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Abstract

We show how to construct the best linear unbiased predictor (BLUP) for the
continuation of a curve, and apply the proposed estimator to real-world call
center data. Using the BLUP, we demonstrate prediction of the workload
process, both directly and based on prediction of the arrival counts. The
Matlab code and all data sets in the presented examples are available in the
supplementary material.
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1. Introduction1

Many data sets consist of a finite number of observations, where each2

of these observations is a sequence of points. It is often natural to assume3

that each sequence is a set of noisy measurements of points on a smooth4
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curve. In such cases, it can be advantageous to address the observations as5

functional data rather than as a multiple series of data points. This approach6

was found useful, for example, in noise reduction, missing data handling, and7

in producing robust estimations (see the books by Ramsay and Silverman,8

2002, 2005, for a comprehensive treatment of functional data analysis). In9

this work we consider the problem of forecasting the continuation of a curve10

using functional data techniques.11

The problem we consider here is relevant to longitudinal data sets, in12

which each observation consists of a series of measurements over time that13

are sampled from an underlying curve, possibly with noise. Examples of such14

curves are growth curves of different individuals and arrival rates of calls to15

a call center or of patients to an emergency room during different days.16

We assume that such curves, or measurement series that approximate these17

curves, were collected previously. We would like to estimate the continuation18

of a new curve given its beginning, using the behavior of the previously19

collected curves.20

The forecasting of curve continuation suggested here is based on finding21

the best linear unbiased predictor (BLUP) (Robinson, 1991). We assume that22

the curves are governed by a small number of underlying functional patterns,23

possibly with additional noise. These underlying functional patterns deter-24

mine the main variation between the different curves. The computation of25

the predictor is performed in two steps. First, the underlying functional pat-26

terns’ coefficients are estimated from the beginning of the new curve, which27

is defined on the “past” segment. Second, the prediction is obtained by com-28

puting the representation of the curve patterns on the “future” segment. We29

prove that the resulting estimator is indeed the BLUP and that it is a smooth30

continuation of the beginning of the curve (at least in the absence of noise).31

From a computational point of view, we discuss the use of B-splines in the32

representation of the curves on the different segments. We explain why a33

B-spline representation ensures an efficient and stable way to compute the34

mean function and covariance operators on different partial segments.35

We apply the proposed forecasting procedure to call center data. We fore-36

cast the continuation of two processes: the arrival process and the workload37

process (i.e., the amount of work in the system; see, for example, Aldor-38

Noiman et al., 2009). In call centers, the forecast of the arrival process plays39

an important role in determining staffing levels. Optimization of the latter40

is important since salaries account for about 60–70% of the cost of running a41

call center (Gans et al., 2003). Usually, call center managers utilize forecasts42
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of the arrival process and knowledge of service times, along with some un-43

derstanding of customer patience characteristics (Zeltyn, 2005), to estimate44

future workload and determine staffing level (Aldor-Noiman et al., 2009).45

The disadvantage of this approach is that the forecast of the workload is46

not performed directly, and instead it is obtained using the forecast of the47

arrival process. Reich (2010) showed how the workload process can be es-48

timated explicitly, thereby enabling direct forecast of the workload. In this49

work, we forecast the continuation of both the arrival and workload pro-50

cesses, given past days’ information and the information up to a certain time51

of day. Since the actual processes are not smooth, we first approximate these52

processes with smooth curves. We compare direct and indirect forecasting53

results for the workload process. We also compare our results for the arrival54

process to those of other forecasting techniques, namely, to the techniques55

that were introduced by Weinberg et al. (2007) and Shen and Huang (2008).56

This paper has two main contributions. First, we present a novel functional-57

data prediction method for continuation of a curve. We show that the pro-58

posed method is the best unbiased linear predictor for continuation of a curve.59

The proposed estimator is fast and easy to compute, and is a continuous pro-60

cess in time, thus enabling prediction for any given future time. Second, we61

demonstrate how to predict the workload process directly, and compare this62

direct method to the usual indirect ones that are based on prediction of the63

arrival process.64

Forecasting of the continuation of a function was considered in previous65

works. Aguilera et al. (1997) proposed to predict the continuation of the66

curve by regression of the principal components of the second part of the67

interval on the principal components of the first part of the interval. Shen68

(2009), in the context of time series data, proposed to first forecast the69

new curve entirely, and then update this forecast based on the given curve70

beginning. Both of these methods do not discuss curve continuity at the point71

dividing the interval, or optimality of the estimator. In a different context,72

Yao et al. (2005) proposed a functional data method for sparse longitudinal73

data that enables prediction of curves, even if only a few measurements are74

available for each curve. Although this method can be used to forecast the75

continuation of a curve, it was not designed to optimize such prediction. In76

the case study of Section 4 we compare the methods of Shen (2009) and Yao77

et al. (2005) to the propose BLUP.78

The paper is organized as follows. The functional model and notation are79

presented in Section 2. In Section 3 we show how to construct the BLUP80
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for the continuation of a curve. In Section 4 we apply the estimator to81

real-world data, comparing direct and indirect workload forecasting, and our82

results to other techniques. Concluding remarks appear in Section 5. Proofs83

are provided in the Appendix. A link for the code and data sets used for the84

case study appear in the Supplemental Materials.85

2. The Functional Framework86

In this section we present the functional model and notation that will be87

used for the construction of the BLUP.88

2.1. The functional model89

Assume that we observe random i.i.d. functions Y (1), . . . , Y (M) that are90

defined on the segment S = [0, T ]. We assume that these functions have91

a basis expansion with respect to some N -dimensional continuous function92

space S (N can possibly be large). For now we do not impose any specific93

structure on the space S, but in Sections 2.3–2.4 we will focus on spline94

functional spaces as an important example. Given a new function Y (M+1)
95

which is observed only on the segment S1 = [0, U ], for some 0 < U < T ,96

we would like to estimate the continuation of this function on the segment97

S2 = [U, T ].98

We assume that, up to some noise, the functions {Y (m)(t)}m are contained
in some low-dimensional subspace of S. More specifically, we assume that
each function can be written as

