Statistical Analyses of Call Center Data

Research Thesis

In Partial Fulfillment of the Requirements for the
Degree of Doctor of Philosophy

Polyna Khudyakov

Submitted to the Senate of the Technion - Israel
Institute of Technology

Tammuz, 5770 Haifa July, 2010



This Research Thesis Was Done Under the Supervision of
Professor Malka Gorfine and Professor Paul D. Feigin
in the Faculty of Industrial Engineering.

The Generous Financial Help of the Technion
is Gratefully Acknowledged.



Abstract

This study looks into management problems of call centers and the opportu-
nity to analyze a large quantity of data collected over a long time period. The
aim is to develop and apply methods of statistical analysis to call center data in
order to identify basic problems, to find the sources of such problems, to develop
ways for their solution and to estimate their possible impact.

We consider Markovian models for a call center with and without an Interac-
tive Voice Response (IVR) system and approximate performance in the Quality
and Efficiency Driven (QED) asymptotic regime, which is suitable for moder-
ate to large call centers. In contrast to exact calculations, the approximations
are both insightful and easy to implement (for up to thousands of agents). We
validate our models against data from a US Bank Call Center, and our results
demonstrate that simple models still provide very useful descriptions of much
more complex realities.

We also present a statistical analysis of customers patience. This work is the
first attempt to apply frailty models to an analysis of customers’ patience while
taking into account the possible dependency between calls of the same customer,
and estimating this dependency.

We extended the estimation technique of Gorfine et al. [37] to address the
case of different unspecified baseline hazard functions for each call, to address
the case in which customer’s behavior changes as s/he becomes more experienced
with the call center services. Then, we provided a new class of test statistics for
hypothesis testing of the equality of the baseline hazard functions. The asymp-
totic distribution of the test statistics was investigated theoretically under the
null hypothesis and certain local alternatives. We also provided variance estima-
tor. The properties of the test statistics, under finite sample size, were studied
by an extensive simulation study and verified the control of Type I error and
our proposed sample size formula. The utility of our proposed estimating tech-
nique is illustrated by the analysis of the call center data of an Israeli commercial
company that processes up to 100,000 calls per day. According to this analysis,
customers are more patient in their first call. The differences between customers’
patience in the second, third and fourth calls are not significant.



Key words: Queues, Closed Queueing Networks; Call or Contact Centers, Im-
patience, Busy Signals; IVR, VRU; QED or Halfin-Whitt regime; Asymptotic
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pothesis Testing, Nonparametric Baseline Hazard Function.
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Chapter 1

INTRODUCTION

1.1 Owur Goals

In our increasingly industrialized and globalized world, a large number of com-
panies include call centers in their structures and more than $300 billion is spent
annually on call centers around the world [34]. For a customer, addressing the
call center actually means addressing the company itself, and any negative expe-
rience on the part of the customer can lead to the rejection of company products
and services. Hence, for the company, it is very important to ensure that a call
center functions effectively and provides high quality service to its customers.
Call centers collect a huge amount of data, and this provides a great oppor-
tunity for companies to use this information for the analysis of customer needs,
desires, and intentions. Such data analysis can help improve the quality of cus-
tomer service and lower the costs. A typical call center spends about two-thirds
of its operational costs on salaries. However, it would be a false economy to re-
duce costs by decreasing the number of agents, because a small change in staffing
level can have a dramatic impact upon the level of service. Thus, a major goal of
a call center manager is to establish an appropriate tradeoff between its expenses
and its service level. We propose queueing models that can help reach sound
decisions by yielding performance-analysis tools that support this tradeoff. We
also supplement our theory with statistical analysis of our model’s primitive -

customer patience.



1.2 An Analysis of Call Center Performance

In order to achieve high-quality customer service and effective management of
operating costs, many leading companies are deploying new technologies, such as
enhanced Interactive Voice Response (IVR) devices, natural speech self-service
options and others. IVR systems are specialized technologies designed to enable
self-service of callers, without the assistance of human agents. The IVR technol-
ogy helps call centers to keep costs from rising (and sometimes to reduce costs),
while hopefully improving service levels, revenue and hence profits.

Our work develops and analyzes models, for a call center with and without an
IVR. We find analytical formulae which describe typical call center performance
measures, such as the probability of a busy signal, the probability of abandonment
and the average waiting time for an agent. The use of these formulae helps us to
analyze the impact of different parameters on the operational system performance
and to find the relationship between the number of agents and other system
parameters depending on the desired level of service.We also provide an empirical
study in order to evaluate the value of adding an IVR, which is based on analyzing

real data from a large call center.

1.3 Customer Patience Analysis

One of our models’ primitives is a customer patience, which we define as the
ability to endure waiting for service. This human trait plays an important role
in the call center mechanism. As mentioned above, every call can be considered
as a possibility to keep or to lose a customer, and the outcome depends on
the customer’s satisfaction. Moreover, customers are likely to remember one
disappointing service experience more clearly than twenty good ones. From this
point of view, an abandoned call is a negative experience which affects the future
customer’s choice.

There are different factors affecting the customer’s waiting behavior. Only
some of them are observable and available to us, and these are included in
the model as covariates. Unobservable factors that are likely to influence the
customer’s patience are different customer’s characteristics and customer’s tem-
perament. In this work, we use a model that takes into account observed and
unobserved personal customer’s features; and this provides a great advance in cus-
tomer patience analysis. In addition, we investigate the effect of the customers’



experiences on their waiting behavior.

1.4 The Structure of the Work

Chapter 2 contains a survey of the literature dealing with related works. In
Section we review the literature concerning mathematical models of a call
center and analysis of operational performance measures. Literature related to
customer patience analysis is considered in Section [2.3]

Chapter 3 deals with the design and analysis of theoretical models describ-
ing a typical call center. In Section [3.1| we consider the extension of the model
proposed by Srinivasan et al. [80] by assuming finite customer patience and the
M/M/S/N+M queue model. Then, in Section we find approximations for
frequently used performance measures, which support decision-making for call
center managers and help in the analysis of the staffing problem. An analysis of
the accuracy of the approximations is presented in Section A detailed com-
parison between exact and approximated performance shows that the approxima-

tions often work perfectly, even outside the Quality and Efficiency Driven (QED)
regime. Section summarizes our findings through practical rules-of-thumb
(expressed via the offered load) and we chart the boundary of this “outside”. In
Section [3.5 we validate our approximations against data from a real call cen-
ter, thus establishing their applicability. For the convenience of the reader, the
proofs of theorems from Section [3.2] are presented in Section [3.6] In Section
we summarize our findings and propose future directions for research.

Customer patience is analyzed in Chapter 4. In Section [4.1] we start with
a description of the data that motivated the study. In Section [4.2] we briefly ex-
plain the choice of our model. Section presents the notation and formulation
of the model. The estimating procedure and the asymptotic properties of the
estimators are presented in Section [£.4, A new test for comparing of two or more
baseline hazard functions in the case of dependent observations is provided in
Section In Section we propose a sample size formula for given signifi-
cance level and power. The proofs and technical details are presented in separate
section, namely in Section [4.7. The utility of our proposed estimating technique,
a test for comparison and a sample size formula are illustrated in Section 4.8
by extensive simulation study. Then, in Section [4.9] we apply the results of our
approach to the real call center data. Our conclusions and future work are set
out in Section [£.10] Although our research was motivated by call center data, the

10



proposed methods can also be of practical importance in different research fields.
Thus, in Section [4.10.1] we apply our approach for analyzing breast cancer data
of family study.

In Chapter 5 we summarize the results of our work and discuss the innovation
proposed in our study, the methodology used and possible scientific and practical

contributions.
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Chapter 2

LITERATURE REVIEW

2.1 Descriptive Statistical Analysis

Statistical analysis of call center data started with the creation of call centers.
The work of Roberts [75], Duffy and Mercer [23], Liu [59] and Kort [55] written
in the 1970s are dedicated mostly to the description and analysis of models with
customer abandonments and retrials that took place as a result of telephone net-
work impairments. The underlying research was initiated by companies providing
telephone services and telephone equipment.

The study by Liu [59] can be considered as a continuation of the survey con-
ducted in [23]. Liu’s main goal was to provide a comprehensive characterization
of network performance and customer behavior in setting up a customer’s de-
sired telephone connection. Using the collected data, Liu summarized various
statistical characteristics, i.e. initial attempts at disposition probabilities, retrial
probabilities, the number of additional attempts, ultimate success probabilities
and distribution functions for retrial intervals following different types of uncom-
pleted initial attempts.

Kort [55] described models and methods developed at Bell Laboratories to
evaluate customer acceptance of telephone connections in the Bell System Public
Switched Telephone Network. The models that were developed and used in this
study provided a basis for IEEE standards for telephone network performance
specifications in a multi-vendor environment. The detailed description of data
analyzed in our work can be found in Donin et al. [22] and Trofimov et al. [83].

12



2.2 An Analysis of a Call Center Performance

A detailed survey of literature on queuing models for call center design are pro-
vided by Gans et al. [30].

2.2.1 The QED Regime

The mathematical framework considered here is a multi-server heavy-traffic asymp-
totic regime, which is referred to as the QED (Quality and Efficiency Driven)
regime. Systems that operate in the QED regime enjoy a combination of very
high efficiency together with very high quality of service, as surveyed by Gans
et al. [30]. A mathematical characterization of the QED regime for the GI/M/S
queue was established by Halfin and Whitt [38] as having a non-trivial limit
(within (0,1)) of the fraction of delayed customers, with S increasing indefi-
nitely. The latter characterization was also established for GI/D/S (Jelenkovic
et al. [47]), M/M/S with exponential patience (Garnett et al. [31]) and with
general patience (Mandelbaum and Zeltyn [63]).

The QED regime was explicitly recognized as early as 1923 in Erlang’s paper
(that appeared in [27]), which addresses both Erlang-B (M/M/S/S) and Erlang-
C (M/M/S) models. Later extensive related work took place in various telecom
companies but little has been publicly documented. A precise characterization of
the asymptotic expansion of the blocking probability, for Erlang-B in the QED
regime, was given by Jagerman [46], Whitt [86], and then Massey and Wallace [65]
for the analysis of finite buffers. The phenomenon of abandonment in a call

center with multiple servers was analyzed by Garnett et al. [31] (Erlang-A model
(M/M/S+M)) and Mandelbaum and Zeltyn [63] (M/M/S+G).

2.2.2 The Square-Root Staffing Principle

Erlang’s characterization of the QED regime was in terms of the square-root
staffing principle (sometimes called the “safety-staffing principle”). The square-
root principle has two parts to it: first, the conceptual observation that the
safety staffing level is proportional to the square-root of the offered load; and
second, the explicit calculation of the proportionality coefficient. Borst et al. [12]
developed a framework that accommodates both of these needs. More impor-
tant, however, is the fact that their approach and framework allow an arbitrary
cost structure, having the potential to generalize beyond Erlang-C. The square-

13



root staffing principle arises also in [65] for the M/M/S/N queue, in [31] for
M/M/S+M, and others, as surveyed in Gans et al. [30].

2.2.3 Analytical Models of Call Center Performance

In the detailed introduction to call centers by Gans et al. [30], it is explained
how call centers can be modeled by queueing systems of various characteristics.
Many results and models with references are surveyed in that paper. The authors
examine models of single type customers and single skill agents; models with busy
signals and abandonment; skills-based routing; call blending and multi-media;
and geographically dispersed call centers.

Figure depicts a schematic model of a simple inbound call center with S
agents serving one class of customers. A call at either the IVR or within the
servers’ pool occupies a trunk line. There are N trunk lines in this call center.
As shown, the waiting room is limited to NV — S waiting positions and waiting
customers may leave the system due to impatience. A blocked or abandoning
customer might try to call again later (retrial). A queueing model of such an
inbound call center is characterized by customer profiles, agent characteristics,
queue discipline, and system capacity.

A
Retrials Lost customer @
Calling Busy signal
customer ( A)
» N-S 2 1
Abandonment
Retrials
Lost customer
Agents
v

Figure 2.1: Schematic model of a call center with one class of impatient customers,
busy signals, retrials and identical agents.
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The simplest case with homogeneous customers and homogeneous agents is
analytically tractable only if one assumes Poisson arrivals, exponential service
times and no retrials. With these assumptions, the underlying stochastic pro-
cesses are one-dimensional Markov processes, i.e., the future behavior is condi-
tionally independent of the past, given the present state.

The basic operational questions in the design of call centers are: “How can
one provide an acceptable quality of service with minimal costs?”, or “How many
agents and trunk lines do we need in order to provide a given service level?”. In
general: “How does one balance quality of service with operational efficiency?”

Frequently used measures which support decision-making include the average
length of waiting time in the queue, the probability of encountering a busy signal,
the probability of waiting, agents’ occupancy, etc. In order to analyze the staffing
problem, analytical models have been developed in order to help find the answer.
The most widely-used model is M/M/S, which is also known as Erlang-C. In this
model, the arrival process is Poisson, the service time distribution is exponential
and there are S independent, statistically identical agents. It is the simplest yet
most prevalent model that supports call center staffing.

The M/M/S model allows an unlimited number of customers in the system
but, in practice, this number is limited by the number of trunk lines. This gives
rise to the model M/M/S/N (when S = N, it is called Erlang-B). Massey and
Wallace [65] proposed a procedure for determining the appropriate number of
agents S and telephone trunk lines N needed by call centers. They constructed a
new efficient search method for the optimal S and N — S that satisfies a given set
of Service Level Agreement (SLA) metrics. Moreover, they developed a second
approximate algorithm using steady-state, QED-based asymptotic analysis that
in practice is much faster than the search method. The asymptotically derived
number of agents and the number of waiting spaces in the buffer are found by
iteratively solving a fixed point equation.

There are several possibilities to model a call center and the choice of an
appropriate model depends on the problem to be solved and the possibility of
finding a solution. Generally, most convenient models for such an analysis are
of an open type, i.e. they do not have restrictions on the number of places in
the system. Such models were considered previously (Mandelbaum et al. [62],
Aguir et al. [6], Harris et al. [39]). However, in some cases, it is reasonable to use
a closed model, i.e. a model with a limited number of places. For instance, de

Vericourt and Jennings [84] dealt with the problem of hospital staffing when they
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had to take into consideration the number of places in the system, namely, an
always finite number of beds in a given hospital. Another type of closed model
was considered by Randhawa and Kumar [73]. Their system was limited to a
number of subscribers. As mentioned above, such a model is appropriate for
communication systems.

Analytical models of a Call Center with an IVR were developed by Brandt
et al. [I3]. They showed, and we shall use this fact later on, that it is possible
to replace the semi-open network of their model with a closed Jackson network.
Such a network has the well-known product form solution for its stationary dis-
tribution. This product-form distribution was used by Srinivasan et al. [80] in
order to calculate expressions for the probability to find all lines busy and the
conditional distribution function of the waiting time before service. However, due
to the complex nature of these expressions and the numerical instability associ-
ated with the computation process, the whole procedure may be time-consuming
and ultimately produce inaccurate values. On the other hand, it is possible to
use approximations for the system characteristics as was shown in my M.Sc. the-
sis [50]. These approximations are convenient for the investigation of the effect of
changes in the system parameters on the system performance. At the same time,
in [50] approximations of a real call center by models with and without an IVR
are analyzed, though it did not support possible customer abandonments. In the
current work we extend the model presented in [50] by equipping customers with
finite patience.

2.3 Customer Patience Analysis

The first model for customer patience was constructed by Palm [68] in 1943. He
introduced a so-called time-dependent inconvenience function that is actually a
proportional hazard rate function. An important result, postulated by Palm,
is the presence of a correlation between a hazard rate of the customer patience
time and his/her irritation caused by waiting. Palm also suggested that patience
was characterized by a Weibull distribution, a specific case of this distribution
being an exponential distribution widely used in queuing theory (Erlang-A queue
model). We also use the assumption of exponentially distributed patience time

to create a theoretical model of a typical call center (Sections [3.1.1] and [3.1.2]).

The assumption of Weibull distributed patience also was proposed by Kort [55]
who studied customer acceptance of telephone connections. A detailed survey of

16



the above and other literature on models and methods used for the analysis of
customer patience was provided by Gans et al. [30].

A descriptive model of customer patience with the use of real call center
data was presented by Brown et al. [I6]. They estimated the distribution of
customer patience using the standard Kaplan-Meier product limit estimator. The
survival functions were created for different types of service. The authors found
that customers performing stock trading are willing to wait more than customers
calling for regular services. This unexpected result was explained by the fact that
these customers need the service more urgently, and have more trust in the system
to provide it. In addition, Brown et al. [I6] constructed nonparametric hazard
rate estimates. Namely, for each interval of length §, the estimate of the hazard
rate was calculated as [jj of events during (¢,t + 5]] / [(jj at risk at t) x 5]. The
resulting function had two peaks and these peaks occurred after a “Please wait”
message played by the system with 60 seconds difference. This example illustrates

that sometimes ostensibly correct management solutions have the opposite effect.

2.3.1 Survival Analysis

The complication of customer patience analysis is that in most cases customers
receive the required service before they lose their patience and we do not ob-
serve the values of customer patience. We call such incomplete data as censored
observations. To analyze the data with censored observations we need tools of
survival analysis. Generally, survival analysis involves the modeling of time to
event data. The occurrences of these events are often referred to as failures.
Failure time data occur in numerous fields including medicine, economics and
industry. The basic models of survival analysis are described in Kalbfleisch and
Prentice [48], Hougaard [42] and references therein, among others.

2.3.2 Frailty Models

The Cox proportional hazard model is one of the most widely used event history
models. It was proposed by Cox [2I] and assumes that event times are indepen-
dent. Thus, for the analysis of correlated (clustered) failure times an extended
Cox model was proposed (Ripatti and Palmgren [74], Murphy [66], Parner [70]),
in which a random effect, for each cluster, is included in the model. This ran-
dom effect model is known as frailty model. Frailty model provides a natural

approach to account for risk heterogeneity. The cluster-specific random variate
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acts multiplicatively on the hazard function. Under a frailty model, the regres-
sion coefficients are cluster-specific log-hazard ratios. It is clear that the frailty
model is modeling the conditional hazard function given the latent frailty (Hsu
et al. [43], Hsu et al. [45], Duffy et al. [24]). This is in contrast with the marginal
modeling (Hsu and Gorfine [44], Shih and Chatterjee [78], Lin [58]), where the
correlation is modeled through a multivariate distribution which often involves
a copula function, with a specified model for the marginal hazard function. The
regression coefficients in the marginal model represent the log-hazard ratios at
the population level, regardless of which cluster an individual comes from. In our
context, when the objective is to make inference about calls of the same customer,
a customer-specific risk estimate is more relevant than a population-averaged risk
estimate. Zeger et al. [88] provides a comprehensive comparison of cluster-level
modelling versus the marginal population-average approach.

Many frailty models have been considered, including Gamma (Klein [51],
Nielsen et al. [67]), Positive stable (Hougaard [41]), Inverse Gaussian (Aalen
and Gjessing [3]), compound Poisson (Henderson et al. [40], Aalen [2]), and Log-
normal (Ripatti and Palmgren [74]). Hougaard [42] provided a broad review
of models consists of different frailty distributions. The most commonly used
frailty distribution is the Gamma frailty distribution, because of mathematical
convenience. However, it is of concern that misspecification of Gamma frailty
distribution may invalidate the inference. Different frailty distributions induce
different dependence structure, then, it is important to examine the adequacy of
the Gamma frailty model for describing the intracluster dependence. Model diag-
nostic procedures have been developed for that purpose (Shih [77], Glidden [35],
Chen et al. [19]). There are also some works dealing with the misspesification
of frailty distribution (Glidden and Vittinghoff [36], Kosorok et al. [53]). Hsu et
al. [45] studied how the misspecification affects the estimation of the marginal
parameters. They analyzed the simulated data under the assumption of Gamma
distributed frailty, while the true distributions were Inverse Gaussian, Positive
Stable and a specific case of Discrete distribution. This analysis showed that the
Gamma distribution appears to be robust to frailty distribution misspecification
in cohort and case-control family studies.

