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Abstract

This thesis was motivated by the bed blocking problem, which occurs when elderly hospital

patients are ready to be discharged, but must remain in the hospital until a bed in a geriatric

institution becomes available. Bed blocking has become a challenge to healthcare operators

due to its economic implications and quality-of-life effect on patients. Indeed, hospital-

delayed patients, who cannot access their most appropriate treatment (e.g. rehabilitation),

prevent new admissions. Moreover, bed blocking is costly since a hospital bed is more

expensive to operate than a geriatric bed.

The first part of this thesis (Section 2) focuses on analyzing the bed blocking prob-

lem, in order to improve the joint operation of hospitals and geriatric institutions. To this

end, we develop a mathematical fluid model, which accounts for blocking, mortality and

readmission—all significant features of the discussed environment. The comparison between

our fluid model, a two-year data set from a hospital chain and simulation results shows that

our model is accurate and useful. Then, for bed allocation decisions, the fluid model and

especially its offered-load counterpart turn out insightful and easy to implement. Our anal-

ysis yields a closed-form expression for bed allocation decisions, which minimizes the sum of

underage and overage costs. The proposed solution demonstrates that significant reductions

in cost and waiting list length are achievable, as compared to current operations.

A more comprehensive view of the system analyzed in Section 2 can be achieved by

including Emergency Department (ED) boarded patients, waiting for admission to hospital

wards. This analysis should also include finite waiting rooms and customer loss when they

are full. Accordingly, we set out to model and analyze time-varying tandem networks with

blocking and finite waiting rooms throughout the network (Section 3). These models capture

the essential characteristics of our first model–namely, time-variation and blocking; in this

case, however, accommodating customer loss requires reflection analysis. We conclude this

section by providing operational insights on network performance of tandem flow lines, in a

broader perspective that goes beyond hospital networks.

Sections 2 and 3 focus on Blocking After Service (BAS). Section 4, however, focuses on

the Blocking Before Service (BBS) mechanism. BBS arises in telecommunication networks,

production lines and healthcare systems. We begin by modeling the stochastic queueing

network of time-varying tandem networks with finite buffers throughout the network; then,

we develop its corresponding fluid limit and provide design/operational insights regarding

BAS/BBS mechanisms; in particular, on network throughput and job loss rate.
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ED Emergency Department

LOS Length of Stay

BAS Blocking After Service
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1 Introduction

Providing high quality healthcare services for the ageing population is becoming a

major challenge in developed countries. This challenge is amplified by the fact that

the number of elderly people, aged 65 and over who today account for 10% of the

population, will double within two decades (World Health Organization, 2014; United

Nations Population Fund, 2014). Moreover, elderly patients are often frail and undergo

frequent hospitalizations. These facts are and will increasingly be major contributors

to the high occupancy levels in inpatient wards and EDs. For example, in the last

several years, some OECD countries reported averages of over 90% occupancy levels

in hospital inpatient wards (OECD iLibrary - Health at a Glance, 2013; NHS England

- Bed Availability and Occupancy Data, 2015); and these yearly averages hardly reveal

the hour-by-hour reality of the busiest periods (e.g. winters).

The bed blocking problem occurs when hospital patients are ready to be discharged,

but must remain in the hospital until a bed in a more appropriate geriatric facility (a

nursing home or a geriatric institution) becomes available. Research about the bed

blocking problem (e.g. Rubin and Davies, 1975; Namdaran et al., 1992; El-Darzi et al.,

1998; Koizumi et al., 2005; Cochran and Bharti, 2006; Travers et al., 2008; Osorio

and Bierlaire, 2009; Shi et al., 2015) is important since it can potentially improve the

quality of patient care and reduce the mounting costs associated with bed blocking

(Cochran and Bharti, 2006). For example, the estimated cost of bed blocking in

the UK alone exceeds 1.2 billion dollars per year (BBC News, 2016). In contrast to

previous models, which relied on simulations for modeling bed blocking, our research

offers an analytical model for minimizing the overage and underage costs of a system

consisting of hospitals and geriatric institutions; the model yields a tractable solution

by determining the optimal number of beds for each geriatric ward.

Patient flow (Figure 1) begins when elderly people turn to the ED due to a clinical

deterioration or a health crisis. After stabilizing their condition, doctors decide on

discharge or hospitalization. Patients can also be hospitalized without going through

the ED in cases of elective procedures. Upon treatment completion, hospital doctors

decide whether the patient is capable of returning to the community, needs to be

admitted to a nursing home, or requires further treatment in a geriatric institution.

We subdivide the latter option into the three most common geriatric wards: reha-

4



bilitation, mechanical ventilation and skilled nursing care. In Section 2 we focus on

these three wards together with the hospital inpatient wards (i.e. the four framed

stations in Figure 1) since, in our setting and according to the data we analyze, the

problem in geriatric institutions is much more severe than in regular nursing homes.

Having said that, our modeling framework accommodates any environment, in which

the phenomenon of blocking is severe and gives rise to operational challenges.

Figure 1: Network of patient flow through the community, inpatient wards, nursing homes
and geriatric institutions. The readmission sign substitutes for an arrow from Station 2,3 or
4 back to Station 1.

In Section 2 we develop a mathematical fluid model, which accounts for block-

ing, mortality and readmission—all significant features of the discussed environment.

Then, for bed allocation decisions, the fluid model and especially its offered-load coun-

terpart turn out insightful and easy to implement. We compare our fluid model with

a two-year data set from a hospital chain and simulation results. These comparisons

show that our model is accurate and useful. Moreover, our analysis yields a closed-form

expression for bed allocation decisions, which minimizes the sum of underage and over-

age costs. Solving for the optimal number of geriatric beds in our system demonstrates

that significant reductions in cost and waiting list length are achievable, as compared

to current operations. In addition, we propose two feasible extensions for capacity

5



allocation problems with time-varying demand of beds: a periodic reallocation of beds

and the incorporation of setup costs into bed allocation decisions.

Achieving a more comprehensive view of the system analyzed in Section 2 can

be done by including ED boarded patients waiting for admission to hospital wards.

This analysis should also include finite waiting room before the first station and cus-

tomer loss when this waiting room is full. Accordingly, in Section 3, we model and

analyze time-varying multi-server tandem networks with blocking and finite waiting

rooms throughout the network – before the first station and between the stations.

These models capture the essential characteristics of the model analyzed in Section

2 – namely, time-variation and blocking; in these models, however, accommodating

customer loss requires reflection analysis.

In order to analyze these networks, we begin with the stochastic queueing model of

time-varying multi-server flow-lines with finite buffers throughout. Then, we develop

fluid models for these networks and justify them by establishing many-server heavy-

traffic (MSHT) functional strong law of large numbers (FSLLNs). We conclude Section

3 by providing operational insights on network performance derived from our models;

specifically the effects of line length, bottleneck location, waiting room size, and the

interaction among these effects.

The models analyzed in Sections 2 and 3 focus on the Blocking After Service

(BAS) mechanism. Section 4, however, focuses on Blocking Before Service (BBS).

Under the latter, a service can begin at Station i, only when there is available capacity

(buffer space/server) at Station i + 1. As in Section 3, we begin by modeling the

stochastic queueing networks and then, by establishing a many-server heavy-traffic

(MSHT) functional strong law of large numbers (FSLLNs), we develop fluid models

for these networks. Finally, we analytically compare and provide design/operational

insights regarding the two blocking mechanisms; in particular, on network throughput

and job loss rate.

Each of the three main sections in this thesis is based on a research paper; namely:

Section 2 is based on Zychlinski et al. (2018c), Section 3 on Zychlinski et al. (2018b)

and Section 4 on Zychlinski et al. (2018a).
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2 Bed Blocking in Hospitals

2.1 Introduction

Congestion problems and their highly significant effect, both medically and financially,

motivated us to model and analyze the system, depicted schematically in Figure 2

(which is the framed sub-system in Figure 1). Patient flow begins when people of

all ages are admitted to hospital inpatient wards. Upon treatment completion, and

focusing on geriatric patients, hospital doctors decide whether the patient is capable

of returning to the community or requires further care in a geriatric institution. We

subdivide the latter option into the three most common long-term care geriatric wards:

rehabilitation, mechanical ventilation and skilled nursing care.

Figure 2: Network of patient flow through inpatient wards and geriatric institutions. The
readmission sign substitutes for an arrow from Station 2,3 or 4 back to Station 1.

Patients who are sent to a geriatric rehabilitation ward stay there one month on

average, before they are able to return to full or partial functioning. Mechanical venti-

lation wards treat patients who cannot breathe on their own, typically after three un-

successful weaning attempts in a hospital; the average stay in a mechanical ventilation

ward is 5–6 months. Unfortunately, only a minority of these patients are discharged;

most die or are readmitted to hospitals. Skilled nursing wards treat patients who, in

addition to functional dependency, suffer from active diseases that require close medi-

cal supervision, for example due to bedsores or chemotherapy; the average stay there is

1–1.5 months. Some patients are discharged to nursing homes but, again, most either
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die or are readmitted to hospitals.

In our setting, the central decision maker is a large healthcare organization that

operates several hospitals and several geriatric institutions. In some countries (e.g.

Singapore and Israel), the government functions as this organization. In England, the

NHS, an arm of the government, is the central decision maker; in Australia it is the

Medicare Healthcare System; and in the U.S., it can be the Veterans Administration

(VA) with its 500+ hospitals.

The methodology we propose is rather general and can accommodate other settings,

with a different number or type of wards. Since the system we analyze and the data

we use are for three types of geriatric wards, in the empirical part of the paper, we

focus on the four stations depicted in Figure 2: Inpatient wards (Station 1), Geriatric

Rehabilitation (Station 2), Mechanical Ventilation (Station 3) and Skilled Nursing

Care (Station 4). Applying our general methodology to analyzing these stations, for

which there are long waiting lists, will yield policies that significantly reduce total

operational costs.

To this end, we develop a mathematical fluid model that accounts for blocking, mor-

tality and readmission—all significant features of the discussed environment. Then,

we use our fluid model and its time-varying offered-load counterpart to formulate and

solve bed allocation problems for geriatric wards. Our goal is to find the optimal

number of geriatric beds, in order to minimize the total overage plus underage costs

of the system. Moreover, we propose two feasible extensions for capacity allocation

problems with time-varying demand of beds: a periodic reallocation of beds and the

incorporation of setup costs into bed allocation decisions.

In our analysis we use two data sets, over a period of two years. The first covers

the patient flow in a hospital chain comprising four hospitals and three geriatric insti-

tutions (three rehabilitation wards, two mechanical ventilation wards and three skilled

nursing wards). The second data set includes individual in-hospital waiting lists for

each geriatric ward. (Details about our data are provided in Appendix A.) These data

indicate that the average in-hospital waiting times are 28 days for mechanical ventila-

tion, 17 days for skilled nursing care and 3.5 days for rehabilitation wards. Although

the average waiting time for rehabilitation seems relatively short, this is definitely not

the case when considering the fact that these are elderly patients, waiting unnecessar-

ily for their rehabilitation care, while occupying a bed that could have been used for
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newly admitted acute patients. Moreover, the number of patients who are referred to

a rehabilitation ward is 5 and 9 times that of the corresponding numbers for skilled

nursing care and mechanical ventilation, respectively; this implies (Section 2.6) that

the overall demand they generate exceeds that of the other patients.

Figure 3 presents the waiting list lengths (daily resolution) within the hospital,

for each geriatric ward over one calendar year. The dotted lines represent length

according to our data, while the solid lines represent our fluid model (Equations (6)–

(7) in the sequel). According to this plot, all three geriatric wards work at full capacity

throughout the year (long waiting lists); furthermore, in the winter, the demand for

beds increases.
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Figure 3: Waiting list length in hospital for each geriatric ward - model (solid lines) vs. data
(dashed lines). The X axis is one calendar year in units of days. (We are plotting here the
2nd year of our data. The 1st year was used to fit the parameters of our model.)

The fit between our model and the data is excellent. In fact, in Appendix A we

demonstrate, via multiple scenarios with various treatment distributions, that our

continuous, deterministic fluid model approximates well and usefully its underlying

stochastic environment.

The long waiting lists, and the fact that hospitalization costs are much higher in

hospitals than in geriatric institutions, indicate that the system is operated ineffi-

ciently; this leads to excessive costs that can be reduced by adopting our solution.

Moreover, in Sections 2.7.1 and 2.8.3 we demonstrate how the constant and periodic
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allocations we suggest can reduce costs and shorten waiting lists. (The latter is illus-

trated in Figure 4 (right) and Figure 5 (bottom left); this is relative to the current

waiting list lengths presented in Figure 3.)

2.2 Literature Review

The review covers the main areas that are relevant to this research: high-level mod-

eling of healthcare systems, queuing networks with blocking, time-varying queueing

networks and bed planning in long-term care facilities.

2.2.1 High-level Modeling of Healthcare Systems

The three main approaches used for modeling healthcare systems with elderly patients

have been Markov models, system dynamics and discrete event simulation.

For tractability reasons, Markov models have been applied to networks with a

limited number of stations, typically 2–3, in order to characterize steady-state perfor-

mance such as length of stay (LOS) at each station. For example, Harrison and Millard

(1991) analyze the empirical distribution of patient LOS in geriatric wards by fitting a

sum of two exponentials to a data set: most patients are discharged or die shortly after

admission, while some stay hospitalized for months. Several papers use Markov models

to describe the flow of geriatric patients between hospitals and community-based care

(Taylor et al., 1997, 2000; Xie et al., 2005; Faddy and McClean, 2005; McClean and

Millard, 2006). In general, these models, which include short-stay and long-stay states

in each facility, distinguish between the movement of patients within and between fa-

cilities. Differently from these papers, our approach emphasizes station capacity and

time-varying parameters.

Another common approach for modeling healthcare systems is system dynamics.

It is used to analyze patient flow through healthcare services by focusing on the need

to coordinate capacity levels across all health services. Wolstenholme (1999) devel-

ops a patient flow model for the UK National Health Service and uses it to analyze

alternatives for shortening waiting times of community care patients. According to

the author, reducing total waiting times can be achieved by adding ‘intermediate care’

facilities, which are aimed at preventing elderly medical patients from hospitalization

and community care. Our approach contributes to this line of research by considering
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the dependency between capacity allocation and waiting time.

System dynamics is also used to analyze the bed blocking problem (Gray et al.,

2006; Travers et al., 2008; Rohleder et al., 2013). These papers demonstrate the

importance of coordinating capacity levels across different health services. Desai et al.

(2008) use system dynamics to forecast the future demand for social care services by

elderly people. While our proposed fluid model is also deterministic, we are able to

justify it as the fluid limit of an underlying stochastic model/system.

Discrete event simulation is another popular approach for analyzing complex sys-

tems and phenomena such as bed blocking. El-Darzi et al. (1998) describe patient flow

through geriatric wards, by examining the impact of bed blocking and occupancy on

patient flow. They show that the availability of acute beds is strongly connected to

referral rates for long-stay care facilities. Katsaliaki et al. (2005) build a simulation

model of elderly patient flow between the community, hospitals and geriatric institu-

tions. They approximate the delay in discharge from hospital and the relevant costs.

Shi et al. (2015) and Armony et al. (2015) discuss a two-time-scale (days and hours)

service time in hospital wards. Shi et al. (2015) investigate ED boarding times (waiting

for admission to hospital wards) at a Singaporean hospital. Via simulation studies,

they examine the effects of various discharge policies on admission waiting times. The

two-time-scale service time captures both treatment time and additional service time

caused by operational factors, such as discharge schedule. In our research, we develop

a time-varying analytical model, for setting bed capacities in geriatric institutions.

Our model evolves on a single time-scale – it is days since, for the decisions we are

interested in (and the data we have), days are natural and adequate.

2.2.2 Queueing Networks with Blocking

Several blocking mechanisms are acknowledged in the literature (Perros, 1994; Balsamo

et al., 2001). We focus on the blocking-after-service (BAS) mechanism, which happens

when a patient attempts to enter a fully-capacitated Station j upon completion of

treatment at Station i. Since it is not possible to queue in front of Station j, the

patient must wait in Station i and therefore, blocks a bed there until a departure

occurs at Station j.

Healthcare systems usually have complex network topologies, multiple-server queues

and time-varying dynamics. In contrast, closed-form solutions of queueing models with
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blocking exist only for steady-state, single-server networks with two or three tandem

queues or with two cyclic queues (Osorio and Bierlaire, 2009). The solutions for more

complex networks are based on approximations, which are typically derived via decom-

position methods (Hillier and Boling, 1967; Takahashi et al., 1980; Gershwin, 1987;

Koizumi et al., 2005; Osorio and Bierlaire, 2009) and expansion methods (Kerbache

and MacGregor Smith, 1987, 1988; Cheah and Smith, 1994). Koizumi et al. (2005) use

a decomposition method to analyze a healthcare system with mentally disabled pa-

tients as a multiple-server queueing network with blocking, while Osorio and Bierlaire

(2009) develop an analytic finite capacity queueing network that enables the analysis

of patient flow and bed blocking in a network of hospital operative and post-operative

units.

Bretthauer et al. (2011) offer a heuristic method, for estimating the waiting time

for each station in a tandem queueing network with blocking, by adjusting the per-

server service rate to account for blocking effects. Bekker and de Bruin (2010) analyze

the effect of a predictable patient arrival pattern, to a clinical ward, on its perfor-

mance and bed capacity requirements. In particular, the authors use the offered-load

approximation and the square-root staffing formula for calculating the required beds

for each day of the week. Although we also use the offered-load approximation for the

time-varying demand, our approach is different, since it goes beyond a single-station

analysis and takes into account blocking effects by minimizing overage and underage

costs. Moreover, the periodic reallocation we suggest takes into account a reallocation

cost that is associated with adding and removing a bed.

Capturing blocking in stochastic systems with a single-station in steady-state has

been done via reflection. Specifically, reflection is a mathematical mechanism that

has been found necessary to capture customer loss (see Whitt, 2002, Chapter 5.2 and

Garnett et al., 2002). Reflection modeling, however, requires the use of indicators,

which cause technical continuity problems when calculating approximating limits. We

circumvent this challenge by developing a fluid model with blocking yet without reflec-

tion, which enables us to prove convergence of our stochastic model without reflection.

Our simple and intuitive model, compared to models with reflection, enables us to

model, successfully and insightfully, time-varying networks.
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2.2.3 Queueing Networks with Time-Varying Parameters

Time-varying queueing networks have been analyzed by McCalla and Whitt (2002),

who focused on long service lifetimes, measured in years, in private-line telecommunica-

tion services. Liu and Whitt (2011b) analyze time-varying networks with many-server

fluid queues and customer abandonment. In addition, time-varying queueing models

have been analyzed for setting staffing requirements in service systems with unlimited

queue capacity, by using the offered-load analysis (Whitt, 2013). The methods for

coping with time-varying demand when setting staffing levels are reviewed in Green

et al. (2007a) and Whitt (2007). A recent work of Li et al. (2015) focuses on stabilizing

blocking probabilities in loss models with a time-varying Poisson arrival process, by

using a variant of the modified-offered-load (MOL) approximation.

Fluid frameworks are well adapted to large, time-varying overloaded systems (Man-

delbaum et al., 1998, 1999), which is the case here. Previous research shows that fluid

models have been successfully implemented in modeling healthcare systems (Ata et al.,

2013; Yom-Tov and Mandelbaum, 2014; Cohen et al., 2014). Moreover, fluid models

yield analytical insights, which typically cannot be obtained using their alternatives

(e.g. simulation, time-varying stochastic queueing networks).

2.2.4 Bed Planning for Long-term Care Facilities

Most research on bed planning in healthcare systems focuses on short-term facilities,

such as hospitals (Green, 2004; Akcali et al., 2006). Research about bed planning for

long-term care facilities is scarce. We now review the existing literature.

Future demand for long-term care has a strong impact on capacity setting decisions.

Hare et al. (2009) develop a deterministic model for predicting future long-term care

needs in home and community care services in Canada. Zhang et al. (2012) develop a

simulation-based approach to find the minimal number of nursing home beds in order

to achieve a target waiting time. The model we suggest considers time-varying de-

mand for beds throughout the year, as well as mortality and readmission rates which

are all significant in the context of geriatric patients. In addition, we analyze a network

capacity problem of several geriatric wards by taking into account blocking effects in

hospitals.

De Vries and Beekman (1998) present a deterministic dynamic model for expressing
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waiting lists and waiting times of psycho-geriatric patients for nursing homes, based on

data from the previous year. Ata et al. (2013) analyze the expected profit of hospice

care. They propose an alternative reimbursement policy for the United States Medi-

care and determine the recruiting rates of short and long stay patients to maximize

profitability of the hospice. Kao and Tung (1981) consider the monthly fluctuation in

demand for hospital services, yet the bed allocation they allow is constant throughout

the year. In particular, they try to minimize the hospital yearly average overflow prob-

ability. To accommodate for the seasonal demand, we suggest a periodic reallocation

of beds, which takes into account a reallocation cost that is associated with adding

and removing each bed.

Harrison and Zeevi (2005) develop a method, which was extended in Bassamboo

et al. (2006), for staffing large call centers with multiple customer classes and multiple

server pools; they deploy stochastic fluid models to minimize the sum of personnel costs

and abandonment penalties. The method they suggest reduces the staffing problem to

a multidimensional Newsvendor problem and hence, the critical fractile solution they

suggest is distribution dependent. In Remark 2.3, we further elaborate on the relation

of Harrison and Zeevi (2005) to the present work.

Afèche et al. (2017) develop a fluid model for maximizing the profit of service firms

by determining customer acquisition investment as well as capacity allocation. Our

research includes finite capacities and time-variation; we also go beyond a single-station

analysis to a network analysis. This allows us to consider the blocking customers,

occupying servers in the first station, and explicitly accommodate the blocking costs

when calculating the optimal number of beds. Moreover, we justify the fluid model by

proving convergence of the corresponding stochastic model.

2.3 Contributions

The main contributions of this section are:

1. Modeling: We develop and analyze an analytical model comprising both long-

term care geriatric wards and their feeding hospitals. This joint modeling is nec-

essary in order to capture blocking effects (while previous research was restricted

to a single-station utility maximization; e.g. Jennings et al. (1997)). This is done

by explicitly considering geriatric ward blocking costs and minimizing the overall
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underage and overage cost within the system.

2. Methodology: Our work contributes to the literature on queueing (fluid) networks

with blocking. In particular, our proposed fluid model captures blocking without

the need for reflection (see Section 2.2.2), and it applies to general networks (for

example, networks with multiple stations in tandem). We use our model to de-

rive analytical solutions and insights about cost minimization and bed allocation

policies. The modeling approach accommodates time-varying systems, jointly

with finite capacity considerations, patient mortality and readmissions—all of

these are prevalent features in healthcare.

3. Practice: This research gives rise to new capacity allocation strategies. Specif-

ically, we offer a closed-form solution for periodic reallocation of beds that ac-

counts for seasonal demand, and an analytical model that incorporates setup

costs. This is but two examples, made analyzable by our model, that demon-

strates how our framework would yield managerial recommendations for health-

care managers in allocating geriatric beds.

2.4 The Model

In this section, we describe our environment and its dynamics. We then formally

introduce model notations and equations.

2.4.1 Environment, Dynamics and Notations

Consider the four stations in Figure 2: hospital wards (Station 1) and long-term care

geriatric wards—rehabilitation (Station 2), mechanical ventilation (Station 3), and

skilled nursing care (Station 4). Station 1 includes all ward patients, while Stations

2–4 include only geriatric patients that need long-term care beyond hospitalization.

Our model is at the macro level; thus the capacity of each station is an aggregation

of the individual capacities of all stations of this type in the discussed geographical

area (e.g. assume that a district includes three rehabilitation wards; then the capacity

of the modeled rehabilitation station is the sum of all three individual capacities).

Such aggregated capacities are justified since, in practice, patients can be sent from

any individual hospital to any individual geriatric ward and vice versa, especially if

they are all within the same geographic area (a city or a district).
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We model the exogenous arrival rate to hospital wards as a continuous time-varying

function λ(t) (see Mandelbaum et al., 1999). Internal arrivals are patients returning

from geriatric wards back to the hospital. Hospital wards include N1 beds. If there are

available beds, arriving patients are admitted and hospitalized; otherwise, they wait

in the queue. We assume that hospital wards have an unlimited queue capacity, since

the ED serves as a queue buffer for them (our model does, nevertheless, accommodate

blocking of the first station). Patients leave the queue either when a bed becomes

available or if they, unfortunately, die. Medical treatment is performed at a known

service rate µ1. Upon treatment completion, patients are discharged back to the

community, admitted to nursing homes, or referred to a geriatric ward (2, 3 or 4)

with routing probabilities p1i(t), i = 2, 3, 4, respectively. The number of beds in each

geriatric ward i, i = 2, 3, 4, is Ni. If there are no available beds in the requested

geriatric ward, its referred patients must wait in the hospital while blocking their

current bed. This blocking mechanism is known as blocking-after-service (Balsamo

et al., 2001). The treatment rates in Stations i, i = 2, 3, 4, are µi. Frequently, the

clinical condition of patients deteriorates while hospitalized in a geriatric ward, and

they are hence readmitted to the hospital according to rate βi, i = 2, 3, 4.

As mentioned, patients do die during their stay in a station, which we assume occurs

at individual mortality rates θi, i = 1, 2, 3, 4, for Stations 1–4. These mortality rates are

significant and cannot be ignored. We follow the modeling of mortality as in Cohen

et al. (2014) and, in queueing theory parlance, refer to it as “abandonments” that

can occur while waiting or while being treated. Although we use the same mortality

rates while waiting and while being treated, if data prevail, our model can easily

accommodate two different mortality rates per station.

2.4.2 Model Equations

We now introduce the functions qi(t), i = 1, 2, 3, 4, which denote the number of pa-

tients at Station i at time t. The standard fluid modeling approach defines differential

equations describing the rate of change for each qi. This direct approach has led

to analytically intractable models that could not be justified as fluid limits of their

corresponding stochastic counterparts. Moreover, these direct descriptions based on

qi included indicator functions which are harder to analyze due to their discontinu-

ity. Hence, we propose a new modeling approach, in which we introduce alternative
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functions xi(t), i = 1, ..4, that suffice to capture the state of the system. Then, we

develop differential equations for xi, which are tractable, and ultimately deduce qi

from xi. This novel modeling approach also simplifies the convergence proof of the

corresponding stochastic model, which is provided in Appendix B.

