MATHEMATICS OF OPERATIONS RESEARCH inf

Vol. 37, No. 1, February 2012, pp. 41-65 In I o
ISSN 0364-765X (print) | ISSN 1526-5471 (onli
SSN 0364-765X (print) | ISSN 1526-5471 (online) http://dx.doi.org/10.1287/moor.1110.0530

©2012 INFORMS
Queues with Many Servers and Impatient Customers

Avishai Mandelbaum

Faculty of Industrial Engineering and Management, Technion—Israel Institute of Technology, Haifa 3200, Israel,
avim@tx.technion.ac.il

Petar Momcilovi¢
Department of Industrial and Systems Engineering, University of Florida, Gainesville, Florida 32611,
petar @ise.ufl.edu

The asymptotic many-server queue with abandonments, G/GI/N 4+ GI, is considered in the quality- and efficiency-driven
(QED) regime. Here the number of servers and the offered load are related via the square-root rule, as the number of servers
increases indefinitely. QED performance entails short waiting times and scarce abandonments (high quality) jointly with high
servers’ utilization (high efficiency), which is feasible when many servers cater to a single queue. For the G/GI/N + GI
queue, we derive diffusion approximations for both its queue-length and virtual-waiting-time processes. Special cases, for
which closed-form analysis is provided, are the G/M /N + GI and G/D/N + GI queues, thus expanding and generalizing
existing results.
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1. Introduction. The quality- and efficiency-driven (QED) regime achieves, jointly, high levels of system’s
efficiency, as manifested by servers’ high utilization, and service quality, namely, customers’ short waiting times
and hence scarce abandonments. QED performance is achievable in carefully balanced queueing systems with
many servers—indeed, with few servers, efficiency and quality must be traded off against each other. Within the
G/GI/N framework, or more precisely G/GI/N + GI, the QED regime with abandonments is characterized
by the relation N = R 4+ B+/R + o(~/R), for some scalar B; here N is the number of servers and R is the
offered load, namely, the arrival rate multiplied by average service time. (This square-root staffing relation also
characterizes the QED regime without abandonments, but 8 must then be taken positive to ensure stability.)

1.1. Relevance. Recent interest in multiserver queues with impatient customers is due to their applicability
in modeling medium-to-large-scale customer call/contact centers. In such service operations, abandonments arise
naturally and, in fact, must be accounted for in models (see §2 in Garnett et al. [12] for an elaboration).
Additionally, well-run call centers are QED (Gans et al. [11]) or some relatives of it (e.g., ED + QED, as in
Mandelbaum and Zeltyn [24]). But QED queues also arise beyond call centers. To wit, waiting time in QED
call centers is naturally measured in seconds and service times in minutes. This one-order time reduction (from
minutes to seconds in the case of call centers) is a QED characteristic; indeed, it also arises in transportation
(searching for parking takes minutes whereas parking time takes hours) and in healthcare (sojourn times in
emergency departments take hours whereas hospitalization is days). Significantly, the abandonment phenomenon
is relevant in all these examples, which is perhaps surprising for the latter; yet, a nonnegligible fraction of
patients leave emergency departments without being seen by a doctor (Green et al. [13]).

1.2. Related research. Although the QED regime (without abandonments) can be traced back to Erlang [9]
and Jagerman [16], the regime was first formalized by Halfin and Whitt [14]; for recent results on the QED
regime, see Mandelbaum and Mom¢ilovié [21], Reed [27], Kaspi and Ramanan [19], Puhalskii and Reed [26],
and references therein, with Reed’s framework (Reed [27]) for the G/GI/N queue being especially relevant.
The M/M/N + M (Erlang-A) system in the QED regime (with abandonments) was considered in Garnett
et al. [12]. Extensions to the model with generally distributed abandonments can be found in Zeltyn and
Mandelbaum [34], Zeltyn [33], Mandelbaum and Zeltyn [24], and Reed and Tezcan [29]. The M/M /N + G
system in the efficiency-driven regime was analyzed by Whitt [32]; for a summary of performance measures of
this system, see Mandelbaum and Zeltyn [23]. Recently, fluid limits of many-server queues with abandonment
were considered in Kang and Ramanan [18]. Independently of our work, many-server queues with customer
abandonment were investigated by Dai and He [7], where the focus parallels our Lemma 3.8 (the authors
establish a relation between the abandonment-count and queue-length processes). The literature on queues with
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abandonments is extensive and includes models with various features; we refer the reader to the discussions in
Garnett et al. [12] and Zeltyn [33].

1.3. Contributions. We consider a G/GI/N + GI system in the QED regime. The limiting scaled number-
of-customers-in-system process is described in terms of a nonlinear operator (Corollary 4.1); a corresponding
result for the limiting scaled waiting-time processes (virtual and offered) is obtained as well (Corollary 4.2).
In the case when there is no abandonment, our operator coincides with the one earlier obtained in Reed [27].

The proofs of our main results are based on two relations: (i) between corresponding systems with and
without abandonment (Proposition 3.1), and (ii) between the queue-length and offered-waiting-time processes
(Lemma 3.8). The first relation, in conjunction with results from Reed [27], is used to obtain upper bounds for
the queue-length and waiting-time processes; the bounds are tight enough to yield the exact orders of magnitude
for QED convergence. This enables us to approximate the abandonment process, properly centered and scaled
(see (14) and Lemma 3.4). The approximation in (14), in turn, reveals the QED limit of the abandonment
process, which paves the way to other QED limits. Relation (ii) is central in our paper because it allows one to
circumvent the complex relation between the queue-length and the abandonment processes, which is necessary
for obtaining limits of queue lengths. Indeed, the relation is complex because abandonments are determined
by (offered) waiting times which, in turn, depend on queue length via a “first-passage-time” operator, as in
Puhalskii [25] and Talreja and Whitt [30]. Still, one cannot directly use Puhalskii [25] or Talreja and Whitt [30]
to deduce limits of waiting times from those of queue lengths since we could not analyze the latter in isolation.
This is in contrast to Reed [27], which first derives limits of queue length, then uses Puhalskii [25] to deduce
directly limits of waiting times.

To summarize, Lemma 3.8 shows that queue length and waiting times are asymptotically “close.” Therefore,
via Lemma 3.4 and (14), we express the abandonment process in terms of queue length. This results in rep-
resenting the queue length in terms of itself, which is resolved through a sample-path mapping, as introduced
in (25).

The above provides a justification for the need to develop techniques and tools that are not required in
Reed [27], who analyzed the QED G/GI/N queue. More specifically, for our QED G/GI/N + GI queue,
queue length and waiting times must be analyzed jointly, as already discussed. Then, the mapping (25) that
characterizes the limiting queue-length processes generalizes the one in Reed [27]. (A mapping corresponding
to waiting times is introduced in (34).) Our general result can be made explicit (see §5) in two special cases
that have not yet been analyzed: Example 5.2 provides functional limit theorems that correspond to and further
generalize Zeltyn [33] and Zeltyn and Mandelbaum [34], which considered M/M /N + GI in steady state;
Example 5.3 adds abandonments to Mandelbaum and Mom¢ilovi¢ [21], which considered process limits for
G/D/N. Finally, our results demonstrate that the role of the patience distribution in the QED regime is captured
merely by the value of its density at the origin. This is practically important since patience data is censored
(only lower bounds for patience are available for served customers) and possibly highly censored (e.g., 3%
abandoning). We thus suggest an estimator for the patience density at the origin, based on a transient analogue
of the steady-state relation between the probability of abandonment and the expected waiting time (Mandelbaum
and Zeltyn [22]).

1.4. Contents. The paper is organized as follows. In the next section we describe the model and introduce
the QED regime. Section 3 contains preliminaries; in particular, we discuss a relationship between the systems
with and without abandonment, the infinite-service process associated with the arrival and service processes,
processes associated with initial conditions and abandonment, the queue-lenth process, and a relationship between
the queue length and offered waiting time. The main results of the paper are presented in §4. Examples are
discussed in §5, future research is outlined in §6, and some proofs are provided in §7.
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1.5. Notation. Denote by D[0, o) the space of all real-valued functions on [0, co) that are right continuous
with left limits (r.c.l.l.), endowed with the standard Skorohod J; topology. The J; metric is denoted by d, (-, -)
and the uniform metric u is defined by the uniform norm

[xllz = sup |x(r)],
0=<t<T

for x € D[0, 00) and T > 0; similarly, the L' metric is defined by the L' norm

ah e =[x - yolar, W
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for x,y € D[0,00) and T > 0. Product metric spaces (D*[0,0),d}) and (D*[0,c0),u*) are defined by
(D[0, ) x ---x D[0, ), d,; x---xd,;)and (D[0, %) x --- x D[0, ), u x - - - X u), respectively; d, x---xd,
and u X --- x u refer to the corresponding maximum metrics. Let = denote convergence in distribution—for
stochastic processes in D[0, 00), as well as for random variables in R. Let 1[_} be the usual indicator func-
tion and e = {e(t) =t,t > 0} be the identity map. The composition map is denoted by o; i.e., for (x,y) €
D[0, 00) x D[0, 00), x oy is defined by (xoy)(¢) = x(y(¢)), t > 0. For x, y € R, x™ denotes the positive part of
x, and x A y =min{x, y}.

2. Assumptions

2.1. The model. We consider a sequence of first-come, first-served (FCFS) G/GI/N + GI queues indexed
by the number of servers N. Customers arriving after # =0 are indexed by natural numbers in an increasing
order of their arrival times. Customer i arrives to the system at time ¢, > 0 and two quantities are associated with
it: the service requirement s; and patience p;. The service requirements of customers, {s;, i > 1}, are independent
and identically distributed (i.i.d.), characterized by a distribution function F, which does not vary with N (set
F =1—F). The sequence {p,, i > 1} is ii.d. with a distribution GV for the Nth system. For simplicity of
notation, we shall not index arrival times, service requirements, and customers’ patience by N—this dependency
will be implicit.

