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Abstract. Operational process models such as generalised stochastic Petri nets
(GSPNss) are useful when answering performance queries on business processes
(e.g. ‘how long will it take for a case to finish?’). Recently, methods for process
mining have been developed to discover and enrich operational models based
on a log of recorded executions of processes, which enables evidence-based
process analysis. To avoid a bias due to infrequent execution paths, discovery
algorithms strive for a balance between over-fitting and under-fitting regarding
the originating log. However, state-of-the-art discovery algorithms address this
balance solely for the control-flow dimension, neglecting possible over-fitting in
terms of performance annotations. In this work, we thus offer a technique for
performance-driven model reduction of GSPNS, using structural simplification
rules. Each rule induces an error in performance estimates with respect to the
original model. However, we show that this error is bounded and that the reduction
in model parameters incurred by the simplification rules increases the accuracy of
process performance prediction. We further show how to find an optimal sequence
of applying simplification rules to obtain a minimal model under a given error
budget for the performance estimates. We evaluate the approach with a real-world
case in the healthcare domain, showing that model simplification indeed yields
significant improvements in time prediction accuracy.

1 Introduction

Performance analysis is an important pillar of business process management initiatives
in diverse domains, reaching from telecommunication, through healthcare, to finance.
Taking healthcare as an example, it involves the ability to answer questions such as ‘how
long will it take for a patient to get treatment?’, and ‘how many nurses do we need to
staff to accommodate the incoming demand?’. Answers to these questions are key in
running an organization successfully and deliver value to its clients [[L].

Operational process models such as generalised stochastic Petri nets and queueing
networks are useful in answering the aforementioned performance questions [243]. In
particular, these models enable testing of re-design and improvement initiatives with
respect to the as-is model. For instance, by changing staffing levels and altering the
control-flow, the impact of operational changes on the performance characteristics of the
process can be explored.



Process mining enables automatic discovery and enrichment of operational process
models from logs, which record process executions [4]]. Data-driven model discovery
improves beyond the manual model elicitation in its ability to reflect the process as
it is actually executed. However, automatically discovered models tend to incorporate
infrequent process executions, which may result in over-fitting with respect to the
originating log. Recently proposed discovery algorithms attempt to balance between
over-fitting and under-fitting in the control-flow dimension [5l6136/7]]. Yet, the question
of how to avoid over-fitting in terms of performance annotations of operational models
has not been addressed in the literature.

This work approaches the problem of over-fitting of operational process models
with P3-Folder, a method for automated simplification of generalised stochastic Petri
nets (GSPNs) for process performance prediction. Starting with an over-fitting GSPN
discovered from a log, the idea behind P?-Folder is that simplification reduces the number
of model parameters. This, in turn, increases the accuracy of performance estimates, even
though simplification generalises the model by introducing an estimation error regarding
the original model. More specifically, our contribution is twofold. As a first step, P3-
Folder defines a set of structural simplification rules for GSPNSs, referred to as foldings.
Unlike existing proposals for model simplification [8], these rules are local (affecting only
a subnet of the GSPN), come with formal bounds regarding the introduced estimation
error, and their applicability is identified automatically by structural decomposition
of the GSPN. Second, P3-Folder formulates model simplification as an optimization
problem that aims at attaining a minimal model for a given budget for the introduced
estimation error. This problem is cast as an Integer Linear Programming (ILP) problem,
which enables efficient computation of the optimal sequence of folding operations.

We evaluate P3-Folder with a case in the healthcare domain. Our experiments show
that simplification of a GSPN discovered from a real-world log yields a significant
improvement in time prediction accuracy compared to the original GSPN.

The remainder of the paper is structured as follows. The next section discusses
the methods and challenges in performance-oriented process mining. recalls
the GSPN formalism. Foldings of GSPNs are introduced in The model
simplification problem and its encoding as an ILP program is proposed in
Evaluation results are presented in [Section 6] [Section 7| reviews related work, before
Section §|concludes the paper.

2 Background: Performance-Oriented Process Mining

Process Mining for Operational Analysis. We consider a setting in which a log L of
recorded process executions is given and analysis questions regarding the performance
of process execution shall be answered. Specifically, let Y be a performance measure,
e.g., the total runtime of a process instance. Further, let ¢(Y") be a performance query
over Y, e.g., the expected value of Y, which we aim at answering based on L. In general,
we distinguish two types of process mining techniques to quantify ¢(Y").