Y (m)(t) = µ(t) +

p∑
i=1

h
(m)
i φi(t) + ε(m)(t) = µ(t) + h(m)′φ(t) + ε(m)(t) , (1)

where µ(t) ∈ S is the mean function, h(m) = (h
(m)
1 , . . . , h

(m)
p )′ is a random99

vector with mean zero and covariance matrix L, φ(t) = (φ1(t), . . . , φp(t))
′ is100

a vector of orthonormal functions in S; ε(m)(t) is the noise which is defined101

to be the part of Y that is not in the span of the φ(t). We assume that p,102

the dimension of the subspace, is much smaller than N , the dimension of S.103

Such decomposition can arise, for example, when using principal component104

analysis for the functional data (Ramsay and Silverman, 2005, Chapters 8).105

Finally, note that by definition, the noise term ε(m)(t) is anything within S106

that cannot be explained by the model functions µ and φ.107
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Denote the basis of S by b = (b1, ..., bN)′. Write µ(t) = b(t)′µ and
φ(t) = A′b(t), for some N × 1 vector µ and N × p loading matrix A. Define

X(m)(t) = µ(t) + h(m)′φ(t) = b(t)′
(
µ+ Ah(m)

)
(2)

to be the noise-free part of Y (m) contained in the low-dimensional subspace108

spanned by φ. With respect to the basis b we can write X(m)(t) = b(t)′x(m)
109

and similarly Y (m)(t) = b(t)′y(m) where x(m) and y(m) are N × 1 random110

vectors.111

Let the random functions Y
(m)
1 and Y

(m)
2 be the restrictions of Y (m) to the112

segments S1 = [0, U ] and S2 = [U, T ], respectively, and similarly for X
(m)
1 and113

X
(m)
2 . Let bi(t) = (bi1(t), . . . , biNi

(t)) be a basis of Si, the restriction of S to114

the segment Si. Let µi, x
(m)
i , y

(m)
i and Ai be the coefficient representations115

of µ, X(m), Y (m), and A, respectively, in the basis bi.116

2.2. The covariance structure117

Let u(s, t) = Cov(X(s), X(t)) and v(s, t) = Cov(Y (s), Y (t)), and let118

b(s)′gb(t) and b(s)′Gb(t) be their respective matrix representations with119

respect to the basis b. For s ∈ Si and t ∈ Sj, i, j = 1, 2, let u(s, t) =120

bi(s)
′gijbj(t) and v(s, t) = bi(s)

′Gijbj(t) be the matrix representations of121

the restriction of the covariance functions to the partial segments. Finally,122

we define the operators γij and Γij from Sj to Si, for i, j = 1, 2, by123

(γijf)(t) =

∫
Sj

u(s, t)f(s)ds = bi(t)
′gijWjf

(Γijf)(t) =

∫
Sj

v(s, t)f(s)ds = bi(t)
′GijWjf ,

(3)

where Wj =
∫
Sj
bj(s)bj(s)

′ds, and f is the expansion of the function f in124

bj . More details on the covariance structure can be found in the Appendix.125

Note that even when given the basis b on the full segment, there is not nec-126

essarily an easy and efficient way to compute the bases b1 and b2. Similarly,127

there is not necessarily an easy and efficient way to compute the coefficient128

representations for the functions X
(m)
i and Y

(m)
i , m = 1, . . . ,M . Also finding129

the matrices gij and Gij, even given the matrices g and G, can be challeng-130

ing. This differs from the Euclidian case, where gij is a submatrix of g. In131

the following section we represent the functions X(m)(t) and Y (m)(t) using132

appropriate B-spline bases. We show that for B-spline function spaces there133

is an efficient way to compute the bases b1 and b2, the vectors of coefficients134

of X
(m)
i (t) and Y

(m)
i (t), and the matrices gij and Gij.135
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2.3. B-spline spaces136

Until now we assumed that the random functions X(m)(t) and their noisy137

version Y (m)(t) are contained in some N -dimensional continuous function138

space S. Here, we suggest that the space S be chosen as a spline space,139

i.e., a space of piecewise polynomial functions. The use of splines is common140

in functional data analysis due to the simplicity of spline computation, and141

the ability of splines to approximate smooth functions (see, for example,142

Ramsay and Silverman, 2005). There are two more advantages to using143

finite-dimensional spline functional spaces in our case. First, the functional144

space restriction from the whole segment to a partial segment (the “past”145

segment or the “future” segment) has a natural B-spline basis that has a lower146

number of elements. This solves collinearity problems which can render any147

projection on the partial segment basis unstable. Second, the knot-insertion148

algorithm (see de Boor, 2001, Chapter 11) ensures an efficient and stable way149

to compute the mean function and covariance operators on different partial150

segments. In the following we discuss shortly spline spaces and the knot-151

insertion algorithm. We then explain how to use this algorithm in order152

to restrict functions in Sk,τ to the subsegments S1 and S2. We refer the153

reader to de Boor (2001) for more details regarding splines, B-splines and154

the knot-insertion algorithm.155

Let Sk,τ be a spline space, where k denotes the splines’ order and where156

τ is a fixed knot sequence on [0, T ]. Let b = (b1, ..., bN)′ be the B-spline basis157

of Sk,τ . Let τ1 and τ2 be knot sequences that agree with τ on the segments158

[0, U) and (U, T ], respectively, and have knot multiplicity of k at U . Let159

Sk,τi for i = 1, 2 be the k-ordered spline space with knot sequence τi, and let160

bi(t) = (bi1(t), . . . , biNi
(t)) be its corresponding B-spline basis. We wish to161

represent X
(m)
i and Y

(m)
i (i = 1, 2; m = 1, . . . ,M) using the representations162

of X(m) and Y (m).163

It is enough to represent the functions X
(m)
i and Y

(m)
i using the bases

bi. Recall that X(m)(t) = µ(t) + b(t)′Ah(m), and µ(t) = b(t)′µ for some
vector of coefficients µ. Using the knot-insertion algorithm we can obtain
new vectors µi such that: (a) µ(t) = bi(t)

