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1. Introduction. The quality- and efficiency-driven (QED) regime achieves, jointly, high levels of system’s
efficiency, as manifested by servers’ high utilization, and service quality, namely, customers’ short waiting times
and hence scarce abandonments. QED performance is achievable in carefully balanced queueing systems with
many servers—indeed, with few servers, efficiency and quality must be traded off against each other. Within the
G/GI/N framework, or more precisely G/GI/N +GI , the QED regime with abandonments is characterized
by the relation N = R + �

√
R + o4

√
R5, for some scalar �; here N is the number of servers and R is the

offered load, namely, the arrival rate multiplied by average service time. (This square-root staffing relation also
characterizes the QED regime without abandonments, but � must then be taken positive to ensure stability.)

1.1. Relevance. Recent interest in multiserver queues with impatient customers is due to their applicability
in modeling medium-to-large-scale customer call/contact centers. In such service operations, abandonments arise
naturally and, in fact, must be accounted for in models (see §2 in Garnett et al. [12] for an elaboration).
Additionally, well-run call centers are QED (Gans et al. [11]) or some relatives of it (e.g., ED + QED, as in
Mandelbaum and Zeltyn [24]). But QED queues also arise beyond call centers. To wit, waiting time in QED
call centers is naturally measured in seconds and service times in minutes. This one-order time reduction (from
minutes to seconds in the case of call centers) is a QED characteristic; indeed, it also arises in transportation
(searching for parking takes minutes whereas parking time takes hours) and in healthcare (sojourn times in
emergency departments take hours whereas hospitalization is days). Significantly, the abandonment phenomenon
is relevant in all these examples, which is perhaps surprising for the latter; yet, a nonnegligible fraction of
patients leave emergency departments without being seen by a doctor (Green et al. [13]).

1.2. Related research. Although the QED regime (without abandonments) can be traced back to Erlang [9]
and Jagerman [16], the regime was first formalized by Halfin and Whitt [14]; for recent results on the QED
regime, see Mandelbaum and Momčilović [21], Reed [27], Kaspi and Ramanan [19], Puhalskii and Reed [26],
and references therein, with Reed’s framework (Reed [27]) for the G/GI/N queue being especially relevant.
The M/M/N + M (Erlang-A) system in the QED regime (with abandonments) was considered in Garnett
et al. [12]. Extensions to the model with generally distributed abandonments can be found in Zeltyn and
Mandelbaum [34], Zeltyn [33], Mandelbaum and Zeltyn [24], and Reed and Tezcan [29]. The M/M/N + G
system in the efficiency-driven regime was analyzed by Whitt [32]; for a summary of performance measures of
this system, see Mandelbaum and Zeltyn [23]. Recently, fluid limits of many-server queues with abandonment
were considered in Kang and Ramanan [18]. Independently of our work, many-server queues with customer
abandonment were investigated by Dai and He [7], where the focus parallels our Lemma 3.8 (the authors
establish a relation between the abandonment-count and queue-length processes). The literature on queues with
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abandonments is extensive and includes models with various features; we refer the reader to the discussions in
Garnett et al. [12] and Zeltyn [33].

1.3. Contributions. We consider a G/GI/N +GI system in the QED regime. The limiting scaled number-
of-customers-in-system process is described in terms of a nonlinear operator (Corollary 4.1); a corresponding
result for the limiting scaled waiting-time processes (virtual and offered) is obtained as well (Corollary 4.2).
In the case when there is no abandonment, our operator coincides with the one earlier obtained in Reed [27].

The proofs of our main results are based on two relations: (i) between corresponding systems with and
without abandonment (Proposition 3.1), and (ii) between the queue-length and offered-waiting-time processes
(Lemma 3.8). The first relation, in conjunction with results from Reed [27], is used to obtain upper bounds for
the queue-length and waiting-time processes; the bounds are tight enough to yield the exact orders of magnitude
for QED convergence. This enables us to approximate the abandonment process, properly centered and scaled
(see (14) and Lemma 3.4). The approximation in (14), in turn, reveals the QED limit of the abandonment
process, which paves the way to other QED limits. Relation (ii) is central in our paper because it allows one to
circumvent the complex relation between the queue-length and the abandonment processes, which is necessary
for obtaining limits of queue lengths. Indeed, the relation is complex because abandonments are determined
by (offered) waiting times which, in turn, depend on queue length via a “first-passage-time” operator, as in
Puhalskii [25] and Talreja and Whitt [30]. Still, one cannot directly use Puhalskii [25] or Talreja and Whitt [30]
to deduce limits of waiting times from those of queue lengths since we could not analyze the latter in isolation.
This is in contrast to Reed [27], which first derives limits of queue length, then uses Puhalskii [25] to deduce
directly limits of waiting times.

To summarize, Lemma 3.8 shows that queue length and waiting times are asymptotically “close.” Therefore,
via Lemma 3.4 and (14), we express the abandonment process in terms of queue length. This results in rep-
resenting the queue length in terms of itself, which is resolved through a sample-path mapping, as introduced
in (25).

The above provides a justification for the need to develop techniques and tools that are not required in
Reed [27], who analyzed the QED G/GI/N queue. More specifically, for our QED G/GI/N + GI queue,
queue length and waiting times must be analyzed jointly, as already discussed. Then, the mapping (25) that
characterizes the limiting queue-length processes generalizes the one in Reed [27]. (A mapping corresponding
to waiting times is introduced in (34).) Our general result can be made explicit (see §5) in two special cases
that have not yet been analyzed: Example 5.2 provides functional limit theorems that correspond to and further
generalize Zeltyn [33] and Zeltyn and Mandelbaum [34], which considered M/M/N + GI in steady state;
Example 5.3 adds abandonments to Mandelbaum and Momčilović [21], which considered process limits for
G/D/N . Finally, our results demonstrate that the role of the patience distribution in the QED regime is captured
merely by the value of its density at the origin. This is practically important since patience data is censored
(only lower bounds for patience are available for served customers) and possibly highly censored (e.g., 3%
abandoning). We thus suggest an estimator for the patience density at the origin, based on a transient analogue
of the steady-state relation between the probability of abandonment and the expected waiting time (Mandelbaum
and Zeltyn [22]).

1.4. Contents. The paper is organized as follows. In the next section we describe the model and introduce
the QED regime. Section 3 contains preliminaries; in particular, we discuss a relationship between the systems
with and without abandonment, the infinite-service process associated with the arrival and service processes,
processes associated with initial conditions and abandonment, the queue-lenth process, and a relationship between
the queue length and offered waiting time. The main results of the paper are presented in §4. Examples are
discussed in §5, future research is outlined in §6, and some proofs are provided in §7.

1.5. Notation. Denote by D601�5 the space of all real-valued functions on 601�5 that are right continuous
with left limits (r.c.l.l.), endowed with the standard Skorohod J1 topology. The J1 metric is denoted by dJ1

4 · 1 · 5
and the uniform metric u is defined by the uniform norm

�x�T = sup
0≤t≤T

�x4t5�1

for x ∈D601�5 and T ≥ 0; similarly, the L1 metric is defined by the L1 norm

dT
L14x1 y5=

∫ T

0
�x4t5− y4t5�dt1 (1)
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for x1 y ∈ D601�5 and T ≥ 0. Product metric spaces 4Dk601�51dk
J1
5 and 4Dk601�51 uk5 are defined by

4D601�5×· · ·×D601�51dJ1
×· · ·×dJ1

5 and 4D601�5×· · ·×D601�51 u×· · ·×u5, respectively; dJ1
×· · ·×dJ1

and u× · · · × u refer to the corresponding maximum metrics. Let ⇒ denote convergence in distribution—for
stochastic processes in D601�5, as well as for random variables in �. Let 18·9 be the usual indicator func-
tion and e = 8e4t5 = t1 t ≥ 09 be the identity map. The composition map is denoted by �; i.e., for 4x1 y5 ∈

D601�5×D601�5, x � y is defined by 4x � y54t5= x4y4t55, t ≥ 0. For x1 y ∈�, x+ denotes the positive part of
x, and x∧ y = min8x1 y9.

2. Assumptions

2.1. The model. We consider a sequence of first-come, first-served (FCFS) G/GI/N +GI queues indexed
by the number of servers N . Customers arriving after t = 0 are indexed by natural numbers in an increasing
order of their arrival times. Customer i arrives to the system at time ti > 0 and two quantities are associated with
it: the service requirement si and patience pi. The service requirements of customers, 8si1 i ≥ 19, are independent
and identically distributed (i.i.d.), characterized by a distribution function F , which does not vary with N (set
F̄ = 1 − F ). The sequence 8pi1 i ≥ 19 is i.i.d. with a distribution GN for the N th system. For simplicity of
notation, we shall not index arrival times, service requirements, and customers’ patience by N—this dependency
will be implicit.

Define AN 4t5, t ≥ 0, to be the number of arrivals in the N th system over the time interval 601 t7. The
process AN = 8AN 4t51 t ≥ 09 is r.c.l.l., nondecreasing, nonnegative, integer valued, with jumps of size 1 such
that AN 405= 0 and AN 4t5 <� for all t ≥ 0, almost surely (a.s.). The arrival process is related to the customer
arrival times 8ti1 i ≥ 19 by ti = inf8t ≥ 02 AN 4t5 ≥ i9, i ≥ 1. Define �N = 8�N 4t51 t ≥ 09 by �N 4t5 = tAN 4t5 for
t ≥ t1 and �N 4t5= 0 for t ≤ t1; �N 4t5 is the time of the last arrival prior to t.

At time t = 0, there are qN
0 initial customers in the system, labeled by −qN

0 1−qN
0 + 11 : : : 1−1. Those with

indices −qN
0 1−qN

0 + 11 : : : 1−4qN
0 − N5+ − 1 are in service with i.i.d. service requirements drawn from the

distribution F∗, the residual distribution associated with F :

F∗4x5=�
∫ x

0
F̄ 4u5du1 (2)

where �−1 = Ɛ s1 is the mean service, which we assume exists (also set F̄∗ = 1 −F∗). The remaining 4qN
0 −N5+

initial customers (indexed by −4qN
0 −N5+1−4qN

0 −N5+ +11 : : : 1−1, if exist) have independent service require-
ments distributed according to F . However, their patience is infinite, i.e., p−i ≡ � for i = 1121 : : : 1 4qN

0 −N5+.
This assumption is convenient for the analysis while being nonrestrictive, as argued at the end of this section.

