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Abstract

This thesis was motivated by the bed blocking problem, which occurs when elderly hospital
patients are ready to be discharged, but must remain in the hospital until a bed in a geriatric
institution becomes available. Bed blocking has become a challenge to healthcare operators
due to its economic implications and quality-of-life effect on patients. Indeed, hospital-
delayed patients, who cannot access their most appropriate treatment (e.g. rehabilitation),
prevent new admissions. Moreover, bed blocking is costly since a hospital bed is more
expensive to operate than a geriatric bed.

The first part of this thesis (Section 2) focuses on analyzing the bed blocking prob-
lem, in order to improve the joint operation of hospitals and geriatric institutions. To this
end, we develop a mathematical fluid model, which accounts for blocking, mortality and
readmission—all significant features of the discussed environment. The comparison between
our fluid model, a two-year data set from a hospital chain and simulation results shows that
our model is accurate and useful. Then, for bed allocation decisions, the fluid model and
especially its offered-load counterpart turn out insightful and easy to implement. Our anal-
ysis yields a closed-form expression for bed allocation decisions, which minimizes the sum of
underage and overage costs. The proposed solution demonstrates that significant reductions
in cost and waiting list length are achievable, as compared to current operations.

A more comprehensive view of the system analyzed in Section 2 can be achieved by
including Emergency Department (ED) boarded patients, waiting for admission to hospital
wards. This analysis should also include finite waiting rooms and customer loss when they
are full. Accordingly, we set out to model and analyze time-varying tandem networks with
blocking and finite waiting rooms throughout the network (Section 3). These models capture
the essential characteristics of our first model-namely, time-variation and blocking; in this
case, however, accommodating customer loss requires reflection analysis. We conclude this
section by providing operational insights on network performance of tandem flow lines, in a
broader perspective that goes beyond hospital networks.

Sections 2 and 3 focus on Blocking After Service (BAS). Section 4, however, focuses on
the Blocking Before Service (BBS) mechanism. BBS arises in telecommunication networks,
production lines and healthcare systems. We begin by modeling the stochastic queueing
network of time-varying tandem networks with finite buffers throughout the network; then,
we develop its corresponding fluid limit and provide design/operational insights regarding

BAS/BBS mechanisms; in particular, on network throughput and job loss rate.
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1 Introduction

Providing high quality healthcare services for the ageing population is becoming a
major challenge in developed countries. This challenge is amplified by the fact that
the number of elderly people, aged 65 and over who today account for 10% of the
population, will double within two decades (World Health Organization, 2014; United
Nations Population Fund, 2014). Moreover, elderly patients are often frail and undergo
frequent hospitalizations. These facts are and will increasingly be major contributors
to the high occupancy levels in inpatient wards and EDs. For example, in the last
several years, some OECD countries reported averages of over 90% occupancy levels
in hospital inpatient wards (OECD iLibrary - Health at a Glance, 2013; NHS England
- Bed Availability and Occupancy Data, 2015); and these yearly averages hardly reveal
the hour-by-hour reality of the busiest periods (e.g. winters).

The bed blocking problem occurs when hospital patients are ready to be discharged,
but must remain in the hospital until a bed in a more appropriate geriatric facility (a
nursing home or a geriatric institution) becomes available. Research about the bed
blocking problem (e.g. Rubin and Davies, 1975; Namdaran et al., 1992; El-Darzi et al.,
1998; Koizumi et al., 2005; Cochran and Bharti, 2006; Travers et al., 2008; Osorio
and Bierlaire, 2009; Shi et al., 2015) is important since it can potentially improve the
quality of patient care and reduce the mounting costs associated with bed blocking
(Cochran and Bharti, 2006). For example, the estimated cost of bed blocking in
the UK alone exceeds 1.2 billion dollars per year (BBC News, 2016). In contrast to
previous models, which relied on simulations for modeling bed blocking, our research
offers an analytical model for minimizing the overage and underage costs of a system
consisting of hospitals and geriatric institutions; the model yields a tractable solution
by determining the optimal number of beds for each geriatric ward.

Patient flow (Figure 1) begins when elderly people turn to the ED due to a clinical
deterioration or a health crisis. After stabilizing their condition, doctors decide on
discharge or hospitalization. Patients can also be hospitalized without going through
the ED in cases of elective procedures. Upon treatment completion, hospital doctors
decide whether the patient is capable of returning to the community, needs to be
admitted to a nursing home, or requires further treatment in a geriatric institution.

We subdivide the latter option into the three most common geriatric wards: reha-



bilitation, mechanical ventilation and skilled nursing care. In Section 2 we focus on
these three wards together with the hospital inpatient wards (i.e. the four framed
stations in Figure 1) since, in our setting and according to the data we analyze, the
problem in geriatric institutions is much more severe than in regular nursing homes.
Having said that, our modeling framework accommodates any environment, in which
the phenomenon of blocking is severe and gives rise to operational challenges.

Increased need

for care l ?

— Clinical deterioration/ Crisi
Nursing Homes |«
b
|
Skilled Nursing —@
> Care
? ? O
Inpatient . Mechanical _.
Emergency Patient S
Department Wards onditio >———>{ Ventilation
1 I )
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f !
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i Rehabilitation i ey,
Discharge valuatio
2 O \K
Clinical
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crisis Elective\Semi-elective
_ admission
Community
(independent, =
home nursing, Discharge
residence homes)
Ageing ‘ Emergency C
Population Department

Death —@@

Figure 1: Network of patient flow through the community, inpatient wards, nursing homes
and geriatric institutions. The readmission sign substitutes for an arrow from Station 2,3 or
4 back to Station 1.

In Section 2 we develop a mathematical fluid model, which accounts for block-
ing, mortality and readmission—all significant features of the discussed environment.
Then, for bed allocation decisions, the fluid model and especially its offered-load coun-
terpart turn out insightful and easy to implement. We compare our fluid model with
a two-year data set from a hospital chain and simulation results. These comparisons
show that our model is accurate and useful. Moreover, our analysis yields a closed-form
expression for bed allocation decisions, which minimizes the sum of underage and over-
age costs. Solving for the optimal number of geriatric beds in our system demonstrates
that significant reductions in cost and waiting list length are achievable, as compared

to current operations. In addition, we propose two feasible extensions for capacity



allocation problems with time-varying demand of beds: a periodic reallocation of beds
and the incorporation of setup costs into bed allocation decisions.

Achieving a more comprehensive view of the system analyzed in Section 2 can
be done by including ED boarded patients waiting for admission to hospital wards.
This analysis should also include finite waiting room before the first station and cus-
tomer loss when this waiting room is full. Accordingly, in Section 3, we model and
analyze time-varying multi-server tandem networks with blocking and finite waiting
rooms throughout the network — before the first station and between the stations.
These models capture the essential characteristics of the model analyzed in Section
2 — namely, time-variation and blocking; in these models, however, accommodating
customer loss requires reflection analysis.

In order to analyze these networks, we begin with the stochastic queueing model of
time-varying multi-server flow-lines with finite buffers throughout. Then, we develop
fluid models for these networks and justify them by establishing many-server heavy-
traffic (MSHT) functional strong law of large numbers (FSLLNs). We conclude Section
3 by providing operational insights on network performance derived from our models;
specifically the effects of line length, bottleneck location, waiting room size, and the
interaction among these effects.

The models analyzed in Sections 2 and 3 focus on the Blocking After Service
(BAS) mechanism. Section 4, however, focuses on Blocking Before Service (BBS).
Under the latter, a service can begin at Station i, only when there is available capacity
(buffer space/server) at Station ¢ + 1. As in Section 3, we begin by modeling the
stochastic queueing networks and then, by establishing a many-server heavy-traffic
(MSHT) functional strong law of large numbers (FSLLNs), we develop fluid models
for these networks. Finally, we analytically compare and provide design/operational
insights regarding the two blocking mechanisms; in particular, on network throughput
and job loss rate.

Each of the three main sections in this thesis is based on a research paper; namely:
Section 2 is based on Zychlinski et al. (2018c), Section 3 on Zychlinski et al. (2018b)
and Section 4 on Zychlinski et al. (2018a).



2 Bed Blocking in Hospitals

2.1 Introduction

Congestion problems and their highly significant effect, both medically and financially,
motivated us to model and analyze the system, depicted schematically in Figure 2
(which is the framed sub-system in Figure 1). Patient flow begins when people of
all ages are admitted to hospital inpatient wards. Upon treatment completion, and
focusing on geriatric patients, hospital doctors decide whether the patient is capable
of returning to the community or requires further care in a geriatric institution. We
subdivide the latter option into the three most common long-term care geriatric wards:

rehabilitation, mechanical ventilation and skilled nursing care.

Healthcare Organization

Hospital ) Geriatric Institution
H
:
i
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0 Care »
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Figure 2: Network of patient flow through inpatient wards and geriatric institutions. The
readmission sign substitutes for an arrow from Station 2,3 or 4 back to Station 1.

Patients who are sent to a geriatric rehabilitation ward stay there one month on
average, before they are able to return to full or partial functioning. Mechanical venti-
lation wards treat patients who cannot breathe on their own, typically after three un-
successful weaning attempts in a hospital; the average stay in a mechanical ventilation
ward is 5—6 months. Unfortunately, only a minority of these patients are discharged;
most die or are readmitted to hospitals. Skilled nursing wards treat patients who, in
addition to functional dependency, suffer from active diseases that require close medi-
cal supervision, for example due to bedsores or chemotherapy; the average stay there is

1-1.5 months. Some patients are discharged to nursing homes but, again, most either



die or are readmitted to hospitals.

In our setting, the central decision maker is a large healthcare organization that
operates several hospitals and several geriatric institutions. In some countries (e.g.
Singapore and Israel), the government functions as this organization. In England, the
NHS, an arm of the government, is the central decision maker; in Australia it is the
Medicare Healthcare System; and in the U.S., it can be the Veterans Administration
(VA) with its 500+ hospitals.

The methodology we propose is rather general and can accommodate other settings,
with a different number or type of wards. Since the system we analyze and the data
we use are for three types of geriatric wards, in the empirical part of the paper, we
focus on the four stations depicted in Figure 2: Inpatient wards (Station 1), Geriatric
Rehabilitation (Station 2), Mechanical Ventilation (Station 3) and Skilled Nursing
Care (Station 4). Applying our general methodology to analyzing these stations, for
which there are long waiting lists, will yield policies that significantly reduce total
operational costs.

To this end, we develop a mathematical fluid model that accounts for blocking, mor-
tality and readmission—all significant features of the discussed environment. Then,
we use our fluid model and its time-varying offered-load counterpart to formulate and
solve bed allocation problems for geriatric wards. Our goal is to find the optimal
number of geriatric beds, in order to minimize the total overage plus underage costs
of the system. Moreover, we propose two feasible extensions for capacity allocation
problems with time-varying demand of beds: a periodic reallocation of beds and the
incorporation of setup costs into bed allocation decisions.

In our analysis we use two data sets, over a period of two years. The first covers
the patient flow in a hospital chain comprising four hospitals and three geriatric insti-
tutions (three rehabilitation wards, two mechanical ventilation wards and three skilled
nursing wards). The second data set includes individual in-hospital waiting lists for
each geriatric ward. (Details about our data are provided in Appendix A.) These data
indicate that the average in-hospital waiting times are 28 days for mechanical ventila-
tion, 17 days for skilled nursing care and 3.5 days for rehabilitation wards. Although
the average waiting time for rehabilitation seems relatively short, this is definitely not
the case when considering the fact that these are elderly patients, waiting unnecessar-

ily for their rehabilitation care, while occupying a bed that could have been used for



newly admitted acute patients. Moreover, the number of patients who are referred to
a rehabilitation ward is 5 and 9 times that of the corresponding numbers for skilled
nursing care and mechanical ventilation, respectively; this implies (Section 2.6) that
the overall demand they generate exceeds that of the other patients.

Figure 3 presents the waiting list lengths (daily resolution) within the hospital,
for each geriatric ward over one calendar year. The dotted lines represent length
according to our data, while the solid lines represent our fluid model (Equations (6)—
(7) in the sequel). According to this plot, all three geriatric wards work at full capacity
throughout the year (long waiting lists); furthermore, in the winter, the demand for

beds increases.

I I I I
Rehabilitation - Model
Rehabilitation - Data
Mechanical Ventilation - Model
------------ Mechanical Ventilation - Data
= Skilled Nursing - Model

------------ Skilled Nursing - Data

50 *

Waiting list length

O 1 1 1 1 1 1 1 1 1 1 1
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

t [days]

Figure 3: Waiting list length in hospital for each geriatric ward - model (solid lines) vs. data
(dashed lines). The X axis is one calendar year in units of days. (We are plotting here the
2nd year of our data. The 1st year was used to fit the parameters of our model.)

The fit between our model and the data is excellent. In fact, in Appendix A we
demonstrate, via multiple scenarios with various treatment distributions, that our
continuous, deterministic fluid model approximates well and usefully its underlying
stochastic environment.

The long waiting lists, and the fact that hospitalization costs are much higher in
hospitals than in geriatric institutions, indicate that the system is operated ineffi-
ciently; this leads to excessive costs that can be reduced by adopting our solution.

Moreover, in Sections 2.7.1 and 2.8.3 we demonstrate how the constant and periodic



allocations we suggest can reduce costs and shorten waiting lists. (The latter is illus-
trated in Figure 4 (right) and Figure 5 (bottom left); this is relative to the current
waiting list lengths presented in Figure 3.)

2.2 Literature Review

The review covers the main areas that are relevant to this research: high-level mod-
eling of healthcare systems, queuing networks with blocking, time-varying queueing

networks and bed planning in long-term care facilities.

2.2.1 High-level Modeling of Healthcare Systems

The three main approaches used for modeling healthcare systems with elderly patients
have been Markov models, system dynamics and discrete event simulation.

For tractability reasons, Markov models have been applied to networks with a
limited number of stations, typically 2-3, in order to characterize steady-state perfor-
mance such as length of stay (LOS) at each station. For example, Harrison and Millard
(1991) analyze the empirical distribution of patient LOS in geriatric wards by fitting a
sum of two exponentials to a data set: most patients are discharged or die shortly after
admission, while some stay hospitalized for months. Several papers use Markov models
to describe the flow of geriatric patients between hospitals and community-based care
(Taylor et al., 1997, 2000; Xie et al., 2005; Faddy and McClean, 2005; McClean and
Millard, 2006). In general, these models, which include short-stay and long-stay states
in each facility, distinguish between the movement of patients within and between fa-
cilities. Differently from these papers, our approach emphasizes station capacity and
time-varying parameters.

Another common approach for modeling healthcare systems is system dynamics.
It is used to analyze patient flow through healthcare services by focusing on the need
to coordinate capacity levels across all health services. Wolstenholme (1999) devel-
ops a patient flow model for the UK National Health Service and uses it to analyze
alternatives for shortening waiting times of community care patients. According to
the author, reducing total waiting times can be achieved by adding ‘intermediate care’
facilities, which are aimed at preventing elderly medical patients from hospitalization

and community care. Our approach contributes to this line of research by considering
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the dependency between capacity allocation and waiting time.

System dynamics is also used to analyze the bed blocking problem (Gray et al.,
2006; Travers et al., 2008; Rohleder et al., 2013). These papers demonstrate the
importance of coordinating capacity levels across different health services. Desai et al.
(2008) use system dynamics to forecast the future demand for social care services by
elderly people. While our proposed fluid model is also deterministic, we are able to
justify it as the fluid limit of an underlying stochastic model/system.

Discrete event simulation is another popular approach for analyzing complex sys-
tems and phenomena such as bed blocking. El-Darzi et al. (1998) describe patient flow
through geriatric wards, by examining the impact of bed blocking and occupancy on
patient flow. They show that the availability of acute beds is strongly connected to
referral rates for long-stay care facilities. Katsaliaki et al. (2005) build a simulation
model of elderly patient flow between the community, hospitals and geriatric institu-
tions. They approximate the delay in discharge from hospital and the relevant costs.
Shi et al. (2015) and Armony et al. (2015) discuss a two-time-scale (days and hours)
service time in hospital wards. Shi et al. (2015) investigate ED boarding times (waiting
for admission to hospital wards) at a Singaporean hospital. Via simulation studies,
they examine the effects of various discharge policies on admission waiting times. The
two-time-scale service time captures both treatment time and additional service time
caused by operational factors, such as discharge schedule. In our research, we develop
a time-varying analytical model, for setting bed capacities in geriatric institutions.
Our model evolves on a single time-scale — it is days since, for the decisions we are

interested in (and the data we have), days are natural and adequate.

2.2.2 Queueing Networks with Blocking

Several blocking mechanisms are acknowledged in the literature (Perros, 1994; Balsamo
et al., 2001). We focus on the blocking-after-service (BAS) mechanism, which happens
when a patient attempts to enter a fully-capacitated Station j upon completion of
treatment at Station ¢. Since it is not possible to queue in front of Station j, the
patient must wait in Station ¢ and therefore, blocks a bed there until a departure
occurs at Station j.

Healthcare systems usually have complex network topologies, multiple-server queues

and time-varying dynamics. In contrast, closed-form solutions of queueing models with
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blocking exist only for steady-state, single-server networks with two or three tandem
queues or with two cyclic queues (Osorio and Bierlaire, 2009). The solutions for more
complex networks are based on approximations, which are typically derived via decom-
position methods (Hillier and Boling, 1967; Takahashi et al., 1980; Gershwin, 1987;
Koizumi et al., 2005; Osorio and Bierlaire, 2009) and expansion methods (Kerbache
and MacGregor Smith, 1987, 1988; Cheah and Smith, 1994). Koizumi et al. (2005) use
a decomposition method to analyze a healthcare system with mentally disabled pa-
tients as a multiple-server queueing network with blocking, while Osorio and Bierlaire
(2009) develop an analytic finite capacity queueing network that enables the analysis
of patient flow and bed blocking in a network of hospital operative and post-operative
units.

Bretthauer et al. (2011) offer a heuristic method, for estimating the waiting time
for each station in a tandem queueing network with blocking, by adjusting the per-
server service rate to account for blocking effects. Bekker and de Bruin (2010) analyze
the effect of a predictable patient arrival pattern, to a clinical ward, on its perfor-
mance and bed capacity requirements. In particular, the authors use the offered-load
approximation and the square-root staffing formula for calculating the required beds
for each day of the week. Although we also use the offered-load approximation for the
time-varying demand, our approach is different, since it goes beyond a single-station
analysis and takes into account blocking effects by minimizing overage and underage
costs. Moreover, the periodic reallocation we suggest takes into account a reallocation
cost that is associated with adding and removing a bed.

Capturing blocking in stochastic systems with a single-station in steady-state has
been done via reflection. Specifically, reflection is a mathematical mechanism that
has been found necessary to capture customer loss (see Whitt, 2002, Chapter 5.2 and
Garnett et al., 2002). Reflection modeling, however, requires the use of indicators,
which cause technical continuity problems when calculating approximating limits. We
circumvent this challenge by developing a fluid model with blocking yet without reflec-
tion, which enables us to prove convergence of our stochastic model without reflection.
Our simple and intuitive model, compared to models with reflection, enables us to

model, successfully and insightfully, time-varying networks.
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2.2.3 Queueing Networks with Time-Varying Parameters

Time-varying queueing networks have been analyzed by McCalla and Whitt (2002),
who focused on long service lifetimes, measured in years, in private-line telecommunica-
tion services. Liu and Whitt (2011b) analyze time-varying networks with many-server
fluid queues and customer abandonment. In addition, time-varying queueing models
have been analyzed for setting staffing requirements in service systems with unlimited
queue capacity, by using the offered-load analysis (Whitt, 2013). The methods for
coping with time-varying demand when setting staffing levels are reviewed in Green
et al. (2007a) and Whitt (2007). A recent work of Li et al. (2015) focuses on stabilizing
blocking probabilities in loss models with a time-varying Poisson arrival process, by
using a variant of the modified-offered-load (MOL) approximation.

Fluid frameworks are well adapted to large, time-varying overloaded systems (Man-
delbaum et al., 1998, 1999), which is the case here. Previous research shows that fluid
models have been successfully implemented in modeling healthcare systems (Ata et al.,
2013; Yom-Tov and Mandelbaum, 2014; Cohen et al., 2014). Moreover, fluid models
yield analytical insights, which typically cannot be obtained using their alternatives

(e.g. simulation, time-varying stochastic queueing networks).

2.2.4 Bed Planning for Long-term Care Facilities

Most research on bed planning in healthcare systems focuses on short-term facilities,
such as hospitals (Green, 2004; Akcali et al., 2006). Research about bed planning for
long-term care facilities is scarce. We now review the existing literature.

Future demand for long-term care has a strong impact on capacity setting decisions.
Hare et al. (2009) develop a deterministic model for predicting future long-term care
needs in home and community care services in Canada. Zhang et al. (2012) develop a
simulation-based approach to find the minimal number of nursing home beds in order
to achieve a target waiting time. The model we suggest considers time-varying de-
mand for beds throughout the year, as well as mortality and readmission rates which
are all significant in the context of geriatric patients. In addition, we analyze a network
capacity problem of several geriatric wards by taking into account blocking effects in
hospitals.