A detailed review of methods for estimation and the model testing were pro-
vided by Hougaard [42]. Nielsen et al. [67] and Klein [51] considered the NPMLE
estimate of the proportional hazard model with gamma frailty. Murphy [60]
showed the consistency and asymptotic normality for this model without covari-

18



ates. Later, Parner [70] extended these results to the model with covariates. Zeng
and Lin [90] presented an estimation technique for the class of semiparametric
regression models for censored data, which also include the random effects for
dependent time failures. They provided a semi-parametric maximum likelihood
estimator, based on the EM algorithm, together with their asymptotic properties.
A noniterative estimation procedure for estimating the parameters of the frailty
model with any frailty distribution with finite moments was proposed by Gorfine
et al. [45]. The detailed proof of the asymptotic properties of the proposed esti-
mators was provided by Zucker et al. [91].

2.3.3 Testing for Equality of Hazard Functions

The most popular test statistic for testing the equatlity of two hazard functions
is the weighted log-rank test. It was first proposed by Mantel [64] and later Peto
and Peto [71] named it log-rank. An adaptation of this test to censored data
was suggested by Prentice [72]. Different extensions of the Wilcoxon rank-sum
statistic to censored failure time data were also considered (Gehan [32], Peto and
Peto [71], and Tarone and Ware [82]). These proposed models together with
the log-rank statistic can be incorporated into the class of weighted log-rank
statistics. The asymptotic properties of the weighted log-rank statistics were
derived via martingale theory (Gill [33], Fleming and Harrington [28], Andersen et
al. [§]). The family of log-rank statistics presented by Harrington and Fleming [2§]
describes a large variety of weighted log-rank statistics such as the log-rank,
Prentice-Wilcoxon, Gehan-Wilcoxon and Tarone-Ware statistics.

Often weighted log-rank statistics considered data generated from indepen-
dent samples (Lawless and Nadeau [56], Cook et al. [20], Eng and Kosorok [26]).
Comparison of two treatments based on clustered data with no covariates is pre-
sented by Gangnon and Kosorok [29]. They used the weighted log-rank test
statistic and presented a simple sample size formula. Song et al. [79] studied
a covariate-adjusted weighted log-rank statistic for recurrent events data while
comparing between two independent treatment groups. For the best of our knowl-
edge, so far there is no published work that deals with correlated samples test

applied to a covariate adjusted frailty model.
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2.3.4 Sample Size Formula

One of the most widely used sample size formula for the log-rank test under
the setting of two independent samples is that of Schoenfeld [76]. This formula
was developed under the assumption that the hazard functions are not time
varying. Combining the idea of Schoenfeld and extending the class of alternatives
presented by Fleming and Harrington [28], Kosorok and Lin [54] proposed a class
of contiguous alternatives for power and sample size calculations. This class was
used for sample size calculations for clustered survival data, with no covariates,
using the log-rank statistic (Gangnon and Kosorok [29]), for the supremum log-
rank statistic (Eng and Kosorok [20]) and for covariate adjusted log-rank statistic
for independent samples (Song et al. [79]). In all the above works, the sample
size formula was done under simplifying assumptions, such as assuming identical
censoring distributions, consistent difference between the two hazard functions,

and continuous hazard functions.
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Chapter 3

DESIGN AND INFERENCE
FOR A TYPICAL CALL
CENTER

3.1 Notation and Formulation of Our Models

As mentioned earlier, a call center typically consists of telephone trunk lines, a
switching machine known as the Automatic Call Distributor (AC'D), an interac-
tive voice response (IV R) unit, and agents to handle the incoming calls. In this
chapter we provide theoretical analyses of two models of a typical call center. The
first model does not take into account IVR processes and describes only agents’
service and waiting before this service. The second model is more complicated

and considers a pool of agents together with the service process in the IVR unit.

3.1.1 Call Center without an IVR

We assume that the arrival process is a Poisson process with rate A\. There are N
trunk lines in the system, i.e. arriving customers enter the system only if there
is an idle trunk line. We assume that customers have finite patience. Under
our assumptions, if a call waits in the queue, it may leave the system after an
exponentially distributed time, or is answered by an agent, whichever happens
first. The rate of abandonments equals §. Agents’ service times are taken to be
independent identically distributed exponential random variables with the rate
of p.

In queueing theory the described model is called the M/M/S/N+M queueing
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model and schematically can be described as follows:

A A 2 )
OIOISOHOIOICYE OIO
P 24 Sy Sp+to Sp+(N-S)s

Figure 3.1: M/M/S/N+M queue model.

The M/M/S/N+M queue has the following stationary distribution:

(1 /2
ﬂo—(—>, 0<i<5S;
i\ p
T = 1 < ) A , (3.1)
g S <1 < N;
51 H L Su +jo’ b=
0, otherwise

\

where

LG SO Ve N

According to the PASTA theorem [87} we can easily formulate the expressions
for operational performance measures. Let W be the waiting time - the time spent
by customers, who opt for service, from just after they leave the IVR until being
served by an agent. Thus,

e the probability P(W > 0) that a customer waits after the IVR:

N-1
P(W>0)=> m, (3.3)
i=S
e the probability of abandonment, given waiting:
N .
} : (i—S)o
zsjlm(sm =S =5
P(AYW > 0) = =—— ;o (34
> wlSut (i - 9)
i=S+1

e the expectation of the waiting time, given waiting can be calculated using
the following relationship:
P(AbW > 0)

BV > 0] = ==,

(3.5)
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e the probability to find the system busy (block):
S1 S w730

() i g(ﬁmﬁ'

=0 i=S+1

P(block) = (3.6)

3.1.2 Call Center with an IVR

Now we consider the following model of a call center, as depicted in Figure |3.2}
The arrival process is a Poisson process with rate A\. There are N trunk lines and
S agents in the system (S < N). If this is the case, the customer is first served by
an IVR processor. We assume that the IVR processing times are independent and
identically distributed exponential random variables with rate 6. After finishing
the IVR process, a call may leave the system with probability 1 — p or proceed
to request service from an agent with probability p.

Customer patience is exponentially distributed with rate §. Agents’ service
times are taken to be independent identically distributed exponential random
variables with rate p, which are independent of the arrival times and IVR pro-
cessing times. If a call finds the system full, i.e. all N trunk lines are busy, it is
lost (which amounts to a busy signal).

We now view our model as a system with two multi-server queues connected
in series (Figure . The first one represents the IVR processor. This processor
can handle at most N jobs at a time, where N is the total number of trunk lines
available. The second queue represents the agents’ pool which can handle at most
S incoming calls at a time. The number of agents is naturally less than or equal
the number of trunk lines available, i.e. S < N. Moreover, N is also an upper
bound for the total number of customers in the system: at the IVR plus waiting
to be served plus being served by the agents.

Let Q(t) = (Q1(t), Q2(t)) represent the number of calls at the IVR processor
and at the agents’ pool at time ¢, respectively. Since there are only N trunk
lines, then Q(t) + Q2(t) < N, for all ¢t > 0. Note that the stochastic process

= {Q(t), t > 0} is a finite-state continuous-time Markov chain. We shall
denote its states by the pairs {(¢,7) | i +75 < N, 4,5 > 0}.
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Figure 3.2: Schematic model of a call center with an IVR, S agents, N trunk
lines and customers’ abandonment.
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“Queue”
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: 1-p P(Ab) |
Ox O

Figure 3.3: Schematic model of a call center with an interactive voice response,
S agents and N trunk lines.
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As shown in [I3], one can consider our model as a 2 stations within a 3-station
closed Jackson network, by introducing a fictitious state-dependent queue. There
are N entities circulating in the network. Service times in the first, second, and
third stations are exponential with rates 6, i and A respectively, and the numbers
of servers are N, S, and 1, respectively. This 3-station closed Jackson network

has a product form solution for its stationary distribution (see Figure [3.7)).

M/M/N M/M/S/N+M
—»l exp(9) —P »| exp(u)/exp(5)
1-p
exp(4) |*

M/M/1

Figure 3.4: Schematic model of a call center with an interactive voice response,
S agents and N trunk lines.

By normalization, we deduce the stationary probabilities (i, 7) of having i
calls at the IVR and j calls at the agents’ station, which can be written in a

normalized product form as follows:

( 7 1
L /A1 /)
T\ ) T = ’ J<S8, 0<i+j<N;
P \g) '\ u
i 535S
WO@'!(H S p stka 7>5 0sitjs N
(0 otherwise,
where
' ' j— . N -1
(5 0T 5 0 0))
o= a\e) s\ =) 51— .
= 5 i\O) St\p) = Su+ko o <s il\8/) 7'\ u

Formally, for all states (1, j), we have
7(0.J) = lim PLQA(D) = . Qult) = ).
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We say that the system is in state (k,7), 0 < 7 < k < N, when it contains
exactly k calls, and j is the number of calls in the agents’ station (waiting or
served); hence, k — j is the number of calls in the IVR. The distribution function
of the waiting time and the probability that a call starts its service immediately
after leaving the IVR were found by Srinivasan et al. [80] and given by:

] (uSt lp—HSt
PUETESE S SRI) piiuiiams (3.9
k=S+1 j=S 1=0
and
N min(k,S)—1
=Y X (k. 5) (3.10)
k=1 j=0

where x(k,7), 0 < j < k < N, is the probability that the system is in state (k, j),
given that a call (among the k — j customers) is about to finish its IVR service:

Xk, j) = — (lk Nrtk=3ij) (3.11)
S 3 (= m)a(l —mm)

N N-—j
> — 58
(AW > 0) = — j =0 (3.12)
> wi,5) (Su+ (j — S)d)
j=5+1 i=

The conditional ezpected waiting time E[W|W > 0] can be derived from ({3.12))
using the following property

P(Ab|W > 0)

EW|W > 0] = 5

(3.13)

This relationship is well known for the M/M/S/N+M queue and one can easily
show that it holds for the model with an IVR as well.

The fraction of the customers that wait in queue, which we refer to as the
delay probability, is given by

P(W >0) = Z > x(ig). (3.14)



Equation gives the conditional probability that a calling customer does
not immediately reach an agent, given that the calling customer is not blocked,
ie., P(W > 0) is the delay probability for served customers. This conditional
probability can be reduced to an unconditional probability via the “Arrival The-
orem” [I8]. Specifically, for the system with N trunk lines and S agents, the
fraction of customers that are required to wait after their IVR service, coincides
with the probability that a system with N — 1 trunk lines and S agents has all

its agents busy, namely

Py(W > 0) = Py_1(Q2(c0) > 5). (3.15)

3.2 Asymptotic Analysis in the QED Regime

3.2.1 The Domain for Asymptotic Analysis

All the following approximations will be derived when the arrival rate A\ tends to
infinity. In order for the system to not be overloaded, we assume that the number
of agents S and the number of trunk lines N tend to infinity as well.
Our approximations for performance measures calculated according to the
M/M/S/N+M queue model are the same as were formulated in [65]:
@) m 2o gz

A—00 \/§

(i7) Ali_)rg()@(l—ﬂ%) =3, —o0o0<f< .

(3.16)

The asymptotic domain for the model with an IVR were presented first in [50]

and has the following form:

o N-s
(1) /\hm—:n, —00 < 1 < 00;
—00 A
0 (3.17)
(74) }Lﬁﬁ(l—i—?):ﬁ, —0 < f < .

3.2.2 The M/M/S/N+M Queue

We start with approximations for performance characteristics of the M/M/S/N+M

queue. The results are formalized in the following theorem.
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Theorem 3.2.1. Let the variables A\, S and N tend to oo simultaneously and
satisfy conditions (3.16|) where u and § are fized. HThen the asymptotic behavior
of the system is described in terms of the following performance measures:

e the asymptotic probability P(W > 0) that a customer waits after the IVR

process:

s s
lim P(W >0)= |1+ \/}I)(B)SO(B\/;)
)
o0 o2+ 5y/%) (2]

e the asymptotic probability of abandonment, given waiting:

6\[
lim V' SP(Ab|W > 0) = \/7 (3.19)
A—00 ( é N 5\/@) \/*
U] " 5
e the asymptotic expectation of the waiting time, given waiting:
4]
1 \/iw(ﬁ \/E) 8
lim /5 VSE[W|W > 0] = -5 (320
= f
o(n2+5,5) - o(5y%)

e the asymptotic probability of blocking:

e(8) J Iz
90(5\/? g0<77\/; ! ﬁ\/;>

A—00

(3.18)

lim v/SP(block) =
A—00

oy [ B o]

(3.21)
where ® and ¢ are the standard normal cumulative distribution and density

functions, respectively.

"When 7 = 0, the M/M/S/N+M queue is equivalent to the M/M/S/S loss system. In this
case P(Ab|WW > 0) and E[W] are equal to 0 and their approximations are not relevant.
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The proof of Theorem [3.2.1]is presented in Section and it is carried out
by using formulas (3.3)) - (3.6]), where the stationary probabilities are defined by

and (2

3.2.3 Call Center with an IVR

In the following theorem we formulate approximations of the operational perfor-
mance measures for a call center with an IVR, which were defined previously in
Section [3.1.2] Proof of Theorem [3.2.2|is presented in Section |3.6.2

Theorem 3.2.2. Let the variables X\, S and N tend to oo simultaneously and
satisfy the QED conditions (3.17)), where u,p,0 and 0 are fived. Then the asymp-
totic behavior of the system is described in terms of the following performance

measures:

e the asymptotic probability P(W > 0) that a customer waits after the IVR
Process:

-1
. _ v
)\lggo P(W >0) = (1 + . 52) : (3.22)

e the asymptotic probability of abandonment, given waiting:

p I
=B/ 5)2(n)
lim V'SP(AD|W > 0) = \ﬁ \/; — B, (3.23)

) / 2o+ (3% — ) D)t
.

e the asymptotic expectation of waiting time, given waiting:

lim VSE[W|W > 0] =

Jim . (3.24)
/ S(n+ (8,2~ 1) p—9>w<t>dt

e the asymptotic probability of a busy signal:

vt &g (n+ 0y 20) (e B /[0 6\/7
(3.25)

lim V' SP(block) =
A—00 ( ) v+& — 52
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i the above,

_pe(B) h e B
sl—\/;—w(ﬁﬁ)/%(n t>\/;+ﬁ\@) o(t)dt,

—00

_p_e(B) Iz
@-[MB ﬁ)w\ﬁ)@(n),
B

[ M/w+ 08 By —n
fy:/CI)(n—{—(B—t) p_9> o(t)dt, andv = ! © 0 P
- H /1+\/16 1+ £ 1+ £

o0

3.3 Accuracy of the Approximations

3.3.1 Approximations for the M/M/S/N+M Queue

Examining the approximations for performance measures of the M/M/S/N+M
queue, we model a mid-sized call center, in which the arrival rate A is 100 cus-
tomers per minute. The number of agents S is in the domain where the traffic

intensity p = ;‘—g is about 1 (namely, the number of agents is between 80 and

120).

P(W>0) and its approximation

S

N
N
,

-

o
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—e— approx
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o
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e
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S, agents

Figure 3.5: Comparison of the exact probability of waiting and its approximation,
for a mid-sized call center with arrival rate 100 and 150 trunk lines.

We let p=pu =6 =6 = 1. The number of trunk lines is mostly 150, but
when we check the probability of blocking, we take the number of trunk lines to

30



be 120 (this in order to avoid very small values).
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Figure 3.6: Comparison of the exact probability of abandonment, given waiting,

and its approximation, for a mid-sized call center with arrival rate 100 and 150

trunk lines.
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Figure 3.7: Comparison of the exact probability of finding the system busy and

its approximation, for a mid-sized call center with arrival rate 100 and 120 trunk

lines.

One of the conclusions which can be derived from Figures [3.5 is the fact

that the approximations which were founded are close to the exact value although
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in the small-sized call center. In addition, we have to emphasize that the calcu-
lation of the exact value is very difficult practically in the case of a bigger call
center, for example, when the arrival rate A is 500, the number of trunk lines N is
1500, and the number of agents .S is between 450 and 550 agents. Using the fact
that the approximation is very close to the exact value we can easily calculate

the performance measures in such call centers.

3.3.2 Approximations of the Model with an IVR

The accuracy of approximations for a model without abandonment was provided
in [50]. These approximations turn out to be extremely accurate, over a very wide
range of parameters (S already from 10 and above, N > 50). Here, we present
approximations that accommodate abandonments. The numerical analysis is
heavier due to the increased number of integral-approximations. For example,
the approximation of P(W > 0) involves an integral in both v and £ (as opposed
to only 7, in the model without abandonment). In addition, for calculations
of the exact values we are restricted to relatively small N’s (N < 80 here, as
opposed to N < 170).

To investigate the performance of our approximations, we compare the perfor-
mance measures of a model with an IVR and abandonment that corresponds to a
small-sized call center that has the arrival rate A of 30 customers per minute. The
number of agents S is in the domain where the traffic intensity p = % is about 1
(namely, the number of agents is between 20 and 40, i.e. S ~ 304 2-+/30). For
simplicity, we let p = 4 = 6 = § = 1. The number of trunk lines is 80. For each
value of the number of agents S, we calculate the parameters  and by using
(13.17)).

Figures [3.§ and depict the comparison of the exact probability of wait-
ing and the conditional probability to abandon with their approximations. The
approximations are clearly close to the exact values.
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124 P(W>0) and its approximation
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Figure 3.8: Comparison of the exact probability of waiting and its approximation
(3.22)) for a small-sized call center with arrival rate 30 and 80 trunk lines.
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03 ~ approx
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Figure 3.9: Comparison of the exact probability of abandonment, given waiting,

and its approximation ([3.23)), for a small-sized call center with arrival rate 30 and
80 trunk lines.

Note, that
1
EW|W > 0] = SP(Ab\W > 0).
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Thus, it is expected that the approximation of E[W] will also be close to the
exact expectation.

P(Block) and its approximation

0.03 +
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0.02 —A— exact

0.015 ~
0.01 ~

0.005 -;

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
S, agents

Figure 3.10: Comparison of the exact calculated probability to find all trunks
busy and its approximation (3.25]), for a mid-sized call center with arrival rate
30 and 80 trunk lines.

Figure [3.10| shows that the approximation of the probability of finding the
system busy is accurate enough, and the differences are less than 0.002. One can
thus argue that our approximation for the probability to find all trunks busy also

works well.

3.4 Rules-of-Thumb

We derived approximations for performance measures in the QED regime (Quality
and Efficiency Driven), as characterized by conditions and (3.17). The de-
tailed comparison in [50], between exact versus approximated performance, shows
that the approximations often work perfectly, even outside the QED regime. In
this section, we attempt to chart the boundary of this “outside” by summariz-
ing our findings through practical rules-of-thumb (expressed via the offered load
R = % for the M/M/S/N+M model or R = % in the model with an IVR). These
rules of thumb were derived via extensive numerical analysis of our analytical

results.
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3.4.1 Operational Regimes

As customary, one distinguishes three types of staffing regimes:

(ED) Efficiency-Driven, meaning under-staffing with respect to the offered load,
to achieve high resource utilization;

(QD) Quality-Driven, meaning over-staffing with respect to the offered load, to
achieve high service level;

(QED) Quality-and Efficiency-Driven, meaning rationalized staffing that care-
fully balances high levels of resource efficiency and service quality.

