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a b s t r a c t

This paper focuses on the mechanism of Blocking Before Service (BBS), in time-varying many-server
queues in tandem. BBS arises in telecommunication networks, production lines and healthcare systems.
We model a stochastic tandem network under BBS and develop its corresponding fluid limit, which
includes reflection due to jobs lost. Comparing our fluidmodel against simulation shows that themodel is
accurate and effective. This gives rise to design/operational insights regarding network throughput, under
both BBS and BAS (Blocking After Service).

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Tandem queueing networks with blocking arise in many com-
munication, production and service systems [6,29,30]. This pa-
per focuses on communication blocking, which is also known as
Blocking Before Service (BBS) or two-stage blocking [6]. Under
this mechanism, a service cannot begin at Station i if there is no
available capacity (buffer space or idle server) at Station i + 1.

1.1. Motivation and examples

Clearly, the BBS mechanism is prevalent in telecommunication
networks [16,30,31]. However, BBS is not uncommon in produc-
tion lines; for example, in the steel, plastic molding and food
processing industries [19], as well as in the chemical and phar-
maceutical industries [14]. In the latter, for example, a work-in-
process can be unstable or unsafe and, thus, cannot be detained/
blocked after certain processes but rather should be immediately
transferred to crystallization. Therefore, a process/reaction in cer-
tain stations cannot begin before the crystallizer in the subsequent
stations is available. BBS can also be found in healthcare systems,
for example in short procedures such as cataract surgery, cardiac
catheterization and hernia repair; the procedure begins only when
there is available room for the patient in the recovery room. Other
examples are the hospital boarding ward between the emergency
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department and the inpatientwards, and the emergency care chain
of cardiac in-patient flow [12]. In this latter chain, patients are
refused or diverted at the beginning (First cardiac Aid (FCA) and
Coronary Care Unit (CCU)) due to unavailability of beds down-
stream the care chain.

Besides communication, manufacturing and healthcare sys-
tems, our fluid models with blocking also have the potential to
support transportation implementations. Fluid models originated,
in fact, from transportation networks, in which entities that flow
through the system are animated as continuous fluid [9]. Such
implementations could support/evaluate the practice of releasing
cars to highways during rush hours [7], or estimate travel times by
navigation software (autonomous vehicles).

1.2. Results

In this paper we develop (Section 2) a stochastic model for a
many-server tandem network under the BBS mechanism, time-
varying arrivals and finite buffers before the first station and be-
tween stations. This model includes reflection, since an arriving
job is forced to leave the system if Station 1 is full. Then, using
the Functional Strong Law of Large Numbers (FSLLN), we develop
and prove a fluid limit of the stochastic model in the many-server
regime: system capacity (number of servers) increases indefinitely
jointly with demand (arrival rates). Fluid models have proven to
be accurate approximations for time-varying stochastic models,
which are otherwise intractable [18,21–24,33,34].
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Fig. 1. A network with k stations in tandem under the BBS mechanism.

We establish existence and uniqueness of the fluid approxi-
mation, which is characterized by differential equations with re-
flection. In order to easily implement the differential equations
numerically, we transform them into differential equations with
a discontinuous right-hand side (RHS) [15,35], but no reflection.
We validate the accuracy of our fluid models against stochastic
simulation, which amplifies the simplicity and flexibility of fluid
models in capturing the performance of time-varying networks
altering between overloaded and underloaded periods.

Finally (Section 3), we develop steady-state closed-form ex-
pressions for the number of jobs in service at each station un-
der the BAS (Blocking After Service) and BBS mechanisms. These
expressions facilitate comparisons of network performances; in
particular, comparing the number of jobs at each station, network
throughput and job loss rate. In Section 3.2, we conclude the paper
with an example of designing transfer protocols from surgery to
recovery rooms in hospitals.