De Vries and Beekman (1998) present a deterministic dynamic model for expressing
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waiting lists and waiting times of psycho-geriatric patients for nursing homes, based on
data from the previous year. Ata et al. (2013) analyze the expected profit of hospice
care. They propose an alternative reimbursement policy for the United States Medi-
care and determine the recruiting rates of short and long stay patients to maximize
profitability of the hospice. Kao and Tung (1981) consider the monthly fluctuation in
demand for hospital services, yet the bed allocation they allow is constant throughout
the year. In particular, they try to minimize the hospital yearly average overflow prob-
ability. To accommodate for the seasonal demand, we suggest a periodic reallocation
of beds, which takes into account a reallocation cost that is associated with adding
and removing each bed.

Harrison and Zeevi (2005) develop a method, which was extended in Bassamboo
et al. (2006), for staffing large call centers with multiple customer classes and multiple
server pools; they deploy stochastic fluid models to minimize the sum of personnel costs
and abandonment penalties. The method they suggest reduces the staffing problem to
a multidimensional Newsvendor problem and hence, the critical fractile solution they
suggest is distribution dependent. In Remark 2.3, we further elaborate on the relation
of Harrison and Zeevi (2005) to the present work.

Afeche et al. (2017) develop a fluid model for maximizing the profit of service firms
by determining customer acquisition investment as well as capacity allocation. Our
research includes finite capacities and time-variation; we also go beyond a single-station
analysis to a network analysis. This allows us to consider the blocking customers,
occupying servers in the first station, and explicitly accommodate the blocking costs
when calculating the optimal number of beds. Moreover, we justify the fluid model by

proving convergence of the corresponding stochastic model.

2.3 Contributions

The main contributions of this section are:

1. Modeling: We develop and analyze an analytical model comprising both long-
term care geriatric wards and their feeding hospitals. This joint modeling is nec-
essary in order to capture blocking effects (while previous research was restricted
to a single-station utility maximization; e.g. Jennings et al. (1997)). This is done

by explicitly considering geriatric ward blocking costs and minimizing the overall
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underage and overage cost within the system.

2. Methodology: Our work contributes to the literature on queueing (fluid) networks
with blocking. In particular, our proposed fluid model captures blocking without
the need for reflection (see Section 2.2.2), and it applies to general networks (for
example, networks with multiple stations in tandem). We use our model to de-
rive analytical solutions and insights about cost minimization and bed allocation
policies. The modeling approach accommodates time-varying systems, jointly
with finite capacity considerations, patient mortality and readmissions—all of

these are prevalent features in healthcare.

3. Practice: This research gives rise to new capacity allocation strategies. Specif-
ically, we offer a closed-form solution for periodic reallocation of beds that ac-
counts for seasonal demand, and an analytical model that incorporates setup
costs. This is but two examples, made analyzable by our model, that demon-
strates how our framework would yield managerial recommendations for health-

care managers in allocating geriatric beds.

2.4 The Model

In this section, we describe our environment and its dynamics. We then formally

introduce model notations and equations.

2.4.1 Environment, Dynamics and Notations

Consider the four stations in Figure 2: hospital wards (Station 1) and long-term care
geriatric wards—rehabilitation (Station 2), mechanical ventilation (Station 3), and
skilled nursing care (Station 4). Station 1 includes all ward patients, while Stations
2—4 include only geriatric patients that need long-term care beyond hospitalization.
Our model is at the macro level; thus the capacity of each station is an aggregation
of the individual capacities of all stations of this type in the discussed geographical
area (e.g. assume that a district includes three rehabilitation wards; then the capacity
of the modeled rehabilitation station is the sum of all three individual capacities).
Such aggregated capacities are justified since, in practice, patients can be sent from
any individual hospital to any individual geriatric ward and vice versa, especially if

they are all within the same geographic area (a city or a district).
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We model the exogenous arrival rate to hospital wards as a continuous time-varying
function A(t) (see Mandelbaum et al., 1999). Internal arrivals are patients returning
from geriatric wards back to the hospital. Hospital wards include N; beds. If there are
available beds, arriving patients are admitted and hospitalized; otherwise, they wait
in the queue. We assume that hospital wards have an unlimited queue capacity, since
the ED serves as a queue buffer for them (our model does, nevertheless, accommodate
blocking of the first station). Patients leave the queue either when a bed becomes
available or if they, unfortunately, die. Medical treatment is performed at a known
service rate p;. Upon treatment completion, patients are discharged back to the
community, admitted to nursing homes, or referred to a geriatric ward (2, 3 or 4)
with routing probabilities py;(t), i = 2,3, 4, respectively. The number of beds in each
geriatric ward i, 1 = 2,3,4, is N;. If there are no available beds in the requested
geriatric ward, its referred patients must wait in the hospital while blocking their
current bed. This blocking mechanism is known as blocking-after-service (Balsamo
et al., 2001). The treatment rates in Stations i, i = 2, 3,4, are p;. Frequently, the
clinical condition of patients deteriorates while hospitalized in a geriatric ward, and
they are hence readmitted to the hospital according to rate f3;, i = 2,3, 4.

As mentioned, patients do die during their stay in a station, which we assume occurs
at individual mortality rates 0;, 1 = 1, 2, 3, 4, for Stations 1-4. These mortality rates are
significant and cannot be ignored. We follow the modeling of mortality as in Cohen
et al. (2014) and, in queueing theory parlance, refer to it as “abandonments” that
can occur while waiting or while being treated. Although we use the same mortality
rates while waiting and while being treated, if data prevail, our model can easily

accommodate two different mortality rates per station.

2.4.2 Model Equations

We now introduce the functions ¢;(t), i = 1,2,3,4, which denote the number of pa-
tients at Station ¢ at time ¢. The standard fluid modeling approach defines differential
equations describing the rate of change for each ¢;. This direct approach has led
to analytically intractable models that could not be justified as fluid limits of their
corresponding stochastic counterparts. Moreover, these direct descriptions based on
¢; included indicator functions which are harder to analyze due to their discontinu-

ity. Hence, we propose a new modeling approach, in which we introduce alternative
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functions x;(t), ¢ = 1,..4, that suffice to capture the state of the system. Then, we
develop differential equations for x;, which are tractable, and ultimately deduce g;
from x;. This novel modeling approach also simplifies the convergence proof of the
corresponding stochastic model, which is provided in Appendix B.

The value z;(t) denotes the number of arrivals to Station 1 that have not completed
their treatment at Station 1 at time ¢. The values x;(t), i = 2, 3,4, denote the number
of patients that have completed treatment at Station 1, require treatment at Station i,
but have not yet completed their treatment at Station ¢ at time ¢ (these patients may
still be blocked in Station 1). The dynamics of the system is captured through a set
of differential equations (DEs); each characterizes the rate of change in the number of
patients at each state at time ¢. Let Ajpq(f) denote the arrival rate to Station 1 at

time ¢ and dyp10;(t) denote its departure rate. The DE for z; is, therefore

dlL‘l(t) (1)

iy (t) = P Atotal(t) — Ototar (t)-

Patients arrive to Station 1 from two sources: externally, according to rate A(¢), and

internally from Stations 2, 3 and 4. Since [3; is the readmission rate from Station

4

back to Station 1, the internal arrival rate to Station 1 is Z Bi (ZL“Z(t) A Ni), where
=2

x Ay = min(z,y); here (xl(t) A Ni) denotes the number of patients in treatment at

Station i. The total arrival rate to Station 1 at time ¢ is, therefore,

4
Motar(£) = ME) + Y Bi(i(t) A N;). (2)

i=2
The total departure rate, dyoq;(t), consists of two types. The first is due to patients who
die at an individual mortality rate #,. Since patients might die while being hospitalized
or waiting in queue, the rate at which patients die is 6,2 (t). If data regarding different
mortality rates while waiting (6,,) and while being treatment (6;) prevail, then the

total mortality from Station 1 would be
4 4

01, [xl(t) _ (N1 _ Z (i) — Wﬂ "o, [xl(t) A (N1 - Z (i(t) — Ni)w’ (3)

1= 1=

where the number of blocked patients waiting in Station 1 for a transfer to Station
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iis (zi(t) — Ni)+. Therefore, the number of unblocked beds at Station 1 is (N1 -
S (zi(t) — Ni)Jr), which can vary from 0 to V.
The second departure type, d,(t), is of patients who complete their treatment at Station

1. The rate at which patients complete their treatment in Station 1 is

5.(t) = 1 [xl(t) A <N1 . 24: (:(t) — M)*)}, (4)

=2

where the expression in the rectangular brackets indicates the number of occupied

unblocked beds at Station 1. Thus, the total departure rate at time ¢ is

5total (t) == glxl(t) + 5r(t) (5)

Using similar principles, we construct the DEs for the rate of change in z;, 1 = 2, 3, 4.
The referral rate to Station 7 is py;(¢) multiplied by d,(¢), the rate at which patients
complete their treatment at Station 1. The departure rate of patients who have com-
pleted service at Station 1, but not at Station ¢ at time ¢ consists of the mortality rate,
0;z;(t), readmission rate back to the hospital, j; (:cz(t) A Ni) and treatment completion
rate pu; (xl(t) A Ni).

The set of DEs for z;, i = 1, 2, 3, 4, is, therefore,

$1<t> = )\total<t) - 5total(t)7

(6)

The functions ¢;(t), i = 1,2, 3,4, which denote the number of patients at Station 4

at time ¢, are

1(t) =21 (t) + zi(t) — N) s
q ;( ) .

qi(t) = x;(t) N N, 1=2,3,4.
Note that b;(t), the number of blocked patients at Station 1 at time ¢, waiting for an
available bed at Station ¢, i = 2, 3,4, is given by b;(t) = (xl(t) — Ni)+.
The validation of the model, both against data and a discrete event stochastic sim-
ulation with different treatment distributions, is detailed in Appendix A. It shows that
there is an excellent fit between the fluid model, the actual data, and the corresponding

simulation results.
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2.5 The Bed-Allocation Model

The decision maker in our analysis is an organization that operates both hospitals and
geriatric institutions. The objective is to find the optimal number of beds for each
geriatric ward, so as to minimize overall long-term underage and overage cost of care
(beds) in the system.

Minimizing overage and underage costs is a typical objective in resource allocation
problems (Porteus, 2002). In our context, overage costs are incurred when geriatric
beds remain empty while medical equipment, supply and labor costs are still being
paid. We denote by C, the per bed per day overage cost: this is the amount that
could have been saved if the level of geriatric beds had been reduced by one unit in
the event of an overage. This cost includes the per day labor, medical equipment and
supply costs required for operating a geriatric bed. Underage cost, C,, is incurred
when patients are delayed in the hospital due to lack of availability in the geriatric
wards. Thus, it is the amount that could have been saved if the level of geriatric
beds had been increased by one unit in the event of an underage; C, is hence the
per bed per day cost of hospitalization in hospitals minus the per bed per day cost in
geriatric institutions. To elaborate, hospitalization costs also include risk costs, which
are incurred when a patient is required to remain hospitalized. These costs include
expected costs of patient medical deterioration by not providing the proper medical
treatment, and by exposing the patient to diseases and contaminations prevalent in
hospitals. The sum of C, and C,, which will later on appear in the optimal solution
in (16), amounts to the per bed per day hospitalization cost in hospitals. Excluding
or underestimating the cost of risk will yield a lower bound for the required number
of beds. Since our solution serves as a guide for thinking, meaningful insights can be
derived already from such a lower bound.

We denote by C,, and C,, the overage and underage costs, respectively, for Stations
1,1 = 2,3,4. The resulting overall cost for Stations 2, 3 and 4 over a planning horizon
T, is

4

CO(Ny, N3, Ny) =Y CO(Ny), (8)

1=2
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where C(O)(NV;) is the total overage and underage costs for each Station 7, given by:

O(O)(NZ-):/T [cui-bi(twco,(Ni—qi@))*}dt, i =2,3,4. 9)

The first integrand is the underage cost, calculated by adding up the number of blocked
patients, and the second integrand is the overage cost calculated via the total number of
vacant beds. Minimizing (8) will yield a constant capacity level, for each geriatric ward,
over the whole planning horizon. In Section 2.8.2 we introduce a periodic reallocation

of beds, which yields several capacity levels for each ward during the planning horizon.

Remark 2.1. Calculating the cost from (8) and (9) requires forecasting the arrival rate
A(t), for the planning horizon [0, T]. This is done by using historical data: it shows that
there is an annual arrival rate pattern that repeats itself, while the volume increases at
a rather constant rate each year. Hence, our healthcare partners can accurately predict

the arrival rate over the planning horizon.

Minimizing (8), subject to (2)—(7), is analytically intractable, since ¢;(¢) and b;(t)
are solutions of a complex system of differential equations. To estimate the total
cost, we use an offered-load approximation to the time-varying demand for beds (see
Jennings et al., 1997; Whitt, 2007). Thus, in Section 2.6.1 we present a closed-form
solution for minimizing the total underage and overage cost based on the offered load.
Then, in Section 2.7.2 we compare our closed-form solution with a numerical solution

of the original problem.

2.6 Offered Loads in Our System

Given a resource, its offered load v = {r(t),t > 0} represents the average amount
of work being processed by that resource at time ¢, under the assumption that wait-
ing and processing capacity are ample (no one queues up prior to service). In our
context, offered-load analysis is important for understanding demand. Indeed, we ex-
press demand in terms of patient-bed-days per day for the geriatric wards, in order to
determine appropriate bed capacity levels.

The calculation of the offered load is carried out by solving (6) (and (2), (4), (5))
with an unlimited capacity in Stations 2, 3 and 4 (N; = oo, i = 2,3,4). (Note that

b;(t) =0, for : = 2, 3,4, which means that no patients are blocked.) These conditions
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yield the following set of DEs for the offered load r;, i = 1,...,4 (just substitute r; for
x; in (6)):

i (t) = A(t) + 22 Biri(t) — 01r1(t) — i1 (1 () A N, o

Fi(t) = pra(t) - pa (ro(t) ANy) — (Bi 4 0; + pa)ri(t), i =2,3,4.
2.6.1 Estimating the Optimal Number of Beds based on the Offered load

The estimated overall cost for Stations 2, 3 and 4, based on the offered load over the

planning horizon T, is
4

C(Ng, N3, Ny) = Y C(Ny); (11)

=2

here C'(NN;) is the underage plus overage cost for Station i, given by
T
C(N;) = / (Co (D) = N) "+ Cop - (N = mi(0) |, i=2.3,4 (12)
0

The first integrand corresponds to the underage cost, which is calculated by multiplying
C.,, with the (proxy for) bed shortage (r;(t) — N;)* and integrating it over the planning
horizon. The second integrand, the overage cost, is obtained by multiplying C,, with
the proxy for bed surplus (N; —r;(t))" and integrating it over the planning horizon as

well.

Remark 2.2. Why are these two prozies justified?

First, under bed shortage (at cost C,, per bed), we substitute r; for x;. Second, under
bed surplus (at cost C,, per bed), we substitute r; for q;. Third, since practically C,, >
C,, (see Section 2.7.1), the optimal solution must amplify reducing the number of
blocked patients, hence the more significant cost is incurred by bed surplus. Finally,
for calculating the latter cost and according to the offered-load definition, q; ~ r; when
the system is underloaded. And indeed, comparing the solutions according to the fluid
model, to the offered-load approximation and to simulation results (Section 2.7.2),

shows an excellent fit.

The offered load for each station is a known function of ¢, that depends solely on
input parameters but not on Ny, N3, Ny. Thus, minimizing (11) is, in fact, a separable

problem, which can be solved for each station separately. (When doing so below, we
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shall omit the ¢ in (12) for simplicity of notations.)

To minimize C(NN), we adopt the approach of Jennings et al. (1997) and treat
N as a continuous variable. We let 7y = {ry(t)| 0 < ¢t < T} denote the decreasing
rearrangement of r on the interval [0,7T]: r; on [0,7] is characterized by being the

unique decreasing function such that, for all > 0, we have

T T
/ Lir(yzaydt = / Lry(tyzaydt; (13)
0 0

here 1¢,(1)>4) denotes the indicator function for the event {r(t) > x}. Existence and
uniqueness of r4 were established in Hardy et al. (1952). The interpretation of Equation
(13) is that both r(¢) and r4(t) spend the same amount of time above and under any

level . We can now rewrite C'(NN) as follows:

C(N) = / (Co - (F(t) = NY* +C, - (N — (1)) ]dt (14)
00 T N T
:/ Cu/ l{r(t)>x}dt dz + CO/ 1{r(t)<x}dt dz
N 0 0 0

8

T N T T
/ / 1{T(t)>z}dt dr — / Cy 1{r(t)>a;}dt dr + / C,|T / 1{T(t)2$}dt] dz
0 0 0 0 0

9] T N
/ Cu/ 1{T(t)>z}dt der — / Cu + Co / 1{T(t)2$}dt dx + C,TN
0 0 0

T
= / C'u/ 1{Td(t)2$}dt dx — / (Cu + Co)/ 1{rd(t)2x}dt dx + C,T'N,
0 0 0 0

a

where the first equality is achieved by substituting:

00 N
(0= N = [ dpusade, N =r@) = [ lpoends (15)
N 0

and interchanging the order of integration.

We are now ready for Theorem 2.1, which identifies the optimal number of beds, N*.
The proof of the Theorem is provided in Appendix C. Note that our proof does not
require that r(¢) and A(f) be continuous or differentiable. (These assumptions were

needed in Jennings et al., 1997.)
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Theorem 2.1. The number of beds that minimizes C(N) is given by

C,T

N =ra| &G

(16)

In Appendix D we explain how N* arose as a candidate for minimizing C'(NV).

Remark 2.3. Alternatively, one can obtain the solution by building the cumulative
relative frequency function for r and noting the similarity between our problem and the
Newsvendor problem (Arrow et al., 1951; Nahmias and Cheng, 2009), for inventory
management. In this case, we interpret the frequency as probability. This approach
is similar to the reduction to the Newsvendor problem in Harrison and Zeevi (2005).
However, our solution in (16) is more natural (more directly related to the time-varying
nature of our models and their underlying systems); but, more importantly, this time-
varying view naturally enables the solution of two extensions: setup cost per new bed
(Section 2.8.1) and periodic reallocation of beds (Section 2.8.2) (such extensions are

beyond the scope of the Newsvendor problem extension).

2.7 Numerical Results

In this section, we apply our model to data in order to validate our solution (Sections
2.7.1-2.7.2), calculate the imputed costs (Section 2.7.3) and provide structural insights

and managerial recommendations (Section 2.7.4).

2.7.1 An Illustrative Example

Our healthcare partners were willing to share with us some of their financial reports and
cost data. Rigorous calculations, based on these data (some of which are confidential),
yielded the following critical fractiles required for (16). The hospitalization cost in
mechanical ventilation wards is the highest among the geriatric wards and, as it turns
out, C,, = 1.882C,,. In rehabilitation wards the ratio is C,, = 2.667C,,, as the
hospitalization there is less expensive. Finally, the ratio for skilled nursing care is
C., = 4.267C,,, as the hospitalization cost there is the lowest among the geriatric
wards.

We used the fluid model developed in Section 2.4, together with our two-year his-

torical data, to forecast the offered load for a subsequent three-year planning horizon,
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where the demand for beds (e.g. the arrival rate) increases every year. Then, by
using Matlab we numerically constructed the functions ry for each ward (by sorting
the function values of 7). The optimal number of beds is the value of these functions
at the critical point as in (16). Since the value of N* is not necessarily an integer,
it must be rounded. Rounding up vs. down has minor significance, since the solution
here serves as a guide for a large organization that provides healthcare services for
an entire district. Therefore, our solution provides insights regarding the difference
between the suggested allocation and the current capacity.

The left plot in Figure 4 presents the optimal number of beds (the dashed lines)
compared to the offered load (solid lines). The optimal number of beds for each ward
was calculated by rounding up the result from Equation (16). The optimal solution
implies increasing the current number of beds by 25%, 35% and 33% in rehabilitation,
mechanical ventilation and skilled nursing care, respectively. In total, an increase
to 577 beds from present 439 beds. This will lead to an overage and underage cost
reduction of 51%, 53% and 69%; here, we compared to the cost under the current
number of beds for the same arrival forecast. We believe that there are two major
reasons for this dramatic cost reduction. The first is the lack of a model in practice,
such as the one introduced here: such a model would take blocking and its related
costs into account, which would guide planners. The second reason is the difficulties
in increasing the present budget towards acquiring new beds. We provide more details
and calculate imputed costs in Section 2.7.3.

The right plot in Figure 4 presents the waiting list length to each geriatric ward un-
der the optimal number of beds. Note that the waiting lists were shortened (compared
to the current situation presented in Figure 3), by 67%, 74% and 88% in rehabili-
tation, mechanical ventilation and skilled nursing care, respectively. This shortening
occurred even though shortening the waiting lists was not directly included in our
objective function. Indeed, we aimed at minimizing overage and underage costs; but
since blocking costs are significant, reducing the total cost is achieved by reducing

blocking which, in turn, leads to significant shorter waiting lists.