We shall use the characterization of the operational regimes, as formulated
in [61] and presented in Table in order to specify numerical ranges for the
parameters 5 and 7, in the M /M /S/N queue and in the model with an IVR with
and without abandonment. Specifying 5 corresponds to determining a staffing

level, and specifying 1 corresponds to determining the number of trunk lines.

Table 3.1: Rules-of-thumb for operational regimes.

ED QED QD
Staffing S~R-jR SzR+ﬂ\/§ S~R+ R
% Delayed ~100% constant over time (25%-75%) ~ 0%
% Abandoned 10% - 25% 1% - 5% ~0
Average Wait >10% - AST <10% - AST ~0

In Table 3.1 AST stands for Average Service Time.

3.4.2 System Parameters

The performance measures of a call center with an IVR, without abandonment,
depends on £, 7, %9 and S; in particular, large values of %9 and S improve
performance (see [50] for elaboration). When one is adding abandonment to the
system, one adds a parameter ¢ describing customers’ patience. Large values of
0, corresponds to highly impatient customers, decrease the probability of waiting

and the probability of blocking, but increase the probability of abandonment.
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Small values of § have the opposite influence. One must thus take into account
5 system’s parameters. In order to reduce the dimension of this problem, we fix
some parameters, at values that correspond to a realistic call center, based on

our experience (see [83]):

IVR service time equals, on average, 1 minute;

Agents’ service time equals, on average, 3 minutes;

Customers’ patience, on average, takes values between 3 and 10 minutes;

Fraction of customers requesting agents’ service, in addition to the IVR,
equals 30%;

Offered load equals 200 Erlangs (200 minutes per minute).

Our goal is to identify the parameter values for n (determines the number of
trunk lines) and 8 (determines the number of agents) that ensure QED perfor-
mance as described in Table [3.1] while simultaneously estimating the value of the
probability of blocking in each case (which does not appear in Table .

3.4.3 QED Regime in the M/M/S/N and M/M/S/N+M
Queues

From the definition of the QED regime for the M/M/S/N queue, n must be
strictly positive (n > 0), because otherwise there would be hardly any queue and,
thus, no reason to be concerned with the probability to wait or to abandon the
system. Table provides our rules-of-thumb for call centers without IVR and
shows that when n > 3 the M/M/S/N queue behaves as the M/M/S queue
(negligible blocking).

The rules-of-thumb presented in Table were calculated under the assump-
tion that the average customer patience equals 3 minutes (same as the average
service time). As already noted, in practice this value can become much larger,
but the performances are rather insensitive to the average patience time as long
as the average < 15 minutes. For higher average values the performances are
similar to the corresponding model without abandonment.
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Table 3.2: Rules-of-thumb for the QED regime in M/M/S/N
and M/M/S/N + M.

S~R+ R M/M/SIN M/M/S/N+M
N~S+ 77\/§
05<n<15 ~15< <05 ~16< <04
-B/Js, <0, <-p/Js,  p<o,
P(block) {< 0.02, B>0; {< 0.05, B>0;
1.5<7<3 -05<4<08 -0.8<3<0.6
-pINsS,  p<o, <002, p<0
P(block) {< 001, B>0; {z 0 B>0:
n>3 >0 ~05<4<08
P(block) =0 ~0

3.4.4 QED Regime for a Call Center with an IVR with
and without Abandonment

As in the previous subsection, the rules-of-thumb for the system with an IVR
were calculated under the assumption that the average customer patience equals
3 minutes (same as the average service time). In the case where the system is
with an IVR, there is no restrictions for n to be non negative, but we propose
n > 0 because otherwise (n < 0), the probability of blocking is higher than 0.1.
We believe that a call center cannot afford that 10% of its customers encounter
a busy signal. Going the other way, a call center can extend the number of trunk
lines to avoid the busy-line phenomenon altogether: as noted in Table n>3
suffices.

Table [3.3| shows that sometimes, one can reduce the number of trunk lines in
order to improve service level. For instance, starting with n > 3 and the number
of agents corresponding to f = —0.8 (ED performance), we can achieve QED
performance by reducing the number of trunk lines via n = 2; in that way, we
lose on waiting time and abandonment while the probability of blocking is still
less than 0.01. Moreover, modern technology enables a message that replaces a
busy-signal, with a suggestion to leave one’s telephone number in order to be
called back later; alternatively, a blocked call can be routed to an outsoursing al-
ternative. Thus, we are not necessarily losing these “blocked” customers. See [52]
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and [85] for an analysis where the asymptotically optimal number of trunk lines

is determined.

Table 3.3: Rules-of-thumb for the QED regime in a call center with an IVR with

and without abandonment.

S~R+BJVR
IVR IVR
N=~S +i+,7\ﬁ without with
0 0 abandonment abandonment

0<p<1 ~12< <02 ~16<f<0
-B/Ns,  B<o,

P(block) <004 B>0: <0.08

1<p<2 ~0.7< <05 ~12< <04
-B/Ns,  p<o,

P(block) 003 g0 <0.04

2<n<3 ~03< <07 ~08< <06
-B/Ns,  p<o,

P(block) <002 B>0: <0.01

n>3 >0 ~0.6<5<08

P(block) ~0 ~0

According to Table [3.3] when 1 > 3, the system with an IVR behaves as one

with an infinite number of trunk lines.

3.4.5 QD and ED Regimes

For the QD and ED regimes (see Table , the number of agents can be specified
via 0.1 < v <0.25. In the case of QD, the number of agents is over-staffed; lim-
iting the number of trunk lines will cause unreasonable levels of agents’ idleness,
hence n > 3 makes sense. In the case of ED, the number of agents is under-
staffed, and we are interested in reducing the system’s offered load. Therefore,
we propose to take n = 2. This choice yields a probability of blocking to be

approximately /2 (based on numerical experience).
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3.4.6 Conclusions

Our rules-of-thumb demonstrate that for providing services in the QED regimes
(in both cases: with and without an IVR) one requires the number of agents to
be close to the system’s offered load; the probability of blocking in the system
with an IVR is always less than in the system without an IVR. One also observes
that the existence of the abandonment phenomena considerably helps provide the
same level of service as without abandonment, but with less agents. Moreover,
as discussed in Section [3.4.4], it is possible to maintain operational service quality
while reducing the number of agents by reducing access to the system. The cost
is an increased busy signal. Hence, such a solution must result from a tradeoff
between the probability of blocking and the probability to abandon.

3.5 Model Validation with Real Data

The approximations that have been developed can be of use in the operations
management of a call center, for example when trying to maintain a pre-determined
level of service quality. We analyze approximations of a real call center by mod-
els with and without an IVR. This evaluation is the goal of our empirical study,
which is based on analyzing real data from a large call center. (The size of our call
center, around 600-700 agents, forces one to use our approximations, as opposed
to exact calculations which are numerically prohibitive.)

3.5.1 Data Description

The data for the current analysis come from a call center of a large U.S. bank -
it will be referred to as the US Bank Call Center in the sequel. The full database
archives all the calls handled by the call center over the period of 30 months
from March 2001 until September 2003} The call center consists of four different
contact centers (nodes), which are connected using high technology switches so
that, in effect, they can be considered as a single system. The call path can be
described as follows. Customers, who make a call to the company, are first of
all served in the IVR. After that, they either complete the call or choose to be
served by an agent. In the latter case, customers typically listen to a message,
after which they are routed, as will be now described, to one of the four call

centers and join the agents’ queue.

2The data is available at http://seeserver.iem.technion.ac.il/see-terminal/.
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A schematic model of our US Bank Call Center is presented in Figure |3.11

Schematic Diagram of a Call

Back to IVR
No waiting

Queue » Service

End of call

IVR/VRU

—>
Busy signal

Figure 3.11: Schematic diagram of the call of a “Retail” customer in our US Bank
call center.

The choice of routing is usually performed according to the customer’s class,
which is determined in the IVR. If all the agents are busy, the customer waits
in the queue; otherwise, s/he is served immediately. Customers may abandon
the queue before receiving service. If they wait in the queue of a specific node
(one of the four connected) for more than 10 seconds, the call is transferred to a
common queue - so-called “inter queue”. This means that now the customer will
be answered by an agent with an appropriate skill from any of the four nodes.
After service by an agent, customers may either leave the system or return to the
IVR, from which point a new sub-call ensues. The call center is relatively large
with about 600 agents per shift, and is staffed 7 days a week, 24 hours a day.

3.5.2 Fitting the Theoretical Model to a Real System

Figure [3.11]describes the flow of a call through our call center. It differs somewhat
from the models described in Section (3.1, The main difference is that it is possible
for the customer to return to the IVR after being served by an agent. This is less
common for so-called Retail customers who, almost as a rule, complete the call
either after receiving service in the IVR or immediately after being served by an
agent. We therefore neglect those few calls that return to the IVR and compare
the models from Section [3.1] with the real system.
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Our theoretical model assumes exponentially distributed service times in the
IVR as well as for the agents. However, for the real data, neither of these service
times have the exponential distribution. Figures [3.12] and [3.13] produced using
the SEEStat program [83], display the distribution of service time in the IVR

and agents’ service time, respectively.

6.50
6.00 -
5.50 A
5.00 -
4.50 -
4.00 -
3.50 -
3.00 -
2.50 -
2.00 -
1.50 A
1.00 A
0.50 -

Median=44 (sec.)
Mean=71.3 (sec.)
Std Dev=77 (sec.)

Relative frequencies %

Time(mm:ss) (Resolution 1 sec.)

Figure 3.12: Histogram of the IVR service time for “Retail” customers

Figure [3.12] exhibits three peaks in the histogram of the IVR service time.
The first peak can be attributed to calls of customers who are well familiar with
the IVR menu and move fast to Agents’ service; the second can be attributed
to calls that, after an IVR announcement, opt for Agents’ service; and the third
peak can be related to the most common service in the IVR.

The distribution of the IVR service time is thus not exponential (see also [22]).
A similar conclusion applies to agents’ service time, as presented in Figure [3.13]
Indeed, service time turns out to be log-normal (up to a probability mass near
the origin) for about 93% of calls; the other 7% calls enjoy fast service for var-
ious reasons, for instance: mistaken calls, calls transferred to another service,
unidentified calls sometimes transferred to an IVR, etc. (There are, incidentally,
adverse reasons for short service times, for example agents “abandoning” their
customers; see [10].)
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Figure 3.13: Histogram of Agents’ service time for “Retail” customers

Similarly to non-Markovian (non-exponentially distributed) service times, the
assumption that the arrival process is a homogeneous Poisson is also over sim-
plistic. A more natural model for arrivals is an inhomogeneous Poisson process,
as shown by Brown et al. [16], in fact modified to account for overdispersion
(see [60]). However, and as done commonly in practice, if one divides the day
into half-hour intervals, we get that within each interval the arrival rate is more or
less constant and thus, within such intervals, we treat the arrivals as conforming
to a Poisson process.

Even though most of the model assumptions do not prevail in practice, notably
Markovian assumptions, experience has shown that Markovian models still pro-
vide very useful descriptions of non-Markovian systems (for example, the Erlang-
A model in [16]). We thus proceed to validate our models against the US Bank
Call Center, and our results will indeed demonstrate that this is a worthwhile
insightful undertaking.

3.5.3 Comparison of Real and Approximated Performance
Measures

For our calculations, the following variables must be estimated:
e )\ - average arrival rate;
e () - average rate of service in the IVR;

e /i, - average rate of service by an agent;
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e p - probability that a customer requests service by an agent;
e 0 - average rate of customers’ (im)patience;

e S - number of agents;

e N - number of trunk lines.

We consider the Retail service time distribution for April 12, 2001, which
is an example of an ordinary week day. The analysis was carried out for data
from calls arriving between 07:00 and 18:00. This choice was made since we
were interested in investigating the system during periods of a meaningful load.
We consider 30 minutes time intervals, since approximately 8000 calls are made
during such intervals, we may expect that approximations for large A would be
appropriate. Moreover, system parameters seem to be reasonably constant over
these intervals.

The following estimators will be calculated for each 30-minute interval as
follows:

A = number of calls arriving to the system (30 min)

7o 30 x 60
~ average IVR service time (sec)
~ 30 x 60
o= —
average agent service time (sec)
_. number of calls seeking agent service
p= =

A

It should be noted that, strictly speaking, we are not calculating the actual
average arrival rate because we see only the calls which did not find all trunks
busy; practically, the fraction of customers that found all trunks busy is very
small and hence the difference between the real and approximated (calculated

our way) arrival rate is not significant.
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E[W|W>0] vs. P(Ab|W>0)
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Figure 3.14: Relationship between the average waiting time given waiting,
E[W|W > 0], and the proportion of abandoned calls given waiting, P(Ab|W > 0),
for 30-minute intervals over 20 days.

The average rate of customers’ patience was calculated via the relation

_ P(AVW >0)

5= )
EW|W > 0]’

(3.26)
which applies for the M/M/S/N+M queue (see [63] for details). Note that (3.26)
assumes a linear relation between P(Ab|W > 0) and E[W|W > 0]. Figure [3.14]
demonstrates that this assumption is not unreasonable for our call center.

The estimation of the average rate of the customers’ patience is thus the

following;:

5o proportion of abandoned calls

30 x 60 3.27
average of the waiting time (sec) x ’ (3:27)

where both numerator and denominator are calculated for customers with a pos-
itive queueing time. Estimating the average rate of customers’ patience for our
data gave varying behavior of this parameter, for example at 14:30 its value is
5, at 15:00 it equals to 1, and at 15:30 it equals to 4. It is not unreasonable
that customers’ patience does not vary dramatically over each 30-minute period;
hence, we smoothed the 30-minute values by using the R-function “smooth”.

In order to use our approximations, we must assign an appropriate value for
N, the number of trunk lines which is not available for us. We could consider the
simplifying assumption that the number of trunk lines is unlimited. Certainly,
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call centers are typically designed so that the probability of finding the system
busy is very small, but nevertheless it is positive. One approach is to assume that,
because the system is heavily loaded, there must be calls that are blocked since
there are no explosions. In such circumstances, a naive way of underestimating

N for each 30-minute period is as follows’}

N total duration of all calls that arrived to the system
30 - 60 '

The calculation of the number of agents is also problematic, because the
agents who serve retail customers may also serve other types of customers, and
vice versa: if all Retail agents are busy, the other agent types may serve Retail
customers (see [57] for details). Thus, it is practically impossible to determine

their exact number and that is why we use an averaged value, as follows:

g total agent service time
B 30 - 60
Figure[3.15| compares the approximated theoretical probabilities of waiting based

on the above estimators with the observed proportion of waiting customers, as
estimated directly from the data. The dark blue curve (with diamonds) shows
the proportion of customers that are waiting in the queue before agent service.
This proportion is calculated for each half-hour period. The lilac curve (squares)
shows the approximation based on the model with an IVR, calculated for each
half-hour period. The blue curve (triangles) corresponds to the approximation
based on the M/M/S/N+M queue model. We conclude that our approxima-
tions are performing reasonably well, especially based on the model with IVR.
The approximate values for this model, in many intervals, are very close to the
exact proportion. In some intervals the difference is about 10%, which can be
attributed to the non-perfect correspondence between the model and the real call
center. An additional explanation is in the estimation of the parameters, such
as N and S, which we estimate in a very crude way. The approximation from
the M/M/S/N+M queue works less well and sometimes it does not even reflect
the trends seen for the real values: namely, where the real values decrease the
approximation increases and vice versa. The reasons for these discrepancies can

be the same as previously stated, as well as due to ignoring the IVR influence.

3Note that for the system with an IVR, N depends on the total duration of calls in the IVR,
agents’ queue and service. For the system without IVR, it depends only on the total duration
of calls in the agents’ queue and service.
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P(W=>0) and its approximation
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Figure 3.15: Comparison of approximate and observed probability of waiting.

P(ab|Ww>0) and its approximation
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Figure 3.16: Comparison of the approximate and observed conditional probability

to abandon P(ab|W > 0).

In the Figures |3.16H3.17, we compare the observed and approximate condi-
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tional probability for customer to abandon the system and the conditional average

waiting time, given waiting.

E(W|W>0) and its approximation
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Figure 3.17: Comparison of the approximate and observed conditional average
waiting time F(W|W > 0), in seconds.

The conclusion based on Figures |3.16] and are similar to those based on
Figure [3.15] In some cases we see larger deviations, and a possible explanation
is the sensitivity of our measures under heavy traffic, i.e. a little change of
parameter values can dramatically change the performance measures.

In summary, both models considered above provide useful approximations to

reality. Visual inspection reveals that the model with an IVR does it much better
than the M/M/S/N+M queue.

3.6 Proofs

3.6.1 Proof of Theorem [3.2.1]

Note, that when ¢ > S the probability (i) can be rewritten as follows

(i) = (2) ’ é (%)S %wm). (3.28)
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Let us find the probability to wait. By using PASTA

s i 501,y
P(W >0) Nz_:lﬁ(i) — ;(2) %(%) (%S—+)—'S)'

Bi(})
A(N) + Ba(N)

Let us define & (\) = By(\e #, &(\) = Bo(M)e # and 7(\) = A(\)e #. Then,

am
PV =0 = amy

Let us suppose that Sy /d is integer. This assumption is relaxed later.

1 ()\)S a -
- | — € K N—S—1 /) \\FE+k A
| A) 6 _
'\ (5 e n  PY=25) Su
GN)=—7F"—% = —
1 % s Z (

= P(X < +N-29),
()\)6 = (k) P(X:%) 5

where X < Pois(3) and Y < Pois(ﬁ). Using the Central Limit theorem, one
can write that

N
=
| >
n

woooA
4




Thus,

e = fitome (i /)

Let us note that
lim & (\) = lim &(A),
A—00 A—00

and

S-1 i A
| LY §-1-2
Jim ¥ QEEOZOH(E)“JL%‘D( N )‘W”
1= m

So,

| 2 (8) (8/%) )
lim P(W >0)= 1+ . (3.29)
o ( VEB)2 (/2 +8V5)

Now, consider an approximation for P(block). It can also be written as follows:

7(A)
P(block) = S0+ 60
where
1NN &)y Py =9) _ Su
W=g (ﬁ) <5> (%H+§V—S)! B P(X:%H)P<X_T+N_S>'
Note, that

My N-S§-2 Sy N-§-2

P(X_%Hv S) (5+ oL x< ot )
A A A
V3 ) J2

Then,




Therefore,

v (B)y (n\/ng 5\/@/%0 (8vV5)
T__¢B) ( \/E g) '
(I)(ﬁ)"i‘\/;(p(ﬂ\/g)q) n ,ﬂrﬁ\/;
The conditional probability of abandonment can be written as follows

(Su/8) G
&y

(3.30)

lim v'SP(block) =
A—00

P(ANW >0)=1-—
where &>(\) as previously, and

a0 =& - P (x=22)

il ) () (]

Thus, we get

lim VSP(AWW > 0) = Ve (5VE) — 6|2 (ny/5 + 6VF) —2 (5VF)]
o ) ¢ (77\/%+ 6\/@ — 0 (8%

3.6.2 Proof of Theorem [3.2.2

Approximation for P(W > 0).