Define AN(¢), t > 0, to be the number of arrivals in the Nth system over the time interval [0, t]. The
process AY = {AN(¢),t > 0} is r.c.ll, nondecreasing, nonnegative, integer valued, with jumps of size 1 such
that AV (0) =0 and A¥(¢) < oo for all ¢ > 0, almost surely (a.s.). The arrival process is related to the customer
arrival times {z;,i > 1} by 7, = inf{r > 0: A¥(¢t) > i}, i > 1. Define 7V = {7"(1), 1 = 0} by 7V(t) = t,n(, for
t>t, and 7V(¢) =0 for < t,; () is the time of the last arrival prior to ¢.

At time t =0, there are q(’)\' initial customers in the system, labeled by —q{)\’ s —q(’)V +1,...,—1. Those with
indices —¢q)', —¢) +1,...,—(g) — N)* — 1 are in service with i.i.d. service requirements drawn from the
distribution F,, the residual distribution associated with F:

F()=p [ Flu)du, )

0
where u~! =Es, is the mean service, which we assume exists (also set F, = 1 — F,). The remaining (g) — N)*
initial customers (indexed by —(g) —N)*, —(¢)) = N)"+1,..., —1, if exist) have independent service require-
ments distributed according to F. However, their patience is infinite, i.e., p_,=occ fori=1,2,..., (qév —N)*.

This assumption is convenient for the analysis while being nonrestrictive, as argued at the end of this section.

Let v, denote the offered waiting time of the ith customer—the amount of time the customer awaits service
if the customer would have been infinitely patient (p; = oo). The virtual waiting time V" (¢) at time ¢ > 0 is the
amount of time (measured beyond 7) until one of the servers becomes idle, provided no new arrivals would have
occurred after time #; by definition, V¥ (¢) = 0 if there exists an idle server at time ¢. The random variable V" (¢)
captures the amount of work in the queue at time 7. (Note that a service completion that is immediately followed
by a new service initiation does not render a server idle.) We set V¥ = {V¥ (), t > 0}. The actual waiting time
of the ith customer is then given by v; A p;. That is, if customer i eventually enters service then v; is equal to
its actual waiting time and p; > v;; on the other hand, if customer i abandons the system then v, = V¥ (z,—)
(note that only customers with positive indices can abandon) and v, > p;. We use V¥ = {V¥(z), ¢ > 0} to denote
the offered-waiting-time process, with VY (#) = vy, for £ >1,, and VX (1) =v_ qv for 0 <t <1,. The offered-
waiting-time process is defined in such a way that if customer i arrives at time f; then v, = V¥ (z,) rather than
v; = V¥(t,—). Both V¥ and V" are r.c.Ll processes.

Define QY = {Q¥(?), t > 0}, where Q" (¢) is the total number of customers in the system at time ¢ > 0; this
number includes customers receiving service, customers awaiting service that eventually receive service, and
customers awaiting service that eventually abandon. For the purpose of analysis, it is convenient to consider
an alternative model in which customers who abandon the system, do so upon arrival (based on p;’s). Namely,
customers, upon arrival, “compare” their p, with v, and immediately abandon the system if p; < v;; in this
model, all customers awaiting service receive service eventually. Such dynamics are easier to analyze, and it
turns out asymptotically equivalent to the original system. To distinguish between the two models, we introduce
HY ={H",t >0}, where H"(¢) is the number of customers at time 7 > 0 in the system with abandonment upon
arrival.

—_~
@,
S
o
24
5 €
:L
T o
Rel
o c
=%
©
2 €
S
22
23
= fer
O
o <
",
© ©
n 2
iz
b
2T
8=
o2
£y
B
S
'_QQ.
= C
w9
S 3
52
2 E
c O
02
o2
T ©
T o
i)
<
c D2
el
()}
2c
- O
< >
O O
T C
a -
c
[e]
@ e
O =
o O
<E
w_
[}
= C
e o
=
35
z-c
=<




Mandelbaum and Momcdilovié: Queues with Many Servers and Impatient Customers
44 Mathematics of Operations Research 37(1), pp. 41-65, © 2012 INFORMS

2.2. The QED regime. We assume that the sequence of processes {A"} satisfies (i) a functional strong law
of large numbers (FSLLN):

AV/AN e 3)
u.o0.c. a.s., as N — oo, where A" is the arrival rate in the Nth system, and (ii) a functional central limit theorem
(FCLT): .
AV = —— (AN = \Ve) = A, 4)
VN

as N — oo, where A is a stochastic process with a.s. continuous sample paths.
The offered load to the Nth system is AV /u and the traffic intensity is p¥ = A" /(uN). In the QED regime,
the number of servers N and traffic intensity pV are related, in the limit as N — oo, via

VN1 —p")— B, (5)

for some —oo < 8 < co. In this regime, it is expected that the (virtual) waiting time vanishes as N — oo, hence
only the behavior of GV around the origin is relevant in the limit. To this end, we assume G"(0) =0 and

GV = Oe, (6)

u.0.c., as N — oo, for some 0 < 6 < oo, where é(t) = \/NGN(Z/\/N). The condition (6) is satisfied, for
example, when GV = G for all N, and G(t)/t — 6 as t | O (or, equivalently, 0 is the right-hand derivative of G
at the origin).

The scaled and centered versions of Q" and H" are defined by

0" = (0" (1), 120} = %N(Q” Y

and |
HY ={H"(1),t >0} = W(HN —N),

respectively. As will be shown (see Theorem 4.1 and Corollary 4.1 in §4), the difference between OV and HY
vanishes in the limit, as N — oo. The scaled versions of the waiting time processes are given by

VN ={V¥(1), 1 >0} = uv/NVY

and . .
VY = (VX (1), 12 0) = p/NVY;

note that we use u in the scaling for waiting time processes, which amounts to measuring wait in units of
average service time.

2.3. Initial conditions. The number of customers in the system, at time ¢ = 0, is given by
ON(0)=H"(0) =gq]. It is assumed that a scaled and centered version of ¢}’ converges in distribution:
1
AN N ~
qdo =—=I(qy —N) = q,, 7
0 «/N( 0 ) 0 ( )

as N — oo. This condition (together with the assumption that the residual service times of customers in service
at t+ =0 are i.i.d. with distribution F,) is identical to the assumptions made in Reed [27]. Although our initial
condition is appealing in its simplicity, it is not the unique initial condition that induces the QED regime; e.g., see
Mandelbaum and Moméilovié [21].

Next, we discuss an alternative model for patience of the initial customers. Namely, suppose that initial
customers (at ¢ = 0) do not have infinite patience but rather the sequence {p_;,1 <i < (g) — N)*} is i.id.,
drawn from G". We argue that this variation does not impact our asymptotic results. To this end, let ) be
the number of initial customers that abandon the system:
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(g -N)*

r(I)VZ Z I{Pﬂ’ﬁvﬂ’};

i=1
i.e., (¢} —ry) initial customers awaiting service end up receiving service. Then, the following lemma holds:

LemmaA 2.1. 7)Y /+/N =0, as N — co.
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Proor. See §7.1. O
As a consequence, we have

(q(l)v _rO )/f = qos

as N — oo. Thus, the two models are asymptotically equivalent since (7) is the only assumption on the ini-
tial number of customers in the system and our results depend on the limit ¢, only (see Theorem 4.1 and
Corollaries 4.1 and 4.2 in §4).

3. Preliminaries

3.1. No abandonment. Consider the sequence of queues indexed by N, as introduced in the previous sec-
tion. We next describe a corresponding sequence of systems without customer abandonment; entities associated
with the systems without abandonment are appended by the “dot” symbol. Namely, for the Nth system with-
out abandonment, we set the initial and input parameters equal to those of the Nth system with abandonment,
except that all customers have infinite patience in the new system: AV = AV; @ =q); $;=s;, 1> —¢); and
p; =00, i > —4}’. To obtain upper bounds on the offered waiting times {v;, i > 1}, the following proposition
(Bhattacharya and Ephremides [2]) is used in conjunction with the results for the system without abandonment
(Reed [27]) (see Proposition 3.2 below). The process VN = {V¥(r),r > 0} is now a Wa1t1ng -time process (as
opposed to V¥, which is an offered wait): if v, is the waiting time of customer i, then 1% () = Vv, for > 1y,
and VN(1)=1v_,, for0<r<t,.

PROPOSITION 3.1 (BHATTACHARYA AND EPHREMIDES [2]).  VN(7) < VN(r) and HY () < HY (1) = Q" (1), for
t>0.

ProOF. For completeness, we provide a proof in §7.2, which is verified within the setup of the present
paper. O
The following result is a consequence of the preceding proposition and Proposition 5.3 in Reed [27].

PrROPOSITION 3.2. VN =0, as N — oo.

3.2. Infinite-server processes. For each N, consider a corresponding infinite-server process XV =
{XN(1),t > 0}, defined by the original arrival process AV and the sequence of service times {s;,i > 1}, as
follows:

AN (1)

XN(t) = Z 1{t,~+si>t}

AN

= X (e = P+ [ F-5)da" ()

In addition, introduce XV = {X™ (1), r > 0} to be a scaled and centered version of X:

B = (0 =N E), ®)
namely, for t >0,
AN (1)
R0 = 2 T oy = Fa= 1)+ [ =940, ©)

The following lemma, due to Krlchaglna and Puhalskii (see Theorem 3 in Krichagina and Puhalskii [20]),
characterizes the limiting infinite-server process. Earlier results on the infinite-server process were obtained by
Borovkov [4] and Iglehart [15]; for a recent measure-valued approach, see Decreusefond and Moyal [8] and Reed
and Talreja [28]. Define U = {U(t, x), t > 0, x € [0, 1]} to be a Kiefer process, that is a two-parameter continuous
centered Gaussian process on R, x [0, 1], with covariance function E[U (s, x)U(z,y)] = (s At)(x Ay — xy).
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LEMMA 3.1 (KRICHAGINA AND PUHALSKII [20]). The sequence of infinite-server processes {XN } converges
in distribution in D[0, 0), as N — oo, to the process X = {X(t), t > 0} defined by

X(t):/o F(t—s)dA(s)+/0 /o Ly dU (s, F(x)), t>0;

here U is a Kiefer process, A and U are independent, and the first integral is to be interpreted as the result of
integration by parts.
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Recall the definition of offered waiting times {v;, i > 1} from §2. It will turn out convenient to define a (scaled
and centered) process XY = {XY(7), 1> 0} by

AN ()
X{()= Wi > (Myegmiy — Fe—ti=v) + F(t = 1)), 120, (10)
i=1
because this process relates to the (scaled and centered) number of customers with positive indices (those with
arrival times #; > 0) in the system at time 7 > 0, via the following equality:

AN (1)

RO~ [P 9dA 0 = 7 S 0y = 1= )

3.3. Initial-customers processes. In this subsection, we consider the infinite-server processes associated
with the customers initially in the system (at time ¢ = 0). The process IV = {I"(t), t > 0} is defined by

@ (9 —N)*
IN(t) = Z 1{s_,->t} + Z 1{.Y_i>t}’
i=(q) —N)*+1 i=1

for t > 0; recall that the random variables s_; in the two sums are distributed according to F, and F, respectively.
Hence, the scaled and centered version IY = {I(t), t > 0} is defined by

. 1 _ _
1" =—(I" = () AN)F, = (g5 —N)*F),

N
namely, for ¢ > 0,
) 1 a B (g —N)* B
Mo=— > (O y—EO)+—= > 1 .4—F@®); (11)
‘/Ni:(qé’—N)++1 o=l VN i=1 oz

recall that E 1, _, = E (1), (g —N)* <i<gq),and E Ly on= F(t), 1 <i<(q) — N)*. The following lemma
characterizes the limiting behavior (as N — o) of V.