2.7.2 Solution Validation and Cost Comparison

In addition to validating our fluid model against data and stochastic simulation results

(see Appendix A), in this section we validate our bed planning solution.
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Figure 4: Optimal solution. On the left, the solid lines represent the offered load for each
geriatric ward and the dashed lines represent the optimal number of beds. On the right,
depicted are the waiting list lengths in hospital, according to the optimal solution; this is
relative to the current waiting list lengths presented in Figure 3.

Thus far, two cost functions were presented for estimating the optimal number of geri-
atric beds. The first, C©)(Ny, N3, Ny) in (8), is based on the time-varying number of
patients, as derived from the solution of the fluid equations in (7). Since minimizing
CO)(Ny, N3, N,) is analytically intractable, we introduced the second cost function,
C(Ns, N3, Ny) in (11), which estimates the total cost based on an offered-load approx-
imation to the time-varying demand for beds.

In order to validate the approximated cost function, we compared the optimal
solutions for the two problems with the optimal solution derived from our stochastic
simulation model. In the latter, the arrivals, duration times and routing percentages
are random variables (see Appendix A). All parameters, including the size of the
system, are realistic for the system we analyze.

The solution for C'(Ny, N3, N,) was calculated by our closed-form expression in (16).
The solution for C®( Ny, N3, Ny) was achieved by numerically solving the optimization
problem in (8)—(9); this was done by solving the fluid model in (6)—(7) for each capacity
combination, calculating the total cost according to (8) and choosing the capacity
combination with the minimal cost. Finally, the solution for the stochastic simulation
model was achieved by calculating, for each capacity combination, the total underage
and overage cost. This was done by using (8) and (9), where instead of ¢; and b;,
1 = 2,3,4, we used the corresponding numbers from the simulation results. Then,
we chose the combination which minimized the cost. In other words, the solutions

according to C'©)(Ny, N3, Ny) and simulation, was carried out by a three-dimensional
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search (over Ny, N3 and N;). Table 4 summarizes this comparison by presenting the
optimal number of beds and the optimal cost according to each method. In addition,
we calculated the differences in percentages between each two methods for each ward
separately and then all of them together. The last column in Table 4 presents the
maximal difference between the solutions. The maximal difference varied from 1-
1.6%, when comparing bed allocations and 1.1-3.4% when comparing total cost. This

excellent fit is typical; indeed, we obtained similar differences when comparing the

three solutions, under several other scenarios of overage and underage costs.

Ward CO)(Ny, N3, Ny) | C(Na, N3, Ny) Simulation Maximal difference
N* (Total cost) | N* (Total cost) | N* (Total cost) N* (Total cost)
Rehabilitation 205 (2,601,667) | 292 (2,683,042) | 294 (2,633,167) 1.0% (3.0%)
Mechanical Ventilation | 128 (1,493,917) | 126 (1,547,000) | 128 (1,499,167) 1.6% (3.4%
Skilled Nursing 161 (1,213,333) | 159 (1,226,750) | 160 (1,215,667) 1.3% (1.1%
Total Number of beds | 584 (5,308,917) | 577 (5,456,792) | 582 (5,348,000) 1.2% (

Table 4: Comparing optimal solutions (number of beds and overage and underage cost per
year) — C©)(Ny, N3, Ny) vs. C(No, N3, Ny) vs. simulation.

2.7.3 The Imputed Overage and Underage Costs

In addition to the estimation of the C,/C, ratio given to us by our healthcare organi-
zation, it is of interest to examine C, and C,, as imputed costs. These imputed costs
are based on observed decisions that, in our case, are the number of beds that decision
makers allocate to each geriatric ward. To this end, we use the current number of beds
in each geriatric ward in order to extract the model’s parameters C, and C, or, more
accurately, the ratio C,/C,. (A similar approach was taken by Olivares et al., 2008.)
Suppose that the current allocation N is optimal, we define

r; (N) = sup{t|ra(t) > N}, (17)

as the time during which underage costs were incurred. Let I denote the fraction of
time during which underage costs were incurred. Consequently, from Theorem 2.1 we

have
g (N) Co

I — _ (18)
T c,+0C)

We now present our data as a sequence of n days: (t;,r(t;)) for i = 1,...,n, where
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t; denotes a single time point for day i. Then, we define I to be an estimator for the

fraction of time during which underage costs were incurred:

R
= EZ; Lr=ny- (19)
We replace ;' (N)/T with I in (18) to get

Co

2 (20)
c,+C,

I =
According to our data, I, = 0.74 in rehabilitation, I3 = 0.91 in skilled nursing care
and I; = 1 in mechanical ventilation. Therefore, the imputed costs are C,, = 0.35C,
(vs. Cyy, = 2.667C, according to the financial reports) in rehabilitation, C,, = 0.099C,
(vs. Cyy = 1.882C,) in skilled nursing care and C,, = 0 (vs. C,, = 4.267) in mechanical
ventilation. The differences in the imputed costs among the three wards are due to
different hospitalization costs, as explained in Section 2.7.1.

There is a big difference between the ratio C, /C, according to the financial reports,
and according to the imputed costs. This may imply that blocking costs are neglected
or underestimated when determining the geriatric bed capacity. Another possible
explanation is that although there is a central decision maker that owns both the

hospitals and geriatric institutions, decisions are locally optimized.

2.7.4 Managerial Insights for the Optimal Solution

The function 74 in the optimal solution (16) is decreasing in [0,7]. As explained
already, the ratio C,/(C,+ C,) in the optimal solution is the hospitalization cost ratio
between a geriatric bed and a hospital bed. As the gap between these two costs widens,
more geriatric beds will be needed. Indeed, in Figure 4, the optimal number of beds
in skilled nursing care is relatively high compared to the offered load. The reason for
this is the relatively low hospitalization cost in this ward. In mechanical ventilation,
however, the optimal number of beds is relatively low compared to the offered load,
since the hospitalization cost there is higher.

Figure 4 demonstrates long periods of overage, especially in skilled nursing care

and rehabilitation. To accommodate for the seasonal demand, we seek a more flexible
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solution, such as the possibility to reallocate beds between wards. To this end, we
first sum the total offered load for the three wards then, we minimize (12) in order to
find the total required number of beds. The optimal solution will then require fewer
beds overall (566 beds instead of 577), but will lead to only an additional decrease of
5% in the total cost. The reason for this relatively modest advantage is the similar
offered-load patterns among the wards, which implies that more beds are needed in all
three wards at the same time. Thus, reallocating beds between wards is less effective
in reducing the cost.

Consequently, a more flexible and responsive policy to fluctuations in demand,
can be achieved by adding and removing beds throughout the year. Our healthcare
partners argue that setting two capacity levels each year, which implies reallocating
beds twice a year, is feasible. For example, it is possible to open a specific area/ward
when demand is high (usually in the winter), and close this area when demand is
low (usually in the summer). The described policy is feasible since most ‘bed cost’
is related to labor cost and medical supplies; the latter can be purchased seasonally
while the former can be changed due to the existing flexibility of staffing levels (e.g.
reallocating workers within facilities in the same organization or changing the work
load of part-time workers throughout the year). We formally introduce and analyze

the periodic reallocation problem in Section 2.8.2

2.8 Extensions

In this section we present two extensions to our model. The first extension, at the
strategic level, adds setup costs for allocating new beds. The second extension, at the

operational level, allows periodic reallocation of beds.

2.8.1 Including Setup Cost per New Bed

In this section, we analyze a case where there is a fixed setup cost, K, associated with
the introduction of each new bed. The setup cost may be associated with recruitment
and training of new staff or the purchase of new equipment. We assume that the setup
cost may vary with bed types. Let B denote the current bed capacity, then the overall

cost for a geriatric ward is

Cx(N) = O(N) + K(N — B)*, (21)
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where C'(N) is the overall cost, analyzed in Section 2.5 and (N — B)* is the number
of new beds. The planning horizon, T, reflects an organizational policy regarding
investments and, hence, should be long enough for an investment in new beds to be

worthwhile.

Theorem 2.2. The optimal number of beds that minimizes Cg(N) is given by

(

c,T c,T

_— ' ——— | <B

laral Y rlaral] S

N} = C,T+ K C, '+ K 5 (22)

S ' | >

e Ao M\ ra | T

B, otherwise.

\

We prove Theorem 2.2 in Appendix E.
Note that r4(-) is defined on the interval [0,7]; hence, when C,T < K, then ry(+) is

undefined, since

OT+K OT+C,T
c.xrC. -~ C.xC.

In this case, only the first condition of Nj; is relevant. Therefore, the solution will
not include the introduction of new beds. An intuitive explanation is that for a high
bed setup cost it may be preferable to pay the underage cost for the entire planning
horizon.

Note that the optimal solution depends on the available bed capacity. For a very
large B, there is no point introducing new beds and, hence, the optimal solution equals
the solution with no setup cost. On the other hand, if the current capacity, B, is very
small, then adding new beds is essential for decreasing the total cost. In all other

cases, it may be preferable to keep the capacity as is.

2.8.2 Periodic Reallocation of Beds

Managers of geriatric institutions acknowledge that it is feasible to change the number
of beds during the year in order to compensate for seasonal variations in demand. Note
that changing the number of beds also implies changing staff levels (which are typically

proportional to the number of beds) and other related costs. The planning horizon
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remains the same, but we divide each year into several periods. We then determine
the preferable periods (location and length) and the number of beds required for each
period. For example, an optimal reallocation policy would determine a certain capacity
during the first three and the last two months of every year in the planning horizon,
and possibly a different capacity during the seven other months of every year. To this
end, we introduce a reallocation cost, C,., associated with adding and removing a bed.

Due to feasibility constraints from our partner hospital chain, we allow only two
capacity levels throughout the planning horizon. Nevertheless, the methodology we
present can be implemented in other settings where more capacity levels are possi-
ble. Moreover, due to the nature/shape of the demand, having two capacity levels
corresponds to changing capacity levels twice each year.

Let 7 = [0,7] denote the planning horizon interval and let Z denote the time
interval (location and length) in which there are N7 geriatric beds (in 7 \ Z, there are
Nz geriatric beds). Our objective is to find Z, Nz and Nz that minimize the total
underage and overage costs.

To this end, we split 7(t) into two functions: rz(t) for the capacity level in Z and
rmz(t) for the capacity level in 7 \ Z. The functions rz(t) and rnz(t) are defined
on the intervals [0,|Z|] and [0, |7 \ Z|], respectively, by concatenating the relevant
intervals from r(¢) and shifting the functions to ¢t = 0. We define the functions r4,(t)
and 74, ,(t) to be the decreasing rearrangements of rz(t) and rmz(t), respectively,
exactly as we defined 74(¢) in Section 2.5. The total underage and overage costs are,

therefore,
C(Z,Nz,Nnz) = C(Z,N7) + C(T \Z,Nnz) + C; |Nnz — Ny
_ / [Culr(t) = Nz) "+ (N2 = (1) ]
z

+ / [CU(T@) — NT\I)+ + Co(NT\I — T(t))—i_} dt + C«,« ‘NT\I — NZ s
T\ (23)

where C(Z, Nz) and C(7T \Z, N7\z) denote the overage and underage costs for intervals
Z and T \ Z, respectively.

30



Theorem 2.3. The number of beds that minimizes (23), for a fivred L, is

Nj = N%, Ny, =NIY, if NT< NIV
Nj=NI, Ny =N if NI>NTV (24)

Ni = Ni ;= N~ asin(16), otherwise.

A_ Col AI£EC, :
Here, N{ =14, < e ) for every interval A.

We prove Theorem 2.3 in Appendix F.

Note that the option in the third line in (24) suggests determining only one capacity
level (e.g. it is preferable not to reallocate beds throughout the planning horizon). In
particular, since 74, () and 74, ,(-) are defined on the intervals [0,|Z]] and [0, |7\ Z]],
respectively, when C,|Z| > C, or when C,|T \ Z| > C,, it is preferable to pay the

underage cost for the entire period than to pay the reallocation cost, C,.

2.8.3 A Numerical Example

We now solve the periodic reallocation problem for a three-year planning horizon.
Figure 5 depicts the solutions for three cases. The solid lines represent the offered
load for each ward, while the dashed lines represent the optimal number of beds.
The first case (top left plot) is when no reallocation costs are introduced (C, = 0).
This solution yields a 35%, 22% and 31% underage and overage cost reduction, in
rehabilitation, mechanical ventilation and skilled nursing care, respectively, compared
to the constant allocation. The second case (top right plot) is when reallocation
costs are introduced; in this case, the gaps between the two capacity levels narrows.
In particular, the optimal allocation in mechanical ventilation is constant, since it
is not worthy to invest the reallocation cost (e.g. C, > C,|Z| or C, > C,|T \ ZJ).
The third case (bottom right plot), presents the optimal periodic reallocation when
four reallocation points are allowed and no reallocation costs are introduced. The
left bottom plot in Figure 5 presents the waiting list lengths for each ward under
the optimal reallocation policy when no reallocation costs are introduced; this is in
comparison with the current situation presented in Figure 3 and the constant allocation

presented in Figure 4 (right).
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Figure 5: Optimal reallocation of beds when no reallocation costs are introduced (left top
plot), when reallocation costs are introduced (right top plot) and when four reallocation
points are allowed (bottom right plot). Waiting list length under the optimal reallocation
policy when no reallocation costs are introduced (left bottom plot).

2.8.4 Managerial Recommendations on Extensions

The major cost reduction, compared to the current situation for the three wards,
is achieved by adopting the proposed policy of a constant number of beds. Periodic
allocations allow for extra cost reductions, when compared to the policy with a constant
number of beds. Thus, a reasonable policy would be to adopt the constant allocation
at a first step and implement the periodic reallocation as a second step. In some cases,
when the reallocation cost is higher than the underage period cost, it is preferable to
remain with the constant allocation (see the case for mechanical ventilation ward in
the right top plot of Figure 5). Another option which can help reduce the load is to
divert more geriatric patients in peak periods to home healthcare services or virtual
hospitals rather than to geriatric institutions (Ticona and Schulman, 2016). In this
case, multidisciplinary home healthcare teams treat the patient at home rather than

in hospital. Home care hospitalization was found to be more effective, shorter and
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increases patient satisfaction, compared to the same treatment received in hospital
(Shepperd et al., 2008; Caplan et al., 2012). Moreover, according to our analysis, even
a 10% diversion of patients requiring geriatric hospitalization to home care, will reduce
the overage, and underage costs by about 25% on average and will shorten the waiting

lists in hospital by 30% on average.

2.9 Future Research

There are multiple directions worthy of future research, two of which will be now de-
scribed. The first is to modify the structure of the system by adding an intermediate
ward (i.e., a step-down unit) for sub-acute geriatrics (Wolstenholme, 1999), between
the hospital and the geriatric institutions. Such an intermediate ward would be desig-
nated for elderly patients with an expected long stay in the hospital, before continuing
on to a geriatric ward. Adding a sub-acute ward can both reduce the workload and
bed occupancy in hospitals and improve the patient flow in and out of the hospital.
Another direction is a capacity allocation problem, in which given a predefined
budget, the planners must decide where it is most beneficial to add new beds: in
hospitals, in intermediate wards or in geriatric wards. The simple version of this

question (without intermediate wards), in fact, triggered the present research.
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3 Time-varying Tandem Queues under the BAS Mechanism

3.1 Introduction

Achieving a more comprehensive view of the system analyzed in Section 2, can be done
by including ED boarded patients, waiting for admission to hospital wards (Figure 1).
This analysis should also include finite waiting room before the first station and cus-
tomer loss when this waiting room is full. This has motivated us to model and analyze
time-varying tandem networks with blocking and finite waiting rooms throughout the
network — before the first station and between the stations.

The models we focus on (flow lines) have been researched for decades (Avi-Itzhak,
1965; Avi-Ttzhak and Levy, 1995; Li and Meerkov, 2009; Meerkov and Yan, 2016); our
research takes the analysis to the new territories of time-varying environments and
many-server stations.

In particular, we analyze several stochastic models of time-varying tandem queues
with blocking. For each such model, we develop and prove its fluid limit in the many-
server regime: system capacity (number of servers) increases indefinitely jointly with
demand (arrival rates). We adopt a fluid framework since it yields accurate approxi-
mations for time-varying models, which are otherwise notoriously intractable. In fluid
models, entities that flow through the system are animated as continuous fluid, and
hence the system dynamics can be captured by differential equations. There is ample
literature justifying that fluid models accurately approximate heavily-loaded service
systems (Mandelbaum et al., 1998, 1999; Whitt, 2004, 2006; Pang and Whitt, 2009;
Liu and Whitt, 2011a, 2014).

Our basic model (Section 3.4) is a network with two queues in tandem (Figure 6),
where the arrivals follow a general time-varying counting process. There is a finite
waiting room before the first station and no waiting room between the two stations.
There are two types of blocking in this network. The first occurs when the first station
is saturated (all its servers are occupied and its waiting room is full), and therefore,
arriving customers must leave the system (are blocked); such customer loss is mathe-
matically captured by reflection. The second type of blocking occurs when the second
station is saturated (all its servers are busy); in this case, customers who complete their
service at the first station are forced to wait there while still occupying their server.

Such a mechanism is known as blocking-after-service (BAS) or manufacturing blocking

34



(Buzacott and Shanthikumar, 1993; Balsamo et al., 2001); and here, as it turns out
(Section 2.4), an appropriate state-representation renders reflection unnecessary for
capturing this type of blocking. A real system that is naturally modeled by such two
queues in tandem is an ED feeding hospital ward; servers here are hospital beds.

Using the Functional Strong Law of Large Numbers, for all our stochastic models we
establish the existence and uniqueness of fluid approximations/limits. These are first
characterized by differential equations with reflection, which are then transformed into
differential equations with no reflection but rather with discontinuous right-hand side
(RHS) (Filippov, 2013); the latter are easier to implement numerically. The accuracy
of our fluid models is validated against stochastic simulation, which amplifies the
simplicity and flexibility of fluid models in capturing the performance of time-varying
overloaded networks.

The two-station network is both specialized and extended. First, we derive a fluid
limit for the G;/M/N/(N + H) queue that seems, to the best of our knowledge,
already new. Next, in Section 3.5 we analyze the more general network with £ queues
in tandem and finite waiting rooms throughout — both before the first station and
in-between stations. It is worth noting that our models cover all waiting room options
at all locations: finite positive, infinite or zero (no waiting allowed); and that reflection
arises only due to having a finite waiting room before the first station.

Finally, in Section 3.6 we provide operational insights regarding the performance
of time-varying tandem queues with finite buffers. We chose to calculate performance
measures from the customer viewpoint: throughput, number of customers, waiting
times, blocking times and sojourn times; performance is measured at each station
separately as well as overall within the network. (One could also easily accommodate
server-oriented metrics, such as occupancy levels or starvation times.) Calculations of
the above customer-driven measures provide insights on how network characteristics
affect performance: we focus on line length (number of queues in tandem), bottleneck

location, size of waiting rooms and their joint effects.

3.2 Literature Review

Despite the fact that time-varying parameters are common in production (Leachman
and Gascon, 1988; Nahmias and Cheng, 2009) and service systems (Green et al., 2007b;
Feldman et al., 2008), such as in healthcare (Armony et al., 2015; Cohen et al., 2014;
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Yom-Tov and Mandelbaum, 2014), research on time-varying models with blocking is

scarce. We now review the three research areas, most relevant to this work.

3.2.1 Flow Lines with Blocking

Previous research on tandem queueing networks with blocking has focused on steady-
state analysis for small networks (Grassmann and Drekic, 2000; Akyildiz and von
Brand, 1994; Langaris and Conolly, 1984), steady-state approximations for larger net-
works (Takahashi et al., 1980; Brandwajn and Jow, 1988; Gershwin, 1987; Dallery and
Gershwin, 1992; Perros, 1994; Balsamo and de Nitto Persone, 1994; Tolio and Gersh-
win, 1998; van Vuuren et al., 2005; Osorio and Bierlaire, 2009) and simulation models
(Conway et al., 1988; El-Darzi et al., 1998; Katsaliaki et al., 2005; Bretthauer et al.,
2011; Millhiser and Burnetas, 2013).

Several papers have analyzed tandem queueing networks with an unlimited waiting
room before the first station and a Blocking After Service (BAS) mechanism between
the stations. In Avi-Itzhak and Yadin (1965), the steady-state of a network with
two stations in tandem was analyzed. In this model, the arrival process was Poisson
and there was no waiting room between stations. The transient behavior of the same
network was analyzed in Prabhu (1967). The model in Avi-Itzhak and Yadin (1965)
was extended in Avi-Itzhak (1965) to an ordered sequence of single-server stations with
a general arrival process, deterministic service times and finite waiting room between
the stations. The author concluded that the order of stations and the size of the
intermediate waiting rooms do not affect the sojourn time in the system. We extend
the analysis in Avi-Itzhak (1965) to time-varying arrivals, a finite waiting room before
the first station, exponential service times and a different number of servers in each
station. We show how the order of stations does affect the sojourn time and how it
interacts with the waiting room capacity before the first station.