′µi for all t on which bi is defined,
and (b) µi is obtained from µ by truncation and a change of at most k
coefficients. Similarly, by truncation and a change of at most pk coefficients,
we can obtain the loading matrices Ai such that b(t)′A = bi(t)

′Ai for all
t on which bi is defined. Note that these truncations applied only to the
shared components of the model, i.e., the mean vector, the loading matrices
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and covariance matrices; the unique coefficients that determine each random
function are not touched. Hence we obtain

X
(m)
i (s) = bi(s)

′(µi + Aih
(m)
)

(4)

for i = 1, 2 and for all s ∈ Si. In a similar way, we can write Yi(s) =164

bi(s)
′y

(m)
i .165

We now compute the covariance matrices gij and Gij from the covari-
ance matrices g and G. Starting with g, recall that Cov(X(s), X(t)) =
b(s)′gb(t) = b(s)′ALA′b(t) for some diagonal matrix L. Hence, since b(t)′A =
bi(t)

′Ai, we obtain that

Cov(Xi(s), Xj(t)) = bi(s)
′AiLA

′
jbj(t) ,

i.e., gij = AiLA
′
j. The computation of Gij is done similarly.166

2.4. Estimation of the functional model167

In the following we discuss the estimation of random functions X(m) and168

Y (m), and their restrictions X
(m)
i , and Y

(m)
i (i = 1, 2; m = 1, . . . ,M) from169

M i.i.d. longitudinal data trajectories. We also discussed the vector of co-170

efficients of the expectation function µ, the loading matrices A and V , the171

covariance matrices g and G, as well as their restrictions to subsegments.172

While there are many different estimation techniques, we restrict the discus-173

sion to smoothing splines. In this discussion we follow Ramsay and Silverman174

(2005, Chapter 5).175

We assume that the data is given as a set of M longitudinal trajectories

y(m) =
(
Y (m)(t1m), . . . , Y (m)(tnm)

)
m = 1, . . . ,M

where 0 ≤ t1m < . . . < tnm ≤ T are time points on which the evaluation of176

Y (m) is given. As before, let Sk,τ be a B-spline space where k denotes the177

splines’ order and where τ is a fixed knot sequence on [0, T ]. We estimate178

the coefficients of Y (m) with respect to the B-spline basis b using smoothing179

splines.180

Using the coefficient vector representation of the functions Y (1), . . . , Y (m)
181

with respect to the basis b we estimate the mean function µ(t) and the182

matrix G as follows. The mean function is estimated by b(t)′µ̂ where µ̂ is183

the mean of the vectors ŷ(1), . . . , ŷ(M). Define the matrix C to be an M184

by N matrix where the m-th row of C is given by (ŷ(m) − µ̂)′. Then we185
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define G as M−1C ′C, and consequently the covariance function is given by186

v(s, t) = b(s)′Gb(t).187

We are now ready to estimate the loading matrix A. This is done by
performing principal component analysis (PCA) for functional data (Ram-
say and Silverman, 2005, Chapters 8). Let ρ1, . . . , ρN and φ1, . . . , φN be,
respectively, the eigenvalues and eigenfunction of the operator

Γf(s) =

∫ T

0

v(s, t)f(s)ds ≡ GWf ,

where W =
∫ T
0
b(s)b(s)′ds, and f is the expansion of the function f in b.188

Note that these eigenvalues and eigenfunctions can be obtained by solving the189

eigenvalue problem W 1/2GW 1/2f = ρf and computing φ(t) = b(t)′W−1/2f190

for each eigenvector (see Ramsay and Silverman, 2005, Chapter 8.4 for de-191

tails).192

Choosing p, the number of principal components that describe the model193

is a challenge. There are many techniques and rules of how to choose p, and194

we refer the reader to Chapter 6 of Jolliffe (2002) for a survey of common195

techniques. Since our goal is to predict the continuation of a function, we196

choose the number of principal components as the number that best performs197

the prediction. In the numerical examples this was done using K-fold cross198

validation.199

3. The Construction of the BLUP200

Given Y1, the noisy version of the first part of the random function X, our201

goal is to find a good estimator for X2, the continuation of X1. For simplicity,202

we restrict the discussion to linear estimators.203

Following Robinson (1991), we say that X̂2 is a good linear estimator of204

X2 given Y1 if the following criteria hold:205

(C1) X̂2 is a linear function of Y1.206

(C2) X̂2 is unbiased, i.e., E[X̂2(t)] = µ(t).207

(C3) X̂2 has minimum mean square error among the class of linear unbiased208

estimators.209

Two additional demands regarding the estimator that seem desirable in our210

context are:211

(C4) The random function X̂2 lies in the space S2.212
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(C5) When no noise is introduced, i.e., when Y1 = X1, the concatenation of
X̂2 to X1 lies in S. In other words, the combined function

X̂ =

{
X1(t) 0 ≤ t ≤ U

X̂2(t) U < t ≤ T

is smooth enough.213

An estimator that fulfills (C1)-(C5) will be referred to as a best linear unbi-214

ased predictor (BLUP). In this section we will show how to construct such a215

BLUP and prove that it is defined uniquely.216

Remark. Note that the definition of an unbiased estimator in (C2) is not217

the usual definition. A more restrictive criterion is218

(C2*) X̂2 is unbiased in the following sense E[X̂2(t)|Y1] = E[X2(t)|Y1].219

We will show that when Y is a Gaussian process, i.e., the random vectors220

h and ε are multivariate normal, this criterion is fulfilled by the proposed221

BLUP as well.222

Define the function

v+11(s, t) = b1(s)′W−1
1 G+

11W
−1
1 b1(t) ,

for every s, t ∈ S1. Note that W1 is invertible since it is a Gram matrix
of basis functions (see Sansone, 1991, Theorem 1.5). Define the operator
Γ+
11 : S1 → S1 by