First, machine learning (ML) techniques may be exploited. That is, process execu-
tions (including their data) are encoded as a feature vector X. Common ML methods
such as regression or decision trees are used to construct an estimator §(Y") conditioned



on X. Examples for such methods are found in [9/10411]. While such an approach is
often accurate in predicting ¢(Y), it has two major drawbacks. Given a performance
measure Z that is not directly observable in the log, one needs to quantify ¢(Z), since
ML methods require labelled observations of ¢(Z) in the training phase. For instance, Z
may be the waiting time for a specific resource. If it is not recorded in the log, ¢(Z) must
be estimated. This estimation procedure may introduce an error, which will reduce the
accuracy of the learning technique. In addition, exploring to-be processes and sensitivity
analysis of current process parameters is impossible due to lack of data that describes
the effect of X on Y under the new terms.

A second angle to answer performance question is to use operational process models.
Given the log L, operational models such as GSPNs can automatically be discovered and
enriched with performance information [12/13]. To quantify ¢(Y"), a corresponding query
qm (Y) is evaluated over the model, e.g., with the help of simulation [13] or queueing
theory approximations [8l3]]. A model-based approach overcomes the aforementioned
limitations. It supports queries for measures that were not directly recorded in the log
and enables to-be performance analyses and sensitivity analysis (e.g., by changing the
control-flow and altering activity durations).

However, a model-based approach also suffers from a major drawback, namely
over-fitting of the estimated ¢(Y") with respect to L [8]. ML-based methods balance
over-fitting of ¢ to L by means of regularization methods (e.g., pruning the regression
tree [[10]]). A model-based approach for regularizing, in turn, does not exist.

We illustrate this problem with two models that were discovered from a real-world
case in the healthcare domain (see our evaluation results for details). depicts
the two process models discovered using the Inductive Miner [14] with different noise
thresholds: 0% for model [(a)| and 20% for model We observe that noise filtering
balances over- and under-fitting of the control-flow regarding the log, yielding a more
sequential model when filtering more noise events. However, the trade-off between
over- and under-fitting is not addressed for the performance perspective. Enriching both
models with performance information based on [[12] and testing them against a month of
operational data not used in model construction shows that model [(b)|is only slightly
more accurate than model As we later demonstrate experimentally, a principled
approach based on model simplification, in turn, alleviates over-fitting in the performance
dimension, thereby significantly improving prediction accuracy.

Resolving Performance Overfitting by Model Simplification. The idea followed in
this work is to avoid over-fitting in the performance dimension by model simplification.
We balance model size (number of model parameters) and proximity of the performance
estimates of the simplified model to those of the original model (and thus the log).

To explain this idea in more detail, we adopt a statistical perspective on discovery
and enrichment of operational process models. We assume that the performance measure
Y is governed by a (parametric and stochastic) process model M, i.e., Y ~ M. Then,
an estimation of ¢(Y") translates into an estimation of ¢(M). Hence, it is sufficient to
estimate the model M to obtain ¢(Y").

Common process discovery and enrichment techniques yield an initial model M of
the model parameters. Then, our P?-Folder method applies a sequence of simplification
rules to M), each introducing an estimation error with respect to ¢(Y"). What prevents



(a) 0% noise filter. (b) 20% noise filter.

Fig. 1: Automatically discovered model of a hospital process.

the model from collapsing into a single node is an error budget B. P*-Folder generates a
model M* as the most simple one in terms of size that is still with the specified error
bound from M with respect to ¢(Y"). Tuning the error budget B for a specific measure Y’
is performed via a cross-validation procedure on L. The resulting model M* ‘enjoys’ the
benefits of a model-based performance analysis, while being more general compared to
M. As such, P3-Folder can be viewed as a regularization of process models, transferring
the analogy of machine learning into the world of model-based performance analysis.

3 Performance Analysis with Generalised Stochastic Petri Nets

GSPN Syntax and Semantics. Generalised Stochastic Petri Nets (GSPNs) [15] are a
class of Petri nets that incorporate stochastic information on time behaviour: transitions
are either immediate, representing atomic logical actions, or timed, representing units of
work. Below, we recall a notion of GSPNs that includes weights of immediate transitions,
and resource capacities and expected durations of timed transitions.