The value x1(t) denotes the number of arrivals to Station 1 that have not completed

their treatment at Station 1 at time t. The values xi(t), i = 2, 3, 4, denote the number

of patients that have completed treatment at Station 1, require treatment at Station i,

but have not yet completed their treatment at Station i at time t (these patients may

still be blocked in Station 1). The dynamics of the system is captured through a set

of differential equations (DEs); each characterizes the rate of change in the number of

patients at each state at time t. Let λtotal(t) denote the arrival rate to Station 1 at

time t and δtotal(t) denote its departure rate. The DE for x1 is, therefore

ẋ1(t) ,
dx1(t)

dt
= λtotal(t)− δtotal(t). (1)

Patients arrive to Station 1 from two sources: externally, according to rate λ(t), and

internally from Stations 2, 3 and 4. Since βi is the readmission rate from Station i

back to Station 1, the internal arrival rate to Station 1 is
4∑
i=2

βi
(
xi(t) ∧ Ni

)
, where

x ∧ y = min(x, y); here
(
xi(t) ∧ Ni

)
denotes the number of patients in treatment at

Station i. The total arrival rate to Station 1 at time t is, therefore,

λtotal(t) = λ(t) +
4∑
i=2

βi
(
xi(t) ∧Ni

)
. (2)

The total departure rate, δtotal(t), consists of two types. The first is due to patients who

die at an individual mortality rate θ1. Since patients might die while being hospitalized

or waiting in queue, the rate at which patients die is θ1x1(t). If data regarding different

mortality rates while waiting (θ1q) and while being treatment (θ1t) prevail, then the

total mortality from Station 1 would be

θ1q

[
x1(t)−

(
N1 −

4∑
i=2

(
xi(t)−Ni

)+
)]+

+ θ1t

[
x1(t)∧

(
N1 −

4∑
i=2

(
xi(t)−Ni

)+
)]
, (3)

where the number of blocked patients waiting in Station 1 for a transfer to Station
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i is
(
xi(t) − Ni

)+
. Therefore, the number of unblocked beds at Station 1 is

(
N1 −∑4

i=2

(
xi(t)−Ni

)+
)

, which can vary from 0 to N1.

The second departure type, δr(t), is of patients who complete their treatment at Station

1. The rate at which patients complete their treatment in Station 1 is

δr(t) = µ1

[
x1(t) ∧

(
N1 −

4∑
i=2

(
xi(t)−Ni

)+
)]
, (4)

where the expression in the rectangular brackets indicates the number of occupied

unblocked beds at Station 1. Thus, the total departure rate at time t is

δtotal(t) = θ1x1(t) + δr(t). (5)

Using similar principles, we construct the DEs for the rate of change in xi, i = 2, 3, 4.

The referral rate to Station i is p1i(t) multiplied by δr(t), the rate at which patients

complete their treatment at Station 1. The departure rate of patients who have com-

pleted service at Station 1, but not at Station i at time t consists of the mortality rate,

θixi(t), readmission rate back to the hospital, βi
(
xi(t)∧Ni

)
and treatment completion

rate µi
(
xi(t) ∧Ni

)
.

The set of DEs for xi, i = 1, 2, 3, 4, is, therefore,

ẋ1(t) = λtotal(t)− δtotal(t),

ẋi(t) = p1i(t) · δr(t)− βi
(
xi(t) ∧Ni

)
− θixi(t)− µi

(
xi(t) ∧Ni

)
, i = 2, 3, 4.

(6)

The functions qi(t), i = 1, 2, 3, 4, which denote the number of patients at Station i

at time t, are

q1(t) =x1(t) +
4∑
i=2

(
xi(t)−Ni

)+
;

qi(t) =xi(t) ∧Ni, i = 2, 3, 4.

(7)

Note that bi(t), the number of blocked patients at Station 1 at time t, waiting for an

available bed at Station i, i = 2, 3, 4, is given by bi(t) =
(
xi(t)−Ni

)+
.

The validation of the model, both against data and a discrete event stochastic sim-

ulation with different treatment distributions, is detailed in Appendix A. It shows that

there is an excellent fit between the fluid model, the actual data, and the corresponding

simulation results.
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2.5 The Bed-Allocation Model

The decision maker in our analysis is an organization that operates both hospitals and

geriatric institutions. The objective is to find the optimal number of beds for each

geriatric ward, so as to minimize overall long-term underage and overage cost of care

(beds) in the system.

Minimizing overage and underage costs is a typical objective in resource allocation

problems (Porteus, 2002). In our context, overage costs are incurred when geriatric

beds remain empty while medical equipment, supply and labor costs are still being

paid. We denote by Co the per bed per day overage cost: this is the amount that

could have been saved if the level of geriatric beds had been reduced by one unit in

the event of an overage. This cost includes the per day labor, medical equipment and

supply costs required for operating a geriatric bed. Underage cost, Cu, is incurred

when patients are delayed in the hospital due to lack of availability in the geriatric

wards. Thus, it is the amount that could have been saved if the level of geriatric

beds had been increased by one unit in the event of an underage; Cu is hence the

per bed per day cost of hospitalization in hospitals minus the per bed per day cost in

geriatric institutions. To elaborate, hospitalization costs also include risk costs, which

are incurred when a patient is required to remain hospitalized. These costs include

expected costs of patient medical deterioration by not providing the proper medical

treatment, and by exposing the patient to diseases and contaminations prevalent in

hospitals. The sum of Co and Cu, which will later on appear in the optimal solution

in (16), amounts to the per bed per day hospitalization cost in hospitals. Excluding

or underestimating the cost of risk will yield a lower bound for the required number

of beds. Since our solution serves as a guide for thinking, meaningful insights can be

derived already from such a lower bound.

We denote by Coi and Cui the overage and underage costs, respectively, for Stations

i, i = 2, 3, 4. The resulting overall cost for Stations 2, 3 and 4 over a planning horizon

T , is

C(0)(N2, N3, N4) =
4∑
i=2

C(0)(Ni), (8)
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where C(0)(Ni) is the total overage and underage costs for each Station i, given by:

C(0)(Ni) =

∫ T

0

[
Cui · bi(t) + Coi ·

(
Ni − qi(t)

)+
]
dt, i = 2, 3, 4. (9)

The first integrand is the underage cost, calculated by adding up the number of blocked

patients, and the second integrand is the overage cost calculated via the total number of

vacant beds. Minimizing (8) will yield a constant capacity level, for each geriatric ward,

over the whole planning horizon. In Section 2.8.2 we introduce a periodic reallocation

of beds, which yields several capacity levels for each ward during the planning horizon.

Remark 2.1. Calculating the cost from (8) and (9) requires forecasting the arrival rate

λ(t), for the planning horizon [0, T ]. This is done by using historical data: it shows that

there is an annual arrival rate pattern that repeats itself, while the volume increases at

a rather constant rate each year. Hence, our healthcare partners can accurately predict

the arrival rate over the planning horizon.

Minimizing (8), subject to (2)–(7), is analytically intractable, since qi(t) and bi(t)

are solutions of a complex system of differential equations. To estimate the total

cost, we use an offered-load approximation to the time-varying demand for beds (see

Jennings et al., 1997; Whitt, 2007). Thus, in Section 2.6.1 we present a closed-form

solution for minimizing the total underage and overage cost based on the offered load.

Then, in Section 2.7.2 we compare our closed-form solution with a numerical solution

of the original problem.

2.6 Offered Loads in Our System

Given a resource, its offered load r = {r(t), t ≥ 0} represents the average amount

of work being processed by that resource at time t, under the assumption that wait-

ing and processing capacity are ample (no one queues up prior to service). In our

context, offered-load analysis is important for understanding demand. Indeed, we ex-

press demand in terms of patient-bed-days per day for the geriatric wards, in order to

determine appropriate bed capacity levels.

The calculation of the offered load is carried out by solving (6) (and (2), (4), (5))

with an unlimited capacity in Stations 2, 3 and 4 (Ni ≡ ∞, i = 2, 3, 4). (Note that

bi(t) ≡ 0, for i = 2, 3, 4, which means that no patients are blocked.) These conditions
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yield the following set of DEs for the offered load ri, i = 1, . . . , 4 (just substitute ri for

xi in (6)):

ṙ1(t) = λ(t) +
4∑
i=2

βiri(t)− θ1r1(t)− µ1

(
r1(t) ∧N1

)
,

ṙi(t) = p1i(t) · µ1

(
r1(t) ∧N1

)
−
(
βi + θi + µi

)
ri(t), i = 2, 3, 4.

(10)

2.6.1 Estimating the Optimal Number of Beds based on the Offered load

The estimated overall cost for Stations 2, 3 and 4, based on the offered load over the

planning horizon T , is

C(N2, N3, N4) =
4∑
i=2

C(Ni); (11)

here C(Ni) is the underage plus overage cost for Station i, given by

C(Ni) =

∫ T

0

[
Cui ·

(
ri(t)−Ni

)+
+ Coi ·

(
Ni − ri(t)

)+
]
dt, i = 2, 3, 4. (12)

The first integrand corresponds to the underage cost, which is calculated by multiplying

Cui with the (proxy for) bed shortage (ri(t)−Ni)
+ and integrating it over the planning

horizon. The second integrand, the overage cost, is obtained by multiplying Coi with

the proxy for bed surplus (Ni− ri(t))+ and integrating it over the planning horizon as

well.

Remark 2.2. Why are these two proxies justified?

First, under bed shortage (at cost Cui per bed), we substitute ri for xi. Second, under

bed surplus (at cost Coi per bed), we substitute ri for qi. Third, since practically Cui �

Coi (see Section 2.7.1), the optimal solution must amplify reducing the number of

blocked patients, hence the more significant cost is incurred by bed surplus. Finally,

for calculating the latter cost and according to the offered-load definition, qi ≈ ri when

the system is underloaded. And indeed, comparing the solutions according to the fluid

model, to the offered-load approximation and to simulation results (Section 2.7.2),

shows an excellent fit.

The offered load for each station is a known function of t, that depends solely on

input parameters but not on N2, N3, N4. Thus, minimizing (11) is, in fact, a separable

problem, which can be solved for each station separately. (When doing so below, we
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shall omit the i in (12) for simplicity of notations.)

To minimize C(N), we adopt the approach of Jennings et al. (1997) and treat

N as a continuous variable. We let rd = {rd(t)| 0 ≤ t ≤ T} denote the decreasing

rearrangement of r on the interval [0, T ]: rd on [0, T ] is characterized by being the

unique decreasing function such that, for all x ≥ 0, we have∫ T

0

1{r(t)≥x}dt =

∫ T

0

1{rd(t)≥x}dt; (13)

here 1{r(t)≥x} denotes the indicator function for the event {r(t) ≥ x}. Existence and

uniqueness of rd were established in Hardy et al. (1952). The interpretation of Equation

(13) is that both r(t) and rd(t) spend the same amount of time above and under any

level x. We can now rewrite C(N) as follows:

C(N) =

∫ T

0

[Cu · (r(t)−N)+ + Co · (N − r(t))+]dt (14)

=

∫ ∞
N

Cu

∫ T

0

1{r(t)≥x}dt dx+

∫ N

0

Co

∫ T

0

1{r(t)≤x}dt dx

=

∫ ∞
0

Cu

∫ T

0

1{r(t)≥x}dt dx−
∫ N

0

Cu

∫ T

0

1{r(t)≥x}dt dx+

∫ N

0

Co[T −
∫ T

0

1{r(t)≥x}dt] dx

=

∫ ∞
0

Cu

∫ T

0

1{r(t)≥x}dt dx−
∫ N

0

(Cu + Co)

∫ T

0

1{r(t)≥x}dt dx+ CoTN

=

∫ ∞
0

Cu

∫ T

0

1{rd(t)≥x}dt dx−
∫ N

0

(Cu + Co)

∫ T

0

1{rd(t)≥x}dt dx+ CoTN,

where the first equality is achieved by substituting:

(r(t)−N)+ =

∫ ∞
N

1{r(t)≥x}dx, (N − r(t))+ =

∫ N

0

1{r(t)≤x}dx, (15)

and interchanging the order of integration.

We are now ready for Theorem 2.1, which identifies the optimal number of beds, N∗.

The proof of the Theorem is provided in Appendix C. Note that our proof does not

require that r(t) and λ(t) be continuous or differentiable. (These assumptions were

needed in Jennings et al., 1997.)
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Theorem 2.1. The number of beds that minimizes C(N) is given by

N∗ = rd

 CoT

Co + Cu

 . (16)

In Appendix D we explain how N∗ arose as a candidate for minimizing C(N).

Remark 2.3. Alternatively, one can obtain the solution by building the cumulative

relative frequency function for r and noting the similarity between our problem and the

Newsvendor problem (Arrow et al., 1951; Nahmias and Cheng, 2009), for inventory

management. In this case, we interpret the frequency as probability. This approach

is similar to the reduction to the Newsvendor problem in Harrison and Zeevi (2005).

However, our solution in (16) is more natural (more directly related to the time-varying

nature of our models and their underlying systems); but, more importantly, this time-

varying view naturally enables the solution of two extensions: setup cost per new bed

(Section 2.8.1) and periodic reallocation of beds (Section 2.8.2) (such extensions are

beyond the scope of the Newsvendor problem extension).

2.7 Numerical Results

In this section, we apply our model to data in order to validate our solution (Sections

2.7.1 –2.7.2), calculate the imputed costs (Section 2.7.3) and provide structural insights

and managerial recommendations (Section 2.7.4).

2.7.1 An Illustrative Example

Our healthcare partners were willing to share with us some of their financial reports and

cost data. Rigorous calculations, based on these data (some of which are confidential),

yielded the following critical fractiles required for (16). The hospitalization cost in

mechanical ventilation wards is the highest among the geriatric wards and, as it turns

out, Cu3 = 1.882Co3 . In rehabilitation wards the ratio is Cu2 = 2.667Co2 , as the

hospitalization there is less expensive. Finally, the ratio for skilled nursing care is

Cu4 = 4.267Co4 , as the hospitalization cost there is the lowest among the geriatric

wards.

We used the fluid model developed in Section 2.4, together with our two-year his-

torical data, to forecast the offered load for a subsequent three-year planning horizon,
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where the demand for beds (e.g. the arrival rate) increases every year. Then, by

using Matlab we numerically constructed the functions rd for each ward (by sorting

the function values of r). The optimal number of beds is the value of these functions

at the critical point as in (16). Since the value of N∗ is not necessarily an integer,

it must be rounded. Rounding up vs. down has minor significance, since the solution

here serves as a guide for a large organization that provides healthcare services for

an entire district. Therefore, our solution provides insights regarding the difference

between the suggested allocation and the current capacity.

The left plot in Figure 4 presents the optimal number of beds (the dashed lines)

compared to the offered load (solid lines). The optimal number of beds for each ward

was calculated by rounding up the result from Equation (16). The optimal solution

implies increasing the current number of beds by 25%, 35% and 33% in rehabilitation,

mechanical ventilation and skilled nursing care, respectively. In total, an increase

to 577 beds from present 439 beds. This will lead to an overage and underage cost

reduction of 51%, 53% and 69%; here, we compared to the cost under the current

number of beds for the same arrival forecast. We believe that there are two major

reasons for this dramatic cost reduction. The first is the lack of a model in practice,

such as the one introduced here: such a model would take blocking and its related

costs into account, which would guide planners. The second reason is the difficulties

in increasing the present budget towards acquiring new beds. We provide more details

and calculate imputed costs in Section 2.7.3.

The right plot in Figure 4 presents the waiting list length to each geriatric ward un-

der the optimal number of beds. Note that the waiting lists were shortened (compared

to the current situation presented in Figure 3), by 67%, 74% and 88% in rehabili-

tation, mechanical ventilation and skilled nursing care, respectively. This shortening

occurred even though shortening the waiting lists was not directly included in our

objective function. Indeed, we aimed at minimizing overage and underage costs; but

since blocking costs are significant, reducing the total cost is achieved by reducing

blocking which, in turn, leads to significant shorter waiting lists.

2.7.2 Solution Validation and Cost Comparison

In addition to validating our fluid model against data and stochastic simulation results

(see Appendix A), in this section we validate our bed planning solution.
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Figure 4: Optimal solution. On the left, the solid lines represent the offered load for each
geriatric ward and the dashed lines represent the optimal number of beds. On the right,
depicted are the waiting list lengths in hospital, according to the optimal solution; this is
relative to the current waiting list lengths presented in Figure 3.

Thus far, two cost functions were presented for estimating the optimal number of geri-

atric beds. The first, C(0)(N2, N3, N4) in (8), is based on the time-varying number of

patients, as derived from the solution of the fluid equations in (7). Since minimizing

C(0)(N2, N3, N4) is analytically intractable, we introduced the second cost function,

C(N2, N3, N4) in (11), which estimates the total cost based on an offered-load approx-

imation to the time-varying demand for beds.

In order to validate the approximated cost function, we compared the optimal

solutions for the two problems with the optimal solution derived from our stochastic

simulation model. In the latter, the arrivals, duration times and routing percentages

are random variables (see Appendix A). All parameters, including the size of the

system, are realistic for the system we analyze.

The solution for C(N2, N3, N4) was calculated by our closed-form expression in (16).

The solution for C(0)(N2, N3, N4) was achieved by numerically solving the optimization

problem in (8)–(9); this was done by solving the fluid model in (6)–(7) for each capacity

combination, calculating the total cost according to (8) and choosing the capacity

combination with the minimal cost. Finally, the solution for the stochastic simulation

model was achieved by calculating, for each capacity combination, the total underage

and overage cost. This was done by using (8) and (9), where instead of qi and bi,

i = 2, 3, 4, we used the corresponding numbers from the simulation results. Then,

we chose the combination which minimized the cost. In other words, the solutions

according to C(0)(N2, N3, N4) and simulation, was carried out by a three-dimensional
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search (over N2, N3 and N4). Table 4 summarizes this comparison by presenting the

optimal number of beds and the optimal cost according to each method. In addition,

we calculated the differences in percentages between each two methods for each ward

separately and then all of them together. The last column in Table 4 presents the

maximal difference between the solutions. The maximal difference varied from 1–

1.6%, when comparing bed allocations and 1.1–3.4% when comparing total cost. This

excellent fit is typical; indeed, we obtained similar differences when comparing the

three solutions, under several other scenarios of overage and underage costs.

Ward
C(0)(N2, N3, N4) C(N2, N3, N4) Simulation Maximal difference
N∗ (Total cost) N∗ (Total cost) N∗ (Total cost) N∗ (Total cost)

Rehabilitation 295 (2,601,667) 292 (2,683,042) 294 (2,633,167) 1.0% (3.0%)

Mechanical Ventilation 128 (1,493,917) 126 (1,547,000) 128 (1,499,167) 1.6% (3.4%)

Skilled Nursing 161 (1,213,333) 159 (1,226,750) 160 (1,215,667) 1.3% (1.1%)

Total Number of beds 584 (5,308,917) 577 (5,456,792) 582 (5,348,000) 1.2% (2.7%)

Table 4: Comparing optimal solutions (number of beds and overage and underage cost per
year) – C(0)(N2, N3, N4) vs. C(N2, N3, N4) vs. simulation.

2.7.3 The Imputed Overage and Underage Costs

In addition to the estimation of the Co/Cu ratio given to us by our healthcare organi-

zation, it is of interest to examine Co and Cu as imputed costs. These imputed costs

are based on observed decisions that, in our case, are the number of beds that decision

makers allocate to each geriatric ward. To this end, we use the current number of beds

in each geriatric ward in order to extract the model’s parameters Co and Cu or, more

accurately, the ratio Co/Cu. (A similar approach was taken by Olivares et al., 2008.)

Suppose that the current allocation N is optimal, we define

r−1
d (N) ≡ sup{t|rd(t) ≥ N}, (17)

as the time during which underage costs were incurred. Let I denote the fraction of

time during which underage costs were incurred. Consequently, from Theorem 2.1 we

have

I =
r−1
d (N)

T
=

Co

Co + Cu
, (18)

We now present our data as a sequence of n days: (ti, r(ti)) for i = 1, ..., n, where
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ti denotes a single time point for day i. Then, we define Ī to be an estimator for the

fraction of time during which underage costs were incurred:

Ī =
1

n

n∑
i=1

1{r(ti)≥N}. (19)

We replace r−1
d (N)/T with Ī in (18) to get

Ī =
Co

Co + Cu
. (20)

According to our data, Ī2 = 0.74 in rehabilitation, Ī3 = 0.91 in skilled nursing care

and Ī4 = 1 in mechanical ventilation. Therefore, the imputed costs are Cu2 = 0.35Co

(vs. Cu2 = 2.667Co according to the financial reports) in rehabilitation, Cu = 0.099Co

(vs. Cu3 = 1.882Co) in skilled nursing care and Cu = 0 (vs. Cu4 = 4.267) in mechanical

ventilation. The differences in the imputed costs among the three wards are due to

different hospitalization costs, as explained in Section 2.7.1.

There is a big difference between the ratio Cu/Co according to the financial reports,

and according to the imputed costs. This may imply that blocking costs are neglected

or underestimated when determining the geriatric bed capacity. Another possible

explanation is that although there is a central decision maker that owns both the

hospitals and geriatric institutions, decisions are locally optimized.

2.7.4 Managerial Insights for the Optimal Solution

The function rd in the optimal solution (16) is decreasing in [0, T ]. As explained

already, the ratio Co/(Co+Cu) in the optimal solution is the hospitalization cost ratio

between a geriatric bed and a hospital bed. As the gap between these two costs widens,

more geriatric beds will be needed. Indeed, in Figure 4, the optimal number of beds

in skilled nursing care is relatively high compared to the offered load. The reason for

this is the relatively low hospitalization cost in this ward. In mechanical ventilation,

however, the optimal number of beds is relatively low compared to the offered load,

since the hospitalization cost there is higher.

Figure 4 demonstrates long periods of overage, especially in skilled nursing care

and rehabilitation. To accommodate for the seasonal demand, we seek a more flexible
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solution, such as the possibility to reallocate beds between wards. To this end, we

first sum the total offered load for the three wards then, we minimize (12) in order to

find the total required number of beds. The optimal solution will then require fewer

beds overall (566 beds instead of 577), but will lead to only an additional decrease of

5% in the total cost. The reason for this relatively modest advantage is the similar

offered-load patterns among the wards, which implies that more beds are needed in all

three wards at the same time. Thus, reallocating beds between wards is less effective

in reducing the cost.

Consequently, a more flexible and responsive policy to fluctuations in demand,

can be achieved by adding and removing beds throughout the year. Our healthcare

partners argue that setting two capacity levels each year, which implies reallocating

beds twice a year, is feasible. For example, it is possible to open a specific area/ward

when demand is high (usually in the winter), and close this area when demand is

low (usually in the summer). The described policy is feasible since most ‘bed cost’

is related to labor cost and medical supplies; the latter can be purchased seasonally

while the former can be changed due to the existing flexibility of staffing levels (e.g.

reallocating workers within facilities in the same organization or changing the work

load of part-time workers throughout the year). We formally introduce and analyze

the periodic reallocation problem in Section 2.8.2

2.8 Extensions

In this section we present two extensions to our model. The first extension, at the

strategic level, adds setup costs for allocating new beds. The second extension, at the

operational level, allows periodic reallocation of beds.

2.8.1 Including Setup Cost per New Bed

In this section, we analyze a case where there is a fixed setup cost, K, associated with

the introduction of each new bed. The setup cost may be associated with recruitment

and training of new staff or the purchase of new equipment. We assume that the setup

cost may vary with bed types. Let B denote the current bed capacity, then the overall

cost for a geriatric ward is

CK(N) = C(N) +K(N −B)+, (21)
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where C(N) is the overall cost, analyzed in Section 2.5 and (N − B)+ is the number

of new beds. The planning horizon, T , reflects an organizational policy regarding

investments and, hence, should be long enough for an investment in new beds to be

worthwhile.

Theorem 2.2. The optimal number of beds that minimizes CK(N) is given by

N∗k =



rd

 CoT

Co + Cu

 , if rd

 CoT

Co + Cu

 ≤ B

rd

CoT +K

Co + Cu

 , if rd

CoT +K

Co + Cu

 ≥ B

B, otherwise.

(22)

We prove Theorem 2.2 in Appendix E.

Note that rd(·) is defined on the interval [0, T ]; hence, when CuT < K, then rd(·) is

undefined, since

CoT +K

Co + Cu
>
CoT + CuT

Co + Cu
= T.

In this case, only the first condition of N∗K is relevant. Therefore, the solution will

not include the introduction of new beds. An intuitive explanation is that for a high

bed setup cost it may be preferable to pay the underage cost for the entire planning

horizon.

Note that the optimal solution depends on the available bed capacity. For a very

large B, there is no point introducing new beds and, hence, the optimal solution equals

the solution with no setup cost. On the other hand, if the current capacity, B, is very

small, then adding new beds is essential for decreasing the total cost. In all other

cases, it may be preferable to keep the capacity as is.

2.8.2 Periodic Reallocation of Beds

Managers of geriatric institutions acknowledge that it is feasible to change the number

of beds during the year in order to compensate for seasonal variations in demand. Note

that changing the number of beds also implies changing staff levels (which are typically

proportional to the number of beds) and other related costs. The planning horizon
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remains the same, but we divide each year into several periods. We then determine

the preferable periods (location and length) and the number of beds required for each

period. For example, an optimal reallocation policy would determine a certain capacity

during the first three and the last two months of every year in the planning horizon,

and possibly a different capacity during the seven other months of every year. To this

end, we introduce a reallocation cost, Cr, associated with adding and removing a bed.

Due to feasibility constraints from our partner hospital chain, we allow only two

capacity levels throughout the planning horizon. Nevertheless, the methodology we

present can be implemented in other settings where more capacity levels are possi-

ble. Moreover, due to the nature/shape of the demand, having two capacity levels

corresponds to changing capacity levels twice each year.

Let T = [0, T ] denote the planning horizon interval and let I denote the time

interval (location and length) in which there are NI geriatric beds (in T \ I, there are

NT \I geriatric beds). Our objective is to find I, NI and NT \I that minimize the total

underage and overage costs.

To this end, we split r(t) into two functions: rI(t) for the capacity level in I and

rT \I(t) for the capacity level in T \ I. The functions rI(t) and rT \I(t) are defined

on the intervals [0, |I|] and [0, |T \ I|], respectively, by concatenating the relevant

intervals from r(t) and shifting the functions to t = 0. We define the functions rdI(t)

and rdT \I(t) to be the decreasing rearrangements of rI(t) and rT \I(t), respectively,

exactly as we defined rd(t) in Section 2.5. The total underage and overage costs are,

therefore,

C(I, NI , NT \I) = C(I, NI) + C(T \ I, NT \I) + Cr
∣∣NT \I −NI∣∣

=

∫
I

[
Cu
(
r(t)−NI

)+
+ Co

(
NI − r(t)

)+
]

dt

+

∫
T \I

[
Cu
(
r(t)−NT \I

)+
+ Co

(
NT \I − r(t)

)+
]

dt+ Cr
∣∣NT \I −NI∣∣ ,

(23)

where C(I, NI) and C(T \I, NT \I) denote the overage and underage costs for intervals

I and T \ I, respectively.
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Theorem 2.3. The number of beds that minimizes (23), for a fixed I, is
N∗I = NI−, N

∗
T \I = N

T \I
+ , if NI− ≤ N

T \I
+ ,

N∗I = NI+, N
∗
T \I = N

T \I
− , if NI+ ≥ N

T \I
− ,

N∗I = N∗T \I = N∗, as in (16), otherwise.

(24)

Here, NA± = rdA

(
Co|A|±Cr
Co+Cu

)
, for every interval A.

We prove Theorem 2.3 in Appendix F.

Note that the option in the third line in (24) suggests determining only one capacity

level (e.g. it is preferable not to reallocate beds throughout the planning horizon). In

particular, since rdI(·) and rdT \I(·) are defined on the intervals [0, |I|] and [0, |T \ I|],

respectively, when Cu|I| > Cr or when Cu|T \ I| > Cr, it is preferable to pay the

underage cost for the entire period than to pay the reallocation cost, Cr.