LEMMA 32. [N =T=WoF, as N — oo, where W = {W(t), 1 €[0,1]} is a (standard) Brownian bridge,
that is, a centered Gaussian process with covariance function E[W ()W (s)] =t A s —ts.

ProOF. Define [N = {IN(r), 1 >0} and I = {I) (1), t > 0} such that [N = I¥ +IV; i.e., IN(r) and [V (¢) cor-
respond to the first and second summand in (11), respectively. From Lemma 3.1 in Krichagina and Puhalskii [20],
the random time change theorem and (7), it follows that /| [N =1, as N — oo. By the same argument I, [N =0, as
N — oo, since (7) implies (qo —N)"/N=0,as N > oc0. O

Next we introduce 1) = {I¥(r), t > 0}, where

(g -N)*

iﬁ(r)=ﬁ S (g = PO ) +FO). 120 (12)

The relationship between /¥ and [V is similar to the relationship between XY and X"
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@ (g —N)*

1AN(¢)+@’(¢)=% > (1{s,i>t}—ﬁ(t))+ﬁ Yo (o —F(1 =), (13)
i=(g) —N)*++1 i=1

for t > 0, which is the (scaled and centered) number of customers with negative indices that are in the system at
time # > 0. Note that the sum in (12) consists of elements corresponding to customers awaiting service at time
=0 only; this is due to the fact that v_, =0 for (¢}’ — N)* <i < ¢}’ by definition. The following lemma states
that the process XY + 1) vanishes as N — co.

Lemma 33. XV 4+1¥ =0, as N — .
ProOF. See §7.3. O
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3.4. Abandonment. Throughout the present section, we consider processes that correspond to the system
with abandonment upon arrival (see the discussion in §2). This system is easier to analyze than the one where
customers abandon after waiting. However, as already noted, the two systems are equivalent in the QED regime.

The infinite-server process X" was constructed from all arriving customers. Now, let Z¥ = {Z¥(¢), t > 0} be
the infinite-server process induced only by arrivals that do abandon, namely,

AN()
ZN(t) = Z 1{ti+Si>f}1{PiSUi}’ t=0.

i=1

Consequently, the scaled and centered version ZV = {ZV (1), t > 0} is defined by

2¥(1) = \/LN (ZN(I) - /0 F(— )GV (VY(5)) dAN(s)>, t>0; (14)

the independence of service requirements, customer patience, and the arrival process, together with the indepen-
dence of (s;, p;) and v;, yield

AN (1)
EZY(1) = Nk > (mn Loy — F(E = 1) GV ()
i=1
AN (1) _
= —=F > (E[l sy | LI E[ oy [ 0] = F (2 = 1) G (0)) =0, (15)

ﬁ i=1

where the second equality is due to E[1,.,_,, | ;] = F(t—t) and E[1{),<v,) | vl = G"(v;). The next lemma states
that the process 7N is negligible in the limit, as N — oco. The lemma is based on the assumptions G¥(0) =0
and 6 < co. During time intervals when the offered waiting time is positive, the rate at which customers abandon
is proportional to /N (for large N), which is negligible relative to the total arrival rate AV, the latter being
linear in N.

LEMMA 3.4. Z¥ =0, as N — oo.

Proor. See §7.4. O
Similarly, the infinite-server process due to customers who do not abandon will be denoted by YV =
{Y¥(),t>0} =XV —Z", with
AN (o)
YN(t)z Z l{fi+si>t}l{17i>vi}'
i=1
Because customers abandon the system at a rate proportional to /N, the scaling and centering for YV is the
same as for the process XV in (8). Thus, Y~ = {¥N(z), r > 0} with

1
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YN = Y¥ — Np"F), 16
«/ﬁ( pF,) (16)
which yields
A A A t —_ v
V() = RV (1) — 2N (1) — / F(t—s)VNGY (V¥ (s))dAN(s), >0, (17)
0
where AN = {A" (1), 1 > 0} is a linearly-scaled arrival process:
AV = AV/N.
In parallel with XY and IV, define Y = (Y (1), 1 > 0} by YN = XY — ZV, where Z) = {ZN (1), > 0} is
given by
R 1 Ao _ _
Zg(t) = ﬁ 21: (l{t—t,-—vi<s,-§t—ti} - F(t — - vi) + F(t - ti))l{pifvi}’ t>0. (18)

LEMMA 3.5. YV +IV =0, as N — co.
Proor. See §7.5. O
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Finally, we introduce AY = {AY(7), r > 0}—the arrival process of customers that do not abandon the system,
i.e., the customers that are eventually served; this process, at time ¢ > 0, is given by

AN (1)

Aiv(t)z Z 1{p,->u,~}‘
i=1

A corresponding scaled and centered version f\ff = {Af (1), t > 0} is defined by

AN 1 N N .

Al> \/ﬁ (Al> A e)’

the latter process is also used in the proof of Lemma 3.3 (see §7.3). The last lemma in this subsection stems from
the fact that A has a.s. continuous sample paths and V¥ vanishes in the limit, as N — oo. The process (7" + V)
arises when the relation between HY and VY is considered. In particular, V¥ (¢) = VN (7V(£)) = V¥ o 7¥ (1), for
t >0, is defined not by HY o 7¥(¢) only but rather by H" o 7¥(¢) and H" o (¥ + V¥)(¢) jointly (see the proof
of Lemma 3.8).

LEMMA 3.6. AN o (7N +VN)— AN o1V =0, as N — .
PrOOF. The value of the process Aﬁ’ , at time 7 >0, is given by

AN (1)

o ~ 1
Aiv(t) =AN(t) e~ W Z 1{1’1’5":’}’
i=1

and, thus, AN o (7¥ 4+ V¥) — AN o 7V = AN o (7N 4+ V¥) — AN o 7V — AN, where AY = {AN(r), t > 0} which, for
t > 0, satisfies

R 1 AN (N () +VE (1)
AV () = — 1o, -0
A «/N l_ ANZ {pi=v;}

(TN (1) +1
AN 14V (1))
= «/_ Z 1{[’1‘5”1'};

i=AN (1)+1

the inequality follows from the monotonicity of AV(-), 7¥(¢) <t, and AV (7V(¢)) = AV(¢). Assumption (4)
and Proposition 3.2 imply AY o (e + V) — A¥ = 0 and AY = 0, as N — oo. The statement of the lemma
follows. O

3.5. Queue length. The number of customers in the system at time ¢ > 0 can be expressed as the sum of
indicator functions (Borovkov [4], Krichagina and Puhalskii [20], Reed [27]):

AV(1) ) (g6 =N)*
HN(t) = Z l{ti+s,~+ui>t}1{p,~>ui} + Z 1{s,,->z} + Z 1{s,,~+u,,->t}' (19)
i=1 i=(q(1)V—N)++1 i=1

On the other hand, Proposition 2.1 in Reed [27] renders

AN(n) (g —N)*

/(HN(t—s) N)+dF(s)—Z(F(t—t—v) F(t— )] PR Z (F(t—v_,)—F(1)).

Then, combining the preceding equality and (19) yields, for r >0,

AN @) a0’
HN(I) = Z (1{ti+si+vi>t} - F(t — = vi) + F(t - ti))l{pi>v,-} + Z (1{s_,->t} - F:k(t))
i=1 i=(g) —=N)*+1
(qo _N)+

£ g = FC—0 ) + @ =N F O + @ ANED+ [ (Y =) = N)* dF (),

i=1
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or, equivalently, in terms of scaled processes (see (7), (10), (13), (16), and (18)), for ¢ > 0:
HY(1) = (@) (F(1)) = F(0) + @5 () + TV (0) + 1Y (1) + YV (1) + V(1)
+ [ (1= 9)* dF (s) = VN (1= pMIE () (20)

We now recall an operator, ¢: D[0, co) — D[0, o), which was introduced in Reed [27]; it plays a fundamental
role in the analysis of QED queues without abandonment.
DEFINITION 3.1 (REED [27]). For each x € D[0, ), let ¢(x) be the unique solution y to

t
y(1) = x(1) +/ Y (1 —s)dF(s), t>0.
0
Then, (20) can be rewritten in terms of the operator ¢:
AY = (G (F—FE)+ Gy E ATV + IV + 7Y + 7Y — VN1 — p")F,). (1)

The next proposition establishes L!-continuity of ¢. In Reed [27], only continuity of ¢ in the topology of
uniform convergence was considered. The additional mode of L'-continuity is needed in order to relate H" and
\A/ﬁ in Lemma 3.8 (via Lemma 3.7). In particular, due to (14) (see also (17)), rather than approximating Vﬁ by
A" directly, it suffices to only relate integrals of these processes over finite time intervals.

