QED Q's:

Quality- and Efficiency-Driven Queues

with a focus on Call/Contact Centers

Avishai Mandelbaum

Technion, Haifa, Israel

http://ie.technion.ac.il/serveng

◆ロ ▶ ◆昼 ▶ ◆昼 ▶ ● めへの

Research Partners

- Empirical/Statistical Analysis: Brown, Gans, Ritov, Sakov, Shen, Zeltyn, Zhao
- Students:
 Garnett, Aldor, Khudiakov, Feldman, Rosenshmidt, Maman,
 Yom-Tov, Marmor, Tseytlin
- ► Colleagues: Armony, Atar, Gurvich, Massey, Momcilovic, Shaikhet, Whitt
- ► Technion SEE Lab: Feigin, Trofimov, Nadjharov, Gavako, Liberman; RA's

2

Contents

- On Service Science / Engineering / QED Q's
- Example: Anatomy of "Waiting for Service"
- ► The Basic (Operational) Call-Center Model: Palm/Erlang-A (M/M/N+M)
- Validating Erlang-A? All Assumptions Violated
- But Erlang-A Works! Why?
 Framework Asymptotic Regimes: QED, ED, ED+QED
- Explain Practice: "Right Answers for the Wrong Reasons"
- ► Technion's SEE (Service Enterprise Engineering) Lab

3

Background Material (Downloadable)

- ► Technion's "Service-Engineering" Course (≥ 1995): http://ie.technion.ac.il/serveng
- Google Scholar search <Call Centers>:
 - Gans (U.S.A.), Koole (Europe), and M. (Israel):
 "Telephone Call Centers: Tutorial, Review and Research Prospects." MSOM, 2003.
 - Brown, Gans, M., Sakov, Shen, Zeltyn, Zhao: "Statistical Analysis of a Telephone Call Center: A Queueing-Science Perspective." JASA, 2005.

Main Messages

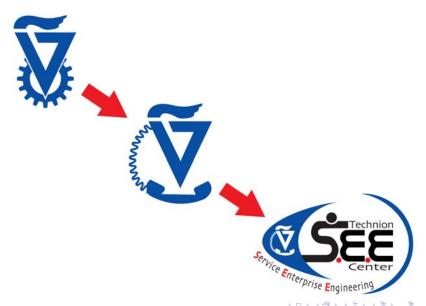
1. Simple Models at the Service of Complex Realities.

Note: Simple rooted in deep analysis.

- Data-Based Research & Teaching is a Must & Fun. Supported by the SEE Lab.
- 3. Human Complexity calls for the Basic-Research Paradigm (Physics, . . .): Measure, Model, Experiment, Validate, Refine, etc.
- **4. Ancestors** & **Practitioners** often knew/apply the "**right answer**": simply did/do not have our tools/desire/need to prove it so. Supported by **Erlang (1910+), Palm (1940+)**,..., thoughtful managers.
- 5. Service Science / Management / Engineering are emerging Academic Disciplines. For example, universities and USA NSF (SEE), IBM (SSME), Germany IAO (ServEng), ...

4ロ > 4個 > 4 種 > 4 種 > 種 の 9 (で)

The Technion SEE Center / Laboratory



DataMOCCA = Data MOdels for Call Center Analysis

- ► **Technion**: P. Feigin, V. Trofimov, Statistics / SEE Laboratory.
- ▶ Wharton: L. Brown, N. Gans, H. Shen (UNC), Zhao.
- industry:
 - US Bank: 2.5 years, 220M calls, 40M by 1000 agents.
 - ► IL Cellular: 3.5 years, 110M / 25M calls, 800 agents; ongoing.
 - IL Bank: 16 months, ongoing.

Project Goal: Design and Implement a (universal) data-base/data-repository and interface for storing, retrieving, analyzing and displaying **Call-by-Call-based Data / Information**.

System Components:

- ► Clean Databases: operational-data of individual calls / agents.
- Graphical Online Interface: easily generates graphs and tables, at varying resolutions (seconds, minutes, hours, days, months).

Free for academic adoption: ask for a DVD (3GB).

Queueing Science: Data-Based QED's Q's

Traditional Queueing Theory predicts that **Service-Quality** and **Servers' Efficiency must** be traded off against each other.

For example, **M/M/1 in heavy-traffic**: **91%** server's utilization goes with

Congestion Index =
$$\frac{E[Wait]}{E[Service]}$$
 = 10,

and only 9% of the customers are served immediately upon arrival.

Yet, heavily-loaded queueing systems with **Congestion Index = 0.1** (Waiting one order of magnitude less than Service) are prevalent:

- Call Centers: Wait "seconds" for minutes service;
- Transportation: Search "minutes" for hours parking;
- Hospitals: Wait "hours" in ED for days hospitalization in IW's;

and, moreover, a significant fraction are not delayed in queue. (For example, in well-run call-centers, 50% served "immediately", along with over 90% agents' utilization, is not uncommon)?

Prerequisite: Data

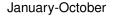
Averages Prevalent.

But I need data at the level of the **Individual Transaction**: For each service transaction (during a phone-service in a call center, or a patient's stay in a hospital), its **operational history** = time-stamps of events.

7

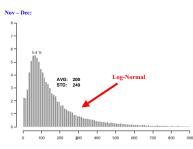
Beyond Averages (+ The Human Factor)

Histogram of Service Times in an Israeli Call Center



Jan - Oct: 7, 2 % 4 4 4 4 2 AVG: 185 STD: 238

November-December



- ▶ **7.2% Short-Services:** Agents' "Abandon" (improve bonus, rest)
- Distributions, not only Averages, must be measured (seconds).
- ▶ Lognormal service times prevalent in call centers (Why?)