1.3. Brief literature review

There exists vast research on tandem flow lines with block-
ing [17,20,26]. However, research on time-varying multi-server
flow lines is scarce. The most common types of blocking mech-
anisms for tandem flow lines are BAS and BBS [1,6,29]. The BBS
mechanism can be sub-categorized into several types; we focus on
Server Occupied, where a server can store a blocked job before its
service begins [13]. Thus, under this mechanism, a job can enter
Station i, but cannot begin service until there is available capacity
(buffer space or idle server) at Station i+1. Another BBSmechanism
is ServerNotOccupied,where a blocked job cannot occupy a server.
Thus, a job can enter a station (occupy a server), and begin its
service, only when there is available capacity at the next station.
We focus onBBS— ServerOccupied, in order to compare itwith the
BASmechanism, in which blocked jobs can also occupy servers [6].

In [5], a steady-state analysis under the BAS mechanism was
conducted, for a single-server network with two tandem stations,
Poisson arrival process and no intermediate buffers. This system
was generalized to k stationswith deterministic service times in [2]
and to the BBS mechanism in [4]. Under the analyzed BBS, a job
begins service at a station only when the next k stations are avail-
able. In [3], a k-station single-server network,with no intermediate
buffers and an unlimited buffer before the first station, was ana-
lyzed under BAS and BBS. Note that the methodology we develop
can, with slight modification (see Remark 2), accommodate any
k-stage blocking, k ≥ 2.

Approximation techniques, usually via the decomposition ap-
proach, were applied to tandem networks in steady-state under
BAS [8,11,17,28,32]. Several papers have developed algorithms for
approximating the steady-state throughput of closed single-server
cyclic queueing networks with finite buffers (under both BBS and
BAS in [27] and under BBS in [16,31]).

1.4. Contribution

Our contributions enrich existingmodels by adding predictable
time variability, multi-server stations and a finite buffer before the
first station, which leads to job loss when it is full. Moreover, we
provide an analytic comparison between BBS and BAS, that yields

operational insights. In particular, we quantify the differences
between throughputs and job loss rate under BBS and BAS, includ-
ing the conditions under which they coincide.

2. The model

2.1. Notations and assumptions

Wemodel a network with k stations in tandem, as illustrated in
Fig. 1.

This FCFS system is characterized, to a first order, by the follow-
ing (deterministic) parameters:

1. Arrival rate to Station 1: λ(t), t ≥ 0;
2. Service rate µi > 0, i = 1, 2, . . . , k;
3. Number of servers Ni, i = 1, 2, . . . , k;
4. Buffer size Hi, i = 1, 2, . . . , k; Hi can vary from 0 to ∞,

inclusive.
The stochastic model is created from the following stochastic

building blocks: A, Di, Qi(0), i = 1, 2, . . . , k, all of which are
assumed to be independent. Specifically:

1. External arrival process A = {A(t), t ≥ 0}; A is a counting
process, in which A(t) represents the external cumulative number
of arrivals up to time t; we assume the existence of

EA(t) =

∫ t

0
λ(u)du, t ≥ 0. (1)

2. ‘‘Basic’’ nominal service processes Di = {Di(t), t ≥ 0}, i =

1, 2, . . . , k, where Di(t) is a standard (rate 1) Poisson process.
3. The stochastic process Q = {Q1(t), . . . ,Qk(t), t ≥ 0} denotes

a stochastic queueing process in which Qi(t) represents the total
number of jobs at Station i at time t (queued and in service).

4. Initial number of jobs in each station, denoted by Qi(0), i =

1, 2, . . . , k.

2.2. The stochastic model

Service at Station i begins onlywhen there is an available server
at Station i and available capacity (idle server or buffer space) at
Station i + 1. If there is an available server at Station i, but no
available capacity at Station i + 1, the job is blocked at Station i
(occupies a server, but not receiving service). If there is no available
server at Station i, the job waits at Buffer i. If Buffer 1 is full, an
arriving job is forced to leave the system and is lost. Note that
in Fig. 1, Bi denotes the blocked jobs at Station i; their service is
delayed until capacity becomes available at Station i + 1.

