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Abstract: In this work we provide a new class of test statistics for hypothesis testing of the

equality of the baseline hazard functions for correlated survival data under frailty models.

The asymptotic distribution of the test statistics is investigated theoretically under the null

hypothesis and certain local alternatives. We also provide a simple variance estimator. The

properties of the test statistics, under finite sample size, is studied by an extensive simulation

study and we verify the control of Type I error and our proposed sample size formula. To the

best of our knowledge, this is the first work for comparing the baseline hazard functions of

correlated survival outcomes with covariates and frailty models. The utility of our proposed

estimating technique is illustrated by the analysis of the call center data of an Israeli commercial

company that processes up to 100,000 calls per day and the analysis of the breast cancer data

of the Washington Ashkenazi Kin-Cohort family study.

Key words and phrases: Customer Patience, Frailty Model, Hypothesis Testing, Local Alterna-

tives, Multivariate Survival Analysis.

1. Introduction

Call centers are intended to provide and improve customer service, marketing, technical

support, etc. For a customer, addressing the call center actually means addressing the

company itself, and any negative experience on the part of the customer can lead to the

rejection of company products and services. Hence, it is very important to ensure that a

call center works effectively and provides high quality service to its customers. Call centers

collect a huge amount of data, and this provides a great opportunity for companies to

use this information for the analysis of customer needs, desires, and intentions. Such data

analysis can improve the quality of customer service and decrease costs.

This work was motivated by the analysis of customer patience, which we define as a

willingness of customer to endure waiting in a queue before receiving service. The compli-

cation of customer patience analysis is that in most cases customers receive the required

service before they lose their patience and we do not observe the customer patience. Such

incomplete data motivates us to use statistical model under the setting of survival analysis

with right censoring. In our context, an event is the customer abandonment of the system

before being served. For a customer who receives service, his/her patience time is not fully

observed and is considered as censored. Hence, for each customer, at each call, the observed

time is the time until abandonment (patience time) or time until being served, whichever

comes first. The data consists of customer calls with possibly multiple calls for a customer.

We believe that the observed times of the same customer are not independent. Therefore,

the Cox proportional hazard model cannot be used directly, and we use a well-known and

popular approach that deals with clustered data - the frailty model approach (Ripatti and
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Palmgren, 1978; Klein, 1992; Nielsen et al., 1992; Murphy, 1994; Parner, 1998, Hougaard,

2000 and references therein). The frailty model to be used in this work is the extended

Cox model where the frailty variate acts multiplicatively on the baseline hazard function.

In addition, different unspecified baseline hazard functions are being determined for each

call, since it could be that customer behavior changes as s/he becomes more experienced

with the system. Then, the main objective of this work is to provide a test statistic for

comparing the cumulative baseline hazard functions.

A detailed review of estimation methods and frailty model testing can be found in

Hougaard (2000). In particular, Nielsen et al. (1992) and Klein (1992) considered non-

parametric maximum likelihood estimators under the gamma frailty. Murphy (1994) showed

the consistency and asymptotic normality. Later, Parner (1998) extended these results to

the model with covariates. Zeng and Lin (2007) presented an estimation technique for a

class of semi-parametric regression models, which also includes random effects with any

random effect distribution. They provided a semi-parametric maximum likelihood estima-

tors, based on the EM algorithm, together with their asymptotic properties. A noniterative

estimation procedure for estimating the hazard functions under any frailty distribution with

finite moments was proposed by Gorfine et al. (2006). The detailed proof of the asymptotic

properties of their proposed estimators was provided by Zucker et al. (2007). In this work

we extend the method of Gorfine et al. (2006) to address the case of different baseline

hazard functions.

The most popular test statistic for testing the equality of two hazard functions is the

weighted log-rank test. Often the weighted log-rank statistics were constructed for inde-

pendent samples (Lawless and Nadeau, 1995; Cook et al., 1996; Eng and Kosorok, 2005).

Comparison of two treatments based on clustered data with no covariates was presented by

Gangnon and Kosorok (2004). They used the weighted log-rank test statistic and presented

a simple sample size formula. Song et al. (2008) studied a covariate-adjusted weighted log-

rank statistic for recurrent events data while comparing between two independent treatment

groups. To the best of our knowledge, so far there is no published work for comparing the

baseline hazard functions of correlated survival outcomes with covariates and frailty models.

One of the most widely used sample size formulas for the log-rank test under the setting

of two independent samples is that of Schoenfeld (1983). This formula was developed under

the assumption that the hazard functions are not time varying. A sample-size formula

while adopting the idea of Schoenfeld (1983) and extending the class of alternatives was

presented by Fleming and Harrington (1991). Later, Kosorok and Lin (1999) proposed a

class of contiguous alternatives for the power and sample size calculations. This class was

used for sample size calculations for clustered survival data, with no covariates (Gangnon

and Kosorok, 2004), for the supremum log-rank statistic (Eng and Kosorok, 2005) and for

covariate-adjusted log-rank statistic for independent samples (Song et al., 2008). In all the

above works, the sample size formula was developed under simplifying assumptions, such as

assuming identical censoring distributions and consistent difference between the two hazard

functions.

The rest of the article is organized as follows. Section 2 presents the notation and the

model formulation. The estimation procedure and the asymptotic properties of the esti-

mators are presented in Section 3. A new test for comparing two or more baseline hazard
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functions in the case of clustered data is provided in Section 4. In Section 5 we propose a

sample size formula for given significance level and power. The proofs and technical details

are presented in the Appendix. The performance and utility of our proposed estimation

technique, the test statistic and the sample size formula are illustrated in Section 6, by

extensive simulation study. Then, in Section 7, we apply our approach to a real call center

data set, and a breast cancer data set from the Washington Ashkenazi Kin-Cohort Study.

Our conclusions are set out in Section 8.

2. Notation and formulation of the model

In what follows we use the terminology of call center data, although, it is obvious that

this work is of practical importance in other fields, as is demonstrated in Section 7. Consider

n customers, where customer i has mi calls (mi ≤ m for all i = 1, ..., n). Later, we consider

real data analysis with a maximum of 5 calls for each customer (m = 5). We assume

that the waiting behavior of each customer does not depend on the waiting behavior of

other customers. Let T 0
ij and Cij denote the failure and censoring times, respectively,

for call j of individual i (i = 1, ..., n, j = 1, ...,mi). The observed follow-up time is

Tij = min
(
T 0
ij , Cij

)
, and the failure indicator is δij = I

(
T 0
ij ≤ Cij

)
. For call j of customer

i we observe a vector of covariates Zij and assume that the waiting behavior of customer

i (i = 1, ..., n) is influenced by some additional unobservable subject-dependent properties

which are represented by the frailty variate wi.

The conditional hazard function of the patience of customer i at the j-th call given the

frailty wi, is assumed to take the form

λij(t) = λ0j(t)wie
βTZij i = 1, ..., n j = 1, ...,mi, (2.1)

where λ0j(t) is an unspecified baseline hazard function of call j and β is a p-dimensional

vector of unknown regression coefficients. In this model, the baseline hazard functions are

assumed to be different at each call, since it could be that customer behavior changes as

s/he becomes more experienced with the system. It is also possible to consider a model

with different regression coefficient vectors βj , but for simplicity of presentation we assume

that βj = β, for all j. We also assume the following standard assumptions:

(A.1) The frailty variate wi is independent of mi and Zij j = 1, ...,mi.

(A.2) The frailty variates wi i = 1, ..., n are independent and identically distributed random

variables with a density of known parametric form, f(w) ≡ f(w; θ), where θ is an

unknown vector of parameters.

(A.3) The vector of covariates Zij is bounded.

(A.4) The random vectors (mi, T
0
i1, ..., T

0
imi
, Ci1, ..., Cimi , Zi1, ..., Zimi , wi), i = 1, ..., n, are

independent and identically distributed, and the model will be built conditional on

mi i = 1, ..., n.

(A.5) Given Zij j = 1, ...,mi and wi, calls of customer i are independent.
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(A.6) Given Zij j = 1, ...,mi and wi, the censoring is independent and noninformative for

wi and (β, {Λ0j}mi
j=1).

3. Estimation

The main goal of this work is to provide a test for comparing two or more baseline

hazard functions. However, our proposed test requires estimators of the unknown param-

eters: β, θ as well as {Λ0j(t)}mj=1. A simple estimation procedure that provides consistent

estimators is given in the next section.

3.1. The Proposed Estimation Procedure

Our estimation procedure is a direct extension of Gorfine et al. (2006) which handles

any frailty distribution with finite moments. We extend this method to the case of different

baseline hazard functions, λ0j(t), and describe it in short so the current paper will be

self-contained.

According to our model (2.1), the full likelihood can be written as

L =

n∏
i=1

mi∏
j=1

{λ0j (Tij) e
βTZij}δij

n∏
i=1

∫ ∞
0

wNi·(τ)e−wHi·(τ)f(w)dw,

where τ is the maximal follow-up time, Hij(t) = Λ0j (Tij ∧ t) eβ
TZij , Λ0j(t) =

∫ t
0 λij(s)ds,

a ∧ b = min(a, b), Hi·(t) =
∑mi

j=1Hij(t), Nij(t) = δijI (Tij ≤ t) and Ni·(t) =
∑mi

j=1Nij(t).

As in Gorfine et al. (2006), let γ =
(
βT , θ

)T
, and for simplicity assume that θ is a

scalar. If θ is a vector, the calculation can be derived in a similar way. The score vector,

denoted by U(γ,
{

Λ0j

}m
j=1

) = (U1, ..., Up, Up+1)T , is determined as follows

Ur =
1

n

n∑
i=1

mi∑
j=1

[
Zijr

{
δij −Hij(Tij)

}∫∞
0 wNi·(τ)+1 exp{−wHi·(τ)}f(w)dw∫∞

0 wNi·(τ) exp{−wHi·(τ)}f(w)dw

]

for r = 1, ..., p, and

Up+1 =
1

n

n∑
i=1

∫∞
0 wNi·(τ) exp{−wHi·(τ)}f ′(w)dw∫∞
0 wNi·(τ) exp{−wHi·(τ)}f(w)dw

,

where f ′(w) = df(w)/dθ. The estimation procedure consist of two main steps. One is to

estimate γ by substituting estimators of
{

Λ0j

}m
j=1

into the score equations U(γ,
{

Λ0j

}m
j=1

) =

0. The other is to estimate
{

Λ0j

}m
j=1

given the estimated value of γ. To this end, we provide

here the estimators of
{

Λ0j

}m
j=1

. Define Yij(t) = I(Tij ≥ t) and the entire observed history

Ft up to time t as

Ft = σ
{
Nij(u), Yij(u), Zij , i = 1, ..., n; j = 1, ...,mi; 0 ≤ u ≤ t

}
.