According to (3.7), (3.8), (3.11) and (3.14)), the operational characteristic

P(W > 0) can be represented as follows:

AN\
PW >0)= (1 + %)3) , (3.31)
where , ;
_A(lyr L /A\"1 (pA
Ay =e Mot Y = (5> = (—) (3.32)
i+j<N—1, j<S-1 v J: K
and
B(\) G NN LAY AT AT (Sp/0)!
= = i'\0) S'\ u 0 (Su/d+7—9S)
(3.33)
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We now derive QED approximations for A(A) and B()), as A, S and N tend to
00, according to (3.17)).

Approximation for A(\):

Consider a partition {S;},_, of the interval [0, S]:

S;=8—jA  j=0,1,..,I; S =0, (3.34)

where A = [g,/ %], € is an arbitrary non negative real and [ is a positive integer.

If A and S tend to infinity and satisfy the assumption (1), then [ is less
than S/A for A large enough and all the S; belong to [0, 5], 7 =0,1,...,1.

We emphasize that the length A of every interval [S;_1, S;] depends on A. The
variable A()\) is given by formula (3.32)), where the summation is taken over the
trapezoid: {(¢,7) | ¢ € [0, N —j] and j € [0,S — 1]}, presented in Figure [3.18]
Consider the lower estimate for A(\), given by the following sum:

k=0 j=Sk+1 i=0

l (3.35)
= P(Skt1 < Zy < Sp)P(Xy < N = 5),
k=0
where \ \
752 Pois <—p) and X, < Pois (5) . (3.36)
o
I A
N-1 l
0o s Sei S, s Nt i

Figure 3.18: Area of the summation of the variable A;(\).
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Applying the Central Limit Theorem and making use of the relations

Sk — ¢ N—Sp—2 0
lim o — B ke, lim — 0 — ke |2 k=0,1,...,1, (3.37)
Asoo [ap A—00 \/g 1
m 0
one obtains

lim P(Sps1 < Zy < Si) = ®(B—ke) = @(5—(k+1)e), k=0,1,..0-1, (3.38)
—00

lim P(0 < Zy < 8) = (8~ ), (3.39)
[po
Jim P(X) < N = Sp) = ®(n+ ke %), k=0,1,..1 (3.40)
— 00

It follows from ([3.35)) and (3.38)), (3.39), (3.40) that

lim inf A()) > i O+ ke/pO/)[®(B — ke) — ®(F — (k + 1)e)]

k=0

+ QB —le)P(n+ len/pl/1).

It is easy to see that (3.41]) is the lower Riemann-Stieltjes sum for the integral

o0 ﬁ
— /CD (77~|— S\/%) do(f —s) = / P (77 +(B8—1) pg) e(t)dt, (3.42)

0 —00

(3.41)

corresponding to the partition {8 — ke}l_, of the semi-axis (—o0, 3).
Similarly, we obtain the upper Riemann-Stieltjes sum for the integral (3.42)):
-1

limsup A(\) < z_: % (77 + (k+ 1)5@) [D(f—ke)—D(5—(k+1)e)|+D(5—le).

A—00 k=0
(3.43)
When ¢ — 0, the estimates (3.41)), (3.43) lead to the following equality
B
. po
lim AN) = [ @[ n+ (B—1t)/— | ¢(t)dt. (3.44)
A—00 )
Approximation for B(\):
_pA S
e # [ pA
B = 2 (7) Ni_l 1 <A>“V_S_H (2) " e
B (pA)S‘SH = #\¢ k=0 (Su/0 +k)!
o s
P(Y,=S NS (Su S[L)
- P(Z=P( r<x,<N-S—i—14+21),
P (X>‘ = %) =0 ( ’ l) o = ’ Z J



A A A
X, 2 Pois (%) . Y\ < Pois (p—) and  Zy< Pois (5) . (3.45)
1

Analogously to calculations in approximation for A(\), with the use of the Central
Limit Theorem we get

N-S—-1 S S
lim Z P(Z,\:z')P< 5M§XA§N—S—Z'—1+_“>

A—00

From condition (7) of (3.17)) one can see that

lim @ (Bﬁ) P(Zy<N-28) <5\[> (3.46)

For the first term we get

}L%Nfl[q) (N—S—A/la—Aw)_q)(N—S—Aiie—(ZH))]@(l\/g+ﬁ\/%>
S N EN
:_/Oooq)<t\[ \/g>d<1><n—t\/_ /Oo (( \/7+6\f> (s).

(3.47)
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It is easy to see that

sn e
PY=8)~P £ _ <Y< K
A PA pA
I 1t [t (3.48)
1
~ ——¢(f)
pA
o
and
Sk pA Sp_pA
P(X=@>~P o6 1 y<d b
0 /pA /pA pA
5 (3.49)

oy N
Combining (3.46))-(3.49) we get

lim B() - @%[/3 (m - t>\/];ze+ﬂ\/§> 4 (1) (5@) o).

Approximation for P(Ab|W > 0).
Note that the probability of abandonment, given waiting can be presented as

follows SiC)
_ PN
P(Ab|W > 0) = DA DOV
where
N N-j i j—S+Sp/é
cw =00 Y 1 (5) (%) e
vy i\ 0 0 (Su/d+75—295)!
N—-SN-S—k-1 i
Loy S Ly S N
— = i\ 0 ) (Su/d + k)!

A

NS A\ o8 N-§_1 VAR
= (Su/o+k)! & il \0

5
1
N-S S
— P(X:TMJrk)P(YgN—S—k)

o4



and
N N-—j

Z l' (_) (@) o (Su/ée:fi) —1)!

=

SO S e B0

k 0
N-S—1 S
- P(X:—’“‘+k)P(Y§N—S—k—1)
k=1 5
Sp
+P(X:T>P(Y§N—S—1).

In both expressions for C ()\) and D()\) we assume that X = Pozs( 2) and y £
Pozs( ). Using conditions , the Central Limit Theorem, we obtain

N—S—k:—A/Q E
~ 1 — ——/0,
\/0 T

Su/5+k p)\/5 5\/’ \/_\[
PY<N—5—k) ~ <I><n k\/:>

P(X:%Jrk)rv@(ﬁ\/g—k\/pz/\)—(I)(B\/%—(k;—l) p%)
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In addition, using

Pl ) (W) S-(-3)

we get an approximation for the probability of abandonment given waiting, which
is presented in Theorem [3.2.2]

3.7 Summary and Future Work

In this chapter we introduced appropriate models for the design of a typical call
center. These models enable one to quantify the operational performance of a
call center and to define staffing given a particular service level. Our proposed
approximations of performance measures demonstrate a high level of accuracy
and can be easily implemented for moderate-to-large call centers, where exact
calculations are unsuccessful due to numerical instability.

The evaluation of approximations for the real call center data shows that
even though most of the model assumptions do not prevail in practice, notably
our Markovian assumptions, experience has shown that Markovian models still
provide very useful descriptions of non-Markovian systems. The robustness of
the M/M/S+M queue with respect to its characteristics were considered by Zel-
tyn [89] in his Ph.D. thesis. In particular, Zeltyn found that the relationships
between the probability to abandon the system and the expectation of waiting
time in M/M/S+G is the following: P(Ab)/E[W] = f(0), where f(0) is a value of
customer patience density function at time 0. In the case of the M/M/S+M queue
f(0) = 0 and this is exactly the relationship that we used in our calculations.

In the future, we should like to improve our call center model by adding
retrials, where by retrials we understand the customer’s repeated attempts to
receive the desired service after the initial failure to obtain it. This will make our
model more realistic. Such an analysis can be extremely important, because the
negative impact of customer retrials is the increase in system load and, hence, the
deterioration of system performance and the corresponding increase in expenses.
In whole, we should note that analysis of abandonment and retrial processes is
very important for the management of call centers, because these phenomenons
describe customers’ satisfaction and the successfulness of the provided services.

One more realistic problem is the issue of different service requirements for

different classes of customers. Such problems are called Skills-Based Routing and
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they have already been investigated by Armony et al. [9] and Atar et al. [10].
It would be interesting to investigate the models of Skills-Based Routing for call
centers with an IVR.
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Chapter 4

CUSTOMER PATIENCE
ANALYSIS

In many cases when a customer rings a call center s/he needs to wait in a queue
before receiving someone to serve him/her. We can assume that each customer
has a finite amount of time that s/he is ready to spend in the queue. If this time
comes to an end and the customer has not been answered, s/he hangs up. In this
chapter we provide an analysis of customer patience, which we define as his/her
willingness to endure waiting in a queue before receiving service. The assessment
of customer patience is a complicated issue because, in most cases, customers
receive the required service before they lose their patience. The data with non-
zero service time are called censored data, and these data require analysis of a

special kind, known as survival analysis.

4.1 Description of the Data

We start with a short description of the data, which gives us the motivation for
a model of customer patience considered in this chapter. The data we analyze
are provided by a call center belonging to a financial company. From its call
center, we have the data covering a period of almost three years, i.e. October
2006 - June 2009. The call center works twenty-four hours a day on weekdays
(Sundays - Thursdays). It closes at 13:00 on Fridays, and reopens at about
17:00 on Saturdays. A customer making a call receives the service through an
IVR or directly from an agent. After receiving the service provided by an IVR,
the customer leaves the system or requests service from an agent. The customer
requesting service from an agent is redirected to a pool of agents. If all the agents
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are busy, the customer waits in a queue. Otherwise, s/he is served immediately.
The customer is not always ready to wait in a queue, and he/she can choose to
abandon the system at any point during the waiting period. After being served
by an agent, the customer either finishes the call or proceeds to another service
(another agent), and so on.

The call center in question provides various services. Some of them are similar
in design and in their average service time. Others, on the contrary, are concep-
tually different. In our analysis, we will combine services of a similar kind into
one group.

The data do not contain any personal information about customers, such as
their age, social status, family status or education. Therefore, our analysis will
be carried out only on the basis of the technical characteristics of the call. For

each call, we have the following data:

e the individual number of a customer initiating this call (customer identification

number),
e the type of customer (a type of priority given to the customer by the system),
e the beginning of each “call segment”,

e the duration of each stage of a “call segment” (the service time, the waiting
time in a queue or the post-call agent service time),

e the type of the service (an IVR service or an agent service that can include
about fifteen different subtypes),

e the classification of call termination (after a received service, after call aban-

donment or due to a system error).

We identify each customer by his/her identification number which is retained
in the field named “customer_id” and provides a unique number. However, some-
times “customer_id” can be unidentified or invalid. To avoid fake identification
numbers we consider the data only for customers with fewer than thirty calls a
month.

For the analysis of customer behavior, we use a notion of a “series” which
we define as a sequence of consecutive calls from one customer happening in
chronological order. If the time that elapses between two consecutive calls is less

than three days we assume that these calls belong to the same “series”, otherwise,
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we assume that these calls belong to two different series. This separation is based
on the assumption that a customer who has not called for a long time loses his/her
experience with the system.

4.2 Model Selection

We propose a statistical model that can be used in the analysis of customer
patience, under the setting of survival analysis. In our context, an event is the
customer abandonment of the system before being served. For a customer who
receives service, his/her patience time is not fully observed and is considered as
censored. Hence, for each customer, at each call, the observed time is the time
until abandonment (patience time) or time until being served, whichever comes
first. The data to be used in the current research consists of customer calls with
possibly multiple calls for a customer. We believe that the observed times of
the same customer are not independent. Therefore, the Cox proportional hazard
model [21] cannot be used directly, and we use a well-known and popular approach
that deals with clustered data - the frailty model approach (Hougaard [42],
Duchateau and Janssen [25], Aalen [1]).

The shared frailty model takes into account observed and unobserved personal
factors of a customer. However, it is also reasonable to assume that the customer
calls history influences his/her current waiting behavior. One of the models
dedicated to such an analysis is the well studied recurrent events model and its
extension to the shared frailty model [42]. However, these types of models cannot
be applied directly in our case, since for typical recurrent event data, a subject
can be censored at most once, and no information is available after this censoring
time. In our data, a customer can call more than one time, and the response
time in each call can be censored. So, we consider an extended shared frailty
model assuming that customer patience changes with the number of the call,

consistently for all customers.

4.3 Notation and Formulation of the Model

We consider n customers, where customer ¢ has m; calls in a series (m; < m for
all = 1,...,n). Later, we consider a real data set analysis with a maximum of
5 calls for each customer (m = 5). We assume that the waiting behavior of each
customer does not depend on the waiting behavior of other customers. Let T}
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and Cj; denote the failure and censoring times, respectively, for call j of individual
i(t=1,...,n,j=1,..,m;). The observed follow-up time is 7;; = min (Tlg-, Cij),
and the failure indicator is 6;; = 1 (Tg < C’ij). For call j of customer ¢ we observe
a vector of covariates Z;; and assume that the waiting behavior of customer i
(¢ = 1,...,n) is influenced by some additional unobservable subject-dependent
properties which are represented by the frailty variate w;.

The conditional hazard function of the patience of customer ¢ at the j-th call

given the frailty w;, is assumed to take the form
)\”(t) = )\Oj(t)wieﬁTZ” 1, = 1, N ] = 1, cey My, (41)

where A;(f) is an unspecified baseline hazard function of call j and /5 is a p-
dimensional vector of unknown regression coefficients. In this model, the baseline
hazard functions are assumed to be different at each call, since it could be that
customer behavior changes as he/she becomes more experienced with the system.
It is also possible to consider a model with different regression coefficient vectors
B;, but for simplicity of presentation we suppose that 8; = 3, for all j. We also

assume the following assumptions:
(a) The frailty variate w; is independent of m; and Z;; {j =1, ..., m;}.

(b) The frailty variates w; ¢ = 1,...,n are independent and identically dis-
tributed random variables with a density of known parametric form: f(w) =
f(w; 0), where 6 is an unknown vector of parameters.

(c¢) The vector of covariates Z;; is bounded.

(d) The random vectors (m;, T3, .., T2 s City ooy Cimes Zits ooy Zimyy Wi), 1 = 1,.,m,

1M

are independent and identically distributed, and the model will be build

conditional on m; i =1, ..., n.
(e) Given Z;; {j =1,...,m;} and w;, calls of customer 7 are independent.

(f) Given Z;; {j = 1,...,m;} and w;, the censoring is independent and nonin-

formative for w; and (5, Ag;).

4.4 Estimation

The main goal of this work is to provide a test for comparing two or more baseline
hazard functions. However, our proposed test requires estimators of the unknown
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parameters: 3, 6 as well as {o;(t)}7L;.

provides consistent estimators is given in the next section.

A simple estimation procedure that

4.4.1 The Proposed Estimation Procedure

Our estimation procedure is based on the approach proposed by Gorfine et al. [37]
which handles any frailty distribution with finite moments. We extend this
method to the case of different baseline hazard functions Ag;(¢). We describe
in short the estimation procedure so that this work may be self-contained.
According to our model , the full likelihood can be written as

L= H /OOO .lj{/\z‘j (T35) Y9 S35 (Ty) f (w)dw

n  m;

= [TT10 (@) e 7oy H / e 1™ f(w)dw,

=1 j=1

(4.2)

where 7 is the end of the observation period, N;;(t) = 0;;1 (T;; <t), Ni.(t) =
S Ny (h), s ) = Aoy (T A 6) 5%, a b = min(a, b), Hi(t) = S0, Hig(0),
Ao;(t) fo ij(s)ds is the cumulative baseline hazard function and S;;(-) is the
conditional survival function for call j of subject i, namely,

S”<t) = exp [—U}Z‘BBTZMAQj(t)] .

The log-likelihood is given by

InL = iZ&] In{Ao; (T35) %) 4 Zln {/ NiA(T)e—wHiA(T)f(w)dw}'

i=1 j=1
(4.3)
As in [37], let v = (5T, G)T, and for simplicity assume that 6 is a scalar. If
6 is a vector, the calculation can be derived in a similar way. The score vector,
namely the vector of the log-likelihood derivatives with respect to 7, denoted by
U(~, {AOJ} = (Un,...,Up, Upt1), is determined as follows

Y N oxp{—wH, (7)1 (w)dw
ZJZI Zm{% Hij(Ty; } fo wN eXp{—wHi.(T)}f(w)dw]

=1

forr=1,...,p, and

1 fo (M) exp{—wH, (1)} f'(w)dw
Upta = Z > wNe (M) exp{—wH,;. (1)} f(w)dw’

=1
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where f'(w) = df (w)/df. The estimation procedure consist of two steps. One is
to estimate v by substituting estimators of { AOJ'};; into the equations

U(’Y? {Aoj}jzl) =0
The other is to estimate {Aoj };n:l given the estimated value of ~.

To this end, we provide here the estimators of {Aoj};n:l. Define Y;;(t) =
I(T;; > t) and the entire observed history F; up to time ¢ as

ft:U{Nij(u)7 Y;j(u)v Zij7 Z:Lanv ]:1,,771/1, OSUSt}

To simplify notation, we define Z;; = 0 and N;;(t) = Y;;(¢t) = 0 for all ¢ € [0, 7]
for each m; < j < m and ¢ = 1,....,n. As shown in Parner [70], applying
the innovation theorem [14] to the observed history JF;, the stochastic intensity
process of N;;(t) with respect to F; is given by

)‘Oj( )eXp<ﬂTZU) 1]( )i(t), (4.4)
where
Yi(t) = E(wi ! E—)- (4.5)

Using Bayes formula, we have

N (t—)

wy exp{—w; H;.(t=) } f(w;)
fw; | Fio) = N P
( ‘ ) fooowz‘ ( )exp{ w; H.(t >}f(w1>dwz

Therefore, the conditional expectation of w; given the observed history at [0, t)

is as follows N ) .
fo (t—)+ e~ W (t— )f( )dw

fo wi- (=) e—wH;. (t— f( )dw '
It should be noted that ;(¢) is a function of the unknown parameter v and

{AOj }Tzl I\IOVV7 let

¥i(t) = (4.6)

hij(t) = ¥i(t) exp(B” Zy;) (4.7)
and note that given the intensity model (4.4)), h;;(t) can be considered as a time-
dependent covariate effect. Hence, the estimator of each Ay; is provided by using
a Breslow-type [15] estimator as follows. Let f\oj be a step function with jumps
at the observed failure times 7, (k =1,..., K; and j = 1,...,m). Then, the jump
size of Aoj at 7j; given the value of 4 is defined by

> dNi(Tir)
=1
hij (i) Yis (k)

1

AAgj(Tjk) = (48)

]
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where h;;(t) = i(t) exp(67 Zi;) and in ¢;(t) we substitute 4 and {Aoj(t)};nzl
into ¢;(t). It is important to note that each value AAg;(7j;) is a function of
{Aoj (75)};71:17 where ¢t < 7;;,. Therefore, the estimation procedure is based on or-
dering the observed failure times of all the calls in increasing order and estimating
{Aoj };n:l sequentially, according to the order of the observed failure times.

To summarize, the following is our proposed estimation procedure. Provide

initial value of 7, and proceed as follows:

Step 1 : Given the value of ~ estimate {A()j}

by using (4.8)).
1

j=

Step 2 : Given the value of {Aoj} , estimate v by solving
1

j=

Step 3 : Repeat Steps 1 and 2 until convergence is reached with respect to
{AOJ} ) and ’A}/

j=1

For the choice of initial values for § we propose to use the naive Cox regression
model, and for § take 0. In case the integrals involved in (4.6)) are not of closed
analytical form, one can use numerical integration. As was already shown by
Gorfine et al. [37], such an approach avoids the use of iterative processes in
estimating the cumulative baseline hazard functions as required in other proposed
procedures that are based on the EM-algorithm ([90], among others).