The system analyzed in Avi-Itzhak and Yadin (1965) was generalized in Avi-Itzhak
and Levy (1995) under blocking-before-service (BBS) (or k-stage blocking mechanism)
in which a customer enters a station only if the next k stations are available. A tan-
dem queueing network with a single server at each station and no buffers between the
stations was analyzed in Kelly (1984); the service times for each customer are identical
at each station. In Whitt (1985) heuristics were developed for ordering the stations

in a tandem queueing network to minimize the sojourn time in the system. In this
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setting, each station has a single server and an unlimited waiting room. Simulation
was employed in Conway et al. (1988) to analyze Work in Process (WIP) in serial
production lines, with and without buffers in balanced and unbalanced lines. The
results of Glynn and Whitt (1991) were extended in Martin (2002) for analyzing tan-
dem queueing networks with finite capacity queues and blocking. In that work, the
author estimated the asymptotic behavior of the time customer n finishes service at
Station k, as n and k become large together. Single-server flow lines with unlimited
waiting rooms between the stations and exponential service times were investigated in
Meerkov and Yan (2016). The authors derived formulas for the average sojourn time
(waiting and processing times). In our models, in addition to having time-varying
arrivals, many-server stations and finite waiting rooms, the sojourn time also includes

blocking time at each station.

3.2.2 Time-Varying Fluid Models

Fluid models were successfully implemented in modeling different types of service sys-
tems. These models cover the early applications for post offices (Oliver and Samuel,
1962), claims processing in social security offices (Vandergraft, 1983), call centers
(Green et al., 2007b; Afeche et al., 2017) and healthcare systems (Yom-Tov and Man-
delbaum, 2014; Cohen et al., 2014; Zychlinski et al., 2018c). Fluid models of service
systems were extended to include state-dependent arrival rates, general arrival and
service rates (Whitt, 2005, 2006). Time-varying queueing models were analyzed for
setting staffing requirements in service systems with unlimited waiting rooms, by using
the offered load heuristics (Green et al., 2007b; Whitt, 2007, 2013).

Time-varying heavy traffic fluid limits were developed in Mandelbaum et al. (1998,
1999) for queueing systems with exponential service, abandonment and retrial rates.
Accommodating these models for general time-varying arrival rates and a general in-
dependent abandonment rate was done in Liu and Whitt (2011a) for a single station,
and for a network in Liu and Whitt (2011b). These models were extended to general
service times in Liu and Whitt (2012a,b, 2014).

Heavy traffic approximations for systems with blocking have focused on stationary
loss models (Borisov and Borovkov, 1981; Borovkov, 2012; Srikant and Whitt, 1996).
An approximation for the steady-state blocking probability, with service times being

dependent and non-exponential, was developed in Li and Whitt (2014). A recent work
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in Li et al. (2016) focused on stabilizing blocking probabilities in time-varying loss
models. In our paper, we contribute to this research area by developing a heavy traffic

fluid limit for time-varying models with blocking.

3.2.3 Queueing Models with Reflection

Queueing models with reflection were analyzed in Harrison (1973) for an assembly
operation by developing limit theorems for the associated waiting time process. There
it was shown that this process cannot converge in distribution, and thus is inherently
unstable. This model is generalized in Wenocur (1982) by assuming finite capacities at
all stations and developing a conventional heavy traffic limit theorem for a stochastic
model of a production system. The reflection analysis detailed in Harrison (1985);
Chen and Yao (2013) for a single-station and for a network is extended in Mandelbaum
and Pats (1995, 1998) for state-dependent queues. Loss systems for one station with
reflection were analyzed in Whitt (2002); Garnett et al. (2002). More recently, Reed
et al. (2013) solved a generalized state-dependent drift Skorokhod problem in one
dimension, which is used to approximate the transient distribution of the M/M/N/N

queue in the many-server heavy traffic regime.

3.3 Contributions
The main contributions of this section are the following:

1. Modeling. We analyze a time-varying model for £ many-server stations in tan-
dem, with finite waiting rooms before the first station and between the other
stations. This covers, in particular, the case of infinite or no waiting rooms,
which includes the G;/M/N/(N + H) queue. For all these models, we derive a
unified fluid model /approximation, which is characterized by a set of differential

equations with a discontinuous right-hand side (Filippov, 2013).

2. Analysis of the stochastic model. We introduce a stochastic model for our
family of networks in which, as usual, the system state captures station occupancy
(e.g. (28)—(29), for k = 2). It turns out, however, that a state description in
terms of non-utilized servers is more amenable to analysis ((31)—(32)). Indeed, it
enables a representation of the network in terms of reflection, which yields useful

properties of the network reflection operator (e.g. Lipschitz continuity).
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Figure 6: Two tandem stations with a finite waiting room before the first station.

3. Analysis of the fluid model. Through the Functional Strong Law of Large

3.4

Numbers, we derive a fluid limit for the stochastic model with reflection in the
many-server regime. Using properties of the reflection operator, we solve for
the fluid limit, which allows it to be written as a set of differential equations
without reflection. This fluid representation is flexible, accurate and effective,

hence, easily implementable for a variety of networks.

. Operational insights. Our fluid model yields novel operational insights for

time-varying finite-buffer flow lines. Specifically (Section 3.6), via numerical ex-
periments, we analyze the effects on network performance of the following factors:
line length, bottleneck location, size of the waiting room, and the interaction

among these factors.

Two Stations in Tandem with Finite Waiting Room

We now develop a fluid model with blocking for two stations in tandem, as illustrated

in Figure 6. In Section 3.5, we further extend this model for a network with k stations

in tandem and finite internal waiting rooms between the stations.

This FCFS system is characterized, to a first order, by the following (deterministic)

parameters:

1.

Arrival rate A(t), t > 0, to Station 1.

. Service rate pu; > 0,1 =1,2.

Number of servers N;, i = 1, 2.

. Transfer probability p from Station 1 to Station 2, 0 < p < 1 (i.e., with proba-

bility p, a customer will be referred to Station 2 upon completion of service at

Station 1);
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5. Finite waiting room H at Station 1; there is no waiting room at Station 2. (H =0
is allowed; in this case, customers join the system only if there is an idle server

in Station 1.)

The stochastic model is created from the following stochastic building blocks, all

of which are assumed to be independent:

1. External arrival process A = {A(t),t > 0}; A is a counting process, in which

A(t) represents the external cumulative number of arrivals up to time ¢; here
t
EA(t) :/ AMu)du, t>0. (25)
0

A special case is the non-homogeneous Poisson process, for which

A(t) = A (/Ot)\(u)du), t>0,

where Ag(+) is a standard Poisson process (unit arrival rate).

2. “Basic” nominal service processes D; = {D;(t),t > 0}, i = 1,2,3, where D;(t)

are standard Poisson processes.

3. Stochastic process X; = {X;(t),t > 0}, which denotes the number of customers

present at Station 1 that have not completed their service at Station 1 at time t.

4. Stochastic process Xy = {Xs(t),t > 0}, which denotes the number of customers
present at Station 1 or 2 that have completed service at Station 1, but not at

Station 2 at time ¢.
5. Initial number of customers in each state, denoted by X;(0) and X5(0).

A customer is forced to leave the system if Station 1 is saturated (waiting room full,
if a waiting room is allowed) upon its arrival. We assume that the blocking mechanism
between Station 1 and Station 2 is blocking after service (BAS) (Balsamo et al., 2001).
Thus, if upon service completion at Station 1, Station 2 is saturated, the customer
will be forced to stay in Station 1, occupying a server there until a server at Station
2 becomes available. This mechanism was modeled in Zychlinski et al. (2018¢) for
a network with an infinite waiting room before Station 1. In our case, however, to

accommodate customer loss, we must use reflection in our modeling and analysis.
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Let @ = {Q1(t), Q2(t),t > 0} denote a stochastic queueing process in which @ ()
represents the number of customers at Station 1 (including the waiting room) and Q2 (%)
represents the number of customers in service at Station 2 at time ¢. The process @)

is characterized by the following equations:

Q1(t) =Xy (1) + B(b),
Qg(t> :Xg(t) /\ NQ,

where B(t) = (X3(t) — N2)* represents the number of blocked customers in Station 1,

and

X0 = X000+ [ Lo ysoany <o 4AG) (26)
=01 (o [ ) £ (42— B )
-0y (0= [ B0 A (= B
Xalt) = X2(0) + D1 (oo [ [3) 1 (40— Bw)] )

_ D, (MQ /Ot X(u) A Ny| du); £>0.

Here, 1y, is an indicator function that equals 1 when x holds and 0 otherwise. The
second right-hand term in the first equation of (26) represents the number of arrivals
that entered service up to time ¢. As noted in Mandelbaum and Pats (1998), an
inductive construction over time shows that (26) uniquely determines the process X.
Observe that X (t) + (Xa(t) — No)* = Ny + H implies that the first station is blocked

until the next departure.

3.4.1 Representation in Terms of Reflection

First we rewrite (26) by using the fact that

t
/ 1{X1(u—)+(X2(u—)—N2)+< Ni+H} dA(u)
0

t
= A(t) — / L, (um )+ (X (=)~ Na)+ = Ny 1y A (0);
0
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here, the last right-hand term represents the cumulative number of arrivals to Station
1 that were blocked because all N; servers were busy and the waiting room was full.

Now, we rewrite (26) and (27):

;

X | _po-wo| | e |
X+ %0 |vmo-Lo| MmN+ H s
dL(t) > 0, L(0) =0,
Lo Lixawscam-no < vy AL(E) = 0,
where
Yi(t) = X1(0) + A() — Dy (Wl /0 "[Xa(w) A (N — B(w))] du) (29)

-0 (0= [ B0 A (s = B

Yalt) = X(0) + Xa(0)+ A~ Ds (1= phn [ [Xala) A (40— B(w)] )
_ D, (m /0 ' (Xa(w) A V] du) |

10 = [ 1nuormonior s 4AQ)

Figure 7 (left) geometrically illustrates the reflection in (28). The region for X;
and X5 is limited by the two blue lines. Arrivals are lost when the system is on the
blue lines. The system leaves the state X; = Ny + H when a service is completed at
Station 1. The system leaves the state X; + Xo = Ny + Ny + H when a service is
completed at Station 2.

The last equation of (28) is a complementary relation between L and X: L(-)
increases at time ¢ only if X;(t) + (X2(t) — No)™ = Ny + H. We justify this by first
substituting the last equation of (29) in the last equation for L(t) of (28), which yields
the following:

/ LX)+ (Xa ()= No)t < No4H) * LX) (=) +(Xa(t=)—No) = N+ AA(E) = 0. (30)
0

Now, if (30) does not hold, there must be a time when, at state Ny, a service completion

and an arrival occur simultaneously. However, when X + (Xy — Ny)™ = Ny + H, the
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Figure 7: Geometrical representation of the reflection. On the left — in terms of X, and on
the right — in terms of R.

next departure will occur according to an exponential random variable; hence, by the
independence of the building blocks, an arrival occurs simultaneously with a departure
with probability 0.

We simplify (28), so that the reflection will occur on the axes, by letting

Ri(t) =N, + H — X:(b),
Ro(t) = Ny + Ny + H — (X1(t) + Xo(t)) = Ry(t) + Ny — Xo(t), t>0.

Note that R;(t) represents the non-utilized space in Station 1 at time ¢, namely, the
blocked servers, the idle servers and the available waiting room space. When all N;
servers are occupied and the waiting room is full, R;(¢) includes the blocked servers
at Station 1. When all N; servers are occupied but the waiting room is not full, R;(t)
includes the blocked servers and the available waiting room space. When some of the
N servers are idle, R; includes the sum of the idle servers, the blocked servers and
the available waiting room space. The function Ry(t) represents the available space in
the system at time ¢. Hence, when the N; 4+ Ny servers are occupied, Ra(t) includes
the available waiting room space. When only the Ny servers are occupied but not all
Nj servers are occupied, Ry(t) includes the idle servers in Station 1 and the available
waiting room space. Finally, when Station 2 is not full, Rs(¢) includes the idle servers

in Stations 1 and 2 and the available waiting room space.
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The functions R; and Rs give rise to the following equivalent to (28):

¢

Rit)| Yi(t) + L(t) Co 150
R@|  |BoO+Lo] o
dL(t) >0, L(0) =0,
Lo~ Lmmnaran >0y AL(t) =0,
where
T L P L (52
Ya(t) N1+ Ny + H —Ys(t)

the last line in (31) is derived from

t t
/ Lixy ()1 (Xa(t)=No)+ < Ny +1} AL(2) =/ LN+ H=X1 (6> (X2 ()= No)+} AL ()
0 0

t

t
= / L{R, (1) (R1 (1) Ra (1)) +> 0} AL(E) = / L{R, (t)aRa(t)> 0y AL(1).
0 0

The processes Y7, Y5 and L (see (31)) can be stated in the “language” of R:

Vi) = Ra(0) — At) + Dy (pyu [LINy+ H — Baw)) A (N~ B(u))] du)

+D5 (1= pur Jy (N + H = Ry(w)) A (N = B(w)]du)
Vo(t) = Ra(0) — A(t) + Dy ((1 — ) [(N1 +H = Ry(w) A (N — B(u))] du)
4Dy (MQ JEINa A (Ry(u) = Ro(u) + Ny)] du) ,

L(t) = f(f 1{R1(U—)/\R2(u—):0} dA(U)-

Here, B(u) = (Ri(u) — Rg(u))Jr in terms of R.

Figure 7 (right) presents the direction of reflection in terms of R. When the process
hits the boundary of the positive quadrant, L increases. This increase causes equal
positive displacements in both R; and Ry as necessary to keep Ry > 0 and Ry > 0,

which drives L in the diagonal direction, presented in Figure 7.

From (31), we see that L(t) > —Yi(t) and L(t) > —Y3(t). Therefore, L(t) >
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L(t) = sup (— (Vi(s) A ¥als))) "

0<s<t

Note that this solution is applicable even though Y depends on R (see Mandelbaum

and Pats, 1995 for details, though recall that they do not cover blocking).

3.4.2 Fluid

Approximation

We now develop a fluid limit for our queueing model through the Functional Strong

Law of Large
the size of th

Numbers (FSLLN). We begin with (31) and scale up the arrival rate and

e system (servers and waiting room) by n > 0, n — oco. This parameter

will serve as an index of a corresponding queueing process which is the unique
11 d f d R", which is th

solution to the following Skorokhod’s representation:

where

RI() =Y+ L0,

Rj(t) = Y5'(t) + L"(t),

RI(0) — A7) + Dy (ppus fy [Ny +nH — RIw) A (nNy — B7(w))] du)
D5 (1= Py f; [Ny + nH — RI(w)) A (nNy — BY(w)] du)
RY(0) — A7) + Dy (1= p)us [ [Ny + 0 — R)(w)) A (2N, — B'(u))] du)
Dy (s f; [1N2 A (R (u) — B (u) + 7 Ny)] du)

Here, A" = {nA(t), t > 0} is the arrival process under our scaling; thus,

t
EA"(t) = 17/ Mu)du, t>0.
0

We now introduce the scaled processes r = {r"(t), t > 0}, I" = {I"(¢), t > 0} and

b = {b(t), t

> 0} by

r(t) =0T RIE), () =n'L(t) and  b7(t) =17 B(1),
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respectively; similarly g7 = Ny + H — y{ and g5 = Ny + H + Ny — 3. Then, we get
that

71() +07 D3 (n(1 = p)pa fy (N1 + H = r{(w)) A (N1 — b"(w))] du)

Q) r3(0) = AT() + 07 Ds (n(1 = p)pn Jo (N + H —r{(w)) A (Ny = b7(w))] du)

+n71 Dy (77,“2 fo [Na A (r{(u) — 73(u) + Na)] du)

(33)

The asymptotic behavior of r”7 is described in the following theorem, which we prove

in Appendix H.

Theorem 3.1. Suppose that

t
{n7tA"t), t >0} — {/ AMu)du, t > 0} u.0.c. as 1 — 00,
0

and r(0) — r(0) a.s., as n — oo, where r(0) is a given non-negative deterministic
vector. Then, as n — oo, the family {r"} converges u.o.c. over [0,00), a.s., to a
determanistic function r. This r is the unique solution to the following differential

equation (DE) with reflection:

(

r1(t) = r1(0 fo (N1 + H —r(u) ANy —b(w)))] du+1(t) > 0,

ra(t) = 72(0) = f5 [A —p)pa (N1 + H —ri(u)) A (N = b(u)))] du
+fo [12(N2 A (ri(u) — ra(u) + N2))] du+1(t) = 0,

dit) > 0, 1(0) = 0,

L S0 Lrana >0y dL(t) = 0;

(34)
where b(t) = (r1(t) — rg(t))+, t>0.

Returning to our original formulation (28), (34) can in fact be written in terms of
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z(+) for t > 0 as follows:

(

x1(t) = 21(0 +f0 [A(w) = pa(z1(w) A (N = b(w)))] du—1(t) < Ny + H,
w1 () + wa(t) = 21() + 22(0) + fy [ppa(wa(w) A (N1 = b(w))) = pa(Na A s (w))] du
<N+ Ny, + H,

di(t) >0, 1(0) =0,

L Mm@t o -Noyt < 3y dI(E) = 0,
(35)

The function x will be referred to as the fluid limit associated with the queueing family
X" where X" = (X], XJ) = (N, + nH — R}, R} — R} + nNy).

The following proposition provides a solution to (35); see Appendix I for details.
As opposed to (35), this solution (36) is given by a set of differential equations with
discontinuous RHS but without reflection. Thus, implementing (36) numerically is

straightforward via recursion, which would not be the case with (35).

Proposition 3.1. The fluid limit approximation for X in (206) is given by

2 (0) = 200) = [ o) (40 = ) (36)
+ /Ot (L)< Mt} * Lo () tas(w)< N+ N1y - Mu)] du
+ /0 t[l{m1<u>:Nl+H} Ly () taa(uy< Ny N1} - [(A() AT ()] du
+ /Ot[l{xl(u)<N1+H} Lo (w) s ()= N1+ No 1} (M) A3 (w)]] du
+ /Ot [Las ()=Ni+8} * Ly (w)+aa(=m+ Mo+ 1y - [(Aw) AL (u) Als(u)]] du,

z2(t) = 2(0) +/0 [ppa (@1 (u) A (N1 = b(u))) — pz(w2(u) A N2)] du,

where

li(u) = Ny,
l5(u) = paNo + (1= p)pa (21 (u) A (N1 = b(u))),
b(u) = (z2(u) — Na)*.
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We now introduce the functions ¢; and ¢o that denote the number of customers
at Station 1 (including the waiting room) and the number of customers in service at

Station 2, respectively:

q1(t) = x1(t) + b(t);

QQ(t) = T A NQ.

Remark 3.1. Our model can be used to analyze the Gy/M/N/(N + H) queueing
system. By assuming No = oo and b = 0, the network can be reduced to a single
station (N7 = N and py = p). In that case, the fluid limit q for the number of

customers in the system is given by

q(t) = q(0) + /0 [A(w) = (Mu) = pN)* - Lg=n+my — p(g(u) A N)] du.

Remark 3.2. Abandonments from the waiting room can occur when customers have
finite patience. This is a prevalent phenomenon in service systems and healthcare, in
particular (e.g. customers that abandon the Emergency Department are categorized
as Left Without Being Seen (LWBS) (Baker et al., 1991; Arendt et al., 2003). Such
abandonments can be added to our model by following Mandelbaum et al. (1999) and
Pender (2015). In particular, let 6 denote the individual abandonment rate from the
waiting room. Thus, the term Qfot[xl(u) + b(u) — N1]* du should be subtracted from
the right-hand side of x1(t) in (36); here [x1(t) + b(t) — N1]™ represents the number of

waiting customers at Station 1 at time t.

3.4.3 Numerical Examples

To demonstrate that our proposed fluid model accurately describes the flow of cus-
tomers, we compared it to a discrete stochastic simulation model. In that model,
service durations were randomly generated from exponential distributions. Customers
arrive according to a non-homogeneous Poisson process that was used to represent a
process with a general, time-dependent arrival rate. We note that simulating a general
time-varying arrival process (G) is not trivial (He et al., 2016; Ma and Whitt, 2016).
In Liu and Whitt (2012a), the authors introduce an algorithm that is based on the

standard equilibrium renewal process (SERP). This algorithm is implemented in Pen-
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Figure 8: Total number in each station — fluid formulation vs. simulation for two scenarios.
The fluid model curves overlap the simulation curves.

der and Ko (2017) to approximate the general inter-arrival times for the phase-type
distribution.

The fluid equations in (36) were solved recursively, by discretizing time. Figure 8
shows the comparison between the proposed fluid model and the average simulation
results for two scenarios. In the first (left plot), Ny = 200, Ny = 150, H = 50,
1 = 1/10, po = 1/20, p = 1, ¢1(0) = ¢2(0) = 0 and A\(¢) = 2t, 0 < t < 120. In
the second (right plot), Ny = 30, Ny = 60, H = 10, p; = 1/10, ps = 1/90, p = 1,
¢1(0) = 2(0) =0 and A(t) = ¢, 0 <t < 60.