Definition 1 (GSPN). A GSPNis a tuple G = (P, T, F,~, §,w) where:
o P is the set of places,
o T = T;UT; is the set of transitions consisting of immediate transitions 7; and timed
transitions 7}, respectively,
F C(PxT)U(T x P) is the flow relation,
7y : Ty — R assigns capacities to timed transitions (work units per time unit).
§: Ty — R assigns expected durations to timed transitions.
w: T; — [0, 1] assigns weights to immediate transitions.

We refer to the tuple (P, T, F) as the structure of the GSPN, and to (7, d,w) as its
functional component. The set X = P U T denotes all nodes and the size of a GSPN is
defined as | X|. Foranode z, ez = {y € X | (y,z) € F} andze = {y € X | (z,y) €
F'} denote its preset and postset, respectively. Further, F'* is the transitive closure of F'.

Semantics of a GSPN are defined as a ‘token game’: A marking M : P — Ny
assigns to each place a number of rokens, thereby representing a GSPN state. A transition
t € T is enabled in M, if all places in its preset are marked, i.e., Vp € ot : M(p) > 0.

O O O O



An immediate transition that is enabled, can fire. Firing of a timed transition ¢
depends on its capacity and expected duration: Once it is enabled, a single exponential
clock with rate A(t) = 78; is started and the transition can fire when the clock is elapsed.
That is, we assume a single-server semantics: there is one exponential clock per enabling.

Firing a transition ¢ in a marking M yields a marking M’, such that M'(p) =
M(p)—1forallp € ot\te; M'(p) = M(p)+1forallp € te\et;and M'(p) = M(p)
otherwise. Although tokens are indistinguishable, for performance analysis, we shall
assume that the tokens that enable a timed transition are selected on a First-Come First-
Served (FCFES) policy. Since first-order performance measures (e.g., average waiting
times and average number of tokens in a place) are indifferent to the selection policy [15],
the assumed FCFS policy is indeed plausible.

Semantics of a GSPN further depend on types of transitions and their assigned
rates (capacity over expected duration) and weights as follows. Let ¢, ...,tx € T be
transitions that are enabled in a marking M, i.e., they compete for firing. If transitions
t1, ..., ty are either all immediate or all timed, the assigned rates or weights determine

the likelihood of each of the transitions being fired. This likelihood is deﬁned for
A(t5)
S A
immediate transitions), respectlvely If some transitions are immediate and some are
timed, the immediate transitions have priority and the likelihood model is applied only

to the immediate transitions.

transition t;, 1 < j < k, as (only timed transitions) or Z’“ = t) (only

Process Performance Analysis. A business process is described by an open GSPN,
which is a GSPN G = (P, T, F,~,d,w) that has a dedicated timed transition 79 €
T,, called arrival transition, which represents external arrivals into the system [16].
Specifically, it holds that 7y = ) (and for all ¢ € T} \ {70} it holds et # 0), v(0) = 1,
and 0(p) = ﬁ—lo, so that B, represents the arrival rate of the open GSPN. In the remainder,
we assume all GSPNs to be open GSPNs.

The arrival transition 7y is enabled in any marking and thus, also in the empty
marking My with My(p) = 0 for all p € P, which serves as the initial marking. Then,
the reachability graph of G is a graph comprising all reachable markings, denoted
R(My), i.e., markings that can be obtained by firing of transitions of G, starting in
My (here, the empty marking). To perform steady-state analysis, it was shown that the
reachability graph of a GSPN is isomorphic (after reduction) to a Continuous-Time
Markov Chain (CTMC) [[15]. The transition rates between the CTMC states correspond
to the rates \(t) = % assigned to the respective timed transitions in the GSPN.
Exploiting this transformation, performance analysis of a GSPN is based on techniques
of CTMC analysis: global balance equations of the CTMC are solved or, to alleviate the
complexity of solving these equations, queueing theory approximations can be used. In
this work, we use such an approximation technique presented in [[17]].

4 Foldings of GSPN

P3-Folder employs folding operations (aka foldings) to simplify GSPNs. We first elab-
orate on the general notion of foldings, before providing a detailed discussion of an
exemplary folding. Finally, we show how to identify applicable foldings based on
structural decomposition of a GSPN.