Let vi denote the offered waiting time of the ith customer—the amount of time the customer awaits service
if the customer would have been infinitely patient (pi = �). The virtual waiting time V N 4t5 at time t ≥ 0 is the
amount of time (measured beyond t) until one of the servers becomes idle, provided no new arrivals would have
occurred after time t; by definition, V N 4t5= 0 if there exists an idle server at time t. The random variable V N 4t5
captures the amount of work in the queue at time t. (Note that a service completion that is immediately followed
by a new service initiation does not render a server idle.) We set V N = 8V N 4t51 t ≥ 09. The actual waiting time
of the ith customer is then given by vi ∧ pi. That is, if customer i eventually enters service then vi is equal to
its actual waiting time and pi > vi; on the other hand, if customer i abandons the system then vi = V N 4ti−5
(note that only customers with positive indices can abandon) and vi ≥ pi. We use V N

←
= 8V N

←
4t51 t ≥ 09 to denote

the offered-waiting-time process, with V N
←
4t5= vAN 4t5, for t ≥ t1, and V N

←
4t5= v−qN0

for 0 ≤ t < t1. The offered-
waiting-time process is defined in such a way that if customer i arrives at time ti then vi = V N

←
4ti5 rather than

vi = V N 4ti−5. Both V N and V N
←

are r.c.l.l. processes.
Define QN = 8QN 4t51 t ≥ 09, where QN 4t5 is the total number of customers in the system at time t ≥ 0; this

number includes customers receiving service, customers awaiting service that eventually receive service, and
customers awaiting service that eventually abandon. For the purpose of analysis, it is convenient to consider
an alternative model in which customers who abandon the system, do so upon arrival (based on pi’s). Namely,
customers, upon arrival, “compare” their pi with vi and immediately abandon the system if pi ≤ vi; in this
model, all customers awaiting service receive service eventually. Such dynamics are easier to analyze, and it
turns out asymptotically equivalent to the original system. To distinguish between the two models, we introduce
HN = 8HN 1 t ≥ 09, where HN 4t5 is the number of customers at time t ≥ 0 in the system with abandonment upon
arrival.
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2.2. The QED regime. We assume that the sequence of processes 8AN 9 satisfies (i) a functional strong law
of large numbers (FSLLN):

AN /�N
→ e (3)

u.o.c. a.s., as N → �, where �N is the arrival rate in the N th system, and (ii) a functional central limit theorem
(FCLT):

ÂN 2=
1

√
N
4AN

−�N e5 ⇒ Â1 (4)

as N → �, where Â is a stochastic process with a.s. continuous sample paths.
The offered load to the N th system is �N /� and the traffic intensity is �N = �N /4�N5. In the QED regime,

the number of servers N and traffic intensity �N are related, in the limit as N → �, via
√
N41 −�N 5→ �1 (5)

for some −�<�<�. In this regime, it is expected that the (virtual) waiting time vanishes as N → �, hence
only the behavior of GN around the origin is relevant in the limit. To this end, we assume GN 405= 0 and

ĜN
→ �e1 (6)

u.o.c., as N → �, for some 0 ≤ � < �, where Ĝ4t5 2=
√
NGN 4t/

√
N5. The condition (6) is satisfied, for

example, when GN =G for all N , and G4t5/t → � as t ↓ 0 (or, equivalently, � is the right-hand derivative of G
at the origin).

The scaled and centered versions of QN and HN are defined by

Q̂N
= 8Q̂N 4t51 t ≥ 09=

1
√
N
4QN

−N5

and
ĤN

= 8ĤN 4t51 t ≥ 09=
1

√
N
4HN

−N51

respectively. As will be shown (see Theorem 4.1 and Corollary 4.1 in §4), the difference between Q̂N and ĤN

vanishes in the limit, as N → �. The scaled versions of the waiting time processes are given by

V̂ N
= 8V̂ N 4t51 t ≥ 09=�

√
NV N

and
V̂ N

←
= 8V̂ N

←
4t51 t ≥ 09=�

√
NV N

←
3

note that we use � in the scaling for waiting time processes, which amounts to measuring wait in units of
average service time.

2.3. Initial conditions. The number of customers in the system, at time t = 0, is given by
QN 405=HN 405= qN

0 . It is assumed that a scaled and centered version of qN
0 converges in distribution:

q̂N
0 =

1
√
N
4qN

0 −N5 ⇒ q̂01 (7)

as N → �. This condition (together with the assumption that the residual service times of customers in service
at t = 0 are i.i.d. with distribution F∗) is identical to the assumptions made in Reed [27]. Although our initial
condition is appealing in its simplicity, it is not the unique initial condition that induces the QED regime; e.g., see
Mandelbaum and Momčilović [21].

Next, we discuss an alternative model for patience of the initial customers. Namely, suppose that initial
customers (at t = 0) do not have infinite patience but rather the sequence 8p−i11 ≤ i ≤ 4qN

0 − N5+9 is i.i.d.,
drawn from GN . We argue that this variation does not impact our asymptotic results. To this end, let rN0 be
the number of initial customers that abandon the system:

rN0 =

4qN0 −N5+
∑

i=1

18p−i≤v−i9
3

i.e., 4qN
0 − rN0 5 initial customers awaiting service end up receiving service. Then, the following lemma holds:

Lemma 2.1. rN0 /
√
N ⇒ 0, as N → �.
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Proof. See §7.1. �
As a consequence, we have

4qN
0 −N − rN0 5/

√
N ⇒ q̂01

as N → �. Thus, the two models are asymptotically equivalent since (7) is the only assumption on the ini-
tial number of customers in the system and our results depend on the limit q̂0 only (see Theorem 4.1 and
Corollaries 4.1 and 4.2 in §4).

3. Preliminaries

3.1. No abandonment. Consider the sequence of queues indexed by N , as introduced in the previous sec-
tion. We next describe a corresponding sequence of systems without customer abandonment; entities associated
with the systems without abandonment are appended by the “dot” symbol. Namely, for the N th system with-
out abandonment, we set the initial and input parameters equal to those of the N th system with abandonment,
except that all customers have infinite patience in the new system: ȦN = AN ; q̇N

0 = qN
0 ; ṡi = si, i ≥ −q̇N

0 ; and
ṗi = �, i ≥ −q̇N

0 . To obtain upper bounds on the offered waiting times 8vi1 i ≥ 19, the following proposition
(Bhattacharya and Ephremides [2]) is used in conjunction with the results for the system without abandonment
(Reed [27]) (see Proposition 3.2 below). The process V̇ N

←
= 8V̇ N

←
4t51 t ≥ 09 is now a waiting-time process (as

opposed to V N
←

, which is an offered wait): if v̇i is the waiting time of customer i, then V̇ N
←
4t5= v̇ȦN 4t5, for t ≥ t1,

and V̇ N
←
4t5= v̇−1, for 0 ≤ t < t1.

Proposition 3.1 (Bhattacharya and Ephremides [2]). V N
←
4t5≤ V̇ N

←
4t5 and HN 4t5≤ ḢN 4t5= Q̇N 4t5, for

t ≥ 0.

Proof. For completeness, we provide a proof in §7.2, which is verified within the setup of the present
paper. �

The following result is a consequence of the preceding proposition and Proposition 5.3 in Reed [27].

Proposition 3.2. V N
←

⇒ 0, as N → �.

3.2. Infinite-server processes. For each N , consider a corresponding infinite-server process XN =

8XN 4t51 t ≥ 09, defined by the original arrival process AN and the sequence of service times 8si1 i ≥ 19, as
follows:

XN 4t5 =

AN 4t5
∑

i=1

18ti+si>t9

=

AN 4t5
∑

i=1

418si>t−ti9
− F̄ 4t − ti55+

∫ t

0
F̄ 4t − s5dAN 4s50

In addition, introduce X̂N = 8X̂N 4t51 t ≥ 09 to be a scaled and centered version of XN :

X̂N
=

1
√
N
4XN

−N�NF∗51 (8)

namely, for t ≥ 0,

X̂N 4t5=
1

√
N

AN 4t5
∑

i=1

418si>t−ti9
− F̄ 4t − ti55+

∫ t

0
F̄ 4t − s5dÂN 4s50 (9)

The following lemma, due to Krichagina and Puhalskii (see Theorem 3 in Krichagina and Puhalskii [20]),
characterizes the limiting infinite-server process. Earlier results on the infinite-server process were obtained by
Borovkov [4] and Iglehart [15]; for a recent measure-valued approach, see Decreusefond and Moyal [8] and Reed
and Talreja [28]. Define U = 8U4t1 x51 t ≥ 01 x ∈ 601179 to be a Kiefer process, that is a two-parameter continuous
centered Gaussian process on �+ × 60117, with covariance function Ɛ6U 4s1 x5U4t1 y57= 4s ∧ t54x∧ y− xy5.

Lemma 3.1 (Krichagina and Puhalskii [20]). The sequence of infinite-server processes 8X̂N 9 converges
in distribution in D601�5, as N → �, to the process X̂ = 8X̂4t51 t ≥ 09 defined by

X̂4t5=

∫ t

0
F̄ 4t − s5dÂ4s5+

∫ t

0

∫ t

0
18s+x≤t9 dU4�s1F 4x551 t ≥ 03

here U is a Kiefer process, Â and U are independent, and the first integral is to be interpreted as the result of
integration by parts.
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Recall the definition of offered waiting times 8vi1 i ≥ 19 from §2. It will turn out convenient to define a (scaled
and centered) process X̂N

ã = 8X̂N
ã 4t51 t ≥ 09 by

X̂N
ã 4t5=

1
√
N

AN 4t5
∑

i=1

418t−ti−vi<si≤t−ti9
− F̄ 4t − ti − vi5+ F̄ 4t − ti551 t ≥ 01 (10)

because this process relates to the (scaled and centered) number of customers with positive indices (those with
arrival times ti > 0) in the system at time t ≥ 0, via the following equality:

X̂N 4t5+ X̂N
ã 4t5−

∫ t

0
F̄ 4t − s5dÂN 4s5=

1
√
N

AN 4t5
∑

i=1

418si>t−ti−vi9
− F̄ 4t − ti − vi550

3.3. Initial-customers processes. In this subsection, we consider the infinite-server processes associated
with the customers initially in the system (at time t = 0). The process IN = 8IN 4t51 t ≥ 09 is defined by

IN 4t5=

qN0
∑

i=4qN0 −N5++1

18s−i>t9 +

4qN0 −N5+
∑

i=1

18s−i>t91

for t ≥ 0; recall that the random variables s−i in the two sums are distributed according to F∗ and F , respectively.
Hence, the scaled and centered version ÎN = 8Î4t51 t ≥ 09 is defined by

ÎN =
1

√
N
4IN − 4qN

0 ∧N5F̄∗ − 4qN
0 −N5+F̄ 51

namely, for t ≥ 0,

ÎN 4t5=
1

√
N

qN0
∑

i=4qN0 −N5++1

418s−i>t9 − F̄∗4t55+
1

√
N

4qN0 −N5+
∑

i=1

418s−i>t9 − F̄ 4t553 (11)

recall that Ɛ18s−i>t9 = F̄∗4t5, 4q
N
0 −N5+ < i ≤ qN

0 , and Ɛ18s−i>t9 = F̄ 4t5, 1 ≤ i ≤ 4qN
0 −N5+. The following lemma

characterizes the limiting behavior (as N → �) of ÎN .

Lemma 3.2. ÎN ⇒ Î = W � F∗, as N → �, where W = 8W4t51 t ∈ 601179 is a (standard) Brownian bridge,
that is, a centered Gaussian process with covariance function Ɛ6W4t5W4s57= t ∧ s − ts.

Proof. Define ÎN1 = 8ÎN1 4t51 t ≥ 09 and ÎN2 = 8ÎN2 4t51 t ≥ 09 such that ÎN = ÎN1 + ÎN2 ; i.e., ÎN1 4t5 and ÎN2 4t5 cor-
respond to the first and second summand in (11), respectively. From Lemma 3.1 in Krichagina and Puhalskii [20],
the random time change theorem and (7), it follows that ÎN1 ⇒ Î , as N → �. By the same argument ÎN2 ⇒ 0, as
N → �, since (7) implies 4qN

0 −N5+/N ⇒ 0, as N → �. �
Next we introduce ÎNã = 8ÎNã 4t51 t ≥ 09, where

ÎNã 4t5=
1

√
N

4qN0 −N5+
∑

i=1

418t−v−i<s−i≤t9 − F̄ 4t − v−i5+ F̄ 4t551 t ≥ 00 (12)

The relationship between ÎNã and ÎN is similar to the relationship between X̂N
ã and X̂N :

ÎN 4t5+ ÎNã 4t5=
1

√
N

qN0
∑

i=4qN0 −N5++1

418s−i>t9 − F̄∗4t55+
1

√
N

4qN0 −N5+
∑

i=1

418s−i>t−vi9
− F̄ 4t − vi551 (13)

for t ≥ 0, which is the (scaled and centered) number of customers with negative indices that are in the system at
time t ≥ 0. Note that the sum in (12) consists of elements corresponding to customers awaiting service at time
t = 0 only; this is due to the fact that v−i = 0 for 4qN

0 −N5+ < i ≤ qN
0 by definition. The following lemma states

that the process X̂N
ã + ÎNã vanishes as N → �.

