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Abstract: In this work we provide a new class of test statistics for hypothesis testing of the
equality of the baseline hazard functions for correlated survival data under frailty models.
The asymptotic distribution of the test statistics is investigated theoretically under the null
hypothesis and certain local alternatives. We also provide a simple variance estimator. The
properties of the test statistics, under finite sample size, is studied by an extensive simulation
study and we verify the control of Type I error and our proposed sample size formula. To the
best of our knowledge, this is the first work for comparing the baseline hazard functions of
correlated survival outcomes with covariates and frailty models. The utility of our proposed
estimating technique is illustrated by the analysis of the call center data of an Israeli commercial
company that processes up to 100,000 calls per day and the analysis of the breast cancer data
of the Washington Ashkenazi Kin-Cohort family study.

Key words and phrases: Customer Patience, Frailty Model, Hypothesis Testing, Local Alterna-
tives, Multivariate Survival Analysis.

1. Introduction

Call centers are intended to provide and improve customer service, marketing, technical
support, etc. For a customer, addressing the call center actually means addressing the
company itself, and any negative experience on the part of the customer can lead to the
rejection of company products and services. Hence, it is very important to ensure that a
call center works effectively and provides high quality service to its customers. Call centers
collect a huge amount of data, and this provides a great opportunity for companies to
use this information for the analysis of customer needs, desires, and intentions. Such data
analysis can improve the quality of customer service and decrease costs.

This work was motivated by the analysis of customer patience, which we define as a
willingness of customer to endure waiting in a queue before receiving service. The compli-
cation of customer patience analysis is that in most cases customers receive the required
service before they lose their patience and we do not observe the customer patience. Such
incomplete data motivates us to use statistical model under the setting of survival analysis
with right censoring. In our context, an event is the customer abandonment of the system
before being served. For a customer who receives service, his/her patience time is not fully
observed and is considered as censored. Hence, for each customer, at each call, the observed
time is the time until abandonment (patience time) or time until being served, whichever
comes first. The data consists of customer calls with possibly multiple calls for a customer.
We believe that the observed times of the same customer are not independent. Therefore,
the Cox proportional hazard model cannot be used directly, and we use a well-known and
popular approach that deals with clustered data - the frailty model approach (Ripatti and
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Palmgren, 1978; Klein, 1992; Nielsen et al., 1992; Murphy, 1994; Parner, 1998, Hougaard,
2000 and references therein). The frailty model to be used in this work is the extended
Cox model where the frailty variate acts multiplicatively on the baseline hazard function.
In addition, different unspecified baseline hazard functions are being determined for each
call, since it could be that customer behavior changes as s/he becomes more experienced
with the system. Then, the main objective of this work is to provide a test statistic for
comparing the cumulative baseline hazard functions.

A detailed review of estimation methods and frailty model testing can be found in
Hougaard (2000). In particular, Nielsen et al. (1992) and Klein (1992) considered non-
parametric maximum likelihood estimators under the gamma frailty. Murphy (1994) showed
the consistency and asymptotic normality. Later, Parner (1998) extended these results to
the model with covariates. Zeng and Lin (2007) presented an estimation technique for a
class of semi-parametric regression models, which also includes random effects with any
random effect distribution. They provided a semi-parametric maximum likelihood estima-
tors, based on the EM algorithm, together with their asymptotic properties. A noniterative
estimation procedure for estimating the hazard functions under any frailty distribution with
finite moments was proposed by Gorfine et al. (2006). The detailed proof of the asymptotic
properties of their proposed estimators was provided by Zucker et al. (2007). In this work
we extend the method of Gorfine et al. (2006) to address the case of different baseline
hazard functions.

The most popular test statistic for testing the equality of two hazard functions is the
weighted log-rank test. Often the weighted log-rank statistics were constructed for inde-
pendent samples (Lawless and Nadeau, 1995; Cook et al., 1996; Eng and Kosorok, 2005).
Comparison of two treatments based on clustered data with no covariates was presented by
Gangnon and Kosorok (2004). They used the weighted log-rank test statistic and presented
a simple sample size formula. Song et al. (2008) studied a covariate-adjusted weighted log-
rank statistic for recurrent events data while comparing between two independent treatment
groups. To the best of our knowledge, so far there is no published work for comparing the
baseline hazard functions of correlated survival outcomes with covariates and frailty models.

One of the most widely used sample size formulas for the log-rank test under the setting
of two independent samples is that of Schoenfeld (1983). This formula was developed under
the assumption that the hazard functions are not time varying. A sample-size formula
while adopting the idea of Schoenfeld (1983) and extending the class of alternatives was
presented by Fleming and Harrington (1991). Later, Kosorok and Lin (1999) proposed a
class of contiguous alternatives for the power and sample size calculations. This class was
used for sample size calculations for clustered survival data, with no covariates (Gangnon
and Kosorok, 2004), for the supremum log-rank statistic (Eng and Kosorok, 2005) and for
covariate-adjusted log-rank statistic for independent samples (Song et al., 2008). In all the
above works, the sample size formula was developed under simplifying assumptions, such as
assuming identical censoring distributions and consistent difference between the two hazard
functions.

The rest of the article is organized as follows. Section 2 presents the notation and the
model formulation. The estimation procedure and the asymptotic properties of the esti-
mators are presented in Section 3. A new test for comparing two or more baseline hazard
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functions in the case of clustered data is provided in Section 4. In Section 5 we propose a
sample size formula for given significance level and power. The proofs and technical details
are presented in the Appendix. The performance and utility of our proposed estimation
technique, the test statistic and the sample size formula are illustrated in Section 6, by
extensive simulation study. Then, in Section 7, we apply our approach to a real call center
data set, and a breast cancer data set from the Washington Ashkenazi Kin-Cohort Study.
Our conclusions are set out in Section 8.

2. Notation and formulation of the model

In what follows we use the terminology of call center data, although, it is obvious that
this work is of practical importance in other fields, as is demonstrated in Section 7. Consider
n customers, where customer ¢ has m; calls (m; < m for all i = 1,...,n). Later, we consider
real data analysis with a maximum of 5 calls for each customer (m = 5). We assume
that the waiting behavior of each customer does not depend on the waiting behavior of
other customers. Let TZ(; and C;; denote the failure and censoring times, respectively,
for call j of individual ¢ (i = 1,...,n, j = 1,...,m;). The observed follow-up time is
T;; = min (Tig-, Cij), and the failure indicator is d;; = I <T10J < C’ij>. For call j of customer
i we observe a vector of covariates Z;; and assume that the waiting behavior of customer
i (1 =1,...,n) is influenced by some additional unobservable subject-dependent properties
which are represented by the frailty variate w;.

The conditional hazard function of the patience of customer ¢ at the j-th call given the
frailty w;, is assumed to take the form

)\Z'j(t) = )\Oj(t)wieﬁTZij 1= 1, N j = 1, ceey My (2.1)

where Ag;j(t) is an unspecified baseline hazard function of call j and  is a p-dimensional
vector of unknown regression coefficients. In this model, the baseline hazard functions are
assumed to be different at each call, since it could be that customer behavior changes as
s/he becomes more experienced with the system. It is also possible to consider a model
with different regression coefficient vectors 3;, but for simplicity of presentation we assume
that 8; = 3, for all j. We also assume the following standard assumptions:

(A.1) The frailty variate w; is independent of m; and Z;; j = 1,...,m;.

(A.2) The frailty variates w; i = 1,...,n are independent and identically distributed random
variables with a density of known parametric form, f(w) = f(w;0), where 6 is an
unknown vector of parameters.

(A.3) The vector of covariates Z;; is bounded.

(A.4) The random vectors (mi,ﬂg,...,ﬂ%i,Cil,...,Cimi,Zil,...,Zimi,wi), i =1,..,n, are
independent and identically distributed, and the model will be built conditional on

mg & = 1, ey T

(A.5) Given Z;; j =1,...,m; and wj, calls of customer i are independent.
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(A.6) Given Z;; j = 1,...,m; and w;, the censoring is independent and noninformative for
w; and (ﬁ, {Aoj}gn:zl)

3. Estimation

The main goal of this work is to provide a test for comparing two or more baseline
hazard functions. However, our proposed test requires estimators of the unknown param-
eters: B, 0 as well as {Ag;(¢)}]2;. A simple estimation procedure that provides consistent
estimators is given in the next sectlon.

3.1. The Proposed Estimation Procedure

Our estimation procedure is a direct extension of Gorfine et al. (2006) which handles
any frailty distribution with finite moments. We extend this method to the case of different
baseline hazard functions, Aoj(t), and describe it in short so the current paper will be
self-contained.

According to our model (2.1)), the full likelihood can be written as

n m;
L= [T (Z) e 20y H [ e
i=1j=1
where 7 is the maximal follow-up time, H;;(t) = Ao; (T35 A t) B Zij , Noj(t) fo i (

a Ab=min(a,b), H;.(t) = 371" Hij(t), Nij(t) = 0551 (T;; < t) and N.( ) =210 N; ( )

As in Gorfine et al. (2006), let v = (BT,Q)T, and for simplicity assume that 6 is a
scalar. If 0 is a vector, the calculation can be derived in a similar way. The score vector,
denoted by U (v, {AOJ} = (Ui, ...,Up, U]DH)T7 is determined as follows

wNe O exp{ —wH (7)1 (w)dw
;; Zzyr{(Szg H;j zJ} f wNi. (1) exp{—wH;.(7)} f(w)dw

forr=1,...,p, and

JoZ whe ™ exp{—wH,;.(7)} ' (w)dw
Upt1 = ; 2w (1) exp{—wH;.(7)} f(w)dw’

where f'(w) = df (w)/df. The estimation procedure consist of two main steps. One is to
estimate v by substituting estimators of {Aoj };n:l into the score equations U (~y, {Aoj };n:l) =
0. The other is to estimate {Aoj };n:l given the estimated value of v. To this end, we provide

here the estimators of {Ag; };ﬂzl Define Y;;(t) = I(T;; > t) and the entire observed history
Fi up to time ¢ as

Fi=o{Ny(u), Yij(u), Zij, i=1,.on; j=1.,m; 0<u<t).