4.1 The Notion of a Folding

A folding operation is a contraction of a GSPN, which yields a GSPN that is equal or
smaller in size. Yet, not all contractions are reasonable when aiming at improved accuracy
of performance prediction. It is important that foldings preserve stability to ensure that the
resulting model has a finite expected waiting time value. In GSPN terminology, a timed
transition ¢t € T; of a GSPN G = (P, T, F,~, §,w) is stable, if the marking M, (p) =0
,V p € ot is a home marking for My in G, i.e.,V M’ € R(My) : M), € R(M'). We call
G stable, if all its timed transitions 7T} are stable.
Let G be the universe of GSPNs. Then, we define foldings as follows:

Definition 2 (Folding). A folding is a function ¢ : G — G, such that for all G € G it
holds that |1/ (G)| < |G|. A folding 1) is called proper, if for all G € G it holds that G
being stable implies that ¢)(G) is stable.

The preservation of stability, termed properness, can be seen as a correctness criterion
for the definition of foldings. Aiming at a contraction of the original GSPN, however,
most foldings are actually abstractions that imply a certain bias in any performance
analysis done with the resulting model. To control the application of foldings, therefore,
we assign each folding a cost that bounds the possible estimation error. Clearly, this
cost is specific to a particular performance measure and, thus, the type of performance
analysis that shall be conducted with the folded model. As a prominent example measure,
we consider the sojourn time of a GSPN: the total time it takes for the tokens produced
by a single firing of the arrival transition 7y to reach a deadlocking marking (a marking
in which no transition is enabled).

Let G be a GSPN and G’ = ¢(G) for some folding ¢. Let S and S’ be random
variables for the sojourn times of G, and G’, respectively. The cost of applying folding
1 to G is defined as the absolute deviation in expectation between the sojourn times:
¢(G, ) = |ES’ — ES]|. Note that, since firing delays are given in the GSPN, the main
challenge in evaluating sojourn times is obtaining good estimates for waiting times.

In this work, we consider five foldings: (1) sequence-folding, (2) race-folding (3)
XOR-folding, (4) AND-folding, and (5) loop-folding. These foldings relate to common
behavioural structures in business process models [[18]. Each of them yields a simple
GSPN comprising the arrival transition and a second timed transitions, as illustrated in
Note that the race-folding and XOR-folding relate to different semantic concepts:
the former folds a net that represents resources working in parallel on jobs that arrive as
tokens in the respective place. The XOR-folding, in turn, relates to probabilistic selection
of activities, i.e., a probabilistic selection among different timed transitions.

All the five foldings are proper and their costs can be computed by exploiting results
from queueing theory. Due to space limitations, however, we limit the discussion of
properness and costs in this work to XOR-folding.

4.2 The XOR-folding

The XOR-folding, denoted by 1 x, takes as input a GSPN G = (P, T, F, v, 0, w) of the
structure visualised in[Fig. 2] (D): it comprises the 7 transition (with rate 3)), a single
place p; with ep; = {79} and a single place p, with p,e = {) that are connected by
sequential structures, each comprising two immediate transitions and a timed transition.



A) Sequence-Folding B) Race-Folding C) Loop-Folding
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D) XOR-Folding

Fig.2: Overview of foldings.

Applying the folding yields a GSPN G’ = ¢¥x (G) = (P, T', F',~',6',w’), where
the structure (P’, 7", F") is a trivial net comprising the 7y transition (7' (7o) = y(70) and
&'(70) = &(70)), and two places that are connected via a timed transition, ¢, see[Fig. 2|

The functional part of G, that is (7, 8", w’}, is constructed as follows. First, weights
(w") become irrelevant, since G’ does not contain immediate transitions. The capacity
(7) and expected duration (9) of the timed transition ¢ of G’ are set as:

oY) =24 e, \ {70} ~(t¢), i.e., the new transition is allocated the total capacity
of the internal timed transitions in G;

0 8'(t) = 224, e T\ {ro}. ts € T, (11, 1,) € = W(E:)O(te), i.e., the new transition is as-
signed an expected duration that is the weighted average of the durations of the timed
transitions in GG, where the weights stem from the respective immediate transitions.

Theorem [I] ascertains the XOR-folding properness.

Theorem 1. If G is stable, then 1 x (G) is stable.