Lemma 3.3. X̂N
ã + ÎNã ⇒ 0, as N → �.

Proof. See §7.3. �
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3.4. Abandonment. Throughout the present section, we consider processes that correspond to the system
with abandonment upon arrival (see the discussion in §2). This system is easier to analyze than the one where
customers abandon after waiting. However, as already noted, the two systems are equivalent in the QED regime.

The infinite-server process XN was constructed from all arriving customers. Now, let ZN = 8ZN 4t51 t ≥ 09 be
the infinite-server process induced only by arrivals that do abandon, namely,

ZN 4t5=

AN 4t5
∑

i=1

18ti+si>t918pi≤vi9
1 t ≥ 00

Consequently, the scaled and centered version ẐN = 8ẐN 4t51 t ≥ 09 is defined by

ẐN 4t5=
1

√
N

(

ZN 4t5−

∫ t

0
F̄ 4t − s5GN 4V N

←
4s55dAN 4s5

)

1 t ≥ 03 (14)

the independence of service requirements, customer patience, and the arrival process, together with the indepen-
dence of 4si1 pi5 and vi, yield

Ɛ ẐN 4t5 =
1

√
N

Ɛ
AN 4t5
∑

i=1

418ti+si>t918pi≤vi9
− F̄ 4t − ti5G

N 4vi55

=
1

√
N

Ɛ
AN 4t5
∑

i=1

4Ɛ618si>t−ti9
� ti7Ɛ618pi≤vi9

� vi7− F̄ 4t − ti5G
N 4vi55= 01 (15)

where the second equality is due to Ɛ618si>t−ti9
� ti7= F̄ 4t− ti5 and Ɛ618pi≤vi9

� vi7=GN 4vi5. The next lemma states
that the process ẐN is negligible in the limit, as N → �. The lemma is based on the assumptions GN 405 = 0
and � <�. During time intervals when the offered waiting time is positive, the rate at which customers abandon
is proportional to

√
N (for large N ), which is negligible relative to the total arrival rate �N , the latter being

linear in N .

Lemma 3.4. ẐN ⇒ 0, as N → �.

Proof. See §7.4. �
Similarly, the infinite-server process due to customers who do not abandon will be denoted by Y N =

8Y N 4t51 t ≥ 09=XN −ZN , with

Y N 4t5=

AN 4t5
∑

i=1

18ti+si>t918pi>vi9
0

Because customers abandon the system at a rate proportional to
√
N , the scaling and centering for Y N is the

same as for the process XN in (8). Thus, Ŷ N = 8Ŷ N 4t51 t ≥ 09 with

Ŷ N
=

1
√
N
4Y N

−N�NF∗51 (16)

which yields

Ŷ N 4t5= X̂N 4t5− ẐN 4t5−

∫ t

0
F̄ 4t − s5

√
NGN 4V N

←
4s55dǍN 4s51 t ≥ 01 (17)

where ǍN = 8ǍN 4t51 t ≥ 09 is a linearly-scaled arrival process:

ǍN
=AN /N 0

In parallel with X̂N
ã and ÎNã , define Ŷ N

ã = 8Ŷ N
ã 4t51 t ≥ 09 by Ŷ N

ã = X̂N
ã − ẐN

ã , where ẐN
ã = 8ẐN

ã 4t51 t ≥ 09 is
given by

ẐN
ã 4t5=

1
√
N

AN 4t5
∑

i=1

418t−ti−vi<si≤t−ti9
− F̄ 4t − ti − vi5+ F̄ 4t − ti5518pi≤vi9

1 t ≥ 00 (18)

Lemma 3.5. Ŷ N
ã + ÎNã ⇒ 0, as N → �.

Proof. See §7.5. �
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Finally, we introduce AN
F

= 8AN
4
4t51 t ≥ 09—the arrival process of customers that do not abandon the system,

i.e., the customers that are eventually served; this process, at time t ≥ 0, is given by

AN
F
4t5=

AN 4t5
∑

i=1

18pi>vi9
0

A corresponding scaled and centered version ÂN
F

= 8ÂN
F
4t51 t ≥ 09 is defined by

ÂN
F

=
1

√
N
4AN

F
−�N e53

the latter process is also used in the proof of Lemma 3.3 (see §7.3). The last lemma in this subsection stems from
the fact that Â has a.s. continuous sample paths and V N vanishes in the limit, as N → �. The process 4�N +V N

←
5

arises when the relation between HN and V N
←

is considered. In particular, V N
←
4t5= V N

←
4�N 4t55= V N

←
� �N 4t5, for

t ≥ 0, is defined not by HN � �N 4t5 only but rather by HN � �N 4t5 and HN � 4�N +V N
←
54t5 jointly (see the proof

of Lemma 3.8).

Lemma 3.6. ÂN
F

� 4�N +V N
←
5− ÂN

F
� �N ⇒ 0, as N → �.

Proof. The value of the process ÂN
F

, at time t ≥ 0, is given by

ÂN
F
4t5= ÂN 4t5−

1
√
N

AN 4t5
∑

i=1

18pi≤vi9
1

and, thus, ÂN
F

� 4�N +V N
←
5− ÂN

F
� �N = ÂN � 4�N +V N

←
5− ÂN � �N − ÂN

ã , where ÂN
ã = 8ÂN

ã 4t51 t ≥ 09 which, for
t ≥ 0, satisfies

ÂN
ã 4t5 =

1
√
N

AN 4�N 4t5+V N
←4t55

∑

i=AN 4�N 4t55+1

18pi≤vi9

≤
1

√
N

AN 4t+V N
←4t55

∑

i=AN 4t5+1

18pi≤vi9
3

the inequality follows from the monotonicity of AN 4 · 5, �N 4t5 ≤ t, and AN 4�N 4t55 = AN 4t5. Assumption (4)
and Proposition 3.2 imply ÂN � 4e + V N

←
5 − ÂN ⇒ 0 and ÂN

ã ⇒ 0, as N → �. The statement of the lemma
follows. �

3.5. Queue length. The number of customers in the system at time t ≥ 0 can be expressed as the sum of
indicator functions (Borovkov [4], Krichagina and Puhalskii [20], Reed [27]):

HN 4t5=

AN 4t5
∑

i=1

18ti+si+vi>t918pi>vi9
+

qN0
∑

i=4qN0 −N5++1

18s−i>t9 +

4qN0 −N5+
∑

i=1

18s−i+v−i>t90 (19)

On the other hand, Proposition 2.1 in Reed [27] renders

∫ t

0
4HN 4t − s5−N5+ dF 4s5=

AN 4t5
∑

i=1

4F̄ 4t − ti − vi5− F̄ 4t − ti5518pi>vi9
+

4qN0 −N5+
∑

i=1

4F̄ 4t − v−i5− F̄ 4t550

Then, combining the preceding equality and (19) yields, for t ≥ 0,

HN 4t5 =

AN 4t5
∑

i=1

418ti+si+vi>t9 − F̄ 4t − ti − vi5+ F̄ 4t − ti5518pi>vi9
+

qN0
∑

i=4qN0 −N5++1

418s−i>t9 − F̄∗4t55

+

4qN0 −N5+
∑

i=1

418s−i+v−i>t9 − F̄ 4t − v−i55+ 4qN
0 −N5+F̄ 4t5+ 4qN

0 ∧N5F̄∗4t5+

∫ t

0
4HN 4t − s5−N5+ dF 4s51
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or, equivalently, in terms of scaled processes (see (7), (10), (13), (16), and (18)), for t ≥ 0:

ĤN 4t5 = 4q̂N
0 5

+4F̄ 4t5− F̄∗4t55+ q̂N
0 F̄∗4t5+ ÎN 4t5+ ÎNã 4t5+ Ŷ N 4t5+ Ŷ N

ã 4t5

+

∫ t

0
4ĤN 4t − s55+ dF 4s5−

√
N41 −�N 5F∗4t50 (20)

We now recall an operator, �2 D601�5→D601�5, which was introduced in Reed [27]; it plays a fundamental
role in the analysis of QED queues without abandonment.

Definition 3.1 (Reed [27]). For each x ∈D601�5, let �4x5 be the unique solution y to

y4t5= x4t5+

∫ t

0
y+4t − s5dF 4s51 t ≥ 00

Then, (20) can be rewritten in terms of the operator �:

ĤN
= �

(

4q̂N
0 5

+4F̄ − F̄∗5+ q̂N
0 F̄∗ + ÎN + ÎNã + Ŷ N

+ Ŷ N
ã −

√
N41 −�N 5F∗

)

0 (21)

The next proposition establishes L1-continuity of �. In Reed [27], only continuity of � in the topology of
uniform convergence was considered. The additional mode of L1-continuity is needed in order to relate ĤN and
V̂ N

←
in Lemma 3.8 (via Lemma 3.7). In particular, due to (14) (see also (17)), rather than approximating V̂ N

←
by

ĤN directly, it suffices to only relate integrals of these processes over finite time intervals.

Proposition 3.3. The function �2 D601�5 → D601�5 is Lipschitz continuous in the L1 topology over
bounded intervals.

Proof. See §7.6. �
We now proceed to show that the scaled number-in-system process ĤN does not change significantly (in

the L1 sense, as N → �) over time intervals during which individual customers await service. Note that
t = �N 4s5+V N

←
4s5 is the time when the last arriving customer before t = s were to enter service if it had infinite

patience (recall that V N
←

is the offered-waiting-time process).

Lemma 3.7. We have, as N → �,
{

∫ t

0

∣

∣ĤN
� 4�N

+V N
←
54s5− ĤN 4s5

∣

∣ds1 t ≥ 0
}

⇒ 00

Proof. See §7.7. �

3.6. Offered waiting time. The following lemma relates the (limiting and scaled) queue-length and offered-
waiting-time processes in the QED regime. Recall that waiting is measured in units of average service time.

Lemma 3.8. We have, as N → �,
{

∫ t

0

∣

∣4ĤN 4s55+ − V̂ N
←
4s5
∣

∣ds1 t ≥ 0
}

⇒ 00

Remark 3.1. The lemma relates the queue-length and offered-waiting-time processes without a priori requir-
ing that either of the processes converges weakly.