2.8.3 A Numerical Example

We now solve the periodic reallocation problem for a three-year planning horizon.

Figure 5 depicts the solutions for three cases. The solid lines represent the offered

load for each ward, while the dashed lines represent the optimal number of beds.

The first case (top left plot) is when no reallocation costs are introduced (Cr = 0).

This solution yields a 35%, 22% and 31% underage and overage cost reduction, in

rehabilitation, mechanical ventilation and skilled nursing care, respectively, compared

to the constant allocation. The second case (top right plot) is when reallocation

costs are introduced; in this case, the gaps between the two capacity levels narrows.

In particular, the optimal allocation in mechanical ventilation is constant, since it

is not worthy to invest the reallocation cost (e.g. Cr > Cu|I| or Cr > Cu|T \ I|).

The third case (bottom right plot), presents the optimal periodic reallocation when

four reallocation points are allowed and no reallocation costs are introduced. The

left bottom plot in Figure 5 presents the waiting list lengths for each ward under

the optimal reallocation policy when no reallocation costs are introduced; this is in

comparison with the current situation presented in Figure 3 and the constant allocation

presented in Figure 4 (right).
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Figure 5: Optimal reallocation of beds when no reallocation costs are introduced (left top
plot), when reallocation costs are introduced (right top plot) and when four reallocation
points are allowed (bottom right plot). Waiting list length under the optimal reallocation
policy when no reallocation costs are introduced (left bottom plot).

2.8.4 Managerial Recommendations on Extensions

The major cost reduction, compared to the current situation for the three wards,

is achieved by adopting the proposed policy of a constant number of beds. Periodic

allocations allow for extra cost reductions, when compared to the policy with a constant

number of beds. Thus, a reasonable policy would be to adopt the constant allocation

at a first step and implement the periodic reallocation as a second step. In some cases,

when the reallocation cost is higher than the underage period cost, it is preferable to

remain with the constant allocation (see the case for mechanical ventilation ward in

the right top plot of Figure 5). Another option which can help reduce the load is to

divert more geriatric patients in peak periods to home healthcare services or virtual

hospitals rather than to geriatric institutions (Ticona and Schulman, 2016). In this

case, multidisciplinary home healthcare teams treat the patient at home rather than

in hospital. Home care hospitalization was found to be more effective, shorter and
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increases patient satisfaction, compared to the same treatment received in hospital

(Shepperd et al., 2008; Caplan et al., 2012). Moreover, according to our analysis, even

a 10% diversion of patients requiring geriatric hospitalization to home care, will reduce

the overage, and underage costs by about 25% on average and will shorten the waiting

lists in hospital by 30% on average.

2.9 Future Research

There are multiple directions worthy of future research, two of which will be now de-

scribed. The first is to modify the structure of the system by adding an intermediate

ward (i.e., a step-down unit) for sub-acute geriatrics (Wolstenholme, 1999), between

the hospital and the geriatric institutions. Such an intermediate ward would be desig-

nated for elderly patients with an expected long stay in the hospital, before continuing

on to a geriatric ward. Adding a sub-acute ward can both reduce the workload and

bed occupancy in hospitals and improve the patient flow in and out of the hospital.

Another direction is a capacity allocation problem, in which given a predefined

budget, the planners must decide where it is most beneficial to add new beds: in

hospitals, in intermediate wards or in geriatric wards. The simple version of this

question (without intermediate wards), in fact, triggered the present research.
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3 Time-varying Tandem Queues under the BAS Mechanism

3.1 Introduction

Achieving a more comprehensive view of the system analyzed in Section 2, can be done

by including ED boarded patients, waiting for admission to hospital wards (Figure 1).

This analysis should also include finite waiting room before the first station and cus-

tomer loss when this waiting room is full. This has motivated us to model and analyze

time-varying tandem networks with blocking and finite waiting rooms throughout the

network – before the first station and between the stations.

The models we focus on (flow lines) have been researched for decades (Avi-Itzhak,

1965; Avi-Itzhak and Levy, 1995; Li and Meerkov, 2009; Meerkov and Yan, 2016); our

research takes the analysis to the new territories of time-varying environments and

many-server stations.

In particular, we analyze several stochastic models of time-varying tandem queues

with blocking. For each such model, we develop and prove its fluid limit in the many-

server regime: system capacity (number of servers) increases indefinitely jointly with

demand (arrival rates). We adopt a fluid framework since it yields accurate approxi-

mations for time-varying models, which are otherwise notoriously intractable. In fluid

models, entities that flow through the system are animated as continuous fluid, and

hence the system dynamics can be captured by differential equations. There is ample

literature justifying that fluid models accurately approximate heavily-loaded service

systems (Mandelbaum et al., 1998, 1999; Whitt, 2004, 2006; Pang and Whitt, 2009;

Liu and Whitt, 2011a, 2014).

Our basic model (Section 3.4) is a network with two queues in tandem (Figure 6),

where the arrivals follow a general time-varying counting process. There is a finite

waiting room before the first station and no waiting room between the two stations.

There are two types of blocking in this network. The first occurs when the first station

is saturated (all its servers are occupied and its waiting room is full), and therefore,

arriving customers must leave the system (are blocked); such customer loss is mathe-

matically captured by reflection. The second type of blocking occurs when the second

station is saturated (all its servers are busy); in this case, customers who complete their

service at the first station are forced to wait there while still occupying their server.

Such a mechanism is known as blocking-after-service (BAS) or manufacturing blocking

34



(Buzacott and Shanthikumar, 1993; Balsamo et al., 2001); and here, as it turns out

(Section 2.4), an appropriate state-representation renders reflection unnecessary for

capturing this type of blocking. A real system that is naturally modeled by such two

queues in tandem is an ED feeding hospital ward; servers here are hospital beds.

Using the Functional Strong Law of Large Numbers, for all our stochastic models we

establish the existence and uniqueness of fluid approximations/limits. These are first

characterized by differential equations with reflection, which are then transformed into

differential equations with no reflection but rather with discontinuous right-hand side

(RHS) (Filippov, 2013); the latter are easier to implement numerically. The accuracy

of our fluid models is validated against stochastic simulation, which amplifies the

simplicity and flexibility of fluid models in capturing the performance of time-varying

overloaded networks.

The two-station network is both specialized and extended. First, we derive a fluid

limit for the Gt/M/N/(N + H) queue that seems, to the best of our knowledge,

already new. Next, in Section 3.5 we analyze the more general network with k queues

in tandem and finite waiting rooms throughout – both before the first station and

in-between stations. It is worth noting that our models cover all waiting room options

at all locations: finite positive, infinite or zero (no waiting allowed); and that reflection

arises only due to having a finite waiting room before the first station.

Finally, in Section 3.6 we provide operational insights regarding the performance

of time-varying tandem queues with finite buffers. We chose to calculate performance

measures from the customer viewpoint: throughput, number of customers, waiting

times, blocking times and sojourn times; performance is measured at each station

separately as well as overall within the network. (One could also easily accommodate

server-oriented metrics, such as occupancy levels or starvation times.) Calculations of

the above customer-driven measures provide insights on how network characteristics

affect performance: we focus on line length (number of queues in tandem), bottleneck

location, size of waiting rooms and their joint effects.

3.2 Literature Review

Despite the fact that time-varying parameters are common in production (Leachman

and Gascon, 1988; Nahmias and Cheng, 2009) and service systems (Green et al., 2007b;

Feldman et al., 2008), such as in healthcare (Armony et al., 2015; Cohen et al., 2014;
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Yom-Tov and Mandelbaum, 2014), research on time-varying models with blocking is

scarce. We now review the three research areas, most relevant to this work.

3.2.1 Flow Lines with Blocking

Previous research on tandem queueing networks with blocking has focused on steady-

state analysis for small networks (Grassmann and Drekic, 2000; Akyildiz and von

Brand, 1994; Langaris and Conolly, 1984), steady-state approximations for larger net-

works (Takahashi et al., 1980; Brandwajn and Jow, 1988; Gershwin, 1987; Dallery and

Gershwin, 1992; Perros, 1994; Balsamo and de Nitto Personè, 1994; Tolio and Gersh-

win, 1998; van Vuuren et al., 2005; Osorio and Bierlaire, 2009) and simulation models

(Conway et al., 1988; El-Darzi et al., 1998; Katsaliaki et al., 2005; Bretthauer et al.,

2011; Millhiser and Burnetas, 2013).

Several papers have analyzed tandem queueing networks with an unlimited waiting

room before the first station and a Blocking After Service (BAS) mechanism between

the stations. In Avi-Itzhak and Yadin (1965), the steady-state of a network with

two stations in tandem was analyzed. In this model, the arrival process was Poisson

and there was no waiting room between stations. The transient behavior of the same

network was analyzed in Prabhu (1967). The model in Avi-Itzhak and Yadin (1965)

was extended in Avi-Itzhak (1965) to an ordered sequence of single-server stations with

a general arrival process, deterministic service times and finite waiting room between

the stations. The author concluded that the order of stations and the size of the

intermediate waiting rooms do not affect the sojourn time in the system. We extend

the analysis in Avi-Itzhak (1965) to time-varying arrivals, a finite waiting room before

the first station, exponential service times and a different number of servers in each

station. We show how the order of stations does affect the sojourn time and how it

interacts with the waiting room capacity before the first station.

The system analyzed in Avi-Itzhak and Yadin (1965) was generalized in Avi-Itzhak

and Levy (1995) under blocking-before-service (BBS) (or k-stage blocking mechanism)

in which a customer enters a station only if the next k stations are available. A tan-

dem queueing network with a single server at each station and no buffers between the

stations was analyzed in Kelly (1984); the service times for each customer are identical

at each station. In Whitt (1985) heuristics were developed for ordering the stations

in a tandem queueing network to minimize the sojourn time in the system. In this
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setting, each station has a single server and an unlimited waiting room. Simulation

was employed in Conway et al. (1988) to analyze Work in Process (WIP) in serial

production lines, with and without buffers in balanced and unbalanced lines. The

results of Glynn and Whitt (1991) were extended in Martin (2002) for analyzing tan-

dem queueing networks with finite capacity queues and blocking. In that work, the

author estimated the asymptotic behavior of the time customer n finishes service at

Station k, as n and k become large together. Single-server flow lines with unlimited

waiting rooms between the stations and exponential service times were investigated in

Meerkov and Yan (2016). The authors derived formulas for the average sojourn time

(waiting and processing times). In our models, in addition to having time-varying

arrivals, many-server stations and finite waiting rooms, the sojourn time also includes

blocking time at each station.

3.2.2 Time-Varying Fluid Models

Fluid models were successfully implemented in modeling different types of service sys-

tems. These models cover the early applications for post offices (Oliver and Samuel,

1962), claims processing in social security offices (Vandergraft, 1983), call centers

(Green et al., 2007b; Afèche et al., 2017) and healthcare systems (Yom-Tov and Man-

delbaum, 2014; Cohen et al., 2014; Zychlinski et al., 2018c). Fluid models of service

systems were extended to include state-dependent arrival rates, general arrival and

service rates (Whitt, 2005, 2006). Time-varying queueing models were analyzed for

setting staffing requirements in service systems with unlimited waiting rooms, by using

the offered load heuristics (Green et al., 2007b; Whitt, 2007, 2013).

Time-varying heavy traffic fluid limits were developed in Mandelbaum et al. (1998,

1999) for queueing systems with exponential service, abandonment and retrial rates.

Accommodating these models for general time-varying arrival rates and a general in-

dependent abandonment rate was done in Liu and Whitt (2011a) for a single station,

and for a network in Liu and Whitt (2011b). These models were extended to general

service times in Liu and Whitt (2012a,b, 2014).

Heavy traffic approximations for systems with blocking have focused on stationary

loss models (Borisov and Borovkov, 1981; Borovkov, 2012; Srikant and Whitt, 1996).

An approximation for the steady-state blocking probability, with service times being

dependent and non-exponential, was developed in Li and Whitt (2014). A recent work
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in Li et al. (2016) focused on stabilizing blocking probabilities in time-varying loss

models. In our paper, we contribute to this research area by developing a heavy traffic

fluid limit for time-varying models with blocking.

3.2.3 Queueing Models with Reflection

Queueing models with reflection were analyzed in Harrison (1973) for an assembly

operation by developing limit theorems for the associated waiting time process. There

it was shown that this process cannot converge in distribution, and thus is inherently

unstable. This model is generalized in Wenocur (1982) by assuming finite capacities at

all stations and developing a conventional heavy traffic limit theorem for a stochastic

model of a production system. The reflection analysis detailed in Harrison (1985);

Chen and Yao (2013) for a single-station and for a network is extended in Mandelbaum

and Pats (1995, 1998) for state-dependent queues. Loss systems for one station with

reflection were analyzed in Whitt (2002); Garnett et al. (2002). More recently, Reed

et al. (2013) solved a generalized state-dependent drift Skorokhod problem in one

dimension, which is used to approximate the transient distribution of the M/M/N/N

queue in the many-server heavy traffic regime.

3.3 Contributions

The main contributions of this section are the following:

1. Modeling. We analyze a time-varying model for k many-server stations in tan-

dem, with finite waiting rooms before the first station and between the other

stations. This covers, in particular, the case of infinite or no waiting rooms,

which includes the Gt/M/N/(N + H) queue. For all these models, we derive a

unified fluid model/approximation, which is characterized by a set of differential

equations with a discontinuous right-hand side (Filippov, 2013).

2. Analysis of the stochastic model. We introduce a stochastic model for our

family of networks in which, as usual, the system state captures station occupancy

(e.g. (28)–(29), for k = 2). It turns out, however, that a state description in

terms of non-utilized servers is more amenable to analysis ((31)–(32)). Indeed, it

enables a representation of the network in terms of reflection, which yields useful

properties of the network reflection operator (e.g. Lipschitz continuity).
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Figure 6: Two tandem stations with a finite waiting room before the first station.

3. Analysis of the fluid model. Through the Functional Strong Law of Large

Numbers, we derive a fluid limit for the stochastic model with reflection in the

many-server regime. Using properties of the reflection operator, we solve for

the fluid limit, which allows it to be written as a set of differential equations

without reflection. This fluid representation is flexible, accurate and effective,

hence, easily implementable for a variety of networks.

4. Operational insights. Our fluid model yields novel operational insights for

time-varying finite-buffer flow lines. Specifically (Section 3.6), via numerical ex-

periments, we analyze the effects on network performance of the following factors:

line length, bottleneck location, size of the waiting room, and the interaction

among these factors.

3.4 Two Stations in Tandem with Finite Waiting Room

We now develop a fluid model with blocking for two stations in tandem, as illustrated

in Figure 6. In Section 3.5, we further extend this model for a network with k stations

in tandem and finite internal waiting rooms between the stations.

This FCFS system is characterized, to a first order, by the following (deterministic)

parameters:

1. Arrival rate λ(t), t ≥ 0, to Station 1.

2. Service rate µi > 0, i = 1, 2.

3. Number of servers Ni, i = 1, 2.

4. Transfer probability p from Station 1 to Station 2, 0 ≤ p ≤ 1 (i.e., with proba-

bility p, a customer will be referred to Station 2 upon completion of service at

Station 1);
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5. Finite waiting room H at Station 1; there is no waiting room at Station 2. (H = 0

is allowed; in this case, customers join the system only if there is an idle server

in Station 1.)

The stochastic model is created from the following stochastic building blocks, all

of which are assumed to be independent:

1. External arrival process A = {A(t), t ≥ 0}; A is a counting process, in which

A(t) represents the external cumulative number of arrivals up to time t; here

EA(t) =

∫ t

0

λ(u) du, t ≥ 0. (25)

A special case is the non-homogeneous Poisson process, for which

A(t) = A0

(∫ t

0

λ(u) du

)
, t ≥ 0,

where A0(·) is a standard Poisson process (unit arrival rate).

2. “Basic” nominal service processes Di = {Di(t), t ≥ 0}, i = 1, 2, 3, where Di(t)

are standard Poisson processes.

3. Stochastic process X1 = {X1(t), t ≥ 0}, which denotes the number of customers

present at Station 1 that have not completed their service at Station 1 at time t.

4. Stochastic process X2 = {X2(t), t ≥ 0}, which denotes the number of customers

present at Station 1 or 2 that have completed service at Station 1, but not at

Station 2 at time t.

5. Initial number of customers in each state, denoted by X1(0) and X2(0).

A customer is forced to leave the system if Station 1 is saturated (waiting room full,

if a waiting room is allowed) upon its arrival. We assume that the blocking mechanism

between Station 1 and Station 2 is blocking after service (BAS) (Balsamo et al., 2001).

Thus, if upon service completion at Station 1, Station 2 is saturated, the customer

will be forced to stay in Station 1, occupying a server there until a server at Station

2 becomes available. This mechanism was modeled in Zychlinski et al. (2018c) for

a network with an infinite waiting room before Station 1. In our case, however, to

accommodate customer loss, we must use reflection in our modeling and analysis.
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Let Q = {Q1(t), Q2(t), t ≥ 0} denote a stochastic queueing process in which Q1(t)

represents the number of customers at Station 1 (including the waiting room) andQ2(t)

represents the number of customers in service at Station 2 at time t. The process Q

is characterized by the following equations:

Q1(t) =X1(t) +B(t),

Q2(t) =X2(t) ∧N2,

where B(t) = (X2(t)−N2)+ represents the number of blocked customers in Station 1,

and

X1(t) = X1(0) +

∫ t

0

1{X1(u−)+(X2(u−)−N2)+<N1+H} dA(u) (26)

−D1

(
pµ1

∫ t

0

[X1(u) ∧ (N1 −B(u))] du

)
−D3

(
(1− p)µ1

∫ t

0

[X1(u) ∧ (N1 −B(u))] du

)
,

X2(t) = X2(0) +D1

(
pµ1

∫ t

0

[X1(u) ∧ (N1 −B(u))] du

)
−D2

(
µ2

∫ t

0

[X2(u) ∧N2] du

)
; t ≥ 0.

Here, 1{x} is an indicator function that equals 1 when x holds and 0 otherwise. The

second right-hand term in the first equation of (26) represents the number of arrivals

that entered service up to time t. As noted in Mandelbaum and Pats (1998), an

inductive construction over time shows that (26) uniquely determines the process X.

Observe that X1(t) + (X2(t)−N2)+ = N1 +H implies that the first station is blocked

until the next departure.

3.4.1 Representation in Terms of Reflection

First we rewrite (26) by using the fact that∫ t

0

1{X1(u−)+(X2(u−)−N2)+<N1+H} dA(u)

= A(t)−
∫ t

0

1{X1(u−)+(X2(u−)−N2)+=N1+H} dA(u);

(27)
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here, the last right-hand term represents the cumulative number of arrivals to Station

1 that were blocked because all N1 servers were busy and the waiting room was full.

Now, we rewrite (26) and (27):

 X1(t)

X1(t) +X2(t)

 =

Y1(t)− L(t)

Y2(t)− L(t)

 ≤
 N1 +H

N1 +N2 +H

 , t ≥ 0,

dL(t) ≥ 0, L(0) = 0,∫∞
0

1{X1(t)+(X2(t)−N2)+<N1+H} dL(t) = 0,

(28)

where

Y1(t) = X1(0) + A(t)−D1

(
pµ1

∫ t

0

[X1(u) ∧ (N1 −B(u))] du

)
(29)

−D3

(
(1− p)µ1

∫ t

0

[X1(u) ∧ (N1 −B(u))] du

)
,

Y2(t) = X1(0) +X2(0) + A(t)−D3

(
(1− p)µ1

∫ t

0

[X1(u) ∧ (N1 −B(u))] du

)
−D2

(
µ2

∫ t

0

[X2(u) ∧N2] du

)
,

L(t) =

∫ t

0

1{X1(u−)+(X2(u−)−N2)+=N1+H} dA(u).

Figure 7 (left) geometrically illustrates the reflection in (28). The region for X1

and X2 is limited by the two blue lines. Arrivals are lost when the system is on the

blue lines. The system leaves the state X1 = N1 + H when a service is completed at

Station 1. The system leaves the state X1 + X2 = N1 + N2 + H when a service is

completed at Station 2.

The last equation of (28) is a complementary relation between L and X: L(·)

increases at time t only if X1(t) + (X2(t) − N2)+ = N1 + H. We justify this by first

substituting the last equation of (29) in the last equation for L(t) of (28), which yields

the following:∫ ∞
0

1{X1(t)+(X2(t)−N2)+<N1+H} · 1{X1(t−)+(X2(t−)−N2)+=N1+H} dA(t) = 0. (30)

Now, if (30) does not hold, there must be a time when, at state N1, a service completion

and an arrival occur simultaneously. However, when X1 + (X2 −N2)+ = N1 +H, the
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Figure 7: Geometrical representation of the reflection. On the left – in terms of X, and on
the right – in terms of R.

next departure will occur according to an exponential random variable; hence, by the

independence of the building blocks, an arrival occurs simultaneously with a departure

with probability 0.

We simplify (28), so that the reflection will occur on the axes, by letting

R1(t) = N1 +H −X1(t),

R2(t) = N1 +N2 +H − (X1(t) +X2(t)) = R1(t) +N2 −X2(t), t ≥ 0.

Note that R1(t) represents the non-utilized space in Station 1 at time t, namely, the

blocked servers, the idle servers and the available waiting room space. When all N1

servers are occupied and the waiting room is full, R1(t) includes the blocked servers

at Station 1. When all N1 servers are occupied but the waiting room is not full, R1(t)

includes the blocked servers and the available waiting room space. When some of the

N1 servers are idle, R1 includes the sum of the idle servers, the blocked servers and

the available waiting room space. The function R2(t) represents the available space in

the system at time t. Hence, when the N1 + N2 servers are occupied, R2(t) includes

the available waiting room space. When only the N2 servers are occupied but not all

N1 servers are occupied, R2(t) includes the idle servers in Station 1 and the available

waiting room space. Finally, when Station 2 is not full, R2(t) includes the idle servers

in Stations 1 and 2 and the available waiting room space.
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The functions R1 and R2 give rise to the following equivalent to (28):

R1(t)

R2(t)

 =

Ỹ1(t) + L(t)

Ỹ2(t) + L(t)

 ≥ 0, t ≥ 0,

dL(t) ≥ 0, L(0) = 0,∫∞
0

1{R1(t)∧R2(t)> 0} dL(t) = 0,

(31)

where

Ỹ (t) =

Ỹ1(t)

Ỹ2(t)

 =

 N1 +H − Y1(t)

N1 +N2 +H − Y2(t)

 ; (32)

the last line in (31) is derived from∫ t

0

1{X1(t)+(X2(t)−N2)+<N1+H} dL(t) =

∫ t

0

1{N1+H−X1(t)>(X2(t)−N2)+} dL(t)

=

∫ t

0

1{R1(t)−(R1(t)−R2(t))+> 0} dL(t) =

∫ t

0

1{R1(t)∧R2(t)> 0} dL(t).

The processes Ỹ1, Ỹ2 and L (see (31)) can be stated in the “language” of R:



Ỹ1(t) = R1(0)− A(t) +D1

(
pµ1

∫ t
0

[(N1 +H −R1(u)) ∧ (N1 −B(u))] du
)

+D3

(
(1− p)µ1

∫ t
0

[(N1 +H −R1(u)) ∧ (N1 −B(u))] du
)
,

Ỹ2(t) = R2(0)− A(t) +D3

(
(1− p)µ1

∫ t
0

[(
N1 +H −R1(u)

)
∧
(
N1 −B(u)

)]
du
)

+D2

(
µ2

∫ t
0

[
N2 ∧

(
R1(u)−R2(u) +N2)

]
du
)
,

L(t) =
∫ t

0
1{R1(u−)∧R2(u−) = 0} dA(u).

Here, B(u) =
(
R1(u)−R2(u)

)+
in terms of R.

Figure 7 (right) presents the direction of reflection in terms of R. When the process

hits the boundary of the positive quadrant, L increases. This increase causes equal

positive displacements in both R1 and R2 as necessary to keep R1 ≥ 0 and R2 ≥ 0,

which drives L in the diagonal direction, presented in Figure 7.

From (31), we see that L(t) ≥ −Ỹ1(t) and L(t) ≥ −Ỹ2(t). Therefore, L(t) ≥
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(
− Ỹ1(t) ∨ −Ỹ2(t)

)
= −

(
Ỹ1(s) ∧ Ỹ2(s)

)
, and

L(t) = sup
0≤s≤t

(
−
(
Ỹ1(s) ∧ Ỹ2(s)

))+

.

Note that this solution is applicable even though Ỹ depends on R (see Mandelbaum

and Pats, 1995 for details, though recall that they do not cover blocking).

3.4.2 Fluid Approximation

We now develop a fluid limit for our queueing model through the Functional Strong

Law of Large Numbers (FSLLN). We begin with (31) and scale up the arrival rate and

the size of the system (servers and waiting room) by η > 0, η → ∞. This parameter

η will serve as an index of a corresponding queueing process Rη, which is the unique

solution to the following Skorokhod’s representation:R
η
1(t) = Ỹ η

1 (t) + Lη(t),

Rη
2(t) = Ỹ η

2 (t) + Lη(t),
t ≥ 0,

where

Ỹ η
1 (·)

Ỹ η
2 (·)

 =


Rη

1(0)− Aη(·) +D1

(
pµ1

∫ ·
0

[(ηN1 + ηH −Rη
1(u)) ∧ (ηN1 −Bη(u))] du

)
+D3

(
(1− p)µ1

∫ ·
0

[(ηN1 + ηH −Rη
1(u)) ∧ (ηN1 −Bη(u))] du

)
Rη

2(0)− Aη(·) +D3

(
(1− p)µ1

∫ ·
0

[(ηN1 + ηH −Rη
1(u)) ∧ (ηN1 −Bη(u))] du

)
+D2

(
µ2

∫ ·
0

[ηN2 ∧ (Rη
1(u)−Rη

2(u) + ηN2)] du
)

 .

Here, Aη = {ηA(t), t ≥ 0} is the arrival process under our scaling; thus,

EAη(t) = η

∫ t

0

λ(u) du, t ≥ 0.

We now introduce the scaled processes rη = {rη(t), t ≥ 0}, lη = {lη(t), t ≥ 0} and

bη = {bη(t), t ≥ 0} by

rη(t) = η−1Rη(t), lη(t) = η−1Lη(t) and bη(t) = η−1Bη(t),
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respectively; similarly ỹη1 = N1 + H − yη1 and ỹη2 = N1 + H + N2 − yη2 . Then, we get

that

ỹη1(·)

ỹη2(·)

 =


rη1(0)− η−1Aη(·) + η−1D1

(
ηpµ1

∫ ·
0

[(N1 +H − rη1(u)) ∧ (N1 − bη(u))] du
)

+η−1D3

(
η(1− p)µ1

∫ ·
0

[(N1 +H − rη1(u)) ∧ (N1 − bη(u))] du
)

rη2(0)− η−1Aη(·) + η−1D3

(
η(1− p)µ1

∫ ·
0

[(N1 +H − rη1(u)) ∧ (N1 − bη(u))] du
)

+η−1D2

(
ηµ2

∫ ·
0

[N2 ∧ (rη1(u)− rη2(u) +N2)] du
)

 .