(Γ+
11f)(t) =

∫
S1

v+11(s, t)f(s)ds = b1(t)′W−1
1 G+

11f ,

where f is the expansion of the function f in the basis b1. We note that223

when the functional space S1 is infinite-dimensional, the operator Γ11 needs224

not to have a bounded pseudo-inverse. However, since we consider S1 to have225

a finite basis, this problem does not arises.226

We are now ready to define the estimator for X2 given Y1, by227

X̂2(t) = µ(t) + γ21Γ
+
11(Y1 − µ)(t) = b2(t)′

(
µ2 + g21G

+
11(y1 − µ1)

)
, (5)

for every t ∈ S2. Then we have228
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Theorem 1. Let X and its noisy version Y be random functions in an N-229

dimensional continuous function space S, with basis expansions (2) and (1),230

respectively, and with covariance structure (3). Then, the estimator X̂2 meets231

criteria (C1)–(C5) and is unique up to equivalence. Moreover, if Y is a232

Gaussian process, then X̂2 meets criterion (C2*) as well.233

See proof in the Appendix.234

The estimation of X̂2 has a simpler form when the noise is modeled in235

the following way. Assume that236

Y1(t) = b1(t)′
(
µ1 + A1h+ ε1

)
(6)

where ε1 is an N1 × 1 mean zero random vector with σ2I covariance matrix237

and I is the identity matrix. In this case,238

X̂2(t) = b2(t)′
(
µ2 + g21(A1LA

′
1 + σ2I)−1(x1 − µ1)

)
(7)

which has a similar structure to the ridge regression estimator (Hoerl and239

Kennard, 1970). However, it is important to note the difference between the240

role that the parameter σ2 plays in the different models. In ridge regression,241

the parameter σ2 determines the tradeoff between bias and variance, i.e, the242

smaller the σ2, the smaller the bias (see Gross, 2003, Chapter 3.4 for details).243

In our model the estimator X̂2(t) is unbiased when σ2 is known. When σ2
244

is not known it can be estimated from the past data. Since the goal is to245

estimate X̂2, estimation of σ2 can be done using cross validation, where the246

value of the parameter is chosen as the one that yields the best prediction247

for the past data (see also Section 4.3).248

Note that the expression in (7) involves inverting an N1 × N1 matrix
(A1LA

′
1 + σ2I); a simpler expression can be obtained using some matrix

algebra (see Robinson, 1991, Eq. 5.2). We have

g21(A1LA
′
1 + σ2I)−1 = A2LA

′
1(A1LA

′
1 + σ2I)−1 = A2

(
A′1A1 + σ2L−1

)−1
A′1 ,

and hence

X̂2(t) = b2(t)′
(
µ2 + A2

(
A′1A1 + σ2L−1

)−1
A′1(x1 − µ1)

)
, (8)

which involves only the inverse of a p× p matrix. This final equation is the249

form used in the case study that appears in Section 4.250
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4. Case Study251

In this section we apply the estimator X̂2 to call center data. We are252

interested in forecasting the continuation of two processes: the arrival process253

and the workload process. The estimators of these two processes play an254

important role in determining staffing level at call centers (see, for example,255

Aldor-Noiman et al., 2009; Shen and Huang, 2008; Reich, 2010). Usually,256

staffing levels are determined in advance, at least one day ahead. Here we257

propose a method for updating the staffing level, given information obtained258

from the beginning of the day. As noted by Gans et al. (2003) and by Shen259

and Huang (2008), such updating is operationally beneficial and feasible.260

If performed appropriately, it could result in higher efficiency and service261

quality: based on the revised forecasts, a manager can adjust staffing levels262

correspondingly, by offering overtime to agents on duty or dismissing agents263

early, calling in additional agents if needed, increasing or reducing cross-264

selling, and transferring agents to other activities such as email inquiries and265

faxes.266

This section is organized as follows. We first describe the arrival and267

workload processes (Section 4.1). We then describe the data (Section 4.2)268

and the forecast implementation (Section 4.3). The analysis appears in Sec-269

tions 4.4–4.6. Finally, confidence bands are discussed in Section 4.7.270

4.1. The arrival and workload processes271

We define the arrival process of day j, aj(t), as the number of calls that272

arrive on day j during the time interval [t − c, t], where t varies continu-273

ously over time and c is a fixed constant. Note that aj(t) itself is not a274

continuous function. When the call volume is large and this function does275

not change drastically over short time intervals, the function aj(t) can be276

well approximated by a smooth function. Moreover, it can be assumed that277

the function aj(t), for each day j, arises from some underlying deterministic278

smooth arrival rate function λ(t) plus some noise (Weinberg et al., 2007).279

Using the notation of Section 2, we assume that a smooth version of aj(t)280

can be written as λ(t) +
∑p

i=1 h
(j)
i φi(t) + ε(j)(t). We now describe the work-281

load process wj(t) for each day j. The function wj(t) counts the number of282

calls that would have been handled by the call center on day j at time t,283

assuming an unlimited number of agents and hence no abandonments. From284

a management point of view, the advantage of looking at wj(t) over aj(t)285

is that wj(t) reflects the number of agents actually needed at each point in286
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time. However, as opposed to the process aj(t), which is observable in real287

time, the computation of wj(t), for a specific time t, involves estimation of288

call durations for abandoned calls and can be performed only after all calls289

entered up to time t are actually served (see the discussion at Aldor-Noiman290

et al., 2009; Reich, 2010).291

4.2. The data292

The data used for the forecasting examples were gathered at a call center293

of a large U.S. commercial bank. The bank has various types of operations294

such as retail banking, consumer lending and private banking. Since the call295

arrival pattern varies over different types of services, we restrict attention296