Present Focus: Call Centers

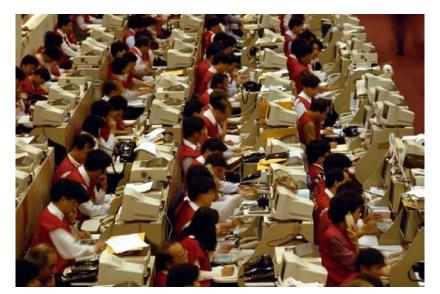
U.S. Statistics (Relevant Elsewhere)

- Over 60% of annual business volume via the telephone
- ▶ 100,000 200,000 call centers
- 3 − 6 million employees (2% − 4% workforce)
- ▶ 1000's agents in a "single" call center = 70 % costs.
- ▶ 20% annual growth rate
- \$200 \$300 billion annual expenditures

9

Call-Center Environment: Service Network

Call-Centers: "Sweat-Shops of the 21st Century"



Call-Center Network: Gallery of Models



Beyond Averages: Waiting Times in a Call Center

Small Israeli Bank

201%

Main = 58
50 = 105

20%

45%

45%

54%

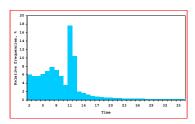
33%

31%

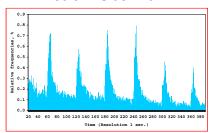
23%

17%

Large U.S. Bank



Medium Israeli Bank



The "Anatomy of Waiting" for Service

Common Experience:

- Expected to wait 5 minutes, Required to 10,
- ► Felt like 20, Actually waited 10,
- ... etc.

An attempt at "Modeling the Experience":

```
1. Time that a customerexpects to wait<br/>willing to wait<br/>required to wait<br/>actually waits<br/>perceives waiting.((Im)Patience: \tau)<br/>(Offered Wait: V)<br/>(W_q = \min(\tau, V))
```

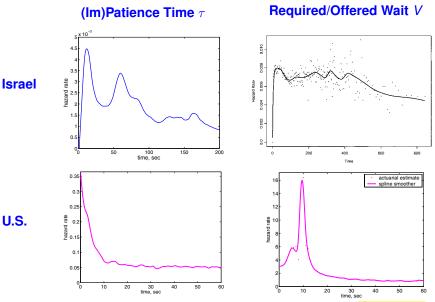
Experienced customers "Rational" customers

⇒ Expected = Required

 \Rightarrow Perceived = Actual.

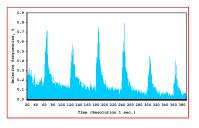
Then left with (τ, V)

Call Center Data: Hazard Rates (Un-Censored)



Note: 5% abandoning ⇒ 95% (im)patience-observations censored!

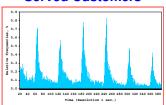
"Waiting-Times" Puzzle at a Large Israeli Bank



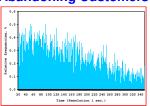
Peaks Every 60 Seconds. Why?

- ► Human: Voice-announcement every 60 seconds.
- System: Priority-upgrade (unrevealed) every 60 sec's (Theory?)

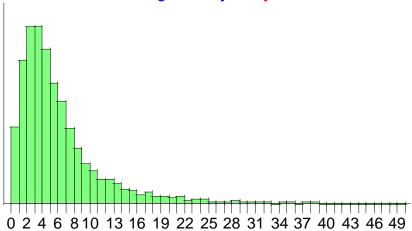
Served Customers



Abandoning Customers

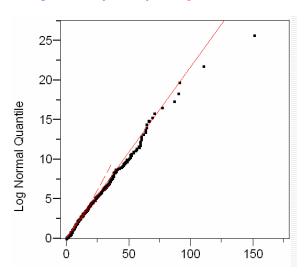


LOS at a Large Israeli Hospital



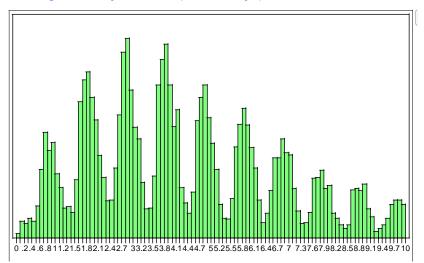
LOS at a Large Israeli Hospital

Length-of-Stay in Days: LogNormal QQ Plot



LOS Puzzle at a Large Israeli Hospital

Length-of-Stay in Hours (0 to 10 days): LN = Normal Mixture



Models for Performance Analysis

- ▶ (Im)Patience: r.v. τ = Time a customer is willing to wait
- ▶ Offered-Wait: r.v. V = Time a customer is required to wait (= Waiting time of a customer with infinite patience).
- ▶ Abandonment = $\{\tau \le V\}$
- **Service** = {*τ* > *V*}
- ▶ Actual Wait $W_q = \min\{\tau, V\}$.

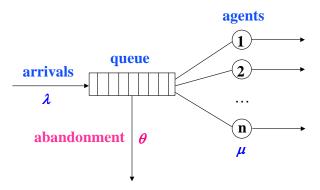
Modeling: $\tau = \text{input}$ to the model, V = output.