The process Q , which represents the total number of jobs at
each station, is characterized by the following equations:

Q1(t) = Q1(0) + A(t) −

∫ t

0
1{Q1(u−)=H1+N1}dA(u)

− D1

(
µ1

∫ t

0
[Q1(u) ∧ N1 ∧ (H2 + N2 − Q2(u))] du

)
, (2)

Qi(t) = Qi(0) + Di−1

(
µi−1

∫ t

0
[Qi−1(u) ∧ Ni−1 ∧ (Hi + Ni

−Qi(u)
)]

du
)



494 N. Zychlinski et al. / Operations Research Letters 46 (2018) 492–499

− Di

(
µi

∫ t

0
[Qi(u) ∧ Ni ∧ (Hi+1 + Ni+1 − Qi+1(u))] du

)
,

i = 2, . . . , k − 1;

Qk(t) = Qk(0) + Dk−1

(
µk−1

∫ t

0
[Qk−1(u) ∧ Nk−1 ∧ (Hk + Nk

−Qk(u))] du
)

− Dk

(
µk

∫ t

0
[Qk(u) ∧ Nk] du

)
; t ≥ 0.

The integral in the first line of (2) represents the number of jobs
that were forced to leave the system up until time t , as when they
arrived, Station 1 was full. Note that when H1 = ∞, the integral
equals zero since no customers are forced to leave the system. This
simplifies themodel, since there is no reflection. The second line in
(2) represents the number of jobs that completed service at Station
1, up until time t . Since the available storage capacity at Station 2
at time t is H2 + N2 − Q2(t), the term in the rectangle parenthesis
represents the number of jobs at service in Station 1.

Now, we rewrite (2), as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎣
Q1(t)
Q2(t)

...

Qk(t)

⎤⎥⎥⎦ =

⎡⎢⎢⎣
Y1(t) − L(t)

Y2(t)
...

Yk(t)

⎤⎥⎥⎦ ≤

⎡⎢⎢⎣
H1 + N1
H2 + N2

...

Hk + Nk

⎤⎥⎥⎦ , t ≥ 0,

dL(t) ≥ 0, L(0) = 0,∫
∞

0
1{Q1(u−)<H1+N1}dL(u) = 0,

(3)

where

Y1(t) = Q1(0) + A(t) − D1

(
µ1

∫ t

0
[Q1(u) ∧ N1 ∧ (H2 + N2 − Q2(u))] du

)
,

Yi(t) = Qi(t), i = 2, . . . , k,

L(t) =

∫ t

0
1{Q1(u−)=H1+N1}dA(u). (4)

The last equation of (4) is a complementary relation between L
and Q : L(·) increases at time t only if Q1(t) ≥ H1 + N1 (see [35],
Section 2.1 for details).

We simplify (3), so that the reflection will occur at zero, by
letting

Ri(t) = Ni + Hi − Qi(t), i = 1, . . . , k, t ≥ 0, (5)

which gives rise to the following equivalent to (3):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎣
R1(t)
R2(t)

...

Rk(t)

⎤⎥⎥⎦ =

⎡⎢⎢⎢⎣
Ỹ1(t) + L(t)

Ỹ2(t)
...

Ỹk(t)

⎤⎥⎥⎥⎦ ≥

⎡⎢⎢⎣
0
0
...

0

⎤⎥⎥⎦ , t ≥ 0,

dL(t) ≥ 0, L(0) = 0,∫
∞

0
1{R1(t)> 0}dL(t) = 0,

(6)

where Ỹi = Hi + Ni − Yi. From (6), we see that L(t) ≥ −Ỹ1(t)
and therefore, L(t) = sup0≤s≤t

(
−Ỹ1(s)

)+

. Note that this solution

(or rather representation) applies even though Ỹ1 depends on R
(see [25,35] for details).