To simplify notation, we define Z;; = 0 and Nj;(t) = Y;;(t) = 0 for all ¢t € [0, 7] for each
m; < j <mandi=1,..n Asshown in Parner (1998), applying the innovation theorem
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(Andersen et al., 1993) to the observed history F;, the stochastic intensity process of N;;(t)
with respect to F; is given by

Aoj (1) exp(B7 Zij)Yi (t)1i(t), (3.1)

where

00 Ni(t=)+1 ,—wH,. (t—) d
f-'t_) _ fO w € f(w) w

Yi(t) = E(wi Jo© whNe ) emwli (02) f(w)dw

It should be noted that v;(t) is a function of the unknown parameters v and {Aoj };nzl

Now, let hij(t) = ;(t) exp(81Z;;) and note that given (3.1)) it can be considered as a
time-dependent covariate effect. Hence, the estimator of each Ag; is provided by using a
Breslow-type (Breslow, 1974) estimator as follows. Let Aoj be a step function with jumps
at the observed failure times 7j;, (k =1,...,K; j=1,...,m), where K; is the total number
of the distinct observed times of type j. Then, the jump size of f\oj at ;i given the value
of 4 is defined by

Alo; (1) [Z dNij (Tjk ] / [Z hij(Tjk)Yij(Tjk)] ; (3.2)
=1

where fzij(t) = i(t) exp(BTZij) and in 1;(t) we substitute 4 and {f\oj(t)};n:l into v;(t). Tt
is important to note that each value AAoj (7jk) is a function of {[\oj(t) };n:l, where t < 7jp.
Therefore, the estimation procedure is based on ordering the observed failure times of all
the calls in increasing order and estimating {Aoj };n:l sequentially, according to the order
of the observed failure times.

To summarize, the following is our proposed estimation procedure. Provide initial value
of v, and proceed as follows:

m
Step 1 : Given the value of v estimate {Aoj} - by using (3.2]).

Step 2 : Given the value of {Aoj}fn X estimate ~ by solving U (v, {/A\Oj};n:l) =0.
‘7:

~ m
Step 3 : Repeat Steps 1 and 2 until convergence is reached with respect to {Aoj} and
Jj=1

4.

For the choice of initial values for 8 we propose to use the naive Cox regression model,
and for 0, take its value under the independence case. If the above integrals are not of closed
analytical form, one can use numerical integration. As was already shown by Gorfine et al.
(2006), such an approach avoids the use of iterative processes in estimating the cumulative
baseline hazard functions.

2. Asymptotic properties
In this section, we formulate and summarize the asymptotic results of our proposed
. T m
estimators. We denote by v° = (ﬁOT, 90) and AJ(t) = {Agj(t)}j:1 the true values of 3,
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0 and Ag(t) = {Agj(t)}in , respectively.

Claim 3.1. The estimator Ag(t) = {/A\Oj(t)};-”:l converges almost surely to a limit Ag(¢,)
uniformly in ¢ and v, with Ag(t,7) = A3(t), and n'/?[Ag(t) — A§(t)] converges weakly to
a Gaussian process.

Claim 3.2. The function Uly, Ag(:)] converges almost surely in ¢ and ~ to a limit
’LL[’)/, Ao ()] : .

Claim 3.3. There exists a unique consistent root to U[¥, Ag(:)] = 0.

Claim 3.4.The asymptotic distribution of n'/2 (¥ — 4°) is normal with mean zero and with
a covariance matrix that can be consistently estimated by a sandwich estimator.

The proofs of Claims 3.1 - 3.4 along with all the required additional conditions are
almost identical to those presented in Gorfine et al. (2006) and Zucker et al. (2007), since
the only minor difference is the use of {Ag;(t) 7L, instead of a global estimator based on
all the calls together. Hence, the proofs and a detailed list of the additional required as-
sumptions are omitted. It should be noted that although a consistent variance estimator

~ m
of 4 and {Aoj(t)} - can be provided, its form is very complicated. Hence, we recommend
]:

on using the bootstrap approach.

4. Family of weighted tests for correlated samples

4.1. Introduction and preliminaries
Our main objective is to provide a test statistic for comparing the cumulative baseline
hazard functions corresponding to different calls. Namely, we are interested in testing the
hypothesis
H() : A01 = A02 = ... = AOm = AO (41)

where Ag is some unspecified cumulative hazard with Ag(f) < co. As noted earlier, the
intensity processes of the counting processes N;j(t) i = 1,...,n, j = 1,...,m;, with respect
to F; has the form h;;(t)Y;;(t)Ao;(t). However, given the frailty variate w;, the intensity
processes of Nyj(t) i =1,...,n, j = 1,...,m; take the form h;;(t)Yi;(t)\o;(t) with h;;(t) =
w; exp(8T Zij). 3 5

Let Yj(t,vy) = > hij(t)Yi;(t) and Yj(t,v) = > ;i hij(t)Y5(t), and note that
E[Z?:l inij(t)eﬁTZU} = E[Z?:l 1/1i}/;-j(t)eﬂTZU]. Then, by the uniform strong law of

large numbers Andersen and Gill (1982), the functions n~1Y;(t,~) and nflffj(t, ) converge
to the same function, if one of them converges.

For deriving the asymptotic properties of our proposed test statistic, we make the
following assumptions:

AT Wn(s) is nonnegative, cadlag or caglad, with bounded total variation, and converges
in probability to some uniformly bounded integrable function W(s), that is

sup | Wi(s) — W(s) | —o0.
s€[0,7]



A.8 There exist positive deterministic functions g;(s), j = 1,...,m, such that

sup | n” Yi(s,7%) — yi(s) | =0 sup | n~ Y (s,7°) — yi(s) | —0,
s€[0,7] s€[0,7]

7 =1,...,m almost surely, as n — oo.

A9 Qii(s,7°) = 8w[ (s, 7)/Y.(s fy)] l=1,..,p+1j=1,..,m are bounded over
:,Yo
[0, 7] where Y (s,7°) = 327 ¥;(s,7°).

A.10 There exist deterministic functions g;;(s), l =1,...,p+1 j = 1,...,m, such that

sup ‘ Q15 (5,7%) — gij(s) } —0
s€[0,7]

almost surely, as n — oo.

4.2. Test for equality of two hazard functions

We start by comparing the cumulative baseline hazard functions of two calls. In this
subsection we use indices 1 and 2 for comparing any two baseline hazard functions out of
the m possible functions. The extension to more than two calls will follow. Assume we are
interested in testing the hypothesis

Hy : Ao = Aga = Ay. (4.1)

We propose to use the weighted log-rank statistic (Fleming and Harrington, 1991) that
takes the form

. ) . < - (4.2)
/ i (T DTo05) ) _ ()

\F Y(’S?A) le(sfa/) Y2(833/) ’
for t € [0, 7] where Y.(s,9) = Yi(s,9) + Ya(s,%), dN;(s) = Y., dN;;(s) and the estimators
4 and {Aoj}m,l are as defined in Section 3. In practice, one can choose ¢ to be the smallest
s such that HJ 1Y;(s,4) = 0 or any value that is of practical importance.

For deriving the asymptotic distribution of Sy, (¢, %) it is important to note that given wj
and the intensity process h;;(t)Y;; () Ao;(t), the process My;(t) = Nij(t)—w; fot Aoj (u)eﬂTZU Yij(u)du
is a mean-zero martingale with respect to F;—. Then, given w. = {wi}?:p the sum of these
martingales M;(t) = > | M;;(t) is also a mean-zero martingale with respect to F;_. Since
N;1(t) and Njo(t) are conditionally independent given w; for all i = 1, ..., n, then, given w.,
M;(t) and Ms(t) are uncorrelated martingales.

To simplify the notation, we define

Yi(s,v)Ya(s, Wh(s s) G(s,
1( _’Y) 2( ’Y) n( )g(s’,y)’ D?(S,’)/): n( ) _( 7)
Yi(s,7) vn v Y;(s,7)
for 5 = 1,2. For the asymptotic distribution of our test statistic S, (7,%) and its variance
estimator, we start with the following theorem. The proof is presented in Appendix

g(sa'Y) = ) Dn(s,'y) =
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Theorem 4.1 Given Assumptions A.1-A.6 and A.9-A.10, the test statistic Sy(t,7) has the
same asymptotic distribution as Sy(t,v°) + S;*(t), where

dMl( ) _ dMQ(S)
Su(t,7°) f/ Wi ){Yl(s ) ?’2(5,70)}’

(g = Yi(s,7°)dMoi(s)  Ya(s,7°)dApa(s)
Sn(t f/W ){ Yi(s, %) Ya(s,9) }

Now, consider S}*(t). By the first order Taylor expansion about ° we get

(1) ~ Yz (5:9°0W1(5:9°) 1y Yil(8,9)Va(5,7%) o)
S \/>/ (3 Y ) dAOl( ) Y-(Svfyo) dAOQ( )] (4'3)

/ et Yl (5:7)Q1 (5,7°)dAon (s) - ?2(37WO)Q;F(SWO)CZAM(S)}W—’Yo)a

where Q?(s,vo) = (Q1j; -, Qpt1)j)s § = 1,2. The second term of the right-hand side
of represents the additional variability of S,,(¢,4) due to 4. Based on Claim 3.4 it is
easy to see that it is asymptotically normal with mean zero. However, this term is expected
to be of a negligible contribution to the total variance, since, 7 is being estimated paramet-
rically (Acar et al., 2010, Section 2.3). It should be noted that our extensive simulation
study, presented in Section 6, also supports this argument, as will be discussed there. To
summarize, we formulate the following conclusion.