To simplify notation, we define Zij = 0 and Nij(t) = Yij(t) = 0 for all t ∈ [0, τ ] for each

mi < j ≤ m and i = 1, ..., n. As shown in Parner (1998), applying the innovation theorem
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(Andersen et al., 1993) to the observed history Ft, the stochastic intensity process of Nij(t)

with respect to Ft is given by

λ0j(t) exp(βTZij)Yij(t)ψi(t), (3.1)

where

ψi(t) = E
(
wi

∣∣∣Ft−) =

∫∞
0 wNi·(t−)+1e−wHi·(t−)f(w)dw∫∞

0 wNi·(t−)e−wHi·(t−)f(w)dw
.

It should be noted that ψi(t) is a function of the unknown parameters γ and
{

Λ0j

}m
j=1

.

Now, let hij(t) = ψi(t) exp(βTZij) and note that given (3.1) it can be considered as a

time-dependent covariate effect. Hence, the estimator of each Λ0j is provided by using a

Breslow-type (Breslow, 1974) estimator as follows. Let Λ̂0j be a step function with jumps

at the observed failure times τjk (k = 1, ...,Kj j = 1, ...,m), where Kj is the total number

of the distinct observed times of type j. Then, the jump size of Λ̂0j at τjk given the value

of γ̂ is defined by

∆Λ̂0j(τjk) =

[
n∑
i=1

dNij(τjk)

]/[ n∑
i=1

ĥij(τjk)Yij(τjk)

]
, (3.2)

where ĥij(t) = ψ̂i(t) exp(β̂TZij) and in ψ̂i(t) we substitute γ̂ and
{

Λ̂0j(t)
}m
j=1

into ψi(t). It

is important to note that each value ∆Λ̂0j(τjk) is a function of
{

Λ̂0j(t)
}m
j=1

, where t < τjk.

Therefore, the estimation procedure is based on ordering the observed failure times of all

the calls in increasing order and estimating
{

Λ0j

}m
j=1

sequentially, according to the order

of the observed failure times.

To summarize, the following is our proposed estimation procedure. Provide initial value

of γ, and proceed as follows:

Step 1 : Given the value of γ estimate
{

Λ0j

}m
j=1

by using (3.2).

Step 2 : Given the value of
{

Λ0j

}m
j=1

, estimate γ by solving U(γ,
{

Λ̂0j

}m
j=1

) = 0.

Step 3 : Repeat Steps 1 and 2 until convergence is reached with respect to
{

Λ̂0j

}m
j=1

and

γ̂.

For the choice of initial values for β we propose to use the naive Cox regression model,

and for θ, take its value under the independence case. If the above integrals are not of closed

analytical form, one can use numerical integration. As was already shown by Gorfine et al.

(2006), such an approach avoids the use of iterative processes in estimating the cumulative

baseline hazard functions.

3.2. Asymptotic properties

In this section, we formulate and summarize the asymptotic results of our proposed

estimators. We denote by γo =
(
βoT , θo

)T
and Λo

0(t) =
{

Λo0j(t)
}m
j=1

the true values of β,
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θ and Λ0(t) =
{

Λ0j(t)
}m
j=1

, respectively.

Claim 3.1. The estimator Λ̂0(t) = {Λ̂0j(t)}mj=1 converges almost surely to a limit Λ0(t, γ)

uniformly in t and γ, with Λ0(t, γ) = Λo
0(t), and n1/2[Λ̂0(t) −Λo

0(t)] converges weakly to

a Gaussian process.

Claim 3.2. The function U [γ, Λ̂0(·)] converges almost surely in t and γ to a limit

u[γ,Λ0(·)].
Claim 3.3. There exists a unique consistent root to U [γ̂, Λ̂0(·)] = 0.

Claim 3.4.The asymptotic distribution of n1/2 (γ̂ − γo) is normal with mean zero and with

a covariance matrix that can be consistently estimated by a sandwich estimator.

The proofs of Claims 3.1 - 3.4 along with all the required additional conditions are

almost identical to those presented in Gorfine et al. (2006) and Zucker et al. (2007), since

the only minor difference is the use of {Λ̂0j(t)}mj=1 instead of a global estimator based on

all the calls together. Hence, the proofs and a detailed list of the additional required as-

sumptions are omitted. It should be noted that although a consistent variance estimator

of γ̂ and
{

Λ̂0j(t)
}m
j=1

can be provided, its form is very complicated. Hence, we recommend

on using the bootstrap approach.

4. Family of weighted tests for correlated samples

4.1. Introduction and preliminaries

Our main objective is to provide a test statistic for comparing the cumulative baseline

hazard functions corresponding to different calls. Namely, we are interested in testing the

hypothesis

H0 : Λ01 = Λ02 = ... = Λ0m = Λ0 (4.1)

where Λ0 is some unspecified cumulative hazard with Λ0(t) < ∞. As noted earlier, the

intensity processes of the counting processes Nij(t) i = 1, ..., n, j = 1, ...,mi, with respect

to Ft has the form hij(t)Yij(t)λ0j(t). However, given the frailty variate wi, the intensity

processes of Nij(t) i = 1, ..., n, j = 1, ...,mi take the form h̃ij(t)Yij(t)λ0j(t) with h̃ij(t) =

wi exp(βTZij).

Let Ȳj(t, γ) =
∑n

i=1 hij(t)Yij(t) and Ỹj(t, γ) =
∑n

i=1 h̃ij(t)Yij(t), and note that

E
[∑n

i=1wiYij(t)e
βTZij

]
= E

[∑n
i=1 ψiYij(t)e

βTZij

]
. Then, by the uniform strong law of

large numbers Andersen and Gill (1982), the functions n−1Ȳj(t, γ) and n−1Ỹj(t, γ) converge

to the same function, if one of them converges.

For deriving the asymptotic properties of our proposed test statistic, we make the

following assumptions:

A.7 Ŵn(s) is nonnegative, cadlag or caglad, with bounded total variation, and converges

in probability to some uniformly bounded integrable function W (s), that is

sup
s∈[0,τ ]

∣∣ Ŵn(s)−W (s)
∣∣ → 0.
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A.8 There exist positive deterministic functions ȳj(s), j = 1, ...,m, such that

sup
s∈[0,τ ]

∣∣ n−1Ȳj(s, γ
o)− ȳj(s)

∣∣ → 0 sup
s∈[0,τ ]

∣∣ n−1Ỹj(s, γ
o)− ȳj(s)

∣∣ → 0,

j = 1, ...,m almost surely, as n→∞.

A.9 Qlj(s, γ
o) = ∂

∂γl

[
Ȳj(s, γ)/Ȳ·(s, γ)

]
γ=γo

l = 1, ..., p + 1 j = 1, ...,m are bounded over

[0, τ ] where Ȳ.(s, γ
o) =

∑m
j=1 Ȳj(s, γ

o).

A.10 There exist deterministic functions glj(s), l = 1, ..., p+ 1 j = 1, ...,m, such that

sup
s∈[0,τ ]

∣∣ Qlj(s, γo)− glj(s) ∣∣ → 0

almost surely, as n→∞.

4.2. Test for equality of two hazard functions

We start by comparing the cumulative baseline hazard functions of two calls. In this

subsection we use indices 1 and 2 for comparing any two baseline hazard functions out of

the m possible functions. The extension to more than two calls will follow. Assume we are

interested in testing the hypothesis

H0 : Λ01 = Λ02 = Λ0. (4.1)

We propose to use the weighted log-rank statistic (Fleming and Harrington, 1991) that

takes the form

Sn(t, γ̂) =
1√
n

∫ t

0
Ŵn(s)

Ȳ1(s, γ̂)Ȳ2(s, γ̂)

Ȳ.(s, γ̂)

{
dΛ̂01(s)− dΛ̂02(s)

}
=

1√
n

∫ t

0
Ŵn(s)

Ȳ1(s, γ̂)Ȳ2(s, γ̂)

Ȳ.(s, γ̂)

{ dN̄1(s)

Ȳ1(s, γ̂)
− dN̄2(s)

Ȳ2(s, γ̂)

}
,

(4.2)

for t ∈ [0, τ ] where Ȳ.(s, γ̂) = Ȳ1(s, γ̂) + Ȳ2(s, γ̂), dN̄j(s) =
∑n

i=1 dNij(s) and the estimators

γ̂ and {Λ̂0j}mj=1 are as defined in Section 3. In practice, one can choose t to be the smallest

s such that
∏m
j=1 Ȳj(s, γ̂) = 0 or any value that is of practical importance.

For deriving the asymptotic distribution of Sn(t, γ̂) it is important to note that given wi
and the intensity process h̃ij(t)Yij(t)λ0j(t), the processMij(t) = Nij(t)−wi

∫ t
0 λ0j(u)eβ

TZijYij(u)du

is a mean-zero martingale with respect to Ft−. Then, given w· =
{
wi
}n
i=1

, the sum of these

martingales M̄j(t) =
∑n

i=1Mij(t) is also a mean-zero martingale with respect to Ft−. Since

Ni1(t) and Ni2(t) are conditionally independent given wi for all i = 1, ..., n, then, given w·,

M̄1(t) and M̄2(t) are uncorrelated martingales.

To simplify the notation, we define

G(s, γ) =
Ȳ1(s, γ)Ȳ2(s, γ)

Ȳ·(s, γ)
, Dn(s, γ) =

Ŵn(s)√
n
G(s, γ), Dn

j (s, γ) =
Ŵn(s)√

n

G(s, γ)

Ȳj(s, γ)

for j = 1, 2. For the asymptotic distribution of our test statistic Sn(τ, γ̂) and its variance

estimator, we start with the following theorem. The proof is presented in Appendix 1.1.



