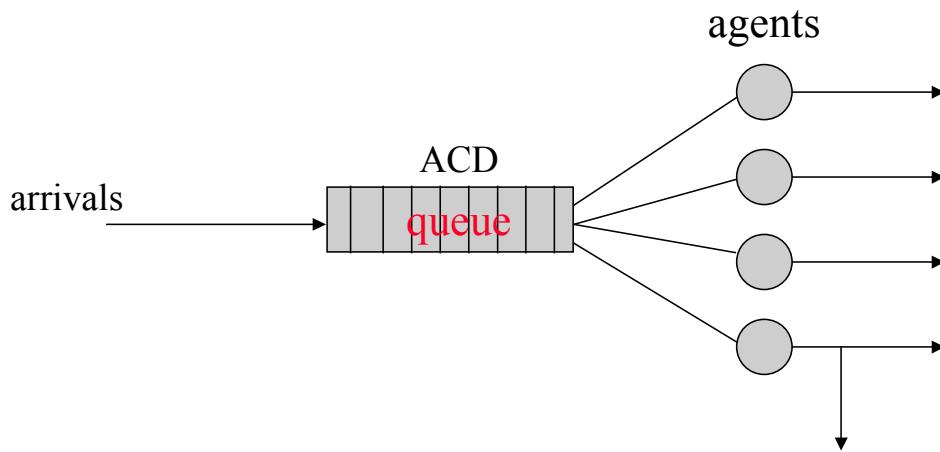
Very *useful*: ∞ -server models provide bounds (next lecture: queues with abandonment).

Results above valid for M/G/ ∞ – generally distributed service times.

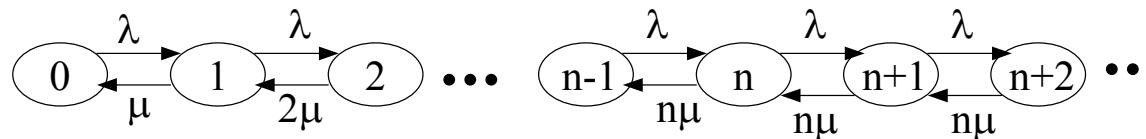
M/M/n (Erlang-C) queue

- Poisson arrivals, rate λ ;
- n exponential servers, rate μ .

Widely used in call centers.



Transition-rate diagram



$$\lambda_j = \lambda, \quad j \geq 0,$$

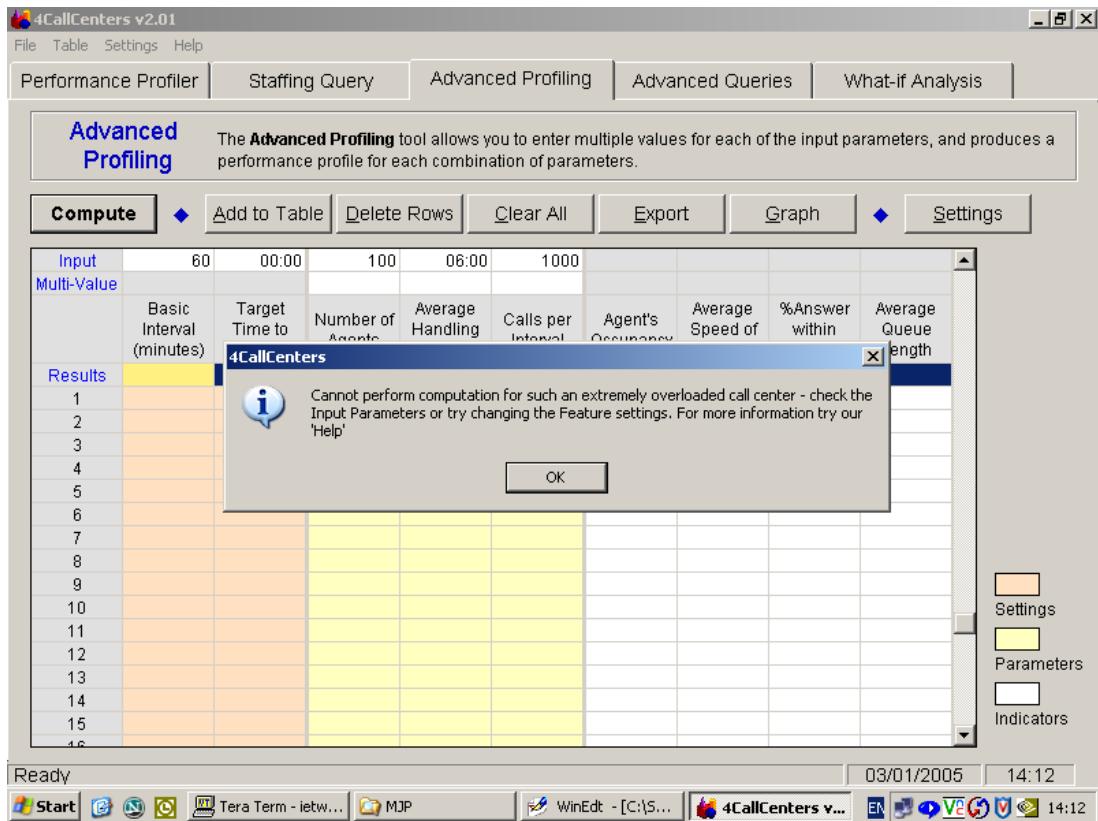
$$\mu_j = (j \wedge n)\mu, \quad j \geq 1.$$