2.3. Fluid approximation

We now develop a fluid limit for our queueing model through
the Functional Strong Law of Large Numbers (FSLLN). We begin

with (6) and scale up the arrival rate and the size of the sys-
tem (servers and waiting rooms) by a factor of η > 0, η →

∞. This parameter η will serve as an index of a corresponding
queueing process Rη , which is the unique solution to the following
Skorokhod’s representation:{

Rη

1(t) = Ỹ η

1 (t) + Lη(t),

Rη

i (t) = Ỹ η

i (t), i = 2, . . . k, t ≥ 0,
(7)

where

Ỹ1
η
(·) =Rη

1(0) − Aη(·)

+ D1

(
µ1

∫
·

0

[(
ηH1 + ηN1 − Rη

1(u)
)
∧ ηN1 ∧ Rη

2

]
du

)
;

Ỹi
η
(·) =Rη

i (0) − Di−1

×

(
µi−1

∫
·

0

[(
ηHi−1 + ηNi−1 − Rη

i−1(u)
)
∧ ηNi−1 ∧ Rη

i

]
du

)
+ Di

(
µi

∫ t

0

[(
ηHi + ηNi − Rη

i

)
∧ ηNi ∧ Rη

i+1(u)
]
du

)
,

i = 2, . . . k − 1;

Ỹk
η
(·) =Rη

k (0) − Dk−1(
µk−1

∫
·

0

[(
ηHk−1 + ηNk−1 − Rη

k−1(u)
)
∧ ηNk−1 ∧ Rη

k

]
du

)
+ Dk

(
µk

∫
·

0

[(
ηHk + ηNk − Rη

k

)
∧ ηNk

]
du

)
;

Lη(·) =

∫
·

0
1{Rη

1 (u−)= 0}dA
η(u).

Here, Aη
= {ηA(t), t ≥ 0} is the arrival process under our scaling;

thus,

EAη(t) = η

∫ t

0
λ(u)du, t ≥ 0.

We now introduce the scaled processes rη
= {rη(t), t ≥ 0},

lη = {lη(t), t ≥ 0} and yη
= {yη(t), t ≥ 0}, by rη(t) =

η−1Rη(t), lη(t) = η−1Lη(t), yη(t) = η−1Y η(t), respectively.
Applying themethodology developed in [35], Theorem1, yields the
following asymptotic behavior of rη . Suppose that, as η → ∞{
η−1Aη(t), t ≥ 0

}
→

{∫ t

0
λ(u)du, t ≥ 0

}
, u.o.c. a.s., (8)

as well as

lim
η→∞

rη(0) = r(0), a.s., (9)

where r(0) is a given non-negative deterministic vector. Then, as
η → ∞, the family {rη

} converges u.o.c. over [0, ∞), a.s., to
a deterministic function r . This r is the unique solution to the
following differential equation (DE) with reflection:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

r1(t) = r1(0)

−

∫ t

0

[
λ(u) − µ1 ((H1 + N1 − r1(u)) ∧ N1 ∧ r2(u))

]
du

+ l(t) ≥ 0,
ri(t) = ri(0)

−

∫ t

0

[
µi−1 ((Hi−1 + Ni−1 − ri−1(u)) ∧ Ni ∧ ri(u))

− µi ((Hi + Ni − ri(u)) ∧ Ni ∧ ri+1(u))
]
du ≥ 0,

i = 2, . . . , k − 1;

rk(t) = rk(0) −

∫ t

0

[
µk−1 ((Hk−1 + Nk−1 − rk−1(u)) ∧ Nk−1 ∧ rk(u))

− µk ((Hk + Nk − rk(u)) ∧ Nk)
]
du ≥ 0,

dl(t) ≥ 0, l(0) = 0,∫
∞

0
1{r1(t)> 0}dl(t) = 0.

(10)
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The following proposition provides an equivalent representa-
tion to (10) in terms of our original formulation (i.e. q(·)); see
Appendix A for details. Implementing the solution in (11) numer-
ically is straightforward since it is given by a set of differential
equations with discontinuous RHS but, notable, without reflection.

Proposition 1. The stochastic queueing family Q η , η > 0 converges
u.o.c. over [0; 1), a.s., as η → ∞ to a deterministic function q. This q
is the unique solution to the following differential equation (DE) with
refection

q1(t) = q1(0) − µ1

∫ t

0
[q1(u) ∧ N1 ∧ (H2 + N2 − q2(u))] du

+

∫ t

0

[
1{q1(u)<H1+N1} · λ(u)

+ 1{q1(u)=H1+N1} · [λ(u) ∧ µ1 [N1 ∧ (H2 + N2 − q2(u))]] du,

qi(t) = qi(0) + µi−1

∫ t

0
[qi−1(u) ∧ Ni−1 ∧ (Hi + Ni − qi(u))] du

− µi

∫ t

0
[qi(u) ∧ Ni ∧ (Hi+1 + Ni+1 − qi+1(u))] du,

i = 2, . . . , k − 1;

qk(t) = qk(0) + µk−1

∫ t

0
[qk−1(u) ∧ Nk−1 ∧ (Hk + Nk − qk(u))] du

− µk

∫ t

0
[qk(u) ∧ Nk] du. (11)

The function q will be referred to as the fluid limit associated with the
queueing family Q η .