to retail services, which account for approximately 70% of the calls (see297

Weinberg et al., 2007). The first two examples are of the arrival process298

and the workload process, for weekdays between March and October 2003.299

The data for the first example consists of the arrival counts at five-minute300

resolutions between 7:00 AM and 9:05 PM (i.e., c = 5 in the definition of301

aj(t)). The data for the second example consists of an average workload, also302

in five-minute resolutions, between 7:00 AM and 9:05 PM. There are 164 days303

in the data set after excluding some abnormal days such as holidays. Figure 1304

shows arrival count profiles for different days of the week.305

The third example explores the arrival process during weekends between306

March and October 2003. There are 67 days in the data set (excluding one307

day with incomplete data). As can be seen from Figure 1, the weekend be-308

havior is different from that of the working days, and there is a Saturday309

pattern and a Sunday pattern. The data for this example consists of the310

arrival counts at fifteen-minute resolutions between 8 AM and 5 PM. The311

change in interval length from the previous two examples is due to the de-312

creased call-counts. The change in day length is due to the low activity in313

early morning and late afternoon hours on weekends (see Figure 1).314

In the first and second examples, we used the first 100 weekdays as the315

training set and the last 64 weekdays as the test set. For each day from day316

101 to day 164, we extracted the same-weekday information from the pre-317

ceding 100 days. Thus, for each day of the week we have about 20 training318

days. For the third example, the test set consists of weekend days 41 to 67319

while the training set for each day consists of its previous 40 weekend days.320

Thus, similarly, for each day we have about 20 training days. Additionally,321

we used the data from the start of the day, up to 10 AM and up to 12 PM. All322
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Figure 1: Arrival count in five-minute resolutions for three successive weeks, grouped
according to weekday (Friday was omitted due to space constraints). Each color represents
a different day. There is a clear difference between workdays, Saturdays, and Sundays. For
the working days, it seems that there is a common pattern. Between 7 AM and 10 AM the
call count rises sharply to its peak. Then it decreases gradually until 4 PM. From 4 PM
to 5 PM there is a rapid decrease followed by a more gradual decrease from 5 PM until
12 AM. The call counts are smaller for Saturday and much smaller for Sunday. Note also
that the main activity hours for weekends are 8 AM to 5 PM, as expected.

forecasts were evaluated using the data after 12 PM, which enabled fair com-323

parison between the results of the different cut points (10 AM and 12 PM).324

We also compare our results to the mean of the preceding days, from 12 PM325

on.326

For a detailed description of the first example’s data, the reader is referred327

to Weinberg et al. (2007), Section 2. For an explanation of how the second328

example’s workload process was computed, the reader is referred to Reich329

(2010). The data for the third example was extracted using SEEStat, which330

is a software written at the Technion SEELab1. We refer the reader to Donin331

et al. (2006) for a detailed description of the U.S. commercial bank call-center332

data from which the data for all three examples was extracted. The U.S. bank333

1SEELab: The Technion Laboratory for Service Enterprize Engineering. Webpage:
http://ie.technion.ac.il/Labs/Serveng
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call-center data is publicly accessible from the SEELab server1.334

4.3. Forecast implementation335

The forecast was performed using a Matlab implementation of the BLUP336

algorithm from Section 3, where we follow the model discussed in (6). For the337

implementation we used the Matlab functional data analysis library written338

by Ramsay and Silverman2. We also used the Matlab library Spider for339

implementing cross-validation3. The Matlab code, as well as the data sets,340

are downloadable (see Supplemental Materials).341

In all computations we used cubic-splines, i.e, fourth-order splines. We342

used knot sequences with a knot every hour. This means that in the first343

and the second examples below the dimension of the spaces S, S1, and S2344

are 17, 6, and 14, respectively, for the 10 AM cut point, and 17, 8, and345

12, respectively, for the 12 PM cut point. For the third example below, the346

dimension of the spaces S, S1, and S2 are 12, 5, and 10, respectively, for the347

10 AM cut point, and 12, 7, and 8, respectively, for the 12 PM cut point.348

We used a 5-fold-cross-validation to choose the dimension p of the sub-
space spanned by X, and the variance σ2 (see Eq. 8), among the set of pairs

(σ2, p) = (10−2 · 2i, j) , i ∈ {0, 1, 2} , j ∈ {1, 2} .

We quantified the results using both Root Mean Squared Error (RMSE) and
Average Percent Error (APE), which are defined as follows. For each day j,
let

RMSEj =

(
1

R

R∑
r=1

(Njr − N̂jr)2
)1/2

; APEj =
100

R

R∑
r=1

|Njr − N̂jr|
Njr

,

where Njr is the actual number of calls (mean workload) at the r-th time349

interval of day j in the arrival (workload) process application, N̂jr is the fore-350

cast of Njr, and R is the number of intervals. We computed local confidence351

bands with a 95% confidence level using cross-validation, as described in 4.7.352

2The functional data analysis Matlab library can be downloaded from ftp://ego.

psych.mcgill.ca/pub/ramsay/FDAfuns/Matlab/
3The Matlab library Spider can be downloaded from http://people.kyb.tuebingen.

mpg.de/spider/
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4.4. First example: Arrival process for weekday data353

In the first example we would like to predict the arrival process to a call354

center given the beginning of current day data and previous days’ data. For355

the current day data we use two cut points, 10 AM and 12 PM, and also356

compare it to a forecast that is based only on the previous days’ data.357

Forecasting the arrival process for the first example data was studied by358

both Weinberg et al. (2007) and Shen and Huang (2008). Weinberg et al.359

assumed that the day patterns behave according to an autoregressive model.360

The algorithm they suggest first gives a forecast for the current day based on361