Agents' utilization

$$\rho = \frac{\lambda}{n\mu}.$$

Assume $\rho < 1$ ($R < n$) to ensure stability (as in M/M/1).

4CallCenters output: Instability, $\rho \geq 1$



Steady-state distribution:

$$\begin{aligned}
 \pi_i &= \frac{R^i}{i!} \pi_0, \quad i \leq n, \\
 &= \frac{n^n \rho^i}{n!} \pi_0, \quad i \geq n, \\
 \pi_0 &= \left[\sum_{j=0}^{n-1} \frac{R^j}{j!} + \frac{R^n}{n!(1-\rho)} \right]^{-1},
 \end{aligned}$$

where $R = \frac{\lambda}{\mu}$ is the **offered load**.

Erlang-C Formula (1917):

Delay probability:

$$\text{P}\{W > 0\} \triangleq E_{2,n} = \sum_{i \geq n} \pi_i = \frac{R^n}{n!} \frac{1}{1 - \rho} \cdot \pi_0 .$$

Erlang-C computation: recursion, see Erlang-B below.

Number-in-queue:

$$\text{P}\{L_q = i\} = E_{2,n} \cdot (1 - \rho) \rho^i, \quad i > 0,$$

or

$$L_q = \begin{cases} 0 & \text{wp } 1 - E_{2,n} \\ \text{Geom}(1 - \rho) & \text{wp } E_{2,n} \end{cases}$$

Waiting time distribution:

$$\frac{W_q}{1/\mu} = \begin{cases} 0 & \text{wp } 1 - E_{2,n} \\ \exp\left(\text{mean} = \frac{1}{n} \cdot \frac{1}{1-\rho}\right) & \text{wp } E_{2,n} \end{cases}$$

Compare with M/M/1!

Departure process: Poisson(λ) in steady-state.

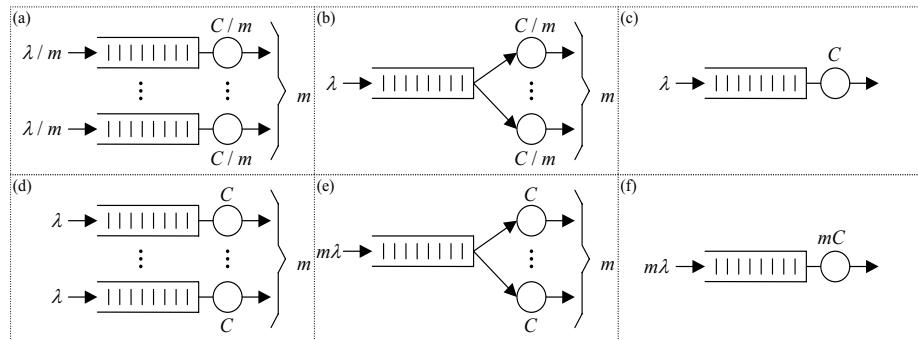
Proof via reversibility.