(33)

The asymptotic behavior of rη is described in the following theorem, which we prove

in Appendix H.

Theorem 3.1. Suppose that

{
η−1Aη(t), t ≥ 0

}
→
{∫ t

0

λ(u)du, t ≥ 0

}
u.o.c. as η →∞,

and rη(0) → r(0) a.s., as η → ∞, where r(0) is a given non-negative deterministic

vector. Then, as η → ∞, the family {rη} converges u.o.c. over [0,∞), a.s., to a

deterministic function r. This r is the unique solution to the following differential

equation (DE) with reflection:

r1(t) = r1(0)−
∫ t

0
[λ(u)− µ1((N1 +H − r1(u)) ∧ (N1 − b(u)))] du+ l(t) ≥ 0,

r2(t) = r2(0)−
∫ t

0
[λ(u)− (1− p)µ1((N1 +H − r1(u)) ∧ (N1 − b(u)))] du

+
∫ t

0
[µ2(N2 ∧ (r1(u)− r2(u) +N2))] du+ l(t) ≥ 0,

dl(t) ≥ 0, l(0) = 0,∫∞
0

1{r1(t)∧r2(t)> 0} dl(t) = 0;

(34)

where b(t) =
(
r1(t)− r2(t)

)+
, t ≥ 0.

Returning to our original formulation (28), (34) can in fact be written in terms of
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x(·) for t ≥ 0 as follows:

x1(t) = x1(0) +
∫ t

0

[
λ(u)− µ1(x1(u) ∧

(
N1 − b(u)))

]
du− l(t) ≤ N1 +H,

x1(t) + x2(t) = x1(t) + x2(0) +
∫ t

0
[pµ1(x1(u) ∧ (N1 − b(u)))− µ2(N2 ∧ x2(u))] du

≤ N1 +N2 +H,

dl(t) ≥ 0, l(0) = 0,∫∞
0

1{x1(t)+(x2(t)−N2)+<N1+H} dl(t) = 0.

(35)

The function x will be referred to as the fluid limit associated with the queueing family

Xη, where Xη = (Xη
1 , X

η
2 ) = (ηN1 + ηH −Rη

1, R
η
1 −R

η
2 + ηN2).

The following proposition provides a solution to (35); see Appendix I for details.

As opposed to (35), this solution (36) is given by a set of differential equations with

discontinuous RHS but without reflection. Thus, implementing (36) numerically is

straightforward via recursion, which would not be the case with (35).

Proposition 3.1. The fluid limit approximation for X in (26) is given by

x1(t) = x1(0)− µ1

∫ t

0

[x1(u) ∧ (N1 − b(u))] du (36)

+

∫ t

0

[
1{x1(u)<N1+H} · 1{x1(u)+x2(u)<N1+N2+H} · λ(u)

]
du

+

∫ t

0

[
1{x1(u)=N1+H} · 1{x1(u)+x2(u)<N1+N2+H} · [λ(u) ∧ l∗1(u)]

]
du

+

∫ t

0

[
1{x1(u)<N1+H} · 1{x1(u)+x2(u)=N1+N2+H} · [λ(u) ∧ l∗2(u)]

]
du

+

∫ t

0

[
1{x1(u)=N1+H} · 1{x1(u)+x2(u)=N1+N2+H} · [λ(u) ∧ l∗1(u) ∧ l∗2(u)]

]
du,

x2(t) = x2(0) +

∫ t

0

[pµ1(x1(u) ∧ (N1 − b(u)))− µ2(x2(u) ∧N2)] du,

where

l∗1(u) = µ1N1,

l∗2(u) = µ2N2 + (1− p)µ1 (x1(u) ∧ (N1 − b(u))) ,

b(u) = (x2(u)−N2)+.

47



We now introduce the functions q1 and q2 that denote the number of customers

at Station 1 (including the waiting room) and the number of customers in service at

Station 2, respectively:

q1(t) = x1(t) + b(t);

q2(t) = x2 ∧N2.

Remark 3.1. Our model can be used to analyze the Gt/M/N/(N + H) queueing

system. By assuming N2 = ∞ and b = 0, the network can be reduced to a single

station (N1 = N and µ1 = µ). In that case, the fluid limit q for the number of

customers in the system is given by

q(t) = q(0) +

∫ t

0

[
λ(u)− (λ(u)− µN)+ · 1{q(u)=N+H} − µ(q(u) ∧N)

]
du.

Remark 3.2. Abandonments from the waiting room can occur when customers have

finite patience. This is a prevalent phenomenon in service systems and healthcare, in

particular (e.g. customers that abandon the Emergency Department are categorized

as Left Without Being Seen (LWBS) (Baker et al., 1991; Arendt et al., 2003). Such

abandonments can be added to our model by following Mandelbaum et al. (1999) and

Pender (2015). In particular, let θ denote the individual abandonment rate from the

waiting room. Thus, the term θ
∫ t

0
[x1(u) + b(u) − N1]+ du should be subtracted from

the right-hand side of x1(t) in (36); here [x1(t) + b(t)−N1]+ represents the number of

waiting customers at Station 1 at time t.

3.4.3 Numerical Examples

To demonstrate that our proposed fluid model accurately describes the flow of cus-

tomers, we compared it to a discrete stochastic simulation model. In that model,

service durations were randomly generated from exponential distributions. Customers

arrive according to a non-homogeneous Poisson process that was used to represent a

process with a general, time-dependent arrival rate. We note that simulating a general

time-varying arrival process (Gt) is not trivial (He et al., 2016; Ma and Whitt, 2016).

In Liu and Whitt (2012a), the authors introduce an algorithm that is based on the

standard equilibrium renewal process (SERP). This algorithm is implemented in Pen-
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Figure 8: Total number in each station – fluid formulation vs. simulation for two scenarios.
The fluid model curves overlap the simulation curves.

der and Ko (2017) to approximate the general inter-arrival times for the phase-type

distribution.

The fluid equations in (36) were solved recursively, by discretizing time. Figure 8

shows the comparison between the proposed fluid model and the average simulation

results for two scenarios. In the first (left plot), N1 = 200, N2 = 150, H = 50,

µ1 = 1/10, µ2 = 1/20, p = 1, q1(0) = q2(0) = 0 and λ(t) = 2t, 0 ≤ t ≤ 120. In

the second (right plot), N1 = 30, N2 = 60, H = 10, µ1 = 1/10, µ2 = 1/90, p = 1,

q1(0) = q2(0) = 0 and λ(t) = t, 0 ≤ t ≤ 60.

We calculated the simulation standard deviations, averaged over time and over 500

replications. For the first scenario, the standard deviations were 0.657 for the number

of customers in Station 1 with a maximal value of 4.4, 0.558 for the number in Station

2 with a maximal value 4.2 and 0.585 for the number of blocked customers with a

maximal value of 4.462. To conclude, the average difference between the simulation

replications and their average is less than one customer.

3.5 Multiple Stations in Tandem with Finite Internal Waiting Rooms

We now extend our model to a network with k stations in tandem and finite internal

waiting rooms, as presented in Figure 9. The notations remain as before, only with

an i subscript, i = 1, . . . , k, indicating Station i. Moreover, we denote the transfer

probability from Station i to Station i + 1 as pi,i+1. Before each station i, there is

Waiting Room i of size Hi. The parameter Hi can vary from 0 to ∞, inclusive. A

customer that is referred to Station i, i > 1, when it is saturated waits in Waiting
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Figure 9: Multiple stations in tandem with finite internal waiting rooms.

Room i. If the latter is full, then the customer is blocked in Station i − 1 while

occupying a server there, until space becomes available in Waiting Room i.

The stochastic model is created from the following stochastic building blocks, which

are assumed to be independent: External arrival process A = {A(t), t ≥ 0}, as was

defined in (25), processes Di = {Di(t), t ≥ 0}, i = 1, .., 2k−1, where Di(t) are standard

Poisson processes and Xi(0), i = 1, . . . , k, the initial number of customers in each state.

As before, the above building blocks will yield a k-dimensional stochastic process,

which captures the state of our system. The stochastic process X1 = {X1(t), t ≥ 0}

denotes the number of arrivals to Station 1 that have not completed their service at

Station 1 at time t, and the stochastic process Xi = {Xi(t), t ≥ 0}, i = 2, . . . , k,

denotes the number of customers that have completed service at Station i−1, but not

at Station i at time t. The stochastic process Bi = {Bi(t), t ≥ 0}, i = 1, . . . , k − 1,

denotes the number of blocked customers at Station i waiting for an available server

in Station i+ 1.

Let Q = {Q1(t), Q2(t), .., Qk(t), t ≥ 0} denote the stochastic queueing process in

which Qi(t) represents the number of customers at Station i (including the waiting

customers) at time t. The process Q is characterized by the following equations:

Q1(t) =X1(t) +B1(t);

Qi(t) =
[
Xi(t) +Bi(t)

]
∧ (Ni +Hi), i = 2, . . . , k − 1;

Qk(t) =Xk(t) ∧ (Nk +Hk), t ≥ 0.

(37)

Here,

X1(t) = X1(0) + A(t)−D1

(
p12 · µ1

∫ t

0

[X1(u) ∧ (N1 −B1(u))] du

)
(38)
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−Dk+1

(
(1− p12) · µ1

∫ t

0

[
X1(u) ∧

(
N1 −B1(u)

)]
du

)
−
∫ t

0

1{X1(u−)+B1(u−)=N1+H1} dA(u),

Xi(t) = Xi(0) +Di−1

(
pi−1,i · µi−1

∫ t

0

[Xi−1(u) ∧ (Ni−1 −Bi−1(u))] du

)
−Di

(
pi,i+1 · µi

∫ t

0

[Xi(u) ∧ (Ni −Bi(u))] du

)
−Dk+i

(
(1− pi,i+1) · µi

∫ t

0

[Xi(u) ∧ (Ni −Bi(u))] du

)
, i = 2, . . . , k − 1,

Xk(t) = Xk(0) +Dk−1

(
pk−1,k · µk−1

∫ t

0

[Xk−1(u) ∧ (Nk−1 −Bk−1(u))] du

)
−Dk

(
µk

∫ t

0

[
Xk(u) ∧Nk

]
du

)
,

Bi(t) = [Xi+1(t) +Bi+1(t)−Ni+1 −Hi+1]+ , i = 1, . . . , k − 2,

Bk−1(t) = [Xk(t)−Nk −Hk]
+ .

Note that although Bi(t), i = 1, . . . , k − 1, is defined recursively by Bi+1(t), it can

be written explicitly for every i. For example, when k = 3 we get that B1(t) =

[X2(t) + [X3(t)−N3 −H3]+ −N2 −H2]+. An inductive construction over time shows

that (38) uniquely determines the processes X and B.

By using similar methods as for the two-station network in Section 3.4, with more

cumbersome algebra and notations, we establish that x, the fluid limit for the stochastic

queueing family Xη, is given, for t ≥ 0, by

x1(t) = x1(0)− µ1

∫ t

0

[x1(u) ∧ (N1 − b1(u))] du (39)

+
k∑

m=0

∑
A⊂{1,...,k}:
|A|=m

∫ t

0

[∏
j∈A

1{∑j
i=1 xi(u)=

∑j
i=1(Ni+Hi)}

×
∏

j∈{1,...,k}∩Ā

1{∑j
i=1 xi(u)<

∑j
i=1(Ni+Hi)}

[
λ(u) ∧

∧
y∈A

l∗y(u)
]]

du,

xi(t) = xi(0) +

∫ t

0

[
pi−1,i · µi−1 (xi−1(u) ∧ (Ni−1 − bi−1(u)))

− µi (xi(u) ∧ (Ni − bi(u)))
]

du, i = 2, . . . , k − 1,

xk(t) = xk(0) +

∫ t

0

[
pk−1,k · µk−1 (xk−1(u) ∧ (Nk−1 − bk−1(u)))− µk (xk(u) ∧Nk)

]
du,
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where

l∗1(u) = µ1N1,

l∗n(u) = µnNn +
n−1∑
j=1

(1− pj,j+1)µj (xj(u) ∧ (Nj − bj(u))) , n = 2, . . . , k,

bi(t) = [xi+1(t) + bi+1(t)−Ni+1 −Hi+1]+ , i = 1, . . . k − 2,

bk−1(t) = [xk(t)−Nk −Hk]
+ .

The term in the second line of (39) is a generalization of the last 4 terms in the

expression for x1(t) in (36), when k = 2.

For each summand and j, if
∑j

i=1 xi(u) =
∑j

i=1Ni + Hi, the corresponding lj(u) will

appear in the product. The term lj(u) represents the departure rate from Station j,

when the waiting room and Stations 1, . . . , j, are full (i.e.,
∑j

i=1 xi(u) =
∑j

i=1(Ni +

Hi)). The two first summations account for all combinations of lj(u), j ∈ {1, . . . , k}.

We now introduce the functions qi(t), i = 1, . . . , k, which denote the number of

customers at Station i at time t and are given by

q1(t) =x1(t) + b1(t);

qi(t) = [xi(t) + bi(t)] ∧ (Ni +Hi) i = 2, . . . k − 1;

qk(t) =xk(t) ∧ (Nk +Hk) .

Remark 3.3. A special case for the model analyzed in Section 3.5 is a model with an

infinite sized waiting room before Station 1 (H = ∞). In this case, since customers

are not lost and no reflection occurs, both the stochastic model and the fluid limit are

simplified. This special case is in fact an extension of the two-station model developed

in Zychlinski et al. (2018c).

3.6 Numerical Experiments and Operational Insights

In this section, we demonstrate how our models yield operational insights on time-

varying tandem networks with finite capacities. To this end, we implement our models

by conducting numerical experiments and parametric performance analysis. Specifi-

cally, we analyze the effects of line length, bottleneck location and size of the waiting

room on network output rate, number of customers in process, as well as sojourn,
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waiting and blocking times. The phenomena presented were validated by discrete

stochastic simulations.

In Sections 3.6.1–3.6.2, we focus on and compare two types of networks. The first

has no waiting room before Station 1 (H = 0) and in the second, there is an infinite

sized waiting room before Station 1 (H = ∞). Sections 3.6.3–3.6.4 are dedicated to

buffer-size effects (H varies).

The model we provide here is a tool for analyzing tandem networks with blocking.

Some observations we present are intuitive and can easily be explained; others, less

trivial and possibly challenging, are left for future research.

3.6.1 Line Length

We now analyze the line length effect on network performance. We start with the

case where all stations are statistically identical and their primitives independent (i.i.d.

stations). This implies that the stations are identical in the fluid model; in Section

3.6.2 we relax this assumption.

The arrival rate function in the following examples is the sinusoidal function

λ(t) = λ̄+ β sin(γt), t ≥ 0, (40)

with average arrival rate λ̄, amplitude β and cycle length T = 2π/γ.

Figure 10 presents the time-varying input and output rates from the network, as

the number of stations increases from one to eight. In both types of networks (H = 0

and H =∞), the variation of the output rate diminishes and the average output rate

(over time) decreases, as the line becomes longer. When H = 0, due to customer loss

and blocking, the variation is larger and the average output rate is smaller.

Figure 11 shows the time-varying number of customers in each station in a network

with eight stations in tandem. When H = 0 (left plot), due to customer loss, the

average number of customers is smaller while the variation is larger, compared to the

case when H = ∞. In fact, only about 70% of arriving customers were served when

H = 0, compared to the obvious 100% when H =∞.

Observe that the same phenomenon of the variation and average output rate de-

creasing as the line becomes longer (Figure 10) also occurs when stations have ample

capacities to eliminate blocking and customer loss. In these cases, system performance
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Figure 10: Line length effect on the network output rate with k i.i.d. stations, the sinusoidal
arrival rate function in (40) with λ̄ = 9, β = 8 and γ = 0.02, Ni = 200, µi = 1/20 and
qi(0) = 0, ∀i ∈ {1, . . . , k}. Five networks of different length are considered.

reaches its upper bound. Here, the output from one station is the input for the next

one. In Eick et al. (1993) an analytic expression was developed for the number of cus-

tomers in the Mt/G/∞ queue, with a sinusoidal arrival rate, as in (40). In particular,

the output rate from Station 1 is given by

δ1(t) = λ̄+ β

 µ2

µ2 + γ2
sin(γt)−

γµ

µ2 + γ2
cos(γt)

 , t ≥ 0. (41)

We now extend this analysis to tandem networks with ample capacity and hence

no blocking (tandem networks with an infinite number of servers). Specifically, we

consider (41) as the input rate for the second station and calculate the output rate

from it and so on for the rest of the stations. Consequently, the output rate from a

network with i, i = 1, 2, .., i.i.d. stations in tandem, and exponential service times, is

given by the following expression:

δi(t) = λ̄+ β
(
C

(i)
1 sin(γt)− C(i)

2 cos(γt)
)
, t ≥ 0, (42)

where

C
(1)
1 = A1, C

(1)
2 = B1, Ai =

µ2
i

µ2
i + γ2

, Bi =
γµi

µ2
i + γ2

, i = 1, . . . , k, (43)

C
(i)
1 = C

(i−1)
1 Ai − C(i−1)

2 Bi, C
(i)
2 = C

(i−1)
1 Bi + C

(i−1)
2 Ai, i = 2, . . . , k.
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Figure 11: Total number of customers in each station in a network with eight i.i.d. stations
and the sinusoidal arrival rate function in (40) with λ̄ = 9, β = 8 and γ = 0.02, Ni = 200,
µi = 1/20 and qi(0) = 0, i = 1, . . . , 8.

Figure 12 demonstrates that, in the special case of no blocking and sinusoidal arrival

rate, our results are consistent with those derived in Eick et al. (1993). Using (42)

and (43), one can verify that the amplitude of the output rate decreases, as the line

becomes longer.

When capacity is lacking, blocking and customer loss prevail. Analytical expres-

sions such as (42) do not exist for stochastic models with blocking, which renders our

fluid model essential for analyzing system dynamics.

3.6.2 Bottleneck Location

In networks where stations are not identical, the location of the bottleneck in the

line has a significant effect on network performance. In our experiments, we analyzed

two types of networks (H = 0 and H = ∞), each with eight stations in tandem. In

each experiment, a different station is the bottleneck, thus it has the least processing

capacity 0.3µN , while the other stations are i.i.d. with processing capacity µN . Figure

13 presents the total number of customers in each station when the bottleneck is

located first or last. In both types of networks, the bottleneck location affects the

entire network.

Figure 14 presents the total number of blocked customers in each station where the

last station is the bottleneck. When H =∞, blocking begins at Station 7 and surges

backwards to the other stations. Then, the blocking is released in reversed order: first

in Station 1 and then in the other stations until Station 7 is freed up. In contrast,
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Figure 12: Input and output rates from networks with k i.i.d. stations – fluid model (solid
lines) vs. values from (42) (dashed lines). The sinusoidal arrival rate function in (40) with
λ̄ = 9, β = 8 and γ = 0.02, N = 200, µ = 1/20 and qi(0) = 0, ∀i ∈ {1, . . . , k}. Five networks
of different length are considered. Once the system reaches steady-state, the curves from the
fluid model and the analytic formula overlap.
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Figure 13: The bottleneck location effect on the total number of customers in each station.
For the bottleneck station, j, Nj = 120, µj = 1/40. For the other stations, i = 1, . . . , 8, i 6= j
Ni = 200, µi = 1/20, qm(0) = 0, m = 1, 2, . . . , 8, and λ(t) = 2t, 0 ≤ t ≤ 40.

when H = 0, blocking occurs only at Station 8. The blocking does not affect the other

stations since Station 7 is not saturated, due to customer loss.

3.6.3 Waiting Room Size

We now examine the effect of waiting room size before the first station. Figure 15

presents this effect on a network with four i.i.d. stations in tandem, as the size of the

waiting room before the first station increases from zero to infinity. The left plot in

Figure 15 presents the total number of customers in the network, and the right plot

presents the network output rate. The effect of the waiting room size on these two

performances is similar. As the waiting room becomes larger, fewer customers are

lost, and therefore, the total number of customers in the network and the output rate

increase.
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Figure 14: Number of blocked customers in each station when the last station (Station 8)
is the bottleneck. Ni = 200, µi = 1/20, i = 1, . . . , 7, N8 = 120, µ8 = 1/40. qm(0) = 0,
m = 1, . . . , 8, and λ(t) = 2t, 0 ≤ t ≤ 40. On the left, the curves for Stations 1–6 are zero
and overlap.
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Figure 15: Waiting room size effect on the total number of customers (left plot) and on the
output rate (right plot) in a network with four i.i.d. stations, where Ni = 200, µi = 1/20,
qi(0) = 0, i = 1, 2, 3, 4 and λ(t) = 2t, 0 ≤ t ≤ 40.

3.6.4 Sojourn Time in the System

It is of interest to analyze system sojourn time and the factors that affect it. We

begin by analyzing a network with two stations in tandem. Figure 16 presents the

effect of the waiting room size and the bottleneck location on average sojourn time

and customer loss. When there is enough waiting room to eliminate customer loss, the

minimal sojourn time is achieved when the bottleneck is located at Station 2. This

adds to Avi-Itzhak (1965) and Avi-Itzhak and Yadin (1965), who found that the order

of stations does not affect the sojourn time when service durations are deterministic

and the number of servers in each station is equal. When the waiting room is not large

enough to prevent customer loss, there exists a trade-off between average sojourn
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Figure 16: The effects of waiting room size and bottleneck location on sojourn time and
customer loss in a tandem network with two stations, where qm(0) = 0, m = 1, 2, and
λ(t) = 20, 0 ≤ t ≤ 100. In the bottleneck station, j, Nj = 120 and µj = 1/40; in the other
station, i, Ni = 200 and µi = 1/20.

time and customer loss. The average sojourn time is shorter when the bottleneck is

located first; however, customer loss, in this case, is greater. Explaining in detail this

phenomenon requires further research.

We conclude with some observations on networks with k stations in tandem. Figure

17 presents the average sojourn time for different bottleneck locations and waiting

room sizes. When the waiting room size is unlimited, the shortest sojourn time is

achieved when the bottleneck is located at the end of the line. Conversely, when the

waiting room is finite, the shortest sojourn time is achieved when the bottleneck is in

the first station. Moreover, when the waiting room is finite, the sojourn time, as a

function of the bottleneck location, increases up to a certain point and then begins to

decrease. This is another way of looking at the bowl-shaped phenomenon (Hillier and

Boling, 1967; Conway et al., 1988) of production line capacity. In the recent example,

the maximal sojourn time is achieved when the bottleneck is located at Station 6;

however, other examples show that it can happen at other stations as well. To better

understand this, one must analyze the components of the sojourn time—namely, the

waiting time before Station 1, the blocking time at Stations 1, . . . , 7, and the service
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Figure 17: The effects of waiting room size and bottleneck location on the average sojourn
time in a tandem network with eight station. Here, qm(0) = 0, m = 1, . . . , 8, and λ(t) = 20,
0 ≤ t ≤ 100. In the bottleneck station, j, Nj = 120 and µj = 1/40; in all other stations,
i = 1, 2, . . . , 8, i 6= j, Ni = 200 and µi = 1/20.

time at Stations 1, . . . , 8. Since the total service time was the same in all the networks

we examined, the pattern of the sojourn time is governed by the sum of the blocking

and waiting times. Figure 18 presents each of these two components. The average

waiting time (right plot) decreases as the bottleneck is located farther down the line.

However, the blocking time (left plot) increases up to a certain point and then starts

to decrease. To better understand the non-intuitive pattern of the average blocking

time, one must analyze the components of the blocking time. In this case, it is the sum

of the blocking time in Stations 1, . . . , 7. Figure 19 presents the blocking time in each

station and overall when H = 0. The blocking time in Station i, i = 1, . . . , 7, equals

zero when Station i is the bottleneck, since its exit is not blocked. Further, it reaches its

maximum when Station i+ 1 is the bottleneck. The sum of the average blocking time

in each station yields the total blocking time and its increasing–decreasing pattern.

60



1 2 3 4 5 6 7 8

Bottleneck location

0

50

100

150

200

250

300

A
ve

ra
ge

 b
lo

ck
in

g 
tim

e

H=0
H=200
H=400
H=600
H=800
H = ∞

1 2 3 4 5 6 7 8

Bottleneck location

0

50

100

150

200

250

300

A
ve

ra
ge

 w
ai

tin
g 

tim
e

H=0
H=200
H=400
H=600
H=800
H = ∞

Figure 18: The effects of waiting room size and bottleneck location on the average blocking
time (left plot) and the average waiting time (right plot). The summation of the waiting
time, blocking time and service time yields the sojourn times presented in Figure 17.
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Figure 19: Average blocking time in each station and overall when H = 0.
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4 Time-varying Tandem Queues under the BBS Mechanism

4.1 Introduction

Thus far, in Sections 2 and 3, we analyzed the Blocking After Service (BAS) mech-

anism. In this section, we analyze the Blocking Before Service (BBS) mechanism,

which is also referred to as communication blocking or two-stage blocking (Perros,

1994; Balsamo et al., 2001). Under BBS, a service cannot begin at Station i, if there

is no available capacity (storage or service) at Station i+ 1.

4.1.1 Motivation and Examples

Clearly, the BBS mechanism is prevalent in telecommunication networks (Suri and

Diehl, 1984; Frein and Dallery, 1989; Seo et al., 2008). However, BBS is not uncom-

mon in production lines; for example, in the chemical and pharmaceutical industries

(Dogan-Sahiner and Altiok, 1998). In these production lines, work-in-process can

be unstable or unsafe and, thus, cannot be detained/blocked after certain processes

but rather should be immediately transferred to crystallization. Therefore, a pro-

cess/reaction in certain stations cannot begin before the crystallizer in the subsequent

stations is available. BBS can also be found in healthcare systems, for example in

short procedures such as cataract surgery, cardiac catheterization and hernia repair;

the procedure begins only when there is available room for the patient in the recovery

room. Other examples are the hospital boarding ward between the emergency depart-

ment and the inpatient wards, and the emergency care chain of cardiac in-patient flow

De Bruin et al. (2007). In this latter chain, patients are refused or diverted at the

beginning (First cardiac Aid (FCA) and Coronary Care Unit (CCU)) due to unavail-

ability of beds downstream the care chain.

Besides communication, manufacturing and healthcare systems, our fluid models with

blocking also have the potential to support transportation implementations. Fluid

models originated, in fact, from transportation networks, in which entities that flow

through the system are animated as continuous fluid (Daganzo et al., 2012). Such

implementations could support/evaluate the practice of releasing cars to highways

during rush hours (Bickel et al., 2003) or estimate travel times by navigation software

(autonomous vehicles).
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4.1.2 Results

In Section 4.4 a stochastic model for a many-server tandem network under the BBS

mechanism, time-varying arrivals and finite buffers before the first station and between

stations. This model includes reflection, since an arriving job is forced to leave the

system if Station 1 is full. Then, using the Functional Strong Law of Large Numbers

(FSLLN), we develop and prove a fluid limit of the stochastic model in the many-

server regime: system capacity (number of servers) increases indefinitely jointly with

demand (arrival rates). Fluid models have proven to be accurate approximations for

time-varying stochastic models, which are otherwise intractable (Mandelbaum et al.,

1998, 1999; Whitt, 2004, 2006; Pang and Whitt, 2009; Liu and Whitt, 2011a, 2014).