Remark 1. The model can easily accommodate Markovian aban-
donments while being blocked or while waiting. To be more spe-
cific, let θ be the individual abandonment rate. Then, the abandon-
ment rate of blocked jobs from each Buffer i, i = 1, . . . , k − 1,
at time t would be θ [Ni − qi(t) ∧ (Hi+1 + Ni+1 − qi+1(t))]+; the
abandonment rate of waiting jobs from Station i, i = 1, . . . , k,
at time t would be θ [qi(t) − Ni]+. The mathematical analysis of
models with abandonments does not differ from the one without.

Remark 2. The model can also easily accommodate a k-stage
blockingmechanism, inwhich a job begins service at a station only
if the next k stations are available. For example, accommodating
the case where all downstream stations are required to be avail-
able, would be done by replacing the terms ∧(Hi + Ni − qi(u)),
i = 2, . . . , k − 1, in (11) with ∧

⋀k
j=i

(
Hj + Nj − qj(u)

)
.

In Appendix B we provide numerical examples demonstrating
that our proposed fluid model accurately and effectively describes
the flow of jobs in the networks, when compared against the
average behavior of a stochastic simulation model.

3. Network performance

In this section we focus on steady-state performance, in par-
ticular network throughput and job loss rate under BBS and BAS
(Section 3.1). The results we present were validated by discrete
stochastic simulations. Let si and q̄i, i = 1, . . . , k, denote the
steady-state number of jobs in service and the steady-state number
of jobs (including in the buffer) at Station i, respectively; thus,

si = q̄i ∧ Ni ∧ (Hi+1 + Ni+1 − q̄i+1) , i = 1, . . . , k − 1, (12)
sk = q̄k ∧ Nk.

For calculating steady-state performance, we start with (11), set
λ(t) ≡ λ, t ≥ 0, and qi(0) = qi(t) ≡ q̄i, ∀t ≥ 0, i = 1, . . . , k. We
then get that

µ1s1 =λ · 1{q̄1<H1+N1}

+ [λ ∧ µ1 (N1 ∧ (H2 + N2 − q̄2))] · 1{q̄1=H1+N1},

µi−1si−1 = µisi, i = 2, . . . , k. (13)

The following theorem identifies the ‘‘fluid’’ network throughput
and the number of jobs in each station, in steady-state under BBS.
The proof of the theorem is provided in Appendix C.

Theorem 1. Let δ denote the network throughput in the fluid model.
Then

δ = µisi = λ ∧

k⋀
j=1

µjNj ∧

k⋀
j=2

Hj + Nj

1/µj−1 + 1/µj
, i = 1, . . . , k.(14)

When δ = λ, then q̄j = λ/µj, j = 1, . . . , k. Otherwise (when δ < λ),

q̄1 = H1 + N1; (15)
q̄j = Hj + Nj − δ/µj−1, j = 2, . . . , i;
q̄j = δ/µj, j = i + 1, . . . , k;

here

i = min

⎧⎨⎩argmin
k⋀

j=1

µjNj, argmin
k⋀

j=2

Hj + Nj

1/µj−1 + 1/µj

⎫⎬⎭ . (16)

The interpretation of (14) is that the network throughput is de-
termined according to the minimum among the arrival rate, the
processing capacity of the bottleneck (i.e. the slowest stationwhen
all servers are occupied) and the processing capacity of a ‘‘virtual’’
bottleneck, formed by two sequential stations. This is similar in
spirit to [10], wherein the authors defined a virtual workload
condition for the stability of a two-station multi-class fluid net-
work. As in our case, two stations form a ‘‘virtual’’ bottleneck that
determines the processing capacity of the entire network.