M/M/n: derivation of waiting-time distribution

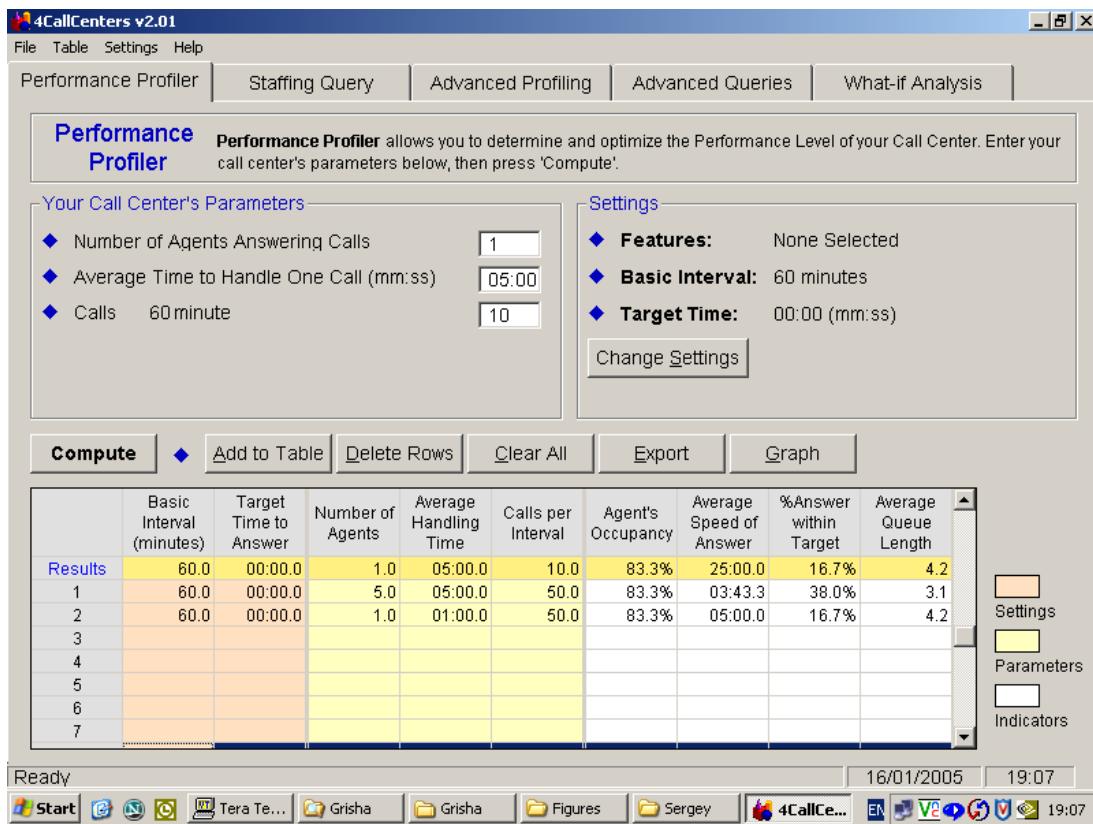
$$\begin{aligned}
P\{W_q > t\} &= \sum_{k=1}^{\infty} P\{L_q = k - 1\} \cdot P\{E_k > t\} \\
&\quad (\text{where } E_k \sim \text{Erlang}(k, n\mu)) \\
&= E_{2,n} \cdot \sum_{k=1}^{\infty} \left[(1 - \rho) \rho^{k-1} \cdot \int_t^{\infty} \frac{n\mu(n\mu x)^{k-1}}{(k-1)!} e^{-n\mu x} dx \right] \\
&= E_{2,n} \cdot n\mu(1 - \rho) \cdot \int_t^{\infty} \left(e^{-n\mu x} \cdot \sum_{k=1}^{\infty} \frac{(n\mu \rho x)^{k-1}}{(k-1)!} \right) dx \\
&= E_{2,n} \cdot n\mu(1 - \rho) \cdot \int_t^{\infty} e^{-n\mu(1-\rho)x} dx \\
&= E_{2,n} \cdot e^{-n\mu(1-\rho)t}
\end{aligned}$$

Pooling

Example: Kleinrock, L. Vol.II, Chapter 5 (1976)