Conclusion 1. An approximation of the asymptotic distribution of S, (¢,4) is the asymp-
totic distribution of S} (t,7°) = Sn(t,7°) + S;;(t,~°), where

. 1(5,7°) gy oy Ya(5:7%)
5107 = = [ W06090652°) [F DD dn (o)~ 12057 D (o).

We derive the asymptotic null distribution of S*(¢,~7°) by the asymptotic distribution
of each of the above two terms. For this end, consider the following theorem. The proof is
sketched in Appendix [T.2]

Theorem 4.2 Given Assumptions A.1-A.8 and under the null hypothesis,

(1) S,(t,7°) converges to a zero-mean normally distributed random variable with finite
variance ag(t), as n — oo, where

2( y1(s)72(s)
/W —l-?j (S)d/\o(s). (4.4)

(wa

(2) Si(t,7°) converges to a zero-mean random variable with finite variance o%.(t) asn —
0.

(3) The two random variables, Sy(t,~°) and S%(t,~°), are uncorrelated.
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Summarizing the results of Conclusion 1 and Theorem [4.2] under the null hypothesis our
test statistic Sy, (t,¥) is asymptotically zero-mean normally distributed random variable, and
its asymptotic variance can be approximated by Var{S,(t,7°)} + Var{S:(t,7°)}. Thus,
based on direct calculations of the variances, as presented in Appendix we provide the
following variance estimator of S, (¢, %)

2 n N

{D? (s, ﬁ)}2 NP 7y (s) E(w) dN;(s)
=1

~2 _ L 2 S -
o = [ Wi T

7=1

2 t ot n . . . .
+)° / / D(s,3) D8 (0, 7)Y Yij(s V u)e*® ZaVar(w; | Foyu)dRoj(s)dAos(u)
j=170 0 i=1
t t n . . R R
—2 / / Dy (s,9) D5 (u,7) > Yir(s)Yia(u)e” % Var(w; | Fovu-)dAor (s)dAoa(w).
0 JO i=1

The first component of 62(¢) is the estimator of Var{S’n(t, ’yo)}, and the two other com-

ponents are the estimator of Var{S;;(t, 70)}. For the unconditional expectation estimator

E(w;) and the conditional variance estimator Y7a\r(wi | 7:) one can use 4 and {Aoj(~)}§”:1.
Also, it should be noted that often E(w;) is set to be 1 for the model to be identifiable.
In these cases E(wz) =14 =1,..,n (for a comprehensive discussion of identifiability in
frailty models, the reader is referred to Hougaard (2000, Section 7.2). However, as we show
later by extensive simulation study, Var{S;(¢,7°)} is of a negligible contribution to the
total variance (less than 10%). Hence, we recommend to estimate the variance of the test
statistic S, (¢,%) by the estimator of Var{S,(t,~7°)}. Specifically,

t 2 LA . .
61 (t) = /0 Wﬁ(s)Z{D}?M)}QZeB 20Y5(8)E (wi)dAoj (s)- (4.5)
j=1 i=1

In conclusion, our proposed test statistic is defined by S, (¢,%)/611(t) (or Sy (t,7)/61(t))
and the rejection region corresponding to the null hypothesis (4.1)) should be defined by the
standard normal distribution.

4.3. Test for equality of m hazard functions

Now we extend the test proposed in the previous section to test the null hypothesis
(4.1)) with m > 2 baseline hazard functions. Namely, we compare each of the m estimators
m
j:

of the cumulative baseline hazard functions {Agj} with an estimator of the common
1

cumulative baseline hazard function constructed under the null hypothesis. Let Ag be the
estimated cumulative baseline hazard function under the null hypothesis ((_}orﬁne_ et al.,
2006) in which the jump size of Ag at time s is defined by AAg(s) = D271, dN;(s)/Y(s, 7).
We define S,,(£,9) = (Sn1(£,4), .., Sum(,4))” to be the m-sample statistic. In the spirit

of (4.2), we define

(5,79) {dAOj(S)_dAO(S)} j=1,..,m,
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where an(s) are nonnegative cadlag or caglad with total bounded variation. However, the
special choice of weight processes such as W;(s) = Wy(s){Yi(s,%)+ Y.(5,9)}/Y.(5,%)

j =1,...,m, where Wn(s) is nonnegative cadlag or caglad with total bounded variation,
covers a wide variety of interesting cases (Andersen et al., 1993, Section V.2). Hence, the
above choice of weight process will be considered here. Then,

snj@f,a):;ﬁ /0 Wa(s)¥i(s, 1) {dhos(s) = dho(s)} 5 =1,.om,

and 370, Snj(t,4) = 0. It is easy to verify that for m = 2, Sy1(f,9) equals (4.2). Similar
arguments used in the case of comparing two baseline hazard functions can be used here,
such that we arrive to the following conclusion.

Conclusion 2. An approximation of the asymptotic distribution of Sn(t,7) is the asymp-
totic distribution of Sj,(¢,7°) = Sn(t,7°) +S;,(¢,7°), where the respective j-th components
of S, (t,~°) and S} (t,7°) are

- 0 Wals) o oo ( dMj(s)  dM.(s)
)= [, S S0~ T -
S;;.(t’,yO) _ i W\T}%S)Y}(S, o){y}(s}%zos)’(i‘/}](;j(s) Y(S}/’ZS);[/A)O( )}’ (4'3)

where M.(s) = Y7 M;(s). )

For the asymptotic distribution of S7 (¢,°) we present the following theorem. A sketch
of the proof can be found in the Appendix
Theorem 4.3 Given Assumptions A.1-A.8 and under the null hypothesis,

(1) S,(t,7°) converges to a zero-mean multivariate normally distributed random variable
with variance matriz V(t) and its jk-th component 1s defined by

/W2 ?/J r;e(JS; 19r(8 ))\o(s)ds k=

2( M -
/W B yg(s)s k4]

(2) Si(t,~°) converges to a zero-mean multivariate normal random variable with covariance
matriz having finite diagonal entries and zero valued non-diagonal entries.

(3) S,.(t,7°) and S%(t,7°) are uncorrelated.

Summarizing our results so far, under the null hypothesis (4.1)), S,,(¢,4) is asymptotically
normal with mean zero. Using similar arguments as for the case of testing the equality of
two hazard functions, we estimate the variance of S,.(t,%) based on the variance estimator
of S,,(t,7°). Hence our proposed estimator, denoted by V(t), is given by

= Tll/ot Wf(S)ZZn; Hl — };]((55:3)) }2Eij(5) + {};]((j:z)) }Zgj:Ei,(s)] j=1,..,m

(4.4)
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and for k # j
=, [, e 2 e e~ 25
j’( . - (4.5)
kLS, Y -
TN ~ E’L (S) ’ ka]:L , M,
Yi(s,4) = }

sented in Appendix [1.5| Clearly, V(¢) has a rank of m — 1. Hence, we define V°(t) as a

(m — 1) x (m — 1) matrix obtained by deleting the last row and column of V(¢). Also,

let S9(t) = (Snl(t,&), ...,Sn(m_l)(t,’y))T. Then, our proposed test statistic is defined by
. -1

So(t, )" [V"(t)] S?(t,4) and the rejection region should be defined by the y?(m — 1)

distribution.

where Ej;(s) = E(wﬁﬁj(s)eBTZifdAOj(s). The details of the derivation of V(r) are pre-

5. Sample size formula for equality of two hazard functions

In this section, we present a sample size formula under proportional means local alter-
native and certain simplifying assumptions for testing the equality of two baseline hazard
functions. Specifically, let

H - gj(s):/Osexp{(—l)j_lcp(u)/@\/ﬁ)}dAo(u) j=1,2 forallse 0,

where A is some unspecified cumulative hazard function with Ag(s) < oo and ¢(s) # 0 for
all s € [0,7]. The above local alternatives formulation was originally proposed by Kosorok
and Lin (1999) and also can be found in Gangnon and Kosorok (2004).

It is easy to verify that the above Ay; ; J = 1,2 satisfies the following assumptions:

A1l For j =1,2  supseo ’ dAg;(s)/dAo(s) — 1 | —0, as n— oo.

Al12 Asn — 00,  SuPse(o ] ‘ \/ﬁ{d/\gl(s)/d/\{b(s) - 1} —p(s) | — 0, where ¢ is either
cadlag or caglad with bounded total variation.

We start with the asymptotic distribution of g;:(t, ~°), under the above local alternatives.