Proof. By [20], the stability condition for G is that for all ¢, € T} \ {70} it holds that
Bow(t;) < }gfz; with t; € T; such that (¢;,t;) € F*. Hence, the sum of these inequali-
ties yields 80 < >y, e 1, \ {0} % Due to

’I’L

a; 1al
;3 Zlb

for a;,b; > 0, we arrive at

Z 7 Dterfrop V(t)

te €Ty ZtteTt\{TO} ti ETn(fm*t)EF* 'I,U(t )6(tt),
which proves stability of G'. O

To calculate the cost of the XOR-folding, we compute the expected sojourn times,
Sx in G, and S% in G’ = ¥ x (G). Since arrivals into the systems (by firing the arrival
transition 7y) are Poisson arrivals, the arrival of timed transitions ¢, € T; \ {70} in G
are also Poisson (due to the ‘Poisson splitting’ property [27]). The arrival rate for



te € Ty \ {m0} is given as w(t;) By with t; € T; such that (¢;,t;) € F*. Note that for
GSPNs showing concurrency, the ‘Poisson splitting” property does not hold true and a
refinement of the above approximation can be made by using Eq. (24) in [17].

The firing delays for each of the timed transitions, ¢; € T3 \ {70} are assumed to be
independent of the arrival process, and have exponential durations. These assumptions
enable the use of the M /M /1 formula for each timed transition to calculate the sojourn
times [16]. We write the expected value of Sx as:

ESx = Z w(t;)ESY, (1)
ty € Tt \ {70}, ti € Ty, (ti, tr) € F*
Since it is known that

te_ 1 o 5(t)
X = N =t~ ) = Bow()d(E)’ @

fort, € Ty \ {70}, t; € T;, (t;, t:) € F*, see [16]], the sojourn time is given by:

w(ti)o(te)
ESx = Z . (3)
ty € Ty \ {10}, t: € Ty, (ti, te) € F* 7<tt> N Bow(ti)é(tt)

We now turn to the calculation of the sojourn time S for G’ = ¥ x(G):

1
ESYy = ———+, “
TN - B
with X' (t) = }: gg . In primitives of G, the expected sojourn time is given as:
IESS( _ ZttGTt\{To},MET,,,(t,,tt)EF (t:)o(te) )

Ztt €T \ {70}, ti € T, (ti, t;) € F* ry(tt) - Bow(ti)d(tt) .

The resulting cost for the XOR-folding is: ¢(G, ¢) = |ES% — ESx|, which is easy to
compute as it comprises only of primitives of G, the originating GSPN.

4.3 Finding Foldings by GSPN Decomposition

So far, we discussed the foldings shown in as a transformation of a complete
GSPN of the according structure. However, P?-Folder employs foldings also to transform
parts (aka subnets) of a GSPN, which may enable iterative application of foldings. This
holds in particular, as the foldings can be applied to any part of a GSPN that has one of
the structures shown in[Fig. 2] when removing the arrival transitions 7. The reason is
that the rate of token arrival into the structures, as encoded by the arrival transitions, can
be precomputed by solving the (linear) ‘traffic equations’ [21J17]], which tie the external
arrival rate of the entire GSPN to the internal arrival rates of places of the GSPN.
Observing that the structures in once the arrival transitions have been removed,
correspond to common single-entry/single-exit (SESE) controlflow structures, P3-Folder
employs structural decomposition of the GSPN to identify applicable foldings. Specifi-
cally, the Refined Process Structure Tree (RPST) [22/23] is used to parse a GSPN into a
hierarchy of SESE fragments. Then, the RPST is a containment hierarchy of canonical
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(a) GSPN (timed transitions are labelled) (c) GSPN part after folding B4

Fig. 3: Example for the decomposition of a GSPN using the RPST.

fragments of the graph, which is unique and can be computed in linear time [23]]. Frag-

ments can be classified to one out of four structural classes: trivial fragments consists of a

single edge; polygons (P) that are sequences of fragments; bonds (B) that are collections

of fragments that share entry and exit nodes; and rigids representing any other structure.
To identify which of the foldings outlined in can be applied to a given GSPN,
we rely on the RPST of the GSPN as follows:

Sequence-Folding: The folding can be applied to any polygon fragment that has only
trivial fragments as children and comprises at least two timed transitions. Assuming
that the GSPN has been normalised (immediate transitions may occur only as the
first child, as they are redundant at any other position in a polygon), the folding
applies to the maximal sequence of timed transitions.

Race-Folding/XOR-Folding/AND-Folding: The foldings apply to place-bordered (Race,
XOR) or transition-bordered (AND) bond fragments that contain only polygons
of single timed transitions (Race, AND) or polygons of three children, a timed
transitions that is preceded and succeeded by immediate transitions (XOR).