8

Theorem 4.1 Given Assumptions A.1-A.6 and A.9-A.10, the test statistic Sn(t, γ̂) has the

same asymptotic distribution as S̃n(t, γo) + S∗∗n (t), where

S̃n(t, γo) =
1√
n

∫ t

0
Ŵn(s)G(s, γo)

{ dM̄1(s)

Ȳ1(s, γo)
− dM̄2(s)

Ȳ2(s, γo)

}
,

S∗∗n (t) =
1√
n

∫ t

0
Ŵn(s)G(s, γ̂)

{ Ỹ1(s, γo)dΛ01(s)

Ȳ1(s, γ̂)
− Ỹ2(s, γo)dΛ02(s)

Ȳ2(s, γ̂)

}
.

Now, consider S∗∗n (t). By the first order Taylor expansion about γo we get

S∗∗n (t) ≈ 1√
n

∫ t

0
Ŵn(s)

[ Ȳ2(s, γo)Ỹ1(s, γo)

Ȳ·(s, γo)
dΛ01(s)− Ȳ1(s, γo)Ỹ2(s, γo)

Ȳ·(s, γo)
dΛ02(s)

]
+

1√
n

∫ t

0
Ŵn(s)

{
Ỹ1(s, γo)QT

1 (s, γo)dΛ01(s)− Ỹ2(s, γo)QT
2 (s, γo)dΛ02(s)

}
(γ̂ − γo),

(4.3)

where QT
j (s, γo) = (Q1j , ..., Q(p+1)j), j = 1, 2. The second term of the right-hand side

of (4.3) represents the additional variability of Sn(t, γ̂) due to γ̂. Based on Claim 3.4 it is

easy to see that it is asymptotically normal with mean zero. However, this term is expected

to be of a negligible contribution to the total variance, since, γ̂ is being estimated paramet-

rically (Acar et al., 2010, Section 2.3). It should be noted that our extensive simulation

study, presented in Section 6, also supports this argument, as will be discussed there. To

summarize, we formulate the following conclusion.

Conclusion 1. An approximation of the asymptotic distribution of Sn(t, γ̂) is the asymp-

totic distribution of S̃∗n(t, γo) = S̃n(t, γo) + S∗n(t, γo), where

S∗n(t, γo) =
1√
n

∫ t

0
Ŵn(s)G(s, γo)

[ Ỹ1(s, γo)

Ȳ1(s, γo)
dΛ01(s)− Ỹ2(s, γo)

Ȳ2(s, γo)
dΛ02(s)

]
.

We derive the asymptotic null distribution of S̃∗n(t, γo) by the asymptotic distribution

of each of the above two terms. For this end, consider the following theorem. The proof is

sketched in Appendix 1.2.

Theorem 4.2 Given Assumptions A.1-A.8 and under the null hypothesis,

(1) S̃n(t, γo) converges to a zero-mean normally distributed random variable with finite

variance σ2
S̃

(t), as n→∞, where

σ2
S̃

(t) =

∫ t

0
W 2(s)

ȳ1(s)ȳ2(s)

ȳ1(s) + ȳ2(s)
dΛ0(s). (4.4)

(2) S∗n(t, γo) converges to a zero-mean random variable with finite variance σ2
S∗(t) as n→

∞.

(3) The two random variables, S̃n(t, γo) and S∗n(t, γo), are uncorrelated.
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Summarizing the results of Conclusion 1 and Theorem 4.2, under the null hypothesis our
test statistic Sn(t, γ̂) is asymptotically zero-mean normally distributed random variable, and
its asymptotic variance can be approximated by V ar{S̃n(t, γo)} + V ar{S∗n(t, γo)}. Thus,
based on direct calculations of the variances, as presented in Appendix 1.3, we provide the
following variance estimator of Sn(t, γ̂)

σ̂2
I (t) =

∫ t

0
Ŵ 2
n(s)

2∑
j=1

{
Dn
j (s, γ̂)

}2
n∑
i=1

eβ̂
TZijYij(s)Ê(wi)

dN̄j(s)

Ȳj(s, γ̂)

+
2∑
j=1

∫ t

0

∫ t

0
Dn
j (s, γ̂)Dn

j (u, γ̂)
n∑
i=1

Yij(s ∨ u)e2β̂TZij V̂ ar(wi
∣∣ Fs∨u−)dΛ̂0j(s)dΛ̂0j(u)

− 2

∫ t

0

∫ t

0
Dn

1 (s, γ̂)Dn
2 (u, γ̂)

n∑
i=1

Yi1(s)Yi2(u)eβ̂
TZi· V̂ ar(wi

∣∣ Fs∨u−)dΛ̂01(s)dΛ̂02(u).

The first component of σ̂2
I (t) is the estimator of V ar

{
S̃n(t, γo)

}
, and the two other com-

ponents are the estimator of V ar
{
S∗n(t, γo)

}
. For the unconditional expectation estimator

Ê(wi) and the conditional variance estimator V̂ ar(wi
∣∣ Ft) one can use γ̂ and {Λ̂0j(·)}mj=1.

Also, it should be noted that often E(wi) is set to be 1 for the model (2.1) to be identifiable.
In these cases Ê(wi) = 1 i = 1, ..., n (for a comprehensive discussion of identifiability in
frailty models, the reader is referred to Hougaard (2000, Section 7.2). However, as we show
later by extensive simulation study, V ar{S∗n(t, γo)} is of a negligible contribution to the
total variance (less than 10%). Hence, we recommend to estimate the variance of the test
statistic Sn(t, γ̂) by the estimator of V ar{S̃n(t, γo)}. Specifically,

σ̂2
II(t) =

∫ t

0
Ŵ 2
n(s)

2∑
j=1

{
Dn
j (s, γ̂)

}2
n∑
i=1

eβ̂
TZijYij(s)Ê(wi)dΛ̂0j(s). (4.5)

In conclusion, our proposed test statistic is defined by Sn(t, γ̂)/σ̂II(t) (or Sn(t, γ̂)/σ̂I(t))
and the rejection region corresponding to the null hypothesis (4.1) should be defined by the
standard normal distribution.

4.3. Test for equality of m hazard functions
Now we extend the test proposed in the previous section to test the null hypothesis

(4.1) with m > 2 baseline hazard functions. Namely, we compare each of the m estimators

of the cumulative baseline hazard functions
{

Λ̂0j

}m
j=1

with an estimator of the common

cumulative baseline hazard function constructed under the null hypothesis. Let Λ̂0 be the
estimated cumulative baseline hazard function under the null hypothesis (Gorfine et al.,
2006) in which the jump size of Λ̂0 at time s is defined by ∆Λ̂0(s) =

∑m
j=1 dN̄j(s)/Ȳ·(s, γ̂).

We define Sn(t, γ̂) = (Sn1(t, γ̂), ..., Snm(t, γ̂))T to be the m-sample statistic. In the spirit
of (4.2), we define

Snj(t, γ̂) =
1√
n

∫ t

0
Ŵnj(s)

Ȳj(s, γ̂)Ȳ·(s, γ̂)

Ȳj(s, γ̂) + Ȳ·(s, γ̂)

{
dΛ̂0j(s)− dΛ̂0(s)

}
j = 1, ...,m,
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where Ŵnj(s) are nonnegative cadlag or caglad with total bounded variation. However, the
special choice of weight processes such as Ŵnj(s) = Ŵn(s){Ȳj(s, γ̂)+ Ȳ·(s, γ̂)}/Ȳ·(s, γ̂)
j = 1, ...,m, where Ŵn(s) is nonnegative cadlag or caglad with total bounded variation,
covers a wide variety of interesting cases (Andersen et al., 1993, Section V.2). Hence, the
above choice of weight process will be considered here. Then,

Snj(t, γ̂) =
1√
n

∫ t

0
Ŵn(s)Ȳj(s, γ̂)

{
dΛ̂0j(s)− dΛ̂0(s)

}
j = 1, ...,m,

and
∑m

j=1 Snj(t, γ̂) = 0. It is easy to verify that for m = 2, Sn1(t, γ̂) equals (4.2). Similar
arguments used in the case of comparing two baseline hazard functions can be used here,
such that we arrive to the following conclusion.

Conclusion 2. An approximation of the asymptotic distribution of Sn(t, γ̂) is the asymp-
totic distribution of S̃∗n(t, γo) = S̃n(t, γo) + S∗n(t, γo), where the respective j-th components
of S̃n(t, γo) and S∗n(t, γo) are

S̃nj(t, γ
o) =

∫ t

0

Ŵn(s)√
n

Ȳj(s, γ
o)
{ dM̄j(s)

Ȳj(s, γo)
− dM̄·(s)

Ȳ·(s, γo)

}
, (4.2)

S∗nj(t, γ
o) =

∫ t

0

Ŵn(s)√
n

Ȳj(s, γ
o)
{ Ỹj(s, γo)dΛ0j(s)

Ȳj(s, γo)
− Ỹ·(s, γ

o)dΛ0(s)

Ȳ·(s, γo)

}
, (4.3)

where M̄·(s) =
∑n

i=1 M̄j(s).
For the asymptotic distribution of S̃∗n(t, γo) we present the following theorem. A sketch

of the proof can be found in the Appendix 1.4.

Theorem 4.3 Given Assumptions A.1-A.8 and under the null hypothesis,

(1) S̃n(t, γo) converges to a zero-mean multivariate normally distributed random variable
with variance matrix V(t) and its jk-th component is defined by

Vjk(t) =


∫ t

0
W 2(s)

ȳj(s)
∑m

r 6=j,r=1ȳr(s)

ȳ·(s)
λ0(s)ds k = j

−
∫ t

0
W 2(s)

ȳj(s)ȳk(s)

ȳ·(s)
λ0(s)ds k 6= j.

(2) S∗n(t, γo) converges to a zero-mean multivariate normal random variable with covariance
matrix having finite diagonal entries and zero valued non-diagonal entries.

(3) S̃n(t, γo) and S∗n(t, γo) are uncorrelated.