Proof. For t ≥ 0, let DN 4t5 be the number of service completions during the time interval 601 t7. First, by
definition, V N

←
4t5 satisfies, for t ≥ 0,

4HN 4�5+ 18p≤V N
←4t59 −N5+ =DN 4� +V N

←
4t55−DN 4�51 (22)

where � ≡ �N 4t5 is the time of the last arrival prior to time t and p ≡ pN 4t5 = pAN 4t5 is the patience of the
corresponding customer (set p0 = �). The presence of the indicator function in (22) is due to the fact that the
customer arriving at time � might abandon the system on arrival (if p ≤ V N

←
4�5). Recall that, by definition,

V N
←
4t5= V N

←
4�5 is the offered waiting time of the customer with index AN 4t5, i.e., the waiting time this customer

would experience if it were not to abandon. The sum HN 4�5+ 18p≤V N
←4t59 represents the number of customers in

the system at time � if the patience of the arriving customer is infinite. Second, the number of the customers in
the system at time � +V N

←
4t5= � +V N

←
4�5 can be expressed as a linear combination of arrivals and departures:

HN 4� +V N
←
4t55 = HN 4�5+AN

F
4� +V N

←
4t55−AN

F
4�5−DN 4� +V N

←
4t55+DN 4�5

= HN 4�5+AN
F
4� +V N

←
4t55−AN

F
4�5− 4HN 4�5−N + 18p≤V N

←4t595
+1
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�
XN

V←
N HN

IN

+AN, {si, i ≥ 1}, {pi, i ≥ 1}

q0
N, {s– i, 1 ≤ i ≤ q0

N}

A�
N, YN

ZN

pi ≷ vi

Figure 1. Relations between various processes/variables.

where the second equality is due to (22). Considering whether V N 4t5 > 0 or V N 4t5= 0 in the preceding equation
results in

4HN 4� +V N
←
4t55−N5+ =AN

F
4� +V N

←
4t55−AN

F
4�5− 18p≤V N

←4t5918HN 4�+V N
←4t55=N90 (23)

Third, centering and rescaling the quantities in (23) gives rise to

4ĤN 4t55+ − V̂ N
←
4t5 = 4ĤN 4t55+ − 4ĤN 4� +V N

←
4t555+ + ÂN

F
4� +V N

←
4t55− ÂN

F
4�5

− 41 −�N 5V̂ N
←
4t5− 18p≤V N

←4t5918HN 4�+V N
←4t55=N9/

√
N0 (24)

Next, note that (5) and Proposition 3.2 yield, as N → �,

41 −�N 5V̂ N
←

⇒ 00

Finally, the statement follows from (24), the preceding limit and Lemmas 3.6 and 3.7. �

3.7. Summary of notation. We find it helpful to summarize, in Figure 1, various relations among the
processes that have been introduced in this section. Process ÎN corresponds to customers that are initially in the
system at time t = 0, and X̂N is the infinite-server process that corresponds to the customers that arrive after
t = 0. Based on a comparison of customer patience and offered waiting times, X̂N splits into the abandonment
process ÎN and the infinite-server process Ŷ N due to customers that receive service (do not abandon). Reed’s
operator � provides a description of the queue-length process ĤN in terms of Ŷ N and ÎN . Finally, the queue-
length process is closely related to the (offered) waiting-time process V̂ N

←
.

4. Results. This section contains the main results of the paper. A central role is played by a map-
ping �, applicable to the model with abandonment, which is a generalized version of the mapping � in
Reed [27]. The two mappings coincide for � = 0 (no abandonment in the limit). Recall that the waiting time
vanishes in the limit (Proposition 3.2), and hence, the sequence of patience distributions 8GN 9 manifests itself
only through the parameter � (cf. (6)).

Definition 4.1. The mapping �2 D601�5→D601�5 is such that �4x5, for each x ∈D601�5, is the unique
solution y to

y4t5= x4t5+

∫ t

0
y+4t − s5dF 4s5−

�

�

∫ t

0
y+4t − s5dF∗4s51 t ≥ 00 (25)

The next proposition guarantees that � is well defined and summarizes some of its properties.

Proposition 4.1. For each x ∈ D601�5 there exists a unique solution �4x5 to (25). The function
�2 D601�5→D601�5 is Lipschitz continuous in the topology of uniform convergence over bounded intervals
and it is measurable with respect to the Borel �-field generated by the Skorohod J1 topology.

Proof. See §7.8. �

4.1. Queue length. The following is the main result of our paper.

Theorem 4.1. For the QED G/GI/N +GI queue, with abandonments upon arrivals, as N → � we have

ĤN
⇒ �4q̂+

0 4F̄ − F̄∗5+ q̂0F̄∗ + Î + X̂ −�F∗50
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Remark 4.1. In the context of Theorem 4.1, the last term in (25) captures the effect of customers abandon-
ment in the QED regime; note that the integration is with respect to the residual distribution F∗ rather than the
service distribution F . Namely, � quantifies the negative feedback due to abandonment (�/� > 0): the higher
the number in the system, the higher the offered waiting time, the higher the abandonment rate, the lower the
effective arrival rate of customers that eventually receive service, and the lower the number in the system; on the
other hand, the lower the number in the system, the lower the offered waiting time, the lower the abandonment
rate, the higher the arrival rate of customers that eventually receive service, and the higher the number in the
system.

Proof. Using (17) and Definition 4.1, equality (21) can be rewritten as

ĤN
=�4M̂N

+ ÎN + X̂N
+ ã̂N 51

where
M̂N

= 4q̂N
0 5

+4F̄ − F̄∗5+ q̂N
0 F̄∗ −

√
N41 −�N 5F∗1 (26)

and ã̂N = 8ã̂N 4t51 t ≥ 09 is given by

ã̂N 4t5= ÎNã 4t5+ Ŷ N
ã 4t5− ẐN 4t5−

∫ t

0
F̄ 4t − s5

√
NGN 4V N

←
4s55dǍN 4s5+

�

�

∫ t

0
4ĤN 4t − s55+ dF∗4s50

Combining Lemmas 3.4 and 3.5 together with (2) and Lemma 3.8 yields, as N → �,

ã̂N
⇒ 00 (27)

From (5) and (7) it follows that, as N → �,

M̂N
⇒ M̂ = q̂+

0 4F̄ − F̄∗5+ q̂0F̄∗ −�F∗0 (28)

Now, we argue that, as N → �, jointly

4M̂N 1 ÎN 1 X̂N 1 ã̂N 5 ⇒ 4M̂1 Î 1 X̂1053 (29)

note that the convergence of marginals is due to (28), Lemmas 3.1 and 3.2, and (27). To this end, introduce
ĬN = 8ĬN 4t51 t ≥ 09 with

ĬN 4t5=
1

√
N

qN0
∑

i=qN0 −N+1

418s̆−i>t9 − F̄∗4t551

where s̆−i = s−i for 4qN
0 −N5+ < i ≤ qN

0 , and 8s̆−i1 q
N
0 −N < i ≤ 4qN

0 −N5+9 is an i.i.d. sequence drawn from
F∗ and independent of all service requirements, arrival processes, and qN

0 . Observe that the preceding sum
contains exactly N elements (rather than a random number that depends on qN

0 ), and the N -element sequence
8s̆−i1 q

N
0 −N < i ≤ qN

0 9 is independent of qN
0 by construction (qN

0 is just an index in this case, and the elements
of the sequence are independent of qN

0 ); as a consequence, ĬN and qN
0 are independent. Then the definitions of

ĬN and ÎN imply, for t ≥ 0,

ĬN 4t5− ÎN 4t5=
1

√
N

4qN0 −N5+
∑

i=qN0 −N+1

418s̆−i>t9 − F̄∗4t55−
1

√
N

4qN0 −N5+
∑

i=1

418s−i>t9 − F̄ 4t551

that, in turn, leads to (see the proof of Lemma 3.2)

4ĬN 1 ÎN 5 ⇒ 4Î 1 Î 51 (30)

as N → �. The limit 4M̂N 1 ĬN 1 X̂N 105⇒ 4M̂1 Î 1 X̂105, as N → �, is due to the convergence of marginals and
the independence of the prelimit processes M̂N , ĬN , and X̂N (Whitt [31, Theorem 11.4.4]); the independence
is due to the fact that M̂N depends on qN

0 only (see (26)), X̂N depends only on the quantities associated with
customers that are not initially in the system (see (9)), and Ĭ is independent of both qN

0 and AN , 8si1 i ≥ 19.
Furthermore, the following holds:

dJ1
44M̂N 1 ĬN 1 X̂N 1051 4M̂N 1 ÎN 1 X̂N 1 ã̂N 55 ≤ dJ1

4ĬN 1 ÎN 5+dJ1
401 ã̂N 5

⇒ 01
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as N → �, where the limit is due to (30), (27), and Theorem 11.4.8 in Whitt [31]. Finally, (29) follows from
the preceding limit and Theorem 11.4.7 in Whitt [31].

The rest of the proof is almost identical to the corresponding part of the proof of Theorem 5.1 in Reed [27].
Specifically, the space D4601�5 is separable under the product topology (e.g., see Theorem 11.4.1 in Whitt [31]);
therefore, due to (29) and the Skorohod representation theorem (e.g., see Teorem 3.2.2 in Whitt [31]), there exists
an alternative probability space with 84M̃N 1 ĨN 1 X̃N 1 ã̃N 59N and 4M̃1 Ĩ 1 X̃105 defined on it with the following
properties:

4M̃N 1 ĨN 1 X̃N 1 ã̃N 5
d
= 4M̂N 1 ÎN 1 X̂N 1 ã̂N 51

4M̃1 Ĩ 1 X̃105
d
= 4M̂1 Î 1 X̂1051 (31)

M̃N 1 ĨN 1 X̃N 1 ã̃N 5 → 4M̃1 Ĩ 1 X̃105 a.s.1

as N → �. It should be noted that the last limit also holds under the uniform metric (not just J1 metric) since
both Î and X̂ have continuous sample paths and the set of discontinuity points of MN is a subset of discontinuity
points of F , for all N . Hence, we have, as N → �,

M̃N
+ ĨN + X̃N

+ ã̃N
→ M̃ + Ĩ + X̃ a.s. (32)

under the uniform metric.
Define H̃N = �4M̃N + ĨN + X̃N + ã̃N 5 and note that, because of the measurability property of � (Proposi-

tion 4.1) and (31), we have
H̃N d

= ĤN 0 (33)

Moreover, (32) and Proposition 4.1 (continuity part) yield, as N → �,

H̃N
=�4M̃N

+ ĨN + X̃N
+ ã̃N 5→�4M̃ + Ĩ + X̃5 a.s.

The fact that almost sure convergence implies convergence in distribution and convergence in the uniform
metric implies convergence in the J1 metric, together with (33), Proposition 4.1 (the measurability part) and the
preceding limit yield

ĤN
⇒ �4M̂ + Î + X̂51

as N → �. The statement of the theorem now follows. �
Recall that QN is the process of the total number of customers in the system when abandonments occur after

waiting (as opposed to upon arrival). In view of Theorem 4.1, the following result indicates that, in the QED
regime, the scaled number of customers awaiting service that eventually abandon becomes negligible (relative
to the scaled total number of customers awaiting service) as the number of servers increases.

Corollary 4.1. For the QED G/GI/N +GI queue, with abandonments after waiting, we have, as N → �,

Q̂N
⇒ �4q̂+

0 4F̄ − F̄∗5+ q̂0F̄∗ + Î + X̂ −�F∗51

where the limit coincides with that in Theorem 4.1.

Proof. The processes Q̂N and ĤN are related via Q̂N = ĤN + R̂N , where R̂N = 8R̂N 4t51 t ≥ 09 is given by

R̂N 4t5=
1

√
N

AN 4t5
∑

i=1

18ti+pi>t918pi≤vi9
0

Thus, in view of Theorem 4.1, it is sufficient to prove R̂N ⇒ 0, as N → �. To this end, for any positive c and �,
the following inequality holds for all sufficiently large N :

�6�R̂N
�T > �7≤�6�R̂N

4c1�5�T > �7+�6�V̂ N
←

�T > c71

where R̂N
4c1�5 = 8R̂N

4c1�54t51 t ≥ 09 is an infinite-server process with deterministic service times and

R̂N
4c1�54t5=

1
√
N

AN 4t5
∑

i=1

18ti+�>t918pi≤c/4�
√
N590

Now, Theorem 3 in Krichagina and Puhalskii [20] implies R̂N
4c1�5 ⇒ 8c�4t∧ �51 t ≥ 09, as N → �. On the other

hand, Proposition 3.2 yields
lim
c→�

lim sup
N→�

�6�V̂ N
←

�T > c7= 00

Therefore, given � > 0, for any � > 0 it is possible to select c and � such that �6�R̂N�T > �7 < �, for all N
large enough. Consequently, R̂N ⇒ 0, as N → �, and the corollary follows. �
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4.2. Waiting time. Now we introduce a mapping � that is the analogue of � for the virtual-waiting-time
process.

Definition 4.2. The mapping �2 D601�5→D601�5 is such that �4x5, for each x ∈D601�5, is the unique
solution y to

y4t5=

(

x4t5+

∫ t

0
y4t − s5dF 4s5−

�

�

∫ t

0
y4t − s5dF∗4s5

)+

1 t ≥ 00 (34)

Remark 4.2. Note that, for x ∈D601�5, if y =�4x5 then y+ = �4x5, i.e., �4x5= 4�4x55+.
The next corollary characterizes the limiting waiting-time processes. Let LN = 8LN 4t51 t ≥ 09 be the abandon-

ment process in the N th system, that is LN 4t5 is the number of customers that abandon by time t.