We calculated the simulation standard deviations, averaged over time and over 500
replications. For the first scenario, the standard deviations were 0.657 for the number
of customers in Station 1 with a maximal value of 4.4, 0.558 for the number in Station
2 with a maximal value 4.2 and 0.585 for the number of blocked customers with a
maximal value of 4.462. To conclude, the average difference between the simulation

replications and their average is less than one customer.

3.5 Multiple Stations in Tandem with Finite Internal Waiting Rooms

We now extend our model to a network with k stations in tandem and finite internal
waiting rooms, as presented in Figure 9. The notations remain as before, only with
an ¢ subscript, ¢ = 1,...,k, indicating Station 7. Moreover, we denote the transfer
probability from Station 7 to Station ¢ + 1 as p;;;;. Before each station 7, there is
Waiting Room i of size H;. The parameter H; can vary from 0 to oo, inclusive. A

customer that is referred to Station ¢, ¢ > 1, when it is saturated waits in Waiting
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Figure 9: Multiple stations in tandem with finite internal waiting rooms.

Room 4. If the latter is full, then the customer is blocked in Station ¢ — 1 while
occupying a server there, until space becomes available in Waiting Room 1.

The stochastic model is created from the following stochastic building blocks, which
are assumed to be independent: External arrival process A = {A(t),t > 0}, as was
defined in (25), processes D; = {D;(t),t > 0}, 7 =1, ..,2k—1, where D,(t) are standard
Poisson processes and X;(0), ¢ = 1,. .., k, the initial number of customers in each state.

As before, the above building blocks will yield a k-dimensional stochastic process,
which captures the state of our system. The stochastic process X; = {X(t),t > 0}
denotes the number of arrivals to Station 1 that have not completed their service at
Station 1 at time ¢, and the stochastic process X; = {X;(t),t > 0}, i = 2,...k,
denotes the number of customers that have completed service at Station ¢ — 1, but not
at Station 7 at time t. The stochastic process B; = {B;(t),t > 0}, i = 1,...,k — 1,
denotes the number of blocked customers at Station ¢ waiting for an available server
in Station ¢ + 1.

Let @ = {Q1(t), Qa(t),..,Qr(t),t > 0} denote the stochastic queueing process in
which Q;(t) represents the number of customers at Station 7 (including the waiting

customers) at time ¢. The process () is characterized by the following equations:

Q1(t) =X1(t) + Bi(t);

Qi(t) =[Xi(t) + Bi(t)] A(Ni + Hy), i=2,....,k— 1 (37)
Qr(t) =Xi(t) A (N + Hy), t>0.
Here,
Xi(t) = X1(0) + A(t) — Du (p12 o /0 (X1 (u) A (N7 — By (u))] du) (38)
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=D (=g [ D) A (8- B)] )
-/ L Bty sy AA(),
X0 = X00) + Dot (s s [ s A iy = Bia(w)] )
=04 (e [ XG0 A (Y= Bi(w)] )
~ D (U= pran) s [ B A (= Biw)] ) i =2 kL
Xi(t) = Xi(0) + Dy (pk Lk k-1 /0 t [(Xk—1(u) A (Ng—1 — By—1(w))] du)
— Dy, (u ) A Nk]du) :

( = X’H—l(t +Bz+1(t)_Ni+1_Hi+1]+ﬂ Z.:]-7"'7]6_27
By (t) = [Xi(t) = N = Hy] "

Note that although B;(t), ¢ = 1,...,k — 1, is defined recursively by B;1(t), it can
be written explicitly for every i. For example, when k& = 3 we get that Bi(t) =
[X5(t) + [X3(t) — N3 — H3]" — Ny — Hs]™. An inductive construction over time shows
that (38) uniquely determines the processes X and B.

By using similar methods as for the two-station network in Section 3.4, with more
cumbersome algebra and notations, we establish that z, the fluid limit for the stochastic

queueing family X7, is given, for ¢t > 0, by

£1(t) = 22(0) — o / [21(u) A (N — by(w))] du (39)
DD SR | ST
m=0 Ac{1,..., JEA
|Al=m
< TT 0 Y e s v} @) A /\z;(u)]]du
je{1,...,k}nA yeA

(0) = 0+ [ s s aica ) A (N = s ()

— [ (acz(u)/\(NZ—bz(u)))} du, i=2,...,k—1,

zi(t) = 2(0) + /Ot [pk—l,k =1 (1 (u) A (N—1 — bg—1(w))) — pg (@ (w) A Nk)] du,
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where

ZT(U) = 1Ny,
n—1

L) = N+ > (1= pjjan)py (2;(u) A (Nj = bi(w)), n=2,...k

j=1
b,(t) = [$z+1(t) -+ bl+1(t) — Ni+1 — Hi+1]+ s 1= 1, k= 27
bk_l(t) = [$k(t) — Nk — Hk]+ .

The term in the second line of (39) is a generalization of the last 4 terms in the
expression for x;(t) in (36), when k = 2.
For each summand and j, if Zgzl xi(u) = le N; + H;, the corresponding /;(u) will

appear in the product. The term [;(u) represents the departure rate from Station j,

when the waiting room and Stations 1,...,j, are full (i.e., 327, zi(u) = S27_ (N; +
H;)). The two first summations account for all combinations of [;(u), j € {1,...,k}.
We now introduce the functions ¢;(t), @ = 1,...,k, which denote the number of

customers at Station ¢ at time ¢ and are given by

q1(t) =21 (t) + b1 (1);
qi(t) = [z:(t) + ;O] A (N;+ Hy) i=2,... k—1;

Remark 3.3. A special case for the model analyzed in Section 3.5 is a model with an
infinite sized waiting room before Station 1 (H = oo). In this case, since customers
are not lost and no reflection occurs, both the stochastic model and the fluid limit are
simplified. This special case is in fact an extension of the two-station model developed

in Zychlinski et al. (2018c).

3.6 Numerical Experiments and Operational Insights

In this section, we demonstrate how our models yield operational insights on time-
varying tandem networks with finite capacities. To this end, we implement our models
by conducting numerical experiments and parametric performance analysis. Specifi-
cally, we analyze the effects of line length, bottleneck location and size of the waiting

room on network output rate, number of customers in process, as well as sojourn,
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waiting and blocking times. The phenomena presented were validated by discrete
stochastic simulations.

In Sections 3.6.1-3.6.2, we focus on and compare two types of networks. The first
has no waiting room before Station 1 (H = 0) and in the second, there is an infinite
sized waiting room before Station 1 (H = o). Sections 3.6.3-3.6.4 are dedicated to
buffer-size effects (H varies).

The model we provide here is a tool for analyzing tandem networks with blocking.
Some observations we present are intuitive and can easily be explained; others, less

trivial and possibly challenging, are left for future research.

3.6.1 Line Length

We now analyze the line length effect on network performance. We start with the
case where all stations are statistically identical and their primitives independent (i.i.d.
stations). This implies that the stations are identical in the fluid model; in Section
3.6.2 we relax this assumption.

The arrival rate function in the following examples is the sinusoidal function
At) = X+ Bsin(yt), t >0, (40)

with average arrival rate A, amplitude 3 and cycle length T = 27 /7.

Figure 10 presents the time-varying input and output rates from the network, as
the number of stations increases from one to eight. In both types of networks (H = 0
and H = 00), the variation of the output rate diminishes and the average output rate
(over time) decreases, as the line becomes longer. When H = 0, due to customer loss
and blocking, the variation is larger and the average output rate is smaller.

Figure 11 shows the time-varying number of customers in each station in a network
with eight stations in tandem. When H = 0 (left plot), due to customer loss, the
average number of customers is smaller while the variation is larger, compared to the
case when H = oo. In fact, only about 70% of arriving customers were served when
H = 0, compared to the obvious 100% when H = oco.

Observe that the same phenomenon of the variation and average output rate de-
creasing as the line becomes longer (Figure 10) also occurs when stations have ample

capacities to eliminate blocking and customer loss. In these cases, system performance
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Figure 10: Line length effect on the network output rate with £ i.i.d. stations, the sinusoidal
arrival rate function in (40) with A = 9, 8 = 8 and v = 0.02, N; = 200, p; = 1/20 and
¢i(0) =0, Vi € {1,...,k}. Five networks of different length are considered.

reaches its upper bound. Here, the output from one station is the input for the next
one. In Eick et al. (1993) an analytic expression was developed for the number of cus-
tomers in the M;/G /oo queue, with a sinusoidal arrival rate, as in (40). In particular,

the output rate from Station 1 is given by

2 oy

7m0t

We now extend this analysis to tandem networks with ample capacity and hence
no blocking (tandem networks with an infinite number of servers). Specifically, we
consider (41) as the input rate for the second station and calculate the output rate
from it and so on for the rest of the stations. Consequently, the output rate from a
network with ¢, ¢ = 1,2, .., i.i.d. stations in tandem, and exponential service times, is

given by the following expression:

Si(t) =+ <C’£i) sin(yt) — C’éi) COS(’Yt)) ,  t>0, (42)

I Vit
= 2, Bz = 2
Hi + Y My + Y
cW=ci VA -—ci VB, ¢ =ci VB +ciVA, i=2,.. .k

0{1) = Al) Oél) = B17 A’L
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Figure 11: Total number of customers in each station in a network with eight i.i.d. stations
and the sinusoidal arrival rate function in (40) with A =9, § = 8 and v = 0.02, N; = 200,
i =1/20 and ¢;(0) =0,i=1,...,8.

Figure 12 demonstrates that, in the special case of no blocking and sinusoidal arrival
rate, our results are consistent with those derived in Eick et al. (1993). Using (42)
and (43), one can verify that the amplitude of the output rate decreases, as the line
becomes longer.

When capacity is lacking, blocking and customer loss prevail. Analytical expres-
sions such as (42) do not exist for stochastic models with blocking, which renders our

fluid model essential for analyzing system dynamics.

3.6.2 Bottleneck Location

In networks where stations are not identical, the location of the bottleneck in the
line has a significant effect on network performance. In our experiments, we analyzed
two types of networks (H = 0 and H = o0), each with eight stations in tandem. In
each experiment, a different station is the bottleneck, thus it has the least processing
capacity 0.3u/V, while the other stations are i.i.d. with processing capacity u/N. Figure
13 presents the total number of customers in each station when the bottleneck is
located first or last. In both types of networks, the bottleneck location affects the
entire network.

Figure 14 presents the total number of blocked customers in each station where the
last station is the bottleneck. When H = oo, blocking begins at Station 7 and surges
backwards to the other stations. Then, the blocking is released in reversed order: first

in Station 1 and then in the other stations until Station 7 is freed up. In contrast,
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Figure 13: The bottleneck location effect on the total number of customers in each station.
For the bottleneck station, j, N; = 120, p; = 1/40. For the other stations, i =1,...,8,7 # j
N; =200, p; = 1/20, ¢n(0) =0, m =1,2,...,8, and A(t) = 2t, 0 < t < 40.

when H = 0, blocking occurs only at Station 8. The blocking does not affect the other

stations since Station 7 is not saturated, due to customer loss.

3.6.3 Waiting Room Size

We now examine the effect of waiting room size before the first station. Figure 15
presents this effect on a network with four i.i.d. stations in tandem, as the size of the
waiting room before the first station increases from zero to infinity. The left plot in
Figure 15 presents the total number of customers in the network, and the right plot
presents the network output rate. The effect of the waiting room size on these two
performances is similar. As the waiting room becomes larger, fewer customers are
lost, and therefore, the total number of customers in the network and the output rate

increase.
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Figure 14: Number of blocked customers in each station when the last station (Station 8)
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Figure 15: Waiting room size effect on the total number of customers (left plot) and on the
output rate (right plot) in a network with four i.i.d. stations, where N; = 200, p; = 1/20,
qi(0) =0,7=1,2,3,4 and A(t) = 2t, 0 < ¢ < 40.

3.6.4 Sojourn Time in the System

It is of interest to analyze system sojourn time and the factors that affect it. We
begin by analyzing a network with two stations in tandem. Figure 16 presents the
effect of the waiting room size and the bottleneck location on average sojourn time
and customer loss. When there is enough waiting room to eliminate customer loss, the
minimal sojourn time is achieved when the bottleneck is located at Station 2. This
adds to Avi-Itzhak (1965) and Avi-Itzhak and Yadin (1965), who found that the order
of stations does not affect the sojourn time when service durations are deterministic
and the number of servers in each station is equal. When the waiting room is not large

enough to prevent customer loss, there exists a trade-off between average sojourn
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Figure 16: The effects of waiting room size and bottleneck location on sojourn time and
customer loss in a tandem network with two stations, where ¢,,(0) = 0, m = 1,2, and
A(t) =20, 0 <t <100. In the bottleneck station, j, N; = 120 and p; = 1/40; in the other
station, ¢, N; = 200 and p; = 1/20.

time and customer loss. The average sojourn time is shorter when the bottleneck is
located first; however, customer loss, in this case, is greater. Explaining in detail this
phenomenon requires further research.

We conclude with some observations on networks with £ stations in tandem. Figure
17 presents the average sojourn time for different bottleneck locations and waiting
room sizes. When the waiting room size is unlimited, the shortest sojourn time is
achieved when the bottleneck is located at the end of the line. Conversely, when the
waiting room is finite, the shortest sojourn time is achieved when the bottleneck is in
the first station. Moreover, when the waiting room is finite, the sojourn time, as a
function of the bottleneck location, increases up to a certain point and then begins to
decrease. This is another way of looking at the bowl-shaped phenomenon (Hillier and
Boling, 1967; Conway et al., 1988) of production line capacity. In the recent example,
the maximal sojourn time is achieved when the bottleneck is located at Station 6;
however, other examples show that it can happen at other stations as well. To better
understand this, one must analyze the components of the sojourn time—namely, the

waiting time before Station 1, the blocking time at Stations 1,...,7, and the service
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Figure 17: The effects of waiting room size and bottleneck location on the average sojourn
time in a tandem network with eight station. Here, ¢,,(0) =0, m =1,...,8, and A(t) = 20,
0 <t < 100. In the bottleneck station, j, N; = 120 and p; = 1/40; in all other stations,
i=1,2,...,8,i# j, N; =200 and p; = 1/20.

time at Stations 1,...,8. Since the total service time was the same in all the networks
we examined, the pattern of the sojourn time is governed by the sum of the blocking
and waiting times. Figure 18 presents each of these two components. The average
waiting time (right plot) decreases as the bottleneck is located farther down the line.
However, the blocking time (left plot) increases up to a certain point and then starts
to decrease. To better understand the non-intuitive pattern of the average blocking
time, one must analyze the components of the blocking time. In this case, it is the sum
of the blocking time in Stations 1,...,7. Figure 19 presents the blocking time in each
station and overall when H = 0. The blocking time in Station 7, ¢« = 1,...,7, equals
zero when Station 7 is the bottleneck, since its exit is not blocked. Further, it reaches its
maximum when Station ¢ + 1 is the bottleneck. The sum of the average blocking time

in each station yields the total blocking time and its increasing—decreasing pattern.
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Figure 18: The effects of waiting room size and bottleneck location on the average blocking
time (left plot) and the average waiting time (right plot). The summation of the waiting
time, blocking time and service time yields the sojourn times presented in Figure 17.
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Figure 19: Average blocking time in each station and overall when H = 0.
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4 Time-varying Tandem Queues under the BBS Mechanism

4.1 Introduction

Thus far, in Sections 2 and 3, we analyzed the Blocking After Service (BAS) mech-
anism. In this section, we analyze the Blocking Before Service (BBS) mechanism,
which is also referred to as communication blocking or two-stage blocking (Perros,
1994; Balsamo et al., 2001). Under BBS, a service cannot begin at Station ¢, if there

is no available capacity (storage or service) at Station i + 1.

4.1.1 Motivation and Examples

Clearly, the BBS mechanism is prevalent in telecommunication networks (Suri and
Diehl, 1984; Frein and Dallery, 1989; Seo et al., 2008). However, BBS is not uncom-
mon in production lines; for example, in the chemical and pharmaceutical industries
(Dogan-Sahiner and Altiok, 1998). In these production lines, work-in-process can
be unstable or unsafe and, thus, cannot be detained/blocked after certain processes
but rather should be immediately transferred to crystallization. Therefore, a pro-
cess/reaction in certain stations cannot begin before the crystallizer in the subsequent
stations is available. BBS can also be found in healthcare systems, for example in
short procedures such as cataract surgery, cardiac catheterization and hernia repair;
the procedure begins only when there is available room for the patient in the recovery
room. Other examples are the hospital boarding ward between the emergency depart-
ment and the inpatient wards, and the emergency care chain of cardiac in-patient flow
De Bruin et al. (2007). In this latter chain, patients are refused or diverted at the
beginning (First cardiac Aid (FCA) and Coronary Care Unit (CCU)) due to unavail-
ability of beds downstream the care chain.

Besides communication, manufacturing and healthcare systems, our fluid models with
blocking also have the potential to support transportation implementations. Fluid
models originated, in fact, from transportation networks, in which entities that flow
through the system are animated as continuous fluid (Daganzo et al., 2012). Such
implementations could support/evaluate the practice of releasing cars to highways
during rush hours (Bickel et al., 2003) or estimate travel times by navigation software

(autonomous vehicles).
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4.1.2 Results

In Section 4.4 a stochastic model for a many-server tandem network under the BBS
mechanism, time-varying arrivals and finite buffers before the first station and between
stations. This model includes reflection, since an arriving job is forced to leave the
system if Station 1 is full. Then, using the Functional Strong Law of Large Numbers
(FSLLN), we develop and prove a fluid limit of the stochastic model in the many-
server regime: system capacity (number of servers) increases indefinitely jointly with
demand (arrival rates). Fluid models have proven to be accurate approximations for
time-varying stochastic models, which are otherwise intractable (Mandelbaum et al.,
1998, 1999; Whitt, 2004, 2006; Pang and Whitt, 2009; Liu and Whitt, 2011a, 2014).
We establish existence and uniqueness of the fluid approximation, which is charac-
terized by differential equations with reflection. In order to easily implement the
differential equations numerically, we transform them into differential equations with
discontinuous right-hand side (RHS) (Filippov, 2013; Zychlinski et al., 2018b), but
no reflection. We validate the accuracy of our fluid models against stochastic simu-
lation, which amplifies the simplicity and flexibility of fluid models in capturing the
performance of time-varying networks altering between overloaded and underloaded
periods.

Finally (Section 4.5), we develop steady-state closed-form expressions for the num-
ber of jobs in service at each station under the BAS (Blocking After Service) and BBS
mechanisms. These expressions facilitate comparisons of network performances; in
particular, comparing the number of jobs in each station and network throughput. In
Section 4.5.2, we conclude the paper with an example of designing transfer protocols

from surgery to recovery rooms in hospitals.

4.2 Literature Review

The most common types of blocking mechanisms for tandem flow lines are BAS and
BBS (Altiok (1982); Perros (1994); Balsamo et al. (2001)). The BBS mechanism can
be sub-categorized into several types; we focus on Server Occupied, where a server can
store a blocked job before its service begins (Desel and Silva, 1998). Thus, under this
mechanism, a job can enter Station ¢, but cannot begin service until there is available

capacity (buffer space or server) at Station i + 1. Another BBS mechanism is Server
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Not Occupied, where a blocked job cannot occupy a server. Thus, a job can enter a
station (occupy a server), and begin its service, only when there is available capacity
(storage or service) at the next station. We focus on BBS - Server Occupied, in order
to compare it with the BAS mechanism, in which blocked jobs can also occupy servers
(Balsamo et al., 2001).

In Avi-Itzhak and Yadin (1965), a steady-state analysis under the BAS mechanism
was conducted, for a single-server network with two tandem stations, Poisson arrival
process and no intermediate buffers. This system was generalized to k stations with
deterministic service times in Avi-Itzhak (1965) and to the BBS mechanism in Avi-
Itzhak and Levy (1995). Under the analyzed BBS, a job can enter a station only if the
next k stations are available. In Avi-Itzhak and Halfin (1993), a k-station single-server
network, with no intermediate buffers and an unlimited buffer before the first station,
was analyzes under BAS and BBS. Note that the methodology we develop can, with
slight modification (see Remark 4.2), accommodate any k-stage blocking, k& > 2.
Approximation techniques, usually via the decomposition approach, were applied to
tandem networks in steady-state under BAS (Gershwin, 1987; Brandwajn and Jow,
1988; Dallery and Frein, 1993; van Vuuren et al., 2005; Osorio and Bierlaire, 2009).
Several papers develop algorithms for approximating the steady-state throughput of
closed single-server cyclic queueing networks with finite buffers (under both BBS and
BAS in Onvural and Perros (1989) and under BBS in Suri and Diehl (1984) and Frein
and Dallery (1989)).