Summarizing our results so far, under the null hypothesis (4.1), Sn(t, γ̂) is asymptotically
normal with mean zero. Using similar arguments as for the case of testing the equality of
two hazard functions, we estimate the variance of Sn(t, γ̂) based on the variance estimator
of S̃n(t, γo). Hence our proposed estimator, denoted by V̂(t), is given by

V̂jj(t) =
1

n

∫ t

0
Ŵ 2
n(s)

n∑
i=1

[{
1− Ȳj(s, γ̂)

Ȳ·(s, γ̂)

}2
Eij(s) +

{ Ȳj(s, γ̂)

Ȳ·(s, γ̂)

}2
m∑
l 6=j

Eil(s)
]

j = 1, ...,m

(4.4)
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and for k 6= j

V̂kj(t) =
1

n

∫ t

0
Ŵ 2
n(s)

[ ∑
l 6=j,k

Ȳj(s, γ̂)Ȳk(s, γ̂)

Ȳ 2
· (s, γ̂)

Êil(s)−
Ȳj(s, γ̂)

Ȳ·(s, γ̂)

n∑
i=1

Êik(s)

− Ȳk(s, γ̂)

Ȳ·(s, γ̂)

n∑
i=1

Êij(s)
]
, k, j = 1, ...,m,

(4.5)

where Eij(s) = Ê(wi)Yij(s)e
β̂TZijdΛ̂0j(s). The details of the derivation of V̂(τ) are pre-

sented in Appendix 1.5. Clearly, V(t) has a rank of m − 1. Hence, we define V̂o(t) as a

(m − 1) × (m − 1) matrix obtained by deleting the last row and column of V̂(t). Also,

let Son(t) =
(
Sn1(t, γ̂), ..., Sn(m−1)(t, γ̂)

)T
. Then, our proposed test statistic is defined by

Son(t, γ̂)T
[
V̂o(t)

]−1
Son(t, γ̂) and the rejection region should be defined by the χ2(m − 1)

distribution.

5. Sample size formula for equality of two hazard functions

In this section, we present a sample size formula under proportional means local alter-

native and certain simplifying assumptions for testing the equality of two baseline hazard

functions. Specifically, let

H1 : Λn0j(s) =

∫ s

0
exp{(−1)j−1ϕ(u)/(2

√
n)}dΛ0(u) j = 1, 2 for all s ∈ [0, τ ],

where Λ0 is some unspecified cumulative hazard function with Λ0(s) <∞ and ϕ(s) 6= 0 for

all s ∈ [0, τ ]. The above local alternatives formulation was originally proposed by Kosorok

and Lin (1999) and also can be found in Gangnon and Kosorok (2004).

It is easy to verify that the above Λn0j j = 1, 2 satisfies the following assumptions:

A.11 For j = 1, 2 sups∈[0,τ ]

∣∣ dΛn0j(s)/dΛ0(s)− 1
∣∣ → 0, as n→∞.

A.12 As n→∞, sups∈[0,τ ]

∣∣ √n{dΛn01(s)/dΛn02(s)−1
}
−ϕ(s)

∣∣ → 0, where ϕ is either

cadlag or caglad with bounded total variation.

We start with the asymptotic distribution of S̃∗n(t, γo), under the above local alternatives.

Theorem 5.1 Given Assumptions A.1-A.12, Sn(t, γo) converges in distribution to a nor-

mal random variable with mean µ1(t) and variance σ2(t), where

µ1(t) =

∫ t

0
W (s)ϕ(s)

ȳ1(s)ȳ2(s)

ȳ1(s) + ȳ2(s)
dΛ0(s) (5.1)

and σ2(t) = σ2
S̃

(t) as defined in (4.4).

A sketched proof of Theorem 5.1 is given in the Appendix 1.6.

Under the above contiguous alternative, we can approximate the power calculation

as follows. For a fixed alternative, set ϕ(t) =
√
nϕ∗(t). Then, by (5.1) and the first
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order Taylor expansion we get that the expectation of Sn(t, γ̂) under the alternative equals
√
nµ∗1(t) + o(

√
n), where µ∗1(t) =

∫ t
0 W (s)ϕ∗(s)

ȳ1(s)ȳ2(s)

ȳ1(s) + ȳ2(s)
dΛ0(s). Now, based on the

limiting distribution of Sn(τ, γ̂), and given significance level α and power π, we get the

following sample size formula

n =
(
Z1−α/2 + Zπ

)2
σ2(t)/{µ∗1(t)}2 (5.2)

where Zp is the p-quantile of the standard normal distribution.

However, in order to calculate the required sample size based on (5.2) one should

estimate σ2(t) and µ∗1(t) based on a pilot study or existing relevant data sets. In what

follows, we propose simple estimators under simplifying assumptions, similar to those of

Song et al. (2008). These simple estimators provide a practical sample size formula.

Assume that the baseline hazard functions are continuous and the local alternatives

satisfy ϕ∗(s) = ε for all s ∈ [0, τ ], where ε ∈ R and the weight function is constant

Ŵn(s) ≡ 1. We also assume that the limiting values of Ȳj(s, γ)/nj are πj(s), j = 1, 2 and

the proportion of customers making the j-th call, nj/n, converges to pj ∈ (0, 1], j = 1, 2.

Then, based on Assumption A.8, we replace ȳj(s) by pjπj(s). In addition, we assume that

π1(s) = π2(s) = π(s). Hence, µ∗1(t) = εR(t)p1p2/(p1 + p2), where R(t) =
∫ t

0 π(s)dΛ0(s). A

simple estimator of R(t) can be obtained by R̂(t) =
∫ t

0{p̂1π̂1(s)dΛ̂01(s)+ p̂2(s)π̂2dΛ̂02(s)} =

n−1
∑2

j=1 N̄j(t). Thus, a simplified sample size formula is given by

n =
(
Z1−α/2 + Zπ

)2
σ̂2
II(t)/{εp̂1p̂2R̂(t)/(p̂1 + p̂2)}2, (5.3)

where σ̂2
II(t) is given by (4.5).

6. Simulation

In this section we present our simulation study aimed to investigate the finite sam-

ple properties of our proposed procedures. The simulations were carried out under the

popular Gamma frailty model with mean 1 and variance θ. We consider three levels of

dependence: independence (θ = 0.01005), mild dependence (θ = 1) and strong dependence

(θ = 4). These values of the frailty parameters were defined based on the Kendall’s τ coef-

ficient (Kendall, 1938). Under the Gamma frailty distribution Kendall’s τ equals θ/(θ+ 2).

Therefore, the respective values of Kendall’s τ for the above values of θ are: 1/200, 1/3 and

2/3. We assume that each cluster is of size 2 and we consider four scenarios: (I) Constant

baseline hazards, λ01(s) = λ02(s) = 1, and the covariates Zi1 and Zi2 are independent and

each was generated from Unif{1, 2, 3}. (II) Constant baseline hazards as above and Zi1
was generated from Unif{1, 2, 3} and Zi2 from Bin(2, 0.25). (III) Weibull baseline hazard

functions with λ01(s) = λ02(s) = 2s, and covariates as in Scenario (I). (IV) Weibull baseline

hazard functions as in Scenario (III) and covariates as in scenario (II). For each covariate

we generated two dummy variables. In all the above Scenarios, β = (1, 2)T . Censoring

times were generated from exponential distribution yielding 70%−80% censoring rate, and

for the test statistic we used t = 0.1 for Scenarios (I) and (II) and t = 0.3 for Scenarios (III)
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and (IV). We consider n = 250 or 500 and the results are based on 1000 random samples

for each configuration.

Tables 1-2 summarize the results of our proposed point estimators {θ̂, β̂, Λ̂01, Λ̂02} and

present the true parameters’ values, the empirical mean and standard deviation of the esti-

mates. For the cumulative baseline hazard functions Λ̂0j(t) j = 1, 2 we consider the values

at (t1, t2, t3, t4) = (0.005, 0.01, 0.05, 0.1). Tables 1-2 verify that our estimating procedure

performs very well in terms of bias.

Table 3 compares the two variance estimators of our test statistic Sn(t, γ̂), σ̂2
I (t) and

σ̂2
II(t), by presenting the following descriptive statistics: the minimum, 1-st quartile, me-

dian, mean, 3-rd quartile and the maximum. It is evident that the differences between the

two estimators are very small even under a strong dependency such as θ = 4. These results

support our recommendation to use the simplified estimator σ̂2
II(t) rather than σ̂2

I (t).

Now, we are comparing between our proposed variance estimator of Sn(t, γ̂) and other

naive variance estimators. One is an estimator that does not take into account the de-

pendence between the samples. We denote this estimator by σ̂2
1(t) and it is easy to verify

that

σ̂2
1(t) =

1

n

∫ t

0
Ŵn(s)

2∑
j=1

n∑
i=1

{ Ȳ3−j(s, γ̂)

Ȳ·(s, γ̂)

}2
dN̄j(s).

The second estimator is the robust estimator of Song et al. (2008) and is given by

σ̂2
2(t) =

1

n

2∑
j=1

n∑
i=1

{∫ t

0
Ŵn(s)G(s, γ̂)dM̂ij(s)

}2
,

where M̂ij(t) = Nij(t)−
∫ t

0 Yij(s)e
β̂TZijdN̄j(s)/Ȳj(s, γ̂) i = 1, ..., n, j = 1, 2. This estimator

was proposed for repeated events where the two baseline hazard functions were estimated

based on independent samples. In Table 4 we present the mean of each variance estimator

and the empirical significance level of a test with Type I error α = 0.05. The empirical

significance level is the percent of tests such that the null was rejected. The results show

that under the independent setting the four methods provide similar results, but as the de-

pendence increases, the differences between our methods and the two other naive methods,

tend to increase as well. The empirical significance level for the other estimators increases

with θ. It is evident, that only our methods perform reasonably well under any dependency

level. In some cases, such as Scenario II with the sample size of 500, the empirical Type

I error of the naive is about 11%. In addition, there are small differences between the

empirical Type I error provided by our two proposed estimators σ̂2
I and σ̂2

II . Hence our

recommendation of using (4.5) for the variance estimate of Sn(t, γ̂), is again being justified.