Corollary 4.2. For the QED G/GI/N +GI queue we have, as N → �,

V̂ N
⇒ V̂ = �4q̂+

0 4F̄ − F̄∗5+ q̂0F̄∗ + Î + X̂ −�F∗5

and

V̂ N
←

⇒ V̂ 0

Remark 4.3. Note that, in view of Remark 4.2, the virtual waiting time V̂ and the queue length Q̂ are
related via

V̂ = Q̂+0

(Recall that V̂ N = �
√
NV N and V̂ N

←
= �

√
NV N

←
. In some of the literature, scaling that does not include the

prefactor � is used, resulting in V̂ = Q̂+/� rather than V̂ = Q̂+ as in the present paper.)
Proof. Recall that, from the definition of the process AF, it follows that, for t ≥ 0,

ÂN
F
4t5= ÂN 4t5−

1
√
N

∫ t

0
GN 4V N

←
4s55dAN 4t50

The preceding limits, (3), (4), (6), Lemma 3.8, and Theorem 4.1 yield, as N → �,

ÂN
F

⇒

{

Â4t5− �
∫ t

0
Ĥ+4s5ds1 t ≥ 0

}

0

Now, let DN = 8DN 4t51 t ≥ 09 be the departure process in the N th system, i.e., DN 4t5 is the number of customers
that receive service by time t. Then DN and LN can be expressed in terms of the arrival and queue-length
processes:

DN 4t5=AN
F
4t5−HN 4t5+ qN

0

and

LN 4t5=AN 4t5−AN
F
4t5+HN 4t5−QN 4t51

where t ≥ 0. These representations, (4.2), (4), Theorem 4.1, and Corollary 4.1, imply, as N → �, that
4DN −�N e5/

√
N ⇒ 8D̂4t51 t ≥ 09, LN /

√
N ⇒ 8L̂4t51 t ≥ 09 and LN /N → 0 u.o.c. a.s., where

D̂4t5= Â4t5− �
∫ t

0
Ĥ+4s5ds − Ĥ4t5+ q̂01 t ≥ 01

and

L̂4t5= �
∫ t

0
Ĥ+4s5ds1 t ≥ 00 (35)

Given the preceding limits, (3), (4), Corollary 4.1, the continuity of sample paths of Â, and the Lipschitz
continuity of � (Proposition 4.1), the virtual-waiting-time process V̂ N converges due to Talreja and Whitt [30]:
V̂ N ⇒ Q̂+ = 8Q+4t51 t ≥ 09, as N → �, where Q̂ is such that Q̂N ⇒ Q̂, as N → �. However, from Corollary 4.1
it follows that Q̂ =�4q̂+

0 4F̄ − F̄∗5+ q̂0F̄∗ + Î + X̂−�F∗5. The convergence of the offered-waiting-time processes
V̂ N

←
can be deduced from Puhalskii [25] because, in addition to convergence of the queue-legth process, we have

convergence of the arrival processes of customers that eventually receive service. �
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5. Examples
Example 5.1 (Estimating Patience). In any application of models with abandonment, there is the need to

estimate the patience distribution (Gans et al. [11]). Our results indicate that, in the QED regime, it suffices to
merely estimate �, the density of patience at the origin. The following corollary provides a theoretical justification
for our proposed estimator.

Corollary 5.1. For the G/GI/N +GI queue we have, as N → �,
{

√
N
LN 4t5

AN 4t5
1 t ≥ 0

}

⇒

{

�

�t

∫ t

0
Q̂+4s5ds1 t ≥ 0

}

0

Proof. The statement follows from (4), Corollary 4.1, and (35). �
The corollary suggests that an estimator for �, �̂, can be obtained in the following manner:

�̂ =
LN 4t5/AN 4t5

41/4�Nt55
∫ t

0 4Q
N 4s5−N5+ ds

0

The numerator is simply the fraction of customers abandoning up to time t; a practical approximation for the
denominator can be the average waiting time up to time t. The accuracy of such estimators remains an interesting
open problem.

We next consider two specific examples; both correspond to systems that have not yet been analyzed. The
first example generalizes Zeltyn [33] and Zeltyn and Mandelbaum [34], and the second example expands on
Mandelbaum and Momčilović [21].

Example 5.2 (G/M/N +GI). Consider a system with exponential service times, noting that F∗ = F . In
addition, suppose that the sequences of random arrival times 8tNi 9 satisfy, for some c > 0,

{

tN
�Nt� − t/�
√
Nc/�

1 t ≥ 0
}

⇒ B̂1 (36)

as N → �, where B̂ is a standard Brownian motion. (Note that there exists a sequence of arrival times for
each N , namely, the jump times of AN .) Then, ĤN ⇒ Ĥ and Q̂N ⇒ Q̂, as N → �, due to Theorem 4.1 and
Corollary 4.1, respectively. Here, Q̂ = Ĥ is the unique solution to

Q̂4t5= Î 4t5+ X̂4t5+ 4q̂0 +�5 exp8−�t9−�+ 4�− �5
∫ t

0
Q̂+4t − s5 exp8−�s9ds1 t ≥ 01 (37)

in which q̂0 is given in (7), Î in Lemma 3.2, and X̂ in Lemma 3.1. Similarly, due to Corollary 4.2, V̂ N ⇒ V̂ , as
N → �, where V̂ is the unique solution to

V̂ 4t5= 4Î4t5+ X̂4t5+ 4q̂0 +�5 exp8−�t9−�+ 4�− �5
∫ t

0
V̂ 4t − s5 exp8−�s9ds5+1 t ≥ 00

The definitions of IN and XN give rise to

1
√
N
4IN +XN

−�NN5= ÎN + X̂N
+ 4q̂N

0 +
√
N41 −�N 55F̄ 1 (38)

where F̄ 4t5= exp8−�t9, t ≥ 0. Because the service times are exponential, the process on the left-hand side of
the preceding equality weakly converges to Ŝ = 8Ŝ4t51 t ≥ 09, which satisfies Ŝ405= q̂0 +� and

dŜ4t5= −�Ŝ4t5dt +
√

�41 + c25dB4t51 t ≥ 03 (39)

here 8B4t51 t ≥ 09 is a standard Brownian motion (Krichagina and Puhalskii [20]). Now, (37) and (38) result in

dQ̂4t5= dŜ4t5− 4�4Q̂4t5− Ŝ4t5+�5− 4�− �5Q̂+4t55dt1

which, combined with (39), yields

dQ̂4t5 =







4�4Ŝ4t5−�5− �Q̂4t55dt +dX̂4t5 Q̂4t5 > 01

4�4Ŝ4t5−�5−�Q̂4t55dt +dX̂4t5 Q̂4t5≤ 01

=







−4��+ �Q̂4t55dt +
√

�41 + c25dB4t5 Q̂4t5 > 01

−4��+�Q̂4t55dt +
√

�41 + c25dB4t5 Q̂4t5≤ 03
(40)

the initial condition for Q̂ is Q̂405= q̂0.
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Finally, in the special case � = �, the operator � simplifies to �4x5 = x (see (25)) and, therefore, Q̂ = Ĥ =

q̂0 + Î+X̂−4q̂0 +�5F , with F 4t5= 1−exp8−�t9, t ≥ 0. Note that q̂0 + Î+X̂−4q̂0 +�5F = Ŝ−� is the limiting
scaled and centered infinite-server process with the initial condition taken to be q̂0; for the QED M/M/N +M
system, this relation holds even in the prelimit.

Example 5.3 4G/D/N +GI5. The deterministic service distribution F 4s5= 18s≥1/�9 implies a uniform resid-
ual distribution F∗4s5= 4�s5+ ∧1. Theorem 4.1 and Corollary 4.1 guarantee ĤN ⇒ Ĥ and Q̂N ⇒ Q̂, as N → �,
where Q̂ = Ĥ satisfies, for 0 ≤ t < 1/�,

Q̂4t5= q̂+

0 �t + q̂041 −�t5+ Î 4t5+ X̂4t5−��t − �
∫ t

0
Q̂+4t − s5ds1

while, for t ≥ 1/�,

Q̂4t5= X̂4t5−�+ Q̂+4t − 1/�5− �
∫ 1/�

0
Q̂+4t − s5ds3

as in the previous example, q̂0 is given in (7), Î in Lemma 3.2, and X̂ in Lemma 3.1. On the other hand,
Corollary 4.2 implies V̂ N ⇒ V̂ , as N → �, where V̂ is the unique solution to

V̂ 4t5= 4q̂+

0 �t + q̂041 −�t5+ Î 4t5+ X̂4t5−��t − �
∫ t

0
V̂ 4t − s5ds5+1 t ∈ 6011/�51

and

V̂ 4t5= 4X̂4t5−�+ V̂ 4t − 1/�5− �
∫ 1/�

0
V̂ 4t − s5ds5+1 t ≥ 1/�0

When comparing the present example with the QED G/D/N queue (no abandonment) (Jelenković et al. [17]),
one observes that having abandonments results in more complex dynamics. Specifically, whereas in Jelenković
et al. [17] the distribution of Q̂4t5 depends only on Q̂4t − 1/�5 (as far as Q̂ is concerned), here Q̂4t5 depends
on all values of Q̂ during the time interval 6t − 1/�1 t5. This is due to the presence of the residual service
distribution in the operators � and �.

6. Future research: Stationary distribution. Our analysis addresses the transient behavior of a QED sys-
tem with impatient customers. The stationary distributions of the queue length and the waiting time remain
unknown, as is the case for the corresponding system without abandonment; note that the system with impatient
customers remains stable (as t → �) for all finite values of the capacity parameter �. (A large-deviation char-
acterization of the stationary distributions for a QED queue without abandonments can be found in Gamarnik
and Momčilović [10].)

We observe that Example 5.2 is consistent with the results in Garnett et al. [12] on the stationary number-
in-system process (for the M/M/N + M system in the QED regime). Based on (37), it is thus tempting to
conjecture that, for the G/M/N +GI system, the stationary versions of number-in-system processes converge
weakly, in the QED regime, as N → �, to the process Q̃ = 8Q̃4t51 t ∈ �9, where Q̃ is the unique stationary
process that solves

Q̃4t5= X̃4t5−�+ 4�− �5
∫ t

−�

Q̃+4s5 exp8−�4t − s59ds3

here X̃ = 8X̃4t51 t ∈ �9 is the stationary version of the infinite-server process X̂ (see also Lemma 3.2).
Under assumption (36), X̃ satisfies dX̃4t5 = −�X̃4t5dt +

√

�41 + c25dB4t5, where 8B4t51 t ∈ �9 is a standard
Brownian motion (since Î vanishes as t → �; see Lemma 3.2, and Example 5.2 in §5). An example where
these assumptions (X̃ stationary and (36)) prevail is when the arrival process is stationary renewal and q̂0 has
the corresponding stationary distribution. A conjecture for the stationary distribution of q̂0 is provided in (41)
below; in the case of Poisson arrivals the (diffusion) stationary distribution of q̂0 was calculated in Zeltyn [33].
Consequently, Q̃ is a (piecewise) Ornstein–Uhlenbeck process (Q̃ satisfies (40), where Q̃ substitutes for Q̂), as
derived earlier in Garnett et al. [12] for the case c = 1 (Poisson arrivals). Based on the preceding and Browne and
Whitt [5], one can calculate the probability density function of Q̃4t5 (see also Garnett et al. [12], Zeltyn [33]):

fQ̃4t54q5= �f−4q518q≤09 + 41 −�5f+4q518q>091 (41)

where f−4q5= c̃ê′4c̃4q +�55/ê4c̃�5, f+4q5= c̃
√

�/�ê′4c̃4q
√

�/�+�
√

�/�55/ê4−c̃�
√

�/�5,

c̃ =

√

2
1 + c2

1
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ê and ê′ are the distribution and density functions of the standard normal random variable, respectively, and
� = f+405/4f+405+ f−4055. Furthermore, from the stochastic differential equation for Q̃, one deduces directly
that the stationary distribution of c̃Q̃4t5 is equal to the stationary distribution of the identically scaled limiting
queue length Q̃A4t5 in the Erlang-A model, but with the load parameter c̃�. This makes results on the Erlang-A
model, documented for example in Mandelbaum and Zeltyn [23], directly applicable to the QED G/M/N +GI
queue. For example,

�6wait > 07=�6Q̃4t5 > 07=
(

1 +

√

�

�

h4c̃�
√

�/�5

h4−c̃�5

)−1

and

Ɛ Q̃+4t5=
�

c̃�

(

h
(

c̃�
√

�/�
)

− c̃�
√

�/�
)

(

√

�

�
+

h4c̃�
√

�/�5

h4−c̃�5

)−1

1

where h4q5 = ê′4q5/41 − ê4q55 is the hazard rate of the standard normal distribution. Corollary 4.2 and
Remark 4.3 now provide a recipe for calculating also performance measures that involve waiting time. In par-
ticular, it is well known that �6abandon7= � Ɛ6wait7 when the patience distribution is exponential.