Theorem 5.1 Given Assumptions A.1-A.12, S, (t,~°)
%(

converges in distribution to a nor-

mal random variable with mean u1(t) and variance o°(t), where

/ W (s 1y( $)9205)_gn (o) (5.1)

and o?(t) = O'S( ) as defined in

A sketched proof of Theorem is given in the Appendix
Under the above contiguous alternative, we can approximate the power calculation
as follows. For a fixed alternative, set p(t) = /np*(t). Then, by (5.1) and the first
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order Taylor expansion we get that the expectation of Sy, (t,7) under the alternative equals

Vnpi(t) + o(y/n), where uj(t fo ©*( mm&o(s). Now, based on the

limiting distribution of Sy, (7, fy), and given &gmﬁcance level o and power m, we get the
following sample size formula

n=(Ziajs+ 22) 0 (i (1) (5.2)

where Z, is the p-quantile of the standard normal distribution.

However, in order to calculate the required sample size based on one should
estimate o2(t) and p}(t) based on a pilot study or existing relevant data sets. In what
follows, we propose simple estimators under simplifying assumptions, similar to those of
Song et al. (2008). These simple estimators provide a practical sample size formula.

Assume that the baseline hazard functions are continuous and the local alternatives
satisfy ¢*(s) = € for all s € [0,7], where ¢ € R and the weight function is constant
Wa(s) = 1. We also assume that the limiting values of Yj(s,v)/n; are m;(s), j = 1,2 and
the proportion of customers making the j-th call, nj/n, converges to p; € (0,1], j = 1,2.
Then, based on Assumption A.8, we replace y;(s) by p;m;(s). In addition we assume that
m1(s) = ma(s) = 7w(s). Hence, uj(t) = eR(t )p1p2/(p1 + p2), where R(t fo s)dAo(s). A
simple estimator of R(t) can be obtained by R(t fO {p171(s)dAo (s )—}—pg( )odAoa(s )} =
n~t 232‘:1 N;(t). Thus, a simplified sample size formula is given by

2 .
n = (Zlfa/Q + Zw) 671 (t) /{eprpaR(t) /(1 + P2)}7, (5.3)
where 6%;(t) is given by (4.F).

6. Simulation

In this section we present our simulation study aimed to investigate the finite sam-
ple properties of our proposed procedures. The simulations were carried out under the
popular Gamma frailty model with mean 1 and variance 8. We consider three levels of
dependence: independence (6 = 0.01005), mild dependence (6 = 1) and strong dependence
(0 = 4). These values of the frailty parameters were defined based on the Kendall’s 7 coef-
ficient (Kendall, 1938). Under the Gamma frailty distribution Kendall’s 7 equals 6/(6 +2).
Therefore, the respective values of Kendall’s 7 for the above values of 6 are: 1/200, 1/3 and
2/3. We assume that each cluster is of size 2 and we consider four scenarios: (I) Constant
baseline hazards, A\o1(s) = Ao2(s) = 1, and the covariates Z;; and Z;5 are independent and
each was generated from Unif{1,2,3}. (II) Constant baseline hazards as above and Z;;
was generated from Unif{1,2,3} and Z;3 from Bin(2,0.25). (III) Weibull baseline hazard
functions with Ag1(s) = Ao2(s) = 2s, and covariates as in Scenario (I). (IV) Weibull baseline
hazard functions as in Scenario (III) and covariates as in scenario (II). For each covariate
we generated two dummy variables. In all the above Scenarios, 8 = (1,2)7. Censoring
times were generated from exponential distribution yielding 70% — 80% censoring rate, and
for the test statistic we used ¢t = 0.1 for Scenarios (I) and (II) and ¢t = 0.3 for Scenarios (III)
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and (IV). We consider n = 250 or 500 and the results are based on 1000 random samples
for each configuration.

Tables summarize the results of our proposed point estimators {é, B, A01, f\og} and
present the true parameters’ values, the empirical mean and standard deviation of the esti-
mates. For the cumulative baseline hazard functions Aoj(t) 7 =1,2 we consider the values
at (t1,t2,t3,t4) = (0.005,0.01,0.05,0.1). Tables verify that our estimating procedure
performs very well in terms of bias.

Table [3| compares the two variance estimators of our test statistic Sy, (t,%), 6%(¢) and
&%l(t), by presenting the following descriptive statistics: the minimum, 1-st quartile, me-
dian, mean, 3-rd quartile and the maximum. It is evident that the differences between the
two estimators are very small even under a strong dependency such as § = 4. These results
support our recommendation to use the simplified estimator 6%,(t) rather than 6%(t).

Now, we are comparing between our proposed variance estimator of S, (¢,%) and other
naive variance estimators. One is an estimator that does not take into account the de-
pendence between the samples. We denote this estimator by 62(t) and it is easy to verify

that
2

/ Wi ZZ{YS’ (5,9) } dN;(s).

The second estimator is the robust estimator of Song et al. (2008) and is given by

1 2 n . 9

- Wi S\dN (s } :

PN { [ Waoigts it
where M;;(t) = fo i ( ﬂTZiide(s)/}_’j(s,&) i=1,..,n, j =1,2. This estimator
was proposed for repeated events where the two baseline hazard functions were estimated
based on independent samples. In Table 4] we present the mean of each variance estimator
and the empirical significance level of a test with Type I error a = 0.05. The empirical
significance level is the percent of tests such that the null was rejected. The results show
that under the independent setting the four methods provide similar results, but as the de-
pendence increases, the differences between our methods and the two other naive methods,
tend to increase as well. The empirical significance level for the other estimators increases
with 6. It is evident, that only our methods perform reasonably well under any dependency
level. In some cases, such as Scenario II with the sample size of 500, the empirical Type
I error of the naive is about 11%. In addition, there are small differences between the
empirical Type I error provided by our two proposed estimators &% and &%I. Hence our
recommendation of using for the variance estimate of S, (¢,%), is again being justified.

Now, we provide simulation results to evaluate the proposed sample size formula. All
the three levels of dependence were examined under a two-sided test, with a = 0.05, and
7 = 0.80. The baseline hazard functions corresponding to the local alternatives of the form
Mo1(8) = exp{e/2v/n}Ao(s) and Apa2(s) = exp{—¢e/2y/n}Ao(s), where \g(s) =1 and ¢ takes
the values of 0.3, 0.5 or 0.6.
We first generated 100 random samples for each configuration, and based on these

simulated data we calculated the average sample size based on . These results serve
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as the required sample size with o = 0.05, and # = 0.80. Then, for each configuration
we generated 1000 random samples with the respective sample size. For each sample we
calculated the test statistic S,,(¢,%) and its variance estimate 6%,(¢). Finally, we calculated
the empirical power based on a two-sided test with @ = 0.05, to be compared with the
nominal power of 0.80. The results are presented in Table [5| It is evident that our sample
size formula performs well since the empirical power is reasonably close to the nominal
power 0.80. The results demonstrate that as the difference between the two baseline hazard
functions increases, less observations are required. The sample size formula of Schoenfeld
(1983), (Z1—a/2 + Zx)?/(2€2), presented in the last column of Table [f gives similar values
to that of our formula in the case of independence (§ = 0.01005), as expected. In all other
cases, Schoenfeld’s formula underestimate the required sample size.

7. Data analysis

7.1. Call center data of a financial company

The data we analyze here are provided by a call center belonging to an Israeli financial
company. The data cover a period of almost three years, October 2006 - June 2009. In this
call center a customer requesting service from an agent is redirected to a pool of agents. If all
the agents are busy, the customer waits in a queue. Otherwise, s/he is served immediately.
The customer is not always ready to wait in a queue, and s/he can choose to abandon the
system at any point during the waiting period. After the abandonment the customer may
make an additional call. Customers who have been served may also call again to get an
additional service or in continuation of the previously requested service. In our context, an
event is the customer abandonment of the system before being served. The waiting time
of a customer in a call ended after being served is considered as a censoring time.

The data do not contain any personal information about customers, such as age, so-
cial status or education. Therefore, our analysis will be carried out only on the basis of
the technical characteristics of the call. For the analysis of customer behavior, we use a
notion of a “series” defined as a sequence of consecutive calls of one customer happening
in chronological order. If the time elapsed between two consecutive calls is less than three
days we assume that these calls belong to the same “series”. Otherwise, we assume that
these calls belong to two different series. This separation is based on the assumption that
a customer who has not called for a long time loses his/her experience with the system.

The following analysis consists of 49, 246 customers, with only one series of calls for each
customer, and each customer had not called for at least two months before the beginning
of the series. By this we hope to ensure that customers are not familiar with the current
system at their first call. For each customer we consider up to 5 calls. Table [6] presents
the distribution of the observed calls. The covariate considered is a type of customer:
VIP, of medium importance or a standard customer. This information is available to the
agents only and it could effect the service provided to the customer (such as priority in
the system). Hence, 31 reflects the effect of VIP vs all others, and 2 reflects the effect of
medium importance vs others.

Table [7] presents the parameter estimates under the Gamma frailty model along with
their bootstrap standard errors, based on 150 customer-level bootstrap samples. The results
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Figure 7.1: Estimates of the cumulative baseline hazard functions for the call center data.

show that the frailty parameter is close to 1 (Kendall’s 7 is approximately 1/3), meaning
moderate dependence between calls of the same customer. The estimates of the regression
coefficients indicate that the chance to abandon before being served increases as the level
of importance decreases. In Table [§] we present the estimated values of the baseline hazard
functions calculated at times: 10, 50, 100, 150, 200 and 250 seconds. A graphical presenta-
tion is given in Figure It is evident that the estimates of the first call are smaller than
that of the other calls, and the estimates of the fifth call are larger than the other calls. For
the other functions one could say that the differences are not so obvious. Now we would
like to answer the following question: “Are the estimated baseline hazard functions really
different, or are all these functions merely different estimates of the same function?”. To
this end we apply our proposed test for comparing between each two cumulative baseline
hazard functions. In Table |§| we present the values of the test statistic 5,,(250,%), the
estimated standard error based on , the standardized test statistic, the p-value based
on the standard normal distribution and the corrected p-value based on the FDR method
(Benjamini and Yekutieli, 2001) for correcting the dependent comparisons. The results
show us that the baseline hazard function of the first call is significantly different from that
of all other calls, even after correcting for multiple comparisons. There is also a significant
difference between the baseline hazard functions of the third and the fifth calls. Differences
between all the other functions are not statistically significant.