Note that H1, the buffer size before the first station, does not
affect network throughput. That is because network throughput
depends on the arrival rate and the processing capacities of the
actual/virtual bottleneck. Increasing only the first buffer, even to
infinity, will not affect the network processing capacity.

3.1. Blocking after service

Thus far, we focused on the BBS mechanism. Another common
blocking mechanism is BAS (Blocking After Service, also known as
manufacturing blocking) [6]. Under BAS, a service begins at Station
i when there is an available server there. If upon completion of a
service, there is no available capacity (idle server or buffer space) at
Station i+1, the job is blocked at Station iwhile occupying a server
there. Fig. 2 illustrates the tandem network we analyze under
manufacturing blocking. Note that the blocked jobs are placed at
the endof each station, rather than at the beginning, aswas in Fig. 1.
This change seems small but it is not: as shownmomentarily, it can
significantly affect network performance (see Fig. 3).

The BAS mechanism for time-varying many-server flow lines
was analyzed in [35].

We now compare the performance of the two mechanisms.
In particular, we are interested in analyzing network throughput.
Let δx denote the steady-state throughput under mechanism x,
x ∈ {BAS, BBS} (from now on, δ in (14) will be referred to as
δBBS); sxi , i = 1, . . . , k, denotes the steady-state number of jobs in
service, at Station i under mechanism x. Applying to BAS the same
methodology asweused for BBS (see Eq. (15) in [35],withλ(t) ≡ λ,
∀t ≥ 0), yields the following BAS throughput:

δBAS = µisBASi = λ ∧

k⋀
j=1

µjNj, i = 1, . . . , k. (17)
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Fig. 2. A network with k stations in tandem under the BAS mechanism.

Remark 3. Note that Hi, i = 1, . . . , k, the buffer sizes throughout
the network, do not affect network throughput under BAS, which
depends solely on the arrival rate and the bottleneck processing
capacity. The intuition behind this phenomenon stems from con-
sidering the context in which our fluid models are applicable:
networks with many-server stations. In the limiting operational
regime we consider, the dependency on buffers in preventing
starvation and idleness decreases, since stochastic fluctuations are
negligible on the fluid scale. In fact, buffers affect only second-
order phenomena (stochastic variability) but not the limiting
(fluid) throughput which depends only on the Law of Large Num-
bers (LLN). Under BBS, however, the internal buffers affect network
throughput (14), since they influence the bottleneck processing
capacity.

Remark 4. The throughput under BBS, when adding sufficient
buffer space after each server, will be equal to the throughput
under BAS for the same network without the additional buffer
spaces. This follows from our equations: When Hj ≥ Nj−1, then

Hj + Nj

1/µj−1 + 1/µj
≥

µjµj−1Nj−1

µj−1 + µj
+

µj−1µjNj

µj−1 + µj
≥ µj−1Nj−1 ∧ µjNj.

Hence, the term that involves buffers (the third term in (14)) does
not determine the throughput, and we get that δBBS = δBAS .

Fig. 3 presents the total number of jobs in service at each station
under the two mechanisms. In plots A–C the arrival rate function
is the sinusoidal function

λ(t) = λ̄ + β sin(γ t), t ≥ 0, (18)

with average arrival rate λ̄, amplitude β and cycle length T =

2π/γ .
Note the sharp decrease in the number of jobs at Station 1 under

BBS (the blue dashed lines) close to the origin. The reason for this
is the empty system at the outset. As the two stations begin to
fill, that increases the number of blocked jobs at Station 1 and,
therefore, the number of jobs in service decreases.