7. Proofs

7.1. Proof of Lemma 2.1. Let 8s̀−i1 i ≥ 19 and 8p̀−i1 i ≥ 19 be two i.i.d. sequences defined by distributions F∗

and GN , respectively. The FCFS policy implies v−i−1 ≤ v−i, for 1 ≤ i < 4qN
0 −N5+ and, hence, for � > 0, v ≥ 0

and c ≥ 0, we have

�6rN0 /
√
N > �7 ≤ �

[

4qN0 −N5+
∑

i=1

18p−i≤v9 > �
√
N

]

+�6v−1 > v7

≤ �

[

�c
√
N �

∑

i=1

18p̀−i≤v9 > �
√
N

]

+�6q̂N
0 > c7+�

[

qN0
∑

i=4qN0 −N5++1

18s−i≤v9 < qN
0 −N

]

≤
�c

√
N �

�
√
N

GN 4v5+�

[

N
∑

i=1

4F∗4v5− 18s̀−i≤v95 > NF∗4v5− c
√
N

]

+ 2�6q̂N
0 > c71

where the second inequality is due to the fact that the event 8v−1 > v9 implies that the number of service
completions in the time interval 601 v7 is less than 4qN

0 −N5; in addition, the number of service completions in
601 t7 is lower bounded by the sum in the last term in the second inequality; Markov inequality is used to obtain
the third inequality. Setting v = d/

√
N , with d = d4c5 large enough such that

√
NF∗4d/

√
N5− c > � for all N

large enough (which is feasible due to definition (2) of F∗) and applying Markov inequality result in

�6rN0 /
√
N > �7≤

�c
√
N �

�
√
N

GN 4d/
√
N5+

F∗4d/
√
N5

4
√
NF∗4d/

√
N5− c52

+ 2�6q̂N
0 > c70

Finally, letting first N → �, recalling (2), (6), and (7), and then letting c → � yields the statement of the
lemma. �

7.2. Proof of Proposition 3.1. It is sufficient to prove the statement for offered waiting times because it
implies the result for queue lengths:

HN 4t5 =

AN 4t5
∑

i=1

18ti+si+V N
←4ti5>t918V N

←4ti5≤pi9
+

qN0 ∧N
∑

i=1

18s−i>t9 +

qN0
∑

i=qN0 ∧N+1

18s−i+v−i>t9

≤

AN 4t5
∑

i=1

18ti+si+V̇ N
←4ti5>t9 +

qN0 ∧N
∑

i=1

18s−i>t9 +

qN0
∑

i=qN0 ∧N+1

18s−i+v̇−i>t9 = ḢN 4t51

for t ≥ 0; note that v̇i = vi and ṗi = pi = �, for −qN
0 ≤ i < −qN

0 ∧ N , by construction. Furthermore, one can
consider V N

←
and V̇ N

←
only at the moments of arrivals (t = ti for some i ≥ 0) and t = 0, because, between arrivals,

both V N
←

and V̇ N
←

remain constant.
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Now, consider the closely related shortest-workload-first routing policy (that can be conveniently described
by the Kiefer–Wolfowitz recurrence; e.g., see Baccelli and Bremaud [1, p. 91]), and let W N

n 4t5 and Ẇ N
n 4t5,

1 ≤ n≤N , be the nth smallest server workload in the system with and without abandonment, respectively. Then,
it is well known that V N

←
4ti5=W N

1 4ti−5 and V̇ N
←
4ti5= Ẇ N

1 4ti−5. Starting an induction, assume

W N
n 4ti5≤ Ẇ N

n 4ti5 (42)

for some i ≥ 1 and all 1 ≤ n ≤ N ; the base of the induction is due to the assumption on the initial states
(at t = 0). Let R be the standard reorder operator. Then, because the vectors of W N

n ’s and Ẇ N
n ’s satisfy the

Kiefer–Wolfowitz recurrence, it follows that

4W N
1 4ti+151W

N
2 4ti+151 : : : 1W

N
N 4ti+155

=R4W N
1 4ti5+ si+118pi≤WN

1 4ti+1−59 − ti+1 + ti1W
N
2 4ti5− ti+1 + ti1 : : : 1W

N
N 4ti5− ti+1 + ti5

+

≤R4Ẇ N
1 4ti5+ si+1 − ti+1 + ti1 Ẇ

N
2 4ti5− ti+1 + ti1 : : : 1 Ẇ

N
N 4ti5− ti+1 + ti5

+

= 4Ẇ N
1 4ti+151 Ẇ

N
2 4ti+151 : : : 1 Ẇ

N
N 4ti+1551

where the inequality is due to the inductive assumption (42); the operator 4 · 5+ is applied element wise. There-
fore, (42) holds for all i ≥ 1 and the proposition prevails. �

7.3. Proof of Lemma 3.3. Let AN
F

= 8AN
F
4t51 t ≥ 09, where, for t ≥ 0,

AN
F
4t5=

AN 4t5
∑

i=1

18pi>vi9

represents the number of customers with arrival times in 601 t7 that eventually receive service (do not abandon);
the process AN

F
was also considered in §3.4 (see Lemma 3.6). Define a two-dimensional process 8EN 4t1 s51 t ≥ 01

s ≥ 09 by

EN 4t1 s5=

AN
F 4t5
∑

i=AN
F 4t5−4HN 4t5−N5++1

18s̃i≤s91

where s̃i = si−1, −4qN
0 −N5+ < i ≤ 0, and s̃i = sAN 4t̃i5

, i ≥ 1 with t̃i = inf8t ≥ 02 AN
F
4t5= i9. The value of EN 4t1 s5

is equal to the number of customers awaiting service at time t with service requirement at most s (recall that
customers abandon upon arrival, if at all). Let wi = vi18pi>vi9

for i ≥ 0, w−i = v−i for 1 ≤ i ≤ 4qN
0 −N5+, and

w−i = 0 for 4qN
0 − N5+ < i ≤ qN

0 ; note that wi = 0 for all customers that abandon the system. Alternatively,
EN 4t1 s5 can be expressed as a sum over all customer indices:

EN 4t1 s5=

AN 4t5
∑

i=−qN0

18ti≤t<ti+wi9
18si≤s91 (43)

where t−i = 0 for i = 11 : : : 1 qN
0 , and the element of the sum corresponding to i = 0 does not exist. Furthermore,

we define 8F N 4t1 s51 t ≥ 01 s ≥ 09 by

F N 4t1 s5 2= 18HN 4t5>N9

EN 4t1 s5

4HN 4t5−N5+
1 (44)

and note that
EN 4t1 s5=EN 4t1 s518HN 4t5>N9 = 4HN 4t5−N5+F N 4t1 s53 (45)

on the event 8HN 4t5 > N9, F N 4t1 ·5 can be interpreted as the (empirical) distribution function of service require-
ments for customers awaiting service at time t. Observe that, for �> 0, (43) renders

EN 4t − s1 s + �5−EN 4t − s1 s5=

AN 4t5
∑

i=−qN0

18ti≤t−s<ti+wi9
18si−�≤s<si9

0
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In view of the preceding equality, the change in the order of summation results in

∫ t

0
EN 4t − s1 ds5 =

AN 4t5
∑

i=−qN0

∫ t

0
18ti≤t−s<ti+wi9

d18si≤s9

=

AN 4t5
∑

i=−qN0

18ti≤t−si<ti+wi9
1

and, thus, due to (45), we have

∫ t

0
4HN 4t − s5−N5+F N 4t − s1ds5=

AN 4t5
∑

i=−qN0

18t−ti−wi<si≤t−ti9
0 (46)

On the other hand, for any t ≥ 0, Proposition 2.1 in Reed [27] yields

∫ t

0
4HN 4t − s5−N5+ dF 4s5=

AN 4t5
∑

i=−qN0

4F̄ 4t − ti −wi5− F̄ 4t − ti551 (47)

because only customers that do not abandon potentially contribute to the sum on the right-hand side of (47).
Therefore, (46) and (47) imply (see (10) and (12)), for t ≥ 0,

4X̂N
ã + ÎNã 54t5=

∫ t

0
4ĤN 4t − s55+4F N 4t − s1ds5− F 4ds550 (48)

Next, extend the i.i.d. sequence 8s̃i1 i >−4qN
0 −N5+9 to all integer indices (by letting 8s̃i1 i ≤ −4qN

0 −N5+9 be
an i.i.d. sequence, independent of 8s̃i1 i >−4qN

0 −N5+9, with its elements distributed according to F ); observe
that 8s̃i1 i ∈�9 is an i.i.d. sequence because both subsequences are i.i.d. (defined by F ) and independent of each
other. Now, define a family of empirical distribution functions Fi1 j = 8Fi1 j4s51 s ≥ 09:

Fi1 j4s5=
1
j

i
∑

k=i−j+1

18s̃k≤s91 (49)

where i ≥ 0 and j ≥ 1. In what follows, we estimate �Fi1 j − F �� for a range of indices i and j . To this end, for
any � > 0 and s ≥ 0, there exist constants �4�1 s5 > 0 and �4�1 s5 < � (e.g., see Billingsley [3, p. 151]) such
that, for all j ≥ 1 (and all i),

�6�Fi1 j4s5− F 4s5�> �7≤ �4�1 s5 exp8−j�4�1 s590 (50)

Moreover, by the same argument, replacing 18s̃k≤s9 with 18s̃k<s9 in the definition of Fi1 j4s5 yields

�6�Fi1 j4s−5− F 4s−5�> �7≤ �4�1 s5 exp8−j�4�1 s591 (51)

where F 4s−5 = Ɛ18si<s9, i ≥ 1; the constants in (50) and (51) may differ in general. Given the distribution
function F , for any � > 0 there exists a finite sequence of nonnegative reals 8al11 ≤ l ≤ L9 such that

L
⋂

l=1

88�Fi1 j4al5− F 4al5� ≤ �9
⋂

8�Fi1 j4al−5− F 4al−5� ≤ �99⊆ 8�Fi1 j − F �� ≤ 2�90

This relationship, (50), and (51) imply the existence of �4�5 > 0 and �4�5 <� such that