PROPOSITION 3.3.  The function ¢: D[0, 00) — D[0, 00) is Lipschitz continuous in the L' topology over
bounded intervals.

Proor. See §7.6. O

We now proceed to show that the scaled number-in-system process H" does not change significantly (in
the L' sense, as N — oo) over time intervals during which individual customers await service. Note that
t =7V (s) + VN (s) is the time when the last arriving customer before ¢ = s were to enter service if it had infinite
patience (recall that V¥ is the offered-waiting-time process).

LEMMA 3.7. We have, as N — oo,
t A A
{/ |HY o (TN + V) (5) — H" (s)|ds, t > 0} = 0.
0
Proor. See §7.7. O

3.6. Offered waiting time. The following lemma relates the (limiting and scaled) queue-length and offered-
waiting-time processes in the QED regime. Recall that waiting is measured in units of average service time.

LEmMMA 3.8. We have, as N — oo,
t A A
{/ ((HN ()" = VY (s)|ds, 1 = 0} = 0.
0

REMARK 3.1. The lemma relates the queue-length and offered-waiting-time processes without a priori requir-
ing that either of the processes converges weakly.

ProoF. For t >0, let D¥(¢) be the number of service completions during the time interval [0, ¢]. First, by
definition, V¥ (r) satisfies, for ¢ > 0,

(HY(7) +1{peyn ) — N)* =D"(r+ V(1)) — D"(7), (22)
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where 7= 7¥(r) is the time of the last arrival prior to time # and p = p"(r) = p,v(, is the patience of the
corresponding customer (set p, = o). The presence of the indicator function in (22) is due to the fact that the
customer arriving at time 7 might abandon the system on arrival (if p < V¥(7)). Recall that, by definition,
VN(t) = V¥(7) is the offered waiting time of the customer with index A" (¢), i.e., the waiting time this customer
would experience if it were not to abandon. The sum H" (1) + 1y, <y~ represents the number of customers in
the system at time 7 if the patience of the arriving customer is infinite. Second, the number of the customers in
the system at time 7+ VY (¢) = 7+ VY (7) can be expressed as a linear combination of arrivals and departures:

H" (1 + V(1) = HY(1) + AY (1 + V(1)) = Al(7) = DY (1 + VX(2)) + DY (1)
= H" (1) + AY (1 + V(1)) = AL(7) = (H"(7) = N + Ljevn )™
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g (s 1<i<qd}

AN,{SiinI}’{Pi:i21} PiZ2Vi - + —> 9

FIGURE 1. Relations between various processes/variables.

where the second equality is due to (22). Considering whether V¥ (¢) > 0 or V¥ (¢) = 0 in the preceding equation
results in

HY(1+VE@D) = N = AV (7 + VE(1) — AV (7) = 1y (o) L (v (1)) - (23)

Third, centering and rescaling the quantities in (23) gives rise to

(HY () = VY1) = HY (1) = @Y (r+ VED) T + AV (r+ VY1) - AY (7)
—(1- PN)‘A/ﬁ(f) - 1{pSVﬁ(t)}I{HN(T+Vﬁ(t))=N}/\/N' (24)
Next, note that (5) and Proposition 3.2 yield, as N — oo,
1-p"MyWV¥ = o.
Finally, the statement follows from (24), the preceding limit and Lemmas 3.6 and 3.7. O

3.7. Summary of notation. We find it helpful to summarize, in Figure 1, various relations among the
processes that have been introduced in this section. Process w corresponds to customers that are initially in the
system at time ¢ =0, and XV is the infinite-server process that corresponds to the customers that arrive after
t =0. Based on a comparison of customer patience and offered waiting times, XV splits into the abandonment
process IV and the infinite-server process Y due to customers that receive service (do not abandon). Reed’s
operator ¢ provides a description of the queue-length process H" in terms of ¥ and [". Finally, the queue-
length process is closely related to the (offered) waiting-time process Vﬁ.

4. Results. This section contains the main results of the paper. A central role is played by a map-
ping ¢, applicable to the model with abandonment, which is a generalized version of the mapping ¢ in
Reed [27]. The two mappings coincide for # = 0 (no abandonment in the limit). Recall that the waiting time
vanishes in the limit (Proposition 3.2), and hence, the sequence of patience distributions {G"} manifests itself
only through the parameter 6 (cf. (6)).

DEFINITION 4.1. The mapping ¢: D[0, co) — D[0, o0) is such that ¢(x), for each x € D[0, o0), is the unique
solution y to

YO =x()+ [ (=) dF(s) - Q/ty+(t—s)dF*(s), 1>0. (25)
0 mJo

The next proposition guarantees that ¢ is well defined and summarizes some of its properties.
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PROPOSITION 4.1.  For each x € D[0,o0) there exists a unique solution ¢(x) to (25). The function
¢: D[0, 00) — DJ[0, 00) is Lipschitz continuous in the topology of uniform convergence over bounded intervals
and it is measurable with respect to the Borel o-field generated by the Skorohod J, topology.

Proor. See §7.8. O

4.1. Queue length. The following is the main result of our paper.

THEOREM 4.1.  For the QED G/GI/N + GI queue, with abandonments upon arrivals, as N — oo we have

HY = (G (F—F)+GF, +1+X—BF).
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REMARK 4.1. In the context of Theorem 4.1, the last term in (25) captures the effect of customers abandon-
ment in the QED regime; note that the integration is with respect to the residual distribution F, rather than the
service distribution F. Namely, ¢ quantifies the negative feedback due to abandonment (8/u > 0): the higher
the number in the system, the higher the offered waiting time, the higher the abandonment rate, the lower the
effective arrival rate of customers that eventually receive service, and the lower the number in the system; on the
other hand, the lower the number in the system, the lower the offered waiting time, the lower the abandonment
rate, the higher the arrival rate of customers that eventually receive service, and the higher the number in the
system.

Proor. Using (17) and Definition 4.1, equality (21) can be rewritten as

ﬁN:¢(MN+iN+XN+AN)’
where . o B
MY = () (F = F)+4) F. —VN(1 - p")F,, (26)
and AN = {A¥(r), 1 > 0} is given by
~ A A A t — v t A
AN =IN() + YV (1) = ZV (1) — / F(t—$)¥YNGY (VY (5)) dA" (s) + o / (HY(t —5))" dF,(s).
0 M Jo

Combining Lemmas 3.4 and 3.5 together with (2) and Lemma 3.8 yields, as N — oo,

AV = 0. (27)
From (5) and (7) it follows that, as N — oo,
MY = M =Gf(F~F)+4F,—BF, (28)
Now, we argue that, as N — oo, jointly
MY, IV, XV AN = (M, 1, X, 0); (29)

note that the convergence of marginals is due to (28), Lemmas 3.1 and 3.2, and (27). To this end, introduce
IV ={I"(t), t > 0} with

N
. 1 & _
IN(f)=ﬁ NZ: (152 — F(2)),
i=ql —N+1

where 5_; =s_; for (¢ —N)" <i<gq},and {5_,,q) — N <i< (g} —N)'} is an i.i.d. sequence drawn from
F, and independent of all service requirements, arrival processes, and g, . Observe that the preceding sum
contains exactly N elements (rather than a random number that depends on ¢('), and the N-element sequence
{5_i,q) — N <i<ql'} is independent of g} by construction (g, is just an index in this case, and the elements
of the sequence are independent of ¢'); as a consequence, IV and gy’ are independent. Then the definitions of

IV and IV imply, for ¢ >0,

o R 1 (‘I(IJV_N)Jr _ 1 (‘I(I)V_N)Jr _
IN(f)—IN(f)=ﬁ NZ (I{E,i>t}_F*(t))_ﬁ ZI: (1o — F (1),
i=qy —N+1 =

that, in turn, leads to (see the proof of Lemma 3.2)
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N,y = ., (30)

as N — oo. The limit (MN, IV, XV, 0) = (M, I,X, 0), as N — oo, is due to the convergence of marginals and
the independence of the prelimit processes MY, IV, and XV (Whitt [31, Theorem 11.4.4]); the independence
is due to the fact that MY depends on gy only (see (26)), XV depends only on the quantities associated with
customers that are not initially in the system (see (9)), and I is independent of both gy and AN, {s;,i>1}.
Furthermore, the following holds:

d, (Y, 1V, XV, 0), (MY, IV, XY, AM)) < d, (IV, Y) +d, (0, AV)
=0,
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as N — oo, where the limit is due to (30), (27), and Theorem 11.4.8 in Whitt [31]. Finally, (29) follows from
the preceding limit and Theorem 11.4.7 in Whitt [31].

The rest of the proof is almost identical to the corresponding part of the proof of Theorem 5.1 in Reed [27].
Specifically, the space D*[0, o) is separable under the product topology (e.g., see Theorem 11.4.1 in Whitt [31]);
therefore, due to (29) and the Skorohod representation theorem (e.g., see Teorem 3.2.2 in Whitt [31]), there exists
an alternative probability space with {(M", IV, XV AM)}, and (M,I, X,0) defined on it with the following
properties:

(MN,iN,XN’ AN) 4 (MN’iN’)A(N’ AN)’
(M,1,%,0) = (M,1,%,0), (31)

M, IV, XV AYY — (M, 1,X,0) as.,
as N — oo. It should be noted that the last limit also holds under the uniform metric (not just J; metric) since
both 7 and X have continuous sample paths and the set of discontinuity points of MY is a subset of discontinuity
points of F, for all N. Hence, we have, as N — oo,

MY+ 1V + XN+ AY 5> M4+T+X  as. (32)
under the uniform metric.

Define HY = ¢(M" + IV + XV + AY) and note that, because of the measurability property of ¢ (Proposi-

tion 4.1) and (31), we have

AV S A (33)
Moreover, (32) and Proposition 4.1 (continuity part) yield, as N — oo,

A" =¢pM" +1" + XV +AY) > (M +1+X) as.
The fact that almost sure convergence implies convergence in distribution and convergence in the uniform
metric implies convergence in the J; metric, together with (33), Proposition 4.1 (the measurability part) and the
preceding limit yield . o
HY = ¢(M+1+X),

as N — oo. The statement of the theorem now follows. [

Recall that QV is the process of the total number of customers in the system when abandonments occur after
waiting (as opposed to upon arrival). In view of Theorem 4.1, the following result indicates that, in the QED
regime, the scaled number of customers awaiting service that eventually abandon becomes negligible (relative
to the scaled total number of customers awaiting service) as the number of servers increases.