Now, we provide simulation results to evaluate the proposed sample size formula. All

the three levels of dependence were examined under a two-sided test, with α = 0.05, and

π = 0.80. The baseline hazard functions corresponding to the local alternatives of the form

λ01(s) = exp{ε/2
√
n}λ0(s) and λ02(s) = exp{−ε/2

√
n}λ0(s), where λ0(s) = 1 and ε takes

the values of 0.3, 0.5 or 0.6.

We first generated 100 random samples for each configuration, and based on these

simulated data we calculated the average sample size based on (5.3). These results serve
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as the required sample size with α = 0.05, and π = 0.80. Then, for each configuration

we generated 1000 random samples with the respective sample size. For each sample we

calculated the test statistic Sn(t, γ̂) and its variance estimate σ̂2
II(t). Finally, we calculated

the empirical power based on a two-sided test with α = 0.05, to be compared with the

nominal power of 0.80. The results are presented in Table 5. It is evident that our sample

size formula performs well since the empirical power is reasonably close to the nominal

power 0.80. The results demonstrate that as the difference between the two baseline hazard

functions increases, less observations are required. The sample size formula of Schoenfeld

(1983), (Z1−α/2 + Zπ)2/(2ε2), presented in the last column of Table 5, gives similar values

to that of our formula in the case of independence (θ = 0.01005), as expected. In all other

cases, Schoenfeld’s formula underestimate the required sample size.

7. Data analysis

7.1. Call center data of a financial company

The data we analyze here are provided by a call center belonging to an Israeli financial

company. The data cover a period of almost three years, October 2006 - June 2009. In this

call center a customer requesting service from an agent is redirected to a pool of agents. If all

the agents are busy, the customer waits in a queue. Otherwise, s/he is served immediately.

The customer is not always ready to wait in a queue, and s/he can choose to abandon the

system at any point during the waiting period. After the abandonment the customer may

make an additional call. Customers who have been served may also call again to get an

additional service or in continuation of the previously requested service. In our context, an

event is the customer abandonment of the system before being served. The waiting time

of a customer in a call ended after being served is considered as a censoring time.

The data do not contain any personal information about customers, such as age, so-

cial status or education. Therefore, our analysis will be carried out only on the basis of

the technical characteristics of the call. For the analysis of customer behavior, we use a

notion of a “series” defined as a sequence of consecutive calls of one customer happening

in chronological order. If the time elapsed between two consecutive calls is less than three

days we assume that these calls belong to the same “series”. Otherwise, we assume that

these calls belong to two different series. This separation is based on the assumption that

a customer who has not called for a long time loses his/her experience with the system.

The following analysis consists of 49, 246 customers, with only one series of calls for each

customer, and each customer had not called for at least two months before the beginning

of the series. By this we hope to ensure that customers are not familiar with the current

system at their first call. For each customer we consider up to 5 calls. Table 6 presents

the distribution of the observed calls. The covariate considered is a type of customer:

VIP, of medium importance or a standard customer. This information is available to the

agents only and it could effect the service provided to the customer (such as priority in

the system). Hence, β1 reflects the effect of VIP vs all others, and β2 reflects the effect of

medium importance vs others.

Table 7 presents the parameter estimates under the Gamma frailty model along with

their bootstrap standard errors, based on 150 customer-level bootstrap samples. The results
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Figure 7.1: Estimates of the cumulative baseline hazard functions for the call center data.

show that the frailty parameter is close to 1 (Kendall’s τ is approximately 1/3), meaning

moderate dependence between calls of the same customer. The estimates of the regression

coefficients indicate that the chance to abandon before being served increases as the level

of importance decreases. In Table 8 we present the estimated values of the baseline hazard

functions calculated at times: 10, 50, 100, 150, 200 and 250 seconds. A graphical presenta-

tion is given in Figure 7.1. It is evident that the estimates of the first call are smaller than

that of the other calls, and the estimates of the fifth call are larger than the other calls. For

the other functions one could say that the differences are not so obvious. Now we would

like to answer the following question: “Are the estimated baseline hazard functions really

different, or are all these functions merely different estimates of the same function?”. To

this end we apply our proposed test for comparing between each two cumulative baseline

hazard functions. In Table 9 we present the values of the test statistic Sn(250, γ̂), the

estimated standard error based on (4.5), the standardized test statistic, the p-value based

on the standard normal distribution and the corrected p-value based on the FDR method

(Benjamini and Yekutieli, 2001) for correcting the dependent comparisons. The results

show us that the baseline hazard function of the first call is significantly different from that

of all other calls, even after correcting for multiple comparisons. There is also a significant

difference between the baseline hazard functions of the third and the fifth calls. Differences

between all the other functions are not statistically significant.

7.2. The Washington Ashkenazi Kin-Cohort breast cancer family data

In the Washington Ashkenazi Kin-Cohort Study (WAS) (Struewing et al., 1997), blood

samples and questionnaire were collected from Ashkenazi Jewish men and women volunteers

living in the Washington DC area. Based on blood samples, volunteers were tested for



16

specific mutations in BRCA1 and BRCA2 genes. The questionnaire included information

on cancer and mortality history of the first-degree relatives of the volunteers.

For the current analysis we consider a subset of the data consist of female first-degree

relatives of volunteers (mother, sisters and daughters). The event is the age at breast cancer

diagnosis, and the covariate is the presence or absence of any BRCA1/2 mutations in the

volunteer’s blood sample. The data consist of 4, 835 families with 1−8 relatives and a total

of 13, 030 subjects.
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Figure 7.2: Estimates of the cumulative baseline hazard functions for the WAS data by birth year.

So far, these data were analyzed under the assumption that the baseline hazard func-

tions are identical among all family members. However, we would like to alow for each

generation to have its own baseline hazard function, where the relative’s generation is de-

fined based on her year of birth: before 1930 or otherwise. For this, we can rewrite model

(2.1) as follows:

λij(t) =
2∑

k=1

λ0k(t)wie
βZijI(Z̃ij = k) i = 1, ..., n j = 1, ...,mi,

where λ0k(t) is an unspecified baseline hazard function of generation k = 1, 2, Zij is an

indicator for the presence of any BRCA1/2 mutations in the blood sample of the volunteer

of family i, and Z̃ij takes the value of 1 if member j of family i was born before 1930, and

value 2 otherwise. See Table 10 for sample size and number of events at each stratum.

We start with reporting on the point estimates and their bootstrap standard errors,

based on 100 bootstrap samples. The estimated frailty parameter under the gamma frailty

model equals θ̂ = 1.862 (SE=0.210), the estimated regression coefficient equals β̂ = 1.396

(SE=0.170) and the estimates of the cumulative baseline hazard functions are presented in

Figure 7.2. The estimated parameter of the frailty distribution indicates high dependence

among family members (Kendall’s τ is about 0.5). Also, it is evident that the cumulative
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baseline hazard function of the older generation is always lower than that of the younger

generation. Our test for comparing the two hazards provided Sn(60, γ̂)/σ̂II(60) = 18.903

(σ̂II(60) = 0.058) and p-value< 0.001. Thus, we verify our visual inspection and observe a

significant difference between the two functions. Such a finding supports other publications

reporting that cancer rates have risen in the last years (Center et al., 2009), and it is likely

that such a tendency is mainly as a result of the increase usage of screening programs which

detect breast cancer in earlier stages (Paltiel et al., 2007 among others). We also show that

the presence of specific mutations in BRCA1/2 genes of one family member, significantly

increases the risk of breast cancer for other family members.

8. Summary

We provided a test for comparing two or more cumulative baseline hazard functions

for correlated survival data. The asymptotic distribution of the proposed test statistic was

presented along with simulation study results. The results show that our proposed method

works well and as expected, gives better results in compare to the naive approaches that

ignores intra-cluster dependence. A sample-size formula was derived based on the limiting

distribution of our test statistic under local alternatives. Our simulation study shows that

under the proposed formula, the empirical power is reasonably close to the nominal value.

A sample-size formula for testing equality of m hazard functions can be derived based on

our proposed test statistic Son(t, γ̂)T
[
V̂o(t)

]−1
Son(t, γ̂) analogously to our analysis in Section

5 and that of Ahnn and Anderson (1995).

It should also be noted that the above theory for testing the null hypothesis of equality

of baseline hazard functions can also be adopted for testing contrasts defined on the baseline

hazard functions.

For simplicity we assumed βj = β j = 1, . . . ,m. However, the estimation procedure

and the proposed test statistic, along with its asymptotic distribution, can be trivially

extended to the case of different regression coefficients.
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1 Appendix

The following are the main steps of the proofs and asymptotic variance calculations. For

more details, the reader is referred to the Ph.D. thesis of Dr. Khudyakov available at

http://iew3.technion.ac.il/serveng/References/references.html.

1.1 Proof of Theorem 4.1

Let

An(t, γ̂) =
1√
n

∫ t

0
Ŵn(s)

{
Ȳ2(s, γ̂)

Ȳ.(s, γ̂)
dM1(s)− Ȳ1(s, γ̂)

Ȳ.(s, γ̂)
dM2(s)

}
and write Sn(t, γ̂) = An(t, γ̂) + S∗∗n (t). The first order Taylor expansion of An(t, γ̂) about

γo gives

An(t, γ̂) ≈ S̃n(t, γo) +
1√
n

∫ t

0
Ŵn(s)

{
QT

2 (s, γo)dM1(s)−QT
1 (s, γo)dM2(s)

}
(γ̂ − γo). (1)

Given Assumptions A.9-A.10, it is easy to show that the conditional distribution of

Bn(t, γo) =
1√
n

∫ t

0
Ŵn(s)

{
QT

2 (s, γo)dM1(s)−QT
1 (s, γo)dM2(s)

}
,

conditioning on w·, convergence to a zero-mean multivariate normally distributed random

variable with finite entries of the covariance matrix that are free of the frailties. Hence,

this is also the unconditional asymptotic distribution of Bn(t, γo). Then, given Claim 3.3,

the second term of (1) goes to zero as n→∞, by Slutsky’s theorem.

1.2 Proof of Theorem 4.2

Statement (1): Given w·, treat the frailties as additional covariates. Hence, standard

martingale arguments can be used to show that S̃n(t, γo) converges to a zero-mean normally

distributed random variable with variance σ2
S̃

(t) that is free of the frailties w·. Therefore,

S̃n(t, γo) also unconditionally converges to a normally distributed random variable with the

same parameters.