Operational Performance-Measure calculable in terms of (τ, V) :

- eg. Avg. Wait = $E[min\{\tau, V\}]$ ($E[W_q|Served] = E[V|\tau > V]$)
- eg. % Abandon = $P\{\tau \le V\}$ ($P\{5 \sec < \tau \le V\}$)

Application: Staffing - How Many Agents? (then: When? Who?)

The Basic Staffing Model: Erlang-A (M/M/N + M)



Erlang-A (Palm 1940's) = Birth & Death Q, with parameters:

- λ **Arrival** rate (Poisson)
- μ **Service** rate (Exponential)
- \bullet θ Impatience rate (Exponential)
- \triangleright N/n Number of **Service-Agents**.

Testing the Erlang-A Primitives

Arrivals: Poisson?

Service-durations: Exponential?

(Im)Patience: Exponential?

Primitives independent?

Customers / Servers Heterogeneous?

Service discipline FCFS?

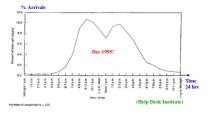
...?

Validation: Support? Refute?

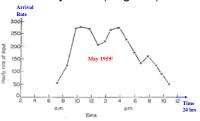
Arrivals to Service: only Poisson-Relatives

Arrival Rate to Three Call Centers

Dec. 1995 (U.S. 700 Helpdesks)



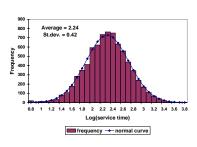
May 1959 (England)



November 1999 (Israel)

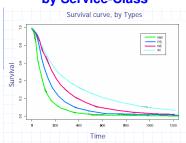
Service Durations: LogNormal Prevalent

Israeli Bank Log-Histogram



- ▶ **New** Customers: 2 min (NW);
- ► Regulars: 3 min (PS);

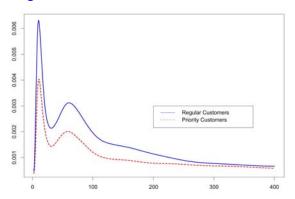
Survival-Functions by Service-Class



- Stock: 4.5 min (NE);
- ► Tech-Support: 6.5 min (IN).

(Im)Patience while Waiting (Palm 1943-53)

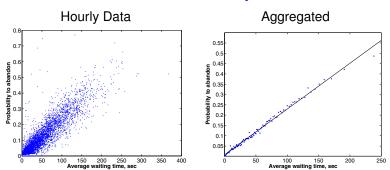
Irritation ∝ Hazard Rate of (Im)Patience Distribution Regular over VIP Customers – Israeli Bank



Estimating (Im)Patience: via $P{Ab} \propto E[W_q]$

Assume $Exp(\theta)$ (im)patience. Then, $P\{Ab\} = \theta \cdot E[W_q]$.

Israeli Bank: Yearly Data



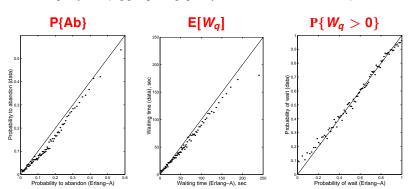
Graphs based on 4158 hour intervals.

Estimate of mean (im)patience: $250/0.55 \approx 450$ seconds.

27

Erlang-A: Fitting a Simple Model to a Complex Reality

- Small Israeli Banking Call-Center (10 agents)
- ▶ (Im)Patience (θ) estimated via P{Ab} / E[W_q]
- Graphs: Hourly Performance vs. Erlang-A Predictions, during 1 year (aggregating groups with 40 similar hours).



Erlang-A: Simple, but Not Too Simple

Further Natural Questions:

- 1. Why does Erlang-A practically work? justify robustness.
- 2. When does it fail? chart boundaries.
- 3. Generalize: time-variation, SBR, networks, uncertainty, ...

Answers via **Asymptotic Analysis**, as load- and staffing-levels increase, which reveals model-essentials:

- ► Efficiency-Driven (ED) regime: Fluid models (deterministic)
- Quality- and Efficiency-Driven (QED): Diffusion refinements.

Motivation: Moderate-to-large service systems (**100's - 1000's** servers), notably **call-centers**.

Results turn out **accurate** enough to also cover **10-20** servers. Important – relevant to **hospitals** (nurse-staffing: de Véricourt & Jennings, 2006), ...

Operational Regimes: Conceptual Framework

Assume: Offered Load $R = \frac{\lambda}{\mu}$ (= $\lambda \times E[S]$) not too small.

QD Regime:
$$N \approx R + \delta R$$
 $[(N - R)/R \rightarrow \delta, \text{ as } N, \lambda \uparrow \infty]$

▶ Essentially **no** delays: $[P\{W_q > 0\} \rightarrow 0]$.

ED Regime: $N \approx R - \gamma R$

- Garnett, M. & Reiman 2003
- Essentially all customers are delayed
- Wait same order as service-time; γ % Abandon (10-25%).

QED Regime: $N \approx R + \beta \sqrt{R}$

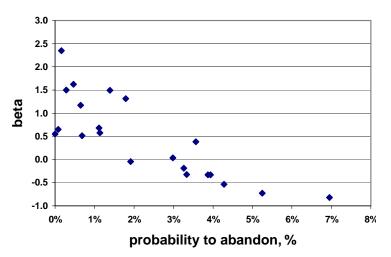
- Erlang 1913/24, Halfin & Whitt 1981
- %Delayed between 25% and 75%
- ▶ Wait one-order below service-time (sec vs. min); 1-5% Abandon.