We establish existence and uniqueness of the fluid approximation, which is charac-

terized by differential equations with reflection. In order to easily implement the

differential equations numerically, we transform them into differential equations with

discontinuous right-hand side (RHS) (Filippov, 2013; Zychlinski et al., 2018b), but

no reflection. We validate the accuracy of our fluid models against stochastic simu-

lation, which amplifies the simplicity and flexibility of fluid models in capturing the

performance of time-varying networks altering between overloaded and underloaded

periods.

Finally (Section 4.5), we develop steady-state closed-form expressions for the num-

ber of jobs in service at each station under the BAS (Blocking After Service) and BBS

mechanisms. These expressions facilitate comparisons of network performances; in

particular, comparing the number of jobs in each station and network throughput. In

Section 4.5.2, we conclude the paper with an example of designing transfer protocols

from surgery to recovery rooms in hospitals.

4.2 Literature Review

The most common types of blocking mechanisms for tandem flow lines are BAS and

BBS (Altiok (1982); Perros (1994); Balsamo et al. (2001)). The BBS mechanism can

be sub-categorized into several types; we focus on Server Occupied, where a server can

store a blocked job before its service begins (Desel and Silva, 1998). Thus, under this

mechanism, a job can enter Station i, but cannot begin service until there is available

capacity (buffer space or server) at Station i + 1. Another BBS mechanism is Server
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Not Occupied, where a blocked job cannot occupy a server. Thus, a job can enter a

station (occupy a server), and begin its service, only when there is available capacity

(storage or service) at the next station. We focus on BBS - Server Occupied, in order

to compare it with the BAS mechanism, in which blocked jobs can also occupy servers

(Balsamo et al., 2001).

In Avi-Itzhak and Yadin (1965), a steady-state analysis under the BAS mechanism

was conducted, for a single-server network with two tandem stations, Poisson arrival

process and no intermediate buffers. This system was generalized to k stations with

deterministic service times in Avi-Itzhak (1965) and to the BBS mechanism in Avi-

Itzhak and Levy (1995). Under the analyzed BBS, a job can enter a station only if the

next k stations are available. In Avi-Itzhak and Halfin (1993), a k-station single-server

network, with no intermediate buffers and an unlimited buffer before the first station,

was analyzes under BAS and BBS. Note that the methodology we develop can, with

slight modification (see Remark 4.2), accommodate any k-stage blocking, k ≥ 2.

Approximation techniques, usually via the decomposition approach, were applied to

tandem networks in steady-state under BAS (Gershwin, 1987; Brandwajn and Jow,

1988; Dallery and Frein, 1993; van Vuuren et al., 2005; Osorio and Bierlaire, 2009).

Several papers develop algorithms for approximating the steady-state throughput of

closed single-server cyclic queueing networks with finite buffers (under both BBS and

BAS in Onvural and Perros (1989) and under BBS in Suri and Diehl (1984) and Frein

and Dallery (1989)).

4.3 Contribution

Our contributions enrich existing models by adding predictable time variability, multi-

server stations and a finite buffer before the first station, which leads to job loss

when it is full. Moreover, we provide an analytic comparison between BBS and BAS,

that yields operational insights. In particular, we quantify the differences between

throughputs and job loss rate under BBS and BAS, including the conditions under

which they coincide.
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4.4 The Model

4.4.1 Notations and Assumptions

We model a network with k stations in tandem, as illustrated in Figure 20. This FCFS

Figure 20: A network with k stations in tandem under the BBS mechanism.

system is characterized, to a first order, by the following (deterministic) parameters:

1. Arrival rate to Station 1: λ(t), t ≥ 0;

2. Service rate µi > 0, i = 1, 2, . . . , k;

3. Number of servers Ni, i = 1, 2, . . . , k;

4. Buffer size Hi, i = 1, 2, . . . , k; Hi can vary from 0 to ∞, inclusive.

The stochastic model is created from the following stochastic building blocks: A,

Di, Qi(0), i = 1, 2, . . . , k, all of which are assumed to be independent. Specifically:

1. External arrival process A = {A(t), t ≥ 0}; A is a counting process, in which

A(t) represents the external cumulative number of arrivals up to time t; we assume

the existence of (25).

2. “Basic” nominal service processes Di = {Di(t), t ≥ 0}, i = 1, 2, . . . , k, where

Di(t) are standard (rate 1) Poisson process.

3. The stochastic process Q = {Q1(t), . . . , Qk(t), t ≥ 0} denotes a stochastic queue-

ing process in which Qi(t) represents the total number of jobs at Station i at time t

(queued and in service).

4. Initial number of jobs in each station, denoted by Qi(0), i = 1, 2, . . . , k.

4.4.2 The Stochastic Model

Service at Station i can begin only when there is an available server at Station i and

available capacity (idle server or buffer space) at Station i+ 1. If there is an available

server at Station i, but no available capacity at Station i + 1, the job is blocked at

Station i (occupies a server, but not receiving service). If there is no available server

at Station i, the job waits at Buffer i. If Buffer 1 is full, an arriving job is forced to

leave the system and is lost. Note that in Figure 20, Bi denotes the blocked jobs at
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Station i, their service is delayed until capacity becomes available at Station i+ 1.

The process Q, which represents the number of jobs at each station, is characterized

by the following equations:

Q1(t) = Q1(0) + A(t)−
∫ t

0

1{Q1(u−)=H1+N1}dA(u) (44)

−D1

(
µ1

∫ t

0

[Q1(u) ∧N1 ∧ (H2 +N2 −Q2(u))]du

)
,

Qi(t) = Qi(0) +Di−1

(
µi−1

∫ t

0

[Qi−1(u) ∧Ni−1 ∧ (Hi +Ni −Qi(u))]du

)
−Di

(
µi

∫ t

0

[Qi(u) ∧Ni ∧ (Hi+1 +Ni+1 −Qi+1(u))]du

)
, i = 2, . . . , k − 1;

Qk(t) = Qk(0) +Dk−1

(
µk−1

∫ t

0

[Qk−1(u) ∧Nk−1 ∧ (Hk +Nk −Qk(u))]du

)
−Dk

(
µk

∫ t

0

[Qk(u) ∧Nk]du

)
; t ≥ 0.

The integral in the first line of (44) represents the number of jobs that were forced to

leave the system up until time t, since when they arrived, Station 1 was full. Note

that when H1 = ∞, the integral equals zero since no customers are forced to leave

the system. This simplifies the model, since there is no reflection. The second line in

(44) represents the number of jobs that completed service at Station 1, up until time

t. Since the available storage capacity at Station 2 at time t is H2 + N2 − Q2(t), the

term in the rectangle parenthesis represents the number of jobs at service in Station

1.

Now, we rewrite (44), as follows:



Q1(t)

Q2(t)

...

Qk(t)


=



Y1(t)− L(t)

Y2(t)

...

Yk(t)


≤



H1 +N1

H2 +N2

...

Hk +Nk


, t ≥ 0,

dL(t) ≥ 0, L(0) = 0,∫∞
0

1{Q1(u−)<H1+N1}dL(u) = 0,

(45)
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where

Y1(t) = Q1(0) + A(t)−D1

(
µ1

∫ t

0

[Q1(u) ∧N1 ∧ (H2 +N2 −Q2(u))]du

)
,

Yi(t) = Qi(t), i = 2, . . . , k,

L(t) =

∫ t

0

1{Q1(u−) =H1+N1}dA(u). (46)

The last equation of (46) is a complementary relation between L and Q: L(·) increases

at time t only if Q1(t) ≥ H1 +N1 (see Section 3.4.1 for details).

We simplify (45), so that the reflection will occur at zero, by letting

Ri(t) = Ni +Hi −Qi(t), i = 1, . . . , k, t ≥ 0, (47)

which gives rise to the following equivalent to (45):



R1(t)

R2(t)

...

Rk(t)


=



Ỹ1(t) + L(t)

Ỹ2(t)

...

Ỹk(t)


≥



0

0

...

0


, t ≥ 0,

dL(t) ≥ 0, L(0) = 0,∫∞
0

1{R1(t)> 0}dL(t) = 0,

(48)

where Ỹi = Hi + Ni − Yi. From (48), we see that L(t) ≥ −Ỹ1(t) and therefore,

L(t) = sup0≤s≤t

(
−Ỹ1(s)

)+

. Note that this solution (or rather representation) applies

even though Ỹ1 depends on R (see Mandelbaum and Pats (1995); Zychlinski et al.

(2018b) for details).

4.4.3 Fluid Approximation

We now develop a fluid limit for our queueing model through the Functional Strong

Law of Large Numbers (FSLLN). We begin with (48) and scale up the arrival rate and

the size of the system (servers and waiting room) by a factor of η > 0, η → ∞. This

parameter η will serve as an index of a corresponding queueing process Rη, which is
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the unique solution to the following Skorokhod’s representation: Rη
1(t) = Ỹ η

1 (t) + Lη(t),

Rη
i (t) = Ỹ η

i (t), i = 2, . . . k, t ≥ 0,
(49)

where

Ỹ1
η
(·) =Rη

1(0)− Aη(·) +D1

(
µ1

∫ ·
0

[(ηH1 + ηN1 −Rη
1(u)) ∧ ηN1 ∧Rη

2]du

)
Ỹi
η
(·) =Rη

i (0)−Di−1

(
µi−1

∫ ·
0

[(
ηHi−1 + ηNi−1 −Rη

i−1(u)
)
∧ ηNi−1 ∧Rη

i

]
du

)
+Di

(
µi

∫ t

0

[
(ηHi + ηNi −Rη

i ) ∧ ηNi ∧Rη
i+1(u)

]
du

)
, i = 2, . . . k − 1;

Ỹk
η
(·) =Rη

k(0)−Dk−1

(
µk−1

∫ ·
0

[(
ηHk−1 + ηNk−1 −Rη

k−1(u)
)
∧ ηNk−1 ∧Rη

k

]
du

)
+Dk

(
µi

∫ t

0

[(ηHk + ηNk −Rη
k) ∧ ηNk]du

)
;

Lη(·) =

∫ ·
0

1{Rη1(u−) = 0}dA
η(u).

Here, Aη = {ηA(t), t ≥ 0} is the arrival process under our scaling; thus,

EAη(t) = η

∫ t

0

λ(u)du, t ≥ 0.

We now introduce the scaled processes rη = {rη(t), t ≥ 0}, lη = {lη(t), t ≥ 0} and

yη = {yη(t), t ≥ 0}, by rη(t) = η−1Rη(t), lη(t) = η−1Lη(t), yη(t) = η−1Y η(t), re-

spectively. Applying the methodology developed in Zychlinski et al. (2018b), Theorem

1, yields the following asymptotic behavior of rη. Suppose that

{
η−1Aη(t), t ≥ 0

}
→
{∫ t

0

λ(u)du, t ≥ 0

}
, u.o.c. as η →∞, (50)

as well as

lim
η→∞

rη(0) = r(0), a.s., (51)

where r(0) is a given non-negative deterministic vector. Then, as η → ∞, the family

{rη} converges u.o.c. over [0,∞), a.s., to a deterministic function r. This r is the
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unique solution to the following differential equation (DE) with reflection:



r1(t) = r1(0)−
∫ t

0
[λ(u)− µ1 ((H1 +N1 − r1(u)) ∧N1 ∧ r2(u))] du+ l(t) ≥ 0,

ri(t) = ri(0)−
∫ t

0

[
µi−1 ((Hi−1 +Ni−1 − ri−1(u)) ∧Ni ∧ ri(u))

−µi ((Hi +Ni − ri(u)) ∧Ni ∧ ri+1(u))
]
du ≥ 0, i = 2, . . . , k − 1;

rk(t) = rk(0)−
∫ t

0
[µk−1 ((Hk−1 +Nk−1 − rk−1(u)) ∧Nk−1 ∧ rk(u))]

−µk ((Hk +Nk − rk(u)) ∧Nk) du ≥ 0,

dl(t) ≥ 0, l(0) = 0,∫∞
0

1{r1(t)> 0}dl(t) = 0;

(52)

The following proposition provides an equivalent representation to (52) in terms

of our original formulation (i.e. q(·)); see Appendix L for details. Implementing the

solution in (53) numerically is straightforward since it is given by a set of differential

equations with discontinuous RHS but, notable, without reflection.

Proposition 4.1. The stochastic queueing family Qη, η > 0 converges u.o.c. over

[0; 1), a.s., as η → ∞ to a deterministic function q. This q is the unique solution to

the following differential equation (DE) with refection:

q1(t) = q1(0)− µ1

∫ t

0

[q1(u) ∧N1 ∧ (H2 +N2 − q2(u))] du+

∫ t

0

[
1{q1(u)<H1+N1} · λ(u)

+ 1{q1(u)=H1+N1} · [λ(u) ∧ µ1 [N1 ∧ (H2 +N2 − q2(u))]] du,

qi(t) = qi(0) + µi−1

∫ t

0

[qi−1(u) ∧Ni−1 ∧ (Hi +Ni − qi(u))] du

− µi
∫ t

0

[qi(u) ∧Ni ∧ (Hi+1 +Ni+1 − qi+1(u))] du, i = 2, . . . , k − 1;

qk(t) = qk(0) + µk−1

∫ t

0

[qk−1(u) ∧Nk−1 ∧ (Hk +Nk − qk(u))] du

− µk
∫ t

0

[qk(u) ∧Nk] du. (53)

The function q will be referred to as the fluid limit associated with the queueing family

Qη.

The function q will be referred to as the fluid limit associated with the queueing family

Qη, η > 0.
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Remark 4.1. The model can easily accommodate Markovian abandonments while be-

ing blocked or while waiting. To be more specific, let θ be the individual abandonment

rate. Then, the abandonment rate of blocked jobs from each Buffer i, i = 1, . . . , k − 1,

at time t would be θ [Ni − qi(t) ∧ (Hi+1 +Ni+1 − qi+1(t))]+; the abandonment rate of

waiting jobs from Station i, i = 1, . . . , k, at time t would be θ [qi(t)−Ni]
+. The math-

ematical analysis of models with abandonments does not differ from the one without.

Remark 4.2. The model can also easily accommodate a k-stage blocking mechanism,

in which a job begins service at a station only if the next k stations are available.

For example, accommodating the case where all downstream stations are required to be

available, would be done by replacing the terms ∧(Hi + Ni − qi(u)), i = 2, . . . , k − 1,

in (53) with ∧
∧k
j=i (Hj +Nj − qj(u)).

4.4.4 Numerical Examples

To demonstrate that our proposed fluid model accurately describe the flow of jobs in

the networks, we compared it to the average behavior of a stochastic simulation model

constructed in SimEvents/MATLAB. In the simulation model, jobs arrive according

to a non-homogeneous Poisson process that was used to represent a process with a

general, time-dependent arrival rate. Service treatment was randomly generated from

exponential distributions. Let the arrival rate function be the sinusoidal function in

(40). Solving the fluid equations in (53) was done by recursion and time discretization.

Figure 21 shows the comparison between the total number of jobs at each station

according to the fluid model (solid lines) and the average simulation results over 500

replications (dashed lines). These four examples, among many others, show that the

fluid model accurately describes the underlying stochastic system it approximates.

4.5 Network Performance

In this section we focus on steady-state performance, in particular network throughput

under BBS and BAS (Section 4.5.1). The results we present were validated by discrete

stochastic simulations. Let si and q̄i, i = 1, . . . , k, denote the steady-state number of

jobs in service and the steady-state number of jobs (including in the buffer) at Station
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Figure 21: Total number of jobs at service - fluid model vs. simulation results, the sinusoidal
arrival rate function in (40) with λ̄ = 9, β = 8 and γ = 0.02, qi(0) = 0. In Plot A,
µ1 = µ2 = 1/20, H1 = H2 = 50, N1 = 200, N2 = 150; in Plot B, µ1 = 1/10, µ2 = 1/20,
µ3 = 1/20, H1 = H2 = H3 = 50, N1 = 100, N2 = 200 and N3 = 200.

i, respectively; thus,

si = q̄i ∧Ni ∧ (Hi+1 +Ni+1 − q̄i+1) , i = 1, . . . , k − 1, (54)

sk = q̄k ∧Nk.

For calculating steady-state performance, we start with (53), set λ(t) ≡ λ, t ≥ 0, and

qi(0) = qi(t) ≡ q̄i, ∀t ≥ 0, i = 1, . . . , k. We then get that

µ1s1 = λ · 1{q̄1<H1+N1} + [λ ∧ µ1 (N1 ∧ (H2 +N2 − q̄2))] · 1{q̄1=H1+N1}, (55)

µi−1si−1 = µisi, i = 2, . . . , k.

The following theorem identifies the network throughput and the number of jobs in

each station, in “fluid” steady-state under BBS. The proof of the theorem is provided

Appendix M.

Theorem 4.1. Let δ denote the network throughput in the fluid model. Then

δ = µisi = λ ∧
k∧
j=1

µjNj ∧
k∧
j=2

Hj +Nj

1/µj−1 + 1/µj
, i = 1, . . . , k. (56)

When δ = λ, then q̄j = λ/µj, j = 1, . . . , k. Otherwise (when δ < λ),

q̄1 = H1 +N1; (57)
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q̄j = Hj +Nj − δ/µi−1, j = 2, . . . , i;

q̄j = δ/µj, j = i+ 1, . . . , k;

here

i = min

arg min
k∧
j=1

µjNj, arg min
k∧
j=2

Hj +Nj

1/µj−1 + 1/µj

 . (58)

The interpretation of (56) is that the network throughput is determined according

to the minimum among the arrival rate, the processing capacity of the bottleneck (i.e.

the slowest station when all servers are occupied) and the processing capacity of a

“virtual” bottleneck, formed by two sequential stations. This is similar in spirit to

Dai and Vande Vate (2000), who defined a virtual workload condition for stability of

a two-station multi-class fluid network. As in our case, two stations form a “virtual”

bottleneck that determines the processing capacity of the entire network.

Note that H1, the buffer size before the first station, does not affect network through-

put. That is because network throughput depends on the arrival rate and the process-

ing capacities of the actual/virtual bottleneck. Increasing only the first buffer, even

to infinity, will not affect the network processing capacity.

4.5.1 Blocking After Service

Thus far, we focused on the BBS mechanism. Another common blocking mechanism is

BAS (Blocking After Service, also known as manufacturing blocking) (Balsamo et al.,

2001). Under BAS, a service begins at Station i when there is an available server

there. If upon completion of a service, there is no available capacity (buffer/server) at

Station i+ 1, the job is blocked at Station i while occupying a server there. Figure 22

illustrates the tandem network we analyze under manufacturing blocking. Note that

the blocked jobs are placed at the end of each station, rather than at the beginning,

as was in Figure 20. This change seems small but it is not: as shown momentarily, it

can significantly affect network performances (see Figure 23).

We now compare the performance of the two mechanisms. In particular, we are

interested in analyzing network throughput. Let δx denote the steady-state throughput

under mechanism x, x ∈ {BAS,BBS} (from now on, δ in (56) will be referred to as
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Figure 22: A network with k stations in tandem under the BAS mechanism.

δBBS); sxi , i = 1, . . . , k, denote the steady-state number of jobs in service, at Station i

under mechanism x. Applying to BAS the same methodology as we used for BBS (see

Equation (15) in Zychlinski et al. (2018b), with λ(t) ≡ λ, ∀t ≥ 0), yields the following

BAS throughput:

δBAS = µis
BAS
i = λ ∧

k∧
j=1

µjNj, i = 1, . . . , k. (59)

Remark 4.3. Note that Hi, i = 1, . . . , k, the buffer sizes throughout the network,

do not affect network throughput under BAS, which depends solely on the arrival rate

and the bottleneck processing capacity. The intuition behind this phenomenon stems

from considering the context in which our fluid models are applicable: networks with

many-server stations. In the limiting operational regime we consider, the dependency

on buffers in preventing starvation and idleness decreases, since stochastic fluctuations

are negligible on the fluid scale. In fact, buffers affect only second-order phenomena

(stochastic variability) but not the limiting (fluid) throughput which depends only on

the Law of Large Numbers (LLN). Under BBS, however, the internal buffers affect

network throughput (56), since they influence the bottleneck processing capacity.

Remark 4.4. The throughput under BBS, when adding sufficient buffer space after

each server, will be equal to the throughput under BAS for the same network without

the additional buffer spaces. This follows from our equations: When Hj ≥ Nj−1, then

Hj +Nj

1/µj−1 + 1/µj
≥
µjµj−1Nj−1

µj−1 + µj
+
µj−1µjNj

µj−1 + µj
≥ µj−1Nj−1 ∧ µjNj.

Hence, the term that involves buffers (the third term in (56)) does not determine the

throughput, and we get that δBBS = δBAS.

Figure 23 presents the total number of jobs in service at each station under the two

mechanisms. Note the sharp decrease in the number of jobs at Station 1 under BBS
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(the blue dashed lines) close to the origin. The reason for this is the empty system at

the outset. As the two stations begin to fill, that increases the number of blocked jobs

at Station 1 and, therefore, the number of jobs in service decreases.
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Figure 23: Total number of jobs in service at each station - BBS vs. BAS with q(0) = 0. In
Plot A, the sinusoidal arrival rate function in (40) with λ̄ = 9, β = 8 and γ = 0.02, N1 = 100,
N2 = 200, H1 = H2 = 50, µ1 = 1/10, µ2 = 1/20. In Plot B, the station order was replaced.
In Plot C, γ = 0.01 and a third station is added having N3 = 200, H3 = 50, µ3 = 1/20. In
Plot D, λ(t) = 20, t ≥ 0, N1 = 200, N2 = 100 and µ1 = µ2 = 1/20.

Combining (56) and (59) yields the following:

δBBS = δBAS ∧
k∧
j=2

Hj +Nj

1/µj−1 + 1/µj
,

thus, δBBS ≤ δBAS. The throughputs are equal when δBAS ≤
∧k
j=2

Hj +Nj

1/µj−1 + 1/µj
;

an example for such a case can be seen in Figure 23, Plot D. The reason why the

throughput under BBS is smaller or equal to the throughput under BAS is capacity

loss under the former. Capacity loss occurs when servers remain idle, while waiting
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for service to end at their previous station. This capacity loss also increases the rate

of job loss, γ ≡ λ− δ, which occurs when the first station is full and arriving jobs are

forced to leave; thus

γBBS =

λ−
 k∧
i=1

µiNi ∧
k∧
i=2

Hi +Ni

1/µi−1 + 1/µj

+

≥

[
λ−

k∧
i=1

µiNi

]+

= γBAS.

4.5.2 Example in a Surgery-Room Setting

In this section, we demonstrate how our models can yield design/operational insights in

a hospital setting that includes surgery rooms (Station 1) and recovery rooms (Station

2). After a surgery is completed, the patient is transferred to the recovery room. If

there are no available beds in the recovery room, the patient is blocked at the surgery

room, while preventing it from being cleaned and prepared for the next surgery. To

avoid such situations, in some hospitals a surgery begins only when there is an available

bed in the recovery room. Is this a worthwhile strategy?

In deciding on the preferable mechanism, we consider two performance measures:

throughput and sojourn time. The former is calculated by (56) and (59); the latter

is calculated by first calculating the number of patients in the system (Theorem 4.1)

and then, by applying Little’s law in steady-state (i.e. dividing the total number of

customers by the throughput). Let µ1 = 1/60, µ2 = 1/60, N1 = 10, N2 = 0, H1 = 10,

H2 = 0 and λ = 1/6 (time units are measured in minutes). This setting corresponds

to cataract surgeries, for example; under it, both BAS and BBS behave the same with

average throughput of ten patients per hour and average sojourn time of two hours.

Now, suppose that recovery takes on average two hours (instead of one), as in hernia

repair for example; then, the throughput under BAS remains 10 patients per hour,

but the throughput under BBS is reduced to 6.67 patients per hour. Moreover, while

the average sojourn time under BAS is 3 hours, under BBS it reaches 5 hours. Under

this setting, BAS is superior according to both performance measurements.

5 Summary and Future research Directions

This thesis is grounded on modeling, developing and analyzing time-varying fluid net-

works with blocking. Beyond having an intrinsic value of their own, these mathe-
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matical models are also strong limits of corresponding stochastic systems, which yield

operational insights on performance of the latter. Our models are motivated by three

applications: The first is patient flow analysis between hospitals and geriatric insti-

tutions, in order to improve their joint operation (Section 2); the second application

includes analysis of time-varying tandem flow lines with blocking, customer loss and

reflection (Section 3); the third application includes analysis of time-varying tandem

flow lines under the BBS mechanism, which arises in telecommunication networks,

production lines and healthcare systems (Section 4). These three applications are re-

lated through their essential characteristics: Time-variability and blocking.

Future research can include practical and theoretical directions. One possible direc-

tion is to exploit new data-driven and mathematical tools together with game-theory

analysis, to investigate and improve patient flow between the community, hospitals

and geriatric institutions. “Clalit”, the largest Israeli Health Maintenance Organiza-

tion (HMO), has recently provided us with patient flow data, at the level of individual

patients, between Emergency Departments, hospital wards and geriatric institutions.

Such individual patient flow data is usually confidential and very hard to attain. The

willingness of “Clalit” to share its data with us is significant and highlights the im-

portance it assigns to this issue. Analyzing these data will open up new opportunities

and directions for research in both exploratory data analysis (EDA) and queueing sci-

ence. The work we envision has the potential to reveal important features that cannot

be explained by existing models. The proposed EDA will enable conducting an inte-

grative analysis, for example, relating transfer delays to readmission rates, treatment

durations and patient clinical condition. Addressing these issues will most likely re-

quire developing new queueing models and theory, jointly with supporting statistical

analysis.

Another research direction will include several stakeholders such as the government,

HMOs and private or corporation hospitals. In order to capture the balance of forces

among these stakeholders, the analysis should accommodate all of them. Combining

these factors will require conducting a game theoretic view, in which each stakeholder

makes bed allocation decisions for the hospitals and institutions it operates. The mode

of analysis we envision is in the spirit of Zhang et al. (2016), who use game theoretic

analysis among hospitals to asses incentives by the United States Medicare and Med-

icaid policy for reducing readmissions.
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Yet another possible direction is to extend the development of our time-varying many-

server fluid models to fork-join networks with blocking (Dallery et al., 1994, 1997).

This direction would require specific definitions of new blocking mechanisms and pri-

ority protocols. For example, suppose that all servers at Station X are busy, and there

are blocked customers at Station Y and Z awaiting a server at X. When an X-server

becomes available, who among the waiting customers will get it?
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Appendices

A Fluid Model Validation

To validate our model we used the following patient flow data:

1. Two years of patient flow data from a district that includes four hospitals

and three geriatric institutions (three rehabilitation wards, two mechanical ventilation

wards and three skilled nursing wards).

2. Two years of waiting lists for geriatric wards, including individual waiting times

from our Partner Hospital.

Based on the patient flow data, model parameters were first estimated, then in-

spected and validated by expert doctors. The parameter values used for the vali-

dation are: µ1 = 1/4.85, µ2 = 1/30, µ3 = 1/160, µ4 = 1/45, β2 = 1/250, β3 =

1/1000, β4 = 1/1000, θ1 = 1/125, θ2 = 1/2500, θ3 = 1/1000, θ4 = 1/1000, N1 =

600, N2 = 226, N3 = 93, N4 = 120 (we used day as a time unit). For example, Station

1 contains 600 beds; the average treatment duration there is 4.85 days and the average

time to death is 125 days.