4.4.2 Asymptotic Properties

In this section, we formulate and summarize the asymptotic results of our pro-
posed estimators. We denote by v° = (BOT,GO)T and A§(t) = {Agj (t)} the

true values of 3, § and Ag(t) = {Aoj (t)}m , respectively.
j=1

Claim 4.4.1. The estimator Ao(t) converges almost surely to a limit Ag(t, )
uniformly in t and y, with Ag(t,~y) = AS(t), and n'/*[Ag(t) — AQ(t)] converges
weakly to a Gaussian process.

Claim 4.4.2. The function Uy, Ao(-)] converges almost surely in t and ~ to a
limit uly, Ao(+)].

Claim 4.4.3. There exists a unique consistent root to Uy, Ag(-)] = 0.
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Claim 4.4.4. The asymptotic distribution of n'/? (5 —~°) is normal with mean
zero and with a covartance matrixz that can be consistently estimated by a sandwich

estimator.

The proofs of Claims - along with all the required conditions are
almost identical to those presented in Gorfine et al. [37] and Zucker et al. [91],
since the only minor difference is the use of {Ay, (t)}7L, instead of a global esti-
mator based on all the calls together. Hence, the proofs and a detailed list of the
additional required assumptions are omitted.

It should be noted that although a consistent variance estimator of 4 and

" m
{Aoj (t)} can be provided, its form is very complicated. Hence, we recommend
i=1

using the bootstrap approach.

4.5 Family of Weighted Tests for Correlated Sam-
ples

4.5.1 Introduction and preliminaries

Our main objective is to provide a test statistic for comparing the cumulative
baseline hazard functions corresponding to different calls. Namely, we are inter-

ested in testing the hypothesis
H[) . A01 = A02 = ... = AOm = Ao, (49)

where A is some unspecified cumulative hazard with Ag(¢) < co. Asnoted earlier,
the intensity processes of the counting processes N;;(t) i = 1,...,n, j =1, ...,m;,
with respect to F; has the form

hij (8)Yi (1) Aoy (1) (4.10)

However, given the frailty variate w;, the intensity processes of N;;(t) i =1,...,n,
j=1,...,m; take the form

g (Y55 (Dhos (1) (4.11)
with

Let Yj(t,7) = 320, hij(t)Yi;(t) and Yj(t,y) = S0, hi;(t)Yi;(t), and note that

Bl Y wiYy()e? %] = B[ S, B(wi | Fi)Yi(t)e? % . Then, by the uni-

form strong law of large numbers [7] the functions n='Y;(t,v) and n~Y;(t,~)
converge to the same function, if one of them converges.
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For deriving the asymptotic properties of our proposed test statistic, we make
the following assumptions:

1. Wn(s) is nonnegative, cadlag or caglad, with bounded total variation, and
converges in probability to some uniformly bounded integrable function
W (s), that is sup | W, (s) — W (s) | —0.

s€[0,7]

2. There exist positive deterministic functions y;(s), j = 1,...,m, such that

Sl[lp} ‘ n_lffj(s,vo) —y;(s) ’ — 0 Sl[lp} } n_l?}(s,yo) —y;(s) ‘ — 0,
sel0,7 se|0,7

7 =1,...,m almost surely, as n — oo.

3. Qi(s,7°) = [ (5,7)/Y.(s, 'y)] l=1,...,p+1j=1,..,m are bounded

O

over [0, ]Where Y (5,7°) = ZJ LY(5,7°).

4. There exist deterministic functions g;(s), { = 1,...,p+1 j = 1,...,m, such
that

sup ’ Qii(5,7°) — g15(s) ’ — 0
s€[0,7]

almost surely, as n — oo.

4.5.2 Test for Equality of Two Hazard Functions

We start by comparing the cumulative baseline hazard functions of two calls. In
this subsection we use indexes 1 and 2 for comparing any two baseline hazard
functions out of the m possible functions. The extension to more than two calls

will follow. Assume we are interested in testing the hypothesis
H() : A01 = A02 = Ao. (413)

We propose to use the weighted log-rank statistic (Fleming and Harring-
ton [28]) that takes the form

L R AeA) "
Sn(t, ) = Nl Wi )571_(57’?) —|—_172(s,fy){dA_Ol( s) — dAo_2( )} o
L g B gan)aniey
\/ﬁ 0 " YVI(S/?)—F 2( ) }/1(87’7) 3/2(87;)/) 7

for t € [0, 7] where dN;(s) = > dN;;(s) and the estimators 4 and {Aoj}g-”:l are
given in Section [4.4]
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Given w; and the intensity process (4.11]), the process

My (0) = N0 s [ o) Yy
is a mean-zero martingale with respect too Fi, namely
E [dM;;(t) | wi, Fi-] = E [dNy(t) | wi, Fi-]
—E[Aoj() LY (twndt | wi, Fi ] ~0.

Then, given w. = {wi}?:p the sum of these martingales M;(t) = >.°  M;;(t)
is also a mean-zero martingale with respect to F;_. Since N;i(t) and Ny(t) are
conditionally independent given w; for all i = 1,...,n, then, given w., M;(t) and
Ms(t) are uncorrelated martingales.

To simplify notation we define Y.(s,v) = Yi(s,7) + Ya(s, ) and

Yi(s,7)Ya(s,7) Wi (s) Wa(s) G(s,7)
Yi(s,7) Vn Vi Yi(s, )

for j = 1,2. For the asymptotic distribution of our test statistic S, (¢,4) and its

g(577> = ) Dn(safy) - g(s"y)v D?(Safy) =

variance estimator, we start with the following theorem.

Theorem 4.5.1. Given Assumptions 3-4 the test statistic S, (t,7) presented
in (4.14) has the same asymptotic distribution as

Sa(t, %) + S (1), (4.15)

where
Sult7%) = % / Wn<s>g<s,w>{%f3) et @

% A Ya(s,~°)dA
S,Z* _ / W ){ 1(8 7 )d 01( ) 2(57:}/ )dA 02(8) } (417)
SV Yi(s,%) Ya(s, %)
The proof of Theorem 4.5.1|is presented in Section

Now, consider the random variable S**(¢). By the first order Taylor expansion

about 7° we get

l\)

() = (5 1(5,7°) 1 oy Y
s = 7z [ i Y.<s,7> Mol =T
(.00 o Bl
\/_/ W) | = ey hon(e) = = ()]

/ W) ¥a(5.9)Qa" (5,7)dAor (5

~ Va(5,7°)Qu” <s,v JdAoa(s) b5 = 7).

(4.18)
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where

Q) (5,7°) = (Qujy -+, Queny)” and Qi = —l[ ]"(8’7)]770

forl=1,..,p+1and j=1,2.

The second term of the right-hand side of represents the additional
variability of S,,(¢,7) due to the estimation of 4 and, based on Claim 4.4.4 it is
easy to see that it is asymptotically normal with mean zero. However, this term
is expected to be of a negligible contribution to the total variance, since, ¥ is
being estimated parametrically (Acar et al. [5], Section 2.3). It should be noted
that our extensive simulation study presented in Section [4.8| also supports this

argument. To summarize, we formulate the following conclusion.

Conclusion 4.5.1. An approzimation of the asymptotic distribution of S,(t, %)
is the asymptotic distribution of

Sa(t.4%) = 8u(t9) + S(t.7°), (4.19)
where
510:9°) = = [ W02 [Tl dhan(s) = 22 dhen(s)].

We deduce the asymptotic distribution of g;;(t, 7°) by considering the asymp-
totic distribution of each term in (4.19). For this end, consider the following
theorem.

Theorem 4.5.2. Given Assumptions 1-2 and under the null hypothesis,

(1) S,n(t,~°) converges to a zero-mean normally distributed random variable with

finite variance ag(t), as n diverges to infinity, where

g

(t) = /0 () ORe) (4.20)

5 1(s) + a(s)

(2) Sx(t,~°) converges to a zero-mean random variable with finite variance 0. (t)
as n dierges to infinity.

(3) The two random, variables S, (t,7°) and SX(t,v°) are uncorrelated.
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The proof of Theorem [4.5.2] is presented in Section Summarizing the
results of Conclusion and Theorem 4.5.2] one can say that under the null
hypothesis, our test statistic S,(t,7) is asymptotically zero-mean normally dis-
tributed random variable, and its asymptotic variance can be approximated by
Var{S,(t,7°)} + Var{S:(t,7°)}. Thus, based on direct calculations of the vari-
ances, as presented in Section [£.7.3] we present the following variance estimator

of S, (t,%)
= [ Vvs<s>i{0;<s,fy>}

/ / DY (s,5) D7 (u, 5 ZY“ sVu)e 287 Z“Var (w; ! Fava)dMo1 (s)dAgy (u)

Y;;(s)E(w;)

/ / D% (s, ) Dy (u, 5 ZY;Q sVu)e 287 Zl?Var (w; ! Fsvu_) dAOQ( )dAOQ( )

=1

~2 / / D} (s,4)Dj(u Zyﬂ )eo Zat 22 Var(w; | Fyvue)dAor (s)dAga(u).

(4.21)

For E(w;) and @('wi | ;) one can use 4. Also, it should be noted that often
E(w;) is set to be 1 for the model to be identifiable. In these cases E(w;) = 1
i = 1,...,n. However, as we show by extensive simulation study (Section ,
Var{S}(t,~°)} is of a negligible contribution to the total variance (less than 10%).
Hence, we recommend to estimate the variance of the test statistic S, (¢,7) by
the estimator of Var{S,(t,7°)}. Specifically,

2
63, (t / W2(s Z D’(s,4) } dAg;(s Ze’B ZiyY(s)E(w;).  (4.22)
7=1

In conclusion, our proposed test statistic is defined by S, (t,%)/d,(t) and the
rejection region corresponding to the null hypothesis (4.13]) should be defined by

the standard normal distribution.

4.5.3 Test for Equality of m Hazard Functions

Now we extend the test proposed in the previous section to test the null hypoth-
esis (4.9) with m > 2 baseline hazard functions. Namely, we compare each of

~ m
the m estimators of the cumulative baseline hazard functions {AOJ} with an
=1
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estimator of the common cumulative baseline hazard function constructed under
the null hypothesis. Let Ag be the estimated cumulative baseline hazard function
under the null hypothesis (see [37] for details) in which the jump size of A at
time s is defined by

SELAN(s) Y S ANy ()
Yi(s,9) > e 12] 1%( )Yii(s )eﬂTZ”

where ¥(5,4) = X, V(5. 9).
We define Sp(t,4) = (Sui(t,4), .- Sum(t,4))" to be the m-sample statistic.

In the spirit of (4.14)), we define
dAoj(S)—dAQ(S)} ]: 1,...,m

Snj(t,7) \/_/ an
(4.23)

where an(s) are nonnegative cadlag or caglad with total bounded variation.

Aly(s) =

) Yil5)¥.(59) {
i(s,9) +Y(s,9)
However, the special choice of weight processes such as

T T Y/J(Saﬁ/) +Y(87§/)

Woglo) = W) 2 =1

where W, (s) is nonnegative cadlag or caglad with total bounded variation, covers

ey M,

a wide variety of interesting cases (Andersen et al. [8], Section V.2). Hence, the
above choice of weight process will be considered here. Then,

Soi(t,4) \/_/W ){dAOJ() d[\o(s)} j=1,.m, (4.24)

and » 70 Sy;(t,9) = 0. It is easy to verify that for m = 2, S,,1(¢,7) equals (4.14)).
Similar arguments used in the case of comparing two baseline hazard functions
(Section [4.5.2)) can be used here, such that we arrive to the following conclusion.

Conclusion 4.5.2. An approzimation of the asymptotic distribution of Sy(t,%)
is the asymptotic distribution of S%(t,7°) = Sa(t,7°) + Si(t,7°), where the

respective j-th components of gn(t,vo) and Sk (t,~°) are

! AVTy(s)  dNL(s)
/ o ){ijé,vo) _Y](\ij)}’ (4:25)

Yi(s,7°)dAo;(s) _ Yi(s,7°)dAo(s)
(s,v){ Y Vi) } (4.26)

S;,j (t,7°) = n(S) Y;

where M.(s) = >"1" | M;(s).
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Note that given w., M.(s) is a mean zero martingale with respect to F,_
For the asymptotic distribution of S;( ,7°) we present the following theorem
and its proof can be found in Section [4.7.4]

Theorem 4.5.3. Given Assumptions 1-2 and under the null hypothesis,

(1) Sa(t,7°) converges to a zero-mean multivariate normally distributed random

variable with variance matriz 'V (t) and its jk-th component is defined by

/ W2 yﬂ r;fzj; 1yfr( ))\o(s)ds k=

9 yg( Uk (8) :
/ W2 (s) L ) -

(2) Si(t,~°) converges to a zero-mean multivariate normal random variable with
covariance matriz having finite diagonal entries and zero valued non-diagonal

entries.
(3) The two random variables Sy(t,7°) and S%(t,7°) are uncorrelated.

Summarizing our results so far, we conclude that S, (¢,7) is asymptotically
normal. Using similar arguments as for the case of testing equality of two hazard
functions, motivates us to estimate the variance of S,,(t,4) based on the variance
estimator of S,(Z,7°). Hence our proposed estimator, denoted by V(t) is given

by

:%/ W5<s>Z 1—Y( 7)}QEXwZ-)Yu( e ZidAg; (s)

Yi(s,%)
(4.27)
{ } ZE wz zl ildAgl(S>i| j = 1,...,m.
I
and for k # j
_ l 2(g }_/}(877) _k(svﬁ/) r w s 66 Zi1 s
Vst = = [ W20 3 e T B (s
_Mn L (0 .SeﬁATZikA s
Y53 ;E( ) Yir(s) dAgi(s) (4.28)
— Yils.9) 5 w s)eP" Zii s
Y(S,”y) pa E( Z)Y;J( ) dAO ( )
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The details for the derivation of V(t) are presented in Section [4.7.5 It is clear
that V(t) has rank of (m—1). Hence, we define VO(t) as a (m—1) x (m—1) ma-
trix obtained by deleting the last row and column of V(t). Also, let So(t) =
(Snl(t,ﬁ/), ...,Sn(m,l)(t,ﬁ/))T. Then, our proposed test statistic is defined by
se(t,4)" [\Af"(t)} _1S§’1(t,’y) and the rejection region should be defined by the
x*(m — 1) distribution.

It is clear that the above theory can be used directly for testing contrasts on

the baseline hazard functions.

4.6 Sample Size Formula for Equality of Two
Hazard Functions

In this section, we present a sample size formula under proportional means local
alternative and certain simplifying assumptions for testing the equality of two

baseline hazard functions. Specifically, let

Hy o AL(s) = / exp{(—1Y"p(w) /(2 kdho(u) j=1,2 forall s € [0,7],

’ (4.29)

where Ag is some unspecified cumulative hazard function with Ay(s) < oo and

©(s) # 0 for all s € [0,7]. The above local alternative formulation was originally

proposed by Kosorok and Lin [54] and also these alternatives can be found in the
work of Gangnon and Kosorok [29].

It is easy to verify that the above Af;(s) j = 1,2 satisfies the following as-

sumptions:
5. For 7 =1,2

sup | dAg;(s)/dNo(s) — 1 | =0, as n— .
s€[0,7]

6. As n — oo,
dA81(8>
su ny————1¢ — (s —0
e Vi)~ 1|

where ¢ is either cadlag or caglad with bounded total variation.

Figure presents two examples of the cumulative baseline hazard functions
under the above local alternatives defined by (4.29)).
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Cumulative baseline hazard function
Cumulative baseline hazard function

t, sec. t, sec.
— A01(t) — Aoz(t) — Ao(t) — Am(t) — Aoz(t) — Ao(t)

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

(a) (b)

Figure 4.1: An illustration of two possible alternatives satisfying definition (4.29)).

Obviously, the family of local alternatives defined by is much wider than
the above two examples, however, the common structure is such that Ay (t) <
Ao(t) < Aga(t) (or vise versa) for all t € [0, 7].

We start with the asymptotic distribution of .S, (¢,7°), under the local alter-

natives.

Theorem 4.6.1. Given Assumptions 1 - 6, S, (t,~7°) converges in distribution to
a normal random variable with mean py(t) and variance o*(t), where

1(5)7a(s)
/ W(s () + 7als )dAo (s) (4.30)
and o*(t) = o%(t) as defined in .

The proof of Theorem [4.6.1| is presented in Section [4.7.6

Under the assumed contiguous alternative, we can approximate the power
calculation as follows. For a fixed alternative set ¢(t) = \/ne*(t). Then by
and the first order Taylor expansion we get Fp, {Sn(t, @)} = /nui(t) + o(y/n),

where

1(s)7a2(s)
/ W(s ( O AOIAGE (4.31)

Now, based on the limiting distribution of S, (t,%), and under given significance
level @ and power 7, we get

™= P (’ 57;(87) E Zl—“”)

by, (| S SO 7Y,
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where Z, is the p-th quantile of the standard normal distribution. Then,

nu;(t
Zl*&/? _ M ~ _Zw'

o(t)
This gives us the following sample size formula
2
(Z1-ajp+ 2:) (1) |
n = . : (4.32
{mi@®)}?

However, in order to calculate the required sample size based on (4.32)) one should

estimate 02(t) and p}(t) based on a pilot study or existing relevant datasets.
In what follows, we propose simple estimators under simplifying assumptions,
similar to those of [79]. These simple estimators provide a practical sample size
formula.

Assume that the baseline hazard functions are continuous and the local alter-
natives satisfy ¢*(s) = ¢ for all s € [0, 7], when ¢ € R and the weight function
is constant W,(s) = 1. We also assume that the limiting values of Y;(s,v)/n;
are m;(s), j = 1,2 and the proportion of customers making the j-th call, n;/n,
converges to p; € (0,1], j = 1,2. Then, based on Assumption 2, we replace y;(s)
by p;m;(s). In addition, we assume that m(s) = ma(s) = m(s). Hence,

becomes

w0\ ! p1p2m(s) s
Hil) = /o 81917(3) +p27T(3)dAO( ) (4.33)

. DP1ip2 R(t)7
D1+ P2

where R(t) = f(f m(s)dAo(s). A simple estimator of R(¢) can be obtained as

follows

A

R@:A@ﬁ@ﬂmwmwmmﬂm

:/t ny 1(s,9) ElNl(5> @}72(57’7) dN2(5)}
o Ln ny Yi(s,9)  n ne Ya(s,9)

(4.34)

Thus, a simplified sample size formula is given by

(Z1-as2+ Z,,)2&§I(t)
n = - , (4.35)
{epip2R(t)/(Pr + P2)}?
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where 67,(t) is given by (4.22).

Remark I. The widely used sample size formula proposed by Schoenfeld [76]
is for the case of independent samples. By simulation study we show (Section
that Schoenfeld’s formula underestimates the required sample size under depen-
dent samples.

Remark II. Based on (4.20)) and (4.30]), and by the usual Cauchy-Schwartz
argument, it can be shown that under the local alternative the optimal

weight function equals W(s) = ¢(s) for all s € [0, 7].