previous days’ data. The algorithm estimates the parameters in the autore-362

gressive model using Bayesian techniques. An update for the continuation363

of the current day’s forecast is obtained by conditioning on the data of the364

current day up to the cut point. We refer to this algorithm as Bayesian up-365

date (BU) for short. Similarly, the algorithm by Shen and Huang assumes366

an autoregressive model and gives a forecast for the current day. They then367

update this forecast using least-square penalization, assuming an underlying368

discrete process. We will refer to this algorithm as penalized least square369

(PLS). Yao et al. (2005) developed a functional data method for sparse lon-370

gitudinal data that can handle continuation of a curve. This method, which371

we applied using the Matlab library PACE4, is referred to as PACE.372

Comparison between the results of all four algorithms for the first data373

set appears in Table 1. Note that for BU, PLS, and BLUP, and all of the374

categories there is improvement in the 10 AM and 12 PM forecasts over375

the forecast based solely on past days. For these algorithms, the RMSE376

mean decreases by about 5–13% for the 10 AM forecast, and by 12–15% for377

the 12 PM forecast, depending on the algorithm. The fact that there is no378

improvement for PACE may be because this algorithm was not designed to379

optimize such prediction. It should be noted that the algorithms by Weinberg380

et al. and by Shen and Huang use information from all 100 previous days and381

the knowledge of the previous day call counts. For the methods that were382

designed for i.i.d. data, i.e., BLUP and PACE, we used only the same weekday383

information (∼20 days instead of 100), and the previous day’s information is384

not part of its training set.385

The forecasting results for the week that follows Labor Day appear in Fig-386

4The Matlab library PACE can be downloaded from http://www.stat.ucdavis.edu/

PACE/
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ure 2. It can be seen that for the Tuesday that follows Labor Day (Monday)387

the call counts are much higher than usual. This is captured, to some degree,388

by the 10 AM forecast and much better by the 12 PM forecast. The same389

Example 1 Mean 10:00 AM 12:00 PM
RMSE BLUP BU PLS PACE BLUP BU PLS PACE BLUP

Minimum 12.37 11.08 11.44 11.67 11.07 11.42 12.05
Q1 14.07 14.00 13.31 14.57 13.48 13.56 13.33 14.62 13.17

Median 16.13 15.50 14.87 17.51 14.40 14.80 14.60 17.58 14.17
Mean 18.95 17.86 16.48 21.28 16.80 16.59 16.13 21.37 15.99

Q3 21.06 19.87 17.26 23.37 18.22 16.58 16.39 23.84 16.23
Maximum 68.60 57.72 78.18 49.51 53.66 78.55 49.24

Table 1: Summary of statistics (minimum, lower quartile (Q1), median, mean, upper
quartile (Q3), maximum) of RMSE for the forecast based on the mean of the previous
days (Mean), and BU, PLS, PACE, and BLUP, using data up to 10 AM and up to 12
PM for the call arrival data set. The results for BU and PLS were taken from the original
papers. No maximum and minimum results were given for PLS.

Figure 2: Forecasting results for the week following Labor Day (Sept. 2–5, 2003) for the
call arrival process of the first example. Labor Day itself (Monday) does not appear since
holiday data is not included in the data set. The black dots represent the true call counts
in five-minute resolutions. The forecasts based on previous days, 10 AM data, and 12 PM
data are represented by the blue, red, and green lines, respectively.
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phenomenon occurs, with less strength, during the Wednesday and Thurs-390

day following Labor Day, until on Friday all the forecasts become roughly391

the same. It seems that the power of the continuation-of-curve forecasting is392

exactly for such situations, in which the call counts are substantially differ-393

ent than usual throughout the day, due to either predictable events, such as394

holidays, or unpredictable events.395

4.5. Second example: Workload process for weekday data396

The second example consists of the workload process for weekday data for397

the same period as the first example. We forecast the workload process based398

on these sets of data: previous days’ data, up to 10 AM data, and up to 12399

PM data. We refer to this forecast as a direct workload forecast since we use400

past workload estimation as the basis for the forecast. An alternative (and401

simpler) workload forecasting method was proposed by Aldor-Noiman et al.402

(2009). Aldor-Noiman et al. suggest to forecast the workload by multiplying403

the forecasted arrival rate by the estimated average service time (see Aldor-404

Noiman et al., 2009, Eq. 21). We refer to this method as indirect workload405

forecasting.406

For the indirect workload forecasting, one first needs to forecast the ar-407

rival rates. In this example, we estimated these quantities using the BLUP408

estimator. We note that the arrival rates could have been forecasted us-409

ing other estimators. However, our goal is to compare between direct and410

indirect methods, and not between different estimators.411

Comparison between the two methods appears in Table 2. Following412

Aldor-Noiman et al. (2009), we estimated the average service time over a413

30-minute period for indirect workload computations. Note that the direct414

workload forecast results are slightly better than the indirect workload fore-415

cast in most of the categories. Also note that in almost all categories, there416

is an improvement in the 10 AM and 12 PM forecasts over the forecast based417

solely on past days. The RMSE mean decreases by about 16% (8%) for the418

10 AM forecast, and by 16% (13%) for the 12 PM forecast for the direct419

(indirect) forecast. Figure 3 presents a visual comparison between the direct420

and the indirect forecast methods on a specific day. The two forecasts look421

roughly the same, which is also true for all other days in this data set.422

While in this example there is no significant difference between the direct423

and indirect workload forecasts, we expect these methods to obtain different424

forecasts when the arrival rate changes during an average service time. This425

is true, for example, for arrival and service of patients in emergency rooms.426
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The arrival rates of patients to emergency rooms can change within an hour427

while the time that a patient spends in emergency room (the “service time”)428

is typically on the order of hours. As pointed out by Rozenshmidt (2008,429

Section 6), in such cases, forecasting the workload by the arrival count mul-430

tiplied by the average service time may not be accurate. This is because431

the number of customers in the system is cumulative, while the arrival count432

counts only those who arrive in the current time interval. Thus, if the ar-433

rival count is lower than it was in the previous time interval and the average434

service time is long, the workload is underestimated. Similarly, if the arrival435

count is larger than previously, the workload is overestimated. Analysing436

emergency room data would be interesting, but it is beyond the scope of this437

paper.438

4.6. Third example: Arrival process for weekend data439

The third example is that of the weekend arrivals. The main difference440

between the first two examples and this one is that the data in this example441

cannot be considered as data from successive days, due to the six day differ-442

ence between any Sunday and its successive Saturday. Note that the models443

considered by Weinberg et al. (2007) and Shen and Huang (2008) have an444

autoregressive structure, and hence are not directly applicable. Nevertheless,445

it would have been interesting to compare the performance of the BU and446

PLS prediction methods on this data. Since we do not have access to the447

code, the comparison to these methods was done only for the first example.448

Example 2 Day ahead 10:00 AM 12:00 PM
RMSE Workload Workload Workload Workload Workload Workload