Estimating the rates of mortality and readmission were done using the MLE (Max-

imum Likelihood Estimator), that is prevalent for estimating censored data, such as

patience and retries in service systems (see Zohar et al., 2002 for details). Here, we

adjust the estimator for the case where patients die while being in treatment, rather

than just while waiting in queue. To this end, instead of the actual waiting time, we

consider the actual treatment time.

The time-varying arrival rates and routing probabilities were also derived from the

data. The average monthly arrival rate was 3,632 patients per month (with a min-

imum of 3,559 and maximum 3,774), and the average routing probabilities to each

geriatric ward were 9% for rehabilitation wards, 0.8% for mechanical ventilation and

2.4% for skilled nursing care.

Using these parameters, we numerically (via Matlab) solved (7), which resulted in

the number of patients in each ward at any time (qi(t) for i = 1, 2, 3, 4) and the number

of blocked patients waiting for each ward (bi(t) for i = 2, 3, 4). Figure 3 shows the

length of the waiting lists for each ward, using a daily resolution during one calendar

year, according to the data and the fluid model. The very good fit implies that the
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fluid model is appropriate for modeling the system considered here. The three geriatric

wards work at full capacity throughout the year; there are always blocked patients in

the hospital and any vacant geriatric bed is immediately filled.

In addition to comparing the fluid model with real data, we validated its accuracy

against a discrete event simulation of a stochastic system, which we developed for this

purpose in SimEvents/MATLAB. We conducted experiments for several scenarios; in

each one, we considered three levels of the scaling parameter η. In our simulation

model, the patients arrive according to a non-homogeneous Poisson process that was

used to represent a process with a general, time-dependent arrivals, as prevalent in

hospitals (Bekker and de Bruin, 2010; Yom-Tov and Mandelbaum, 2014; Shi et al.,

2015; Armony et al., 2015). The treatment rates were randomly generated from expo-

nential, Phase-type (as a mixture of two exponentials) and Lognormal distributions,

which are typical for describing lengths of stay in hospitals and geriatric wards (Mc-

Clean and Millard, 1993; Marazzi et al., 1998; Xie et al., 2005; McClean and Millard,

2006; Faddy et al., 2009; Armony et al., 2015). The expectations of these three distri-

butions were equal when compared in a specific scenario. For each scenario and η we

used 300 replications, each for 1000 days, and calculated the Root Mean Square Error

(RMSE) using the following formula:

RMSE =

√√√√ ∫ T
t=0

∑4
i=2

[
qsimi (t)− qfluidi (t)

]2
dt

T
;

here qsimi (t) is the total number of patients in Station i at time t according to the simu-

lation results and qfluidi (t) is the number according to the fluid model. The results are

summarized in Tables 5 and 6. An example for Scenario 1 with η = 10 is illustrated

in Figure 24. As expected, fluid models become more accurate as the scaling param-

eter η becomes larger. In general, the best results were achieved for the Exponential

distributions. However, the model is quite accurate even for the Phase-type and Log-

normal distributions. In all cases, the fluid model accurately forecasts, within a 95%

confidence interval, the stochastic behavior of the corresponding simulation. The per-

centage of error, relative to system capacity, varied from 0.6% to 2.4%. However, for

the size of systems in which we are interested (Scenarios 1–18), the percentage of error

was less than 1%.
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Figure 24: Scenario 1 in Table 5. On the right: Total number of patients in each geriatric
ward - fluid model vs. simulation. On the left: The arrival rate λ(t).

No. N1, N2, N3, N4 µ1, µ2, µ3, µ4 p12, p13, p14 distribution λ(t)

1 600, 234, 93, 120 1/4.85, 1/30, 1/160, 1/45 0.09, 0.008, 0.024 Exponential polyno.

2 600, 234, 93, 120 1/4.85, 1/30, 1/160, 1/45 0.09, 0.008, 0.024 Phase-Type polyno.

3 600, 234, 93, 120 1/4.85, 1/30, 1/160, 1/45 0.09, 0.008, 0.024 Lognormal polyno.

4 600, 234, 93, 120 1/4.85, 1/30, 1/160, 1/45 0.09, 0.008, 0.024 Exponential polyno./10

5 600, 234, 93, 120 1/4.85, 1/30, 1/160, 1/45 0.09, 0.008, 0.024 Phase-Type polyno./10

6 600, 234, 93, 120 1/4.85, 1/30, 1/160, 1/45 0.09, 0.008, 0.024 Lognormal polyno./10

7 600, 234, 93, 120 1/4.85, 1/30, 1/160, 1/45 0.09, 0.008, 0.024 Exponential polyno.·10

8 600, 234, 93, 120 1/4.85, 1/30, 1/160, 1/45 0.09, 0.008, 0.024 Phase-Type polyno.·10

9 600, 234, 93, 120 1/4.85, 1/30, 1/160, 1/45 0.09, 0.008, 0.024 Lognormal polyno.·10

10 600, 200, 200, 200 1/5, 1/30, 1/30, 1/30 0.25, 0.25, 0.25 Exponential polyno.

11 600, 200, 200, 200 1/5, 1/30, 1/30, 1/30 0.25, 0.25, 0.25 Phase-Type polyno.

12 600, 200, 200, 200 1/5, 1/30, 1/30, 1/30 0.25, 0.25, 0.25 Lognormal polyno.

13 600, 200, 200, 200 1/5, 1/30, 1/30, 1/30 0.25, 0.25, 0.25 Exponential polyno.·10

14 600, 200, 200, 200 1/5, 1/30, 1/30, 1/30 0.25, 0.25, 0.25 Phase-Type polyno.·10

15 600, 200, 200, 200 1/5, 1/30, 1/30, 1/30 0.25, 0.25, 0.25 Lognormal polyno.·10

16 600, 200, 100, 100 1/5, 1/15, 1/15, 1/15 0.25, 0.25, 0.25 Exponential polyno.

17 600, 200, 100, 100 1/5, 1/15, 1/15, 1/15 0.25, 0.25, 0.25 Phase-Type polyno.

18 600, 200, 100, 100 1/5, 1/15, 1/15, 1/15 0.25, 0.25, 0.25 Lognormal polyno.

19 60, 20, 20, 20 1/5, 1/30, 1/30, 1/30 0.09, 0.008, 0.024 Exponential polyno./10

20 60, 20, 20, 20 1/5, 1/30, 1/30, 1/30 0.09, 0.008, 0.024 Phase-Type polyno./10

21 60, 20, 20, 20 1/5, 1/30, 1/30, 1/30 0.09, 0.008, 0.024 Lognormal polyno./10

Table 5: Parameters of scenarios. The polynomial arrival rate is λ(t) = C1t
7 +C2t

6 +C3t
5 +

C4t
4 +C5t

3 +C6t
2 +C7t+C8 where C1 = 5.8656 · 10−17, C2 = −2.1573 · 10−13, C3 = 3.0756 ·

10−10, C4 = −2.1132 · 10−7, C5 = 6.9813 · 10−5, C6 = −0.0091, C7 = 0.0718, C8 = 130.8259.
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No. η = 1 η = 10 η = 100 No. η = 1 η = 10 η = 100

1 8.07 2.42 0.89 12 11.4 5.12 1.14

2 8.92 3.52 1.24 13 7.42 2.13 0.78

3 11.68 5.21 1.32 14 7.74 3.41 0.96

4 9.87 2.78 0.97 15 10.98 4.64 1.01

5 10.76 3.85 1.45 16 8.01 2.23 0.72

6 12.52 5.69 1.38 17 8.59 3.41 0.91

7 7.67 2.28 0.82 18 11.23 4.76 0.98

8 8.32 3.44 1.05 19 2.35 1.95 0.58

9 11.21 5.09 1.14 20 2.76 2.28 1.24

10 8.03 2.28 0.82 21 2.91 2.43 1.32

11 8.65 3.5 1.05 Avg 8.53 3.56 1.04

Table 6: Total number in each station - fluid model vs. Simulation - RMSE results

B Fluid Model for Blocking: Convergence of the Stochastic

Model

We now develop a fluid model with blocking, mortality and readmissions for a network

with k stations, as illustrated in Figure 25. Our system is characterized by the following

Figure 25: A k-station network

(deterministic) parameters:

1. Arrival rate to Station 1 is λ(t), t ≥ 0;

2. Service rate µi > 0, i = 1, . . . , k;

3. Mortality rate θi > 0, i = 1, . . . , k;

4. readmission rate βi > 0, i = 2, . . . , k, from Station i back to Station 1;

5. Number of servers (beds) Ni, i = 1, . . . , k;

6. Transfer probability pij(t) from Station i to Station j;
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5. Unlimited waiting room before Station 1;

6. No waiting room before Stations i = 2, . . . , k.

The stochastic model is created from the following stochastic building blocks A, Si,

i = 1, . . . , (2k − 1), Mi, i = 1, . . . , k and Ri, i = 2, . . . , k, which are assumed to be

independent, as well as Xi(0), i = 1, . . . , k:

1. External arrival process A = {A(t), t ≥ 0}; A is a counting process, in which A(t)

represents the external cumulative number of arrivals up to time t. The arrival

rate λ(t), t ≥ 0 is related to A via

EA(t) =

∫ t

0

λ(u)du, t ≥ 0.

A special case is the non-homogeneous Poisson process, for which

A(t) = A0

(∫ t

0

λ(u)du

)
, t ≥ 0,

where A0(·) is a standard Poisson process (constant arrival rate 1).

2. “Basic” nominal service processes Si = {Si(t), t ≥ 0}, i = 1, .., (2k − 1), where

Si(t) are standard Poisson processes.

3. “Basic” nominal mortality processes Mi = {Mi(t), t ≥ 0}, i = 1, .., k, where

Mi(t) are standard Poisson processes.

4. “Basic” nominal readmission processes Ri = {ri(t), t ≥ 0}, i = 2, .., k, where ri(t)

are standard Poisson processes.

5. Initial number of customers in each state Xi(0), i = 1, . . . , k.

The above building blocks will yield the following k stochastic process, which captures

the state of our system:

The stochastic process X1 = {X1(t), t ≥ 0} denotes the number of arrivals to

Station 1 that have not completed their service at Station 1 at time t.

The stochastic process Xi = {Xi(t), t ≥ 0}, i = 2, . . . , k denotes the number of

customers that have completed service at Station 1, require service at Station i, but

have not yet completed their service at Station i at time t.
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We assume that the blocking mechanism is blocking-after -service (BAS) (Balsamo

et al., 2001). Thus, if upon service completion at Station 1, the destination station is

saturated, the customer will be forced to stay in Station 1, while occupying a server

there until the destination station becomes available. The latter means that when a

server completes service, the blocked customer immediately transfers and starts service.

Let Q = {Q1(t), Q2(t), .., Qk(t), t ≥ 0} denote the stochastic queueing process in

which Qi(t) represents the number of customers at Station i at time t. The process Q

is characterized by the following equations:

Q1(t) =X1(t) +
k∑
i=2

(
Xi(t)−Ni

)+

;

Qj(t) =Xj(t) ∧Nj, j = 2, . . . , k;

here

X1(t) = X1(0) + A(t) +
k∑

m=2

Rm

(
βm

∫ t

0

(Xm(u) ∧Nm)dm

)
−M1

(
θ1

∫ t

0

Xm(u)du

)

−
k∑

m=2

Sm

(
µ1

∫ t

0

p1m(u)

[
·X1(u) ∧

(
N1 −

k∑
i=2

(
Xi(u)−Ni

)+
)]

du

)

− S1

(
µ1

∫ t

0

(
1−

k∑
i=2

p1i(u)

)[
X1(u) ∧

(
N1 −

k∑
i=2

(
Xi(u)−Ni

)+
)]

du

)
,

(60)

Xj(t) = Xj(0) + S1

(
µ1

∫ t

0

p1j(t)

[
X1(u) ∧

(
N1 −

k∑
i=2

(
Xi(u)−Ni

)+
)]

du

)

−Rj

(
βj

∫ t

0

(Xj(u) ∧Nj)dm

)
−Mj

(
θj

∫ t

0

Xj(u)du

)
− Sk−1+j

(
µj

∫ t

0

(Xj(u) ∧Nj)du

)
, j = 2, . . . , k. (61)

An inductive construction over time shows that (60) uniquely determines the process

X.

Note that
(
Xi(t)−Ni

)+
, i = 2, . . . , k, is the number of blocked customers waiting for

an available server in Station i.
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B.1 Fluid Approximation - FSLLN

We now develop a fluid limit for our queueing model through a Functional Strong Law

of Large Numbers (FSLLN). We begin with (60) and scale up the arrival rate and the

number of servers by η > 0, η →∞. This η will serve as an index of a corresponding

queueing process Xη:

Xη
1 (t) = Xη

1 (0) + Aη(t) +
k∑

m=2

Rm

(
βm

∫ t

0

(Xη
m(u) ∧ ηNm)dm

)
−M1

(
θ1

∫ t

0

Xη
m(u)du

)

−
k∑

m=2

Sm

(
µ1

∫ t

0

p1m(u)

[
Xη

1 (u) ∧

(
ηN1 −

k∑
i=2

(
Xη
i (t)− ηNi

)+
)]

du

)

− S1

(
µ1

∫ t

0

(
1−

k∑
i=2

p1i(u)

)[
Xη

1 (u) ∧

(
ηN1 −

k∑
i=2

(
Xη
i (t)− ηNi

)+
)]

du

)
,

Xη
j (t) = Xη

j (0) + S1

(
µ1

∫ t

0

p1j(u)

[
Xη

1 (u) ∧

(
ηN1 −

k∑
i=2

(
Xη
i (t)− ηNi

)+
)]

du

)

−Rj

(
βj

∫ t

0

(Xη
j (u) ∧ ηNj)dm

)
−Mj

(
θj

∫ t

0

Xη
j (u)du

)
− Sk−1+j

(
µj

∫ t

0

(Xη
j (u) ∧ ηNj)du

)
, j = 2, . . . , k.

Suppose that Aη, η > 0, the family of arrival processes satisfies the following

FSLLN:

lim
η→∞

1

η
Aη(t) =

∫ t

0

λ(u)du; (62)

here the convergence is uniformly on compact sets of t ≥ 0 (u.o.c.). For example, in

the non-homogenuous Poisson process

Aη(t) = A0

(∫ t

0

ηλ(u)du

)
, t ≥ 0.

Other examples can be found in Liu and Whitt (2011a, 2012a, 2014).

Assumption (62) is all that is required in order to apply Theorem 2.2 in Mandelbaum

et al. (1998) and get

lim
η→∞

1

η
Xη
i (t) = xi(t), u.o.c., i = 1, . . . , k,

where xi, i = 1, 2, .., k, are referred to as the fluid limit associated with the queueing
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family Xη
i , i = 1, . . . , k. The functions xi constitute the unique solution of the following

ODE:

x1(t) = x1(0) +

∫ t

0

[
λ(u) +

4∑
i=2

βi
(
xi(t) ∧Ni

)
− µ1

(
x1(u) ∧

(
N1 −

k∑
i=2

(xi(u)−Ni)
+
))

− θ1x1(t)
]

du,

xj(t) = xj(0) +

∫ t

0

[
p1j(u) · µ1

(
x1(u) ∧

(
N1 −

k∑
i=2

(xi(u)−Ni)
+
))
− (µj + βj)

(
xj(u) ∧Nj

)
− θjxj(t)

]
du, j = 2, . . . , k.

We now introduce the functions qi, i = 1, . . . , k, as the fluid limit associated with

the queueing family Qη; these functions are given by

q1(t) =x1(t) +
k∑
i=2

(
xi(t)−Ni

)+
,

qj(t) =xj(t) ∧Nj, j = 2, . . . , k.

C Proof of Theorem 2.1

The function C(N) in (14) equals

C(N) = constant− (Co + Cu)

∫ N

0

[
f(x)− Z

]
dx, (63)

where

f(x) =

∫ T

0

1{rd(t)≥x}dt and Z =
CoT

Co + Cu
. (64)

Therefore, it suffices to prove that the function F (N), given by

F (N) =

∫ N

0

[f(x)− Z]dx, (65)

is maximized by N∗ in (16).

Note that f(x) is non-negative and non-increasing in x, where f(0) = T and limx→∞ f(x) =

0. In addition, Z ∈ [0, T ], hence f(x) crosses level Z. The function F (N), for N start-

ing from 0, is first an integral of a non-negative integrand, hence is increasing in N .

Then, after the first N for which f(N) = Z, it is decreasing. This proves that F (N)
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is maximized (globally) at point N , where f(N) = Z.

We conclude the proof by showing that N∗ in (16) satisfies f(N∗) = Z. Substituting

N∗ into (64) gives

f(N∗) =

∫ T

0

1{rd(t)≥rd(Z)}dt =

∫ T

0

1{t≤Z}(t)dt = Z,

since rd is a decreasing function. Therefore, N∗ = rd(Z), as in (16).

Remark C.1. When rd is continuous and strictly decreasing, f(x) is in fact its inverse

r−1
d .

D Choosing the Candidate Solution

We now describe the method that motivates N∗, as in (16), to be a natural candidate

for maximizing C(N) in (14). This method requires additional assumptions about r(t),

rd(t) and λ. Theorem 2.1, though, does not make these assumptions and is, therefore,

more general.

Figure 26 shows an illustration of the overage and underage periods for a specific

number of beds (N = 280): on the left, according to r(t) and on the right according to

rd(t). The bright areas mark underage periods, where the offered load is higher than

the number of beds. The dark areas mark overage periods. The areas of each color

are equal in the two figures.

Figure 26: An illustration of the overage and underage periods according to r(t) and rd(t)
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We assume that rd(t) is an invertible function and define t∗ to be the intersection point

between rd(t) and N such that rd(t
∗) = N ; then t∗ = r−1

d (N). We can rewrite C(N)
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to get

C(N) = Cu

∫ r−1
d (N)

0

[rd(t)−N ]dt+ Co

∫ T

r−1
d (N)

[N − rd(t)]dt. (66)

Now assume that r−1
d (N) is a continuous differential function and differentiate Equa-

tion (66) according to Leibniz’s differentiation rule:

Ċ(N) = Co(T − r−1
d (N))− Cur−1

d (N) = −(Co + Cu)r
−1
d (N) + CoT.

Since C(N) approaches ∞ as N approaches ∞ and achieves a high positive value for

N = 0, we minimize C(N) by equating the derivative to 0. This gives rise to

r−1
d (N) =

CoT

Co + Cu
.

Applying rd to both sides yields the optimal N∗ in Equation (16).

Since Co and Cu are non-negative numbers and r−1
d (N) is decreasing in N , C̈(N) is

monotonically non-decreasing, and therefore, C(N) is convex and N∗ in Equation (16)

minimizes C(N).

E Proof of Theorem 2.2

In our proof, we use the following proposition, which is proved in Appendix G:

Proposition E.1. C(N) in (14) is a convex function.

We solve problem (21) for the case where N ≤ B, and for the case where N ≥ B.

Then, we choose the solution which minimizes the overall cost. The option for N = B

is included in both cases since their solutions are identical.

Step 1: Find N1
k , the optimal number of beds if no new beds are added, by solving

CK(N) for N ≤ B.

Since C(N) is a convex function, if the optimal solution for the unconstrained problem

is in the allowed range (i.e., N∗ ≤ B), then this will be the solution for the constraint
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problem as well. If not, the solution will be at the edge of the range. Formally:

N1
k =


rd

 CoT

Co + Cu

 , rd

 CoT

Co + Cu

 ≤ B

B, otherwise.

Step 2: Find N2
k , the optimal number of beds, where (N − B) new beds are added,

by solving CK(N) for N ≥ B, as follows:

minimize
N

C(N) +K(N −B)

subject to −N +B ≤ 0.
(67)

Since the objective function remains convex, we solve the unconstrained problem and

check whether the solution is in the allowed range. For this, we use the following

statement:

The optimal solution, which minimizes the unconstrained problem

C
(u)
K (N) = C(N) +K(N −B), (68)

is given by

N
(u)∗
K = rd

CoT +K

Co + Cu

 . (69)

This is because the function C
(u)
K (N) in (68) can be written in the same structure as

in (63) for

C =
CoT +K

Co + Cu
. (70)

In order to justify the introduction of new beds, we must have K ≤ TCu, and therefore,

0 ≤ C ≤ T . Since 0 ≤ f(x) ≤ T , f(x) crosses C and the proof in Theorem 2.1 holds.

The optimal solution for (68) is N
(u)∗
K = rd(C), as in (69).

The solution for (67) is, therefore,

N2
k =


rd

CoT +K

Co + Cu

 , rd

CoT +K

Co + Cu

 ≥ B

B, otherwise.
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Step 3: Combining the results of Steps 1 and 2, yields the solution in Equation (22).

F Proof of Theorem 2.3

We begin by considering the two cases for (23). Each case yields two separable prob-

lems, as follows:

1. When NI < NT \I , the two problems are to minimize

(1) C(NI)− Cr ·NI =

∫
I

[
Cu
(
r(t)−NI

)+
+ Co

(
NI − r(t)

)+
]

dt− Cr ·NI ,

(2) C(NT \I) + Cr ·NT \I =

∫
T \I

[
Cu
(
r(t)−NT \I

)+
+ Co

(
NT \I − r(t)

)+
]

dt+ Cr ·NT \I .

2. When NI > NT \I

(1) C(NI) + Cr ·NI =

∫
I

[
Cu
(
r(t)−NI

)+
+ Co

(
NI − r(t)

)+
]

dt+ Cr ·NI ,

(2) C(NT \I)− Cr ·NT \I =

∫
T \I

[
Cu
(
r(t)−NT \I

)+
+ Co

(
NT \I − rT \I(t)

)+
]

dt− Cr ·NT \I .

Since rI(t) and rT \I(t) are non-negative and measurable on the intervals I and

T \ I, respectively (see Hardy et al., 1952), implementing the results from Theorems

2.1 and 2.2 yields the following:

1. When NI− < N
T \I
+ , then N∗I = NI− and N∗T \I = N

T \I
+ .

2. When NI+ > N
T \I
− , then N∗I = NI+ and N∗T \I = N

T \I
− .

The two cases are mutually exclusive, since NI− ≥ NI+ and N
T \I
− ≥ N

T \I
+ .

When neither of the two conditions prevail, it is preferable to not reallocate beds

throughout the planning horizon. Combining these options yields the solution in (24).

G Proof of Proposition E.1

It is sufficient to prove that F (N) in (65) is a concave function. According to Sierpin-

ski’s Theorem (see Donoghue, 1969), a midpoint concave function that is continuous

is, in fact, concave. Since the function F (N) is an integral of N , and therefore, contin-

uous, it is sufficient to prove that it is midpoint concave. Without loss of generality,
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it suffices to prove midpoint concavity by proving that for every N ≥ 0,

F (N/2) ≥
F (N)

2
.

In other words, we need to prove that

2

∫ N/2

0

[f(x)− C]dx ≥
∫ N

0

[f(x)− C]dx,

which is equivalent to proving that

2

∫ N/2

0

f(x)dx ≥
∫ N

0

f(x)dx.

Since f is a non-increasing non-negative function, we must have

2

∫ N/2

0

f(x)dx ≥
∫ N/2

0

f(x)dx+

∫ N

N/2

f(x)dx =

∫ N

0

f(x)dx,

which completes the proof.

H Proof of Theorem 3.1

Let T be an arbitrary positive constant. Using the Lipschitz property (Appendix J)

and subtracting the equation for r in (34) from the equation for rη in (33) yields that

‖rη1 − r1‖T ∨ ‖r
η
2 − r2‖T ≤ G

[
|rη1(0)− r1(0)|+

∣∣∣∣∣
∣∣∣∣∣
∫ ·

0

λ(u) du− η−1Aη(·)

∣∣∣∣∣
∣∣∣∣∣
T

(71)

+

∣∣∣∣∣
∣∣∣∣∣η−1D1

(
ηpµ1

∫ ·
0

[(
N1 +H − rη1(u)

)
∧
(
N1 − bη(u)

)]
du

)

− pµ1

∫ ·
0

[(N1 +H − rη1(u)) ∧ (N1 − bη(u))] du

∣∣∣∣∣
∣∣∣∣∣
T

+

∣∣∣∣∣
∣∣∣∣∣η−1D3

(
η(1− p)µ1

∫ ·
0

[(N1 +H − rη1(u)) ∧ (N1 − bη(u))] du

)

− (1− p)µ1

∫ ·
0

[(
N1 +H − rη1(u)

)
∧ (N1 − bη(u))

]
du

∣∣∣∣∣
∣∣∣∣∣
T

+

∣∣∣∣∣
∣∣∣∣∣µ1

∫ ·
0

[(
N1 +H − rη1(u)

)
∧ (N1 − bη(u))− (N1 +H − r1(u)) ∧

(
N1 − b(u)

)]
du

∣∣∣∣∣
∣∣∣∣∣
T

]
∨
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G

[
|rη2(0)− r2(0)|+

∥∥∥∥∫ ·
0

λ(u) du− η−1Aη(·)
∥∥∥∥
T

+

∣∣∣∣∣
∣∣∣∣∣η−1D3

(
η(1− p)µ1

∫ ·
0

[(N1 +H − rη1(u)) ∧ (N1 − bη(u))] du

)

− (1− p)µ1

∫ ·
0

[(N1 +H − rη1(u)) ∧ (N1 − bη(u))] du

∣∣∣∣∣
∣∣∣∣∣
T

+

∣∣∣∣∣
∣∣∣∣∣η−1D2

(
ηµ2

∫ ·
0

[N2 ∧ (rη1(u)− rη2(u) +N2)] du

)
− µ2

∫ ·
0

[N2 ∧ (rη1(u)− rη2(u) +N2)] du

∣∣∣∣∣
∣∣∣∣∣
T

+

∣∣∣∣∣
∣∣∣∣∣(1− p)µ1

∫ ·
0

[(N1 +H − rη1(u)) ∧ (N1 − bη(u))− (N1 +H − r1(u)) ∧ (N1 − b(u))] du

∣∣∣∣∣
∣∣∣∣∣
T

+

∣∣∣∣∣
∣∣∣∣∣µ2

∫ ·
0

[(
N2 ∧

(
rη1(u)− rη2(u) +N2

))
− (N2 ∧ (r1(u)− r2(u) +N2))

]
du

∣∣∣∣∣
∣∣∣∣∣
T

]
,

where G is the Lipschitz constant.

The first, second, sixth and seventh terms on the right-hand side converge to zero by

the conditions of the theorem. For proving convergence to zero of the third, fourth,

eighth and ninth terms, we use Lemma K.1 in Appendix K. By the FSLLN for Poisson

processes,

sup
0≤u≤t

∣∣η−1D(ηu)− u
∣∣→ 0, ∀t ≥ 0 a.s.

Note that the functions pµ1

∫ t
0

[(N1 +H − rη1(u)) ∧ (N1 − bη(u))] du and

µ2

∫ t
0

[
N2 ∧

(
rη1(u)− rη2(u) +N2

)]
du are bounded by pµ1 ·(N1 +H) ·T and µ2 ·N2 ·T ,

respectively, for 0 ≤ p ≤ 1 and t ∈ [0, T ]. This, together with Lemma K.1, implies

that the third, fourth, eighth and ninth terms in (71) converge to 0.