Combining (14) and (17) yields the following:

δBBS = δBAS ∧

k⋀
j=2

Hj + Nj

1/µj−1 + 1/µj
,

thus, δBBS ≤ δBAS. The throughputs are equal when δBAS ≤⋀k
j=2

Hj+Nj
1/µj−1+1/µj

; an example for such a case can be seen in Fig. 3,
Plot D. The reason why the throughput under BBS is smaller or
equal to the throughput under BAS is capacity loss under the for-
mer. Capacity loss occurs when servers remain idle, while waiting
for service to end at their previous station. This capacity loss also
increases the rate of job loss, γ ≡ λ − δ, which occurs when the
first station is full and arriving jobs are forced to leave; thus

γ BBS
=

[
λ −

[
k⋀

i=1

µiNi ∧

k⋀
i=2

Hi + Ni

1/µi−1 + 1/µj

]]+

≥

[
λ −

k⋀
i=1

µiNi

]+

= γ BAS.

3.2. Example in a surgery-room setting

In this section, we demonstrate how our models can yield de-
sign/operational insights in a hospital setting that includes surgery
rooms (Station 1) and recovery rooms (Station 2). After a surgery is
completed, the patient is transferred to the recovery room. If there
are no available beds in the recovery room, the patient is blocked
at the surgery room, while preventing it from being cleaned and
prepared for the next surgery. To avoid such situations, in some
hospitals a surgery begins only when there is an available bed in
the recovery room. Is this a worthwhile strategy?

In deciding on the preferable mechanism, we consider two
performance measures: throughput and sojourn time. The former
is calculated by (14) and (17); the latter is calculated by first
calculating the number of patients in the system (Theorem 1) and
then, by applying Little’s law in steady-state (i.e. dividing the total
number of customers by the throughput). Let µ1 = 1/60, µ2 =

1/60, N1 = 10, N2 = 0, H1 = 10, H2 = 0 and λ = 1/6
(time units are measured in minutes). This setting corresponds to
cataract surgeries, for example; under it, both BAS and BBS behave
the same with average throughput of 10 patients per hour and
average sojourn time of 2 h. Now, suppose that recovery takes
on average 2 h (instead of one), as in hernia repair for example;
then, the throughput under BAS remains 10 patients per hour, but
the throughput under BBS is reduced to 6.67 patients per hour.
Moreover, while the average sojourn time under BAS is 3 h, under
BBS it reaches 5 h. Under this setting, BAS is superior according to
both performance measurements.
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Appendix A. Proof of Proposition 1

From (10), we return to our original formulation in terms of q(·)
for t ≥ 0, as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q1(t) = q1(0)

+

∫ t

0
[λ(u) − µ1 (q1(u) ∧ N1 ∧ (H2 + N2 − q2(u)))] du

− l(t) ≤ H1 + N1,

qi(t) = qi(0) +

∫ t

0

[
µi−1 (qi−1(u) ∧ Ni−1 ∧ (Hi + Ni − qi(u)))

− µi (qi(u) ∧ Ni ∧ (Hi+1 + Ni+1 − qi+1(u)))
]
du

≤ Hi + Ni, i = 2, . . . , k − 1;

qk(t) = qk(0) +

∫ t

0

[
µk−1 (qk−1(u) ∧ Nk−1 ∧ (Hk + Nk − qk(u)))

− µi (qk(u) ∧ Nk)

]
du ≤ Hk + Nk,

dl(t) ≥ 0, l(0) = 0,∫
∞

0
1{q1(u−)<H1+N1}dl(t) = 0.

(A.1)
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Fig. 3. Total number of jobs in service at each station — BBS vs. BAS with q(0) = 0. In Plot A, the sinusoidal arrival rate function in (18) with λ̄ = 9, β = 8 and γ = 0.02,
N1 = 100, N2 = 200, H1 = H2 = 50, µ1 = 1/10, µ2 = 1/20. In Plot B, the station order was replaced. In Plot C, γ = 0.01 and a third station is added having N3 = 200,
H3 = 50, µ3 = 1/20. In Plot D, λ(t) = 20, t ≥ 0, N1 = 200, N2 = 100 and µ1 = µ2 = 1/20. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Now, we prove that the solution for (A.1) satisfies

l(t) =

∫ t

0
1{q1(u)≥H1+N1}[λ(u) − l1(u)]+du, t ≥ 0, (A.2)

where

l1(u) = µ1 (q1(u) ∧ N1 ∧ (H2 + N2 − q2(u))) .