QED+ED: $N \approx (1 - \gamma)R + \beta\sqrt{R}$

- Zeltyn & M. 2006
- ▶ QED refining ED to accommodate "timely-delays": $P\{W_q > T\}$.

QED: Practical Support

QOS parameter $\beta = (N - R)/\sqrt{R}$ vs. %Abandonment



QED Theory (Erlang '13; Halfin-Whitt '81; Garnett MSc; Zeltyn PhD)

Consider a sequence of M/M/N+G models, N=1,2,3,...

Then the following **points of view** are equivalent:

$$%{Wait > 0} \approx \alpha,$$

$$0 < \alpha < 1$$
;

• Customers
$$% \{Abandon\} \approx \frac{\gamma}{\sqrt{N}},$$

$$0 < \gamma$$
;

$$OCC \approx 1 - \frac{\beta + \gamma}{\sqrt{N}}$$

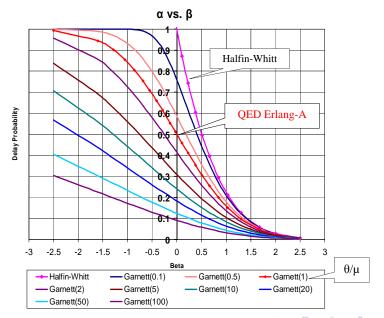
$$OCC \approx 1 - \frac{\beta + \gamma}{\sqrt{N}} \qquad -\infty < \beta < \infty ;$$

$$N \approx R + \beta \sqrt{R}$$

• Managers
$$N \approx R + \beta \sqrt{R}$$
, $R = \lambda \times E(S)$ not small;

QED performance (ASA, ...) is easily computable, all in terms of β (the square-root safety staffing level) – see later.

Garnett / Halfin-Whitt Functions: $P\{W_q > 0\}$



QED Approximations (Zeltyn, M. '06)

G – patience distribution,

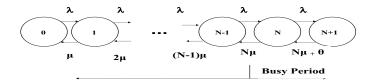
 g_0 – patience density at origin $(g_0 = \theta, \text{ if } \exp(\theta)).$

$$\begin{split} \boldsymbol{N} \; &= \; \frac{\lambda}{\mu} + \beta \sqrt{\frac{\lambda}{\mu}} + o(\sqrt{\lambda}) \;, \qquad -\infty < \beta < \infty \;. \\ & \qquad \qquad \mathsf{P}\{\mathsf{Ab}\} \; \approx \; \frac{1}{\sqrt{N}} \cdot \left[h(\hat{\beta}) - \hat{\beta}\right] \cdot \left[\sqrt{\frac{\mu}{g_0}} + \frac{h(\hat{\beta})}{h(-\beta)}\right]^{-1} \;, \\ & \qquad \qquad \mathsf{P}\left\{W > \frac{T}{\sqrt{N}}\right\} \; \approx \; \left[1 + \sqrt{\frac{g_0}{\mu}} \cdot \frac{h(\hat{\beta})}{h(-\beta)}\right]^{-1} \cdot \frac{\bar{\Phi}\left(\hat{\beta} + \sqrt{g_0\mu} \cdot T\right)}{\bar{\Phi}(\hat{\beta})} \;, \\ & \qquad \qquad \mathsf{P}\left\{\mathsf{Ab} \; \middle| \; W > \frac{T}{\sqrt{N}}\right\} \; \approx \; \frac{1}{\sqrt{N}} \cdot \sqrt{\frac{g_0}{\mu}} \cdot \left[h\left(\hat{\beta} + \sqrt{g_0\mu} \cdot T\right) - \hat{\beta}\right] \;. \end{split}$$

Here

$$\begin{split} \widehat{\beta} &= \beta \sqrt{\frac{\mu}{g_0}} \\ \bar{\Phi}(x) &= 1 - \Phi(x) \,, \\ h(x) &= \phi(x)/\bar{\Phi}(x) \,, \text{ hazard rate of } N(0,1). \end{split}$$

QED Intuition via Excursions: Busy/Idle Periods



Q(0) = N: all servers busy, no queue.

Let
$$T_{N,N-1}=$$
 Busy Period (down-crossing $N\downarrow N-1$)

$$T_{N-1,N} =$$
 Idle Period (up-crossing $N-1 \uparrow N$)

Then
$$P(Wait > 0) = \frac{T_{N,N-1}}{T_{N,N-1} + T_{N-1,N}} = \left[1 + \frac{T_{N-1,N}}{T_{N,N-1}}\right]^{-1}$$

QED Intuition via Excursions: Asymptotics

$$\begin{array}{ll} \text{Calculate} & T_{N-1,N} = \frac{1}{\lambda_N E_{1,N-1}} \sim \frac{1}{N\mu \times h(-\beta)/\sqrt{N}} \sim \frac{1}{\sqrt{N}} \cdot \frac{1/\mu}{h(-\beta)} \\ & T_{N,N-1} = \frac{1}{N\mu\pi_+(0)} \sim \frac{1}{\sqrt{N}} \cdot \frac{\beta/\mu}{h(\delta)/\delta}, \quad \delta = \beta\sqrt{\mu/\theta} \\ & \text{Both apply as} \quad \sqrt{N} \left(1-\rho_N\right) \to \beta, \ -\infty < \beta < \infty. \end{array}$$

Special case: $\mu = \theta$ (Impatient):

Then $\mathbf{Q} \stackrel{d}{=} \mathbf{M}/\mathbf{M}/\infty$, since sojourn-time is $\exp(\mu = \theta)$.