We get that

‖rη1 − r1‖T ∨ ‖r
η
2 − r2‖T ≤ (72)[

εη1(T ) +Gµ1

∥∥∥∥∫ ·
0

[(N1 +H − rη1(u)) ∧ (N1 − bη(u))− (N1 +H − r1(u)) ∧ (N1 − b(u))] du

∥∥∥∥
T

]
∨[

εη2(T ) +G(1− p)µ1

∥∥∥∥∫ ·
0

[(N1 +H − rη1(u)) ∧ (N1 − bη(u))− (N1 +H − r1(u)) ∧ (N1 − b(u))] du

∥∥∥∥
T

+Gµ2

∥∥∥∥∫ ·
0

[N2 ∧ (rη1(u)− rη2(u) +N2)]− [N2 ∧ (r1(u)− r2(u) +N2)] du

∥∥∥∥
T

]
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≤
[
εη1(T ) +Gµ1

∥∥∥∥∫ ·
0

[rη1(u)− r1(u)] du

∥∥∥∥
T

+Gµ1

∥∥∥∥∫ ·
0

[bη(u)− b(u)] du

∥∥∥∥
T

]
∨[

εη2(T ) +G(1− p)µ1

∥∥∥∥∫ ·
0

[rη1(u)− r1(u)] du

∥∥∥∥
T

+G(1− p)µ1

∥∥∥∥∫ ·
0

[bη(u)− b(u)] du

∥∥∥∥
T

+Gµ2

∥∥∥∥∫ ·
0

[rη1(u)− r1(u)] du

∥∥∥∥
T

+Gµ2

∥∥∥∥∫ ·
0

[rη2(u)− r2(u)] du

∥∥∥∥
T

]

≤
[
εη1(T ) +Gµ1

∫ T

0

‖rη1 − r1‖u du+Gµ1

∫ T

0

‖bη − b‖u du

]
∨[

εη2(T ) +Gµ1

∫ T

0

‖rη1 − r1‖u du+Gµ1

∫ T

0

‖bη − b‖u du

+Gµ2

∫ T

0

‖rη1 − r1‖u du+Gµ2

∫ T

0

‖rη2 − r2‖u du

]
,

where εη1(T ) bounds the sum of the first four terms on the right-hand side of (71),

and εη2(T ) bounds the sum of the sixth to ninth terms; these two quantities εη1(T ) and

εη2(T ) converge to zero, as η →∞. The second inequality in (72) is obtained by using

the inequalities |a∧ b− a∧ c| ≤ |b− c| and |a∧ b− c∧ d| ≤ |a− c|+ |b− d| for any a,

b, c and d. The third equality in (72) is because 0 ≤ p ≤ 1.

We now use∫ T

0

‖bη − b‖u du =

∫ T

0

∥∥(rη1 − r
η
2)+ − (r1 − r2)+

∥∥
u

du (73)

=

∫ T

0

‖rη1 − r
η
1 ∧ r

η
2 − r1 + r1 ∧ r2‖u du

≤
∫ T

0

[
‖rη1 − r1‖u + ‖rη1 ∧ r

η
2 − r1 ∧ r2‖u

]
du

≤
∫ T

0

[
2 ‖rη1 − r1‖u + ‖rη2 − r2‖u

]
du

= 2

∫ T

0

‖rη1 − r1‖u du+

∫ T

0

‖rη2 − r2‖u du.

From (72) and (73), we get that

‖rη1 − r1‖T ∨ ‖r
η
2 − r2‖T (74)

≤ [εη1(T ) ∨ εη2(T )] +G (3µ1 + µ2)

∫ T

0

‖rη1 − r1‖u du+G (µ1 ∨ µ2)

∫ T

0

‖rη2 − r2‖u du

≤ [εη1(T ) ∨ εη2(T )] + 2G (3µ1 ∨ µ2)

[∫ T

0

‖rη1 − r1‖u du+

∫ T

0

‖rη2 − r2‖u du

]
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≤ [εη1(T ) ∨ εη2(T )] + 4G (3µ1 ∨ µ2)

[∫ T

0

‖rη1 − r1‖u du ∨
∫ T

0

‖rη2 − r2‖u du

]
≤ [εη1(T ) ∨ εη2(T )] + 4G (3µ1 ∨ µ2)

[∫ T

0

‖rη1 − r1‖u ∨ ‖r
η
2 − r2‖u du

]
.

The first equality in (74) is obtained by using the inequality (a+b)∨(c+d) ≤ a∨c+b∨d,

for any a, b, c and d. Applying Gronwall’s inequality (Ethier and Kurtz, 2009) to (74)

completes the proof for both the existence and uniqueness of r.

I Proof of Proposition 3.1

We begin by proving that the solution for (35) satisfies, for t ≥ 0,

l(t) =

∫ t

0

1{x1(u)≥N1+H} · 1{x1(u)+x2(u)<N1+N2+H} [λ(u)− l1(u)]+ du (75)

+

∫ t

0

1{x1(u)<N1+H} · 1{x1(u)+x2(u)≥N1+N2+H} [λ(u)− l2(u)]+ du

+

∫ t

0

1{
x1(u)≥N1+H

} · 1{
x1(u)+x2(u)≥N1+N2+H

}[λ(u)− l1(u) ∧ l2(u)
]+

du,

where

l1(u) = µ1 (x1(u) ∧ (N1 − b(u))) ;

l2(u) = µ2 (x2(u) ∧N2) + (1− p)µ1 (x1(u) ∧ (N1 − b(u))) .

In order to prove this, we substitute (75) in (35) and show that the properties in (35)

prevail. We begin by substituting (75) in the first line of (35). Using (a − b)+ =

[a− a ∧ b], for any a, b, we obtain

x1(t) = x1(0) +

∫ t

0

[λ(u)− µ1 [x1(u) ∧ (N1 − b(u))]] du

−
∫ t

0

1{x1(u)≥N1+H} · 1{x1(u)+x2(u)<N1+N2+H} [λ(u)− λ(u) ∧ l1(u)] du

−
∫ t

0

1{x1(u)<N1+H} · 1{x1(u)+x2(u)≥N1+N2+H} [λ(u)− λ(u) ∧ l2(u)] du

−
∫ t

0

1{x1(u)≥N1+H} · 1{x1(u)+x2(u)≥N1+N2+H} [λ(u)− λ(u) ∧ l1(u) ∧ l2(u)] du,
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and therefore,

x1(t) = x1(0) +

∫ t

0

[
1{x1(u)<N1+H} · 1{x1(u)+x2(u)<N1+N2+H} · λ(u) (76)

− µ1 [x1(u) ∧ (N1 − b(u))]
]

du

+

∫ t

0

[
1{x1(u)≥N1+H} · 1{x1(u)+x2(u)<N1+N2+H} · (λ(u) ∧ l1(u))

]
du

+

∫ t

0

[
1{x1(u)<N1+H} · 1{x1(u)+x2(u)≥N1+N2+H} · (λ(u) ∧ l2(u))

]
du

+

∫ t

0

[
1{x1(u)≥N1+H} · 1{x1(u)+x2(u)≥N1+N2+H} · (λ(u) ∧ l1(u) ∧ l2(u))

]
du;

x2(t) = x2(0) +

∫ t

0

[pµ1 [x1(u) ∧ (N1 − b(u))]− µ2 (x2(u) ∧N2)] du.

Clearly, the properties in the third and fourth lines in (35) prevail. It is left to verify

that the first and second conditions prevail. This is done by the following proposition.

Proposition I.1. The functions x1(·) and x1(·) + x2(·) as in (76) are bounded by

N1 +H and N1 +N2 +H, respectively.

Proof: First we prove that the function x1(·), as in (76), is bounded by N1+H. Assume

that for some t, x1(t) > N1 +H. Since x1(0) ≤ N1 +H and x1 is continuous (being an

integral), there must be a last t̃ in [0, t], such that x1(t̃) = N1 +H and x1(u) > N1 +H,

for u ∈ [t̃, t]. Without loss of generality, assume that t̃ = 0; thus x1(0) = N1 +H and

x1(u) > N1 +H for u ∈ (0, t]. From (76), we get that

x1(t) = N1 +H +

∫ t

0

[
1{x1(u)+x2(u)<N1+N2+H} · (λ(u) ∧ l1(u))

]
du

+

∫ t

0

[
1{x1(u)+x2(u)≥N1+N2+H} · (λ(u) ∧ l1(u) ∧ l2(u))

]
du

− µ1

∫ t

0

[x1(u) ∧ (N1 − b(u))] du

≤ N1 +H +

∫ t

0

[l1(u)− µ1 [x1(u) ∧ (N1 − b(u))]] du = N1 +H,

which contradicts our assumption and proves that x1(·) cannot exceed H1 +N1.

What is left to prove now is that the function x1(·) + x2(·) is bounded by N1 +N2.

Without loss of generality, assume that x1(0)+x2(0) = N1+N2+H and x1(u)+x2(u) >

N1 +N2 +H for u ∈ (0, t]. This assumption, together with x1 ≤ N1 +H, yields that
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x2 > N2; hence, from (76), we get that

x1(t) + x2(t) = N1 +N2 +H

∫ t

0

[
1{x1(u)≥N1+N1} · (λ(u) ∧ l1(u) ∧ l2(u))

]
du

+

∫ t

0

[
1{x1(u)<N1+H} · (λ(u) ∧ l2(u))

]
du

−
∫ t

0

[(1− p)µ1 (x1(u) ∧ (N1 − b(u))) + µ2 (x2(u) ∧N2)] du

≤ N1 +N2 +H +

∫ t

0

[l2(u)− (1− p)µ1 (x1(u) ∧ (N1 − b(u)))− µ2 (x2(u) ∧N2)] du

= N1 +N2 +H,

which contradicts the assumption that x1(t) + x2(t) > N1 + N2 + H and proves that

x1(·) + x2(·) is bounded by N1 +N2 +H.

By the solution uniqueness (Proposition J.1), we have established that x, the fluid

limit for the stochastic queueing family Xη in (26), is given by (76).

The following two remarks explain why (76) is equivalent to (36):

1. After proving that x1(·) ≤ N1 + H and x1(·) + x2(·) ≤ N1 + N2 + H in Propo-

sition I.1, the indicators in (75) can accommodate only the cases when x1(·) =

N1 +H and x1(·) + x2(·) = N1 +N2 +H.

2. When x1(u) = N1 + H and x1(u) + x2(u) < N1 + N2 + H, x2(u) < N2 and

hence, b(u) = 0 and l1(u) = l∗1(u). Alternatively, when x1(u) < N1 + H and

x1(u) + x2(u) = N1 +N2 +H, x2(u) > N2, and therefore, l2(u) = l∗2(u).

J Uniqueness and Lipschitz Property

Let C ≡ C[0,∞]. We now define mappings ψ : C2 → C and φ : C2 → C2 for m ∈ C2

by setting:

ψ(m)(t) = sup
0≤s≤t

(
−
(
m1(s) ∧m2(s)

))+

;

φ(m)(t) = m(t) + ψ(m)(t)

1

1

 , t ≥ 0.

Proposition J.1. Suppose that m ∈ C2 and m(0) ≥ 0. Then ψ(m) is the unique

function l, such that:

95



1. l is continuous and non-decreasing with l(0) = 0,

2. r(t) = m(t) + l(t) ≥ 0 for all t ≥ 0,

3. l increases only when r1 = 0 or r2 = 0.

Proof: Let l∗ be any other solution. We set y = r∗1 − r1 = r∗2 − r2 = l∗ − l. Using the

Riemann-Stieltjes chain rule (Harrison, 1985, Ch. 2.2):

f(yt) = f(y0) +

∫ t

0

f ′(y) dy,

for any continuously differentiable f : R→ R. Taking f(y) = y2/2, we get that

1

2
(r∗i (t)− ri(t))

2 =

∫ t

0

(r∗i − ri) dl∗ +

∫ t

0

(ri − r∗i ) dl. (77)

The function l∗ increases when either r∗1 = 0 or r∗2 = 0. In addition, r1 ≥ 0 and r2 ≥ 0.

Thus, either (r∗1 − r1) dl∗ ≤ 0 or (r∗2 − r2) dl∗ ≤ 0. Since r∗1 − r1 = r∗2 − r2, both terms

are non-positive. The same principles yield that the second terms in both lines on the

right-hand side of (77) are non-positive. Since the left side ≥ 0, both sides must be

zero, thus r∗1 = r1, r∗2 = r2 and l∗ = l.

Proposition J.2. The mappings ψ and φ are Lipschitz continuous on Do[0, t] under

the uniform topology for any fixed t.

Proof: We begin by proving the Lipschitz continuity of ψ. For this, we show that for

any T > 0, there exists C ∈ R such that

‖ψ(m)− ψ(m′)‖T ≤ C
[
‖m1 −m′1‖T ∨ ‖m2 −m′2‖T

]
,

for all m,m′ ∈ D2
0.

‖ψ(m)− ψ(m′)‖T =

∥∥∥∥ sup
0≤s≤·

(
−
(
m1(s) ∧m2(s)

))+

− sup
0≤s≤t

(
−
(
m′1(s) ∧m′2(s)

))+
∥∥∥∥
T

≤
∥∥∥∥ sup

0≤s≤·

∣∣(m1(s) ∧m2(s)
)
−
(
m′1(s) ∧m′2(s)

)∣∣∥∥∥∥
T

(78)

=
∥∥(m1 ∧m2

)
−
(
m′1 ∧m′2

)∥∥
T
≤ 2
[
‖m1 −m′1‖T ∨ ‖m2 −m′2‖T

]
.
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The last inequality derives from:

m1(t) ∧m2(t) =
(
m1(t)−m′1(t) +m′1(t)

)
∧
(
m2(t)−m′2(t) +m′2(t)

)
;

therefore,

m1(t) ∧m2(t) ≤ m′1(t) ∧m′2(t) + ‖m1 −m′1‖T + ‖m2 −m′2‖T ,

m1(t) ∧m2(t) ≥ m′1(t) ∧m′2(t)− ‖m1 −m′1‖T − ‖m2 −m′2‖T ,

and

|m1(t) ∧m2(t)−m′1(t) ∧m′2(t)| ≤ ‖m1 −m′1‖T + ‖m2 −m′2‖T ,

which yields

‖m1(t) ∧m2(t)−m′1(t) ∧m′2(t)‖T ≤ ‖m1 −m′1‖T + ‖m2 −m′2‖T

≤ 2 (‖m1 −m′1‖T ∨ ‖m2 −m′2‖T ) .

Our next step is proving the Lipschitz continuity of φ. For this, we show that for any

T > 0, there exists C ∈ R such that

‖φ1(m)− φ1(m′)‖T ∨ ‖φ2(m)− φ2(m′)‖T ≤ C
[
‖m1 −m′1‖T ∨ ‖m2 −m′2‖T

]
,

for all m,m′ ∈ D2
0.

We begin with the left-hand side:

‖φ1(m)− φ1(m′)‖T ∨ ‖φ2(m)− φ2(m′)‖T

= ‖m1(t) + ψ(m)(t)−m′1(t)− ψ(m′)(t)‖T ∨ ‖m2(t) + ψ(m)(t)−m′2(t)− ψ(m′)(t)‖T

= ‖m1(t)−m′1(t) + ψ(m)(t)− ψ(m′)(t)‖T ∨ ‖m2(t)−m′2(t) + ψ(m)(t)− ψ(m′)(t)‖T

≤ ‖m1(t)−m′1(t)‖T + ‖ψ(m)(t)− ψ(m′)(t)‖T ∨ ‖m2(t)−m′2(t)‖T + ‖ψ(m)(t)− ψ(m′)(t)‖T

≤ ‖m1 −m′1‖T ∨ ‖m2 −m′2‖T + ‖ψ(m)(t)− ψ(m′)(t)‖T ≤ 3 (‖m1 −m′1‖T ∨ ‖m2 −m′2‖T ) ,

where the last inequality is derived from (78).
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K Lemma K.1

Lemma K.1. Let the function fη(·) → 0, u.o.c. as η → ∞. Then fη(gη(·)) → 0,

u.o.c. as η →∞, for any gη(·) that are locally bounded uniformly in η.

Proof: Choose T > 0, and let CT be a constant such that |gη(t)| ≤ CT , for all

t ∈ [0, T ]. By the assumption on fη(·), we have ‖fη‖CT → 0, as η → ∞. It follows

that ‖fη(gη(·))‖T → 0, as η →∞, which completes the proof.

L Proof of Proposition 4.1

From (52), we return to our original formulation in terms of q(·) for t ≥ 0, as follows:



q1(t) = q1(0) +
∫ t

0
[λ(u)− µ1 (q1(u) ∧N1 ∧ (H2 +N2 − q2(u)))] du− l(t) ≤ H1 +N1,

qi(t) = qi(0) +
∫ t

0

[
µi−1 (qi−1(u) ∧Ni−1 ∧ (Hi +Ni − qi(u)))

−µi (qi(u) ∧Ni ∧ (Hi+1 +Ni+1 − qi+1(u)))
]
du ≤ Hi +Ni, i = 2, . . . , k − 1;

qk(t) = qk(0) +
∫ t

0

[
µk−1 (qk−1(u) ∧Nk−1 ∧ (Hk +Nk − qk(u)))

−µi (qk(u) ∧Nk)
]
du ≤ Hk +Nk,

dl(t) ≥ 0, l(0) = 0,∫∞
0

1{q1(u−)<H1+N1}dl(t) = 0;

(79)

Now, we prove that the solution for (79) satisfies

l(t) =

∫ t

0

1{q1(u)≥H1+N1} [λ(u)− l1(u)]+ du, t ≥ 0, (80)

where

l1(u) = µ1 (q1(u) ∧N1 ∧ (H2 +N2 − q2(u))) ;

In order to prove this, we substitute (80) in the equation of q1(t) in (79) and show

that the properties in (79) prevail:

q1(t) = q1(0) +

∫ t

0

[λ(u)− µ1 (q1(u) ∧N1 ∧ (H2 +N2 − q2(u)))] du (81)

−
∫ t

0

1{q1(u)≥H1+N1} [λ(u)− λ(u) ∧ l1(u)] du
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= q1(0) +

∫ t

0

[
1{q1(u)<H1+N1} · λ(u)− µ1 (q1(u) ∧N1 ∧ (H2 +N2 − q2(u)))

]
du

+

∫ t

0

[
1{q1(u)≥H1+N1} · (λ(u) ∧ l1(u))

]
du

Clearly, the properties in the last two lines in (79) prevail. It is left to verify that the

first k conditions prevail. This is done by the following proposition.

Proposition L.1. The functions qi(·), i = 1, . . . , k, as in (81) are bounded by Hi+Ni,

respectively.

Proof: First we prove that the function q1(·), as in (81), is bounded by H1 + N1.

Assume that for some t, q1(t) > H1 +N1. Since q1(0) ≤ H1 +N1 and q1 is continuous

(being an integral), there must be a last t̃ in [0, t] such that q1(t̃) = H1 + N1 and

q1(u) > H1 + N1, for u ∈ [t̃, t]. Without loss of generality, assume that t̃ = 0; thus

q1(0) = H1 +N1 and q1(u) > H1 +N1 for u ∈ (0, t]. From (81), we get that

q1(t) = H1 +N1 +

∫ t

0

[(λ(u) ∧ l1(u))− µ1 (q1(u) ∧N1 ∧ (H2 +N2 − q2(u)))] du

≤ H1 +N1 +

∫ t

0

[l1(u)− µ1 (q1(u) ∧N1 ∧ (H2 +N2 − q2(u)))] du = H1 +N1,

which contradicts our assumption and proves that q1(·) cannot exceed H1 +N1.

What is left to prove now is that the functions qi(·), i = 2, . . . , k, are bounded by

Hi +Ni. Without loss of generality, assume that qi(0) = Hi +Ni and qi(u) > Hi +Ni

for u ∈ (0, t]. Hence, from (79), we get that

qi(t) = Hi +Ni +

∫ t

0

[
µi−1 (qi−1(u) ∧Ni−1 ∧ (Hi +Ni − qi(u)))

− µi (qi(u) ∧Ni ∧ (Hi+1 +Ni+1 − qi+1(u)))
]
du ≤ Hi +Ni,

which contradicts the assumption that qi(t) > Hi + Ni and proves that qi(·), i =

1, . . . , k, are bounded by Hi +Ni.

By the solution uniqueness (see Appendix C in Zychlinski et al. (2018b)), we have

established that q, the fluid limit for the stochastic queueing family Qη in (44), is

given by (53). Note that after proving that q1(·) ≤ H1 + N1 in Proposition L.1, the

indicators in (80) can accommodate only the case when q1(·) = H1 +N1.
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M Proof of Theorem 4.1

Due to the uniqueness of q (Proposition 4.1), it suffices to show that δ and q̄i, i =

1, . . . , k, in Equations (56)–(58) satisfy the model equations in (53). In particular, it

suffices to show that the steady-state equations in (55) are satisfied. Since the second

equation in (55) is trivially satisfied, one is left only with the first equation.

When δ = λ and q̄j = λ/µj, j = 1, . . . , k, the first line in (55) yields the following:

λ = λ · 1{λ<µ1(H1+N1)} + [λ ∧ µ1 (N1 ∧ (H2 +N2 − λ/µ2))] · 1{λ=µ1(H1+N1)}. (82)

The first right-hand side term trivially satisfies the equation. The second right-hand

side term is larger than zero when λ = µ1(H1 +N1). When δ = λ, from (56) we know

that λ ≤ µ1N1. Therefore, the second indicator in (82) equals one when H1 = 0 and

λ = µ1N1. In this case, the second right-hand side term is λ ∧ µ1N1 ∧ µ1(H2 + N2 −

µ1N1/µ2) = µ1N1 = λ. The second equality derives from (56): when δ = λ, we get that

λ = µ1N1 ≤ (H2 +N2)/(1/µ1 +1/µ2), which is equivalent to N1 ≤ H2 +N2−µ1N1/µ1.

Therefore, (82) is satisfied. It is easy to show that the second line in (55) is also

satisfied by q̄j = λ/µj, j = 1, . . . , k.

Now, when δ < λ, from (55) we get that q̄1 = H1 + N1 (the first indicator in the

first line is zero), and we get that

δ =λ ∧ µ1 (N1 ∧ (H2 +N2 − q̄2)) = µ1 (N1 ∧ (H2 +N2 − q̄2)) . (83)

If Station 1 is the first bottleneck (i = 1, in (58)) then, from (54) and (56), we get

that δ = µ1N1 ≤ µ1(H2 +N2 − µ1N1/µ2); therefore, (83) is satisfied with q̄2 = δ/µ2.

Otherwise, if Station 1 is not the bottleneck then, δ < µ1N1. Since q̄1 = H1 + N1,

from (54) we get that δ = µ1(H2 + N2 − q̄2) and therefore, q̄2 = H2 + N2 − δ/µ1. We

obtain that δ = (µ1N1) ∧ δ, which satisfies Equation (83).

For completing the proof for q̄i, i = 3, . . . , k, in (57), we analyze separately the sta-

tions before the first bottleneck (inclusive) and the stations after it. We begin with the

stations before the bottleneck. Suppose that Station i, 3 ≤ i ≤ k, is the first bottle-

neck. From (54) we get that δ = µ2 [q̄2 ∧N2 ∧ (H3 +N3 − q̄3)]. Since δ < µ2N2,

we get that δ = µ2 [q̄2 ∧ (H3 +N3 − q̄3)]. Assume that q̄2 is the minimum, then

q̄2 = δ/µ2 = H2 +N2−δ/µ1 and therefore, δ = (H2 +N2)/(1/µ1 +1/µ2), which contra-
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dicts the assumption that Station i is the first bottleneck. Hence, δ = µ2(H3 +N3− q̄3)

and q̄3 = H3 + N3 − δ/µ2. We iteratively continue this argument up until the first

bottleneck.

For the stations after the bottleneck, suppose that Station i, 2 ≤ i ≤ k− 1, is the first

bottleneck. From (54) and (55), we get that δ = µi+1 [q̄i+1 ∧Ni+1 ∧ (Hi+2 +Ni+2 − q̄i+2)].

When q̄i+1 = δ/µi+1 and q̄i+2 = δ/µi+2, we get that δ = δ ∧ µi+1Ni+1 ∧ µi+1(Hi+2 +

Ni+2 − δ/µi+2). Since i is the first bottleneck, then δ ≤ µi+1Ni+1, as well as δ ≤

(Hi+2 +Ni+2)/(1/µi+1 +1/µi+2), which is equivalent to δ ≤ µi+1(Hi+2 +Ni+2−δ/µi+2).