Loop-Folding: The folding applies to place-bordered bonds that are cyclic and part of a
polygon. The bonds needs to be followed by an immediate transition in the parent
polygon and show the structure visualised in[Fig. 2} That is, the children of the bond
are polygons of single transitions that are either immediate (if flows in the child lead
from the bond entry to the bond exit) or timed (otherwise).

The above rules identify foldings iteratively: whenever an applicable folding was found,

the respective part of the GSPN is replaced by a timed transition and the rules are

checked again. This way, given a GSPN, P®-Folder obtains a set of folding instantiations

F ={f1,..., fn}, each being defined by a folding and the GSPN that is folded. Further,

a precedence function v : F' — (p(F') U () defines, given f € F, the set of all folding

instantiations that must be applied before f, to generate the GSPN on which f is applied.



We illustrate this approach with a GSPN derived by annotating the model of
shows an excerpt of this model. The RPST of the highlighted part is depicted
in[Fig. 3b] Here, loop-foldings can be applied to all the bond fragments B3-B6, since
they comprise polygons of single transitions of the required types. Applying the loop-
folding to bond B4 yields the net partially shown in Once loop-foldings have
been applied to bonds B3-B6, an XOR-folding can be applied to bond B2, which now
comprises polygons, each built of an immediate transition followed by a timed transition.

5 Optimal Simplification of GSPN

Using the foldings proposed above, this section shows how P3-Folder identifies the
cost-optimal sequence of foldings to simplify a given GSPN. To this end, we define the
problem of optimal folding simplification, show how it is encoded as an Integer Linear
Program, and elaborate on a method to select an appropriate cost budget.

Optimal Folding Simplification. Let G be a GSPN, F' be a set of folding instantiations,
and v the respective precedence function. The cost of every folding instantiation f; € F
is denoted c;, calculated as described in Further, P3-Folder works with a
real-valued budget, B € R, which corresponds to the cumulative error (sum of all
costs) that is incurred by the foldings with respect to some performance query ¢(Y), e.g.,
the total sojourn time. Last, the utility of every folding instantiation f; € F, denoted by
u;, is defined as the difference in the number of transitions before and after folding.

The Optimal Folding Simplification (OFS) problem involves finding a sequence of
folding instantiations of F' that respects v, such that the utility is maximised (the GSPN
size is minimised) and the total cost of these foldings does not exceed B.

ILP Encoding. OFS is a tree-knapsack problem, a generalised 0-1 knapsack problem,
that is known to be NP-complete. In this problem all items are subjected to a partial
ordering represented by a rooted tree [24]. In our case, this partial ordering is induced
by the precedence function defined over the folding instantiations.

In what follows, we show a simple reduction from the tree-knapsack problem to an
Integer Linear Program (ILP). The ILP problem is well-studied and many tools exist
for its solution. We instantiate the ILP as follows. Let z; be a decision variable that
receives 1 if the folding instantiation f; is applied to G, and O otherwise. Then, the ILP

representation of the OFS problem is: .

maxir}lize Z Ui
i=1
n
subject to: Zcixi <B A Vi,j€ {].,...,’fL},fj GV(fi) T T ZLE]'.
i=1
Here, the score function ensures that total utility is maximized, while the constraints
ensure that folding errors do not exceed budget B and that the precedence v is respected.

Budget Selection. The only input of the OFS problem that is not based on the originating
model, G, is the budget B. The budget can be interpreted as the amount of trust in G: B
should be small if trust is high, and vice versa.

When applying P3-Folder to a model G that was constructed based on some event
log L, the budget can be set in the spirit of model selection techniques that are often

10



used in machine-learning [25]. Specifically, one may elicit the ‘best’ budget for a given
log via K-fold cross-validation [25, Ch. 7]: The event log is partitioned into K parts,
and the budget is determined based on random % parts that are treated as training
logs, and tested on the remaining part. All budgets between 0 (no folding) and Y, ¢;
(unlimited folding) are considered and the budget that yields the most accurate answer
to the performance query ¢(Y") under a certain criteria (e.g., sampled root-mean squared
error) is selected for the OFS problem.

6 Evaluation

We evaluated P3-Folder with a real-world case from the healthcare domain. P3-Foldef]is
implemented in the Python programming language, and uses Gurobi [37]], for solving
the ILP. The input is a process model (GSPN), and an event log; the method produces
a folded GSPN model. Our results indicate that our simplification technique helps to
avoid over-fitting of GSPN. P3-Folder yields up-to a 15% improvement in accuracy when
predicting the total sojourn times, with respect to a GSPN discovered from log data
using state-of-the-art mining algorithms.

