
Modeling and Analysis of Delay Announcement

Refined Approximation for Overloaded Systems

Junfei Huang

CUHK Business School

Joint work with Avi Mandelbaum, Hanqing Zhang, Jiheng Zhang

INFORMS 2013

1 / 17



Model and Motivation

Many-server queue

buffer

N

Motivation:

• Customer call centers and other services areas.

2 / 17



Model and Motivation

Many-server queue

buffer

N

Motivation:

• Customer call centers and other services areas.

2 / 17



Model and Motivation

Many-server queue with abandonment

buffer

N

Motivation:

• Customer call centers and other services areas.

2 / 17



Literature Review

Many-server Queues

• Halfin and Whitt 1981 (M/M/N)

• Puhalskii and Reiman 2000 (G/Ph/N)

• Jelenković, Mandelbaum and Momčilović 2004 (G/D/N)

• Whitt 2005 (G/H∗2/n/m)

• Garmarnik and Momčilović 2007 (G/La/N)
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Delay Announcement Story I: Announce While Waiting

to hazard rate estimates for each second; then these seconds-level estimates are smoothed

to infer the hazard rate curve.

Several interesting phenomena emerge from the graphs. In the Israeli call center, two

distinctive abandonment peaks are observed in the left-hand graph. It turns out that these

peaks, reflecting an increased tendency to abandon, occur after customers listen to automatic

announcements; the influence of announcements on abandonment patterns will be further

studied in Section 3.3. The patience hazard rate also seems to decrease for large values of

wait. The offered wait in Figure 1 has a relatively stable hazard rate (except for the first

few seconds); recall that constant hazard rate is a manifestation of the memoryless property,

which characterizes the exponential distribution if it prevails over [0,∞).
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Figure 1: Patience and offered wait in an Israeli call center
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Figure 2: Patience and Offered Wait in a U.S. Call Center

8

• (Mandelbaum and Zeltyn: Data-stories about (im)patient customers in

tele-queues, 2012; First observed in Brown et al. (JASA, 2005).)

• Announcement can change customers’ behavior!

• Should the system make announcement? If yes, when?
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Delay Announcement Story II: Announce Upon Arrival

• Discussed in Armony, Shimkin and Whitt (OR, 2009)

• Announcement upon arrival;

- Announce the expected waiting time;

• An All-Exponential Model:

- M/M/n + GI overloaded systems (λ = 140, µ = 1, n = 100);

- Announce to wait ω = 0.224: a proportion e−ω = 0.2 balk;

- Hazard rate of the patience time distribution:

h(t) =

{
0.5, 0 ≤ t ≤ ω;

4, t > ω.
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All-Exponential Model: A Question Left

• Fluid Approximation:

Simulated Fluid approximation

E[Q(∞)] 17.3 23.7

E[W (∞)] 0.157 0.225

• A well-known result:

Bassamboo and Randhawa (OR, 2010), Whitt (OR, 2006)

Under some regularity conditions, fluid approximation is very

accurate for overloaded systems.

• Why is fluid approximation not so accurate here?

• Armony et al.: “...remains a problem for future research”.
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Theoretical Framework

• Diffusion approximation for overloaded systems:

- GI/M/n + GI under the ED+QED regime;

- Approximated diffusion process: OU-type process (easy to

use!);

• Why diffusion approximation for overloaded systems?

- Why fluid approximation is not enough?

- (Recall Bassamboo and Randhawa (OR 2010))

• Patience time distribution F n (Sensitivity analysis):

√
n

(
F n(ω +

x√
n

)− F n(ω)

)
→ fω(x).
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Asymptotic Regime

• Consider a sequence of GI/M/sn + G indexed by n.

Λ̃n(·)⇒ Λ̃(·) with Λ̃n(t) =
1√
λn

(Λn(t)− λnt) ,

λn
snµ
→ ρ > 1,

λnF
n
c (ω)− snµ√

λn
→ β.

• Denote by V n(t) the virtual waiting time in the nth system,

and ω its fluid limit. Define

Ṽ n(t) =
√
λn

(
V n(t)− ω

)
.
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Main Results

Theorem

If √
λn

(
V n(0)− ω

)
⇒ Ṽ0,

then as n→∞,

Ṽ n ⇒ Ṽ ,

here Ṽ is the unique solution to

Ṽ (t) = Ṽ0 − ρ
∫ t

0

[
fω(Ṽ (x))− β

]
dx +

[
Λ̃(t)−

√
2ρ− 1B(t)

]
.

The density function of its steady state π(·) is given by

π(y) = C exp

(
−2ρ

σ2

∫ y

0

[fω(x)− β] dx

)
,

where C is the scaling factor.

With this, we can easily get the convergence of queue length process.
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System Performance Evaluation

For a given GI/M/s + GI system with parameters (λ, θ2, µ, s,F ):

ρ :=
λ

sµ
,

σ2 := θ2 + 2ρ− 1,

β̂ :=
λFc(ω)− sµ√

λ
,

f̂ω(x) :=
√
λ
[
F (ω +

x√
λ

)− F (ω)
]
.

Here ω is the solution to Fc(ω) =
1

ρ
.
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Approximation Formulae

• Queue Length:

E[Q(∞)] ≈ λ
∫ ω

0

Fc(x)dx +
1

ρ

√
λ

∫ ∞
−∞

xπ(dx).