7.2. The Washington Ashkenazi Kin-Cohort breast cancer family data

In the Washington Ashkenazi Kin-Cohort Study (WAS) (Struewing et al., 1997), blood
samples and questionnaire were collected from Ashkenazi Jewish men and women volunteers
living in the Washington DC area. Based on blood samples, volunteers were tested for
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specific mutations in BRCA1 and BRCA2 genes. The questionnaire included information
on cancer and mortality history of the first-degree relatives of the volunteers.

For the current analysis we consider a subset of the data consist of female first-degree
relatives of volunteers (mother, sisters and daughters). The event is the age at breast cancer
diagnosis, and the covariate is the presence or absence of any BRCA1/2 mutations in the
volunteer’s blood sample. The data consist of 4,835 families with 1 — 8 relatives and a total
of 13,030 subjects.

0.25 4
— year of birth < 1930 — — year of birth > 1930
0.2
0.15 |

0.1 -

0.05 -

cumulative baseline hazard function

25 35 45 55 65 75 85 95
age, years

Figure 7.2: Estimates of the cumulative baseline hazard functions for the WAS data by birth year.

So far, these data were analyzed under the assumption that the baseline hazard func-
tions are identical among all family members. However, we would like to alow for each
generation to have its own baseline hazard function, where the relative’s generation is de-
fined based on her year of birth: before 1930 or otherwise. For this, we can rewrite model

(2.1) as follows:

2
Xij(t) =) Mow(twie? 1(Zi; = k) i=1,..,n j=1,..,m,
k=1

where Agx(t) is an unspecified baseline hazard function of generation k = 1,2, Z;; is an
indicator for the presence of any BRCA1/2 mutations in the blood sample of the volunteer
of family 4, and Zij takes the value of 1 if member j of family 7 was born before 1930, and
value 2 otherwise. See Table [10| for sample size and number of events at each stratum.
We start with reporting on the point estimates and their bootstrap standard errors,
based on 100 bootstrap samples. The estimated frailty parameter under the gamma frailty
model equals 0 = 1.862 (SE=0.210), the estimated regression coefficient equals B = 1.396
(SE=0.170) and the estimates of the cumulative baseline hazard functions are presented in
Figure The estimated parameter of the frailty distribution indicates high dependence
among family members (Kendall’s 7 is about 0.5). Also, it is evident that the cumulative
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baseline hazard function of the older generation is always lower than that of the younger
generation. Our test for comparing the two hazards provided S, (60,%)/617(60) = 18.903
(677(60) = 0.058) and p-value< 0.001. Thus, we verify our visual inspection and observe a
significant difference between the two functions. Such a finding supports other publications
reporting that cancer rates have risen in the last years (Center et al., 2009), and it is likely
that such a tendency is mainly as a result of the increase usage of screening programs which
detect breast cancer in earlier stages (Paltiel et al., 2007 among others). We also show that
the presence of specific mutations in BRCA1/2 genes of one family member, significantly
increases the risk of breast cancer for other family members.

8. Summary

We provided a test for comparing two or more cumulative baseline hazard functions
for correlated survival data. The asymptotic distribution of the proposed test statistic was
presented along with simulation study results. The results show that our proposed method
works well and as expected, gives better results in compare to the naive approaches that
ignores intra-cluster dependence. A sample-size formula was derived based on the limiting
distribution of our test statistic under local alternatives. Our simulation study shows that
under the proposed formula, the empirical power is reasonably close to the nominal value.
A sample-size formula for testing equality of m hazard functions can be derived based on
our proposed test statistic S (t,4)7 [Vo(t)} 1S;;(t, %) analogously to our analysis in Section
5 and that of Ahnn and Anderson (1995).

It should also be noted that the above theory for testing the null hypothesis of equality
of baseline hazard functions can also be adopted for testing contrasts defined on the baseline
hazard functions.

For simplicity we assumed 3; = 8 j = 1,...,m. However, the estimation procedure
and the proposed test statistic, along with its asymptotic distribution, can be trivially
extended to the case of different regression coefficients.

Acknowledgment

The authors are grateful to Professor David Zucker, Dr. Valery Trofimov and Professor
Avishai Mandelbaum for their helpful comments. Dr. Khudyakov would like to thank the
Service Enterprise Engineering (SEE) Center, at the Technion, Israel, for the financial
support and the cooperation in providing the data used in this work. The authors also
thank Nilanjan Chatterjee for facilitating the access of the Washington Ashkenazi Jewish
data.

References

Acar, E. F., Craiu, R. V. and Yao, F. (2010). Dependence Calibration in Conditional
Copulas: A Nonparametric Approach. Biometrics, 67, 445-453.

Ahnn, S. and Anderson, S. J. (1995). Sample Size Determination for Comparing More
Than Two Survival Distributions. Statistics in Medicine, 14, 2273-2282.



18

Andersen, P. K. and Gill, D. R. (1982). Cox’s Regression Model for Counting Processes:
a Large Sample Study. Ann. Statist., 10, 1100-1120.

Andersen, P. K., Borgan, 0., Gill, D. R. and Keiding, N. (1993). Statistical Models Based
on Counting Processes. New York: Springer.

Benjamini, Y. and Yekutieli, D. (2001). The Control of the False Discovery Rate in
Multiple Testing Under Dependency. The Annals of Statistics, 29, 1165-1188.

Breslow, N. (1974). Covariance Analysis of Censored Survival Data. Biometrics, 53,
1475-1484.

Center, M., Jemal, A. and Ward, E. (2009). International Trends in Colorectal Cancer
Incidence Rates. Cancer Epidemiol. Biomarker Prev., 18, 1688-1694.

Cook, R. J., Lawless, J. F. and Nadeau, C. (1996). Robust Tests for Treatment Compar-
isons Based on Recurrent Event Responses. Biometrics, 52, 557-571.

Cox, D. R. (1972). Regression Models and Life Tables (with discussion). J. Roy. Statist.
Soc., 34, 187-220.

Duchateau, L. and Janssen, P. (2008). The Frailty Model. Springer, New York, NY.

Eng, K. H. and Kosorok, M. R. (2005). Sample size formula for the supremum log rank
statistic. Biometrics, 61, 86-91.

Fleming, T. R. and Harrington, D.P. (1991). Counting Processes and Survival Analysis.
New York: Wiley.

Gangnon, R. E. and Kosorok, M. R. (2004). Sample-size formula for clustered survival
data using weighted log-rank statistics. Biometrika, 91, 2, 263-275.

Gill, R. D. (1980). Censoring and Stochastic Integrals. Tract 124, Amsterdam: The
Mathematical Center.

Gorfine, M., Zucker, D. M. and Hsu, L. (2006). Prospective survival analysis with a general
semiparametric shared frailty model: A pseudo full likelihood approach. Biometrika,
93, 3, 735-741.

Hougaard, P. (2000). Analysis of Multivariate Survival Data. Springer-Verlag New York,
NY.

Kalbfleisch, J. D. and Prentice, R. L. (1980). The statistical analysis of failure time data.
Wiley, New York, NY.

Kendall, M. G. (1938). A new measure of rank correlation. Biometrika, 30, 81-93.

Klein, J. P. (1992). Semiparametric estimation of random effects using the Cox model
based on the EM algorithm. Biometrics, 48, 795-806.



19

Kosorok, M. R. and Lin, C. Y. (1999). The Versality of Function-Indexed Weighted Log-
Rank Statistics. Journal of the American Statistical Assosiation 94, 320-332.

Lawless, J. F. and Nadeau, C. (1995). Some Simple Robust Methods for the Analysis of
Recurrent Events. Technometrics, 37, 158-168.

Murphy, S. A. (1994). Consistency in a Proportional Hazards Model Incorporating a
Random Effect. Ann. Statist., 23, 182-98.

Nielsen, G. G., Gill, R. D., Andersen, P. K. and Sorensen, T. I. (1992). A counting process
approach to maximum likelihood estimation of frailty models. Scand. J. Statist., 19,
25-43.

Paltiel, O., Friedlander, Y., Deutsch, L., Yanetz, R., Calderon-Margalit, R., Tiram, E.,
Hochner, H., Barchana, M., Harlap, S. and Manor, O. (2007). The interval between
cancer diagnosis among mothers and offspring in a population-based cohort. Familiar
Cancer, 6, 121-129.

Parner, E. (1998). Asymptotic theory for the correlated gamma-frailty model. Ann.
Statist., 26, 183-214.

Peto, R. and Peto, J. (1972). Asymptotically Efficient Rank Invariant Test Procedures.
J. Roy. Statist. Soc., 135, 185-207.

Prentice, R.L. (1978). Linear rank tests with right censored data. Biometrika, 65, 167-179.

Ripatti, S. and Palmgren, J. (1978). Estimation of multivariate frailty models using
penalized partial likelihood. Biometrics, 65, 153-158.

Schoenfeld, D. A. (1983). Sample-size formula for the proportional-hazards regression
model. Biometrics 39, 499-503.