4.7 Proofs

4.7.1 Proof of Theorem [4.5.1]

Let

$,9) Yi(s,9)
An(t,5) / { dM (s dM.
Vi (s.) 1 V(e )
and write S, (t,5) = An(t,5)+S5:*(t). The first order Taylor expansion of A, (¢,%)

about v° gives

t
An(t,y) = Sn(t,7°)+%/o Wa(s) {QF (s,7”)dMi(s) — Qf (5,7°)dMs(s)} (—7°).
(4.36)
Since M;(t)/+/n converges in distribution as n — oo (it is asymptotically normal
given w_) and using Assumptions 1 and 3-4 stating the existence of deterministic
functions W (s) and g¢;(s), l=1,...,p+1 j =1,...,m, such that
sup ‘ Qi (5,7°) — g15(s) | — 0  sup {Wn(s) — W(s)} — 0,

36[0’7'} SG[O,T}

we get that the conditional distribution of

B.(t,°) = % / W(s) {QE (5,7°)dMi (5) — QT (5,7°)dMa(s)}

conditioning on w., convergence to zero-mean multivariate normally distributed
random variable with finite entries of the covariance matrix that are free of the
frailties. Hence, this is also the unconditional asymptotic distribution of B, (¢,~°).
Then, given Claim 3.3, the second term of goes to zero as n — 00, by
Slutsky’s theorem.
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4.7.2 Proof of Theorem [4.5.2

We present the proofs of each theorem’s statements in the sequence.

Proof of statement (1). Given w., S,(t,7°) is a mean-zero martingale.
Hence, to show that given w. it converges to a normally distributed random
variable, one needs to show that the conditions of the martingale central limit
theorem (see [1], Section 2.3.3, for details) hold. Namely,

2
i) Z {D;L(s,vo)}g)\?(s,w") —p 0(8) for all se€0,7], as n— oo,
j=1
where N7(s,7°) = > Yii(s)hij(s, %) Ao;(s) is a sum of intensity processes
of n independent customers, hi;(s, 5°) = w;e” "Zij and V(¢ fo s)ds is

the variance of the limiting process.
(4) Dj(s,7°) — 0 forall j=1,2 and s € [0,7], as n — o0.

In our case, under the null hypothesis Ag;(s) = Ao(s), 7 = 1,2 for all s € [0,7].
Therefore, under the null hypothesis and Assumptions 1 - 2, we obtain

_ ~ (W (s) Yay(5.7°) (s,7")Ao(s
_;{ Vv Yi(s,7°) 4 Ya(s,7°) };Y;J 7 Pole) (4.37)
_ WR(s) Yi(s,7° )Yi(s,7°) + Y7 (5,7°)Ya(s,7° )AO<S)
n {Y1(s,7°) + Ya(s,7°)}2
20 Y1(5)7a2(s)
—>pW ( )g1(8)+y2(s))‘ ( ) as n —r 00,
and
n 0 _LA s E_j(s,’yo)/n as mn— oo
Dj (S,’}/ ) = \/HW( ){371(8,70)"‘}72(3’70)}/71 —p 0, — .

Hence, we conclude that gn(t, ~°), given w., converges to a normally distributed
random variable with moments that are free of the frailties w.. Therefore, S, (¢, ¥°)
also converges to a normally distributed random variable with the same param-
eters.
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Proof of statement (2). Note that S¥(¢,°) can be rewritten in the follow-

ing form

e o Lt V(5,0 Ya(s,7%) fYi(s, ) Ya(s,7°)
509) = 75 | W T a0
-/ Wn<s>(§?((jj§)){ws> - Mf<s>}
Yi(s, .

where My = 37" | M(s) is a mean-zero martingale of the process N;(s). Then,

applying the martingale central limit theorem in a way analogous to the proof of

statement (1), we obtain that S} (¢,~°) is asymptotically normally distributed.
Obviously, that S¥(¢,~°) has mean zero and for the simplicity of its variance

calculation we let

57°) * Zii L. — .
gi(s) = Wa(s)Ao(s )—O and X (s) = \/—Z )e” {wl E(wz‘}"s,)}

for 7 =1,2. Then,

t

Var{S:(t,7°)} = Var{ /Ot gl(s)Xf(s)ds} + Var{/ gg(s)Xg(s)ds}

0

t t (4.38)
—2002){/0 gl(s)Xf(s)ds,/o gg(s)Xg(s)ds}.

Since X;(s) j = 1,2 have mean zero, by using the law of total expectation we get

Var{ /O t gj(s)X;-‘(s)ds} -
5 <E{ / 03(9) X (5)ds / g X; (wdu | fsvu—}) (4.30)

1 e - T
= —E{/ / 9i(8)g;(u) ZY;j(s v u)e? ZiVar (w | }"Svu_)}dsdu,
0 /o i=1

n

and
t t
CO’U{/ gl(s)Xf(s)ds,/ gg(s)X;‘(s)ds} =
0
1
= EE{/ / g1(8)ga(u ZY}l ’3 (ZatZ2)V g (w; ‘ Fovu_ )}dsdu.

(4.40)
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Combining (4.38)-(4.40) we get

Var{s;(t.1)} =

- l(Zm:E{ /t /t gi(s)g;(u) iY;j(s Vv u)eQ’BTZ“Var(wi ’ FsVu,)}dsdu

n

- 2E / / 91(8)g2(u ZYA Yia( T (Za+Zi2) War(w; | Fsvu— )}dsdu).

(4.41)

Hence, it is easy to see that Var{SjL(t,wo)} < 00.
Proof of statement (3). Note that under the null hypothesis, the covariance

between S, (t,~°) and S*(t,7°) can be written as follows
cov(é (t,7°), S* (¢, 0))
o] [ o 0000 _ ey

Y1 (5:7°)  Ya(s,7%)

108, Aoi(s)  Ya(s,7°)dApa(s
/D {2 ylﬁfi)( : %V@if))()}}

:/O /0 bl Dn(s,yo)Dn(um@{gﬁS)) QZQ(V))}{Q ;_ngzi}amo(u)}

Now we show that C’ov{S’n(t, 7°), Sk(t,~°)} = 0 by showing that given w.

Da(5.9")Da(u,7°){

. dMy(s)  dMy(s) }{ﬁ(um") _ Ya(uy %}dAo( )] =0,

Vi(s,v0)  Ya(s,y0) ) WYi(u,v°)  Ya(u,~°

for all s, u € [0, 7]. Indeed, for s > u we get

R e i o)
{i—iiézzloi T ) | 7]
Vi(u,v) %(uav")}
Yi(u,7°)  Ya(u,7°)
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dM dM
1(s) — = 2(5) | 5_> = 0 given w., as an expectation of zero
Yi(s,7°)  Ya(s,7°)

because E (

mean martingales. For u > s, we get

el aie ks )
(R~ T Yo | 7.
- E[D (87 {; $,7°) 12%(;))}

E {Yl(u,v) Yo (u,°)

Yi(u,7°) m,w)} | Fu ) dho(w)] =0.

4.7.3 An Estimator of the Variance of S,(t,7)

S

In the following, we generate our variance estimators of Var{S,(t,7°)} and

Var{S*(t,7°)}. Let us start with an estimator of Var{S,(t,7°)}. By using
the law of total variance we get

Var{S,(t,7°)} = E [Var{gn(t,vo) | w. ] + Var [E{S (t,7°) | w. }]

It is clear that S‘n(t,vo) given w. is a mean-zero martingale under the null hy-
pothesis, as a difference between two mean zero martingales. Hence,

ot = | [ o 081 2081} ])

Since calls of customer ¢ are conditionally mdependent given w;, the predictable
variation process of S, (t,7°), given w., is given by

2 dMl() dMQ(S)
< S, | w. > (t,v /D SV)VW{Y(S,W)_YQ(S,WO) ‘w.,}"s,}

/ D2 (5,7°) <Var{;/ifs—lil)) ‘ w., Fs_ }—i—Var{;/ZQJZ—Q(V(S)) } w., ]:S_}> .
Since Var{dM;;(s) | w.,]—"s_} = Y;;(s)e? Ziw;hoj (s)ds we get

eﬂ Zi1 (S)

il
YE(s,7°)

eBTZiQ z‘Q(S)

< S, |w. > (t,7°) = wz/ D2(s,y ){ Ao1(s) + Wdl\og(s)}.

Then, the expectation with respect to the unknown frailties gives

65 Zi 1 B Zio (s
ZE w; / D2 S ’}/ ( ;o())dAOl( ) W’yo())dj\02(8>}. (443)

79



The variance of Var{Sk(t, fyo)} is presented in (4.41)). Therefore, we replace all
the unknown parameters in (§ and (4.41] - by their estimates from Section
and get the estimators as presented in and -

4.7.4 Proof of Theorem [4.5.3

Proof of statement (1). We start by rewriting each S,,;(t,~°) as follows

St = [ o { i) - 2o )

and we show that given w., the sequence gn(t770) converges to m-variate zero-
mean Gaussian random variable. Let M®™(s) = (M;(s), ..., M,,(s))*. Then,
based on the martingale central limit theorem, it is enough to show that the
following conditions hold (see [I], Appendix B.3, for details)

t t
</ D™ v |w_>(5’fyo) :/ D(“)(s,”yo)VaT{dM(n)(S) ‘f577w.}D(n)T(s,’y°)
0 0
such that
D(n)(s,vo)Var{dM(n)(s) | J—"S_,w.}D(")T(S,WO) —p v(s)

for all s € [0,#] as n — oo and V(t) = [ v(

Here D™(s,7°) is a m x m matrix Whose (k;,j) entry equals

Wn(s){l_ _j(s,vo)} L
oy d Vi U V(s "
A IR UABEACED

v Y(s,7°)

(17) D§Z)(s,70) —, 0 g k=1,..m se€0,7],as n — oo.

K4

Indeed, under Assumptions 1-2 and given the null hypothesis, Vj(k")(s), the (j, k)
component of the integrand of ( fg D®™dM® | w.)(s,7°) converges as follows

V() = / W(s };(( ))} Y;(5,79%) Aoj (s)

Y237
+Y25fy ZYS’}/ ) Aor( ))ds

/ W2 y] T;?jg 1yr( )AO(S)dS as n — OO7 ] — ]., ---7m
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and for j # k, j,k=1,....m

Vj(kn)(t) _ l/ﬂ W2(S>{Y}(3,_'70)Yk(5,70) Z}Nfr(sﬂ/o)/\m(s)

n " Y?2(s,7°)

_ —}}_//J((j’:::; Vio(5,7°) Aok (s) — %ﬁ(s,y ))\Oj(s)}ds
- t 2 S gj (S)gk(S) s)as as mn 0
—>p ; %74 ( ) g(s) )\0( )d —

For Condition (ii), it is easy to see that under Assumptions 1-2, for j =

1,...,m, since

Yi(s,7") , 9i(:7°)
V(s gl T
Wa(s) Y;(s,7°)
D()(S’y) \/ﬁ{l—m}—@(), as n — o0

and . ~
W) V(s o

v Y.(s,7°)/n
As before, since the conditional asymptotic distribution of Sn(t,'yo) given the
frailty variates is free of the frailties w. we conclude that this is also the asymptotic
distribution of Sy (t,~?).

Proof of statement (2). Since for j =1,...,m

as mn — .

DJ('Z)(‘S? 70> =

Yi(s,7°)  Yi(s,7°)
B o) Vo | 7o)
i Yy(s)eP S E [wi | Fo-] B Doy Doy Yir(s)eP 7w B [w; | Fo- ] (4.44)
B Y;(s,7°) Ya(s,7°) '
_Yi(s,7°)  Yis,y0)
CYi(s,70) Yi(s,0)

it is easy to show that under the null hypothesis

W Yi(s,7°)  Y(s
|:S* ){ _](SaV)_ _( )}dAo( )]:07
Yi(s,72)  Yi(s,7°)
(4.45)
for j = 1,...,m. Also, using again the law of total expectation by conditioning
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on F,vs— we obtain that under the null hypothesis

Cov |3y, ) :;k<t M -

- [l ~ i)

(565 - i—?é ] =

Using similar arguments as in the proof of Theorem [4.5.2 one can show that each

of the j-th components of S;;j (t,~°) is asymptotically normally distributed with
a finite variance.

Proof of statement (3). Note that under the null hypothesis, the covariance
between S,,;(t,7°) and S%, (t,7°) for all j,k = 1,...,m can be written as follows

g(s’ ;:; }dAo(S)} (4.46)

S TLACT o AV(s) L)
- PR e e G - )

Z
(@]
=
T
=S
et
)]
)]
=
e}
=
—+
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o
=+
Q
@)
(4
—
(o))
=
2
N/
R
=
—
~
2
——
|
o
lon
<
]
=
@]
2
=]
oQ
—+
=
®
—+

Wn(s)W ( )

n

E

P s ~ e e imi }]

Yi(s,7°)  Y.(s,7°)

for all u, s € [0, 7]. Indeed, for s > u we have

E[—W”(SZW”(U)%(SWO)YIC(U;7"){3—/:22:2:; - ?Ezzg}
) )

M, M.
because F { EZ (5) — Ei () } ‘ Fs— ) =0, as an expectation of zero mean
Yi(s,7°)  Yi(s,7°)
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martingales given w.. For u > s we obtain

E wi/j(sv 70)}7]6(1% 70)

——
Q.
=
w
<«
=
©
——

4.7.5 The estimation of V(t)

Calls of customer ¢ given w. are independent. Therefore, the predictable variation
process of Sn(t, 7°) given w. is given by
<S8y |w> ) =ViP) and < S, Sy | w > (£,4°) = ViV (2)

JJ

for j,k = 1,..,m since Var{dM;(s) | w.,F_} = Y;(s,7)Xo;(s)ds. Then, by
taking the expectatlon with respect to w. we obtain

2
V(n ZZ/ E(wi)eﬁTZikYik(S)dAOk(s) j=1,...,m
1=1 k=1
(4.47)
and for j # k, j,k=1,...,m

Vi = Z/ DI} (s,7) Dy (5.7 Ya(s)e™ 74 da(s)
=1
- / DY (5,7°) B (w;)e® 24 Yy (5)dAox (s)
0

_/ DY (s,7°)E(w;)e” #Y;(s)dAg; (s)| .
0

Finally, by replacing all the unknown parameters by their estimates we obtain

the estimators and ( -
4.7.6 Proof of Theorem [4.6.1]
Write
dMl( ) sz(S)
Sy(t, W =
&7) \/_/ SR S el

Y( O) n 1(8770)}72(87’70)dA81(8> o
/W Ty(5, 1) 6200 >\/ﬁ{~(8,7")3€(8,7°)d/\6‘2(8) 1}'
(4.48)
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First, we show that the first term of the right-hand side of converges to a
normal random variable with mean zero. The proof is similar to that of Theorem
4.5.2, Hence, we need to show that Conditions (i) and (i7) of Section hold.
Proof of Condition (i) is exactly the same as in the proof of Theorem and
the proof of Condition (i) is slightly different, as follows. Using Assumptions 1,
2 and 5, we have

2 n

ILNETII WRET S o R L

7j=1 =1

dAo(s) AT (5)

45 dho(s) and using Assumption 5 we get

By writing - A(()? (s) =
y1(s)ip2(s)
D"sv )\” —>I/V2 ———= 2 A\(s), as mn — 00.
Z{ i) ()=t 1 ey o)
Now, by Assumptions 2, 5 and 6 we obtain that
Yi(5,7°)Ya(5,7°)dAg (s)

\/ﬁ{ Ya(s,7°)Ya (s, 7°)dAg,(s)

- 1} —go(s)‘ 0.

sup
s€[0,7]

Therefore, the second term of the right-hand side of (4.48) converges to () in
probability, as n — oo.

4.8 Simulation

In this section we present our simulation study aimed to investigate the finite
sample properties of our proposed procedures. The simulations were carried out
under the popular Gamma frailty model. Therefore, we start by presenting the
above procedures under the Gamma distribution with mean 1 and variance 6.
The log-likelihood function (4.3)), under the frailty model with Gamma(3, 3),

becomes

n L(y iZélfﬁTZU Z {lne(ﬁ) N (Nil(T) i %) In (Hla(T) + %)}

=1 j=1 =1
N;.(1)-1

1
+Z m J] (U +3) ( Tz,
7=0

(4.49)
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and the conditional mean and variance are

N.(t—)+ 67!

Vi(t) = E<wi ‘ ft—) = m,

and
Nl(t—) + 071
{f[i.(t—) + 9*1}2'
In the Gamma frailty model the parameter # quantifies the strength of the

Var <wi ‘ J’:t_) =

dependence between event times of the same customer. As 6 becomes large, the
strength of dependence increases. We consider three levels of dependence: inde-
pendence (# = 0.01005), mild dependence (f = 1) and strong dependence (6 = 4).
These values of the frailty parameters were defined based on the Kendall’s 7 co-
efficient (Kendall [49]). Under the Gamma frailty distribution Kendall’s 7 equals
0/(0 4 2). Therefore, the respective values of Kendall’s 7 are as follows: 1/200,
1/3 and 2/3. We assume constant baseline hazard functions i (t) = Ap2(t) =1
t € [0,00) and B = (1,2)T. In the following, we provide a detailed description
of the sampling design used in the simulation study for sampling 2 calls for n

customers.

1. Generate independent realizations Z;; ~ Uniform{1,2,3} i = 1,..,n, j =
1,2.

2. Generate n independent realizations of w from Gamma(%, %)
3. Generate n independent pairs of survival times (T}, T%) such that
T | Zyj, w; ~ Exponential{w; exp(ﬁTZ;;)}, i=1,..,n j=12
where Z; = (Zl-(jl), ZZ-]-Q))T and for k =1,2
g _ )L i Ziy=k
Y 0, otherwise

4. Generate independent censoring times Cj; ~ Exponential(3) i = 1,..,n j =
1,2. Such a design yields 70% — 80% censoring rate.

5. Evaluate the observed times (7}, T}2) and the event status, d;;, as follows:

if Tj;<Cj then Tj;=T; and 0;=1

v

if T >C; then Tj;=Cj; and d; =0.
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Table 4.1: Summary of parameter estimates {6, 3, A(£)} based on 1000 simulated
random datasets with n = 250 and 500.

independence mild dependence strong dependence

true true true
value mean SD value mean SD value mean SD

n=250
0 0.01005 0.084 0.150 1 0.929 0.240 4 3.806 0.812
b1 1 1.023  0.328 1 0.969 0.249 1 1.009 0.355
Ba 2 2.059 0.318 2 1.935 0.264 2 1.986 0.368
Ap1(t1)  0.005  0.005 0.003 0.005 0.005 0.003 0.005 0.005 0.003
Ao1(t2) 0.01 0.010 0.004 0.01 0.011 0.004 0.01 0.010 0.005
Ao (t3) 0.05 0.049 0.016 0.05 0.053 0.015 0.05 0.050 0.018
Ao1(ta) 0.1 0.096 0.031 0.1 0.104 0.029 0.1 0.098 0.034
Ap1(t1)  0.005  0.005 0.003 0.005 0.006 0.003 0.005 0.005 0.003
Aoi1(t2) 0.01 0.010 0.005 0.01 0.011 0.005 0.01 0.010 0.005
Ao (t3) 0.05 0.049 0.017 0.05 0.054 0.015 0.05 0.051 0.017
Ao1(ts) 0.1 0.097 0.033 0.1 0.108 0.029 0.1 0.101 0.031
n=500
0 0.01005 0.064 0.098 1 1.025 0.175 4 3.925  0.596
51 1 1.013  0.219 1 1.008 0.198 1 1.007 0.242
Ba 2 2.021 0.211 2 2.003 0.201 2 1.999 0.262
Ap1(t1)  0.005  0.005 0.002 0.005 0.005 0.002 0.005 0.005 0.002
Ao1(t2) 0.01 0.010 0.003 0.01 0.010 0.003 0.01 0.010 0.004
Aoi(t3) 0.05 0.049 0.011  0.05 0.050 0.010 0.05 0.050 0.013
Ao1(ta) 0.1 0.098 0.021 0.1 0.101 0.019 0.1 0.100 0.025
Ao1(t;)  0.005  0.005 0.002 0.005 0.005 0.002 0.005 0.005 0.002
Aoy (t2) 0.01 0.010 0.003 0.01 0.010 0.003 0.01 0.010 0.004
Ao1(t3) 0.05 0.049 0.011 0.05 0.0560 0.010 0.05 0.051 0.014
Aoi1(te) 0.1 0.098 0.021 0.1 0.101 0.019 0.1 0.100 0.025
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Table 4.2: Comparison of 63(t) and 63;(t) for n = 250 and 500.