Statement (2): Note that S∗n(t, γo) can be rewritten in the following form

S∗n(t, γo) = 1√
n

∫ t
0 Ŵn(s)

[
Ȳ2(s,γo)
Ȳ·(s,γo)

{
dM̄1(s)− dM̄∗1 (s)

}
− Ȳ1(s,γo)

Ȳ·(s,γo)

{
dM̄2(s)− dM̄∗2 (s)

}]
,

http://iew3.technion.ac.il/serveng/References/references.html
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where M̄∗j =
∑n

i=1M
∗
ij(s) is a mean-zero martingale of the process N̄j(s) with respect to

the stochastic intensity process (3.1). Then, by the martingale central limit theorem, we

obtain that S∗n(t, γo) is asymptotically normally distributed with mean zero.

Let X∗j (s) = n−1/2
∑n

i=1 Yij(s)e
βTZij

{
wi − ψi

}
,

gj(s) = Ŵn(s)λ0(s)
Ȳj(s, γ

o)

Ȳ·(s, γo)
and Gj(t) =

∫ t

0
gj(s)X

∗
j (s)ds

Then, V ar{S∗n(t, γo)} = V ar
{
G1(t)

}
+ V ar

{
G2(t)

}
− 2Cov

{
G1(t), G2(t)

}
. Since X∗j (s)

j = 1, 2 are with mean zero

V ar
{
Gj(t)

}
=

1

n
E
{∫ t

0

∫ t

0
gj(s)gj(u)

n∑
i=1

Yij(s ∨ u)e2βTZijV ar(wi
∣∣ Fs∨u−)

}
dsdu,

and by denoting Zi· = Zi1 + Zi2 we get

Cov
{
G1(t), G2(t)

}
=

1

n
E
{∫ t

0

∫ t

0
g1(s)g2(u)

n∑
i=1

Yi1(s)Yi2(u)eβ
TZi·V ar(wi

∣∣ Fs∨u−)
}
dsdu.

V ar{S∗n(t, γo)} =
1

n

( m∑
j=1

E
{∫ t

0

∫ t

0
gj(s)gj(u)

n∑
i=1

Yij(s ∨ u)e2βTZijV ar(wi
∣∣ Fs∨u−)

}
dsdu

−2E
{∫ t

0

∫ t

0
g1(s)g2(u)

n∑
i=1

Yi1(s)Yi2(u)eβ
TZi·V ar(wi

∣∣ Fs∨u−)
}
dsdu

)
.

(2)

Hence, it is easy to verify that V ar
{
S∗n(t, γo)

}
<∞.

Statement (3): Note that under the null hypothesis

Cov
(
S̃n(t, γo), S∗n(t, γo)

)
=

∫ t

0

∫ t

0
E
[
Dn(s, γo)Dn(u, γo)

{ dM̄1(s)

Ȳ1(s, γo)

− dM̄2(s)

Ȳ2(s, γo)

}{ Ỹ1(u, γo)

Ȳ1(u, γo)
− Ỹ2(u, γo)

Ȳ2(u, γo)

}
dΛ0(u)

]
.

For s ≥ u we get

E
[
E
(
Dn(s, γo)Dn(u, γo)

{ dM̄1(s)

Ȳ1(s, γo)
− dM̄2(s)

Ȳ2(s, γo)

}{ Ỹ1(u, γo)

Ȳ1(u, γo)
− Ỹ2(u, γo)

Ȳ2(u, γo)

}
dΛ0(u)

∣∣ Fs−)]
= E

[
Dn(s, γo)Dn(u, γo)

{ Ỹ1(u, γo)

Ȳ1(u, γo)
− Ỹ2(u, γo)

Ȳ2(u, γo)

}
E
({ dM̄1(s)

Ȳ1(s, γo)
− dM̄2(s)

Ȳ2(s, γo)

} ∣∣ Fs−)dΛ0(u)
]

= 0,

and for u > s, we get

E
[
Dn(s, γo)Dn(u, γo)

{ dM̄1(s)

Ȳ1(s, γo)
− dM̄2(s)

Ȳ2(s, γo)

}
E
({ Ỹ1(u, γo)

Ȳ1(u, γo)
− Ỹ2(u, γo)

Ȳ2(u, γo)

} ∣∣ Fu−)dΛ0(u)
]

= 0.
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1.3 An estimator of the variance of Sn(t, γ̂)

In the following, we generate our variance estimators of V ar{S̃n(t, γo)} and V ar{S∗n(t, γo)}.
Let us start with an estimator of V ar{S̃n(t, γo)}. By using the law of total variance we

get V ar{S̃n(t, γo)} = E
[
V ar{S̃n(t, γo)

∣∣ w·}]+V ar
[
E{S̃n(t, γo)

∣∣ w·}] and under the null

hypothesis, the second term equals 0. Since calls of customer i are conditionally independent
given wi, the predictable variation process of S̃n(t, γo), given w·, is given by

< S̃n
∣∣ w· > (t, γo) =

∫ t

0
D2
n(s, γo)

(
V ar

{ dM̄1(s)

Ȳ1(s, γo)

∣∣ w·, Fs−}+ V ar
{ dM̄2(s)

Ȳ2(s, γo)

∣∣ w·, Fs−}) .
Since V ar

{
dMij(s)

∣∣ w·,Fs−} = Yij(s)e
βTZijwiλ0j(s)ds we get

< S̃n
∣∣ w· > (t, γo) =

n∑
i=1

wi

∫ t

0
D2
n(s, γo)

{eβTZi1Yi1(s)

Ȳ 2
1 (s, γo)

dΛ01(s) +
eβ

TZi2Yi2(s)

Ȳ 2
2 (s, γo)

dΛ02(s)
}
.

Then, the expectation with respect to the unknown frailties gives

n∑
i=1

E(wi)

∫ t

0
D2
n(s, γo)

{eβTZi1Yi1(s)

Ȳ 2
1 (s, γo)

dΛ01(s) +
eβ

TZi2Yi2(s)

Ȳ 2
2 (s, γo)

dΛ02(s)
}
. (3)

The variance of V ar{S∗n(t, γo)} is presented in (2). Then, we replace all the unknown
parameters in (2) and (3) by their estimates and get the estimators as presented in Section
4.2.

1.4 Proof of Theorem 4.3

Statement (2): Since

E
{ Ỹj(s, γo)
Ȳj(s, γo)

− Ỹ·(s, γ
o)

Ȳ·(s, γo)

∣∣ Fs−} =
Ȳj(s, γ

o)

Ȳj(s, γo)
− Ȳ·(s, γ

o)

Ȳ·(s, γo)
= 0 j = 1, ...,m

it is easy to show that under the null hypothesis E
[
S∗nj(t, γ

o)
]

= 0, for j = 1, ...,m. Also,

using again the law of total expectation by conditioning on Fu∨s− we obtain that under

the null hypothesis Cov
[
S∗nj(t, γ

o), S∗nk(t, γ
o)
]

= 0. Using similar arguments as in the proof

of Theorem 4.2, one can show that each Snj(t, γ
o) is asymptotically normally distributed

with a finite variance.
Statement (3): Note that under the null hypothesis, the covariance between S̃nj(t, γ

o)
and S∗nk(t, γ

o) for all j, k = 1, ...,m can be written as

Cov
{
S̃nj(t, γ

o), S∗nk(t, γ
o)
}

=

∫ t

0

∫ t

0
E
[Ŵn(s)√

n
Ȳj(s, γ

o)
Ŵn(u)√

n
Ȳk(u, γ

o)
{ dM̄j(s)

Ȳj(s, γo)

− dM̄·(s)

Ȳ·(s, γo)

}{ Ỹk(u, γo)
Ȳk(u, γo)

− Ỹ·(u, γ
o)

Ȳ·(u, γo)

}]
dΛ0(u).

(4)

Now, analogously to the proof of statement (3) of Theorem 4.3 one can show that

Cov
{
S̃nj(t, γ

o), S∗nk(t, γ
o)
}

= 0.
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1.5 The estimation of V(t)

The predictable variation process of S̃n(t, γo) given w· equals

< S̃nj
∣∣ w· > (t, γo) = V

(n)
jj (t) and < S̃nk, S̃nj

∣∣ w· > (t, γo) = V
(n)
jk (t)

for j, k = 1, ...,m since V ar{dM̄j(s)
∣∣ w·,Ft−} = Ỹj(s, γ)λ0j(s)ds. Then, by taking the ex-

pectation with respect to w· and by replacing all the unknown parameters by their estimates

we obtain the estimators (4.4) and (4.5).

1.6 Proof of Theorem 5.1

Write

S̃∗n(t, γo) =
1√
n

∫ t

0
Ŵn(s)G(s, γo)

{ dM̄1(s)

Ȳ1(s, γo)
− dM̄2(s)

Ȳ2(s, γo)

}
+

1

n

∫ t

0
Ŵn(s)G(s, γo)

Ỹ2(s, γo)

Ȳ2(s, γo)
dΛn02(s)

√
n
{ Ỹ1(s, γo)Ȳ2(s, γo)dΛn01(s)

Ỹ2(s, γo)Ȳ1(s, γo)dΛn02(s)
− 1
}
.

(5)

The first term of the right-hand side of (5) converges to a normal random variable with

mean zero and the proof is similar to that of Theorem 4.2. By Assumptions A.8-A.10 we

obtain that

sup
s∈[0,τ ]

∣∣∣√n{ Ỹ1(s, γo)Ȳ2(s, γo)dΛn01(s)

Ỹ2(s, γo)Ȳ1(s, γo)dΛn02(s)
− 1
}
− ϕ(s)

∣∣∣→ 0.