4.3 Contribution

Our contributions enrich existing models by adding predictable time variability, multi-
server stations and a finite buffer before the first station, which leads to job loss
when it is full. Moreover, we provide an analytic comparison between BBS and BAS,
that yields operational insights. In particular, we quantify the differences between
throughputs and job loss rate under BBS and BAS, including the conditions under

which they coincide.
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4.4 The Model

4.4.1 Notations and Assumptions

We model a network with k stations in tandem, as illustrated in Figure 20. This FCFS

Q1 Qz QK

1, Ny tz, No lx1, Nkt 1k, Nk

- [y 2[1>B,;| 1 Ho 2|1>B,| 2 ————— B K-1 He 211 [ K >

Figure 20: A network with k stations in tandem under the BBS mechanism.

system is characterized, to a first order, by the following (deterministic) parameters:

1. Arrival rate to Station 1: A(¢), t > 0;

2. Service rate u; > 0,i=1,2,...,k;

3. Number of servers N;, i = 1,2,..., k;

4. Buffer size H;, i = 1,2, ..., k; H; can vary from 0 to oo, inclusive.

The stochastic model is created from the following stochastic building blocks: A,
D;, Q;(0),1=1,2,...,k, all of which are assumed to be independent. Specifically:

1. External arrival process A = {A(t),t > 0}; A is a counting process, in which
A(t) represents the external cumulative number of arrivals up to time ¢; we assume
the existence of (25).

2. “Basic” nominal service processes D; = {D;(t),t > 0}, i = 1,2,...,k, where
D;(t) are standard (rate 1) Poisson process.

3. The stochastic process Q = {Q1(t), ..., Qk(t),t > 0} denotes a stochastic queue-
ing process in which Q;(t) represents the total number of jobs at Station i at time ¢
(queued and in service).

4. Initial number of jobs in each station, denoted by Q;(0), 1 =1,2,... k.

4.4.2 The Stochastic Model

Service at Station ¢ can begin only when there is an available server at Station ¢ and
available capacity (idle server or buffer space) at Station i + 1. If there is an available
server at Station 7, but no available capacity at Station ¢ + 1, the job is blocked at
Station ¢ (occupies a server, but not receiving service). If there is no available server
at Station 7, the job waits at Buffer 7. If Buffer 1 is full, an arriving job is forced to

leave the system and is lost. Note that in Figure 20, B; denotes the blocked jobs at
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Station ¢, their service is delayed until capacity becomes available at Station ¢ + 1.

The process (), which represents the number of jobs at each station, is characterized

by the following equations:

@) =)+ 40 - [ 1,
-0 ([ Q) A N A (Hy 4 N, — Qu(ua)

Qi(t) = Qi(0) + D; 4 (,Uil /Ot [Qi—1(u) A Ni—y A (H; + N; — Qz(u))]du>

(u—)=H + N, A ()

(44)

Oult) = Ok(0) + Dy 4 (ukl /0 [Qa(w) A Ny A (Hy + Ny — @km))]du)

~ D, (Mk/ [Qk(u)/\Nk]du); £>0.

The integral in the first line of (44) represents the number of jobs that were forced to

leave the system up until time ¢, since when they arrived, Station 1 was full. Note

that when H; = oo, the integral equals zero since no customers are forced to leave

the system. This simplifies the model, since there is no reflection. The second line in

(44) represents the number of jobs that completed service at Station 1, up until time

t. Since the available storage capacity at Station 2 at time t is Hy + Ny — Qo(t), the

term in the rectangle parenthesis represents the number of jobs at service in Station

1.

Now, we rewrite (44), as follows:

(

_Qk(t)_
dL(t) > 0, L(0) =0,

Yi(t) — L(t)

IN

1@ (u—) < Hr 4Ny ydL(u) = 0,
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where
Yi(t) = Q1(0) + A(t) — D (m /O [Q(u) A Ny A (Hy + Ny — QQ(u))]du> ,
Yilt) = Qult), i=2,....k,
L0 = [ gy - msydd(w) (46)

The last equation of (46) is a complementary relation between L and @: L(-) increases
at time ¢ only if Q1(t) > Hy + N; (see Section 3.4.1 for details).

We simplify (45), so that the reflection will occur at zero, by letting

which gives rise to the following equivalent to (45):

( -Rl(t)- -}71(15) +L(t)- _0_
Ba(t) — Ya(t) > ’ t>0

(48)
_Rk(t)_ i Yi(t) | |9

dL(t) >0, L(0) =0,

\fooo 1{Rl(t)>0}dL(t) =0,

where Y; = H; + N; — Y;. From (48), we see that L(t) > —171(15) and therefore,
L(t) = supg< < (—}71(3)>+. Note that this solution (or rather representation) applies
even though Y; depends on R (see Mandelbaum and Pats (1995); Zychlinski et al.
(2018b) for details).

4.4.3 Fluid Approximation

We now develop a fluid limit for our queueing model through the Functional Strong
Law of Large Numbers (FSLLN). We begin with (48) and scale up the arrival rate and
the size of the system (servers and waiting room) by a factor of n > 0, n — oco. This

parameter n will serve as an index of a corresponding queueing process R", which is
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the unique solution to the following Skorokhod’s representation:

R{(t) =Y{"(t) + L"(t), (49)
RIt)=Y"t), i=2,...k, t>0,

where

Y'() =RI(0) - A"() + D, (m |ttt ¥ = R n 1 R31du)

}7177<) :R?(O) — DZ',1 (,ull/ [(UHZ,1 -+ 77Ni,1 — RZ_1<U)) A 77NZ'71 A\ R?} dU)
0

t
+D; (ui/O [((nH; +nN; — R]) AnN; A R?H(u)]du) , =2, . k—1;

Yk"<,) =R}(0) — Dy_4 <,uk1/ [(?7ka1 +nNp_q — RZ—1(U)) ANNp_1 A RZ]du)
0

¢
+Dy, (,uz/ [(nHy + Ny — R}) A T]Nk]dU) :
0
n(.) = U
L") /0 Ly =0y 47 (w).
Here, A" = {nA(t), t > 0} is the arrival process under our scaling; thus,
¢
EA"(t) = 17/ AMu)du, t>0.
0

We now introduce the scaled processes " = {r"(t), t > 0}, " = {I"(t),t > 0} and
g7 = (g0, > 0}, by 71(8) = n ' RO(E), 1) = g L), p(E) = YD), xe-
spectively. Applying the methodology developed in Zychlinski et al. (2018b), Theorem
1, yields the following asymptotic behavior of 7. Suppose that

t
{n~'A"t), t >0} — {/ AMu)du, t > 0} , U.0.C. S 1 — 00, (50)
0
as well as
lim »7(0) = r(0), a.s., (51)
n—00

where r(0) is a given non-negative deterministic vector. Then, as 7 — oo, the family

{r"} converges u.o.c. over [0,00), a.s., to a deterministic function r. This r is the
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unique solution to the following differential equation (DE) with reflection:

.

r1(t) = r1(0 fo 1 ((Hy + Ny —r(u)) ANy Arg(u))]du+ 1(t) >0,
ra(t) = 7:(0 fo [MZ V(i + Niot — i1 (w)) A Ny Ars(u))

s (s + Ny — (@) AN A s () |du >0, i =2, k—1;
rr(t) = 1k(0) = [y [n-1 (Hro1 + Nect = mroa () A Neoy A ()]

e ((Hy + Ny — () A Ny) du > 0,
dit) > 0, 1(0) = 0,

| L > 0pdi(t) = 0;

(52)

The following proposition provides an equivalent representation to (52) in terms

of our original formulation (i.e. ¢(-)); see Appendix L for details. Implementing the
solution in (53) numerically is straightforward since it is given by a set of differential

equations with discontinuous RHS but, notable, without reflection.

Proposition 4.1. The stochastic queueing family Q", n > 0 converges w.o.c. over
[0;1), a.s., as n — oo to a deterministic function q. This q is the unique solution to

the following differential equation (DE) with refection:

0= 00) = [ o) A N A+ Ny = )}t [ [y A
+ L @=m+ny - (M) A g [N1A (Hz + No = g2(u))]] du,
)= a0) + s [ a0 A Nt A G+ Vi )
o /Ot Gi(u) AN, A (s + Niwy — gra ()] du, =2,k — 1.
()= 0(0) + e [ s la) A Noca A (B Ny = ()] o

e [ lge(w) A N d (53)

The function q will be referred to as the fluid limit associated with the queueing family
Q".
The function ¢ will be referred to as the fluid limit associated with the queueing family

Q" n>0.
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Remark 4.1. The model can easily accommodate Markovian abandonments while be-
ing blocked or while waiting. To be more specific, let 0 be the individual abandonment
rate. Then, the abandonment rate of blocked jobs from each Bufferi,i=1,...,k—1,
at time t would be O [N; — q;(t) N (Hiz1 + Nip1 — qiﬂ(t))]Jr; the abandonment rate of
waiting jobs from Station i, i =1,...,k, at time t would be 0 [q;(t) — N;]*. The math-

ematical analysis of models with abandonments does not differ from the one without.

Remark 4.2. The model can also easily accommodate a k-stage blocking mechanism,
in which a job begins service at a station only if the next k stations are available.
For example, accommodating the case where all downstream stations are required to be
available, would be done by replacing the terms N(H; + N; — qi(u)), 1 = 2,...,k — 1,
in (53) with A /\f:Z (H; + N; — g;(u)).

4.4.4 Numerical Examples

To demonstrate that our proposed fluid model accurately describe the flow of jobs in
the networks, we compared it to the average behavior of a stochastic simulation model
constructed in SimEvents/MATLAB. In the simulation model, jobs arrive according
to a non-homogeneous Poisson process that was used to represent a process with a
general, time-dependent arrival rate. Service treatment was randomly generated from
exponential distributions. Let the arrival rate function be the sinusoidal function in
(40). Solving the fluid equations in (53) was done by recursion and time discretization.
Figure 21 shows the comparison between the total number of jobs at each station
according to the fluid model (solid lines) and the average simulation results over 500
replications (dashed lines). These four examples, among many others, show that the

fluid model accurately describes the underlying stochastic system it approximates.

4.5 Network Performance

In this section we focus on steady-state performance, in particular network throughput
under BBS and BAS (Section 4.5.1). The results we present were validated by discrete
stochastic simulations. Let s; and ¢;, i = 1,..., k, denote the steady-state number of

jobs in service and the steady-state number of jobs (including in the buffer) at Station
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Figure 21: Total number of jobs at service - fluid model vs. simulation results, the sinusoidal
arrival rate function in (40) with A = 9, 8 = 8 and v = 0.02, ¢;(0) = 0. In Plot A,
w1 = pa = 1/20, Hy = Hy = 50, Ny = 200, Ny = 150; in Plot B, py = 1/10, pe = 1/20,
w3 =1/20, Hy = Hy = H3 = 50, N1 = 100, N2 = 200 and N3 = 200.

1, respectively; thus,

$i=GANN;N(Hipy + Ny — Gia),  i=1,...k—1, (54)

Sk = qx N\ Ny.

For calculating steady-state performance, we start with (53), set A(t) = A, t > 0, and
¢:(0)=q(t)=q, VYt >0,7i=1,... k. We then get that

st =N Lgcminmy + AA 0 (N A (He + No— @))] - Ligi=manyy,  (55)

Mi—1Si—1 = MiSi, 1= 2,..‘,16.

The following theorem identifies the network throughput and the number of jobs in
each station, in “fluid” steady-state under BBS. The proof of the theorem is provided
Appendix M.

Theorem 4.1. Let § denote the network throughput in the fluid model. Then

ko H;+ N;

k
5:/~Li3i:/\/\/\,uij/\/\
j=1 j

A 56
Vi 1/ %)

When 6 = A, then g; = N/pj, j =1,...,k. Otherwise (when § < \),
q1 = Hi1+ Ny; (57)
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G =Hj+ Nj=0/pia, j=2,...i

here
k k H.+ N,
j j
i = min { argmin /\ u;N;, argmin /\ —————— (58)
j/\l Y j/\Q Uiy + 1/

The interpretation of (56) is that the network throughput is determined according
to the minimum among the arrival rate, the processing capacity of the bottleneck (i.e.
the slowest station when all servers are occupied) and the processing capacity of a
“virtual” bottleneck, formed by two sequential stations. This is similar in spirit to
Dai and Vande Vate (2000), who defined a virtual workload condition for stability of
a two-station multi-class fluid network. As in our case, two stations form a “virtual”
bottleneck that determines the processing capacity of the entire network.
Note that H;, the buffer size before the first station, does not affect network through-
put. That is because network throughput depends on the arrival rate and the process-
ing capacities of the actual/virtual bottleneck. Increasing only the first buffer, even

to infinity, will not affect the network processing capacity.

4.5.1 Blocking After Service

Thus far, we focused on the BBS mechanism. Another common blocking mechanism is
BAS (Blocking After Service, also known as manufacturing blocking) (Balsamo et al.,
2001). Under BAS, a service begins at Station ¢ when there is an available server
there. If upon completion of a service, there is no available capacity (buffer/server) at
Station ¢ 4 1, the job is blocked at Station ¢ while occupying a server there. Figure 22
illustrates the tandem network we analyze under manufacturing blocking. Note that
the blocked jobs are placed at the end of each station, rather than at the beginning,
as was in Figure 20. This change seems small but it is not: as shown momentarily, it
can significantly affect network performances (see Figure 23).

We now compare the performance of the two mechanisms. In particular, we are
interested in analyzing network throughput. Let 6” denote the steady-state throughput

under mechanism z, x € {BAS, BBS} (from now on, ¢ in (56) will be referred to as
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Figure 22: A network with k stations in tandem under the BAS mechanism.

6BBS); s¥ i =1,...,k, denote the steady-state number of jobs in service, at Station 4
under mechanism z. Applying to BAS the same methodology as we used for BBS (see
Equation (15) in Zychlinski et al. (2018b), with A\(t) = A, V¢ > 0), yields the following

BAS throughput:

k
OBAS = 1 sBAS = A A /\ N, i=1,... k. (59)

j=1
Remark 4.3. Note that H;, i = 1,...,k, the buffer sizes throughout the network,
do not affect network throughput under BAS, which depends solely on the arrival rate
and the bottleneck processing capacity. The intuition behind this phenomenon stems
from considering the context in which our fluid models are applicable: networks with
many-server stations. In the limiting operational regime we consider, the dependency
on buffers in preventing starvation and idleness decreases, since stochastic fluctuations
are negligible on the fluid scale. In fact, buffers affect only second-order phenomena
(stochastic variability) but not the limiting (fluid) throughput which depends only on
the Law of Large Numbers (LLN). Under BBS, however, the internal buffers affect

network throughput (56), since they influence the bottleneck processing capacity.

Remark 4.4. The throughput under BBS, when adding sufficient buffer space after
each server, will be equal to the throughput under BAS for the same network without

the additional buffer spaces. This follows from our equations: When H; > N;_y, then

Hi+ Ny ity N fj-1/45N;
Vi + 1/ = i+ 1y -1+ ay

> pj-1Nj1 A pNj.

Hence, the term that involves buffers (the third term in (56)) does not determine the

throughput, and we get that §88% = §BAS,

Figure 23 presents the total number of jobs in service at each station under the two

mechanisms. Note the sharp decrease in the number of jobs at Station 1 under BBS
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(the blue dashed lines) close to the origin. The reason for this is the empty system at
the outset. As the two stations begin to fill, that increases the number of blocked jobs

at Station 1 and, therefore, the number of jobs in service decreases.
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Figure 23: Total number of jobs in service at each station - BBS vs. BAS with ¢(0) = 0. In
Plot A, the sinusoidal arrival rate function in (40) with A = 9, 8 = 8 and v = 0.02, N7 = 100,
Ny =200, H = Hy =50, up = 1/10, pe = 1/20. In Plot B, the station order was replaced.
In Plot C, v = 0.01 and a third station is added having N3 = 200, Hs = 50, u3 = 1/20. In
Plot D, A(t) = 20, t > 0, N1 = 200, Ny = 100 and p1 = pe = 1/20.

Combining (56) and (59) yields the following:

k . ‘
§BBS _ §BAS A /\ Hi+ N
oy i+ 1/

) H; + N;
thus, 6885 < §BAS. The throughputs are equal when 6545 < A T T
1/piy + 1/ p
an example for such a case can be seen in Figure 23, Plot D. The reason why the
throughput under BBS is smaller or equal to the throughput under BAS is capacity

loss under the former. Capacity loss occurs when servers remain idle, while waiting
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for service to end at their previous station. This capacity loss also increases the rate
of job loss, v = A — 9, which occurs when the first station is full and arriving jobs are

forced to leave; thus

+
k H, + N;

k +
PP /\mN /\/\1/”2 ——ym > [A—i/:\lmzvi] _ BAS

4.5.2 Example in a Surgery-Room Setting

In this section, we demonstrate how our models can yield design/operational insights in
a hospital setting that includes surgery rooms (Station 1) and recovery rooms (Station
2). After a surgery is completed, the patient is transferred to the recovery room. If
there are no available beds in the recovery room, the patient is blocked at the surgery
room, while preventing it from being cleaned and prepared for the next surgery. To
avoid such situations, in some hospitals a surgery begins only when there is an available
bed in the recovery room. Is this a worthwhile strategy?

In deciding on the preferable mechanism, we consider two performance measures:
throughput and sojourn time. The former is calculated by (56) and (59); the latter
is calculated by first calculating the number of patients in the system (Theorem 4.1)
and then, by applying Little’s law in steady-state (i.e. dividing the total number of
customers by the throughput). Let pu; = 1/60, us = 1/60, Ny = 10, Ny = 0, H; = 10,
H; =0 and A = 1/6 (time units are measured in minutes). This setting corresponds
to cataract surgeries, for example; under it, both BAS and BBS behave the same with
average throughput of ten patients per hour and average sojourn time of two hours.
Now, suppose that recovery takes on average two hours (instead of one), as in hernia
repair for example; then, the throughput under BAS remains 10 patients per hour,
but the throughput under BBS is reduced to 6.67 patients per hour. Moreover, while
the average sojourn time under BAS is 3 hours, under BBS it reaches 5 hours. Under

this setting, BAS is superior according to both performance measurements.

5 Summary and Future research Directions

This thesis is grounded on modeling, developing and analyzing time-varying fluid net-

works with blocking. Beyond having an intrinsic value of their own, these mathe-
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matical models are also strong limits of corresponding stochastic systems, which yield
operational insights on performance of the latter. Our models are motivated by three
applications: The first is patient flow analysis between hospitals and geriatric insti-
tutions, in order to improve their joint operation (Section 2); the second application
includes analysis of time-varying tandem flow lines with blocking, customer loss and
reflection (Section 3); the third application includes analysis of time-varying tandem
flow lines under the BBS mechanism, which arises in telecommunication networks,
production lines and healthcare systems (Section 4). These three applications are re-
lated through their essential characteristics: Time-variability and blocking.

Future research can include practical and theoretical directions. One possible direc-
tion is to exploit new data-driven and mathematical tools together with game-theory
analysis, to investigate and improve patient flow between the community, hospitals
and geriatric institutions. “Clalit”, the largest Israeli Health Maintenance Organiza-
tion (HMO), has recently provided us with patient flow data, at the level of individual
patients, between Emergency Departments, hospital wards and geriatric institutions.
Such individual patient flow data is usually confidential and very hard to attain. The
willingness of “Clalit” to share its data with us is significant and highlights the im-
portance it assigns to this issue. Analyzing these data will open up new opportunities
and directions for research in both exploratory data analysis (EDA) and queueing sci-
ence. The work we envision has the potential to reveal important features that cannot
be explained by existing models. The proposed EDA will enable conducting an inte-
grative analysis, for example, relating transfer delays to readmission rates, treatment
durations and patient clinical condition. Addressing these issues will most likely re-
quire developing new queueing models and theory, jointly with supporting statistical
analysis.

Another research direction will include several stakeholders such as the government,
HMOs and private or corporation hospitals. In order to capture the balance of forces
among these stakeholders, the analysis should accommodate all of them. Combining
these factors will require conducting a game theoretic view, in which each stakeholder
makes bed allocation decisions for the hospitals and institutions it operates. The mode
of analysis we envision is in the spirit of Zhang et al. (2016), who use game theoretic
analysis among hospitals to asses incentives by the United States Medicare and Med-

icaid policy for reducing readmissions.
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Yet another possible direction is to extend the development of our time-varying many-
server fluid models to fork-join networks with blocking (Dallery et al., 1994, 1997).
This direction would require specific definitions of new blocking mechanisms and pri-
ority protocols. For example, suppose that all servers at Station X are busy, and there
are blocked customers at Station Y and Z awaiting a server at X. When an X-server

becomes available, who among the waiting customers will get it?
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Appendices

A Fluid Model Validation

To validate our model we used the following patient flow data:

1. Two years of patient flow data from a district that includes four hospitals
and three geriatric institutions (three rehabilitation wards, two mechanical ventilation
wards and three skilled nursing wards).