4CallCenters output



	1	2	3
	$n \times M/M/1 \xrightarrow{\text{pooling}}$	$M/M/n$	$\xrightarrow{\text{technology}}$ $M/M/1$
	λ, μ	$n\lambda, \mu$	$n\lambda, n\mu$
$P\{W_q > 0\}$	ρ	$E_{2,n}$	ρ
$E[W_q]$	$\frac{1}{\mu} \cdot \frac{\rho}{1-\rho}$	$\frac{1}{\mu} \cdot \frac{E_{2,n}}{n(1-\rho)}$	$\frac{1}{n\mu} \cdot \frac{\rho}{1-\rho}$
$E[S]$	$\frac{1}{\mu}$	$\frac{1}{\mu}$	$\frac{1}{n\mu}$
$E[W]$	$\frac{1}{\mu} \cdot \frac{1}{1-\rho}$	$\frac{1}{\mu} \cdot \left[\frac{E_{2,n}}{n(1-\rho)} + 1 \right]$	$\frac{1}{n\mu} \cdot \frac{1}{1-\rho}$

Statement: $1 - \rho < 1 - E_{2,n} < n(1 - \rho)$.

Proof: Consider $M/M/n$.

$$\begin{aligned}
 1 - \rho &= P\{\text{server } i \text{ idle}\}, \text{ for } i = 1, \dots, n; \\
 1 - E_{2,n} &= P\{\text{at least one server idle}\} = P\left\{\bigcup_{i=1}^n \{i \text{ idle}\}\right\} \\
 n(1 - \rho) &= \sum_{i=1}^n P\{\text{server } i \text{ idle}\}
 \end{aligned}$$

Conclusions

1 → 2 : Pooling yields $E[W_q]$ decrease by more than factor n ;

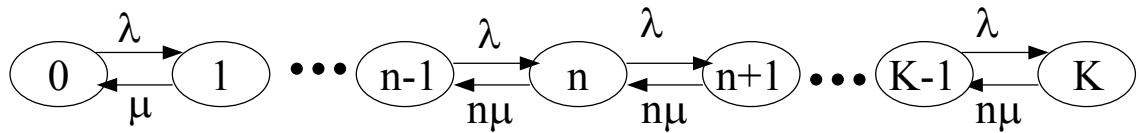
1 → 3 : Fast server yields $E[W]$ and $E[W_q]$ decrease by factor n ;

2 → 3 : Fast server better for $E[W]$;

Pooling better for $E[W_q]$.

M/M/ n/K queue

- Poisson arrivals, rate λ ;
- n exponential servers, rate μ ;
- K trunks ($K \geq n$);
- If all trunks busy, arriving customer blocked (busy signal).