(by arrivals) (explicitly) (by arrivals) (explicitly) (by arrivals) (explicitly)
Minimum 8.41 8.39 8.00 7.80 7.94 8.31

Q1 10.59 10.80 10.14 10.03 10.24 10.00
Median 11.99 12.29 11.60 10.97 11.39 11.27
Mean 15.79 15.96 14.60 13.36 13.95 13.24

Q3 15.08 15.34 14.33 14.16 13.65 13.20
Maximum 96.06 94.69 96.30 55.97 93.75 56.01

Table 2: Summary of statistics (minimum, lower quartile (Q1), median, mean, upper
quartile (Q3), maximum) of RMSE for the forecast based on the mean of the previous
days’ data, up to 10 AM data and up to 12 PM data, for the workload data set, for both
the indirect and the direct forecast methods using the BLUP.
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Figure 3: Workload forecasting for Friday, September 5, 2003, using both the direct and
the indirect methods. The black curve represents the workload process estimated after
observing the data gathered throughout the day. The blue and red curves represent the
workload forecasts for the indirect and direct forecasts, respectively, given data up to 12
PM.

We forecasted the arrival rate for the weekend data using the both the449

BLUP and the PACE estimators. Note that even when the autoregressive450

structure does not hold, the results appearing in Table 3 reveal that fore-451

casting for this data set is still beneficial. Indeed, for the BLUP method, the452

RMSE mean decreases by about 15% for the 10 AM forecast, and by 24%453

for the 12 PM forecast. These results are impressive since the curves in this454

example begin an hour later than the curves in the previous two examples.455

4.7. Confidence bands456

Confidence bands are important for two main reasons. First, they enable457

one to assess the accuracy of the prediction. Second, which is more specific to458

our discussion, they enable one to choose the earliest cut point that provides a459

satisfying prediction. Clearly, the earlier the cut point time, the less accurate460

the prediction and hence the wider the confidence band. Using the width of461

the confidence band as a measure, one can determine the earliest cut point462

which provides the needed accuracy level.463

We computed (local) confidence bands in the following way. We first
estimated D̂(t) ≡ Var(X2(t)|Y1)1/2. We then define the confidence band as
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the pair of functions

(X̂2(t)− CD̂(t), X̂2(t) + CD̂(t)) , (9)

where C is chosen using cross-validation. We omit the details.464

Following Weinberg et al. (2007), we introduce the 95% confidence band
coverage (COVER) and the average 95% confidence band width (WIDTH).
Specifically, for each day j, let

COV ERj =
1

R

R∑
r=1

I (FL,jr < Njr < FU,jr)

WIDTHj =
1

R

R∑
r=1

(FU,jr − FL,jr) ,

where (FL,jr, FU,jr) is the confidence band of day j, evaluated at the begin-465

ning of the r-th interval. The mean coverage and mean width, for all three466

examples, are presented in Table 4. First, note that for all three examples,467

the width of the confidence band narrows down as more information is re-468

vealed. In other words, the width of the confidence band for the 12 PM469

forecast is narrower than the width for the 10 AM forecast which, in turn,470

is narrower than the width for the previous days’ mean. We also see that471

the mean coverage becomes more accurate as more information is revealed.472

Figure 4 depicts the confidence bands for the arrival process on a particular473

Sunday. Note that the 10 AM forecast confidence band is narrower than474

the confidence band for the mean of the previous days’ forecast. Moreover,475

Example 3 Mean 10:00 AM 12:00 PM
RMSE BLUP PACE BLUP PACE BLUP

Minimum 4.30 3.72 3.46 3.72 3.47
Q1 5.70 5.78 4.77 5.81 4.97

Median 9.01 7.03 6.27 7.07 6.13
Mean 8.87 8.35 7.53 8.43 6.71

Q3 10.56 10.45 9.13 10.7 7.71
Maximum 16.74 21.92 18.42 22.09 17.26

Table 3: Summary of statistics (minimum, lower quartile (Q1), median, mean, upper
quartile (Q3), maximum) of RMSE for the forecast based on the mean of the previous
days (Mean), and PACE and BLUP using data up to 10 AM and up to 12 PM for the call
arrival data set.
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at 12 PM, when more information on this particular day becomes available,476

the confidence band narrows down even more and captures the underlying477

behavior.478

Figure 4: Confidence bands for Sunday, August 17, 2003. The black dots represent the
true call counts in fifteen-minute resolutions. The confidence bands based on the mean of
previous days, 10 AM data, and 12 PM data are represented by the blue, red, and green
lines, respectively.

Summarizing, using call center data, we demonstrated that forecasting of479

curve continuation can be achieved successfully by the proposed BLUP. We480

also showed that confidence bands for such forecasts can be obtained using481

cross-validation.482

Confidence band coverage Confidence band width
Example 1 Example 2 Example 3 Example 1 Example 2 Example 3

Mean 93.8% 91.4% 98.9% 82.75 63.93 51.02
10:00 AM 94.3% 92.9% 95.7% 76.38 53.98 39.34
12:00 PM 95.0% 93.2% 94.4% 74.76 54.60 30.49

Table 4: The mean confidence band coverage and the mean width for the forecasts based
on the previous days’ mean, the 10 AM cut and the 12 PM cut for the arrival process on
the working days data set (Example 1), the workload process on the working days data
set (Example 2) and the arrival process on the weekend data set (Example 3).