�6�Fi1 j − F �� > �7≤ �4�5 exp8−j�4�591 (52)

for i ≥ 0 and j ≥ 1. Now, we introduce a nonnegative real that characterizes a distance between F and Fi1 j for
multiple indices i and j:

fk1 l1 n = sup
0≤i≤k

sup
l≤j≤k+n

�Fi1 j − F ��1 (53)
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where l ≥ 1. Then, for � > 0, the union bound and (52) yield �6fk1 l1 n > �7 ≤ 4k+ 154k+ n5�4�5 exp8−l�4�59.
Finally, for any � > 0, the last inequality, (3), (5), and (7) result in, as N → �,

�6fAN 4T 51 �
√
N1qN0

> �7→ 00 (54)

Next, considering whether 8ĤN 4t − s5≤ �9 or 8ĤN 4t − s5 > �9 in (48) yields

�X̂N
ã + ÎNã �T ≤ �+ sup

0≤t≤T

∣

∣

∣

∣

∫ t

0
18ĤN 4t−s5>�94Ĥ

N 4t − s55+4F N 4t − s1ds5− F 4ds55

∣

∣

∣

∣

≤ �+ �ĤN
�T sup

0≤t≤T

sup
0≤t≤s

�4F N 4t − s1 s5− F 4s5518Ĥ4t−s5>�9�

≤ �+ �ĤN
�T sup

0≤t≤T

sup
0≤t≤s

�FAN 4t−s51HN 4t−s5−N 4s5− F 4s5�

≤ �+ �ĤN
�T fAN 4T 51 �

√
N1qN0

1

where the third inequality is due to F N 4t1 s5= FAN 4t51HN 4t5−N 4s5 on the event 8HN 4t5 > N9 (see (44) and (49));
the last inequality follows from (53). Now, for any �> 0 there exists � > 0, small enough, so that the preceding
inequality results in

�6�X̂N
ã + ÎNã �T > 2�7 ≤ �6�ĤN

�T fAN 4T 51 �
√
N1qN0

>�7

≤ �6fAN 4T 51 �
√
N1qN0

>�/c7+�6�ĤN
�T > c71 (55)

where c > 0 is arbitrary. Finally, taking lim sup (as N → �) on both sides of (55) yields, due to (54),

lim sup
N→�

�6�X̂N
ã + ÎNã �T >�7≤ lim sup

N→�

�6�ĤN
�T > c70

The final statement follows from the preceding by letting c → �, Proposition 3.1, and Theorem 5.1 in
Reed [27]. �

7.4. Proof of Lemma 3.4. For fixed T > 0 and ã> 0, the following holds:

�ẐN
�T ≤ max

0≤i≤�T /ã�

�ẐN 4iã5� + max
0≤i≤�T /ã�

sup
0≤�≤ã

�ẐN 4iã+ �5− ẐN 4iã5�0 (56)

First, we argue that ẐN 4t5 ⇒ 0, as N → �, for any fixed t ≥ 0. For notational purposes, it is convenient to
define the random variables zi4t5 = 18si>t−ti9

18pi≤vi9
− F̄ 4t − ti5G

N 4vi5; observe that Ɛ zi4t5 = 0 since si, pi are
independent of ti, vi, and, hence, Ɛ6zi4t5 � ti1 vi7= 0. From (15) we have that Ɛ ẐN 4t5= 0 and the second moment
is given by

Ɛ4ẐN 4t552
=

1
N

Ɛ
AN 4t5
∑

i=1

z2
i 4t5+

2
N

Ɛ
AN 4t5
∑

i=1

AN 4t5
∑

j=i+1

zi4t5zj4t5

=
1
N

Ɛ
AN 4t5
∑

i=1

F̄ 4t − ti5G
N 4vi541 − F̄ 4t − ti5G

N 4vi553

the expectation of the double sum equals 0 because the service requirement and patience of an arriving customer
is independent of the state of the system. Then, given that F and GN are distribution functions, it follows that,
for � > 0,

�6�ẐN 4t5�> �7≤
1

�2N
Ɛ

AN 4t5
∑

i=1

GN 4vi5→ 01

as N → �, due to (3), (5), (6), and Proposition 3.2; thus, for fixed t, as N → �,

ẐN 4t5 ⇒ 00 (57)

Next, we consider the second term on the right-hand side of (56). To this end, for t > 0 and � > 0, we have
(see (14))

ẐN 4t + �5− ẐN 4t5=
1

√
N

AN 4t5
∑

i=1

4zi4t + �5− zi4t55+
1

√
N

AN 4t+�5
∑

i=AN 4t5+1

zi4t + �51
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and upper and lower bounds follow:

ẐN 4t + �5− ẐN 4t5 ≤
1

√
N

AN 4t5
∑

i=1

4F̄ 4t − ti5− F̄ 4t + �− ti55G
N 4vi5+

1
√
N

AN 4t+�5
∑

i=AN 4t5+1

18pi≤vi9

2= ẐN
4↑1 �54t53

ẐN 4t + �5− ẐN 4t5 ≥ −
1

√
N

AN 4t5
∑

i=1

418si>t−ti9
− 18si>t+�−ti9

518pi≤vi9
−

1
√
N

AN 4t+�5
∑

i=AN 4t5+1

GN 4vi5

2= −ẐN
4↓1 �54t50

The nonnegativity of ẐN
4↑1 �54t5 and ẐN

4↓1 �54t5 and their monotonicity in � imply

sup
0≤�≤ã

�ẐN 4t + �5− ẐN 4t5� ≤ ẐN
4↑1ã54t5+ ẐN

4↓1ã54t50 (58)

For notational simplicity, introduce AN
4c5 = 8AN

4c54t51 t ≥ 09 by

AN
4c54t5 2=

AN 4t5
∑

i=1

18pi≤c/4�
√
N59

=

AN 4t5
∑

i=1

418pi≤c/4�
√
N59 −GN 4c/4�

√
N555−AN 4t5GN 4c/4�

√
N553 (59)

also, set t̃i = inf8t ≥ 02 AN
4c54t5 ≥ i9 and s̃i = 8sj 2 t̃i = tj9. The process AN

4c5 is the arrival process of customers
with patience at most c/4�

√
N5, in the N th system. Limits (3), (5), and (6) imply

{

AN 4t5

N

√
NGN 4c/4�

√
N551 t ≥ 0

}

→ c�e1 (60)

a.s. u.o.c., as N → �, while the martingale inequality (Chung [6, Corollary 1, p. 331]) and (6) yield, for T > 0,

�

[

sup
1≤j≤2�TN

∣

∣

∣

∣

j
∑

i=1

418pi≤c/4�
√
N59 −GN 4c/4�

√
N555

∣

∣

∣

∣

> �
√
N

]

≤
2�TGN 4c/4�

√
N55

�2
→ 01 (61)

as N → �. Combining (59), (60), and (61) results in

AN
4c5/

√
N ⇒ c�e1 (62)

as N → �. Now, for t ≤ T − �, on the event 8�V̂ N
←

�T ≤ c9 the first term on the right-hand side of (58) can be
upper bounded by using monotonicity:

ẐN
4↑1ã54t5 ≤

1
√
N
GN 4c/4�

√
N55

AN 4t5
∑

i=1

4F̄ 4t − ti5− F̄ 4t +ã− ti55+
1

√
N
4AN

4c54t +ã5−AN
4c54t55

⇒ c�
∫ t

0
4F̄ 4t − s5− F̄ 4t +ã− s55ds + c�ã1 (63)

as N → �, where the limit is due to (3), (5), and (6). Similarly, on the event 8�V̂ N
←

�T ≤ c9, we have

ẐN
4↓1ã54t5 ≤

1
√
N

AN
4c54t5
∑

i=1

418s̃i>t−t̃i9
− 18s̃i>t+ã−t̃i9

5+
1

√
N
4AN 4t +ã5−AN 4t55GN 4c/4�

√
N55

⇒ c�
∫ t

0
4F̄ 4t − s5− F̄ 4t +ã− s55ds + c�ã1 (64)

as N → �, where the limit is due to (3), (5), (6), and Theorem 3 in Krichagina and Puhalskii [20]. Now, for
c > 0, (58) implies

�

[

sup
0≤�≤ã

�ẐN 4t + �5− ẐN 4t5�> �

]

≤�6ẐN
4↑1ã54t5+ ẐN

4↓1ã54t5 > �1�V̂ N
←

�T ≤ c7+�6�V̂ N
←

�T > c70
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Selecting ã small enough, letting N → � on both sides in the preceding inequality, using (63) and (64), and
then increasing c → � yields (for fixed t)

sup
0≤�≤ã

�ẐN 4t + �5− ẐN 4t5� ⇒ 03 (65)

the limit is also due to Proposition 5.3 in Reed [27] and Proposition 3.1.
Finally, the lemma follows from (56), (57), and (65). �

7.5. Proof of Lemma 3.5. In view of Lemma 3.3, it is sufficient to prove ẐN
ã ⇒ 0, as N → �. Recall the

definitions of AN
4c5, 8t̃i1 i ≥ 19 and 8s̃i1 i ≥ 19 from the proof of Lemma 3.4. Now, for arbitrary T > 0 and � > 0,

we have
�6�ẐN

ã �T > �7≤�6�ẐN
ã �T > �1�V̂ N

←
�T ≤ c7+�6�V̂ N

←
�T > c70

On the event 8�V̂ N
←

�T ≤ c9, the process ẐN
ã , based on its definition, can be upper bounded as follows, for all

t ∈ 601 T 7 and all sufficiently large N :

�ẐN
ã 4t5� ≤

1
√
N

AN
4c54t5
∑

i=1

418s̃i>t−t̃i−�9 − 18s̃i>t−t̃i9
5+

1
√
N

∫ t

0
4F̄ 4t − s − �5− F̄ 4t − s55dAN

4c54s5

=2 ẐN
4c1�54t51

where �> 0. The preceding two inequalities render

�6�ẐN
ã �T > �7≤�6�ẐN

4c1�5�T > �7+�6�V̂ N
←

�T > c71 (66)

where ẐN
4c1�5 = 8ẐN

4c1�54t51 t ≥ 09.
Next, Theorem 3 in Krichagina and Puhalskii [20] and (62) yield, as N → �,

8ẐN
4c1�54t51 t ≥ 09 ⇒

{

2c�
∫ t

0
4F̄ 4t − s − �5− F̄ 4t − s55ds1 t ≥ 0

}

0 (67)

On the other hand, Proposition 3.2 implies

lim
c→�

lim sup
N→�

�6�V̂ N
←

�T > c7= 00 (68)

Therefore, in view of (66), (67), and (68), given T and �, for any � > 0, it is possible to select c and � such
that �6�ẐN

ã �T > �7 < � for all N large enough. �

7.6. Proof of Proposition 3.3. Two cases are considered separately: (i) nondeterministic service times and
(ii) deterministic service times. Let y1 = �4x15 and y2 = �4x25 for x11 x2 ∈D601�5.

(i) Because service times are not single valued, there exist �> 0 and 0 < � < 1 such that F 4x+�5−F 4x5 < �,
for all x ≥ 0. Then it follows that

d�
L14y11 y25 ≤ d�

L14x11 x25+

∫ �

0

∫ t

0
�y14t − s5− y24t − s5�dF 4s5dt

≤ d�
L14x11 x25+

∫ �

0
d�
L14y11 y25dF 4s5

≤ d�
L14x11 x25+ �d�

L14y11 y251

and, thus,
d�
L14y11 y25≤ d�

L14x11 x25/41 − �50 (69)

Similarly, considering the time interval 6012�7 yields

d2�
L14y11 y25 ≤ d2�

L14x11 x25+ �d�
L14y11 y25+ �d2�

L14y11 y25

≤ d2�
L14x11 x25/41 − �5+ �d2�

L14y11 y251
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where the second inequality is due to (69). From the preceding inequality one derives d2�
L14y11 y25 ≤

d2�
L14x11 x25/41 − �52. The above argument can be applied l times iteratively to obtain dl�

L14y11 y25 ≤

dl�
L14x11 x25/41 − �5l. Therefore, for any T , there exists cT <� such that dT

L14y11 y25≤ cTd
T
L14x11 x25.