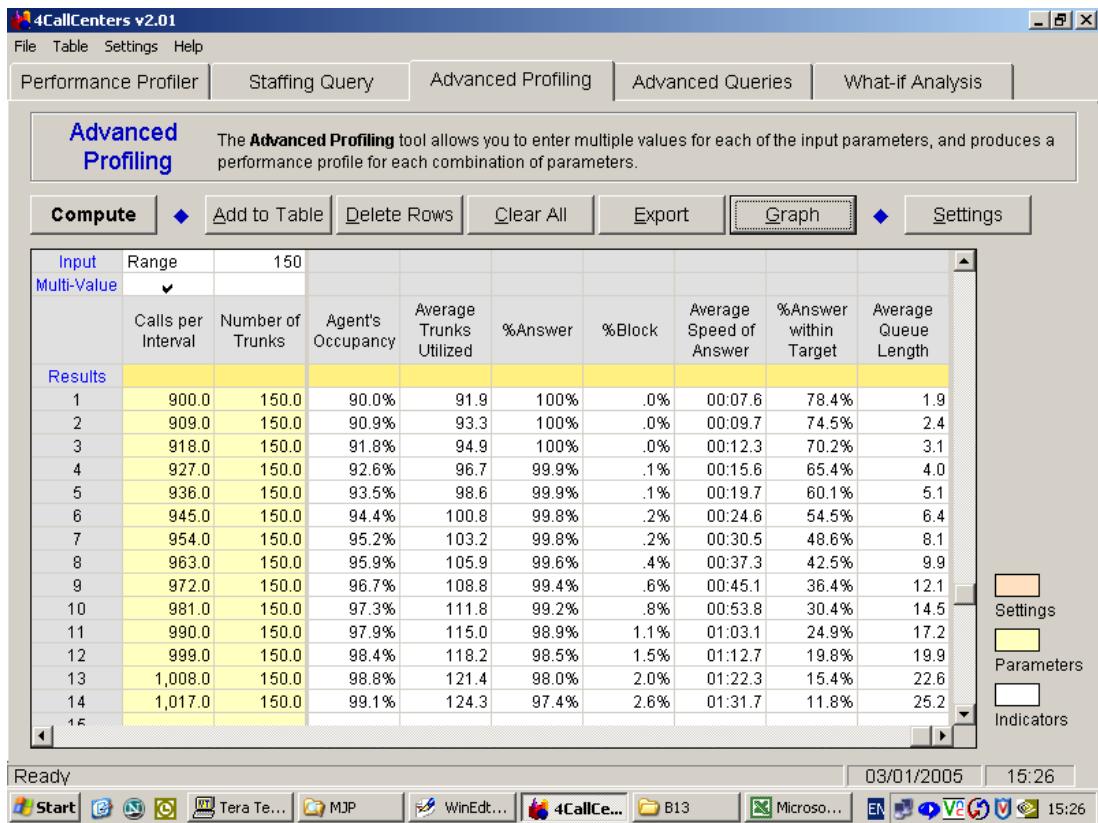


$$\lambda_j = \lambda, \quad 0 \leq j \leq K-1,$$

$$\mu_j = (j \wedge n)\mu, \quad 1 \leq j \leq K.$$

Formulae straightforward but cumbersome (simply truncate M/M/ n).
Always reaches steady state.

4CallCenters output.



Use Change Settings \Rightarrow Features \Rightarrow Trunks.

Note new indicators:

Average Trunks Utilized and %Blocked.

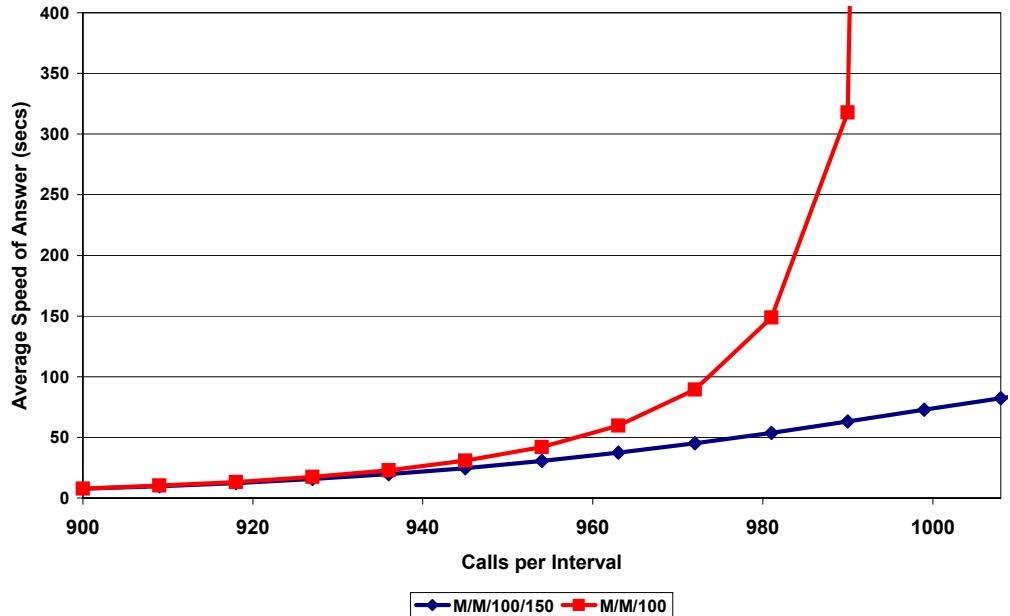
4CallCenters: Advanced Profiling

Arrival rate varied from 900 to 1017 per hour, in step 9.

Excel interface: graphs and spreadsheets.

M/M/ n/K vs. Erlang-C

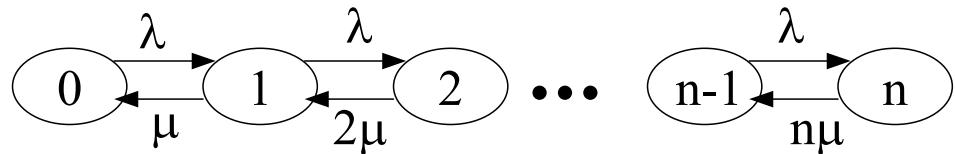
Average service time = 6 min, 100 agents, 150 trunks



Similar performance for light loads.