Hence, (55) is satisfied. We iteratively continue this argument up until Station k.
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Hardy, G., Littlewood, J., and Pólya, G. (1952). Inequalities. Cambridge University Press.
22, 89

Hare, W., Alimadad, A., Dodd, H., Ferguson, R., and Rutherford, A. (2009). A determin-
istic model of home and community care client counts in British Columbia. Health Care
Management Science, 12(1):80–98. 13

Harrison, G. and Millard, P. (1991). Balancing acute and long-term care: the mathematics
of throughput in departments of geriatric medicine. Methods of Information in Medicine,
30(3):221. 10

Harrison, J. (1973). Assembly-like queues. Journal of Applied Probability, 10(02):354–367.
38

Harrison, J. (1985). Brownian Motion and Stochastic Flow Systems. Wiley New York. 38,
96

Harrison, J. and Zeevi, A. (2005). A method for staffing large call centers based on stochastic
fluid models. Manufacturing & Service Operations Management, 7(1):20–36. 14, 23

He, B., Liu, Y., and Whitt, W. (2016). Staffing a service system with non-Poissin non-
stationary arrivals. Probability in the Engineering and Informational Sciences, 30(4):593–
621. 48

Hillier, F. and Boling, R. (1967). Finite queues in series with exponential or erlang service
times—a numerical approach. Operations Research, 15(2):286–303. 12, 59

105



Jennings, O., Massey, W., and McCalla, C. (1997). Optimal profit for leased lines services. In
Proceedings of the 15th International Teletraffic Congress-ITC, volume 15, pages 803–814.
14, 20, 22

Kao, E. and Tung, G. (1981). Bed allocation in a public health care delivery system. Man-
agement Science, 27(5):507–520. 14

Katsaliaki, K., Brailsford, S., Browning, D., and Knight, P. (2005). Mapping care pathways
for the elderly. Journal of Health Organization and Management, 19(1):57–72. 11, 36

Kelly, F. (1984). Blocking, reordering, and the throughput of a series of servers. Stochastic
Processes and Their Applications, 17(2):327–336. 36

Kerbache, L. and MacGregor Smith, J. (1987). The generalized expansion method for open
finite queueing networks. European Journal of Operational Research, 32(3):448–461. 12

Kerbache, L. and MacGregor Smith, J. (1988). Asymptotic behavior of the expansion method
for open finite queueing networks. Computers & Operations Research, 15(2):157–169. 12

Koizumi, N., Kuno, E., and Smith, T. (2005). Modeling patient flows using a queuing
network with blocking. Health Care Management Science, 8(1):49–60. 4, 12

Langaris, C. and Conolly, B. (1984). On the waiting time of a two-stage queueing system
with blocking. Journal of Applied Probability, 21(03):628–638. 36

Leachman, R. and Gascon, A. (1988). A heuristic scheduling policy for multi-item, single-
machine production systems with time-varying, stochastic demands. Management Science,
34(3):377–390. 35

Li, A. and Whitt, W. (2014). Approximate blocking probabilities in loss models with in-
dependence and distribution assumptions relaxed. Performance Evaluation, 80:82–101.
37

Li, A., Whitt, W., and Zhao, J. (2015). Staffing to stabilize blocking in loss models with
time-varying arrival rates. Probability in the Engineering and Informational Sciences,
pages 1–27. 13

Li, A., Whitt, W., and Zhao, J. (2016). Staffing to stabilize blocking in loss models with
time-varying arrival rates. Probability in the Engineering and Informational Sciences,
30(02):185–211. 38

Li, J. and Meerkov, S. (2009). Production Systems Engineering. Springer Science & Business
Media. 34

Liu, Y. and Whitt, W. (2011a). Large-time asymptotics for the Gt/Mt/st+GIt many-server
fluid queue with abandonment. Queueing Systems, 67(2):145–182. 34, 37, 63, 84

Liu, Y. and Whitt, W. (2011b). A network of time-varying many-server fluid queues with
customer abandonment. Operations Research, 59(4):835–846. 13, 37

Liu, Y. and Whitt, W. (2012a). The Gt/GI/st + GI many-server fluid queue. Queueing
Systems, 71(4):405–444. 37, 48, 84

Liu, Y. and Whitt, W. (2012b). A many-server fluid limit for the Gt/GI/st +GI queueing
model experiencing periods of overloading. Operations Research Letters, 40(5):307–312.
37

106



Liu, Y. and Whitt, W. (2014). Many-server heavy-traffic limit for queues with time-varying
parameters. Annals of Applied Probability, 24(1):378–421. 34, 37, 63, 84

Ma, N. and Whitt, W. (2016). Efficient simulation of non-Poisson non-stationary point
processes to study queueing approximations. Statistics & Probability Letters, 109:202–207.
48

Mandelbaum, A., Massey, W., and Reiman, M. (1998). Strong approximations for Markovian
service networks. Queueing Systems, 30(1-2):149–201. 13, 34, 37, 63, 84

Mandelbaum, A., Massey, W., Reiman, M., and Rider, B. (1999). Time varying multiserver
queues with abandonment and retrials. In Proceedings of the 16th International Teletraffic
Conference, volume 4, pages 4–7. 13, 16, 34, 37, 48, 63

Mandelbaum, A. and Pats, G. (1995). State-dependent queues: approximations and appli-
cations. Stochastic Networks, 71:239–282. 38, 45, 67

Mandelbaum, A. and Pats, G. (1998). State-dependent stochastic networks. part i. approx-
imations and applications with continuous diffusion limits. Annals of Applied Probability,
8(2):569–646. 38, 41

Marazzi, A., Paccaud, F., Ruffieux, C., and Beguin, C. (1998). Fitting the distributions of
length of stay by parametric models. Medical Care, 36(6):915–927. 79

Martin, J. (2002). Large tandem queueing networks with blocking. Queueing Systems,
41(1-2):45–72. 37

McCalla, C. and Whitt, W. (2002). A time-dependent queueing-network model to describe
the life-cycle dynamics of private-line telecommunication services. Telecommunication
Systems, 19(1):9–38. 13

McClean, S. and Millard, P. (1993). Patterns of length of stay after admission in geriatric
medicine: an event history approach. The Statistician, pages 263–274. 79

McClean, S. and Millard, P. (2006). Where to treat the older patient? Can Markov models
help us better understand the relationship between hospital and community care? Journal
of the Operational Research Society, 58(2):255–261. 10, 79

Meerkov, S. and Yan, C.-B. (2016). Production lead time in serial lines: Evaluation, analysis,
and control. IEEE Transactions on Automation Science and Engineering, 13(2):663–675.
34, 37

Millhiser, W. and Burnetas, A. (2013). Optimal admission control in series production
systems with blocking. IIE Transactions, 45(10):1035–1047. 36

Nahmias, S. and Cheng, Y. (2009). Production and Operations Analysis. McGraw-Hill New
York. 23, 35

Namdaran, F., Burnet, C., and Munroe, S. (1992). Bed blocking in Edinburgh hospitals.
Health Bulletin, 50(3):223–227. 4

NHS England - Bed Availability and Occupancy Data (2015). https://www.england.

nhs.uk/statistics/statistical-work-areas/bed-availability-and-occupancy/

bed-data-overnight/. 4

107

https://www.england.nhs.uk/statistics/statistical-work-areas/bed-availability-and-occupancy/bed-data-overnight/
https://www.england.nhs.uk/statistics/statistical-work-areas/bed-availability-and-occupancy/bed-data-overnight/
https://www.england.nhs.uk/statistics/statistical-work-areas/bed-availability-and-occupancy/bed-data-overnight/


OECD iLibrary - Health at a Glance (2013). http://www.oecd-ilibrary.org/sites/

health_glance-2013-en/04/03/index.html?itemId=/content/chapter/health_

glance-2013-34-en. 4

Olivares, M., Terwiesch, C., and Cassorla, L. (2008). Structural estimation of the newsvendor
model: an application to reserving operating room time. Management Science, 54(1):41–
55. 26

Oliver, R. and Samuel, A. (1962). Reducing letter delays in post offices. Operations Research,
10(6):839–892. 37

Onvural, R. and Perros, H. (1989). Approximate throughput analysis of cyclic queueing
networks with finite buffers. IEEE Transactions on Software Engineering, 15(6):800–808.
64

Osorio, C. and Bierlaire, M. (2009). An analytic finite capacity queueing network model
capturing the propagation of congestion and blocking. European Journal of Operational
Research, 196(3):996–1007. 4, 12, 36, 64

Pang, G. and Whitt, W. (2009). Heavy-traffic limits for many-server queues with service
interruptions. Queueing Systems, 61(2):167–202. 34, 63

Pender, J. (2015). Nonstationary loss queues via cumulant moment approximations. Proba-
bility in the Engineering and Informational Sciences, 29(1):27–49. 48

Pender, J. and Ko, Y. (2017). Approximations for the queue length distributions of time-
varying many-server queues. INFORMS Journal on Computing, 29(4):688–704. 48

Perros, H. (1994). Queueing Networks with Blocking. Oxford University Press, Inc. 11, 36,
62, 63

Porteus, E. (2002). Foundations of Stochastic Inventory Theory. Stanford University Press.
19

Prabhu, N. (1967). Transient behaviour of a tandem queue. Management Science, 13(9):631–
639. 36

Reed, J., Ward, A., and Zhan, D. (2013). On the generalized drift Skorokhod problem in
one dimension. Journal of Applied Probability, 50(1):16–28. 38

Rohleder, T., Cooke, D., Rogers, P., and Egginton, J. (2013). Coordinating health services:
An operations management perspective. In Handbook of Healthcare Operations Manage-
ment, pages 421–445. Springer. 11

Rubin, S. and Davies, G. (1975). Bed blocking by elderly patients in general-hospital wards.
Age and Ageing, 4(3):142–147. 4

Seo, D.-W., Lee, H.-C., and Ko, S.-S. (2008). Stationary waiting times in m-node tandem
queues with communication blocking. Management Science and Financial Engineering,
14(1):23–34. 62

Shepperd, S., Doll, H., Angus, R., Clarke, M., Iliffe, S., Kalra, L., Ricauda, N., and Wilson,
A. (2008). Admission avoidance hospital at home. 33

Shi, P., Chou, M., Dai, J., Ding, D., and Sim, J. (2015). Models and insights for hospital
inpatient operations: Time-dependent ED boarding time. Management Science, 62(1):1–
28. 4, 11, 79

108

http://www.oecd-ilibrary.org/sites/health_glance-2013-en/04/03/index.html?itemId=/content/chapter/health_glance-2013-34-en
http://www.oecd-ilibrary.org/sites/health_glance-2013-en/04/03/index.html?itemId=/content/chapter/health_glance-2013-34-en
http://www.oecd-ilibrary.org/sites/health_glance-2013-en/04/03/index.html?itemId=/content/chapter/health_glance-2013-34-en


Srikant, R. and Whitt, W. (1996). Simulation run lengths to estimate blocking probabilities.
ACM Transactions on Modeling and Computer Simulation (TOMACS), 6(1):7–52. 37

Suri, R. and Diehl, G. (1984). A new ’building block’ for performance evaluation of queueing
networks with finite buffers. In ACM SIGMETRICS Performance Evaluation Review,
volume 12, pages 134–142. ACM. 62, 64

Takahashi, Y., Miyahara, H., and Hasegawa, T. (1980). An approximation method for open
restricted queueing networks. Operations Research, 28(3-part-i):594–602. 12, 36

Taylor, G., McClean, S., and Millard, P. (1997). Continuous-time Markov models for geriatric
patient behaviour. Applied Stochastic Models and Data Analysis, 13(3-4):315–323. 10

Taylor, G., McClean, S., and Millard, P. (2000). Stochastic models of geriatric patient bed
occupancy behaviour. Journal of the Royal Statistical Society: Series A (Statistics in
Society), 163(1):39–48. 10

Ticona, L. and Schulman, K. (2016). Extreme home makeover—the role of intensive home
health care. New England Journal of Medicine, 375(18):1707–1709. 32

Tolio, T. and Gershwin, S. (1998). Throughput estimation in cyclic queueing networks with
blocking. Annals of Operations Research, 79:207–229. 36

Travers, C., McDonnell, G., Broe, G., Anderson, P., Karmel, R., Duckett, S., and Gray, L.
(2008). The acute-aged care interface: Exploring the dynamics of ‘bed blocking’. Aus-
tralasian Journal on Ageing, 27(3):116–120. 4, 11

United Nations Population Fund (2014). http://www.unfpa.org/ageing. 4

van Vuuren, M., Adan, I., and Resing-Sassen, S. (2005). Performance analysis of multi-server
tandem queues with finite buffers and blocking. OR Spectrum, 27(2-3):315–338. 36, 64

Vandergraft, J. (1983). A fluid flow model of networks of queues. Management Science,
29(10):1198–1208. 37

Wenocur, M. (1982). A production network model and its diffusion approximation. Technical
report, DTIC Document. 38

Whitt, W. (1985). The best order for queues in series. Management Science, 31(4):475–487.
36

Whitt, W. (2002). Stochastic-Process Limits: an Introduction to Stochastic-Process Limits
and their Application to Queues. Springer Science & Business Media. 12, 38

Whitt, W. (2004). Efficiency-driven heavy-traffic approximations for many-server queues
with abandonments. Management Science, 50(10):1449–1461. 34, 63

Whitt, W. (2005). Two fluid approximations for multi-server queues with abandonments.
Operations Research Letters, 33(4):363–372. 37

Whitt, W. (2006). Fluid models for multiserver queues with abandonments. Operations
research, 54(1):37–54. 34, 37, 63

Whitt, W. (2007). What you should know about queueing models to set staffing requirements
in service systems. Naval Research Logistics (NRL), 54(5):476–484. 13, 20, 37

109

http://www.unfpa.org/ageing


Whitt, W. (2013). OM Forum—Offered load analysis for staffing. Manufacturing & Service
Operations Management, 15(2):166–169. 13, 37

Wolstenholme, E. (1999). A patient flow perspective of UK health services: exploring the
case for new “intermediate care” initiatives. System Dynamics Review, 15(3):253–271. 10,
33

World Health Organization (2014). http://www.who.int/kobe_centre/ageing/en/. 4

Xie, H., Chaussalet, T., and Millard, P. (2005). A continuous time Markov model for the
length of stay of elderly people in institutional long-term care. Journal of the Royal
Statistical Society: Series A (Statistics in Society), 168(1):51–61. 10, 79

Yom-Tov, G. and Mandelbaum, A. (2014). Erlang-r: A time-varying queue with reentrant
customers, in support of healthcare staffing. Manufacturing & Service Operations Man-
agement, 16(2):283–299. 13, 36, 37, 79

Zhang, D., Gurvich, I., Van Mieghem, J., Park, E., Young, R., and Williams, M. (2016).
Hospital readmissions reduction program: An economic and operational analysis. Man-
agement Science, 62(11):3351–3371. 76

Zhang, Y., Puterman, M., Nelson, M., and Atkins, D. (2012). A simulation optimization
approach to long-term care capacity planning. Operations Research, 60(2):249–261. 13

Zohar, E., Mandelbaum, A., and Shimkin, N. (2002). Adaptive behavior of impatient cus-
tomers in tele-queues: Theory and empirical support. Management Science, 48(4):566–583.
78

Zychlinski, N., Mandelbaum, A., and Momčilović, P. (2018a). Time-varying many-server
finite-queues in tandem: Comparing blocking mechanisms via fluid models. Under revision
in Operation Research Letters. 6
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 תקציר

בעיה  .בבתי חולים (חסימת מיטות) bed blocking -ה בעייתלהתמודד עם  הבסיס למחקר זה הוא הצורך

עד שם  מאושפזיםלהשאר  יםנאלצמתרחשת כאשר חולים קשישים מסיימים טיפול בבית חולים, אך זו 

 ,. בעיית חסימת המיטות מהווה אתגר תפעולימתאים תתפנה עבורם מיטה פנויה במוסד גריאטריאשר 

הטיפול המתאים  מקבלים אתאינם  חולים ימעוכבים בבתהחולים  :הכלכליות והבריאותיות יההשלכותעקב 

העברה מונעים חוסמים/בנוסף, משום שהם תופסים מיטה במחלקה, הם ו ביותר עבורם )שיקום, למשל(

 משום, בעיית חסימת המיטות כרוכה בעלויות גבוהות, מעבר לכךהמיון. חדר של חולים חדשים מ אשפוזו

 אשפוז במוסד גריאטרי. מעלות  באופן משמעותי השעלות אשפוז בבית חולים גבוה

לאוכלוסיית הקשישים מהווה אתגר מרכזי במדינות מפותחות.  באיכות גבוההאספקת שירותים רפואיים 

 10% מהווים היוםה ,ומעלה 65 איהקשישים בגיל שמספר לאור העובדההולך ומעצים, אתגר זה 

ים צלחלק מהחולים הקשישים נאצפוי להכפיל את עצמו בתוך שני עשורים. בנוסף, משום שמהאוכלוסיה, 

מספר מדינות בשנים האחרונות כבר צפוי לגדול.  בהם, העומס בבתי חולים להתאשפז לעיתים תכופות

OECD   מחלקות האשפוז בבתי החולים. ממוצעים בתפוסת מיטות ב 90% ממוצע של מעל עלמדווחות

 חושפים את המציאות היומיומית בבתי החולים בתקופות העמוסות )בחורף(. אינם השנתיים אל

לשפר את  במטרהוזאת , בניתוח בעיית חסימת המיטות קד( מתמ2החלק הראשון בעבודה זו )פרק 

אנו מתמקדים בזרימת חולים ברשת המשותף של בתי החולים והמוסדות הגריאטריים. לשם כך, תפעולם 

מוסדות גריאטריים הכוללים שלוש מחלקות מרכזיות: שיקום והכוללת מחלקות אשפוז בבתי חולים 

אינם הקשישים גריאטרי, הנשמה ממושכת וסיעודי מורכב. בסיום הטיפול בבית החולים, חלק מהחולים 

המשך באחת  אשפוזמצבם, ל והם מופנים, על פי יכולים להשתחרר לביתם עקב מצבם הרפואי

מהמחלקות הגריאטריות. משכי האשפוז הממוצעים הם כחודש במחלקת שיקום גריאטרי, שישה שבועות 

חולים  ,מהמחלקות האשפוז בכל אחתבסיעודי מורכב וחמישה וחצי חודשים בהנשמה ממושכת. במהלך 

 . אשפוז חוזרל עלולים למות או, עקב הדרדרות במצבם, להיות מוחזרים לבית החולים

העומס הגבוה במערכת וזמני ההמתנה הארוכים למחלקות הגריאטריות עודדו אותנו לנתח את המערכת 

חסימות, תמותה  כוללמודל נוזלים מתמטי אשר פיתחנו ולחפש פתרונות תפעוליים לשיפורה. לשם כך, 

אנו מתמקדים. ההשוואה בין מודל הנוזלים,  בהמאפיינים מרכזיים בסביבה  ל אלו הםכ –חזרות לאשפוז ו

נתונים של שנתיים מרשת בתי חולים ותוצאות סימולציה, מראה שהמודל שאנו מציעים הוא מדויק 

הגעות, בנוסף, אנו מוכיחים שמודל הנוזלים מהווה גבול למערכת הסטוכסטית המקבילה, בה ושימושי. 

, ובמיוחד העומס הנוזלים שאנו מציעיםמודל קריים. חזרות לאשפוז הם משתנים מקצבי טיפול, תמותה ו

קבלת החלטות  בתהליךהנובע ממנו, מתבררים כשימושיים ונוחים ליישום  (offered-load)המוצע 
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אנו משתמשים במודל הנוזלים ובנתונים שניתחנו על מנת לבצע תחזית הקשורות בתכנון והקצאת מיטות. 

אחת התוצאות , אשר לוקחת בחשבון את הגידול באוכלוסייה במהלך אופק התכנון. offered-load -של ה

אנו על מנת למזער עלויות עודף וחוסר.  ,הגריאטריות הנדרשותהמיטות  לכמותנוסחה סגורה  היאשקיבלנו 

רשימות כן את אורכן של ו ,להוריד משמעותית את עלויות התפעולהמוצע יכול פתרון מדגימים כי ה

 , ביחס למצב הנוכחי.  ההמתנה

למודל ההקצאה הבסיסי אנחנו מציעים שתי הרחבות. הראשונה, היא מודל הכולל עלות קבועה הכרוכה 

בהקמה של מיטות/מחלקות חדשות. ההרחבה השניה, כוללת מודל המאפשר הקצאה תקופתית של מיטות 

בעיית ההקצאה במהלך השנה. לשם כך, אנו משתמשים בעלות הקצאה מחדש עבור כל מיטה. 

התקופתית מאפשר לקבוע את אורך התקופות השונות בכל שנה וכן, את כמות המיטות הנחוצה בכל 

הפתרון התקופתי מתאים טוב יותר לעומס המוצע המשתנה בזמן ועל כן, מאפשר הורדה נוספת  תקופה.

  בעלויות התפעול. 

 הן: של פרק זה המרכזיותהתרומות 

אנו מפתחים ומנתחים מודל אנליטי הכולל מחלקות אשפוז גריטארי ארוך טווח וכן את  –מידול  .(1

למדל את  י על מנתמחלקות בתי חולים המזינות אותן. ניתוח משולב של רשת זו זה הוא הכרח

אפקט החסימה )להבדיל ממחקרים קודמים שהתמקדו בניתוח של תחנה אחת( ואת העלויות 

 הכרוכות בחסימת המיטות.  

המחקר שלנו תורם לספרות המקצועית בנושא רשתות תורים עם חסימות. המודל  –מתודולוגיה  .(2

והוא ניתן ליישום גם ברשתות  reflection -שאני מציעים מתאר את החסימות ללא שימוש ב

אחרות. אנו משתמשים במודל כי להסיק פתרונות אנליטיים ותובנות תפעוליות לגבי מזעור עלויות 

גישת הפתרון שאנו מציעים כוללת ניתוח מערכות משתנות בזמן, אה של מיטות. בבעיות הקצ

 כל אלו מאפיינים מרכזיים במערכות בריאות.  –בעלות קיבולות סופיות, תמותה ואשפוזים חוזרים 

מחקר זה כולל פיתוח אסטרטגיות חדשות לבעיות הקצאה. אנו מציעים נוסחה סגורה  –פרקטיקה  .(3

משתנה בזמן, המתאימה לביקוש העונתי. כמו כן, אנו מציעים מודל אנליטי  לפתרון בעיית הקצאה

יעים שמביא בחשבון גם עלויות קבועות של הוספת מיטות חדשות. גישת הפתרון שאנו מצ

 תכנון הקצאה של מיטות. מאפשרת לסייע למקבלי החלטות במערכת הבריאות בנוגע ל

  

אותם –"האשפוזמעוכבי "לקחת בחשבון גם את  חשובאת המערכת בצורה מקיפה יותר,  נתחעל מנת ל

חדרי  בנוסף, גם ,צריך לכלולמחלקות. ניתוח זה אחת הלמיטה פנויה בבחדר המיון חולים הממתינים 

 3, בפרק המערכת מלאה. לשם כךאשר כלעזוב  הנאלציםואובדן של לקוחות  עם קיבולת סופיתהמתנה 
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בעלי קיבולת עם חסימות וחדרי המתנה  ,בזמן נותמשתה טוריותתורים  ותם ומנתחים רשתאנו ממדלי

מודלים אלו כוללים את המאפיינים המהותיים של הן לפני התחנה הראשונה והן בין התחנות. , סופית

ו לוקחים : השתנות בזמן וחסימות. אך להבדיל מהמודל הראשון, מודלים אל2פרק אותו ניתחנו בהמודל 

ניתוח של מחייב אשר מתרחש כשחדר ההמתנה הראשון מלא. מידול זה חשבון גם אובדן לקוחות, ב

reflection  ,ן הוכחת ההתכנסות למודל הנוזלים הם מורכבים ההמודל הסטוכסטי במקרה זה והן ועל כן

שאנו מנתחים כולל סט של משוואות דיפרנציאליות לא רציפות  יותר. מודל הנוזלים עבור קבוצת הרשתות

(Differential Equations with a discontinues right-hand-side .) משוואות אלו ניתנות לפתרון בקלות

שתות הרחב, מעבר לר נןלגבי רשתות תורים טוריות במוב מסתיים בתובנות תפעוליות 3פרק . אופן נומריב

, זמני התפעוליים )תפוקה המדדימאפייני הרשת על כוללות את ההשפעה של אלו התובנות בתי חולים. 

 ומספר לקוחות בכל תחנה בכל זמן(.  שהייה המתנה וחסימה

 התרומות המרכזיות של פרק זה הן:

תחנות מרובות שרתים בטור, הכולל חדרי המתנה  kאנו מנתחים מודל משתנה בזמן של  –מידול  .(1

לפני התחנה הראשונה ובין התחנות. מודלים אלו כוללים גם חדרי המתנה  פיתוסבעלי קיבולת 

 וגם רשתות לא חדרי המתנה כלל. מקרה פרטי של המודלים כולל מערכת בעלי קיבולת אינסופית

M/N/(N+H)/tG לכל הרשתות האלו אנו מפתחים מודל נוזלים מאוחד המאופיין תחנה אחת עבור .

 על ידי סט משוואות דיפרנציאליות לא רציפות. 

שאנו המודל הסטוכסטי הראשון שאנו מציגים למשפחת הרשתות   –ניתוח המודל הסטוכסטי  .(2

. מתברר, שהצגת המודל המתבססת על (occupancy)מתבסס על תפוסת התחנות מנתחים 

נוחה יותר לניתוח. הצגה זו מאפשרת תיאור  non-utilized)) שאינם מנוצלים  השרתים דווקא על

 -תכונות שימושיות של אופרטור הרשת של ה ממנה ניתן להסיק, reflectionשל הרשת באמצעות 

reflection  .)רציפות ליפשיץ( 

 Functional Strongבאמצעות החוק הפונקציונלי של המספרים הגדולים ) –ניתוח מודל הנוזלים  .(3

Law of Large Numbers)מערכת הסטוכסטית, הכולל לגבול הנוזלים  פתחים את, אנו מ

reflectionבאמצעות שימוש בתכונות אופרטור ה .- reflection אנו פותרים את מודל הנוזלים ,

י, . ייצוג זה הוא אפקטיבreflectionאותו באמצעות סט משוואות דיפרנציאליות ללא  מבטאיםו

 גמיש ומדויק ועל כן, נוח ליישום עבור מגוון של רשתות. 

המודלים שאנו מציעים מאפשרים הסקת תובנות תפעוליות על רשתות טוריות  –תובנות תפעוליות  .(4

משתנות בזמן עם חדרי המתנה סופיים. באמצעות ניסויים נומריים, אנו מנתחים את ההשפעה של 

ו של צוואר הבקבוק, גודל חדר ההמתנה הראשון אורך הקו )מספר התחנות ברשת(, מיקומ

 והאינטראקציה ביניהם, על ביצועי הרשת ומדדיה התפעוליים.
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 - Blocking After Serviceשירות" ) לאחרעוסקים במנגנון חסימות מסוג "חסימה  3-ו 2פרקים בעוד 

BAS,)  לפני שירות"  "חסימותמנגנון מסוג הפועלות על פי משתנות בזמן רשתות תורים ב עוסק 4פרק

((Blocking Before Service - BBS.אשר נפוצות במערכות תקשורת, ייצור ואף במערכות בריאות , 

אנו גם בתחנה הבאה ברשת. לאותו לקוח פנוי בתחנה רק אם יש מקום מתחיל מנגנון זה, שירות ב

ומרובות שרתים הכוללות  עבור רשתות תורים טוריות, משתנות בזמןהסטוכסטי מתחילים בפיתוח המודל 

 גבוללפני התחנה הראשונה ובין התחנות. בשלב הבא, אנו מפתחים את בעלי קיבולת סופית חדרי המתנה 

חדר קיבולתו הסופית של שנובע מ ,reflectionפיתוח זה כולל  ם למודל הסטוכסטי.הנוזלים המתאי

אנו מספקים מספר דוגמאות המדגימות את דיוקו ויעילותו של מודל הנוזלים בתיאור . הראשוןההמתנה 

 המערכת הסטוכסטית אותה הוא מקרב.

בסוף, אנו מנתחים את המודלים במצב יציב ומקבלים נוסחה סגורה לתפוקת הרשת ולקצב אובדן ל 

ד של צוואר הבקבוק הלקוחות. תפוקת הרשת היא למעשה המינימום בין קצב ההגעה, קיבולת העיבו

כולל למעשה שתי  ,ועל כן BBS -נובע ממנגנון ה, אשר וקיבולת העיבוד של צוואר הבקבוק "הוירטואלי"

 והסקת (BBS -ו BAS)שני מנגנוני החסימה בין אנליטית  השוואה סיום הפרק כוללתחנות עוקבות. 

 אותם מדדים תפעוליים.  יתקבלושני המנגנונים ב, כולל התנאים בהם לגביהם תכנוניות/תובנות תפעוליות

 התרומות המרכזיות של פרק זה הן:

ברת חיזוי, מערכות בזמן זה מעשיר מודלים קיימים בכך שהוא מוסיף השתנות מחקר  –מידול  .(1

 . BBSבעלי קיבולת סופית, הפועלים על פי מנגנון מרובות שרתים וחדרי המתנה 

מדויקים ואפקטיביים ביחס למערכות קלים ליישום, המודלים שאנו מציעים הם  -יישום  .(2

 . מקרביםהסטוכסטיות שאותן הם 

מובילה לתובנות  . השוואה זואנו מספקים השוואה אנליטית בין מנגנוני חסימה שונים - פרקטיקה .(3

ש י להשתמאתחת אילו תנאים כד , בהתאם לפרמטרים של הרשת,תפעוליות ומאפשרת לקבוע

 בכל מנגנון. 
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