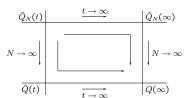
If also $\beta = 0$ (Prevalent): $P\{Wait > 0\} \approx 1/2$.

Process Limits (Queueing, Waiting)

• $\hat{Q}_N = \{\hat{Q}_N(t), t \ge 0\}$: stochastic process obtained by centering and rescaling:

$$\hat{Q}_N = \frac{Q_N - N}{\sqrt{N}}$$

- $\hat{Q}_N(\infty)$: stationary distribution of \hat{Q}_N
- $\hat{Q} = {\hat{Q}(t), t \geq 0}$: process defined by: $\hat{Q}_N(t) \stackrel{d}{\to} \hat{Q}(t)$.



Approximating (Virtual) Waiting Time

$$\hat{V}_N = \sqrt{N} \ V_N \Rightarrow \hat{V} = \left[\frac{1}{\mu} \ \hat{Q}\right]^+ \qquad \text{(Puhalskii, 1994)}$$

Dimensioning a Service System

Operational Regimes provide a **conceptual framework**.

Questions:

- How accurate are QD/ED/QED approximations?
- 2. How to determine the regime? QOS parameters?
- 3. Is there a regime robust enough to cover the others?

Answers, via many-server **Asymptotic Analysis** (w/ Borst & Reiman, 2004; Zeltyn, 2006):

- 1. Approximations are **extremely accurate**.
- 2. Dimensioning:
 - Cost / Profit Optimization: eg. Min costs of Staffing + Congestion.
 - Constraint Satisfaction: eg. Min. N , s.t. QOS constraints .
- Robustness depends:
 - Without Abandonment: QED covers all, at amazing accuracy.
 - With Abandonment: ED, QED, ED+QED all have a role.

Operational Regimes: Rules-of-Thumb

Constraint	P{Ab}		$\mathrm{E}[W]$		$P\{W > T\}$	
	Tight	Loose	Tight	Loose	Tight	Loose
	1-10%	$\geq 10\%$	$\leq 10\% \mathrm{E}[\tau]$	$\geq 10\% \mathrm{E}[\tau]$	$0 \le T \le 10\% \mathrm{E}[\tau]$	$T \geq 10\% \mathrm{E}[\tau]$
Offered Load					$5\% \le \alpha \le 50\%$	$5\% \leq \alpha \leq 50\%$
Small (10's)	QED	QED	QED	QED	QED	QED
Moderate-to-Large	QED	ED,	QED	ED,	QED	ED+QED
(100's-1000's)		QED		QED if $\tau \stackrel{d}{=} \exp$		

ED:
$$N \approx R - \gamma R$$
 (0.1 $\leq \gamma \leq$ 0.25).

QD:
$$N \approx R + \delta R$$
 (0.1 $\leq \delta \leq$ 0.25).

QED:
$$N \approx R + \beta \sqrt{R}$$
 $(-1 \le \beta \le 1)$.

ED+QED:
$$N \approx (1 - \gamma)R + \beta \sqrt{R}$$
 (γ, β as above).

40

M/M/n+G Performance Measures: Building Blocks

$$H(x) \triangleq \int_0^x \bar{G}(u) du$$

where $\bar{G}(\cdot) = 1 - G(\cdot)$, the survival-function of patience.

$$J \triangleq \int_0^\infty \exp\left\{\lambda H(x) - n\mu x\right\} dx,$$

$$J_1 \triangleq \int_0^\infty x \cdot \exp\left\{\lambda H(x) - n\mu x\right\} dx,$$

$$J_H \triangleq \int_0^\infty H(x) \cdot \exp\left\{\lambda H(x) - n\mu x\right\} dx,$$

$$J(t) \triangleq \int_t^\infty \exp\left\{\lambda H(x) - n\mu x\right\} dx.$$

$$J_1(t) \triangleq \int_t^\infty x \cdot \exp\left\{\lambda H(x) - n\mu x\right\} dx,$$

$$J_H(t) \triangleq \int_t^\infty H(x) \cdot \exp\left\{\lambda H(x) - n\mu x\right\} dx.$$

Finally,

$$\mathcal{E} \triangleq \frac{\sum_{j=0}^{n-1} \frac{1}{j!} \left(\frac{\lambda}{\mu}\right)^j}{\frac{1}{(n-1)!} \left(\frac{\lambda}{\mu}\right)^{n-1}} = \int_0^\infty e^{-t} \left(1 + \frac{t\mu}{\lambda}\right)^{n-1} dt.$$

M/M/n+G Performance Measures

 $P{Ab}$ = probability to abandon, W_q = waiting time, V = offered wait, Q = queue length.