(ii) Let a be such that F 4a−5 = 0 and F 4a5 = 1. Then yi4t5 = xi4t5, i = 112, for t < a and dT
L14y11 y25 =

dT
L14x11 x25 for T < a. Next, assume that dT

L14y11 y25 ≤ cTd
T
L14x11 x25 for some T ≥ a and cT < �. Because of

this assumption, since yi4t5= xi4t5+ y+

i 4t − a5, i = 112, for t ≥ a, one has, for 0 <d ≤ a,

dT+d
L1 4y11 y25 ≤ dT+d

L1 4x11 x25+dT
L14y11 y25

≤ dT+d
L1 4x11 x25+ cTd

T
L14x11 x25

≤ 41 + cT 5d
T+d
L1 4x11 x250

The conclusion follows. �

7.7. Proof of Lemma 3.7. In view of Proposition 3.3, it is sufficient to consider the argument of the �
operator in (21). Recall the definition of dJ1

4 · 1 · 5 from the proof of Proposition 3.3.
The nondecreasing nature of distribution functions yields

dT
L14F � 4�N

+V N
←
51 F 5 ≤

∫ T

0
4F 4t + �V N

←
�T 5− F 4t − �e− �N

�T 55dt

≤ �V N
←

�T + �e− �N
�T 1

where the second inequality follows from F 4t5≤ 1 for all t; similarly,

dT
L14F∗ � 4�N

+V N
←
51 F∗5≤ �V N

←
�T + �e− �N

�T 0

For notational simplicity, let Ĵ N 2= 4q̂N
0 5

+4F̄ − F̄∗5 + q̂N
0 F̄∗ −

√
N41 − �N 5F∗. The preceding two inequalities,

jointly with (5) and (7), yield, as N → �,

dT
L14Ĵ

N
� 4�N

+V N
←
51 Ĵ N 5 ⇒ 00 (70)

The triangle inequality and the definition of dT
L1 (see (1)) result in

dT
L144Î

N
ã + Ŷ N

ã − ẐN 5 � 4�N
+V N

←
51 ÎNã + Ŷ N

ã − ẐN 5

≤ dT
L144Î

N
ã + Ŷ N

ã − ẐN 5 � 4�N
+V N

←
5105+dT

L14Î
N
ã + Ŷ N

ã − ẐN 105

≤ 2T �ÎNã + Ŷ N
ã − ẐN

�T+V N
←4T 51

and, thus, invoking Lemmas 3.4 and 3.5, as well as Proposition 3.2, yields, as N → �,

dT
L144Î

N
ã + Ŷ N

ã − ẐN 5 � 4�N
+V N

←
51 ÎNã + Ŷ N

ã − ẐN 5 ⇒ 00 (71)

Next, for any � > 0 and �> 0, conditioning on the value of ��N +V N
←

− e�T results in

�6dT
L144X̂

N
+ ÎN 5 � 4�N

+V N
←
51 X̂N

+ ÎN 5 > �7

≤�6dT
L144X̂

N
+ ÎN 5 � 4�N

+V N
←
51 X̂N

+ ÎN 5 > �1��N
+V N

←
− e�T ≤ �7+�6��N

+V N
←

− e�T >�7

≤�

[

� sup
�s�≤�

�X̂N 4t + s5− X̂N 4t5+ ÎN 4t + s5− ÎN 4t5��T > �/T

]

+�6��N
+V N

←
− e�T >�70 (72)

Lemmas 3.1 and 3.2, the continuous mapping theorem, the continuity of the sup operator, and the continuity of
sample paths of X̂ and Î yield

lim
�↓0

lim
N→�

�

[

� sup
�s�≤�

�X̂N 4t + s5− X̂N 4t5+ ÎN 4t + s5− ÎN 4t5��T > �/T

]

= 00

The preceding limit, Proposition 3.2 and (72) imply, as N → �,

dT
L144X̂

N
+ ÎN 5 � 4�N

+V N
←
51 X̂N

+ ÎN 5 ⇒ 00 (73)
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Now, considering separately s ∈ 601 t ∧ 4�N 4t5+ V N
←
4t557 and s ∈ 4t ∧ 4�N 4t5+ V N

←
4t551 t ∨ 4�N 4t5+ V N

←
4t557

we have

∫ T

0

∣

∣

∣

∣

∫ �N 4t5+V N
←4t5

0
F̄ 4�N 4t5+V N

←
4t5− s5

√
NGN 4V N

←
4s55dǍN 4s5−

∫ t

0
F̄ 4t − s5

√
NGN 4V N

←
4s55dǍN 4s5

∣

∣

∣

∣

dt

≤
√
NGN 4�V N

←
�T 5

∫ T

0

∫ t∧4�N 4t5+V N
←4t55

0
4F 4t + �V N

←
�T − s5− F 4t − ��N

− e�T − s55dǍN 4s5dt

+
√
NGN 4�V N

←
�T 5

∫ T

0
4ǍN 4t + �V N

←
�T 5− ǍN 4t − ��N

− e�T 55dt

≤
√
NGN 4�V N

←
�T 54�V

N
←

�T + ��N
− e�T 5Ǎ

N 4T 5+
√
NGN 4�V N

←
�T 54Ǎ

N 4T +V N
←
4T 55− ǍN 4T 551 (74)

where the last inequality is due to a change in the order of integration. The preceding inequality, (6), (3), and
Proposition 3.2 result in, as N → �,

√
NGN 4�V N

←
�T 544�V

N
←

�T + ��N
− e�T 5Ǎ

N 4T 5+ 4ǍN 4T +V N
←
4T 55− ǍN 4T 555 ⇒ 00 (75)

Finally, the statement of the lemma follows from (17), (70), (71), (73), (74), (75), and Proposition 3.3. �

7.8. Proof of Proposition 4.1. The proof closely parallels the proof of Proposition 3.1 in Reed [27]. Two
cases are considered separately: (i) deterministic and (ii) nondeterministic service times. The proof of measura-
bility is the same for the two cases and is identical to the corresponding proof in Proposition 3.1 of Reed [27].

(i) Deterministic F . In this case, F 4t5= 18t≥a9, F∗4t5= 4t/a5 · 180≤t≤a9, and �= 1/a.
Existence. First consider the interval 601 a5 only. Let y0 = 0 and

yn+14t5= x4t5− �
∫ t

0
y+

n 4t − s5ds (76)

for 0 ≤ t < a and n≥ 1. Then for �< a we have

�yn+1 − yn�� ≤ ���yn − yn−1��

≤ 4��5n�x��0

The preceding will serve as a base for an induction. Assume that

�yn+1 − yn�k� ≤ nk−14��5n�x�k� (77)

for some k (k�< a). Then, for 4k+ 15� < a, the inductive assumption and (76) yield

�yn+1 − yn�4k+15� ≤ ��
k
∑

i=1

�yn − yn−1�i� + ���yn − yn−1�4k+15�

≤ 4��5n�x�4k+15�

k
∑

i=1

4n− 15i−1
+ ���yn − yn−1�4k+15�

≤ nk−14��5n�x�4k+15� + ���yn − yn−1�4k+15�0

Iterating the argument from the preceding inequality results in

�yn+1 − yn�4k+15� ≤ nk4��5n�x�4k+15�1

and hence (77) holds. In view of (77), selecting �< 1/� implies that 8yn1 n≥ 09 is a Cauchy sequence and there
exists y such that yn → y, as n→ �. Therefore, there exists a solution on the interval 601 a5.

Now consider the interval 6012a5. Let y0 = 8y04t5= y4t5180≤t<a910 ≤ t < 2a9 and

yn+14t5=







y4t5 0 ≤ t < a1

x4t5+ y4t − a5− �
∫ t

t−a
y+

n 4t − s5ds a≤ t < 2a1
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where y is the solution on the interval 601 a5. By repeating the argument from the previous case, it is straight-
forward to show that there exists a solution on the interval 6012a5. Furthermore, by iterating the argument, one
establishes the existence of a solution on an arbitrary interval of finite length.

Uniqueness. Let �< a∧ 1/�. Suppose u and v are two solutions and consider

u4t5− v4t5= 18t≥a94u
+4t5− v+4t55− �

∫ t∧a

0
4u+4t − s5− v+4t − s55ds1

t ≥ 0. For 0 ≤ t ≤ � we have �u4t5 − v4t5� ≤ ���u − v��, and, therefore, u4t5 = v4t5 for 0 ≤ t ≤ �. Next
�u4t5− v4t5� ≤ ���u− v�� + ���u− v�2� for � < t ≤ 2�, yielding u4t5 = v4t5 for 0 ≤ 0 ≤ 2�. Repeating this
argument multiple times leads to u4t5= v4t5 for 0 ≤ t ≤ a.

Now, assume that u4t5= v4t5 for 0 ≤ t ≤ T , where T ≥ a. Then, for T < t ≤ T + �, we have �u4t5− v4t5� ≤
���u− v�T+�, resulting in u4t5= v4t5 for 0 ≤ t ≤ T + �. The uniqueness follows.

Lipschitz continuity. The definition of � renders, for y =�4x5 and t < a,

y4t5= x4t5− �
∫ t

0
y+4t − s5ds

and, thus, ��4x15−�4x25�� ≤ �x1 −x2�� +����4x15−�4y25�� if �< t. By selecting �> 0 small enough such
that �� < 1, we have

��4x15−�4x25�� ≤ �x1 − x2��/41 − ��50 (78)

Considering the interval 6012�7 yields

��4x15−�4x25�2� ≤ �x1 − x2�2� + ����4x15−�4x25�� + ����4x15−�4x25�2�1

which, upon combining with (78), results in

��4x15−�4x25�2� ≤ �x1 − x2�2�/41 − ��520

The preceding argument can be applied repeatedly to show that � is Lipschitz continuous when the interval
601 a5 is considered.

For t ≥ a, y =�4x5 renders

y4t5= x4t5+ y+4t − a5− �
∫ a

0
y+4t − s5ds0 (79)

When t = a, we obtain

y4a5= x4a5+ x+405− �
∫ a

0
y+4s5ds1

and, due to the case t < a, it follows that there exists ca < � such that ��4x15 − �4x25�a ≤ ca�x1 − x2�a.
This serves as the base for the induction. Now, suppose that for some T ≥ a there exists cT < � such that
��4x15−�4x25�T ≤ cT �x1 − x2�T . Now, for any �< min8a11/�9, from (79) we have

��4x15−�4x25�T+� ≤ �x1 − x2�T+� + 41 + a�5��4x15−�4x25�T + ����4x15−�4x25�T+�

≤ 41 + 41 + a�5cT 5�x1 − x2�T+� + ����4x15−�4x25�T+�1

where the second inequality is due to the inductive assumption. Hence, ��4x15−�4x25�T+� ≤ cT+��x1 −x2�T+�

with cT+� = 41 + 41 + a�5cT 5/41 − ��5 <�.
(ii) Nondeterministcis F .
There exist �> 0 and 0 < � < 1 such that

F 4t + �5− F 4t5+ �F∗4t + �5/�− �F∗4t5/�< �1 (80)

for all t ≥ 0, since F∗ is absolutely continuous by definition. In view of this fact, the proof of existence,
uniqueness, and Lipschitz continuity is almost identical to the proof of corresponding parts in Proposition 3.1
of Reed [27]. In particular, if F̃ 2= F − �F∗/� then

y4t5= x4t5+

∫ t

0
y+4t − s5dF̃ 0

Note that the preceding relation can be written in terms of � with F replaced by F̃ , and , in view of (80), there
exist �> 0 and 0 < � < 1 such that

F̃ 4t + �5− F̃ 4t5 < �1 (81)

for all t ≥ 0. We can now apply directly the results in Reed [27, Proposition 3.1] because the analysis of � in
Reed [27] is based on (81). �
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