Therefore, the second term of the right-hand side of (5) converges to µ1(t) in probability,

as n→∞.
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Table 1: Summary of parameter estimates {θ̂, β̂, Λ̂0j} under exponential hazards.
independence mild dependence strong dependence

true true true
value mean SD value mean SD value mean SD

exponential (I)
n=250

θ 0.01005 0.084 0.150 1 0.929 0.240 4 3.806 0.812
β1 1 1.023 0.328 1 0.969 0.249 1 1.009 0.355
β2 2 2.059 0.318 2 1.935 0.264 2 1.986 0.368

Λ01(t1) 0.005 0.005 0.003 0.005 0.005 0.003 0.005 0.005 0.003
Λ01(t2) 0.01 0.010 0.004 0.01 0.011 0.004 0.01 0.010 0.005
Λ01(t3) 0.05 0.049 0.016 0.05 0.053 0.015 0.05 0.050 0.018
Λ01(t4) 0.1 0.096 0.031 0.1 0.104 0.029 0.1 0.098 0.034

Λ01(t1) 0.005 0.005 0.003 0.005 0.006 0.003 0.005 0.005 0.003
Λ01(t2) 0.01 0.010 0.005 0.01 0.011 0.005 0.01 0.010 0.005
Λ01(t3) 0.05 0.049 0.017 0.05 0.054 0.015 0.05 0.051 0.017
Λ01(t4) 0.1 0.097 0.033 0.1 0.108 0.029 0.1 0.101 0.031

n=500
θ 0.01005 0.064 0.098 1 1.025 0.175 4 3.925 0.596
β1 1 1.013 0.219 1 1.008 0.198 1 1.007 0.242
β2 2 2.021 0.211 2 2.003 0.201 2 1.999 0.262

Λ01(t1) 0.005 0.005 0.002 0.005 0.005 0.002 0.005 0.005 0.002
Λ01(t2) 0.01 0.010 0.003 0.01 0.010 0.003 0.01 0.010 0.004
Λ01(t3) 0.05 0.049 0.011 0.05 0.050 0.010 0.05 0.050 0.013
Λ01(t4) 0.1 0.098 0.021 0.1 0.101 0.019 0.1 0.100 0.025
Λ01(t1) 0.005 0.005 0.002 0.005 0.005 0.002 0.005 0.005 0.002
Λ01(t2) 0.01 0.010 0.003 0.01 0.010 0.003 0.01 0.010 0.004
Λ01(t3) 0.05 0.049 0.011 0.05 0.050 0.010 0.05 0.051 0.014
Λ01(t4) 0.1 0.098 0.021 0.1 0.101 0.019 0.1 0.100 0.025

exponential (II)
n=250

θ 0.01005 0.049 0.132 1 0.953 0.336 4 3.824 0.784
β1 1 1.078 0.208 1 1.011 0.265 1 0.994 0.304
β2 2 2.228 0.251 2 2.008 0.317 2 1.989 0.400

Λ01(t1) 0.005 0.004 0.002 0.005 0.005 0.003 0.005 0.005 0.003
Λ01(t2) 0.01 0.008 0.003 0.01 0.010 0.005 0.01 0.010 0.005
Λ01(t3) 0.05 0.046 0.012 0.05 0.050 0.018 0.05 0.050 0.017
Λ01(t4) 0.1 0.097 0.022 0.1 0.100 0.033 0.1 0.099 0.032

Λ01(t1) 0.005 0.005 0.003 0.005 0.005 0.003 0.005 0.005 0.003
Λ01(t2) 0.01 0.009 0.005 0.01 0.010 0.005 0.01 0.010 0.005
Λ01(t3) 0.05 0.048 0.013 0.05 0.048 0.017 0.05 0.050 0.017
Λ01(t4) 0.1 0.099 0.023 0.1 0.096 0.031 0.1 0.099 0.029

n=500
θ 0.01005 0.042 0.076 1 1.020 0.214 4 3.888 0.562
β1 1 1.011 0.148 1 1.012 0.194 1 0.984 0.214
β2 2 2.018 0.175 2 2.009 0.233 2 1.964 0.284

Λ01(t1) 0.005 0.005 0.002 0.005 0.005 0.002 0.005 0.005 0.002
Λ01(t2) 0.01 0.010 0.003 0.01 0.010 0.003 0.01 0.011 0.004
Λ01(t3) 0.05 0.049 0.009 0.05 0.050 0.011 0.05 0.051 0.013
Λ01(t4) 0.1 0.097 0.016 0.1 0.101 0.019 0.1 0.102 0.023

Λ01(t1) 0.005 0.005 0.002 0.005 0.005 0.002 0.005 0.005 0.003
Λ01(t2) 0.01 0.010 0.003 0.01 0.010 0.004 0.01 0.010 0.004
Λ01(t3) 0.05 0.049 0.009 0.05 0.050 0.010 0.05 0.051 0.012
Λ01(t4) 0.1 0.097 0.015 0.1 0.1 0.018 0.1 0.101 0.021
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Table 2: Summary of parameter estimates {θ̂, β̂, Λ̂0j} under Weibull hazards.
independence mild dependence strong dependence

true true true
value mean SD value mean SD value mean SD

Weibull (I)
n=250

θ 0.01005 0.035 0.081 1 0.892 0.377 4 3.695 0.680
β1 1 1.027 0.278 1 0.995 0.351 1 0.973 0.307
β2 2 2.054 0.274 2 1.985 0.360 2 1.92 0.327

Λ01(t1) 0.01 0.010 0.004 0.01 0.010 0.006 0.01 0.011 0.005
Λ01(t2) 0.04 0.038 0.012 0.04 0.039 0.018 0.04 0.042 0.015
Λ01(t3) 0.09 0.086 0.024 0.09 0.087 0.037 0.09 0.092 0.030
Λ01(t4) 0.16 0.152 0.042 0.16 0.154 0.066 0.16 0.161 0.052

Λ01(t1) 0.01 0.010 0.004 0.01 0.010 0.005 0.01 0.011 0.005
Λ01(t2) 0.04 0.039 0.012 0.04 0.041 0.018 0.04 0.042 0.015
Λ01(t3) 0.09 0.088 0.025 0.09 0.087 0.038 0.09 0.093 0.030
Λ01(t4) 0.16 0.154 0.044 0.16 0.153 0.066 0.16 0.163 0.051

n=500
θ 0.01005 0.032 0.057 1 1.027 0.295 4 3.825 0.509
β1 1 1.017 0.182 1 1.002 0.259 1 0.991 0.236
β2 2 2.030 0.190 2 1.985 0.270 2 1.978 0.245

Λ01(t1) 0.01 0.010 0.003 0.01 0.010 0.004 0.01 0.010 0.003
Λ01(t2) 0.04 0.039 0.008 0.04 0.040 0.010 0.04 0.041 0.010
Λ01(t3) 0.09 0.087 0.017 0.09 0.090 0.022 0.09 0.091 0.022
Λ01(t4) 0.16 0.152 0.030 0.16 0.158 0.037 0.16 0.160 0.038

Λ01(t1) 0.01 0.010 0.003 0.01 0.010 0.003 0.01 0.010 0.003
Λ01(t2) 0.04 0.039 0.008 0.04 0.040 0.011 0.04 0.040 0.010
Λ01(t3) 0.09 0.087 0.018 0.09 0.090 0.022 0.09 0.090 0.021
Λ01(t4) 0.16 0.152 0.031 0.16 0.159 0.037 0.16 0.159 0.036

Weibull (II)
n=250

θ 0.01005 0.038 0.083 1 0.907 0.311 4 3.614 0.751
β1 1 1.017 0.220 1 0.999 0.267 1 0.988 0.300
β2 2 2.050 0.267 2 1.977 0.344 2 1.939 0.410

Λ01(t1) 0.01 0.010 0.004 0.01 0.010 0.005 0.01 0.011 0.005
Λ01(t2) 0.04 0.038 0.011 0.04 0.040 0.015 0.04 0.041 0.016
Λ01(t3) 0.09 0.086 0.022 0.09 0.089 0.031 0.09 0.090 0.032
Λ01(t4) 0.16 0.152 0.039 0.16 0.157 0.054 0.16 0.158 0.056

Λ01(t1) 0.01 0.010 0.005 0.01 0.010 0.006 0.01 0.010 0.006
Λ01(t2) 0.04 0.039 0.012 0.04 0.039 0.015 0.04 0.041 0.015
Λ01(t3) 0.09 0.088 0.023 0.09 0.087 0.030 0.09 0.090 0.029
Λ01(t4) 0.16 0.156 0.037 0.16 0.155 0.049 0.16 0.158 0.048

n=500
θ 0.01005 0.031 0.056 1 0.956 0.216 4 3.790 0.580
β1 1 1.005 0.163 1 0.988 0.185 1 0.994 0.222
β2 2 2.018 0.183 2 1.989 0.241 2 1.975 0.295

Λ01(t1) 0.01 0.010 0.003 0.01 0.010 0.003 0.01 0.010 0.004
Λ01(t2) 0.04 0.039 0.008 0.04 0.040 0.010 0.04 0.041 0.011
Λ01(t3) 0.09 0.088 0.016 0.09 0.090 0.020 0.09 0.091 0.024
Λ01(t4) 0.16 0.154 0.029 0.16 0.160 0.034 0.16 0.159 0.040

Λ01(t1) 0.01 0.010 0.004 0.01 0.010 0.004 0.01 0.010 0.004
Λ01(t2) 0.04 0.039 0.009 0.04 0.040 0.009 0.04 0.040 0.010
Λ01(t3) 0.09 0.088 0.016 0.09 0.089 0.019 0.09 0.089 0.020
Λ01(t4) 0.16 0.156 0.027 0.16 0.158 0.031 0.16 0.157 0.033
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Table 3: Comparison of σ̂2
I (t) and σ̂2

II(t) for n = 250 and 500 under exponential hazards
θ minimum 1-st quartile median mean 3-rd quartile maximum

exponential (I)
n=250

0.01005 σ̂2
I (t) 0.064 0.086 0.092 0.093 0.099 0.133

σ̂2
II(t) 0.063 0.083 0.089 0.090 0.096 0.125

1 σ̂2
I (t) 0.077 0.118 0.130 0.131 0.142 0.234

σ̂2
II(t) 0.072 0.108 0.117 0.118 0.128 0.190

4 σ̂2
I (t) 0.080 0.132 0.149 0.154 0.171 0.341

σ̂2
II(t) 0.071 0.115 0.130 0.134 0.149 0.305

n=500
0.01005 σ̂2

I (t) 0.075 0.091 0.096 0.096 0.100 0.124
σ̂2
II(t) 0.075 0.090 0.095 0.095 0.099 0.115