$$\begin{split} & \text{P}\{V > t\} \, = \, \frac{\lambda J(t)}{\mathcal{E} + \lambda J}, \; (\textbf{Baccelli \& Hebuterne}, \, 1981) \\ & \text{P}\{W_q > 0\} \, = \, \frac{\lambda J}{\mathcal{E} + \lambda J} \cdot \bar{G}(0) \, , \\ & \text{P}\{\text{Ab}\} \, = \, \frac{1 + (\lambda - n\mu)J}{\mathcal{E} + \lambda J} \, , \\ & \text{E}[V] \, = \, \frac{\lambda J_1}{\mathcal{E} + \lambda J} \, , \\ & \text{E}[W_q] \, = \, \frac{\lambda^2 J_H}{\mathcal{E} + \lambda J} \, , \\ & \text{E}[Q] \, = \, \frac{\lambda^2 J_H}{\mathcal{E} + \lambda J} \, , \\ & \text{E}[W_q \mid \text{Ab}] \, = \, \frac{J + \lambda J_H - n\mu J_1}{(\lambda - n\mu)J + 1} \, , \\ & \text{P}\{W_q > t\} \, = \, \frac{\lambda \bar{G}(t)J(t)}{\mathcal{E} + \lambda J} \, , \\ & \text{E}[W_q \mid W_q > t] \, = \, \frac{J_H(t) - (H(t) - t\bar{G}(t)) \cdot J(t)}{\bar{G}(t)J(t)} \, , \\ & \text{P}\{\text{Ab} \mid W_q > t\} \, = \, \frac{\lambda - n\mu - G(t)}{\lambda \bar{G}(t)} + \frac{\exp\{\lambda H(t) - n\mu t\}}{\lambda \bar{G}(t)J(t)} \, . \end{split}$$

M/M/n+G: Laplace Method

Asymptotic calculation of integrals:

- 1. Show that the integral (mass) is concentrated near a **certain point**.
- 2. Use **Taylor expansion** to approximate integrand near this point.

Apply to **Building Blocks** and **Performance Measures** above.

Examples:

QED regime:
$$n = \frac{\lambda}{\mu} + \beta \sqrt{\frac{\lambda}{\mu}} + o(\sqrt{\lambda}).$$

$$J = \frac{1}{\sqrt{n}} \cdot \frac{1}{\sqrt{\mu g_0}} \cdot \frac{1}{h_G(\hat{\beta})} + o\left(\frac{1}{\sqrt{n}}\right),\,$$

where

$$\hat{\beta} \triangleq \beta \sqrt{\frac{\mu}{g_0}}.$$

$$ext{ED+QED regime:} \ n = ar{G}(T) \cdot rac{\lambda}{\mu} + eta iggl(rac{\lambda}{\mu} + o(\sqrt{\lambda}).$$

$$J \sim \exp\{\lambda H(T) - n\mu T\} \cdot \exp\left\{\frac{\beta^2 \mu}{2g(T)}\right\} \cdot \sqrt{\frac{2\pi}{\lambda g(T)}}.$$

The ED Regime: M/M/n+G

ED – **E**fficiency-**D**riven.

Assume $G(x) = \gamma$ has a unique solution x^* and $g(x^*) > 0$.

Staffing: $n = R \cdot (1 - \gamma) + o(\sqrt{R})$, $0 < \gamma < 1$.

Performance Measures

- $P\{W_q = 0\}$ decreases exponentially in n.
- Probability to abandon converges to:

$$P{Ab} \approx \gamma \approx 1 - \frac{1}{\rho}.$$

• Offered wait converges to x^* :

$$\mathrm{E}[V] \; \approx \; x^* \,, \qquad V \; \xrightarrow{p} \; x^* \,.$$

• Distribution G^* of $\min(x^*, \tau)$:

$$G^*(x) = \begin{cases} G(x)/\gamma, & x \le x^* \\ 1, & x > x^* \end{cases}$$

Asymptotic distribution of wait:

$$W_q \xrightarrow{w} G^*, \quad E[W_q] \rightarrow E[\min(x^*, \tau)].$$

ED+QED Regime: Motivation

Min n, s.t.

$$P\{W_q > 0\} \le \alpha$$
 – use **QED** staffing.

$$E[W_q] \le T$$
 – use **ED** staffing.

What about $\mathbf{P}\{W_q > T\} \leq \alpha$, T > 0? (Most prevalent SL constraint in call centers.)

ED approximation:

$$P\{W_q > T\} \approx \begin{cases} \bar{G}(T), & T < G^{-1}(\gamma), \\ 0, & T > G^{-1}(\gamma). \end{cases}$$

or (as a function of "staffing"):

$$\mathrm{P}\{W_q > T\} \; \approx \; \begin{cases} \bar{G}(T) \,, \; \gamma > G(T) \,, \\ 0 \,, \qquad \gamma < G(T) \,, \end{cases}$$

Too crude to capture α exactly.

Solution: Refine around $\gamma = G(T)$,

$$n = (1 - G(T)) \cdot R + \beta \sqrt{R}, \quad -\infty < \beta < \infty.$$

ED+QED Performance Measures

Theorem. The following statements are equivalent:

- 1. Staffing level: $n = (1 \gamma)R + \beta\sqrt{R} + o(\sqrt{R})$;
- 2. Tail probability: $P\{W_q > T\} = \alpha + o(1)$;
- 3. Probability to abandon:

$$P\{Ab\} = \gamma - \frac{\beta}{\sqrt{R}} + o\left(\frac{1}{\sqrt{R}}\right);$$

4. Average wait:

$$E[W_q] = \int_0^T \bar{G}(u)du - \frac{\beta}{\sqrt{R}} \cdot \frac{1}{h_G(T)} + o\left(\frac{1}{\sqrt{R}}\right).$$

Here $0 < \alpha < \bar{G}(T)$, $\gamma = G(T)$, $h_G(T)$ = patience hazard-rate at T and

$$\beta \ = \ \bar{\Phi}^{-1} \left(\frac{\alpha}{\bar{G}(T)} \right) \cdot \sqrt{\frac{g(T)}{\mu}} \, .$$

Corollary. Approximation for the tail probability:

Note: If $\alpha \geq \bar{G}(T)$ then n = 0 satisfies $P\{W_q > T\} \leq \alpha$.

Back to "Why does Erlang-A Work?"