Here

π(x) = C exp

(
−2ρ

σ2

∫ x

0

[
f̂ω(v)− β̂

]
dx

)
.

• Probability of the waiting time W (∞) = V (∞) ∧ U, here U is the

patience time:

P(W (∞) > y) = Fc(y)P
(√

λ(V (∞)− ω) >
√
λ(y − ω)

)
≈ Fc(y)

∫ ∞
√
λ(y−ω)

C exp

(
−2ρ

σ2

∫ u

0

[
f̂ω(v)− β̂

]
dv

)
du.
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Example 1: Revisit Armony, Shimkin and Whitt (2009)

Customers’ behavior in response to call announcement (upon

arrival)

h(x |τ) =

{
h0, x ≤ τ ;

h1, x > τ.

Performances Fluid
h1 = 0.5 h1 = 4

Simulated Diffusion Simulated Diffusion

E[Q(∞)] 23.7 24.3 23.7 17.3 16.4

E(W (∞); Bc) 0.212 0.217 0.224 0.155 0.151

P(W (∞) < ωe |S) 1 0.512 0.512 0.754 0.756

Table: Fluid v.s. Diffusion with h0 = 0.5.
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Example 2: When to Announce (While Waiting)?

Optimization problem:

min
s,τ

s

s.t. P (W (∞) > w ∧ τ) ≤ α.

Hazard rate of the patience time distribution:

h(t)

t

h

h + δκ

τ τ+δ τ+2δ

Figure 3.1: Graph of the hazard rate function

The quantity R can be understood as the number of servers required to make the offered
waiting time to be exactly at x. In the same spirit of the square root staffing law, we only need

n = R− ξ
√

R (3.43)

number of servers to meet the SLA where ξ is the coefficient to be determined by solving the
optimization problem (3.41). As we have seen from the performance approximation, making
the impact time τ right before the offered waiting time impact on the shape of the hazard
rate, and will subsequently alter the probability of waiting time (see Example 4.2). The idea
is to have both x and ω fall in the interval [τ, τ + δ). Suppose ξ is chosen such as the offered
waiting time

ω = τ + β/
√

R, (3.44)

and also assume that
x = ω + α/

√
R. (3.45)

Here α can be both positive and negative, but α + β ≥ 0 to make sure both x and ω fall in
the interval [τ, τ + δ). We assume that δ is of order one, while the distance of between x (or
ω) is of order o(1/

√
R). Jiheng: A simple case-by-case analysis (not yet done) will show that

if x, ω are not within [τ, τ + δ) leads to a sub-optimal result. By the definition of the offered
waiting time (2.10), we have that

F̄(ω) = e−
∫ ω

0 h(t)dt =
nµ

λ
.

Plugging (3.43) and (3.44) into the above and applying the Taylor expansion e−y ≈ 1− y, we
obtain the following approximation

ξ ≈ 1
2

κβ2. (3.46)

Now to solve the optimization problem, we need to find the max β such that the probabilistic
constraint in (3.40) is met. Using the approximation formula (3.31) we obtained in Section 3.3,
we can compute

P(W > x) ≈ P(W > ω + α/
√

R)

≈ F̄R(x)
∫ ∞

α
C exp

(
− 2λ

µσ2

∫ y

0
fω(s)ds

)
dy.

14

Proposition

The optimal announcement time τλ converges, as λ→∞, to the offered

waiting time in the following way

√
λ(ω − τλ)→ 0.

With this proposition, the staffing level can be reduced by O(
√
λ), comparing

to the situation without announcement.
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Example 3: Hazard-rate Scaling

Example

Customers arrive according to Poisson process with rate λ. Service

times are exponentially distributed with rate µ. The hazard rate of

the patient time is as follows

h̃(x) =

{
h0, x ≤ ω;

h0 + κ(x − ω), x > ω.

Here ω is the offered waiting time.

The regular conditions in Bassamboo and Randhawa (2010) are satisfied.
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Example 3: Hazard-rate Scaling

• Queue length:

Servers Fluid
κ = 20 κ = 100

Simulated Appr. G Appr. H Simulated Appr. G Appr. H

20 4 3.34 ± 0.02 3.1599 2.6690 2.70 ± 0.01 2.4354 1.9113

50 10 8.65 ± 0.04 8.7328 8.2553 7.48 ± 0.04 7.025 7.0144

100 20 18.04 ± 0.05 18.3797 17.9050 16.30 ± 0.04 1.6151 16.1387

200 40 37.56 ± 0.06 38.0092 37.5344 35.11 ± 0.06 35.5413 35.0705

400 80 77.20 ± 0.08 77.9364 77.1579 73.84 ± 0.07 74.2668 73.7983

• P(W∞ > ω): (if F n = F , then the approximation is 0.4167)

Servers
κ = 20 κ = 100

Simulated Appr. G Appr. H Simulated Appr. G Appr. H

20 .35785 ± .00143 .3576 .3271 .28828 ± .00122 .2879 .2493

50 .36396 ± .00210 .3641 .3461 .29371 ± .00172 .2938 .2723

100 .37122 ± .00188 .3712 .3589 .30348 ± .00142 .3037 .2895

200 .37858 ± .00175 .3787 .3703 .31552 ± .00142 .3157 .3062

400 .38652 ± .00124 .3859 .3801 .32922 ± .00102 .3286 .3221

• The convergence rate of fluid approximation may be very

slow! Thus we need a refined (diffusion) approximation!
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Questions?
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Thank you!
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