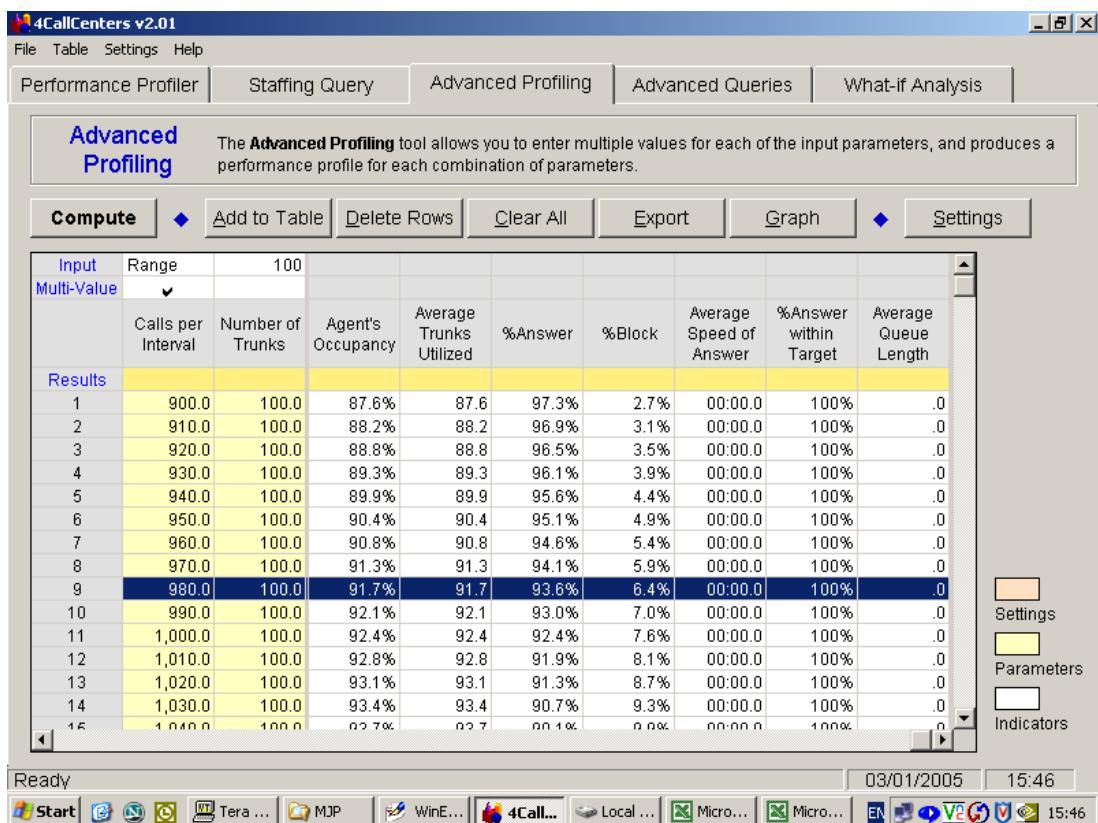
Erlang-C “explodes” as $\rho = \frac{\lambda}{n\mu} \uparrow 1$.