1 σ̂2
I (t) 0.107 0.129 0.138 0.138 0.146 0.180

σ̂2
II(t) 0.098 0.117 0.124 0.124 0.131 0.162

4 σ̂2
I (t) 0.089 0.123 0.137 0.138 0.151 0.199

σ̂2
II(t) 0.078 0.109 0.119 0.120 0.132 0.169

exponential (II)
n=250

0.01005 σ̂2
I (t) 0.047 0.066 0.072 0.072 0.078 0.116

σ̂2
II(t) 0.047 0.064 0.070 0.071 0.076 0.104

1 σ̂2
I (t) 0.051 0.086 0.095 0.097 0.106 0.166

σ̂2
II(t) 0.049 0.080 0.088 0.089 0.097 0.149

4 σ̂2
I (t) 0.063 0.101 0.116 0.119 0.134 0.235

σ̂2
II(t) 0.056 0.090 0.103 0.106 0.118 0.208

n=500
0.01005 σ̂2

I (t) 0.067 0.083 0.087 0.087 0.092 0.110
σ̂2
II(t) 0.067 0.082 0.087 0.087 0.091 0.107

1 σ̂2
I (t) 0.076 0.094 0.101 0.102 0.108 0.140

σ̂2
II(t) 0.073 0.087 0.093 0.093 0.099 0.123

4 σ̂2
I (t) 0.074 0.108 0.119 0.120 0.132 0.207

σ̂2
II(t) 0.068 0.096 0.105 0.107 0.116 0.185

Weibull (I)
n=250

0.01005 σ̂2
I (t) 0.058 0.084 0.089 0.089 0.095 0.127

σ̂2
II(t) 0.058 0.083 0.088 0.089 0.094 0.117

1 σ̂2
I (t) 0.043 0.078 0.086 0.088 0.096 0.155

σ̂2
II(t) 0.041 0.070 0.077 0.078 0.085 0.132

4 σ̂2
I (t) 0.045 0.112 0.129 0.132 0.148 0.264

σ̂2
II(t) 0.042 0.098 0.112 0.114 0.128 0.235

n=500
0.01005 σ̂2

I (t) 0.062 0.075 0.079 0.079 0.083 0.100
σ̂2
II(t) 0.062 0.075 0.079 0.079 0.083 0.098

1 σ̂2
I (t) 0.062 0.080 0.086 0.087 0.094 0.138

σ̂2
II(t) 0.056 0.072 0.077 0.077 0.083 0.116

4 σ̂2
I (t) 0.082 0.121 0.134 0.135 0.147 0.213

σ̂2
II(t) 0.073 0.104 0.115 0.117 0.127 0.181

Weibull (II)
n=250

0.01005 σ̂2
I (t) 0.036 0.057 0.062 0.062 0.068 0.097

σ̂2
II(t) 0.035 0.056 0.062 0.062 0.068 0.097

1 σ̂2
I (t) 0.045 0.067 0.075 0.076 0.084 0.122

σ̂2
II(t) 0.042 0.062 0.069 0.070 0.076 0.109

4 σ̂2
I (t) 0.045 0.068 0.076 0.077 0.085 0.124

σ̂2
II(t) 0.042 0.063 0.070 0.070 0.077 0.111

n=500
0.01005 σ̂2

I (t) 0.045 0.058 0.062 0.062 0.066 0.086
σ̂2
II(t) 0.045 0.058 0.062 0.062 0.066 0.085

1 σ̂2
I (t) 0.051 0.069 0.075 0.076 0.081 0.112

σ̂2
II(t) 0.048 0.064 0.069 0.069 0.074 0.098

4 σ̂2
I (t) 0.053 0.070 0.076 0.077 0.082 0.112

σ̂2
II(t) 0.049 0.064 0.069 0.070 0.074 0.099
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Table 4: Comparison of our proposed variance estimators with naive estimators

Naive Song et al. Proposed I Proposed II
empirical SD empirical empirical empirical empirical

θ of Sn(t, γ̂) σ̂1(t) Type I error σ̂2(t) Type I error σ̂I(t) Type I error σ̂II(t) Type I error
exponential (I)

n=250
0.01005 0.292 0.297 0.045 0.298 0.045 0.304 0.038 0.299 0.040

1 0.335 0.312 0.064 0.312 0.066 0.361 0.030 0.343 0.037
4 0.330 0.280 0.098 0.279 0.100 0.390 0.013 0.364 0.024

n=500
0.01005 0.317 0.305 0.064 0.305 0.064 0.309 0.062 0.308 0.064

1 0.353 0.320 0.074 0.319 0.076 0.371 0.041 0.352 0.051
4 0.334 0.271 0.097 0.271 0.099 0.370 0.015 0.346 0.031

exponential (II)
n=250

0.01005 0.286 0.263 0.071 0.263 0.072 0.268 0.070 0.265 0.071
1 0.318 0.275 0.085 0.275 0.087 0.310 0.047 0.297 0.060
4 0.314 0.259 0.095 0.258 0.099 0.343 0.018 0.323 0.027

n=500
0.01005 0.314 0.293 0.067 0.293 0.067 0.295 0.063 0.294 0.064

1 0.314 0.282 0.077 0.282 0.081 0.318 0.052 0.305 0.060
4 0.324 0.261 0.113 0.260 0.116 0.346 0.028 0.325 0.043

Weibull (I)
n=250

0.01005 0.305 0.294 0.056 0.294 0.056 0.299 0.053 0.297 0.055
1 0.279 0.256 0.068 0.256 0.067 0.295 0.031 0.278 0.043
4 0.302 0.264 0.081 0.263 0.080 0.361 0.014 0.336 0.023

n=500
0.01005 0.283 0.279 0.053 0.279 0.050 0.281 0.050 0.282 0.050

1 0.278 0.256 0.065 0.256 0.067 0.295 0.033 0.278 0.041
4 0.308 0.266 0.080 0.265 0.078 0.340 0.026 0.367 0.017

Weibull (II)
n=250

0.01005 0.273 0.246 0.073 0.247 0.071 0.249 0.067 0.248 0.067
1 0.285 0.246 0.093 0.245 0.091 0.275 0.058 0.263 0.069
4 0.287 0.246 0.094 0.246 0.094 0.277 0.058 0.264 0.070

n=500
0.01005 0.268 0.248 0.071 0.248 0.071 0.250 0.070 0.249 0.070

1 0.278 0.246 0.084 0.246 0.083 0.275 0.052 0.262 0.065
4 0.280 0.246 0.086 0.246 0.085 0.277 0.051 0.264 0.066

Table 5: Empirical power of a two-sided test with α = 0.05 and π = 0.80.
independence mild dependence strong dependence

sample empirical sample empirical sample empirical Schoenfeld’s
ε size power size power size power sample size

exponential (I)
0.3 201 0.819 264 0.766 536 0.769 174
0.5 70 0.805 110 0.789 241 0.833 63
0.6 50 0.773 84 0.823 181 0.836 44

exponential (II)
0.3 138 0.770 234 0.761 540 0.812 174
0.5 47 0.797 100 0.779 258 0.821 63
0.6 36 0.804 78 0.813 200 0.823 44

Weibull (I)
0.3 166 0.798 291 0.801 773 0.785 174
0.5 65 0.819 110 0.778 344 0.819 63
0.6 46 0.783 89 0.820 178 0.813 44

Weibull (II)
0.3 158 0.792 207 0.788 584 0.803 174
0.5 62 0.763 92 0.781 203 0.800 63
0.6 42 0.764 75 0.787 163 0.800 44

Table 6: Summary of the call center data set.
1-st call 2-nd call 3-rd call 4-th call 5-th call

number of calls 49246 7759 1646 488 198
number of events 1416 360 89 32 18
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Table 7: The call center data set: parameters’ estimates and bootstrap standard errors.
θ̂ β̂1 β̂2

point estimate 0.9973 -0.3006 -0.1211
bootstrap SE 0.1767 0.1046 0.1046

Table 8: The call center data set: Estimates of the cumulative baseline hazard functions.
1-st call 2-nd call 3-rd call 4-th call 5-th call

bootstrap bootstrap bootstrap bootstrap bootstrap

t Λ̂01(t) SE Λ̂02(t) Λ̂03(t) SE Λ̂04(t) SE Λ̂05(t)
10 0.012 0.001 0.010 0.002 0.009 0.003 0.009 0.005 0.030 0.012
50 0.027 0.002 0.039 0.004 0.034 0.007 0.026 0.009 0.057 0.022
100 0.051 0.003 0.085 0.007 0.080 0.015 0.065 0.016 0.151 0.048
150 0.075 0.004 0.152 0.014 0.132 0.023 0.155 0.046 0.178 0.062
200 0.108 0.006 0.221 0.020 0.174 0.029 0.266 0.069 0.305 0.105
250 0.148 0.009 0.301 0.026 0.256 0.040 0.407 0.107 0.553 0.183

Table 9: The call center data set: results of the paired tests.
calls 1 - 2 1 - 3 1-4 1-5 2 - 3

Sn(250, γ̂) -0.464 -0.771 -0.051 -0.048 0.027
σ̂II(250) 0.039 0.199 0.018 0.016 0.027

Sn(250, γ̂)/σ̂II(250) -11.915 -3.871 -2.884 -3.019 1.024
p-value < 0.001 < 0.001 0.002 0.001 0.847

FDR p-value < 0.001 < 0.001 0.042 0.003 1.000
calls 2 - 4 2 - 5 3-4 3-5 4 - 5

Sn(250, γ̂) 0.058 -0.029 -0.014 -0.030 -0.019
σ̂II(250) 0.163 0.016 0.016 0.015 0.012

Sn(250, γ̂)/σ̂II(250) 0.355 -1.841 -0.907 -2.051 -1.493
p-value 0.639 0.033 0.182 0.020 0.068

FDR p-value 1.000 0.096 1.000 0.042 0.422

Table 10: Summary of the WAS data set.
year of birth< 1930 year of birth≥ 1930

number of subjects 4961 8069
number of events 709 297
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