Song, R., Kosorok, M. R. and Cai, J. (2008). Robust Covariate-Adjusted Log-Rank Statis-
tics and Corresponding Sample Size Formula for Recurrent Events Data. Biometrics,
64, 741-750.

Struewing, J. P., Hartge, P., Wacholder, S., Baker, S. M., Berlin, M., McAdams, M,
Timmerman, M. M., Brody, L. C. and Tucker, M.A. (1997).“The Risk of Cancer
Associated with Specific Mutations of BRCA1 and BRCA2 among Ashkenazi Jews”.
N Engl J Med, 336, 1401-1408.

Zeng, D. and Lin, D. Y. (2007). Maximum Likelihood Estimation in Semiparametric
Regression Models with Censored Data (with discussion). J. Roy. Statist. Soc. Ser.
B, 69, 507-564.

Zucker, D. M., Gorfine M. and Hsu L. (2008). Pseudo-full likelihood estimation for
prospective survival analysis with a general semiparametric shared frailty model:
Asymptotic theory. J. Statist. Plann. Inference, 138, 1998-2016.



20

Department of Biostatistics, Harvard School of Public Health, Boston, MA, U.S.A.
E-mail: (stpok@channing.harvard.edu)

Faculty of Industrial Engineering and Management, Technion, Technion City, Haifa 32000,
Israel

E-mail: (gorfinm@ie.technion.ac.il, paulf@ie.technion.ac.il)
1 Appendix

The following are the main steps of the proofs and asymptotic variance calculations. For
more details, the reader is referred to the Ph.D. thesis of Dr. Khudyakov available at
http://iew3.technion.ac.il/serveng/References/references.html.

1.1 Proof of Theorem [4.1]

= [0 Bt B

and write Sy, (¢,%) = An(t,%) + S:*(t). The first order Taylor expansion of A, (t,%) about
~v° gives

Let

t
An(t,7) = Sy (t,7°) + ;ﬁ / Wa(s) {QF (s,7°)dMi(s) — QT (s,7°)dMa(s)} (F — 7). (1)
0

Given Assumptions A.9-A.10, it is easy to show that the conditional distribution of

Ba(t,7°) f/w ) 1QY (5.4°)dMy(s) — QY (5,7°)dMa(s)}

conditioning on w., convergence to a zero-mean multivariate normally distributed random
variable with finite entries of the covariance matrix that are free of the frailties. Hence,
this is also the unconditional asymptotic distribution of By, (t,7°). Then, given Claim 3.3,
the second term of goes to zero as n — 0o, by Slutsky’s theorem.

1.2 Proof of Theorem [4.2]

Statement (1): Given w., treat the frailties as additional covariates. Hence, standard
martingale arguments can be used to show that S, (¢,7°) converges to a zero-mean normally

distributed random variable with variance o S( ) that is free of the frailties w.. Therefore,

Sn(t, ~°) also unconditionally converges to a normally distributed random variable with the
same parameters.
Statement (2): Note that S} (¢,7°) can be rewritten in the following form

Si(t:7°) = I Jo Wals) |22 {diti(s) — bty ()} - e ano(s) - aniz (5)} ]
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where M =371 M;;(s) is a mean-zero martingale of the process N;(s) with respect to
the stochastic intensity process (3.1). Then, by the martingale central limit theorem, we
obtain that S} (t,7°) is asymptotically normally distributed with mean zero.

Let X7(s) = nTl/23n Yij(s)eﬁTZij {wi — 1/)2-},
_ Yj(s,7°) P
gj(s) = W, (s)Ao(s )ﬁ and Gj(t) —/0 9(8)X; (s)ds

Then, Var{S}(t,7°)} = Var{Gl

j =1,2 are with mean zero

Var{Gj(t)} = %E{ /Ot /Ot gi(s)g;(w) Zn:Yij(s V u)ewTZijVar(wi } ]:S\/u_)}dsdu,
i=1

+ Var{Gg( )} - 2Cov{Gl(t),G2(t)}. Since X*(s)

and by denoting Z;. = Z;1 + Z;2 we get

COU{Gl(t),G2<t)} = %E{ /Ot /Ot 91(8)g2(u) ;Y}l(s)}’gg(u)e’BTZi'Var(wi ‘ fsvu_)}dsdu.

Var{S; (t,~°) ZE //gj 5)g;(u ZYZ]S\/U 287 Z”Var wz|]:5\/u }dsdu

Hence, it is easy to verify that Var{S,*;(t,'yo)} < 0.
Statement (3): Note that under the null hypothesis

Con(3u0.2550010) = [ [ E[Dute 100t {0

dMy(s) \ (Vi(u,7°)  Ya(u,7°)
- 1_’2(82770)}{171@7’70) Ya(u, 1 >}dA°<“)}‘

For s > u we get

E[E(Dn(s,v")Dn(u,v"){g(;fO)gﬁffg)}{gz S CIES)
= E[pute a0 - (e ~ e | 7Yt

and for v > s, we get

E [Dn(s, ,ya)Dn(u, ,70){ YCii](Wsl’ fg) _ }2](\432,290)) }E({ }:/1 EU: ’)/O) _YQ(U: 72; } ‘ fuf)dAO(U):| =0.
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1.3 An estimator of the variance of S, (t,7)

In the following, we generate our variance estimators of Var{S,(t,7°)} and Var{S:(t,v°)}.
Let us start with an estimator of Var{S (t,7°)}. By using the law of total variance we

get Var{S,(t,7°)} = E [Var{S (t,~° ‘ w. }} +Var [E{S (t.7°) | w}} and under the null
hypothesis, the second term equals 0. Since calls of customer ¢ are conditionally independent
given w;, the predictable variation process of S, (t,7°), given w., is given by

<5’n’w.>(t77 /D s,7° (Var{;zljél(ﬂy)) ’w,]—" }—}—V {;jé(ﬂ?f))’w.,Fs_}>.

Since Var{dM” ‘w Fs_ } Yi;(s )eﬂ Zijwi/\oj(s)ds we get

BTZﬂY. BT Zis
e i1(8) e Yia(s)
< S, | w. > (t,7°) wl/ D2 ) _7dA01(s) 7dA02( )
| Z YE(s,7°) Y3 (s,7°) }
Then, the expectation with respect to the unknown frailties gives
21Y1( ) eﬁTZz‘z i2(3)
E wz / Z)2 S ’7 dA()l(S) + —76“\02(8) . 3)
Z Y2( o) YQQ(S,’}/O) } (

The variance of Var{S}(t,7°)} is presented in (2). Then, we replace all the unknown
parameters in and by their estimates and get the estimators as presented in Section
4.2.

1.4 Proof of Theorem [4.3]
Statement (2): Since

{Yj(sm") Y57 )= Vi) _Ylsy) o
Yi(s,7°)  Yi(s,7°) T Yi(s9) Yi(s,00)

it is easy to show that under the null hypothesis E[S;';j(t,fyo)] =0, for j =1,...,m. Also,

=1,....m

using again the law of total expectation by conditioning on F,s— we obtain that under
the null hypothesis Cov [S;Zj(t, 7). Sk (t, fyo)] = 0. Using similar arguments as in the proof

of Theorem one can show that each S,;(t,7°) is asymptotically normally distributed
with a finite variance.

Statement (3): Note that under the null hypothesis, the covariance between S,,;(t,7°)
and S*,(t,~°) for all j,k =1,...,m can be written as

Coof8u(t:2°) 800} = [ [ B[

—5”<””>}{ E 3 33233”“0<“>~

Now, analogously to the proof of statement (3) of Theorem one can show that

Cov{ Suj(t,7%), Silt:7) } = 0.
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1.5 The estimation of V(t)

The predictable variation process of Sn(t, ~°) given w. equals
<Spj |w. > (79 =V () and < S, Sy | w. > (8,9°) = VIV (1)

for j,k =1,...,m since Var{dM;(s) | w., F—} = Y;(s,7)Aoj(s)ds. Then, by taking the ex-
pectation w1th respect to w. and by replacing all the unknown parameters by their estimates
we obtain the estimators and ( .

1.6 Proof of Theorem [5.1]

Write
§ dMl( ) dMZ(S)
Si(t,7°) f/ Wi ){Yl(s ~°) Yz(sm")}

Ta(599) 1 (Vi) Fals. A7) (5)
/ L S e L MO v ey vty

The first term of the right-hand side of (| . converges to a normal random variable with
mean zero and the proof is similar to that of Theorem (4.2 By Assumptions A.8-A.10 we
obtain that

()

sup

{ Yi(s,7°)Ya(s,7°)dAGy (5)
s€[0,7]

Ya(5,7°)Yi(s,7°)dAf,(s)
Therefore, the second term of the right-hand side of converges to u1(t) in probability,
as n — 00.

- 1} _¢(s)] ~ 0.