Theoretical Answer:
$$M_t^J/G/N_t + G \stackrel{d}{\approx} (M/M/N + M)_t, t \geq 0.$$

- ► General Patience: Behavior at the origin is all that matters.
- ► General Services: Empirical insensitivity beyond the mean.
- ► Time-Varying Arrivals: Modified Offered-Load approximations.
- ▶ Heterogeneous Customers: 1-D state collapse.

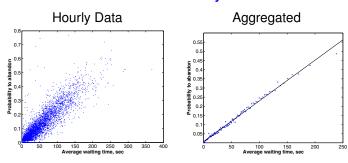
Practically: Why do (stochastic-ignorant) Call Centers work?

"The right answer for the wrong reason"

43

General Patience: Fitting Erlang-A

Israeli Bank: Yearly Data



Theory:

Erlang-A: $P{Ab} = \theta \cdot E[W_q];$

M/M/N+G: P{Ab} $\approx g(0) \cdot E[W_q]$.

Recipe:

In both cases, use Erlang-A, with $\hat{\theta} = \widehat{P}\{Ab\}/\widehat{E}[W_q]$ (slope above).

Why Does Erlang-A Work? Time-Varying Arrival Rates

Established: $M/G/N+G \approx M/M/N+M$ ($\theta = g(0)$).

Now: $M_t/G/N_t + G \approx (M/G/N + G)_t$ $(N_t, \lambda \text{ well chosen}).$

Two steps (Feldman, M., Massey & Whitt, 2006):

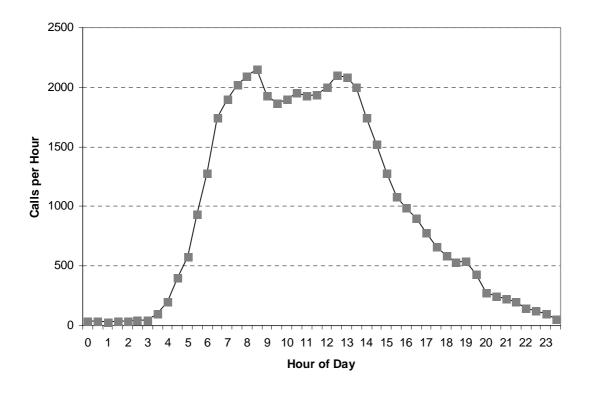
- Modified Offered-Load: λ
 - ▶ Consider $M_t/G/N_t + G$ with arrival rate $\lambda(t)$, $t \ge 0$.
 - Approximate its **time-varying** performance at **time** t with a stationary $M/G/N_t + G$, in which $\lambda = E\lambda(t S_e)$. ($S_e \stackrel{d}{=}$ residual-service: congestion-lag behind peak-load.)
- 2. Square-Root Staffing: N_t
 - Let $R_t = E\lambda(t S_e) \times ES$ be the Offered-Load at time t ($R_t = Number-in-system in a corresponding <math>M_t/G/\infty$.)
 - Staff $N_t = R_t + \beta \sqrt{R_t}$.

Serendipity: Time-stable performance, supported by **ISA** = Iterative Staffing Algorithm, and QED diffusion limits $(M_t/M/N + M, \mu = \theta)$.

Example: "Real" Call Center

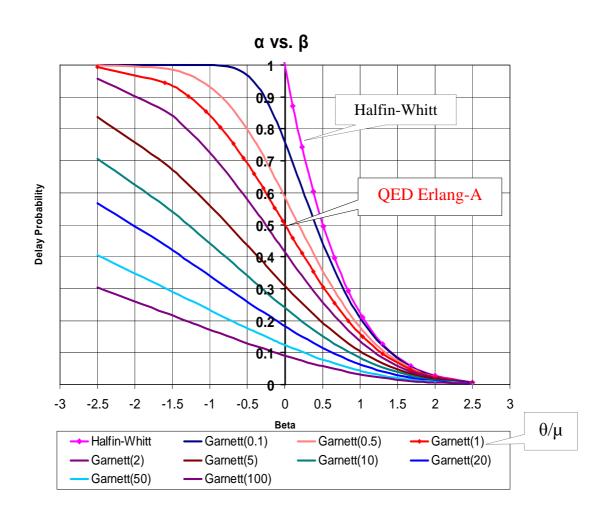
(The "Right Answer" for the "Wrong Reasons")

Time-Varying (two-hump) arrival functions common (Adapted from Green L., Kolesar P., Soares J. for benchmarking.)



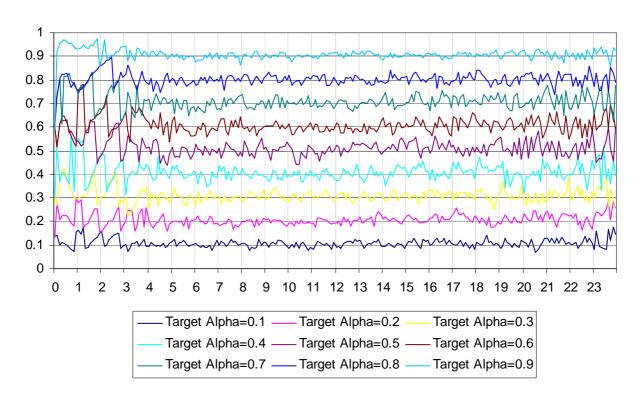
Assume: Service and abandonment times are both Exponential, with mean 0.1 (6 min.)