COROLLARY 4.1. For the QED G/GI/N + GI queue, with abandonments after waiting, we have, as N — oo,
0" = &gy (F—F)+§F.+1+X ~BF),
where the limit coincides with that in Theorem 4.1.
PrOOF. The processes OV and A" are related via OV = A" + RV, where RY = {R" (1), t > 0} is given by

AN (1)

R\N(t)z_ Z 1{+ >}1{ i<v;}*
ﬁ P Litpi>1; “\Pi=v;

Thus, in view of Theorem 4.1, it is sufficient to prove RN =0, as N — oo. To this end, for any positive ¢ and 8,
the following inequality holds for all sufficiently large N:

PUIRY |l > €] < PLIR 5l > el + PVl > ],
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where Iéfi, 5 = {Iéf; 5 (1), >0} is an infinite-server process with deterministic service times and
AN(n)

o
R 5(1) = N ; Vo L p<e/uvim) -

Now, Theorem 3 in Krichagina and Puhalskii [20] implies I??iy 5 = {c(t A 6),1>0}, as N — oo. On the other
hand, Proposition 3.2 yields A

lim limsup P[|| V¥ ||, > ¢] =0.

7% N-soo
Therefore, given € > 0, for any & > 0 it is possible to select ¢ and d such that P[|RY||,; > €] < &, for all N
large enough. Consequently, RN = 0, as N — oo, and the corollary follows. O
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4.2. Waiting time. Now we introduce a mapping ¢ that is the analogue of ¢ for the virtual-waiting-time
process.

DEFINITION 4.2.  The mapping ¢: D[0, oo) — DJ[0, co) is such that ¢s(x), for each x € D[0, o), is the unique
solution y to

ﬂo=Qm+4}wﬂmnw—£[ﬂrwmawflrzo (34)

REMARK 4.2. Note that, for x € D[0, 00), if y = ¢(x) then y* = (x), i.e., ¥(x) = (d(x))".
The next corollary characterizes the limiting waiting-time processes. Let LY = {L"(¢), t > 0} be the abandon-
ment process in the Nth system, that is LY (¢) is the number of customers that abandon by time ¢.

COROLLARY 4.2. For the QED G/GI/N + GI queue we have, as N — oo,
VY = V=y(g (F—F)+GF. +1+X - BF)
and
vV o= V.
REMARK 4.3. Note that, in view of Remark 4.2, the virtual waiting time V and the queue length Q are
related via

V=0%

(Recall that VV = u+/NVY and VN = uv/NVY. In some of the literature, scaling that does not include the
prefactor w is used, resulting in V= Q+ /u rather than V= Q+ as in the present paper.)
ProOOE. Recall that, from the definition of the process A_, it follows that, for ¢ > 0,

A ~ 1 !
AV = AN(1) — —= | GY(VV(s))dA" ().
=A% - = GV aa’ ()
The preceding limits, (3), (4), (6), Lemma 3.8, and Theorem 4.1 yield, as N — oo,
~ A~ t A
AV = {A(t)—@/ H*(s)ds, tzo}.
0

Now, let DY = {D¥(t), t > 0} be the departure process in the Nth system, i.e., DV (¢) is the number of customers
that receive service by time . Then DY and L" can be expressed in terms of the arrival and queue-length
processes:

DY(1)=AY(1)—H" (1) + gy

and
LY(1) = A" (1) = AL (1) + HY (1) — 0" (1),

where 7 > 0. These representations, (4.2), (4), Theorem 4.1, and Corollary 4.1, imply, as N — oo, that
(DY = AVe)/v/N = {D(1),t >0}, LN /s/N = {L(t),t > 0} and L¥/N — 0 u.o.c. a.s., where

A~ ~ t .
DO=AW =0 [ A* () ds =AM +dp 120,
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and .
(=6 f A*(s)ds, 1>0. (35)

Given the preceding limits, (3), (4), Corollary 4.1, the continuity of sample paths of A, and the Lipschitz
continuity of ¢ (Proposition 4.1), the virtual-waiting-time process VN converges due to Talreja and Whitt [30]:
VN = QJr = {Q+(t) t> 0} as N — oo, where Q is such that QN = Q as N — oo. However, from Corollary 4.1
it follows that 0 = &(q; (F —F,)+ 4,F, +1+X — BF,). The convergence of the offered-waiting-time processes
Vﬁ can be deduced from Puhalskii [25] because, in addition to convergence of the queue-legth process, we have
convergence of the arrival processes of customers that eventually receive service. [
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5. Examples

EXAMPLE 5.1 (ESTIMATING PATIENCE). In any application of models with abandonment, there is the need to
estimate the patience distribution (Gans et al. [11]). Our results indicate that, in the QED regime, it suffices to
merely estimate 6, the density of patience at the origin. The following corollary provides a theoretical justification
for our proposed estimator.

COROLLARY 5.1. For the G/GI/N + GI queue we have, as N — oo,
L¥(1) 0 '
VN L 1>0F = —/ *(s)ds, t=0}.
NerroRs pi dy @12
Proor.  The statement follows from (4), Corollary 4.1, and (35). O
The corollary suggests that an estimator for 0, 6, can be obtained in the following manner:
LY (1)/ AN (1)

(1/(uND) [;(Q¥(s) = N)* ds
The numerator is simply the fraction of customers abandoning up to time t; a practical approximation for the
denominator can be the average waiting time up to time ¢. The accuracy of such estimators remains an interesting
open problem.

We next consider two specific examples; both correspond to systems that have not yet been analyzed. The
first example generalizes Zeltyn [33] and Zeltyn and Mandelbaum [34], and the second example expands on
Mandelbaum and Moméilovié [21].

ExaMPLE 5.2 (G/M /N + GI). Consider a system with exponential service times, noting that F, = F. In
addition, suppose that the sequences of random arrival times {¢"} satisfy, for some ¢ > 0,

:tfll\/d —t/p
VNe/p

as N — oo, where B is a standard Brownian motion. (Note that there exists a sequence of arrival times for
each N, namely, the jump times of AN, ) Then, Y = H and Q" = Q, as N — oo, due to Theorem 4.1 and
Corollary 4.1, respectively. Here, Q=H is the unique solution to

O(1) =1(t) + X (1) + (4o + B) exp{—pt} — B+ (u — 0)/(: O (1 —s)exp{—ps}ds, 120, (37)

6=

,zzo} = B, (36)

in which ¢, is given in (7), I in Lemma 3.2, and X in Lemma 3.1. Similarly, due to Corollary 4.2, V¥ = V, as
N — oo, where V is the unique solution to

A A A N t A
V(1) = (1) + X (1) + (4o + B) exp{—pt} — B+ (1 — 9)/0 V(t—s)exp{—ps}ds)", 1=0.
The definitions of /¥ and XV give rise to

1 N N _ N _IN N _ N
ﬁ(l + XV —p"N) =V 4+ XY+ (GY + VN1 - p"))F, (38)

where F(t) =exp{—put}, t > 0. Because the service times are exponential, the process on the left-hand side of
the preceding equality weakly converges to S = {S(¢), ¢ > 0}, which satisfies S(0) = ¢, + 8 and

dS(t) = —uS(t)dt + /(1 +¢?) dB(1), 1>0; (39)
here {B(?),t > 0} is a standard Brownian motion (Krichagina and Puhalskii [20]). Now, (37) and (38) result in
dO(1) = dS(1) = (w(Q(1) = S(1) + B) — (n— 0)0* (1)) dr,

which, combined with (39), yields
(w(S(t) = B) — 0Q(1))d1 + dX (1) 0(1) >0,
((S() =) —pQ(1)dt +dR(1) Q1) =0,

—(uB+00(0)dt +/u(1+c?)dB(1) O(r) >0, w0
= 40

—(uB+pQ(1)dt +/u(1+c?)dB(1)  O(1) <0;

the initial condition for Q is Q(0) = §,.
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Finally, in the special case u = 6, the operator ¢ simplifies to ¢(x) =x (see (25)) and, therefore, O=H=
Go+1+X—(§o+PB)F, with F(t) = 1 —exp{—put}, t > 0. Note that g, +1+ X — (qO+B)F S — B is the limiting
scaled and centered infinite-server process with the initial condition taken to be g,; for the QED M/M /N + M
system, this relation holds even in the prelimit.

ExaMmpLE 5.3 (G/D/N + GI). The deterministic service distribution F (s) =1 fs=1/) 1mphes a uniform resid-
ual distribution 7, (s) = (us)* A 1. Theorem 4.1 and Corollary 4.1 guarantee HY = H and 0" = 0, as N — oo,
where Q )il satisfies, for 0 <t < 1/u,

O1) = i it + o1 — ) +1(1) + X (1) — B — 0 / O*(1 - s) ds,

while, for t > 1/pu, 1/
R . R TN
0 =X(1)-B+ Q+(t—1/ﬂ~)—9/ Q" (1 —s)ds;

as in the previous example, qo is given in (7), I in Lemma 3.2, and X in Lemma 3.1. On the other hand,
Corollary 4.2 implies VN =V, as N — oo, where V is the unique solution to

V()= @ -+ (1 = w0+ 1O+ R0 = Byt =0 [ V(1 =9)d9)*, 1€10,1/p0),

and ”
V() =R() =B+ V(t—1/u)— 0/0 V(t—s)ds)*, 1>1/p.

When comparing the present example with the QED G/D/N queue (no abandonment) (Jelenkovi¢ et al. [17]),
one observes that having abandonments results in more complex dynamics. Specifically, whereas in Jelenkovié¢
et al. [17] the distribution of Q(t) depends only on Q(t —1/w) (as far as 0 is concerned), here Q(t) depends
on all values of O during the time interval [r — 1/u, ¢). This is due to the presence of the residual service
distribution in the operators ¢ and .