6.1 Datasets and Setup

Our experiments were based on five months (April-August, 2014) of real-world op-
erational data stemming from the treatment process of a large outpatient hospital in
the United States. The hospital treats approximately 1000 patients a day, with patients
arriving and leaving on the same day. The average length-of-stay per visit is 4.4 hours
(standard deviation of 2 hours) with the highest number of patients arriving between 8:00
and 11:00 in the morning. The dataset includes the following attributes: case identifier,
activity start time, activity end time, and resource performing the activity.

We selected April as our training set for discovering a GSPN and enriching it with
data, as well as for the error budget selection (outlined in [Section 5)). The other four
months were used as separate test sets, to validate the results.

To discover an initial Petri net, we applied the Inductive Miner [14] on the training
set, with resources being treated as activities and a 20% noise threshold (see .
We enriched the model based on the training set using the techniques described in [[12],
thus turning it into the initial GSPN.

As the performance query ¢(Y"), we selected the determination of total sojour times.
To estimate ¢(Y") for a given GSPN, we implemented a GSPN-to-queueing networks
transformation and used the queueing network analyzer [17].

We focused on three evaluation aspects: (1) We explored the impact of the error
budget on the accuracy of the resulting models. To this end, we varied the budget
between 0 (no folding) and Z?:l ¢; (unlimited folding). (2) We studied the sensitivity of
the approach to patient volumes, i.e., exploring the improvement in prediction accuracy
caused by foldings as a function of time-of-day. We varied the time periods for which
the original GSPN was obtained and then selected the best budget with respect to the

3https://github.com/ArikSenderovich/P3Folding/
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Fig. 4: sSRMSE in relation to the error budget used for folding.

training set by cross-validation (Section 5). (3) We considered the interplay of methods
to over-fitting in the control-flow dimension (i.e., noise filtering in the initial GSPN
discovery) and our approach. We altered the noise filtering threshold in the Inductive
Miner, and estimated the prediction accuracy of an unfolded model. We compared the
obtained results to those achieved with a folded model.

To quantify the accuracy of models, we used the sample root-mean squared error
(sRMSE), which is a standard statistical accuracy measure, defined as follows. Let
{Yk}szl be the sample of K total sojourn times as observed in the log (training or test).
Then, the SRMSE is defined as:

1, ,
SRMSE = || - ;[q(Y) Yi]2.
As a baseline method, we used the historical average, which is an unbiased estimator.
For the total sojourn time query ¢(Y"), it is the standard deviation of the length of stay,
120 minutes for the entire five months. In sum, controlled variables in our experiments
were the budget, the time-of-day, and the noise filtering threshold of the Inductive Miner,
while the SRMSE is the response variable.

6.2 Results

First, even though the tree-knapsack problem is known to be A/P-complete [24]], modern
ILP solvers enable efficient reasoning on the OFS problem. Specifically, the run-time of
P3-Folder when considering the entire days of the training data and all budget configu-
rations, turned out to be 152 seconds. This run-time is in the same range as the model
discovery, which demonstrates feasibility of the approach.

Next, we turn to the evaluation of the accuracy improvement achieved by P*-Folder.
[Fig. 4]shows the sSRMSE as a function of the error budget for two time frames, namely all-
day and 9:00-10:00 in the morning. Here, the solid blue line corresponds to the training
data (April) and the dashed red line to one of the test datasets (May). We demonstrate a
single test month, since for fixed time-of-day intervals we did not observe a difference
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Fig. 5: sSRMSE in relation to time-of-day.

in SRMSE shape or value for all four months used as test datasets. The two additional
flat lines correspond to the irreducible SRMSE (i-sRMSE) for the training and test sets,
respectively. The irreducible error represents a bound for the prediction as it is essentially
the noise, the variance of the total sojourn time in the data. Consequently, one cannot
improve the SRMSE beyond the i-sRMSE without adding additional predictive features
to the model (e.g. number of patients in the system or patient attributes).