2. Two years of waiting lists for geriatric wards, including individual waiting times
from our Partner Hospital.

Based on the patient flow data, model parameters were first estimated, then in-
spected and validated by expert doctors. The parameter values used for the vali-
dation are: p; = 1/4.85, puy = 1/30, us = 1/160, gy = 1/45, By = 1/250, B3 =
1/1000, B, = 1/1000, 6, = 1/125, 8 = 1/2500, 65 = 1/1000, 6, = 1/1000, N; =
600, Ny = 226, N3 = 93, N, = 120 (we used day as a time unit). For example, Station
1 contains 600 beds; the average treatment duration there is 4.85 days and the average
time to death is 125 days.

Estimating the rates of mortality and readmission were done using the MLE (Max-

imum Likelihood Estimator), that is prevalent for estimating censored data, such as
patience and retries in service systems (see Zohar et al., 2002 for details). Here, we
adjust the estimator for the case where patients die while being in treatment, rather
than just while waiting in queue. To this end, instead of the actual waiting time, we
consider the actual treatment time.
The time-varying arrival rates and routing probabilities were also derived from the
data. The average monthly arrival rate was 3,632 patients per month (with a min-
imum of 3,559 and maximum 3,774), and the average routing probabilities to each
geriatric ward were 9% for rehabilitation wards, 0.8% for mechanical ventilation and
2.4% for skilled nursing care.

Using these parameters, we numerically (via Matlab) solved (7), which resulted in
the number of patients in each ward at any time (g;(¢) for i = 1,2, 3,4) and the number
of blocked patients waiting for each ward (b;(t) for i = 2,3,4). Figure 3 shows the
length of the waiting lists for each ward, using a daily resolution during one calendar

year, according to the data and the fluid model. The very good fit implies that the
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fluid model is appropriate for modeling the system considered here. The three geriatric
wards work at full capacity throughout the year; there are always blocked patients in
the hospital and any vacant geriatric bed is immediately filled.

In addition to comparing the fluid model with real data, we validated its accuracy
against a discrete event simulation of a stochastic system, which we developed for this
purpose in SimEvents/MATLAB. We conducted experiments for several scenarios; in
each one, we considered three levels of the scaling parameter 7. In our simulation
model, the patients arrive according to a non-homogeneous Poisson process that was
used to represent a process with a general, time-dependent arrivals, as prevalent in
hospitals (Bekker and de Bruin, 2010; Yom-Tov and Mandelbaum, 2014; Shi et al.,
2015; Armony et al., 2015). The treatment rates were randomly generated from expo-
nential, Phase-type (as a mixture of two exponentials) and Lognormal distributions,
which are typical for describing lengths of stay in hospitals and geriatric wards (Mc-
Clean and Millard, 1993; Marazzi et al., 1998; Xie et al., 2005; McClean and Millard,
2006; Faddy et al., 2009; Armony et al., 2015). The expectations of these three distri-
butions were equal when compared in a specific scenario. For each scenario and n we
used 300 replications, each for 1000 days, and calculated the Root Mean Square Error
(RMSE) using the following formula:

SIS (g () — g™ )] ar
RMSE = . :

here ¢5'™

s (t) is the total number of patients in Station i at time ¢ according to the simu-

fluid

lation results and ¢; “*“(t) is the number according to the fluid model. The results are
summarized in Tables 5 and 6. An example for Scenario 1 with n = 10 is illustrated
in Figure 24. As expected, fluid models become more accurate as the scaling param-
eter 17 becomes larger. In general, the best results were achieved for the Exponential
distributions. However, the model is quite accurate even for the Phase-type and Log-
normal distributions. In all cases, the fluid model accurately forecasts, within a 95%
confidence interval, the stochastic behavior of the corresponding simulation. The per-
centage of error, relative to system capacity, varied from 0.6% to 2.4%. However, for
the size of systems in which we are interested (Scenarios 1-18), the percentage of error

was less than 1%.
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Figure 24: Scenario 1 in Table 5. On the right: Total number of patients in each geriatric
ward - fluid model vs. simulation. On the left: The arrival rate A(t).

No. Nl, NQ, Ng, N4 M1, 12, U3, (e P12, P13, P14 distribution /\(t)
1 600, 234, 93, 120 | 1/4.85,1/30, 1/160, 1/45 | 0.09, 0.008, 0.024 | Exponential polyno.
2 600, 234, 93, 120 | 1/4.85,1/30, 1/160, 1/45 | 0.09, 0.008, 0.024 | Phase-Type polyno.
3 600, 234, 93, 120 | 1/4.85, 1/30, 1/160, 1/45 | 0.09, 0.008, 0.024 | Lognormal polyno.
4 600, 234, 93, 120 | 1/4.85, 1/30, 1/160, 1/45 | 0.09, 0.008, 0.024 | Exponential | polyno./10
5 600, 234, 93, 120 | 1/4.85, 1/30, 1/160, 1/45 | 0.09, 0.008, 0.024 | Phase-Type | polyno./10
6 | 600, 234, 93, 120 | 1/4.85, 1/30, 1/160, 1/45 | 0.09, 0.008, 0.024 | Lognormal | polyno./10
7 | 600, 234, 93, 120 | 1/4.85, 1/30, 1/160, 1/45 | 0.09, 0.008, 0.024 | Exponential | polyno.-10
8 | 600, 234, 93, 120 | 1/4.85, 1/30, 1/160, 1/45 | 0.09, 0.008, 0.024 | Phase-Type | polyno.-10
9 | 600, 234, 93, 120 | 1/4.85, 1/30, 1/160, 1/45 | 0.09, 0.008, 0.024 | Lognormal | polyno.-10
10 | 600, 200, 200, 200 1/5,1/30, 1/30, 1/30 0.25, 0.25, 0.25 | Exponential polyno.
11 | 600, 200, 200, 200 1/5,1/30, 1/30, 1/30 0.25, 0.25, 0.25 | Phase-Type polyno.
12 | 600, 200, 200, 200 | 1/5, 1/30, 1/30, 1/30 | 0.25, 0.25, 0.25 | Lognormal | polyno.
13 | 600, 200, 200, 200 | 1/5, 1/30, 1/30, 1/30 | 0.25, 0.25, 0.25 | Exponential | polyno.-10
14 | 600, 200, 200, 200 1/5,1/30, 1/30, 1/30 0.25, 0.25, 0.25 | Phase-Type | polyno.-10
15 | 600, 200, 200, 200 1/5,1/30, 1/30, 1/30 0.25, 0.25, 0.25 Lognormal | polyno.-10
16 | 600, 200, 100, 100 | 1/5, 1/15, 1/15, 1/15 | 0.25, 0.25, 0.25 | Exponential | polyno.
17 | 600, 200, 100, 100 | 1/5, 1/15, 1/15, 1/15 | 0.2, 0.25, 0.25 | Phase-Type | polyno.
18 | 600, 200, 100, 100 | 1/5, 1/15, 1/15, 1/15 | 0.2, 0.25, 0.25 | Lognormal | polyno.
19 60, 20, 20, 20 1/5,1/30, 1/30, 1/30 0.09, 0.008, 0.024 | Exponential | polyno./10
20 | 60, 20, 20, 20 1/5, 1/30, 1/30, 1/30 | 0.09, 0.008, 0.024 | Phase-Type | polyno./10
21 | 60, 20, 20, 20 1/5,1/30, 1/30, 1/30 | 0.09, 0.008, 0.024 | Lognormal | polyno./10

Table 5: Parameters of scenarios. The polynomial arrival rate is A(t) = C1t7 + Cat® + C3t® +
Cyut* 4 Cst3 + Cgt? + Crt + Cg where C = 5.8656- 10717, Cy = —2.1573- 1073, C3 = 3.0756 -

10710, 0y = —2.1132- 1077, C5 = 6.9813 - 105, Cg = —0.0091, C;7 = 0.0718, Cs = 130.8259.
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No. |n=1|7n=10 | n=100 No. | n=1|n=10 | n =100
1 8.07 2.42 0.89 12 11.4 5.12 1.14
2 8.92 3.52 1.24 13 7.42 2.13 0.78
3 | 11.68 | 5.21 1.32 14 7.74 3.41 0.96
4 9.87 2.78 0.97 15 | 10.98 | 4.64 1.01
5 | 10.76 | 3.85 1.45 16 8.01 2.23 0.72
6 | 1252 | 5.69 1.38 17 | 8.59 3.41 0.91
7 7.67 2.28 0.82 18 | 11.23 | 4.76 0.98
8 8.32 3.44 1.05 19 2.35 1.95 0.58
9 | 11.21 | 5.09 1.14 20 2.76 2.28 1.24
10 | 8.03 2.28 0.82 21 2.91 2.43 1.32
11 | 8.65 3.5 1.05 Avg | 8.53 3.56 1.04

Table 6: Total number in each station - fluid model vs. Simulation - RMSE results

B Fluid Model for Blocking: Convergence of the Stochastic
Model

We now develop a fluid model with blocking, mortality and readmissions for a network

with £ stations, as illustrated in Figure 25. Our system is characterized by the following

Figure 25: A k-station network

—Readmission
[ 15-3 N2 4|
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orlta ity 1N | :

—Arrivals—> — 1

1, Nk
J —Discharge—>

k —Mortality—>

|

(deterministic) parameters:
1. Arrival rate to Station 1 is A(¢), t > 0;
2. Service rate pu; > 0,2 =1,... k;
3. Mortality rate 6; > 0,1 =1,...,k;
4. readmission rate 3; > 0, i = 2,...,k, from Station ¢ back to Station 1;
5. Number of servers (beds) N;, i =1,...,k;
6. Transfer probability p;;(t) from Station i to Station j;
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5. Unlimited waiting room before Station 1;
6. No waiting room before Stations : = 2,..., k.

The stochastic model is created from the following stochastic building blocks A, S;,
i=1,....,2k—=1), M;,i=1,...,k and R;, i = 2,...,k, which are assumed to be
independent, as well as X;(0),7=1,... k:

1. External arrival process A = {A(t),t > 0}; A is a counting process, in which A(t)
represents the external cumulative number of arrivals up to time ¢. The arrival

rate A(t), t > 0 is related to A via
t
EA(t) = / Mu)du, t> 0.
0

A special case is the non-homogeneous Poisson process, for which

where Ag(+) is a standard Poisson process (constant arrival rate 1).

2. “Basic” nominal service processes S; = {S;(t),t > 0}, i = 1,..,(2k — 1), where

S;(t) are standard Poisson processes.

3. “Basic” nominal mortality processes M; = {M;(t),t > 0}, ¢ = 1,..,k, where

M;(t) are standard Poisson processes.

4. “Basic” nominal readmission processes R; = {r;(t),t > 0}, i = 2, .., k, where 7;(¢)

are standard Poisson processes.
5. Initial number of customers in each state X;(0), i =1,... k.

The above building blocks will yield the following k& stochastic process, which captures
the state of our system:

The stochastic process X; = {X;(t),t > 0} denotes the number of arrivals to
Station 1 that have not completed their service at Station 1 at time ¢.

The stochastic process X; = {X;(t),t > 0}, i = 2,...,k denotes the number of
customers that have completed service at Station 1, require service at Station ¢, but

have not yet completed their service at Station ¢ at time t.
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We assume that the blocking mechanism is blocking-after-service (BAS) (Balsamo
et al., 2001). Thus, if upon service completion at Station 1, the destination station is
saturated, the customer will be forced to stay in Station 1, while occupying a server
there until the destination station becomes available. The latter means that when a
server completes service, the blocked customer immediately transfers and starts service.

Let @ = {Q1(t), Qa(t),..,Qr(t),t > 0} denote the stochastic queueing process in
which Q;(t) represents the number of customers at Station i at time ¢. The process @

is characterized by the following equations:

k

Qit) =X1(0) + 3 (Xult) — )

=2

el Pl )
=5 (“1 /Ot (1 - iplz(u)> [Xl(u) A (Nl — i (XZ(U) — N¢>+>] du) ;

X;(t) = X;(0) + Sy (m /0 t (1) [Xl (u) A <N1 - zkj <Xi(u) - N,Y)] du)

— R (51 /Ot(Xj(u) A Nj)dm> — M, (93' /Ot Xj(u)du>

— Si14 (uj /Ot(xj(u) A Nj)du> . =2k (61)

An inductive construction over time shows that (60) uniquely determines the process

X.
Note that (Xl-(t) — Ni)+, 1=2,...,k, is the number of blocked customers waiting for

an available server in Station <.
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B.1 Fluid Approximation - FSLLN

We now develop a fluid limit for our queueing model through a Functional Strong Law
of Large Numbers (FSLLN). We begin with (60) and scale up the arrival rate and the
number of servers by n > 0, n — oo. This 1 will serve as an index of a corresponding

queueing process X:

X7(t) = X7(0) + A"(t) + Zk: R, (@n /0 t(X;g(u) A nNm)dm> ~ M, <91 /0 t X;,g(u)du)

- ism (Ml /Otpm(u) [X{’(u) A (77]\/1 i (X"( ) — 77N> )] du>
-5 (m A (1—iph<u>> [X{’(um (mvl > (x) - )] du>,

XJ(t) = XJ(0) + 5, <m / o [X?(u) (mw - Z (X0 - nNi)+>] du)
- /<X<>MN>dm)— ([ s0m)

— Sk—144 ,u] /\nN)du), j=2,...,k.

Suppose that A7 n > 0, the family of arrival processes satisfies the following
FSLLN:

lim A7 (1) = / Mu)du: (62)

n—00 1)
here the convergence is uniformly on compact sets of ¢ > 0 (u.o.c.). For example, in

the non-homogenuous Poisson process

A(t) = A0</t n/\(u)du>, t>0.

Other examples can be found in Liu and Whitt (2011a, 2012a, 2014).
Assumption (62) is all that is required in order to apply Theorem 2.2 in Mandelbaum
et al. (1998) and get

1
lim —X(t) = x;(t), wo.c., i=1,... k,

n—00 77

where x;, ©+ = 1,2, .., k, are referred to as the fluid limit associated with the queueing

84



family X', i = 1,..., k. The functions z; constitute the unique solution of the following

ODE:

— 91931(15)] du,
z;(t) = x;(0) + /Ot [plj(u) U (371(“) A (N — Z(l'z(u) - Ni)+)) — (15 + B;) (j(u) A N;)
_ ejxj(t)] du,  j=2... ..k

We now introduce the functions ¢;, ¢ = 1, ..., k, as the fluid limit associated with

the queueing family )"; these functions are given by

Q) =z1(t) + > (m(t) = V)",

i=

C Proof of Theorem 2.1

The function C'(N) in (14) equals

N
C(N) = constant — (C, + Cu)/ [f(x) — Z} dz, (63)
0
where

T c,T
f(x) :/0 lyyzapdt  and 7 = o (64)

Therefore, it suffices to prove that the function F'(N), given by

N
FV) = [ [f@) - Z)ds, (65)
0

is maximized by N* in (16).

Note that f(z) is non-negative and non-increasing in x, where f(0) = 7" and lim, . f(x) =
0. In addition, Z € [0,T7], hence f(z) crosses level Z. The function F(N), for N start-
ing from 0, is first an integral of a non-negative integrand, hence is increasing in N.

Then, after the first N for which f(N) = Z, it is decreasing. This proves that F(N)
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is maximized (globally) at point N, where f(N) = Z.
We conclude the proof by showing that N* in (16) satisfies f(/N*) = Z. Substituting
N* into (64) gives

T T
f(N*) = / 1{7’d(t)27'd(Z)}dt = / 1{tSZ}<t)dt = Z7
0 0

since r4 is a decreasing function. Therefore, N* = r4(Z), as in (16).

Remark C.1. When ry is continuous and strictly decreasing, f(x) is in fact its inverse

-1
Ty -

D Choosing the Candidate Solution

We now describe the method that motivates N*, as in (16), to be a natural candidate
for maximizing C'(N) in (14). This method requires additional assumptions about r(t),
r4(t) and A\. Theorem 2.1, though, does not make these assumptions and is, therefore,
more general.

Figure 26 shows an illustration of the overage and underage periods for a specific
number of beds (N = 280): on the left, according to r(¢) and on the right according to
r4(t). The bright areas mark underage periods, where the offered load is higher than
the number of beds. The dark areas mark overage periods. The areas of each color

are equal in the two figures.

Figure 26: An illustration of the overage and underage periods according to r(t) and r4(t)
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We assume that r4(t) is an invertible function and define ¢* to be the intersection point

between 74(¢) and N such that r4(t*) = N; then t* = r;'(N). We can rewrite C'(N)
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to get
T

r' (V)

d

C(N) = Cu/ [rq(t) — N]dt + CO/ [N — rq(t)]dt. (66)
0 r N (N)

Now assume that ;' (N) is a continuous differential function and differentiate Equa-

tion (66) according to Leibniz’s differentiation rule:
C(N) = Co(T —r7(N)) — Cur; (N) = —(C, + C)r; (N) + C,T.

Since C'(IN) approaches co as N approaches oo and achieves a high positive value for

N =0, we minimize C'(IN) by equating the derivative to 0. This gives rise to

c,T

M=

Applying r4 to both sides yields the optimal N* in Equation (16).
Since C, and C, are non-negative numbers and 7;'(N) is decreasing in N, C(N) is
monotonically non-decreasing, and therefore, C'(N) is convex and N* in Equation (16)

minimizes C'(N).

E Proof of Theorem 2.2

In our proof, we use the following proposition, which is proved in Appendix G:
Proposition E.1. C(N) in (14) is a convez function.

We solve problem (21) for the case where N < B, and for the case where N > B.
Then, we choose the solution which minimizes the overall cost. The option for N = B
is included in both cases since their solutions are identical.

Step 1: Find N}, the optimal number of beds if no new beds are added, by solving
Ck(N) for N < B.
Since C'(N) is a convex function, if the optimal solution for the unconstrained problem

is in the allowed range (i.e., N* < B), then this will be the solution for the constraint
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problem as well. If not, the solution will be at the edge of the range. Formally:

C.T C.T
<B
v_l\ara ) e ra]
k
B, otherwise.

Step 2: Find N2, the optimal number of beds, where (N — B) new beds are added,
by solving Ck(N) for N > B, as follows:

minimize C(N)+ K(N — B)
N (67)
subject to — N 4+ B <0.

Since the objective function remains convex, we solve the unconstrained problem and
check whether the solution is in the allowed range. For this, we use the following
statement:

The optimal solution, which minimizes the unconstrained problem

C(N)=C(N)+ K(N — B), (68)
is given by
(upn C,T+ K
N =rl g va (59)

This is because the function C’%)(N ) in (68) can be written in the same structure as
n (63) for
CT + K
T
In order to justify the introduction of new beds, we must have K < T'C,,, and therefore,
0<C<T. Since 0 < f(x) <T, f(x) crosses C and the proof in Theorem 2.1 holds.
The optimal solution for (68) is Nl(g)* =rq(C), as in (69).
The solution for (67) is, therefore,

(70)

C,T+ K C,T+K
- — __|>B
v\ Gra ) M\ara )T
k
B, otherwise.
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Step 3: Combining the results of Steps 1 and 2, yields the solution in Equation (22).

F Proof of Theorem 2.3

We begin by considering the two cases for (23). Each case yields two separable prob-
lems, as follows:

1. When Nz < Np\z, the two problems are to minimize

(1) C(Ng)—C, - Ny = / [Cu(r(t) — No) 4 Cy(Ng — r(t))+] dt — C, - Ng,

T

(2) C(Npg) +C,- Nz = / [Culr(t) = Npg)* 4+ Co(Nrz = r(t) ] dt 4 €, - N

T\Z

2. When Nz > NT\I

(1) C(Nz)+C, - Nz :/

[Cu (r(t) — Nz) " + Cy(Nz — r(t))ﬂ dt +C, - Ng,

) C0ng)—CooNpa = [

_— [Cu (T(lf) - NT\I)+ + Co (NT\Z — T’T\I(t))+] dt — Cr : NT\I-

Since rz(t) and ry\z(t) are non-negative and measurable on the intervals Z and
T \ Z, respectively (see Hardy et al., 1952), implementing the results from Theorems
2.1 and 2.2 yields the following:
1. When NZ < N7, then Ny = N% and Nj,, = N,
2. When NZ > N7 then N = NZ and Ny, = N/ %,

The two cases are mutually exclusive, since N2 > N7 and NTV > NI\I.
When neither of the two conditions prevail, it is preferable to not reallocate beds

throughout the planning horizon. Combining these options yields the solution in (24).

G Proof of Proposition E.1

It is sufficient to prove that F'(N) in (65) is a concave function. According to Sierpin-
ski’s Theorem (see Donoghue, 1969), a midpoint concave function that is continuous
is, in fact, concave. Since the function F'(NN) is an integral of N, and therefore, contin-

uous, it is sufficient to prove that it is midpoint concave. Without loss of generality,
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it suffices to prove midpoint concavity by proving that for every N > 0,

F(N)
F(N/2) 2 ——.