0 minimum  1-st quartile median mean 3-rd quartile maximum
n=250
0.01005 52(t) 0.064 0.086  0.092 0.093 0.099 0.133
62, (t) 0.063 0.083  0.089 0.090 0.096 0.125
1 G2(t) 0.077 0.118  0.130 0.131 0.142 0.234
52,(t) 0.072 0.108  0.117 0.118 0.128 0.190
4 G2(t) 0.080 0.132  0.149 0.154 0.171 0.341
62,(t) 0.071 0.115  0.130 0.134 0.149 0.305
n=500
0.01005 G2(t) 0.075 0.091  0.096 0.096 0.100 0.124
52,(t) 0.075 0.090  0.095 0.095 0.099 0.115
1 G2(t) 0.107 0.129  0.138 0.138 0.146 0.180
62,(t) 0.098 0.117  0.124 0.124 0.131 0.162
4 G2(t) 0.089 0.123  0.137 0.138 0.151 0.199
62,(t) 0.078 0.109  0.119 0.120 0.132 0.169

Finally we obtain (T}, d:1, Zi1, Ti2, 0i2, Ziz) © = 1,...,n. We consider n = 250
or 500 and 7 = 0.1. The results are based on 1000 random samples.

Tables 4.1{ summarizes the results of {é, 3, A(t)} and presents the true param-
eters’ values, the empirical mean of the estimates and the standard deviation.
For the cumulative baseline hazard functions Aoj(t) we consider the values at
t = 0.005,0.01,0.05 and 0.1. Table verifies that our estimating procedure

performs well in terms of bias.

Table compares the two variance estimators, ¢%(t) and &% (¢), by pre-
senting the following descriptive statistics: the minimum, 1-st quantile, median,
mean, 3-rd quantile and the maximum. It is evident that the differences between
the two estimators are very small even under a strong dependency such as 6 = 4.
These results support our recommendation to use 6%,(t) rather than 6%(t).

Now, we are interested in comparing between our proposed variance estimator
of S,,(t,%) and other naive variance estimators. One is an estimator that does not
take into account the dependence between the samples. We denote this estimator

by 6%(t) and it easy to verify that



Table 4.3: Comparison of our proposed variance estimators with naive estimators

empirical SD

Naive
empirical

Song et al.
empirical

Proposed 1
empirical

Proposed 11
empirical

6 of Sn(t,%) 61(t) Typelerror 62(t) Typelerror 67(t) Typelerror 657(t) Typelerror
n=250
0.01005 0.292 0.297 0.045 0.298 0.045 0.304 0.038 0.299 0.040
1 0.335 0.312 0.064 0.312 0.066 0.361 0.030 0.343 0.037
4 0.330 0.280 0.098 0.279 0.100 0.390 0.013 0.364 0.024
n=500
0.01005 0.317 0.305 0.064 0.305 0.064 0.309 0.062 0.308 0.064
1 0.353 0.320 0.074 0.319 0.076 0.371 0.041 0.352 0.051
4 0.334 0.271 0.097 0.271 0.099 0.370 0.015 0.346 0.031

The second estimator is the robust estimator of Song et al. [T9] and is given by

where M;;(t) = Ny;(t) — fot }Qj(s)eBTZidej(s)/ﬁ(s,&) i=1,...,n,7=1,2. This
estimator was proposed for repeated events where the two baseline hazard func-
tions were estimated based on independent samples. In Table we present the
mean of each variance estimator and the empirical significance level of a test with
Type I error @ = 0.05. The empirical significance level is the percent of tests such
that the null was rejected. The results show that under the independent setting
the four methods provide similar results, but as the dependence increases, the
differences between our methods and the two other naive methods, tend to in-
crease as well. The empirical significance level for the other estimators increases
with 6. It is evident, that only our methods perform reasonably well under any
dependency level. In some cases the empirical Type I error of the naive is about
9%. In addition, there are small differences between the empirical Type I error
provided by our two proposed estimators 6% and 6%;. Hence our recommendation
of using for the variance estimate of S, (¢,%), is again being justified.

Now, we provide a simulation results to evaluate the proposed sample size
formula. All the three levels of dependence were examined under a two-sided
test, with o = 0.05, and 7 = 0.80. The baseline hazard functions correspond
to the local alternative (4.29), namely, Aot = exp{e/2y/n}Ao(s) and App =
exp{—¢e/2y/n}Xo(s), where \o(s) = 1 and e takes the values of 0.3, 0.5 and
0.6.
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Table 4.4: Empirical power of a two-sided test with a = 0.05 and © = 0.80.

independence  mild dependence strong dependence
sample empirical sample empirical sample empirical Schoenfeld’s

e  size power size power size power  sample size
0.3 201 0.819 264 0.766 536 0.769 174
0.5 70 0.805 110 0.789 241 0.833 63
0.6 50 0.773 84 0.823 181 0.836 44

We first generated 100 random samples for each configuration, and based on
these simulated data we calculated the average sample size based on ([4.35). These
results serve as the required sample size with a = 0.05, and 7 = 0.80. Then,
for each configuration we generated 1000 random samples with the respective
sample size. For each sample we calculated the test statistic S, (¢,7) and its
variance estimate 6%;(t). Finally, we calculated the empirical power based on a
two-sided test with a = 0.05, to be compared with the theoretical power of 0.80.
The results are presented in Table [4.4]

Table [4.4|shows that our sample size formula performs well since the empirical
power is reasonably close to the nominal power 0.80. The results demonstrate
that as the difference between the two baseline hazard functions increases, less
observations are required. The formula of Schoenfeld [76]: (Zi_n/2 + Zx)?/(2¢?)
gives similar values as our formula in the case of independence (6 = 0.01005),
as expected. In all other cases, Schoenfeld’s formula under estimate the required

sample size.

4.9 Data Analysis

In this section we present the analysis of customer patience based on data from
a real call center. The data structure was explained in Section [4.1] The sample
size of the data considered in the analysis is 49,246 customers, with only one
sequence of calls for each customer, and each customer had not called for at least
two months before the beginning of the sequence. By this we hope to ensure that
customers are not familiar with the current system at their first call. For each
customer we consider up to 5 calls. Table presents the distribution of the
observed calls.
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Table 4.5: Summary of the call center data set.

1-st call 2-nd call 3-rd call 4-th call 5-th call
number of calls 49246 7759 1646 488 198
number of events 1416 360 89 32 18

Table 4.6: The call center data set: parameters’ estimates and bootstrap standard
errors.

6 B P
point estimate 0.9973 -0.3006 -0.1211
bootstrap SE  0.1767 0.1046 0.1046

The covariate considered is a type of customer: 1 - for VIP, 2 - medium
importance and 3 - standard customer. Hence, 3; reflects the effect of VIP vs all
others, and S reflects the effect of medium importance vs others.

Table presents the parameter estimates under the Gamma frailty model
along with their bootstrap standard errors, based on 150 bootstrap samples.
The results show that the frailty parameter is close to 1, meaning moderate
dependence between calls of the same customer. The estimates of the regression
coefficients indicate that if a customer is more important, then his/her chance
to abandon before being served is lower than the chance of a less important
customers.

In Table [4.7| we present the estimated values of the baseline hazard functions
calculated at times: 10, 50, 100, 150, 200 and 250 seconds. According to the
results, the values that belong to the first call are smaller than the values of
the other calls, and the values that belong to the fifth call are larger than the
other values. For visual inspection of the estimated baseline hazard functions the
reader is referred to Figure (4.2
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Table 4.7: The call center data set: Estimates of the cumulative baseline hazard

functions.
exponential (I)
1-st call 2-nd call 3-rd call 4-th call 5-th call
bootstrap bootstrap bootstrap bootstrap bootstrap
t Api(t) SE Apa(t) Aps(t) SE Aoy (t) SE Aos(t)
10 0.012  0.001 0.010 0.002 0.009 0.003 0.009 0.005 0.030 0.012
50 0.027  0.002 0.039 0.004 0.034 0.007 0.026 0.009 0.057 0.022
100 0.051 0.003 0.085  0.007 0.080 0.015 0.065 0.016 0.151  0.048
150 0.075 0.004 0.152 0.014 0.132 0.023 0.155 0.046 0.178  0.062
200 0.108 0.006  0.221 0.020 0.174  0.029 0.266 0.069 0.305 0.105
250 0.148  0.009  0.301 0.026  0.256  0.040 0.407  0.107  0.553  0.183
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Figure 4.2: Estimates of the cumulative baseline hazard functions.
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It is evident that the baseline hazard function of the first call is always below

the other hazard functions, and the function of the fifth call is almost always

above the others. For the other functions one could say that the differences are

not so obvious.
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Table 4.8: The call center data set: results of the paired tests.

calls 1-2 1-3 14 15 2-3
5,(250,74) 0.464 -0.771 -0.051 -0.048 0.027
611(250) 0.039  0.199 0.018 0.016 0.027

5,(250,4)/677(250) -11.915 -3.871 -2.884 -3.019 1.024

p-value <0.001 <0.001 0.002 0.001 0.847
FDR p-value < 0.001 <0.001 0.042 0.003 1.000

calls 2-4 2-5 34 35 4-5
5,(250,74) 0.058 -0.029 -0.014 -0.030 -0.019
611(250) 0.163 0.016 0.016 0.015 0.012

$,(250,4)/671(250)  0.355 -1.841 -0.907 -2.051 -1.493

p-value 0.639 0.033 0.182 0.020 0.068

FDR p-value 1.000 0.096 1.000 0.042 0.422

Now we would like to answer the following question: “Are the functions pre-
sented in Figure really different, or are all these functions merely different
estimators of the same function?”. To answer this question we apply our test for
comparing between each two cumulative baseline hazard functions. The results

of these test are presented in Table 4.8].

Table we present the values of the test statistic S,,(250, %), the estimated
standard error based on , the standardized test statistic, the p-value based
on the standard normal distribution and the corrected p-value based on the FDR
method [I1] for correcting the dependent comparisons. The results show us that
the baseline hazard function of the first call is significantly different from that
of all other calls, even after correcting for multiple comparisons. There is also
a significant difference between the baseline hazard functions of the third and
the fifth calls. Differences between all the other functions are not statistically
significant.

In the following we consider visual and naive way to compare two baseline
hazard functions by using 95% pointwise confidence intervals. The interval for
the baseline hazard function of each call j, 7 = 1,...,5, is created as follows: for
each bootstrap sample we estimate the cumulative baseline hazard function. At
each event time, we estimate the 0.025-quantile by the 4-th ordered estimate and
the 0.975-quantile by the 146-th ordered estimate and these are our lower and

upper bounds of 95% pointwise confidence interval.
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Figure 4.3: Naive 95% confidence intervals of the first and the second calls (left
plot) and the second and the third calls (right plot).
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Figure 4.4: Naive 95% confidence intervals of the first and the fifth calls.

The left plot of Figure presents the 95% confidence interval for the first
(blue) and the second (green) calls. It is evident that there are no intersections
between the two confidence intervals. The right plot of Figure 4.3|is for the
second (green) and the third (red) calls, and Figure 4.4} is for the first (blue) and
the fifth (violet) calls. The two plots of Figure |4.4] are similar but with a different
resolution. It is clear that in such cases as of calls 2 and 3, the conclusion is
obvious, and no statistical test is required. However, for a case such as of calls 1
and 5, our test results provide a clear important information that the two baseline
hazard functions are different.
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4.10 Summary and Future Directions

In this chapter, we considered a model for customer patience. The proposed
model is an extended Cox model with frailty variate, reflecting the heterogeneity
of customers, and different baseline hazard functions, reflecting the customer’s
familiarity with the system. For estimation of parameters, the method proposed
by Gorfine et al. [37] was extended to the case of different baseline hazard func-
tions. The simulation study indicated that our method works well in terms of
bias for finite samples with any level of dependency within customer calls.

We provided a test for comparing two or more baseline hazard functions.
The asymptotic distribution of the proposed test statistic was presented and a
simulation study was conducted. The results of the simulation study show that
our proposed method works well and as expected, gives better results in compare
to the naive approaches that ignores within-subject dependence.

A sample-size formula was derived based on the limiting distribution of our
test statistic under local alternatives. Our simulation study shows that according
to the proposed formula the empirical power is reasonably close to the nominal
value.

The proposed approach was applied to a real call center dataset and it was
found that customers are significantly more patient in their first call. Moreover,
customers that are defined as more important to the system, are willing to wait
longer than the less important customers. In addition, there is a moderate level

of dependence in the waiting behavior of a customer.

4.10.1 Application of the Proposed Approach in Health
Care Data

This research project was motivated by the analysis of call center data, but
our test can also be useful in other research areas. For example, consider the
Washington Ashkenazi Kin-Cohort Study (WAS) (Struewing et al. [81]). In this
study, blood samples and questionnaire were collected from Ashkenazi Jewish
men and women volunteers living in the Washington DC area. Based on blood
samples, volunteers were tested for specific mutations in BRCA1 and BRCA2
genes. The questionnaire included information on cancer and mortality history
of the first-degree relatives of the volunteers.

For the current analysis we consider a subset of the data consist of female

first-degree relatives of volunteers (mother, sisters and daughters). The event is
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the age at diagnosis of breast cancer, and the covariate is the presence or absence
of any BRCA1/BRCA2 mutations in the volunteer’s blood sample. The data
consist of 4,835 families with 1 — 8 relatives and a total of 13,030 subjects.

So far, these data were analyzed under the assumption that the baseline haz-
ard functions are identical to all family members: mother, daughters and sisters.
We want to alow for each generation to have its own baseline hazard function,
where the volunteer’s generation is defined based on year of birth: before 1930

or otherwise.
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Figure 4.5: Estimates of the cumulative baseline hazard functions for the WAS
data by birth year.

We start with reporting on the point estimates. The estimated frailty pa-
11
A 3%
equals f = 1.39 and the estimates of the cumulative baseline hazard functions

rameter under the Gamma(z, ) model equals 6 = 1.86, the regression coefficient
are presented in Figure [£.5] The estimated parameter of the frailty distribution
indicates high dependence among family members. In the near future, we plan
to estimate the standard errors of estimators. It is evident that the baseline risk
of the older generation is always lower than that of the younger generation. Such
a finding supports other publications reporting that cancer rates have risen in
the past years [I7], and it is likely that such a tendency is also as a result of
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the increase in screening programs which detect the cancer in earlier stages [69].
As the continuation of this study we also plan to apply our statistical test for
comparing the two hazard functions. We expect to verify our visual inspection
and observe a significant difference between the two functions.

Another possible example of our model in a medical context is the scenario
where patients suffer a series of events that require hospitalization, and we are
interested in whether the distribution of the length of the k-th hospital stay
depends on k. In this example, though, time probably will be discrete.

4.10.2 Future directions

Our estimation method and statistical test are not limited to a particular frailty
distribution. The simulations and the data analysis were done under the Gamma
frailty model distribution. It could be of importance to see how the results of
the data analysis will vary, if at all, with other choices of frailty distribution.
Also, it is important to check the effect of using a wrong frailty distribution. For
example, the frailty is log-normally distributed, but the analysis is done under
the Gamma distribution.

An important extension of our approach is the prediction of customer pa-
tience. An implementation of the prediction of customer patience in the modern
Customer Relationship Management (CRM) software tools could be a huge ad-
vance in management of call centers. Such an option can significantly improve
customers’ satisfaction without additional financial costs. However, the right
implementation of this feature is not a simple task and it could rise additional
questions related to management science and queuing theory. Another possible
extension of our proposed model could be including of time dependent covariates.

Another future direction in customer patience analysis is to analyze the changes
in customer patience with the help of the hazard function. Adjusting the defini-
tion in [42] to our case, at any time point ¢, the hazard function is defined as the
probability of abandonment within a short interval, given that the customer was
in a queue at the beginning of the interval.
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Figure 4.6: Estimates of the baseline hazard functions for the call center data.

Figure [4.6| presents smooth hazard functions for customer patience while wait-
ing for agent service based on the analysis presented in Section 4. These func-
tions are calculated as the derivatives of the smoothed cumulative baseline hazard
functions presented in Section 4.9. The results indicate that customer patience
distribution is not a monotone function, and it can be considered as a process
developing over time. Figure demonstrates that the baseline hazard function
of the 1-st call almost linear and lies almost always under all the other baseline
hazard functions. All the other functions are completely different and have a
number of oscillations during the considered time period. More profound sur-
vival analysis of the behavior of such hazard functions will be a very interesting
direction in the analysis of customer patience.

A possible disadvantage of our model is the assumption that customer
patience changes with the number of call consistently for all customers, while,
it could be that these changes have individual features as well. Thus, we could
extend our model and include two random factors: a frailty variate w; at the
customer level, and a frailty variate v;; at a call level of each customer i (i =
1,..,n). Such a model was considered by Aalen et al. [4]. It assumes that
random effects operate multiplicatively on the baseline hazard, and conditional
on the frailties w; and v;, the hazard function of customer patience at call j is of
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the form
/\ij(t|wi,vl-j) = wivij/\oj(t)eﬁTZ“, j = 17 ceey Ty, = 1, . n, (450)

where, for each customer, v;; j = 1,...,m; are i.i.d. random variables with density
function ¢g(v) = g(v; 1) where p is an unknown vector of parameters. The frailty
v;; can also be regarded as the set of covariates of call j that are not included
in Z;; because they are not measured. This is a hierarchical frailty model with
two-levels of frailty: shared frailty at the customer level and unshared frailty at
the call level of each customer.

We grouped the customer’s calls in “series of retrials”. Hence, for studying
the effect of “series of retrials” we can consider the following model

Nije(tlwi, yi) = wiykhjg(t)eBTZ"ﬂ“, k=1,.,l, j=1,.,my,, i=1,..n,
(4.51)
where y;, is the frailty variate of the k-th series of a specific customer, [; is the
total number of series of the customer, and m, is the total number of calls of
series k. This is also a hierarchical frailty model with two-levels of frailty: shared
frailty at the customer level and shared frailty at the “series of retrials” level of
each customer.

The hierarchial frailty model is also considered by Aalen et al. [4] under
frailty distributions determined by non-negative Lévy processes, which includes
Power Variance Function (PVF) distributions. The PVF distributions include the
gamma, positive stable, inverse Gaussian and compound Poisson distributions as
special cases (see [1] and [42] for details). The implementation of such models
can be a possible direction for further analysis.

The process of waiting on line before being served can be affected by factors
developing with the time. For example, at the beginning a customer is expecting
to wait a specific period of time, after this period s/he is astonished and after a
while even angry of having to wait. Our frailty model is constant in time, but
there may be a more realistic model which assumes a frailty that develops with
time. This can be modeled by considering frailty as a stochastic process. Con-
ditional on the unobserved frailty variate W (¢), the hazard function of customer
patience would be of the form

ho(OW ()P Wi, j=1,...m,. (4.52)

Here, W (t) is a stochastic process.
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Chapter 5

DISCUSSION AND
CONCLUSIONS

Call centers are intended to provide and improve customer service, marketing,
technical support, etc. Therefore, the right management of a call center is a very
important and crucial issue, that has to take into account many aspects. In our
work we constructed and analyze an analytical model of a typical call center.