6. Future research: Stationary distribution. Our analysis addresses the transient behavior of a QED sys-
tem with impatient customers. The stationary distributions of the queue length and the waiting time remain
unknown, as is the case for the corresponding system without abandonment; note that the system with impatient
customers remains stable (as t — oo) for all finite values of the capacity parameter 8. (A large-deviation char-
acterization of the stationary distributions for a QED queue without abandonments can be found in Gamarnik
and Mom¢ilovié [10].)

We observe that Example 5.2 is consistent with the results in Garnett et al. [12] on the stationary number-
in-system process (for the M/M /N + M system in the QED regime). Based on (37), it is thus tempting to
conjecture that, for the G/M /N + GI system, the stationary versions of number-in-system processes converge
weakly, in the QED regime, as N — oo, to the process Q = {Q(t), t € R}, where Q is the unique stationary
process that solves

O =X~ B+ =0 [ 07 exp{-n(r—9)}ds

here X = {X(¢),7 € R} is the stationary version of the infinite-server process X (see also Lemma 3.2).
Under assumption (36), X satisfies dX(t) = —uX (1) dt + /(1 + c?) dB(t), where {B(r),t € R} is a standard
Brownian motion (since [ vanishes as t — oo; see Lemma 3.2, and Example 5.2 in §5). An example where
these assumptions (X stationary and (36)) prevail is when the arrival process is stationary renewal and g, has
the corresponding stationary distribution. A conjecture for the stationary distribution of g, is provided in (41)
below; in the case of Poisson arrivals the (diffusion) stationary distribution of ¢, was calculated in Zeltyn [33].
Consequently, Q is a (piecewise) Ornstein—Uhlenbeck process (Q satisfies (40), where Q substitutes for Q), as
derived earlier in Garnett et al. [12] for the case ¢ = 1 (Poisson arrivals). Based on the preceding and Browne and
Whitt [5], one can calculate the probability density function of Q(r) (see also Garnett et al. [12], Zeltyn [33]):

fQ(;)(fI) = Xf—(Q)l{qso} +(1— X)f+(‘1)1{q>0}, (41)

where f_(q) = c®'(c(q+ B))/P(cB), f1(q) =/ 0/ud (¢(qy/ 0/m+ By/1/6))/P(—CBy 1t/ 0),
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® and @’ are the distribution and density functions of the standard normal random variable, respectively, and
X = f,(0)/(f,(0) 4+ f_(0)). Furthermore, from the stochastic differential equation for O, one deduces directly
that the stationary distribution of ZQ(r) is equal to the stationary distribution of the identically scaled limiting
queue length Q,(7) in the Erlang-A model, but with the load parameter &B3. This makes results on the Erlang-A
model, documented for example in Mandelbaum and Zeltyn [23], directly applicable to the QED G/M /N + GI

queue. For example,
P[wait > 0] = P[Q(¢) > 0] = <1 + Q—h(cﬁ ~,u,/9))
Vi h(=cp)

and
S0 = 2 (e - i hEByuf0) ™
£0" ()= £ (B u/0) — o) ([ 4 + MCEVRID
co 0 h(—¢P)
where h(q) = ®'(q)/(1 — ®(g)) is the hazard rate of the standard normal distribution. Corollary 4.2 and
Remark 4.3 now provide a recipe for calculating also performance measures that involve waiting time. In par-
ticular, it is well known that [P[abandon] = 6 F[wait] when the patience distribution is exponential.

7. Proofs

7.1. Proof of Lemma 2.1. Let {5_,,i> 1} and {p_;, i > 1} be two i.i.d. sequences defined by distributions F,
and GV, respectively. The FCFS policy implies v_;,_; <v_;, for 1 <i < (g}’ — N)* and, hence, for € >0, v>0
and ¢ > 0, we have

(g6 —N)*
["év/\/ﬁ> €] < [P’|: Yo <> E\/N:| +P[v_, > v]

i=1

[eVN] a0
Z 1y <y > €VN | +PlG) > c]+P > lyy<g—N
i=(a ~N)*+1

_ [eVN]

=TIV
where the second inequality is due to the fact that the event {v_, > v} implies that the number of service
completions in the time interval [0, v] is less than (g}’ — N); in addition, the number of service completions in
[0, #] is lower bounded by the sum in the last term in the second inequality; Markov inequality is used to obtain

the third inequality. Setting v = d/~/N, with d = d(c) large enough such that /NF,(d/~/N) — ¢ > € for all N
large enough (which is feasible due to definition (2) of F,) and applying Markov inequality result in

G"(v) + P[i(lf*(v) —li<) > NE(v) - C«/N} +2P[4y > cl.

i=1

v [ev/NT on F(d/VN) .
P[r, JVN > €] < i G (d/f)+(ﬁF*(d/ﬁ)—c)2+ P[gy > c].

Finally, letting first N — oo, recalling (2), (6), and (7), and then letting ¢ — oo yields the statement of the
lemma. [

7.2. Proof of Proposition 3.1. It is sufficient to prove the statement for offered waiting times because it
implies the result for queue lengths:
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AN (1) qy AN a0
HY(0) = 3 Vsavvaenlvvazm T 22 osnt 220 Lo on
i=1 i=1 i=g) AN+1
AN (1) g}’ AN a)f
= Z 1{t sV (1)>1} + Z 1{s >t} + Z l{s,[+i),,->z} :HN(t)9
i=1 i=q NAN+1

for ¢ > 0; note that v, = v, and p, = p;, = oo, for —qg’ <i< —qév A N, by construction. Furthermore, one can
consider Vﬁ and Vﬁ only at the moments of arrivals (¢ = ¢, for some i > 0) and 7 = 0, because, between arrivals,
both V¥ and V" remain constant.
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Now, consider the closely related shortest-workload-first routing policy (that can be conveniently described
by the Kiefer-Wolfowitz recurrence; e.g., see Baccelli and Bremaud [1, p. 91]), and let W"(¢) and W,{V (1),
1 <n < N, be the nth smallest server workload in the system with and without abandonment, respectively. Then,
it is well known that V¥ (¢;) = W (z,—) and V¥ (z;) = WN(t,—). Starting an induction, assume

WY (1) < erv(tl) (42)

for some i > 1 and all 1 <n < N; the base of the induction is due to the assumption on the initial states
(at £ =0). Let & be the standard reorder operator. Then, because the vectors of W"’s and W"’s satisfy the
Kiefer—Wolfowitz recurrence, it follows that

(W (1130)s W3 (1) - s Wy (1141))
=R(W)N(t,) i1 L p<w (1,00 — L + 15 WY (1) =ty s s W () — iy + 1) T
S RWN () + 501 — i+ 10 W (8) =ty + s WY (8) = 1+ 1)
= (WY (130, W' (111)s -+ o W (211)),

where the inequality is due to the inductive assumption (42); the operator (-)* is applied element wise. There-
fore, (42) holds for all i > 1 and the proposition prevails. [

7.3. Proof of Lemma 3.3. Let AY ={A"(¢), t >0}, where, for 1 >0,
AN (1)

Allj(t): Z I{Pi>vi}
i=1

represents the number of customers with arrival times in [0, ¢] that eventually receive service (do not abandon);
the process A" was also considered in §3.4 (see Lemma 3.6). Define a two-dimensional process {EY(z, s), t > 0,

s >0} by
AY (1)
EN(t,s) = > Lis<g
i=AN (t)—(HN (1)=N)*+1
where 5, =s;,_;, —(q) —=N)* <i <0, and §; = s,v(;), i > | with 7, = inf{r > 0: AY(z) =i}. The value of E"(z, 5)

is equal to the number of customers awaiting service at time ¢ with service requirement at most s (recall that
customers abandon upon arrival, if at all). Let w, = vil{p,->u,-} fori>0, w_;=v_, for 1 <i< (q{)V — N)*, and
w_; =0 for (¢} — N)* <i < gq’; note that w; =0 for all customers that abandon the system. Alternatively,
EV(t, s) can be expressed as a sum over all customer indices:

AN (1)
EN(t’ 5) = Z 1{t,-5t<t,-+w,-}1{s,»§s}’ 43)
i=—q(’)v
where t_;,=0fori=1,...,q), and the element of the sum corresponding to i =0 does not exist. Furthermore,

we define {FV(t,s),t>0,s >0} by
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EN(1,5)
FN(t, S) = l{HN(t)>N}(f11V(t)——W’ (44)
and note that
EN(t,s)=E"(¢, )Ly =ny = (HN(t) = N)TFN (1, 5); (45)

on the event {H" (¢) > N}, F"(¢, ) can be interpreted as the (empirical) distribution function of service require-
ments for customers awaiting service at time ¢. Observe that, for 6 > 0, (43) renders

AN (1)
EN(t —Ss,5+ 5) - EN(t -5, S) = Z 1{t,§t7s<t,-+w,-}l{si73§s<s,-}'

i=—q(1)V
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In view of the preceding equality, the change in the order of summation results in

AN(’) t

t
/(; EN(t_Ss dS) = Z /(; l{tist—s<ti+wi}d1{si§s}

izfq{)V
AN (1)
= Z 1{ti§t—si<ti+wi}’
izfqéV
and, thus, due to (45), we have
t AN (1)
JRCAEOR YW AERVOESD DS T (46)
i=—q(1)v

On the other hand, for any ¢ > 0, Proposition 2.1 in Reed [27] yields

AN(n)

[ =9 =N dF G = X (F— =) = F - 1), “7)

i:—q{)\'
because only customers that do not abandon potentially contribute to the sum on the right-hand side of (47).
Therefore, (46) and (47) imply (see (10) and (12)), for ¢ > 0,
A ~ 4 A
(XY +19)(1) =/ (HY (1 = )" (F"(t = 5, ds) — F(ds)). (48)
0

Next, extend the i.i.d. sequence {5;,i > — (g}’ — N)™} to all integer indices (by letting {5;,i < —(g) —N)"} be
an i.i.d. sequence, independent of {5;,i > —(g) — N)*}, with its elements distributed according to F); observe
that {5;,i € Z} is an i.i.d. sequence because both subsequences are i.i.d. (defined by F) and independent of each
other. Now, define a family of empirical distribution functions F; ; = {F; ;(s),s > 0}:

1 i
Fi,j(s)=—. Z l{Ekgs}’ (49)

k=i—j+1

where i > 0 and j > 1. In what follows, we estimate ||F; ; — F||,, for a range of indices i and j. To this end, for
any € > 0 and s > 0, there exist constants 6(e, s) > 0 and y(e, s) < oo (e.g., see Billingsley [3, p. 151]) such
that, for all j > 1 (and all i),

PlIF; ;(s) = F(s)| > €] < y (€, 5) exp{—jb(e, 5)}. (50)
Moreover, by the same argument, replacing 1; ., with 1;; _, in the definition of F; ;(s) yields
PlIF, j(s=) = F(s—)| > €] < v(e, s) exp{—jb(e, 5)}, (1)

where F(s—) =E 1, _,, i > 1; the constants in (50) and (51) may differ in general. Given the distribution
function F, for any € > 0 there exists a finite sequence of nonnegative reals {a,;, 1 <[ < L} such that
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L
ﬂ{“Fi,j(az) —F(a))| <€} m{lFi,j(al_) —F(a—)|<€}} S {”sz —F|, <2e}.
I=1

This relationship, (50), and (51) imply the existence of 6(e) > 0 and y(€) < oo such that

PIF, ;= Fll« > €] = v(€) exp{—jb(e)}, (52)

for i >0 and j > 1. Now, we introduce a nonnegative real that characterizes a distance between F and F; ; for
multiple indices i and j:

Jein=sup sup [|F ;= Fll, (53)

O<i<k I<j<k+n
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where [ > 1. Then, for € > 0, the union bound and (52) yield P[f; ; , > €] < (k+ 1)(k 4+ n)y(e) exp{—10(€)}.
Finally, for any € > 0, the last inequality, (3), (5), and (7) result in, as N — oo,

H:D[fAN(T),e\/ﬁ, qg’ > 6] — 0. (54)
Next, considering whether {H ( —s) < €} or {H" (1 —s) > €} in (48) yields

IXY + 1Y, < e+ sup

0<t<T

[ i (1= 9) (P 0 = 5. d5) — F(ds))

<e+|H"|, Sup sup [(FY (1 =5,5) = F(S) 1 a(—g)-e|
0<t<T 0<t<s

<e+ A", SuPTOSUP | Fan r—s), 1 (1—s)—n (8) — F (5)]
0<t<T 0<t<s

<

€+ ||HN||TfAN(T),eJ1V,qg”

where the third inequality is due to F¥(z,5) = Fyw ;) un(y_n(s) on the event {HY(r) > N} (see (44) and (49));
the last inequality follows from (53). Now, for any 6 > O there exists € > 0, small enough, so that the preceding
inequality results in

PUIXY + 1117 > 28] < PUHA 7 fav 1y, evm. q > O]
< Pl evmgy > 8/c1+PUAY | > e, (55)
where ¢ > 0 is arbitrary. Finally, taking lim sup (as N — oo) on both sides of (55) yields, due to (54),
limsupP[[| XY + V]| > 8] <limsupP[| A" | > c].
N—oo N—oo

The final statement follows from the preceding by letting ¢ — oo, Proposition 3.1, and Theorem 5.1 in
Reed [27]. O

7.4. Proof of Lemma 3.4. For fixed 7 > 0 and A > 0, the following holds:
||ZN||T < max |ZN(1A)| 4+ max sup |ZN(1A +90)— ZN(zA)| (56)

0=i<[T/ 0<i<|T/A] g<5<A

First, we argue that 7N (t) =0, as N — oo, for any_ﬁxed t > 0. For notational purposes, it is convenient to
define the random variables z;(#) = 1,1 — F(t —t;)G"(v;); observe that Ez;,(t) =0 since s;, p; are

{pi=v;} ~
independent of #;, v;, and, hence, E[z;(?) | ¢;, v;] = 0. From (15) we have that F Z" (¢) = 0 and the second moment
is given by
. 1 AN (1) AN (1) AN (1)
E(ZN(1))* = [E Z () + N[E > zi(0)z(0)
i=1 j=i+l
AN(n)

= N[E Z F(t—1,)G" (v,)(1 = F(t — 1,)G" (v)));

the expectation of the double sum equals O because the service requirement and patience of an arriving customer
is independent of the state of the system. Then, given that F and GV are distribution functions, it follows that,
for € > 0,
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AN ()

PIIZY ()| > €l < 55 E 3 G (v) =0,
eN o
as N — oo, due to (3), (5), (6), and Proposition 3.2; thus, for fixed ¢, as N — oo,
ZN@1) = 0. (57)

Next, we consider the second term on the right-hand side of (56). To this end, for 7 > 0 and 6 > 0, we have

(see (14))
AN (1) AV (148)
ZN(1+8) - Z"(1) = j— Z (zi(1+8) —z:(1) + Wi i:ANZ(M z;(t+6),
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and upper and lower bounds follow:

. iy AV (1) . N AV (148)

ZN(t+6)—-2Z"(1) < J_ Z (F(t—1t,)—F(t4+8—1))G"(v,) + ﬁ i=ANX(;)+1 <0
= Z?T,a)(tﬁ

o Y 1 A0 1 A+ y

zZ (t+ 8) -z (t) = _ﬁ ; (l{s,->t7t,-} - 1{s,->t+57t,-})1{17,5v,-} - T i:ANZ(;H—l G (vi)

== (¢ 5)(t )-
The nonnegativity of Z(T 5 (1) and Zﬁ 5 (#) and their monotonicity in & imply

s 12Y(1-+3) = 2 (0] = 240 1,0+ 24 (0 (58)

For notational simplicity, introduce AEVC) = {A(c)(t), t >0} by
AN (1)

Afy(1) = Z L <esuvm)

AN (1)

= 2 (ppzesuemn = G (e/ (uV/N))) = AY () GY (c/ (uV/N)); (59)

also, set 7, = inf{r > 0: AN)(t) > i} and § = {s;: f, =1;}. The process A(C) is the arrival process of customers
with patience at most ¢/(u~/N), in the Nth system. Limits (3), (5), and (6) imply

{ A’j\ft)

VNG (c/(uvVN)), t > o} — cle, (60)

a.s. u.0.c., as N — oo, while the martingale inequality (Chung [6, Corollary 1, p. 331]) and (6) yield, for T > 0,

2uTGY
| sup 2(1{,,,<c/<m} - G/ uVR)| > eV | < ZEEEEED o
1<j<2uTN €
as N — oo. Combining (59), (60), and (61) results in
(C)/«/ = cle, (62)

as N — oo. Now, for 1 < T — 8, on the event {|[V¥||, < ¢} the first term on the right-hand side of (58) can be
upper bounded by using monotonicity:

AN (1)

ZY (0 < L ¥/ uvN ))Z<F(t—r> F(t+A—1)) + —=(AY, (1 +A) — AN (1))

JN f

= ¢ / (F(t—s)— F(t+A—s))ds + cOA, (63)
0
as N — oo, where the limit is due to (3), (5), and (6). Similarly, on the event {| VY|, < ¢}, we have
A?{.)(z) 1
Z{ 00 < I ; (Usmrmiy = Umrpaciy) T ﬁ(AN(f +A) — AN(1)G" (¢/(uV/'N))
1 - -
- c0/ (F(t—s) — F(t+A—5)) ds + cOA, (64)
0

as N — oo, where the limit is due to (3), (5), (6), and Theorem 3 in Krichagina and Puhalskii [20]. Now, for
¢ >0, (58) implies

n»[ sup 2% (1 +8) - 2V (1)| > e] <PIZ () +2Y o () > € |7y <+ [PV > c].
0<8<A
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Selecting A small enough, letting N — oo on both sides in the preceding inequality, using (63) and (64), and
then increasing ¢ — oo yields (for fixed 1)

sup |ZVN(t+8)=ZV(1)] = 0; (65)

0<6<A

the limit is also due to Proposition 5.3 in Reed [27] and Proposition 3.1.
Finally, the lemma follows from (56), (57), and (65). O

7.5. Proof of Lemma 3.5. In view of Lemma 3.3, it is sufficient to prove ZIAV =0, as N — . Recall the
definitions of Aﬁ), {f,,i>1} and {5;,i > 1} from the proof of Lemma 3.4. Now, for arbitrary 7 > 0 and € > 0,
we have

PUIZY N7 > el <PlIZX1lr > € IVXIly < ] +PUIVY [l > c].

On the event {||V¥||; <c}, the process ZV, based on its definition, can be upper bounded as follows, for all
t €[0, T] and all sufficiently large N:

AN (1)
R 1 (c) 1 ro_ _
NGIE= N ; (Usormiimsy — Lsmrmip) + ﬁfo (F(t—s—8)— F(t —s)) dA, ()
=: Zz,a)(t),
where & > 0. The preceding two inequalities render
PUZY Il > €] <PUIZY. 5l > el +PLIV Il > ], (66)
where 2(1\2 5= {ZZ 5 (1), 1>0}.
Next, Theorem 3 in Krichagina and Puhalskii [20] and (62) yield, as N — oo,
A 4 —_ -
(Z) 50,120} = {zw/o (F(t—s5—8) — F(t —s5))ds, 1 > o}. (67)
On the other hand, Proposition 3.2 implies

lim lim sup P[|| V||, > ¢] =0. (68)
Cc—>00 N—oo
Therefore, in view of (66), (67), and (68), given T and €, for any ¢ > 0, it is possible to select ¢ and & such
that P[||ZY |l > €] < £ for all N large enough. O

7.6. Proof of Proposition 3.3. Two cases are considered separately: (i) nondeterministic service times and
(ii) deterministic service times. Let y, = ¢(x,) and y, = ¢(x,) for x,, x, € D[0, o).