Table 1: Summary of parameter estimates {é, B, Aoj} under exponential hazards.

independence mild dependence strong dependence
true true true
value mean SD value mean SD value mean SD
exponential (I)
n=250
0 0.01005  0.084  0.150 1 0.929  0.240 4 3.806  0.812
B1 1 1.023  0.328 1 0.969  0.249 1 1.009 0.355
Ba 2 2.059  0.318 2 1.935 0.264 2 1.986  0.368

Ao1(t1) 0.005 0.005 0.003 0.005 0.005 0.003 0.005 0.005 0.003
Ao1(t2) 0.01 0.010  0.004 0.01 0.011  0.004 0.01 0.010  0.005
Ao1(t3) 0.05 0.049 0.016 0.05 0.053  0.015 0.05 0.050  0.018
Ao1(ta) 0.1 0.096  0.031 0.1 0.104  0.029 0.1 0.098  0.034

Ao1(t1) 0.005 0.005 0.003 0.005 0.006 0.003 0.005 0.005 0.003
Ao1(t2) 0.01 0.010  0.005 0.01 0.011  0.005 0.01 0.010  0.005
Ao1(t3) 0.05 0.049  0.017 0.05 0.054  0.015 0.05 0.051 0.017

Ao1(ta) 0.1 0.097  0.033 0.1 0.108  0.029 0.1 0.101 0.031
n=500

0 0.01005 0.064  0.098 1 1.025 0.175 4 3.925 0.596

B1 1 1.013 0.219 1 1.008  0.198 1 1.007  0.242

B2 2 2.021 0.211 2 2.003  0.201 2 1.999  0.262

Ao1(t 0.005 0.005 0.002  0.005 0.005 0.002 0.005 0.005 0.002

)
Ao1(t2) 0.01 0.010 0.003 0.01 0.010 0.003 0.01 0.010 0.004
Ao1 (tg) . . . . . .
Ao1(ta) 0.1 0.098 0.021 0.1 0.101 0.019 0.1 0.100 0.025
Ao1(t1) 0.005 0.005 0.002 0.005 0.005 0.002 0.005 0.005 0.002
Ao1(t2) 0.01 0.010 0.003 0.01 0.010 0.003 0.01 0.010 0.004
Ao1(t3) 0.05 0.049 0.011 0.05 0.050 0.010 0.05 0.051 0.014
)

Ao1(ta 0.1 0.098 0.021 0.1 0.101 0.019 0.1 0.100 0.025
exponential (1I)
n=250
4 0.01005 0.049 0.132 1 0.953  0.336 4 3.824  0.784
B1 1 1.078 0.208 1 1.011 0.265 1 0.994  0.304
B2 2 2.228 0.251 2 2.008 0.317 2 1.989  0.400

Ao1(t1) 0.005 0.004 0.002 0.005 0.005 0.003 0.005 0.005 0.003
Ao1(t2) 0.01 0.008  0.003 0.01 0.010  0.005 0.01 0.010  0.005
Ao1(ts) 0.05 0.046  0.012 0.05 0.050  0.018 0.05 0.050  0.017
Ao1(ta) 0.1 0.097  0.022 0.1 0.100  0.033 0.1 0.099  0.032

Ao1(t1) 0.005 0.005 0.003 0.005 0.005 0.003 0.005 0.005 0.003
Ao1(t2) 0.01 0.009  0.005 0.01 0.010  0.005 0.01 0.010  0.005
Ao1(ts) 0.05 0.048  0.013 0.05 0.048  0.017 0.05 0.050  0.017

Ao1(ta) 0.1 0.099  0.023 0.1 0.096  0.031 0.1 0.099  0.029
n=500

0 0.01005 0.042  0.076 1 1.020 0.214 4 3.888  0.562

B1 1 1.011 0.148 1 1.012  0.194 1 0.984 0.214

B2 2 2.018 0.175 2 2.009 0.233 2 1.964  0.284

Ao1(t1) 0.005 0.005 0.002 0.005 0.005 0.002 0.005 0.005 0.002
Ao1(t2) 0.01 0.010  0.003 0.01 0.010  0.003 0.01 0.011 0.004
Ao1(ts) 0.05 0.049  0.009 0.05 0.050  0.011 0.05 0.051 0.013
Ao1(ta) 0.1 0.097  0.016 0.1 0.101  0.019 0.1 0.102  0.023

Ao1(t1) 0.005 0.005 0.002 0.005 0.005 0.002 0.005 0.005 0.003
Ao1(t2) 0.01 0.010  0.003 0.01 0.010  0.004 0.01 0.010  0.004
Ao1(ts) 0.05 0.049  0.009 0.05 0.050  0.010 0.05 0.051 0.012
Aoi(ta) 0.1 0.097 0.015 0.1 0.1 0.018 0.1 0.101 0.021
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Table 2: Summary of parameter estimates {é, B, Aoj} under Weibull hazards.

independence mild dependence strong dependence
true true true
value mean SD value  mean SD value  mean SD
Weibull (1)
n=250
2 0.01005 0.035  0.081 1 0.892  0.377 4 3.695  0.680
B1 1 1.027 0.278 1 0.995 0.351 1 0.973  0.307
Ba 2 2.054 0.274 2 1.985  0.360 2 1.92 0.327

Ao1(t1) 0.01 0.010  0.004 0.01 0.010  0.006 0.01 0.011 0.005
Ao1(t2) 0.04 0.038  0.012 0.04 0.039  0.018 0.04 0.042  0.015
Ao1(t3) 0.09 0.086  0.024 0.09 0.087  0.037 0.09 0.092  0.030
Ao1(ta) 0.16 0.152  0.042 0.16 0.154  0.066 0.16 0.161 0.052

Ao1(t1) 0.01 0.010  0.004 0.01 0.010  0.005 0.01 0.011 0.005
Ao1(t2) 0.04 0.039  0.012 0.04 0.041  0.018 0.04 0.042  0.015
Ao1(ts) 0.09 0.088  0.025 0.09 0.087  0.038 0.09 0.093  0.030
Ao1(ta) 0.16 0.154  0.044 0.16 0.153  0.066 0.16 0.163  0.051

n=>500
0 0.01005  0.032  0.057 1 1.027  0.295 4 3.825  0.509
B 1 1.017  0.182 1 1.002  0.259 1 0.991 0.236
B2 2 2.030  0.190 2 1.985  0.270 2 1.978  0.245

Ao1(t1) 0.01 0.010  0.003 0.01 0.010  0.004 0.01 0.010  0.003
Ao1(t2) 0.04 0.039  0.008 0.04 0.040  0.010 0.04 0.041 0.010
Ao1(t3) 0.09 0.087  0.017 0.09 0.090  0.022 0.09 0.091 0.022
Ao1(ta) 0.16 0.152  0.030 0.16 0.158  0.037 0.16 0.160  0.038

Ao1(t1) 0.01 0.010  0.003 0.01 0.010  0.003 0.01 0.010  0.003
Ao1(t2) 0.04 0.039  0.008 0.04 0.040  0.011 0.04 0.040  0.010
Ao1(t3) 0.09 0.087  0.018 0.09 0.090  0.022 0.09 0.090 0.021
Ao1(ta) 0.16 0.152  0.031 0.16 0.159  0.037 0.16 0.159  0.036

n=250
0 0.01005  0.038  0.083 1 0.907  0.311 4 3.614  0.751
B1 1 1.017  0.220 1 0.999  0.267 1 0.988  0.300
B2 2 2.050  0.267 2 1.977  0.344 2 1.939  0.410

Ao1(t1) 0.01 0.010  0.004 0.01 0.010  0.005 0.01 0.011 0.005
Ao1(t2) 0.04 0.038  0.011 0.04 0.040  0.015 0.04 0.041 0.016
Ao1(t3) 0.09 0.086  0.022 0.09 0.089  0.031 0.09 0.090  0.032
Ao1(ta) 0.16 0.152  0.039 0.16 0.157  0.054 0.16 0.158  0.056

Ao1(t1) 0.01 0.010  0.005 0.01 0.010  0.006 0.01 0.010  0.006
Ao1(t2) 0.04 0.039  0.012 0.04 0.039  0.015 0.04 0.041 0.015
Ao1(t3) 0.09 0.088  0.023 0.09 0.087  0.030 0.09 0.090  0.029
Ao1(ta) 0.16 0.156  0.037 0.16 0.155  0.049 0.16 0.158  0.048

n=500
0 0.01005  0.031 0.056 1 0.956  0.216 4 3.790  0.580
B1 1 1.005 0.163 1 0.988  0.185 1 0.994  0.222
B2 2 2.018 0.183 2 1.989  0.241 2 1.975  0.295

Ao1(t1) 0.01 0.010  0.003 0.01 0.010  0.003 0.01 0.010  0.004
Ao1(t2) 0.04 0.039  0.008 0.04 0.040  0.010 0.04 0.041 0.011
Ao1(t3) 0.09 0.088  0.016 0.09 0.090  0.020 0.09 0.091 0.024
Ao1(ta) 0.16 0.154  0.029 0.16 0.160  0.034 0.16 0.159  0.040

Ao1(t1) 0.01 0.010  0.004 0.01 0.010  0.004 0.01 0.010  0.004
Ao1(t2) 0.04 0.039  0.009 0.04 0.040  0.009 0.04 0.040  0.010
Ao1(t3) 0.09 0.088  0.016 0.09 0.089  0.019 0.09 0.089  0.020
Ao1(ta) 0.16 0.156  0.027 0.16 0.158  0.031 0.16 0.157  0.033
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Table 3: Comparison of 63(t) and 6%;(t) for n =250 and 500 under ezponential hazards