Operational performance measures, such as the probability for a busy signal,
the probability of abandonment and average wait for an agent were calculated
in this work. The calculations of these measures are cumbersome and they lack
of insight. We thus approximated the measures in the QED asymptotic regime,
which is suitable for moderate to large call centers. The approximations are easy
to calculate for any number of agents.

A detailed comparison between exact and approximated performance shows
that the approximations often work perfectly well, even outside the QED regime.
Summarizing our findings through practical rules-of-thumb (expressed via the
offered load). These rules were derived via extensive numerical analysis of our
analytical results.

The approximations that have been developed can support the operations
management of a call center, for example when trying to maintain a pre-determined
level of service quality. We analyzed approximations of a real call center by mod-
els with and without an IVR, in order to evaluate the value of adding an IVR.
Using real call center data we provided an analysis which was intended to connect
theoretical investigations to real management problem solving and to allow the
evaluation of the quality and robustness of the analytical results.

Our data analysis showed that the assumptions of exponentially distributed
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service times does not take place, neither for IVR service nor for agent service.
Similarly, the assumption that the arrival process is homogeneous Poisson is
also overly simplistic. This problem was solved by division of the day into half-
hour intervals. In this way, we find that within each interval the arrival rate
is more or less constant and thus, within such intervals, we treated the arrivals
as conforming to a Poisson process. The validation of our models against the
US Bank Call Center demonstrated that the accuracy of the approximations is
satisfactory. The approximated values in many intervals are very close to actual
performance measures.

An extensive analysis of real call center data shows that a little change of
parameters can dramatically change performance. Thus, the second part of our
work is devoted to analysis of our model primitive, namely, customers patience,
which is treated as a process. The provided study is a first attempt to apply
frailty models to customer patience analysis. We suggested a novel statistical
model and estimation procedure that was investigated theoretically and by ex-
tensive simulation studies. This model, together with the evident characteristics,
allows taking into account personal customer features and customer experience
with the system. This model provides an advance in customer patience analysis.
We provided a computer program which enables convenient application and the
possibility of processing large data samples by using our method of analysis.

We proposed a new test for comparison of two or more nonparametric baseline
hazard functions considering dependent observations. Our test helps to analyze
the influence of customer experience on his/her waiting behavior. The possible
extension of our results may allow call center managers to define appropriate rout-
ing and priority rules for arriving calls on two different levels: for all customers
and for each customer personally.

This thesis combines developing novel statistical models and tests, and anal-
ysis of real data sets. We expect that our research will contribute to a better
understanding of customer habits, needs and expectations and this will have an
impact on the improvement of call center operations, providing high quality ser-
vice with lower costs. Therefore, we expect our work to be of both practical and
theoretical importance.

We believe that some of the statistical models and procedures that were de-
veloped in this work, in particular the ones for customer patience analysis, can
be applied in many other areas such us medicine, economics and industry where

survival analysis is a very popular tool.
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APPENDIX

A.1 The Estimation Procedure

HHHH
# Name: estimation.R

#

# Purpose: To find estimates of the our proposed model

#

# Arguments:

# n:  number of customers;

# J. number of calls;

# m: number of observed times;

# theta: frailty parameter;

# beta:  vector of regression’s coefficients;

# lam: matrix of cumulative baseline hazard functions estimates
# with dimension (mx(J+1));

# T. matrix of observed times (nxJ);

# z:  matrix (nxJ);

# D:  matrix (mx(J+1));

# delta: matrix of indicators of events (nxJ).

T R

source("functions.R")

x=c(theta,beta)

T<-T.data(data)

z<-Z.data(data)

D<-D.data(T,data)
delta<-delta.data(data)
lam<-lam.est(data, T ,theta,delta,z,D,beta)
J=dim(T)[2]

a<-lam[,1]
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est.lam<-matrix(rep(0,(length(a))*(J+1)),length(a),(J+1))
x=¢(0.5,1,1) # initialization of estimated parameters

theta.est <- x[1]

beta.est <- x[2:length(X)]

repeat{
est.theta.old<-x[1]
repeat{

beta.est.old<-x[2:length(x)]
est.lam.old<-est.lam

est.lam<-lam.est(y.data,T,theta.est,delta,z,D,beta.est)
estb<-nlminb(x[2:length(x)],0bj=InLb,dat=data0,theta=x[1],
z,lam=est.lam,delta, T=T)
beta.est<-estb$par #result of optimization procedure
diffl<-max(abs(est.lam-est.lam.old)) # calculation of differences
diff2<-max(abs(beta.est-beta.est.old))
X[2:length(x)]<-beta.est
if ((diffl < 107(-3)) & (diff2 < 107(-5))) break

estt<-nlminb(x[1],0bj=InLt,dat=data0,beta=x[2:length(x)],z,lam=est.lam,delta, T)
theta.est<-estt$par # result of optimization procedure

diff3=abs(theta.est-est.theta.old)
X[1]<-theta.est

if (diff3<(107(-5))) break
est.lam<-lam.est(y.data, T,x[1],delta,z,D,x[2])

¥
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A.2 The Cumulative Baseline Hazard
Functions

HHHHHHHHH R R R R R
# Name: functions.R

#

# Purpose: Main functions used in estimation procedure.

#
#

HoHF HHHHHHHEHHFHH

New arguments:
tt:
lampred:

lampred_f:

e:

psi:
lam:
dlam:
L:

vector of observed times;

matrix of estimated values of cumulative baseline hazard functions,
calculated at observed times, using as values at the previous step;
matrix of estimated values of cumulative baseline hazard functions,
calculated at observed times, using as values at the current step;
matrix of exponents with power of product of regression’s coefficients and
covariets;

matrix of values of function H defined in Section 4.4;

matrix of number of events over each call of each customer;

vector of estimations of the frailty values;

matrix of cumulative baseline hazard functions estimates;

matrix of jump values of cumulative baseline hazard functions;
loglikelihood function;

HEHH B R R B R B R B B BB BB R R R

HHH T R R
#Calculation of the estimation for cumulative baseline hazard function
HHH R R R

lam.est<-function(y.data, T,theta,delta,z,d,beta){
##vector of event times

J=max(y.data[,5])
a<-y.data[y.data[,3]==1,]
a<-a[!duplicated(a[,2]),2]
a<-aforder(a)]
R
##vector of all times
tt=T[,1]

for(j in 2:3){
tt<-c(tt, T[,j1)

}
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tt<-tt[!duplicated(tt)]
tt<-sort(tt)
if(tt[1]>0){tt=c(0,tt)}
last_t=tt[length(tt)]
n=dim(T)[1]

if(tt[1]1>0){tt=c(0,tt)}
lampred<-matrix(rep(0,(length(tt))*(J+1)),length(tt),(J+1))
lampred_final<-matrix(rep(0,(n)*J),n,J)
lampred[1:length(tt),1]<-tt

q=1

qg=c(1,1)

if(a[1]>0){a=c(0,a)}

dlam<-vector()
lam<-matrix(rep(0,(length(a))*(J+1)),length(a),(J+1))
lam[,1]<-a

e<-e.data(z,beta,J)
N<-matrix(rep(0,n*J),n,J)
H<-matrix(rep(0,n*J),n,J)

b<-vector()

f<-vector()

y=NA
dal=matrix(rep(0,(J+1)*n),(J+1),n)
da2=matrix(rep(0,(J+1)*n),(J+1),n)
up<-vector()

down<-vector()

downl<-vector()

dlaml<-vector()

#####H Update of values of the baseline hazard functions #######
for(i in 2:(length(a))){

repeat{

lampred[qqg[1],2]=lam[i-1,2]

qq[1]=qq[1]+1

if(lampred[qq[1],1]>=a]i] | lampred[qq[1],1]>a[length(a)]
[lampred[qq[1],1]==max(T[,1])) break

}
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#i##H# Update of values of the baseline hazard functions #######
for(i in 2:(length(a))){

repeat{

lampred[qq[1],2]=lam[i-1,2]

qa[l]=qa[1]+1

if(lampred[qqg[1],1]>=a[i] | lampred[qqg[1],1]>a[length(a)]

[lampred[qq[1],1]==max(T[,1])) break

}

repeat{

lampred[qq[2],3]=lam[i-1,3]

qa[2]=qq[2]+1

if(lampred[qq[2],1]>=a[i] | lampred[qq[2],1]>a[length(a)]

[lampred[qq[2],1]==max(T[,2])) break

}
dal=lampred[match(T[,1],lampred[,1]),]
wl=dal[,1]['dal[,1] %in% y]
w2=dal[,2]['dal[,2] %in% y]
lampred_final[,1]=ifelse(wl<a[i-1],w2,lampred[lampred[,1]==a[i-1],2])
da2=lampred[match(T[,2],lampred[,1]),]
wwl=da2[,1]['da2[,1] %in% y]
ww2=da2[,3][!da2[,3] %in% y]
lampred_final[,2]=ifelse(ww1<a[i-1],wwz2,lampred[lampred[,1]==a[i-1],3])
taub=rep(a[i-1],J)
down<-rep(0,J)
dlam<-rep(0,J)
A calculation of denominator ###HHHEHHHHHHHE
N<-delta[,]*ifelse(T[,]<=taub,1,0)
H[,]J=lampred_final[,]*e[,]
psi<-(rowSums(N)+(1/theta))/(rowSums(H)+(1/theta))
for(j in 1:J)

{

up[j]<-(D[i-1,j+1])
down[j]<-sum(psi*(ifelse(T[,j]>=a[i],1,0)*e[,j]))
if(down[j]>0)dlam[j]=up[j]/down[j] else dlam[j]=0

}
b=lam[i-1,2:(J+1)]
lam[i,2:(J+1)]<-b+dlam
}

return(lam)

}
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R R R R S R R R R
#Calculation of the estimation for loglikelihood function
U
InLb<-function(beta,theta,z,lam,delta, T){

n=dim(T)[1]

J=dim(T)[2]

nnn=dim(lam)[1]

Inl=1

lamO0=LM(lam[2:nnn,], T,J)

lamO=lamO[!lamO0[,1]==0,]

e<-e.data(z,beta,J)

bt<-b.data(z,beta,J)

L<-0

H=0

LL<-vector()

LL=c(0)

a<-lamoO[,1]

b<-a[length(a)]

#N<-N.c(delta,T,b)

N<-vector()

N<-rowSums(delta[,]*ifelse(T[,]<=b,1,0))

for(i in 1:n){
H<-0
for (j in 1:J){
if(T[i,j]>0){
if(delta[i,j]>0){
L<-L+delta[i,j]*bt[i,j]
}
H<-H-+lamO[lamO[,1]==TT[i,j],(+1)]1*e[i,j]
}
}
Inl=1

for(m in 0:(N[i]-1))

Inl=Inl*(m+1/theta)

}
L<-L-(log(theta))/(theta)-(N[i]+1/theta)*log(H+1/theta)+
ifelse(N[i]>0,log(Inl),0)

LL=c(LL,L)
}
return(-L)

}
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A.3 Estimation for the Variance of S,{7, 7}

R R R
# Name: functions.R

#

# Purpose: Main functions used in estimation procedure.

#

# New arguments:

# S value of statitic;

# V: value of estimator of variance (naive);

# V1 value of estimator of variance (Song et al.);

# V2: value of estimator of variance (&7, (250) );

# V3: value of estimator of variance (&} (250));

# varw: matrix of estimations of frailty calculated at each observable time;
# dlam: matrix of jJump values of cumulative baseline hazard functions;
# plam: matrix of 1,/7i(t)e/3’z“Yij (t);

# blam: matrix of eﬂz”Yij (t);

R R
source(*'functions.R")

a=D[,1]

al=D[D[,2]==1,1]
a2=D[D[,3]==1,1]

DD=vector()

b=0

kkk=length(a[a[]<0.1])
kl=length(al[al[]<0.1])
k2=length(a2[a2[]<0.1])
item=matrix(rep(0,250*8),250,8)

dlamO<-ylam.data(data, T ,theta,delta,z,D,beta)

dlam=dlam0

SO=sum((dlam[2:(kkk+1),3]*DJ[1:kkk,2]-
dlam[2:(kkk+1),2]*D[1:kkk,3])/(dlam[2:(kkk+1),3]+dlam[2:(kkk+1),2]))
for(k in 1:k1){

Y 1=dlam[dlam[,1]==al[K],2]

Y2=dlam[dlam[,1]==al1[k],3]

Y'Y 1=vector()
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plam=plam.data(data, T,theta,delta,z,D,beta,al[k])
blam=Dblam.data(data, T theta,delta,z,D,beta,al[k])

X1=ifelse(T[,1]<al[k],0,Y2/(Y1+Y2)*(-plam[,1]/Y1))
XT7=ifelse(T[,1]<=al[Kk],0,((Y2/(Y1+Y2)) 2)*plam[,1]/Y1)
X3=(Y2/(Y1+Y2))*(delta[,1]*ifelse(T[,1]==al[K],1,0))*(1-plam[,1]/Y1)

item[,1]=item[,1]+ifelse(X3>0,X3,X1)
item[,3]=item[,3]+(Y2*Y1/(Y1+Y2))"2*ifelse(T[,1]<al[K],0,
(blam[,1]/(Y1"3)))

item[,5]=item[,5]+X7

}

for(k in 1:k2){
Y1=dlam[dlam[,1]==a2[k],2]
Y2=dlam[dlam[,1]==a2[k],3]

plam=plam.data(data, T,theta,delta,z,D,beta,a2[k])
blam=Dblam.data(data, T theta,delta,z,D,beta,a2[k])

X2=ifelse(T[,2]<a2[K],0,Y1/(Y1+Y2)*(-plam[,2]/Y2))
X8=ifelse(T[,2]<=a2[K],0,((Y1/(Y1+Y2)) 2)*plam[,2]/Y2)
X4=(Y1/(Y1+Y2))*(delta[,2]*ifelse(T[,2]==a2[k],1,0))*(1-plam[,2]/Y2)

item[,2]=item[,2]+ifelse(X4>0,X4,X2)
item[,4]=item[,4]+(Y2*Y1/(Y1+Y2)) 2*ifelse(T[,2]<a2[K],0,
(blam[,2]/(Y2"3)))

item[,6]=item[,6]+X8

x1=0

x2=0

x3=0

e<-e.data(z,beta,2)

a=D[,1]

b=0

varw=varw.data(data, T,theta,delta,z,d,beta,a[kkk])

varwl=varw
varw2=varw
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for(s in 1:k){
for(u in 1:k){
varw=varwl[,max(u,s)]
Y 1=dlam[dlam[,1]==a[s],3]/((dlam[dlam[,1]==a][s],2]
+dlam[dlam[,1]==al[s],3])"2)

Y2=dlam[dlam[,1]==a[u],3]/((dlam[dlam[,1]==a[u],2]
+dlam[dlam[,1]==al[u],3])"2)

item[,7]=ifelse(T[,1]>=max(al[s],al[u]),e[,1]*e[,1]*varw,0)
x1=x1+Y1*Y2*sum(item[,7])
}
b

for(s in 1:k){
for(u in 1:k){
varw=varw2[,max(s,u)]
Y 1=dlam[dlam[,1]==a [s],2]}/((dlam[dlam[,1]==a2][s],2]
+dlam[dlam[,1]==a2[s],3])"2)
Y2=dlam[dlam[,1]==a2[u],2]/((dlam[dlam][,1]==a2[u],2]
+dlam[dlam[,1]==a2[u],3])"2)

item[,7]=ifelse(T[,2]>=max(a2[s],a2[u]),e[,2]*e[,2]*varw,0)
X2=x2+Y 1*Y2*sum(item[,7])

¥
¥

for(s in 1:k){
for(u in 1:k){
if(u<s){varw=varwl[,s]}else{varw=varw2[,u]}
Y1l=dlam[dlam[,1]==a]s],3]}/((dlam[dlam[,1]==2a[s],2]
+dlam[dlam[,1]==a]s],3])"2)
Y21=dlam[dlam[,1]==a[u],2]}/((dlam[dlam[,1]==a[u],2]
+dlam[dlam[,1]==a[u],3])"2)

item[,8]=ifelse(T[,1]>=al[s]&T[,2]>=a2[u],e[,1]*e[,1]*varw,0)
x3=x3+Y11*Y21*sum(item[,8])

¥
k
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#H#

# Naive

#H#
V=sum(item[,5])+sum(item[,6])

H

# Song et al.

Hit
V1=sum(item[,1:2]"2)

Hit

# Our

Hi
V2=sum(item[,3])+sum(item[,4])

H#H#

# Our full variance estimator

H#H#

V3 =sum(item[,3])+sum(item[,4])+x1+x2-2*x3
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A.4 Sample Size Calculation

R
# Name: sample_size.R

#

# Purpose: Sample size calculation.

#

# New arguments:

# TO: expected value of statistic calculated according to the formula proposed in

# Section 4.6;

# epsilon: power of exponent reflecting the difference between the two baseline hazard
# functions;

# Sigma2:  value of estimator of variance (&}, (250) ).

HEHBHBHBHBH BB R R R

data <-read.table(dat[i],sep=""",header=FALSE)
delta<-delta.data(data)

NN=100
lamO<-read.table(res[i],sep="",header=FALSE)
n=(dim(lam0)[1])/3

lam_0=cbind(lamO[1:n,1],lamO[(n+1):(2*n),1],lamO[(2*n+1):(3*n),1])
lam=lam_0[2:n,]

x=lam_0O[1,]

theta<-x[1]

beta<-x[2:3]

T<-T.data(data)

z<-Z.data(data)

D<-D.data(T,dataw)

a=D[D[,1]<0.2,1]

kkk=length(a)

data=data_new
dlam0O<-ylam.data(data, T theta,delta,z,D,beta)
dlam=dlamO

TO=epsilon”2*((sum(delta[,1])+sum(delta[,2]))/NN)"2/4
TT=c(TT,T0)

al=D[D[,1]<0.2&DI[,2]==1,1]
a2=D[D[,1]<0.2&D[,3]==1,1]

k1l=length(al)

k2=length(a2)
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item=matrix(rep(0,NN*8),NN,8)
for(k in 1:k1){
Y1=dlam[dlam[,1]==al[k],2]
Y2=dlam[dlam[,1]==al[k],3]

plam=plam.data(data, T theta,delta,z,D,beta,al[k])
blam=blam.data(data, T theta,delta,z,D,beta,al[k])

item[,3]=item[,3]+(Y2*Y1/(Y1+Y2))"2*ifelse(T[,1]<al[K],0,
(blam[,1]/(Y1"3)))
}

for(k in 1:k2){

Y1=dlam[dlam[,1]==a2[k],2]
Y2=dlam[dlam[,1]==a2[k],3]
plam=plam.data(data, T theta,delta,z,D,beta,a2[k])
blam=blam.data(data, T theta,delta,z,D,beta,a2[k])

X4=(Y1/(Y1+Y2))*(delta[,2]*ifelse(T[,2]==a2[K],1,0))*(L-plam[,2]/Y2)

item[,4]=item[,4]+(Y2*Y1/(Y1+Y2))"2*ifelse(T[,2]<a2[K],0,(blam[,2]/(Y 2"*3)))
¥

V2=c(V2,(sum(item[,3])+sum(item[,4]))/(NN))
Sigma2=(sum(item[,3])+sum(item[,4]))/(NN)
n_sample=c(n_sample,(1.9644854+0.84162)"2*sigma2/TT[i])
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