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Queueing Model

I � 1 customer classesJ � 1 service stations

Arrivals for class i:
renewal processes, rate �i
Servers in station j:Nj (stat. identical)

Service of class-i by server-j:
exponential, rate �ij

i

jN

ij

Control: has to be specified to complete the description:

Routing customers Scheduling servers
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Optimization Problem
Given the cost, we face the stochastic control problem, which is

impossible to solve in general (not Markov, etc..)

Consider the heavy traffic regime, in which the number of

servers at each station and the arrival rates grow without

bound, while keeping a critically loaded system.

Expect the system to be always busy, but stable, on the

Law-of-Large-Numbers level - fluid level...

with stochastic fluctuations around the fluid - diffusion level.

Then to control the system dynamically on the diffusion level.
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One-to-One. Heavy Traffic
Consider the sequence of M=M=n models, indexed by n " 1.

Assume �n = n�+O(pn); n�n = n�+O(pn)
Take � = �: The system becomes critically loaded:
utilization = �nn�n " 1.

n

n

n

Expect fluctuations of order O(pn) around "average" = n.

Define Xn(t) = number of customers in the system at time t � 0

Introduce centered and rescaled process ^Xn(t) = Xn(t)�npn .

Thm.(Halfin - Whitt, 1981): ^Xn converges weakly to a diffusion.X(t) = X(0) + Z t0 b(X(s))ds+ �W (t):
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Many-to-Many. Heavy Traffic
Consider the sequence of systems, indexed by n " 1�ni = n�i +O(pn)

n�nij = n�ij +O(pn)

Nnj = n�j +O(pn)
What is critically loaded ?

n

i

n

jN

n

ij

All stations should be busy on the fluid (order n) level.

Static fluid analysis is needed.
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Critical loading. Fluid View
Consider the corresponding fluid model, where

Arrival and Service:

deterministic, rates �i and �ij
Server capacity of station j�j ("number of servers").

i

j

ij

All stations should be fully (though optimally) utilized.

Specify �ij - fraction of �j , constantly dedicated to class i.
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Many-to-Many. Fluid View
Consider the following fluid system:�1 = 2; �2 = 1�11 = 2; �12 = 2�21 = 2; �22 = 1�1 = 1; �2 = 1

Allocate the fluid as�11 = 1; �12 = 0�21 = 0; �22 = 1

100%   0% 0%   100%

Both classes are processed to completion:�1 = 1 � �11; �2 = 1 � �22
Utilization of both stations = 1.

Critically loaded system?
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Many-to-Many. Fluid View
Consider the following fluid system:�1 = 2; �2 = 1�11 = 2; �12 = 2�21 = 2; �22 = 1�1 = 1; �2 = 1

Reallocate the fluid as�11 = 0:25; �12 = 0:75�21 = 0:5; �22 = 0

25% 50% 75%  0%

Both classes are processed to completion:�1 = 0:25 � �11 + 0:75 � �12; �2 = 0:5 � �21
Utilization of both stations = 0:75
The system is NOT critically loaded!
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Heavy Traffic. Fluid View
Some LP has to be formulated...(�ij) - allocation matrix,� - utilization of the busiest station

Static allocation problem [Harrison & Lopez (1999)]:

choose (�ij) and � tominn� : Xj �ij �j �ij = �i; Xi �ij � �; �ij � 0o:

Heavy Traffic condition:

There exists a unique optimal solution (��; ��) to the linear

program. Moreover, �� = 1 and

Pi ��ij = 1 for all j.
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Heavy Traffic. Fluid View
An example of critically loaded system:

�1 = 7:5; �2 = 2�11 = 4; �12 = 7�21 = 2; �22 = 4�1 = 1; �2 = 1

100%  0% 50%  50%

Heavy Traffic allocation:��11 = 1; ��12 = 0:5��21 = 0; ��22 = 0:5
Any reallocation will cause some of the classes to explode.
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Basic and non-basic activities
Activities: pairs (i; j), with �ij > 0

Activities can be:

basic (BA), if ��ij > 0

non-basic, if ��ij = 0

In the example :

basic : (1; 1), (1; 2), (2; 2)
non-basic : (2; 1) 100%  0% 50%  50%

Fact: HT implies that BA is a union of disjoint trees.

Assume that it is one tree.
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Stochastic Control of Diffusions
Let Xni = total number of class-i customers in the system.

Perform centering about static fluid and rescaling.

Assume no usage of non-basics. Then take formal weak limits asn!1, to get a controlled diffusion:

X(t) = X(0) + Z t0 b(X(s); U(s))ds+ �W (t)

Given the cost, obtain drift control problem.

Works of Atar (2005), (2006), Harrison and Zeevi (2004), Atar,

Mandelbaum and Reiman (2004)

Optimal control of the diffusion gives rise to asymptotically

optimal scheduling for original queueing model.
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Stochastic Control of Diffusions
Let Xni = total number of class-i customers in the system.

Perform centering about static fluid and rescaling.

Use non-basics:X(t) = X(0) + �W (t) + Z t0 b(X(s); U(s))ds +X
2C m
�
(t)

Controlled diffusion with a singular control.

For each 
, �
 is nondecreasing with �
(0) � 0.C - finite set. m
 - constant vectors, depend on �ij .
What is the reason for a singular component?...
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Reallocation on Fluid Level
Consider the following massive (order n) customers transfers:

100%  0% 50%  50% 75% 25% 75%  25% 50% 50% 100%  0%

Performed instantaneously, such transfers may result in abrupt change of a total
service rate.

Such transfers require existence of cycles.

Cycles are only due to non-basic activities, since basic activities constitute a tree (as
known, tree does not contain cycles).
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Effect of Singular Component
Consider a singular controlled diffusion

X(t) = X(0) + �W (t) + Z t0 b(X(s); U(s))ds +X
2C m
�
(t):

The singular term � can restrict X to a certain closed domain.

It can happen that X can be restricted to a domain,

corresponding to all queues being empty.

m 2

m
1

−X m1

1m

It happens if e �m
 < 0 for some 
. Assume this condition!
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Changing the Fluid Throughput�1 = 7:5; �2 = 2; �11 = 4; �12 = 7; �21 = 2; �22 = 4
100%  0% 50%  50%

Total incoming rate:7:5 + 2 = 9:5
Total processing rate:4 � 1 + 7 � 0:5 + 4 � 0:5 = 9:5
(Total) output equals to input.

75% 25% 75%  25%

Total incoming rate:7:5 + 2 = 9:5

Total processing rate:4 � 0:75 + 7 � 0:75+2 � 0:25 + 4 � 0:25 = 9:75:

(Total) output is greater than input.
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Back to Original (prelimit) Model
Goal: Find a policy,

that asymptotically (large n) achieves empty queues.

For two types of control policies:

Preemptive regime:

a service to a customer can be interrupted and resumed at a

later time (possibly in a different station).

Non-preemptive regime:

service to a customer can not be interrupted before it is

completed
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Asymptotic Null Controllability

Let Y ni = number of class-i customers in the queue.

Theorem: There exist a sequence of policies (n-dependent),

s.t. for any given 0 < " < T <1,limn!1P�Y n(t) = 0 for all t 2 ["; T ℄� = 1:

All policies are constructed explicitly!

The system is critically loaded:

(any increase in �i explodes the system), but...

behaves like an underloaded (empty queues).
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