M/M/n/n (Erlang-B) queue



$$\lambda_i \equiv \lambda, \quad 0 \leq i \leq n-1,$$

$$\mu_i = i \cdot \mu, \quad 1 \leq i \leq n.$$

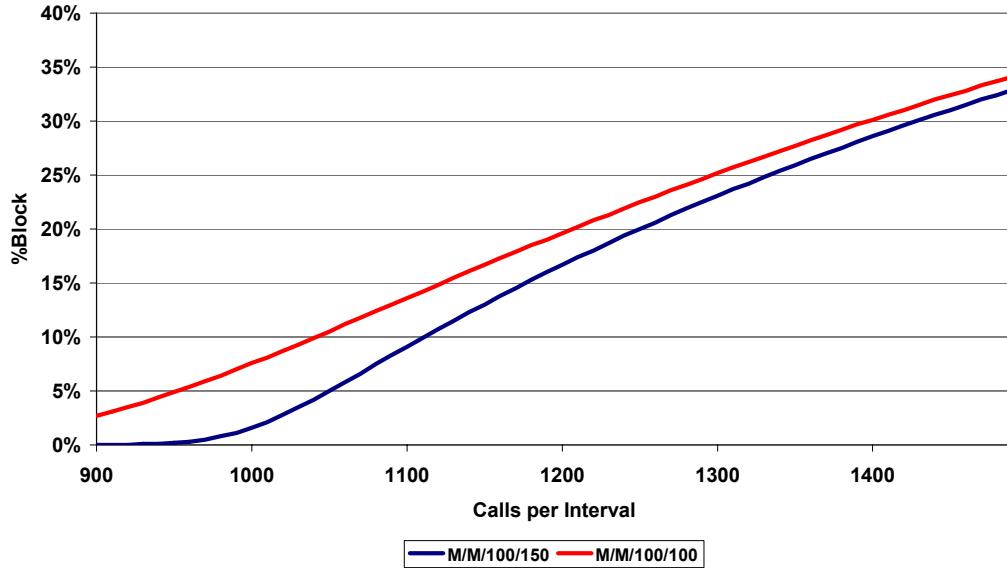


No queue \Rightarrow no wait.

$$\pi_i = \frac{R^i}{i!} \Big/ \sum_{j=0}^n \frac{R^j}{j!}, \quad 0 \leq i \leq n.$$

M/M/n/K vs. Erlang-B

Average service time = 6 min, 100 agents



Moderate load: additional trunks prevent blocking.

Heavy load: $\% \text{ blocking} \approx 1 - 1/\rho$ (“fluid limit”).

Erlang-B Formula (1917):

Loss probability

$$E_{1,n} = \pi_n = \frac{R^n}{n!} \left/ \sum_{j=0}^n \frac{R^j}{j!} \right. \quad (2)$$

Follows from PASTA.

(2) valid for M/G/n/n! (Generally distributed service time.)

$\lambda\pi_n$ – rate of lost customers,

$\lambda(1 - \pi_n)$ – effective throughput.

Erlang-B computation: via recursion

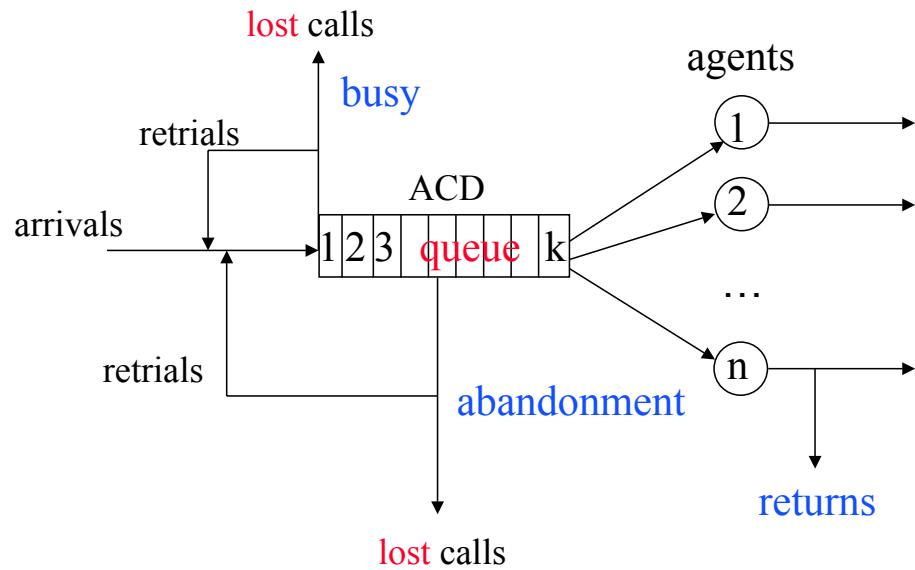
$$E_{1,n} = \frac{RE_{1,n-1}}{n + RE_{1,n-1}} = \frac{\rho E_{1,n-1}}{1 + \rho E_{1,n-1}} \quad E_{1,0} = 1.$$

Note:

$$E_{1,n} = \frac{(n - R)E_{2,n}}{n - RE_{2,n}}; \quad E_{2,n} = \frac{E_{1,n}}{(1 - \rho) + \rho E_{1,n}};$$

$E_{2,n} > E_{1,n}$, as expected: why?

Schematic representation of a telephone call center



How to model Abandonment?