4 minimum  1-st quartile median mean  3-rd quartile maximum
exponential (I)

n=250
0.01005 G2(t) 0.064 0.086 0.092 0.093 0.099 0.133
62, (t) 0.063 0.083 0.089 0.090 0.096 0.125
1 5% (t) 0.077 0.118 0.130 0.131 0.142 0.234
52, (¢) 0.072 0.108 0.117 0.118 0.128 0.190
4 52 (t) 0.080 0.132  0.149 0.154 0.171 0.341
53, (%) 0.071 0.115 0.130 0.134 0.149 0.305

n=500
0.01005 52(¢) 0.075 0.091 0.096 0.096 0.100 0.124
53,(¢) 0.075 0.090 0.095 0.095 0.099 0.115
1 52 (t) 0.107 0.129 0.138 0.138 0.146 0.180
&?I(t) 0.098 0.117 0.124 0.124 0.131 0.162
4 52 (t) 0.089 0.123 0.137 0.138 0.151 0.199
52, (t) 0.078 0.109 0.119 0.120 0.132 0.169

exponential (1I)

n=250
0.01005 52 (t) 0.047 0.066 0.072 0.072 0.078 0.116
52,(%) 0.047 0.064 0.070 0.071 0.076 0.104
1 57 (t) 0.051 0.086 0.095 0.097 0.106 0.166
53,(¢) 0.049 0.080 0.088 0.089 0.097 0.149
4 52 (t) 0.063 0.101  0.116 0.119 0.134 0.235
&2,(t) 0.056 0.090 0.103 0.106 0.118 0.208

n=500
0.01005 F2(t) 0.067 0.083 0.087 0.087 0.092 0.110
53,(t) 0.067 0.082 0.087 0.087 0.091 0.107
1 52 (t) 0.076 0.094 0.101 0.102 0.108 0.140
52, (¢) 0.073 0.087 0.093 0.093 0.099 0.123
4 53 (t) 0.074 0.108 0.119 0.120 0.132 0.207
5%, (%) 0.068 0.096 0.105 0.107 0.116 0.185

Weibull (1)

n=250
0.01005 52(t) 0.058 0.084 0.089 0.089 0.095 0.127
57,(¢) 0.058 0.083 0.088 0.089 0.094 0.117
1 5% (t) 0.043 0.078 0.086 0.088 0.096 0.155
G3,(t) 0.041 0.070 0.077 0.078 0.085 0.132
4 52 (t) 0.045 0.112 0.129 0.132 0.148 0.264
52, (¢) 0.042 0.098 0.112 0.114 0.128 0.235

n=500
0.01005 52(t) 0.062 0.075 0.079 0.079 0.083 0.100
52, (¢) 0.062 0.075 0.079 0.079 0.083 0.098
1 57 (t) 0.062 0.080 0.086 0.087 0.094 0.138
53,(%) 0.056 0.072 0.077 0.077 0.083 0.116
4 A?(t) 0.082 0.121 0.134 0.135 0.147 0.213
&?I(t) 0.073 0.104 0.115 0.117 0.127 0.181

Weibull (I1I)

n=250
0.01005 G2(t) 0.036 0.057 0.062 0.062 0.068 0.097
&?I (t) 0.035 0.056 0.062 0.062 0.068 0.097
1 5% (t) 0.045 0.067 0.075 0.076 0.084 0.122
52, (¢) 0.042 0.062 0.069 0.070 0.076 0.109
4 57 (t) 0.045 0.068 0.076 0.077 0.085 0.124
53,(%) 0.042 0.063 0.070 0.070 0.077 0.111

n=500
0.01005 52 (t) 0.045 0.058 0.062 0.062 0.066 0.086
53,(¢) 0.045 0.058 0.062 0.062 0.066 0.085
1 F2(t) 0.051 0.069 0.075 0.076 0.081 0.112
&2,(t) 0.048 0.064 0.069 0.069 0.074 0.098
4 A?(t) 0.053 0.070 0.076 0.077 0.082 0.112
52, (t) 0.049 0.064 0.069 0.070 0.074 0.099
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Table 4: Comparison of our proposed variance estimators with naive estimators
Naive Song et al. Proposed 1 Proposed 11
empirical SD empirical empirical empirical empirical
0 of S, (t, %) 61(t) Typelerror 62(t) Typelerror 67(t) Typelerror 657(t) Type I error
exponential (1)
n=250
0.01005 0.292 0.297 0.045 0.298 0.045 0.304 0.038 0.299 0.040
1 0.335 0.312 0.064 0.312 0.066 0.361 0.030 0.343 0.037
4 0.330 0.280 0.098 0.279 0.100 0.390 0.013 0.364 0.024
n=500
0.01005 0.317 0.305 0.064 0.305 0.064 0.309 0.062 0.308 0.064
1 0.353 0.320 0.074 0.319 0.076 0.371 0.041 0.352 0.051
4 0.334 0.271 0.097 0.271 0.099 0.370 0.015 0.346 0.031
exponential (1I)
n=250
0.01005 0.286 0.263 0.071 0.263 0.072 0.268 0.070 0.265 0.071
1 0.318 0.275 0.085 0.275 0.087 0.310 0.047 0.297 0.060
4 0.314 0.259 0.095 0.258 0.099 0.343 0.018 0.323 0.027
n=500
0.01005 0.314 0.293 0.067 0.293 0.067 0.295 0.063 0.294 0.064
1 0.314 0.282 0.077 0.282 0.081 0.318 0.052 0.305 0.060
4 0.324 0.261 0.113 0.260 0.116 0.346 0.028 0.325 0.043
Weibull (1)
n=250
0.01005 0.305 0.294 0.056 0.294 0.056 0.299 0.053 0.297 0.055
1 0.279 0.256 0.068 0.256 0.067 0.295 0.031 0.278 0.043
4 0.302 0.264 0.081 0.263 0.080 0.361 0.014 0.336 0.023
n=500
0.01005 0.283 0.279 0.053 0.279 0.050 0.281 0.050 0.282 0.050
1 0.278 0.256 0.065 0.256 0.067 0.295 0.033 0.278 0.041
4 0.308 0.266 0.080 0.265 0.078 0.340 0.026 0.367 0.017
Weiball (IT)
n=250
0.01005 0.273 0.246 0.073 0.247 0.071 0.249 0.067 0.248 0.067
1 0.285 0.246 0.093 0.245 0.091 0.275 0.058 0.263 0.069
4 0.287 0.246 0.094 0.246 0.094 0.277 0.058 0.264 0.070
n=500
0.01005 0.268 0.248 0.071 0.248 0.071 0.250 0.070 0.249 0.070
1 0.278 0.246 0.084 0.246 0.083 0.275 0.052 0.262 0.065
4 0.280 0.246 0.086 0.246 0.085 0.277 0.051 0.264 0.066

Table 5: Empirical power of a two-sided test with a = 0.05 and m = 0.80.

independence mild dependence strong dependence
sample empirical sample empirical sample empirical Schoenfeld’s
€ size power size power size power sample size
exponential (1)
0.3 201 0.819 264 0.766 536 0.769 174
0.5 70 0.805 110 0.789 241 0.833 63
0.6 50 0.773 84 0.823 181 0.836 44
exponential (1I)
0.3 138 0.770 234 0.761 540 0.812 174
0.5 47 0.797 100 0.779 258 0.821 63
0.6 36 0.804 78 0.813 200 0.823 44
Weibull (1)
0.3 166 0.798 291 0.801 773 0.785 174
0.5 65 0.819 110 0.778 344 0.819 63
0.6 46 0.783 89 0.820 178 0.813 44
Weibull (1I)
0.3 158 0.792 207 0.788 584 0.803 174
0.5 62 0.763 92 0.781 203 0.800 63
0.6 42 0.764 75 0.787 163 0.800 44

Table 6: Summary of the call center data set.

1-st call 2-nd call 3-rd call 4-th call 5-th call

number of calls
number of events

49246
1416

7759

360 89

1646

488
32

198
18




28

Table 7: The call center data set: parameters’ estimates and bootstrap standard errors.

0 B1 B2
point estimate 0.9973 -0.3006 -0.1211
bootstrap SE  0.1767 0.1046 0.1046

Table 8: The call center data set: Estimates of the cumulative baseline hazard functions.

1-st call 2-nd call 3-rd call 4-th call 5-th call
bootstrap bootstrap bootstrap bootstrap bootstrap
t Aor (t) SE Aoz(t) Aog(t) SE A04(t) SE Aos (t)

10 0.012 0.001 0.010 0.002 0.009 0.003 0.009 0.005 0.030 0.012
50 0.027 0.002 0.039 0.004 0.034 0.007 0.026 0.009 0.057 0.022
100 0.051 0.003 0.085 0.007 0.080 0.015 0.065 0.016 0.151 0.048
150 0.075 0.004 0.152 0.014 0.132 0.023 0.155 0.046 0.178 0.062
200 0.108 0.006 0.221 0.020 0.174 0.029 0.266 0.069 0.305 0.105
250 0.148 0.009 0.301 0.026 0.256 0.040 0.407 0.107 0.553 0.183

Table 9: The call center data set: results of the paired tests.

calls 1-2 1-3 14 15 2-3
5,,(250,7%) 20.464 -0.771 -0.0561 -0.048 0.027
611(250) 0.039  0.199 0.018 0.016 0.027

5,(250,4)/677(250) -11.915 -3.871 -2.884 -3.019 1.024

p-value <0.001 <0.001 0.002 0.001 0.847
FDR p-value <0.001 <0.001 0.042 0.003 1.000
calls 2-4 2-5 34 35 4-5
5,.(250, 7) 0.058  -0.0290 -0.014 -0.030 -0.019
611(250) 0.163  0.016 0.016 0.015 0.012
5,(250,%)/677(250) 0.355 -1.841 -0.907 -2.051 -1.493
p-value 0.639  0.033 0.182 0.020 0.068

FDR p-value 1.000  0.096 1.000 0.042 0.422

Table 10: Summary of the WAS data set.
year of birth< 1930 year of birth> 1930
number of subjects 4961 8069
number of events 709 297
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