In other words, we need to prove that

2 [y - carz [Ciw - c,

which is equivalent to proving that
N/2 N
2 flx)dz > / f(x)dz.
0 0
Since f is a non-increasing non-negative function, we must have
N/2 N/2

N N
2 (x)dx > f(z)dx + f(z)dzx = / f(z)dz,
0 0 N/2 0

which completes the proof.

H Proof of Theorem 3.1

Let T' be an arbitrary positive constant. Using the Lipschitz property (Appendix J)
and subtracting the equation for r in (34) from the equation for r” in (33) yields that
I} = rllp Vg = rally < G| r{(0) = r1(0)] +

| A=y ) (71)

0

11D, (npul /0 [(Nl Y H - r’f(u)) A (N1 - bn(u))} du)

o / (N H =1 w)) A (Ny — 07(w))] du

T

_|_

T

_|_

07Da (000 = s [ [0+ H = ) A Vs = 9]

0

(- p)m / (0 H = rlw) A= b)) du

T

+

90

" /O (N0 + H = () ) A (N = 57(w)) = (Ny + H = ra(w) A (N = b(w) )|

)



G

|7y

_|_

(- pm / (N + H — ) A (N — 0'(w))] du

+

processes,

n

(0) — m2(0)| +

| Ay du— gy

0

T

' Ds (n(l — P / [(Ny+ H = r{(u)) A (N1 = b"(u))] dU>

0

T

' Dy <W2 /O [N A (rf (u) = r3(u) + N2)] dU) — 2 /O [N A (rf (u) = r3(u) + Na)] du

T

(1 —p)m /O [(Ny+ H = r{(u)) A (Ny = 0"(u)) = (N1 + H = r1(u)) A (N1 = b(u))] du

second, sixth and seventh terms on the right-hand side converge to zero by

T

1) /0' [(N2 N (T?(U) —ri(u) + Nz)) — (No A (r1(u) — ro(u) + Ng))} du

where G is the Lipschitz constant.
The first,
the conditions of the theorem. For proving convergence to zero of the third, fourth,

eighth and ninth terms, we use Lemma K.1 in Appendix K. By the FSLLN for Poisson

sup [p7'D(qu) —u| =0, Vt>0 a.s.

0<u<t

Note that the functions pu fot (N1 + H —r(u)) A (N7 —b"(u))] du and

K2 f(f |:N2

A (r?(u) —ry(u) + Ng)] du are bounded by ppy - (N1 +H)-T and pio- No- T,

respectively, for 0 < p < 1 and t € [0,T]. This, together with Lemma K.1, implies
that the third, fourth, eighth and ninth terms in (71) converge to 0.

We get that

17T =7l Vlirg = rally < (72)

)+ G

+‘(;M2

&(T) + G(1 —p)m

/' [Ny + H = 7)) A (Ny — () — (Ny + H — 74 (u) A (Ny — b(u))] du

0

1

/. (N + H = ri(u) A (N1 = b"(u)) = (Ny+ H =71 (u)) A (N = b(u))] du

| T]

/0. [N2 A (r () = r5(u) + No)| = [N2 A (r1(u) = r2(u) + Na)] du
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+ G
T

| ) = i) du

0

[ ) = bla) du

0

A

[ ) = b)) du

)

| @ = i du

0

+G(1 —p)u
T

[ i = ra(w) du

0

T

+ Gpa
T

T T
< [a;(THGm/ \|r;7—r1||udu+c;m/ 1" — b, du] v
0 0

T T
eA(T) + Gy / I — ], du+ G / 15" — b, du
0 0

T T
+ Gua/ 7" = rall,, du+ GMz/ I3 =72l du],
0 0

where €]/(T) bounds the sum of the first four terms on the right-hand side of (71),
and €J(T) bounds the sum of the sixth to ninth terms; these two quantities €] (7T') and
ea(T') converge to zero, as n — oo. The second inequality in (72) is obtained by using
the inequalities [a Ab—aAc| <|b—c|and |[aAb—cAd| < |a—c|+|b—d| for any a,
b, ¢ and d. The third equality in (72) is because 0 < p < 1.

We now use
T T
L= bl de= [t =) =), da (73)
0 OT
:/ | —r{ Ard —r + 11 A, du
OT
< [ [t =ral+ It Arg =i Al ] du
OT
< [ et =il g =]

T T
5 / I =, du+ / 17— rall, du.
0 0

From (72) and (73), we get that

178 = rilly Vg = rel (7
T T
< NT)V D)+ G Bt ) [ =il dut G v ) [ = v, d
0 0

T T
< TV A +26 G v ) | [ =l du [ =l au
0 0
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T

T
< VD16 G v | [t =l dwv [ 12 =l
0 0

T
< [EVT) V (T)] + 4G (31 V o) [ [ =l visg -l du} -
0

The first equality in (74) is obtained by using the inequality (a+b)V(c+d) < aVe+bVd,
for any a, b, ¢ and d. Applying Gronwall’s inequality (Ethier and Kurtz, 2009) to (74)

completes the proof for both the existence and uniqueness of r.

I Proof of Proposition 3.1

We begin by proving that the solution for (35) satisfies, for ¢t > 0,
' +
I(t) = /O Loy N} Lon@tas ) <Nt No+ iy [A(w) = Li(w)] du (75)
t
+ / V()< Mot} L ) bas ()2 Ny 4 Ny A (1) = Lo (w)] du
0

t +
+A 1{x1(u)2 N1+H} ‘ 1{m1(u)+w2(u)2Nl+N2+H} [A(U) B ll(u) A l2(u) du7

where

o~

[

—
<

~—
I

pir (21 (u) A (N1 — b(u))) ;
la(u) = pa (w2 (u) A N2) + (1 = p)p (z1(u) A (N1 — b(u))) -

In order to prove this, we substitute (75) in (35) and show that the properties in (35)
prevail. We begin by substituting (75) in the first line of (35). Using (a — b))t =

l[a — a A D], for any a, b, we obtain

t
z1(t) = 21(0) +/ [Au) = pr [z (u) A (N1 = b(w))]] du
0
t
- /0 Liay >Ny +H1} * Ly (u)tas () <Ny £ Mo 1y [(A(w) — A(w) Al (u)] du
t
- /0 Loy ()< N1} * Lo () ras = m+No iy [AMw) = Au) Al (w)] du

t
- / Ly ()= N+ HY * Loy @) 4aa()y> N+ Nt iy (A1) — AMw) Ay (u) Alg(uw)] du,
0
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and therefore,

n(f) =n(0)+ /ot [1{x1(u><N1+H} * Loy ()t (w)< Ny+ N1} * A1) (76)
— [z (u) A (N1 = b(w))] | du
+ /Ot Loy s Nim) - Yo @sas@ <N+ Ny - (A(w) Aly(w))] du
+ /Ot Loty em+ a1y - Vs uyrasyzn 4 Moy - (Aw) Ala(u))] du
+ /O t Loz} Lo @tas)zNaNor iy - (A(w) Al(u) Ala(u))] du;

t
5(t) = 22(0) +/ [ [z1(w) A (N1 = b(w))] — p2 (z2(u) A N2)| du.
0
Clearly, the properties in the third and fourth lines in (35) prevail. It is left to verify

that the first and second conditions prevail. This is done by the following proposition.

Proposition I.1. The functions z1(-) and x1(-) + x2(-) as in (76) are bounded by
N1+ H and Ny + Ny + H, respectively.

Proof: First we prove that the function z1(+), as in (76), is bounded by N;+H. Assume
that for some ¢, x1(t) > Ny + H. Since z1(0) < Ny + H and z; is continuous (being an
integral), there must be a last £ in [0, ¢], such that a1 (¢) = Ny +H and 21 (u) > N, +H,
for u € [t,t]. Without loss of generality, assume that ¢ = 0; thus z;(0) = N, + H and
x1(u) > Ny + H for u € (0,t]. From (76), we get that

x1(t) =N+ H +/0 [Lar () tza(wy<ny 4 3o+ 1} - (M) Ali(w))] du
+/O [ Ly (w)aa(uy> N+ Nor iy - (A(w) Ay (u) Aly(u))] du
— ,ul/o [z1(u) A (N7 — b(u))] du

t
0
which contradicts our assumption and proves that z;(-) cannot exceed H; + Nj.
What is left to prove now is that the function x1(-) + z2(+) is bounded by Ny + Nj.

Without loss of generality, assume that x1(0)4+22(0) = N1+ No+H and 1 (u)+a2(u) >
Ni + Ny + H for u € (0,t]. This assumption, together with z; < N; + H, yields that

94



x9 > No; hence, from (76), we get that

l’l(t) + flfg(t) = N1 + NQ + H/O |:1{$1(U)ZN1+N1} . (/\(U) N ll(u) VAN lg(u))} du
+ /0 Loy yemiemy - (A(w) Ala(w))] du
= [ 10 =P ) A (31 = ) + g () A )

<N+ Ny + H+/O [l2(u) = (1 = p)pa (w1 (u) A (N1 = b(u))) — piz (w2(u) A N2)] du

:N1+N2+H7

which contradicts the assumption that z(t) + 22(t) > Ny + Ny + H and proves that
x1(+) + x2() is bounded by Ny + Ny + H.

By the solution uniqueness (Proposition J.1), we have established that x, the fluid
limit for the stochastic queueing family X" in (26), is given by (76).

The following two remarks explain why (76) is equivalent to (36):

1. After proving that z1(-) < Ny + H and 21(-) + x2(-) < Ny + Ny + H in Propo-
sition 1.1, the indicators in (75) can accommodate only the cases when x;(-) =

N1—|—H and $1<) +$2() = N1 +N2+H

2. When z1(u) = Ny + H and z1(u) + zo(u) < Ny + No + H, x5(u) < Ny and
hence, b(u) = 0 and [;(u) = I§(u). Alternatively, when x;(u) < Ny + H and
x1(u) + x2(u) = Ny + Ny + H, x5(u) > Ny, and therefore, lo(u) = I5(u).

J Uniqueness and Lipschitz Property

Let C'= C|0, 00]. We now define mappings ¢ : C? — C and ¢ : C* — C? for m € C?
by setting:
+
t) = — AN ;
vlm)(t) = sup (= (m(s) Amas)) )
1
¢(m)(t) = m(t) +(m)(?) | =0
Proposition J.1. Suppose that m € C* and m(0) > 0. Then (m) is the unique

function 1, such that:
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1. 1 is continuous and non-decreasing with [(0) = 0,
2. r(t) =m(t)+1(t) >0 forallt >0,
3. 1 increases only when r1 =0 orry = 0.
Proof: Let I* be any other solution. We set y = rj —ry =r; —ry =[* —[. Using the

Riemann-Stieltjes chain rule (Harrison, 1985, Ch. 2.2):

ﬂw:fw»y[f@m%

for any continuously differentiable f: R — R. Taking f(y) = y*/2, we get that

1 t t
5(7“;*(75) — ri(t))2 = /0 (rf —mr)dl* +/O (ri —r?)dl. (77)

The function [* increases when either 7 = 0 or r; = 0. In addition, r; > 0 and r, > 0.
Thus, either (r7 —ry)dl* <0 or (r5 —ry)dl* < 0. Since rj —r = 15 — ro, both terms
are non-positive. The same principles yield that the second terms in both lines on the
right-hand side of (77) are non-positive. Since the left side > 0, both sides must be

zero, thus r{ =1, r5 =79 and [* = [.

Proposition J.2. The mappings 1 and ¢ are Lipschitz continuous on D,[0,t] under
the uniform topology for any fized t.

Proof: We begin by proving the Lipschitz continuity of . For this, we show that for
any T > 0, there exists C' € R such that

Im) = pm) < C[ = il V s = gl .

for all m,m’ € Dj.

sup (— (ma(s) A mg(s)))Jr — sup (— (mf(s) A mg(s))>+

0<s<- 0<s<t

lo(m) = ()l =

< || sup |(ma(s) Ama(s)) — (mi(s) Ami(s))|

0<s<-

(78)

T

= ||(m1 A mg) — (m'l /\m’Q)HT < 2[ lmy —mi ||V [[me — m’2||T}
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The last inequality derives from:
ma(t) Ama(t) = (ma(t) —mi(t) +mi(t)) A (ma(t) —my(t) +my(1));
therefore,

ma () Amy(t) < mi(t) Ams(t) + lmy —milp + lme — ma|lp,

my(t) Ama(t) = my(t) Amy(t) = [my —millp — [[ma — mbly,
and

[ma(t) Ama(t) —mi (t) Amy(t)] < [lmy = millp + [lme — mal 7,
which yields

[lma (8) Ama(t) —mi () Ams (bl < llma —milp + [lme —mall

< 2([fmy = milly v [ma —mally)

Our next step is proving the Lipschitz continuity of ¢. For this, we show that for any

T > 0, there exists C' € R such that

[$1(m) = G1(m) [l V [|d2(m) — @a(m) |7 < C[ lma —millp v l[me —mall |,

for all m,m’' € D§.

We begin with the left-hand side:

1¢1(m) = @1(m) |7 V [[d2(m) = Ga(m)]| 1

= llma(t) + P (m)(8) = mi (t) = (") (@) [l V [[ma(t) + ¢ (m)(E) —m5(t) — P (m") ()l

= [lma(t) = mi(t) + o (m)(t) = (M) (D)l V [lma(t) — m5(t) + P (m)(t) — L (m) (@)

< [ (8) = mi (@)l + [ (m) (&) = M) ()l V lIma(t) = ms (@)l + 1P (m)(#) = P (m") (@)l

< lma = mily V [lme —ms [l + [[o(m) (8) — ¢ (m") (Ol < 3 (lma — milly V [lme = ms|l;),

where the last inequality is derived from (78).
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K Lemma K.1

Lemma K.1. Let the function f,(-) — 0, w.o.c. asn — oo. Then f,(g,(-)) — 0,

u.0.c. asn — oo, for any g,(-) that are locally bounded uniformly in 7.

Proof: Choose T' > 0, and let Cp be a constant such that |g,(t)] < Cp, for all
t € [0,7]. By the assumption on f,(-), we have || f,|lc, — 0, as n — oo. It follows

that || £,(g,(-)|lz = 0, as n — oo, which completes the proof.

L Proof of Proposition 4.1

From (52), we return to our original formulation in terms of ¢(-) for ¢ > 0, as follows:

p

() = u(0) + fy [Mw) = i (qu(u) A Ny A (Hy + Ny — go(u)))] du — I(t) < Hy + Ny,
@(t) = 6(0) + Jy |-t (@i (u) A Noa A CH; + Ni = qi(w)))

— i (qi(w) ANy A (Higqr + Nijr — @1 (w)) |[du < H; + N;, i =2,...,k—1;
0r(8) = @u(0) + fy |#te-1 (@-1(u) A Nt A (Hic+ N = qu(w)

i (g () A Nk)}du < Hy + Ny,

di(t) >0, 1(0) =0,

\ fooo 1{Q1(U—)<H1+N1}dl(t) =0;

Now, we prove that the solution for (79) satisfies

t
I(t) = / Lt sy M) — L) du, ¢ >0, (80)
0

where

h(u) = p (@ (w) AN A (Hy + Na = go(u))) ;

In order to prove this, we substitute (80) in the equation of ¢;(¢) in (79) and show
that the properties in (79) prevail:

¢(t) = ¢ (0) + /0 [Aw) = pa (qu(u) ANy A (Hy + Na = go(u)))] du (81)

_/0 Ligr(wy> v} (M) — A(uw) Al (u)] du
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—0(0) + / (L onture ey - M) — o1 (@0() A NY A (Hy + Ny — ()] du

+/0 [1{q1(u)2H1+N1} - (A(u) A ll(u))} du

Clearly, the properties in the last two lines in (79) prevail. It is left to verify that the

first k£ conditions prevail. This is done by the following proposition.

Proposition L.1. The functions ¢;(-), i = 1,...,k, as in (81) are bounded by H;+ N;,

respectively.

Proof: First we prove that the function ¢;(-), as in (81), is bounded by H; + Nj.
Assume that for some ¢, ¢;(t) > H; + Ny. Since ¢;(0) < H; + N; and ¢; is continuous
(being an integral), there must be a last  in [0,¢] such that ¢;(f) = H; + N; and
qi(u) > Hy + Ny, for u € [t,t]. Without loss of generality, assume that ¢ = 0; thus
¢1(0) = Hy + Ny and ¢1(u) > Hy + Ny for u € (0,t]. From (81), we get that

q1(t) = Hy + Ny + /0 [(A(u) Ali(u)) — pg (qr(uw) ANy A (Hy + Ny — go(u)))] du

< H;+ N+ /Ot [h(w) = pa (@1 (w) ANy A (Hy 4+ Ny — go(u)))] du = Hy + Ny,

which contradicts our assumption and proves that ¢;(-) cannot exceed Hy + V.

What is left to prove now is that the functions ¢;(-), i = 2,..., k, are bounded by
H; + N;. Without loss of generality, assume that ¢;(0) = H; + N; and ¢;(u) > H; + N;
for u € (0,t]. Hence, from (79), we get that

¢(t)=H,+ N, + /Ot |:,U/i—1 (¢i—1(w) A Ni—y A (H; + N; — gi(w)))

— i (@i(u) A Ny A (Higr + Niga — Qi+1(u))>]du < H; + N,

which contradicts the assumption that ¢;(t) > H; + N; and proves that ¢;(-), i =
1,...,k, are bounded by H; + N;,.

By the solution uniqueness (see Appendix C in Zychlinski et al. (2018b)), we have
established that ¢, the fluid limit for the stochastic queueing family Q" in (44), is
given by (53). Note that after proving that ¢,(-) < H; + N; in Proposition L.1, the

indicators in (80) can accommodate only the case when ¢;(-) = H; + Ny.
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M Proof of Theorem 4.1

Due to the uniqueness of ¢ (Proposition 4.1), it suffices to show that § and ¢, i =
1,...,k, in Equations (56)—(58) satisfy the model equations in (53). In particular, it
suffices to show that the steady-state equations in (55) are satisfied. Since the second
equation in (55) is trivially satisfied, one is left only with the first equation.

When 6 = X and q; = A\/p;, j =1,...,k, the first line in (55) yields the following:

A=A 1pcmmany + AAp (N A (Hz + Np = Mp2))l - Locpamnny- (82)

The first right-hand side term trivially satisfies the equation. The second right-hand
side term is larger than zero when A\ = py (Hy + Ny). When 6 = A, from (56) we know
that A < pyN7. Therefore, the second indicator in (82) equals one when H; = 0 and
A = 1 Ny. In this case, the second right-hand side term is A A py Ny A py(He + Ny —
1 N1/ p2) = 1 N1 = A. The second equality derives from (56): when § = A, we get that
A= Ny < (Ho+ No)/(1/p1+ 1/ pa), which is equivalent to Ny < Ho+ No— pug Ny /.
Therefore, (82) is satisfied. It is easy to show that the second line in (55) is also
satisfied by ¢; = A/p;, 7 =1,...,k.

Now, when § < A, from (55) we get that g3 = Hy; + Ny (the first indicator in the

first line is zero), and we get that
0=\ AN 1251 (Nl A (HQ + N2 — (jg)) = U1 (Nl VAN (HQ -+ NQ — 62)) . (83)

If Station 1 is the first bottleneck (i = 1, in (58)) then, from (54) and (56), we get
that § = 1 N1 < py(Ha + Ny — 1 N1/ po); therefore, (83) is satisfied with go = 6/ us.
Otherwise, if Station 1 is not the bottleneck then, § < pu;N;. Since ¢ = Hy + Ny,
from (54) we get that 6 = pi(Hy + Ny — @2) and therefore, go = Hy + Ny — §/p1. We
obtain that 6 = (11 N1) A 6, which satisfies Equation (83).

For completing the proof for ¢;, i = 3, ..., k, in (57), we analyze separately the sta-
tions before the first bottleneck (inclusive) and the stations after it. We begin with the
stations before the bottleneck. Suppose that Station i, 3 < i < k, is the first bottle-
neck. From (54) we get that 6 = ua[g2 A Na A (Hs + N3 —@s)]. Since § < paNa,
we get that § = po[ge A (Hs + N3 — @3)]. Assume that o is the minimum, then
G2 = 0/pa = Ho+ Ny — /11 and therefore, § = (Ho+ N2)/(1/p1+1/u2), which contra-
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dicts the assumption that Station i is the first bottleneck. Hence, § = us(Hs+ N3 —gs3)
and g3 = Hs + N3 — §/ps. We iteratively continue this argument up until the first
bottleneck.

For the stations after the bottleneck, suppose that Station i, 2 <7 < k — 1, is the first
bottleneck. From (54) and (55), we get that 6 = p;11 [Giv1 A Nig1 A (Hiro + Niyo — Gir2)]-
When Gy = 6/piy1 and Gipo = 0/fti2, we get that 6 = 0 A pip1 Nipr A priga (Higo +
Niio — 0/pir2). Since @ is the first bottleneck, then & < p; 1 N;iq, as well as § <
(Hizo+ Nivo)/(1/piv1+ 1/ piv0), which is equivalent to § < p;1(Hizo+ Nivo—0/ivo).

Hence, (55) is satisfied. We iteratively continue this argument up until Station k.
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