(i) Because service times are not single valued, there exist > 0 and 0 < € < 1 such that F(x+8) — F(x) <€,
for all x > 0. Then it follows that

S ot
a0 32) < d (o) + [ [ =) =yt =9 dF(s) di
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8
< (. x) + [ 3) dF(s)
< d}(x;, %) + €d) (1, 1),

and, thus,
dj) (y1, 32) < d}s (x1, 3) /(1 = €). (69)
Similarly, considering the time interval [0, 28] yields
AR (i, ) < di(xp, xy) + €d) (vy, y2) + €d ] (v, 12)
< d}(x1, %)/ (1~ €) +ed}} (1, yo),
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where the second inequality is due to (69). From the preceding inequality one derives d2%(y,,y,) <
d?(x;,x,)/(1 — €)*. The above argument can be applied [ times iteratively to obtain d'’(y;,y,) <
d? (x;, x,)/(1 — €)". Therefore, for any 7, there exists ¢; < oo such that d/,(y,, y,) < czd? (x;, x,).

(ii) Let a be such that F(a—) =0 and F(a) = 1. Then y,(1) = x;(1), i =1,2, for t <a and d],(y,,y,) =
d] (x,x,) for T < a. Next, assume that d], (y,, y,) < crd],(x,,x,) for some T > a and ¢, < co. Because of
this assumption, since y;(t) = x;(t) + y; (t — a), i =1, 2, for t > a, one has, for 0 <d <a,

diH (v, y,) < d)F(xy. x) +d (3, )
< d}"(x), %) 4 crd]i (x,, x,)

< (I4cp)d] " (x), x,).
The conclusion follows. O

7.7. Proof of Lemma 3.7. In view of Proposition 3.3, it is sufficient to consider the argument of the ¢
operator in (21). Recall the definition of d,, (-, ) from the proof of Proposition 3.3.
The nondecreasing nature of distribution functions yields

dh(Fo (" + V). F) = [ G+ IV~ F( = lle= )
< VA +lle =17,
where the second inequality follows from F(¢) <1 for all ¢; similarly,
dj(F o (" + V), F) <[Vl + e =7

For notational simplicity, let J := (§¥)*(F — E,) + GYF, — /N(1 — p")F,. The preceding two inequalities,
jointly with (5) and (7), yield, as N — oo,

dl(JVo (VN + VM), JY) = 0. (70)
The triangle inequality and the definition of d], (see (1)) result in
di (Y + VY = ZN) o (rV + V), IV + 7Y - ZV)
<d! (Y 4+YY = Z%) o (N + VM), 0) +d! (I + VY — ZV,0)
<27 + 83 = 2% vy,
and, thus, invoking Lemmas 3.4 and 3.5, as well as Proposition 3.2, yields, as N — oo,
dj (I + Y =Z")o (N + V), Y+ V) = Z%) = 0. (71)
Next, for any € > 0 and & > 0, conditioning on the value of ||7¥ + V¥ — ||, results in
Pld] (XY +1Y) o (7 + V), XV +1V) > €]
<Pld] (XY + 1Y) o (¥ + VY)Y, XY + 1Y) > €, |7V + VY —e|l, < 8]+ P[[7" + VY —¢|; > 5]

su»[n sup [ XY (4 5) = RV (0) 4 1 (14 5) = IV (1) [ > e/T] P VY —ely 28l (1)

Is|<8
Lemmas 3.1 and 3.2, the continuous mapping theorem, the continuity of the sup operator, and the continuity of

sample paths of X and [ yield

lim lim p[n sup |[XV(1+5) = XY(@)+ IV (1 +5) = IV (0] || > e/T:| =0.

|s|<d
The preceding limit, Proposition 3.2 and (72) imply, as N — oo,

AL (XY +1Y) o (Y + V), XV 4+ 1Y) = 0. (73)
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Now, considering separately s € [0, 7 A (7V (1) + V¥ (2))] and s € (1 A (7N (1) + VV(0)), t v (7V (1) + V¥ (1))]
we have

J

T| »NO+VE@D) _
l

F(mV(t) + VY (1) = )VNGY (VN (s)) dAY (s) — [0 %(z —$)VNGN (VY (s)) dAN (s)| dt

N N T i~V (0)+VY (1) N v .
<VNG (VX [ [ (FG+ VYl =) = (= |7 = elly =) dAY(s) di

+VNGY(IVYl) / AY(t+ VY ) = AV — |7 —ellp)) dt
<VNGY(IVXII) UV 7 + 17 = ell ) AY(T) + VNG (| VY| ) (AM(T + VI(T)) — A¥(T)),  (74)

where the last inequality is due to a change in the order of integration. The preceding inequality, (6), (3), and
Proposition 3.2 result in, as N — oo,

VNGV IVl + 7Y = ell ) AN(T) + (AN(T + VI(T)) — A¥(T))) = o. (75)
Finally, the statement of the lemma follows from (17), (70), (71), (73), (74), (75), and Proposition 3.3. O

7.8. Proof of Proposition 4.1. The proof closely parallels the proof of Proposition 3.1 in Reed [27]. Two
cases are considered separately: (i) deterministic and (ii) nondeterministic service times. The proof of measura-
bility is the same for the two cases and is identical to the corresponding proof in Proposition 3.1 of Reed [27].

(i) Deterministic F. In this case, F (1) = 1.4, F.(1) = (t/a) - 1{g<1<q> and p=1/a.

Existence. First consider the interval [0, a) only. Let y, =0 and

t
V() =x(0) =0 [ (1= 5)ds (76)
for 0 <t <a and n> 1. Then for 6 < a we have

||yn+1 _yn”S = 80”)7" _yn—l||3
< (80)"[x[|5-

The preceding will serve as a base for an induction. Assume that
Y1 = Yulles < n*~'(860)" [l x5 (77
for some k (k& < a). Then, for (k4 1)6 < a, the inductive assumption and (76) yield

k
1¥s1 = Yallgrns < 80 M1y, = Yuoillis + 801y, = Yurilasiys

i=1

k
< (860)" l1xll 15 2o(n = 1)+ 8011y, — Y llesys

i=1

< 1*71(80)"(|x[| 15 + 8011y = Yuci ll s ys-
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Iterating the argument from the preceding inequality results in

191 = Yull e 1ys < ”k(59)"||x||(k+1)av

and hence (77) holds. In view of (77), selecting 6 < 1/6 implies that {y,, n > 0} is a Cauchy sequence and there
exists y such that y, — y, as n — oo. Therefore, there exists a solution on the interval [0, a).
Now consider the interval [0, 2a). Let y, = {y,(#) = y(#) 119, 0 <t < 2a} and

y(1) 0<t<a,

= '
Yus1 (1) x(t)-l-y(t—a)_gf yi(t—s)ds a<t<2a,
1—a
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where y is the solution on the interval [0, a). By repeating the argument from the previous case, it is straight-
forward to show that there exists a solution on the interval [0, 2a). Furthermore, by iterating the argument, one
establishes the existence of a solution on an arbitrary interval of finite length.

Uniqueness. Let 6 < a A 1/0. Suppose u and v are two solutions and consider

tha
u(t) = v(t) = lys gy (u* (1) —v* (1)) — 0/0 (Ut (t—s)—vt(t—ys))ds,

t>0. For 0 <t <6 we have |u(t) — v(t)| < 86| lu — vl||s, and, therefore, u(t) = v(¢) for 0 <t < 5. Next
lu(t) — v(t)| < 60||u —v|s+ 60|ju — v|,5 for & <t <28, yielding u(t) = v(r) for 0 <0 < 26. Repeating this
argument multiple times leads to u(¢) = v(t) for 0 <t <a.

Now, assume that u(t) = v(¢) for 0 <t < T, where T > a. Then, for T <t <T + 8, we have |u(t) — v(r)| <
60||u — v||7,s, resulting in u(r) =v(r) for 0 <t < T + &. The uniqueness follows.

Lipschitz continuity. The definition of ¢ renders, for y = ¢(x) and ¢ < a,

(1) = x(1) — 0/Oty+(t—s) ds

and, thus, [|¢(x;) — d(x)|ls < |x; — x5 s + 80| d(x,) — d(0,) |5 if 6 < t. By selecting 6 > 0 small enough such
that 60 < 1, we have

[p(x1) = P25 < 11 = %215/ (1 = 86). (78)
Considering the interval [0, 28] yields

[p(x1) = d(x2)llos < 101 = 2 [l25 + 861D (x1) — d(x2) |5 + 80 b (x1) — D(x2) |25

which, upon combining with (78), results in

[d(x1) — p(x)llas < 121 — X5]105/(1 = 89)2-

The preceding argument can be applied repeatedly to show that ¢ is Lipschitz continuous when the interval
[0, @) is considered.
For t > a, y = ¢(x) renders

V(1) = x(t) +y* (1 — a) —Of()ay+(t—s) ds. (79)
When t = a, we obtain .
y(@) =x(@)+x"(0) =0 [y () ds.

and, due to the case t < a, it follows that there exists ¢, < oo such that ||d(x;) — d(x,)|, < c.llx; — %3]l

This serves as the base for the induction. Now, suppose that for some T > a there exists c¢; < oo such that
ld(x)) — d(x) |7 < crllx; — x5l Now, for any 6 < min{a, 1/6}, from (79) we have

l¢(x)) = d(x)llrss = X1 = allris + (1 +ab) | d(x)) — d(x) [l + 86 P(x)) — d(x2) 745
< (I+(T+ad)er)lx = xollris + 80l b (x1) = d(x) 175,

where the second inequality is due to the inductive assumption. Hence, [|¢(x,) — d(x3)|l745 < crasll®r — Xl 74s
with ¢, s =(1+ (1 +ab)cy)/(1 —066) < co.

(i1) Nondeterministcis F.

There exist 6 >0 and 0 < € < 1 such that

F(t+8) — F(t) + 0F.(t+8) /i — OF,(1)/u < €, (80)

for all # > 0, since F, is absolutely continuous by definition. In view of this fact, the proof of existence,
uniqueness, and Lipschitz continuity is almost identical to the proof of corresponding parts in Proposition 3.1
of Reed [27]. In particular, if F :=F — 0F,/u then

y(r) =x(t) + ‘[)ty+(t —s)dF.

Note that the preceding relation can be written in terms of ¢ with F replaced by F, and , in view of (80), there
exist 6 >0 and 0 < € < 1 such that
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F(t+8)—F(1) <€, (81)

for all £ > 0. We can now apply directly the results in Reed [27, Proposition 3.1] because the analysis of ¢ in
Reed [27] is based on (81). O
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