21



5. Concluding Remarks483

In this work we forecasted the continuation of both the arrival and work-484

load process using the best linear unbiased predictor (BLUP) for the continu-485

ation of a curve. We had shown that the proposed BLUP is a fast and simple486

alternative to existing methods for predicting the continuation of both the487

arrival and the workload functions.488

As discussed in Feldman et al. (2008) and Reich (2010), the workload489

process is a more appropriate candidate than the arrival process, as a basis490

for determining staffing levels in call centers. This work, along with Aldor-491

Noiman et al. (2009) and Reich (2010), are the first steps in exploring direct492

forecasting of the workload process, but more remains to be done (see, for493

example, Whitt, 1999; Zeltyn et al., 2011).494

Appendix A. Proofs495

Before we start the proofs, we need some additional notation. Recall496

that Y (t) = X(t) + ε(t) where we assumed that ε is the part of Y that is not497

contained in the subspace spanned by the functions φ (see Section 2). Write498

ε(t) = b(t)′Bε for an N × q loading matrix B and a q × 1 random vector ε.499

Let Σ be the covariance matrix of ε and note that G, the covariance matrix500

of Y , can be written as ALA′ +BΣB′.501

Let Ai and Bi, i = 1, 2, be matrices such that for all t ∈ Si, X(t) =502

bi(t)
′(µi + Aih) and Y (t) = bi(t)

′(µi + Aih + Biε). Ai and Bi are the503

loading matrices adapted to the basis bi. Using the above notation we have504

gij = AiLA
′
j and Gij = (AiLA

′
j +BiΣB

′
j).505

We need the following two lemmas.506

Lemma 2. Let T be an n× p matrix of rank s and let L be a p× p positive507

definite diagonal matrix. Then the following assertions are true508

1. T ′T (T ′T )+T ′ = T ′509

2. T ′LT (T ′LT )+T ′ = T ′510

The proof is technical and thus omitted.511

The following lemma justifies the notation of Γ+
11 as a pseudoinverse op-512

erator.513

Lemma 3. With probability one, Γ11Γ
+
11(Y1−µ) = Γ+

11Γ11(Y1−µ) = Y1−µ .514
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Proof. Write Y1(t)− µ(t) = b1(t)′(A1h+B1ε). Hence,(
Γ11Γ

+
11 (A1h+B1ε)) (t) =

= b1(t)′G11W1W
−1
1 G+

11(A1h+B1ε)

= b1(t)′G11G
+
11(A1h+B1ε)

= b1(t)′[A1, B1]

[
L 0
0 Σ

] [
A′1
B′1

](
[A1, B1]

[
L 0
0 Σ

] [
A′1
B′1

])+ [
A1h
B1ε

]
and the result follows from Lemma 2.515

We are now ready to prove Theorem 1.516

Proof of Theorem 1. We show that (C1)–(C5) hold, one by one.517

(C1) holds because X̂2 is indeed a linear transformation of Y1 as can be518

seen from (2).519

(C2) holds since

E[X̂2(t)] = b2(t)′
(
µ2 + g21G

+
11(E[y1 − µ1])

)
= b2(t)′µ2 = µ(t) .

(C3) states that X̂2 should minimize the mean square error among all the
unbiased linear estimators . Let X̃2 be another linear unbiased estimator.
Then we can write X̃2 = (X̃2−X̂2)+X̂2. Since both X̃2 and X̂2 are unbiased,
X̃2 − X̂2 is an unbiased linear estimator of zero, hence it is of the form
b2(t)′D(y1 −µ1) for an N2 ×N1 matrix D. Moreover, it can be shown that
Cov(X2 − X̂2, X̃2 − X̂2) = 0. Indeed,

Cov
(
(X2 − X̂2)(s), (X̃2 − X̂2)(t)

)
= E[(X2 − X̂2)(s)(X̃2 − X̂2)(t)]

= b2(s)′E[(x2 − µ2)(y1 − µ1)′]D′b2(t)

− b2(s)′E[µ2 + g21G
+
11(y1 − µ1)(y1 − µ1)′]D′b2(t)

= b2(s)′
(
g21D

′ + g21G
+
11G11D

′)
)
b2(t) = 0 .

where the last equality follows from Lemma 3.520

To see that X̂2 minimizes the mean square error, note that521

E[(X2 − X̃2)
2(t)] = E[(X2 − X̂2)

2(t)] + E[(X̃2 − X̂2)
2(t)]

+2E[(X2 − X̂2)(t)(X̂2 − X̃2)(t)]

= E[(X2 − X̂2)
2(t)] + E[(X̃2 − X̂2)

2(t)]

≥ E[(X2 − X̂2)
2(t)] ,
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which proves that X̂2 minimizes the mean square error and is unique up522

to equivalence.523

(C4) holds by construction.524

(C5) states that when no noise is introduced, X̂2 is a smooth continuation
of X1 in the sense that the combined function is in the space S. First, note
that by Lemma 3

X1(t) = b1(t)′
(
µ1 +G11G

+
11(x1−µ1)

)
= b1(t)′

(
µ1 +A1(LA

′
1G

+
11)(x1−µ1)

)
.

By definition we also have

X̂2(t) = b2(t)′
(
µ2 + g21G

+
11(x1−µ1)

)
= b2(t)′

(
µ2 +A2(LA

′
1G

+
11)(x1−µ1)

)
.

Define X̂(t) = b(t)′
(
µ(t) + A(LA′1G

+
11)(x1 − µ1)

)
. It follows from the defi-525

nitions of µi, Ai and bi that X̂(t) agrees with X1 on S1 and with X̂2 on S2.526

Since X̂ ∈ S, the result follows.527

Finally, if Y is a Gaussian process, then y1 and x2 are normally dis-528

tributed such that Var(y1) = G11 and Cov(x2,y1) = g21. Following Marsaglia529

(1964) we obtain530

E[X2(t)|Y1] = b(t)′E[x2|y1] = b(t)′
(
µ2 + g21G

+
11(y1 − µ1)

)
(A.1)

= X̂2(t) = E[X̂2(t)|Y1]

and criterion (C2*) is met.531

SUPPLEMENTARY MATERIAL532

Code and data sets The archive file BLUP.zip contains the MATLAB code533

and all data sets used in this work, as well as a readme.pdf file that534

describes all of the other files in the archive.535
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