HW/GMR Delay Functions



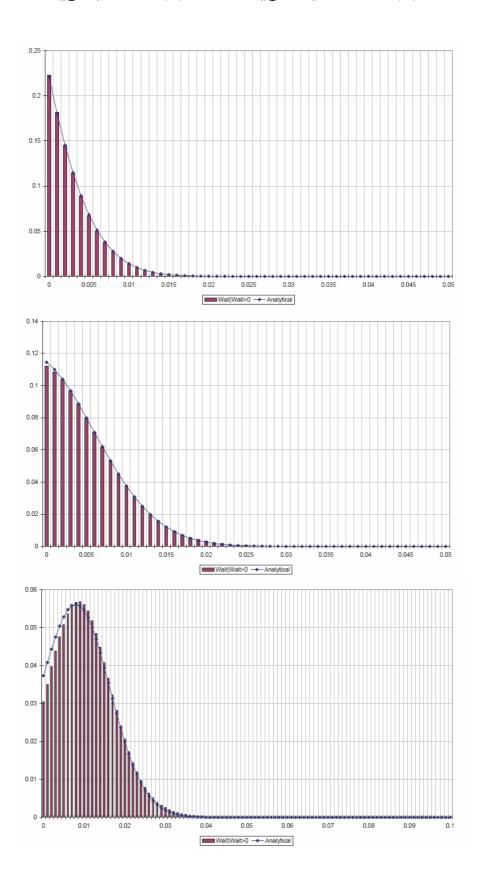
Delay Probability α

Delay Probability



Real Call Center: Empirical waiting time, given positive wait

(1) α =0.1 (QD) (2) α =0.5 (QED) (3) α =0.9 (ED)



Time-Varying Arrivals: √ Safety-Staffing

Model
$$M_t/M/N_t + M$$

Parameters $\lambda(t)$ μ ? θ

$$\mathbf{N}_{t} = \mathbf{R}_{t} + \beta \sqrt{\mathbf{R}_{t}}$$

$$\mu = \theta$$
: $L_t \stackrel{d}{=} Poisson(R_t) \stackrel{d}{\approx} N(R_t, R_t)$, since $M_t / M / \infty$

$$R_t = E\lambda(t-S) \cdot E(S) = E \int_{t-S}^{t} \lambda(u) du$$
 offered load

Given
$$L_t \approx R_t + Z\sqrt{R_t}$$
, $Z \stackrel{d}{=} N(0,1)$

choose
$$N_t = R_t + \beta \sqrt{R_t}$$

$$\Rightarrow \quad \alpha = P(W_t > 0) \underset{\text{PASTA}}{\approx} P(L_t \ge N_t) = P(Z \ge \beta) = 1 - \phi(\beta)$$

$$\Rightarrow \beta = \phi^{-1} (1 - \alpha)$$
 time-stable $\alpha \equiv P(W_t > 0)$?

Indeed, but in fact

TIME-STABLE PERFORMANCE

 $(\mu \neq \theta, \text{ or generally : Iterative Simulation-Based Algorithm})$

The "Right Answer" (for the "Wrong Reasons")

Prevalent Practice
$$N_t = \lceil \lambda(t) \cdot E(S) \rceil$$
 (PSA)

"Right Answer"
$$N_t \approx R_t + \beta \cdot \sqrt{R_t}$$
 (MOL)
$$R_t = E\lambda(t-S) \cdot E(S)$$

Practice
$$\approx$$
 "Right" $\beta \approx 0$ (QED)

and $\lambda(t) \approx$ stable over service-durations

Practice Improved
$$N_t = \lceil \lambda [t - E(S)] \cdot E(S) \rceil$$

When Optimal? for moderately-patient customers:

- 1. Satisfization ⇔ At least 50% to be serve immediately
- 2. Optimization \Leftrightarrow Customer-Time = 2 x Agent-Salary

Erlang-A: Practical Relevance?

Experience:

- ► Arrival process **not pure Poisson** (time-varying, σ^2 too large)
- Service times not Exponential (typically close to LogNormal)
- ▶ Patience times **not Exponential** (various patterns observed).
- Building Blocks need not be independent (eg. long wait possibly implies long service)
- Customers and Servers not homogeneous (classes, skills)
- Customers return for service (after busy, abandonment)
- ▶ · · · , and more.

Question: Is Erlang-A Practically Relevant?

Why Does Erlang-A Work? Multi-Class Customers

Now: $M_t^J/G/N_t + G \approx (M^J/G/N + G)_t$ (well staffed & controlled).

Service Levels: Class 1 = VIP, ..., Class J = best-effort.

Staffing, Control (w/ Gurvich & Armony 2005; Feldman & Gurvich):

- ▶ Consider $M_t^J/G/N_t + G$ with arrival rates $\lambda_i(t), t \geq 0$.
- Assume i.i.d. servers.
- ▶ Let $R_t = E \sum_i \lambda_i (t S_e) \times ES$ be the **Offered-Load** at time t.
- ▶ **Staff** $N_t = R_t + \beta \sqrt{R_t}$, with β determined by a desired QED performance for the lowest-priority class J.
- Control via threshold priorities, where the thresholds are determined by ISA according to desired service levels.
- Approximate time-varying performance at time t with a stationary threshold-controlled $M^J/G/N_t+G$, in which $\lambda_j = \mathbb{E}\lambda_j(t-S_e)$.

Serendipity: Multi-Class Multi-Skill, w/ **class-dependent** services. Support: ISA, QED diffusion limits (Atar, M. & Shaikhet, 2007).