We observe that the shape of SRMSE as a function of budget differs for the different
time frames. For the all-day scenario, we observe that while low-budget folding improves
the SRMSE, high budget folding causes the accuracy to deteriorate. On the other hand,
for the busy period of 9:00-10:00, we notice a monotone improvement in the SRMSE as
the budget grows and more folding is allowed (with 15% improvement for the maximal
budget). Furthermore, for the busy period, our method is able to approach the irreducible
error. Lastly, we see that the model trained on the April data has a higher accuracy for
the May data, which indicates that P*-Folder does not suffer from over-fitting the log.

Further, we select the error budget by cross-validation using the training dataset and
explore the sensitivity to patient volumes. depicts the SRMSE as a function of
the time-of-day. shows the absolute improvement in SRMSE, i.e., the difference
(in %) between the SRMSE of the original and the folded model. The SRMSE changes
over the day. Specifically, illustrates that our technique is most effective during
the morning hours, where the load is highest. This can be the result of our queueing
approximation technique [17], as it has accuracy guarantees for heavy-traffic periods.

Finally, we explore the impact of noise filtering in the initial discovery (balancing
over-fitting and under-fitting in control-flow) on our method. We alter the noise threshold
for the Inductive Miner between 15% and 40% and compute the SRMSE of its unfolded
prediction for the 9:00-10:00 interval, and compare the result to the SRMSE of the model
obtained by P*-Folder when folding the 20% noise model. illustrates that the
sRMSE for the unfolded model improves and deteriorates, while the SRMSE of the
model obtained by P3-Folder (Best Model) remains constant. Hence, P3-Folder finds the
optimal level of generalisation for answering the respective performance query.
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7 Related Work

Previous work on business process simplification (synonymous to abstraction), considers
manual ad-hoc rules that simplify the model while preserving similarity to the originat-
ing model [26]. Works on automated model simplification proposed to aggregate and
eliminate components according to user-defined rules [28]]. These rules were concerned
mainly with visualization, and preserving behavioural relations between the various com-
ponents. In [29], process abstraction is consistent, automatic, and preserves behavioural
similarities, while in [36] the authors rely on Petri net unfolding into branching processes
to balance behavioural over-fitting and under-fitting of a discovered model. However,
none of these works considered performance preserving simplifications. Another related
approach is to filter the data, prior to applying automated discovery, therefore creating
simple models based on partial set of the data [14].

Existing performance-oriented model simplification techniques approximate typical
process patterns (e.g., sequence, choice) via queueing theory, and guaranteed certain no-
tion of equivalence between the original model and the resulting simplifications [30L31]].
However, these techniques did not propose a method of locating typical patterns, and thus
were not automated. Moreover, these works did not suggest how to order the simplifying
operations, and some of the proposed performance bounds are not well-grounded [31]].

Manual simplification of GSPN models has been considered before. In [32], GSPNs
are simplified by using ad-hoc rules, not providing any error bounds. A simplification
technique that provides bounds for specific performance measures between the original
model and the resulting simple model includes decomposition and aggregation of the
GSPN [33134]]. The first step (decomposition) refers to partitioning the GSPN into
subnets, such that the subnets are weakly dependent. Every subnet can then be efficiently
analysed without unfolding the underlying CTMC [35/31]]. The second step (aggregation)
aggregates the subnet according to performance-preserving rules.

Our approach takes up the ideas of model aggregation based on folding steps [8].
However, the steps in [8] incorporate ad-hoc assumptions and violating them may yield
an unbounded estimation error with respect to the original model. In this work, we
formulate an optimization problem aiming at a maximal number of folding instantiations,
subject to guarantees regarding an error budget. This enables us to balance performance
fitness and generalization of the resulting model in a principled manner.
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8 Conclusion

In this work, we presented P*-Folder as a novel technique for automated simplification of
models that aim at improving performance analysis of business processes. Specifically,
we proposed foldings of GSPNs and showed how to find an optimal sequence of applying
them to obtain a minimal model under a given error budget for the performance estimates.
This results in a model that generalises in the performance dimension, while preserving
the process perspective of the original model. The evaluation of our technique showed a
significant increase in the model’s predictive power, with respect to the unfolded model
that was discovered from a real-world event log. The proposed technique can be viewed
as regularization method for process models, in analogy to pruning and other model
selection methods in machine learning.

In future work, we aim at integrating behavioural fitness and performance fitness.
Specifically, optimal simplification can be modified to include both the control-flow and
time perspective. We further aim at testing the accuracy improvements achieved by our
technique on other queries, such as outcome prediction and resource utilisation.
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