In order to prove this, we substitute (A.2) in the equation of q1(t)
in (A.1) and show that the properties in (A.1) prevail:

q1(t) = q1(0) +

∫ t

0
[λ(u) − µ1 (q1(u) ∧ N1 ∧ (H2 + N2 − q2(u)))] du

−

∫ t

0
1{q1(u)≥H1+N1} [λ(u) − λ(u) ∧ l1(u)] du

= q1(0) +

∫ t

0

[
1{q1(u)<H1+N1} · λ(u)

− µ1 (q1(u) ∧ N1 ∧ (H2 + N2 − q2(u)))] du

+

∫ t

0

[
1{q1(u)≥H1+N1} · (λ(u) ∧ l1(u))

]
du. (A.3)

Clearly, the properties in the last two lines in (A.1) prevail. It is
left to verify that the first k conditions prevail. This is done by the
following proposition.

Proposition 2. The functions qi(·), i = 1, . . . , k, as in (A.3) are
bounded by Hi + Ni, respectively.

Proof. First we prove that the function q1(·), as in (A.3), is bounded
by H1 + N1. Assume that for some t , q1(t) > H1 + N1. Since
q1(0) ≤ H1+N1 and q1 is continuous (being an integral), theremust

be a last t̃ in [0, t] such that q1(t̃) = H1 + N1 and q1(u) > H1 + N1,
for u ∈ [t̃, t]. Without loss of generality, assume that t̃ = 0; thus
q1(0) = H1 +N1 and q1(u) > H1 +N1 for u ∈ (0, t]. From (A.3), we
get that

q1(t) =H1 + N1

+

∫ t

0
[(λ(u) ∧ l1(u)) − µ1 (q1(u) ∧ N1 ∧ (H2 + N2 − q2(u)))] du

≤H1 + N1

+

∫ t

0
[l1(u) − µ1 (q1(u) ∧ N1 ∧ (H2 + N2 − q2(u)))] du = H1 + N1,

which contradicts our assumption and proves that q1(·) cannot
exceed H1 + N1.

What is left to prove now is that the functions qi(·), i = 2, . . . , k,
are bounded by Hi + Ni. Without loss of generality, assume that
qi(0) = Hi +Ni and qi(u) > Hi +Ni for u ∈ (0, t]. Hence, from (A.1),
we get that

qi(t) = Hi + Ni +

∫ t

0

[
µi−1 (qi−1(u) ∧ Ni−1 ∧ (Hi + Ni − qi(u)))

− µi (qi(u) ∧ Ni ∧ (Hi+1 + Ni+1 − qi+1(u)))
]
du

≤ Hi + Ni,

which contradicts the assumption that qi(t) > Hi + Ni and proves
that qi(·), i = 1, . . . , k, are bounded by Hi + Ni.

By the solution uniqueness (see Appendix C in [35]), we have
established that q, the fluid limit for the stochastic queueing family
Q η in (2), is given by (11). Note that after proving that q1(·) ≤

H1 + N1 in Proposition 2, the indicators in (A.2) can accommodate
only the case when q1(·) = H1 + N1.
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Fig. B.4. Total number of jobs at service — fluid model vs. simulation results, the sinusoidal arrival rate function in (18) with λ̄ = 9, β = 8 and γ = 0.02, qi(0) = 0. In Plot
A, µ1 = µ2 = 1/20, H1 = H2 = 50, N1 = 200, N2 = 150; in Plot B, µ1 = 1/10, µ2 = 1/20, µ3 = 1/20, H1 = H2 = H3 = 50, N1 = 100, N2 = 200 and N3 = 200.

Appendix B. Numerical examples

To demonstrate that our proposed fluid model accurately de-
scribes the flow of jobs in the networks, we compared it to a
simulation model. In the simulation model, jobs arrive according
to a non-homogeneous Poisson process that was used to represent
a processwith a general, time-dependent arrival rate. Service treat-
ment was randomly generated from exponential distributions.

Solving the fluid equations in (11) was done by recursion and
time discretization. Fig. B.4 shows the comparison between the
total number of jobs at each station according to the fluid model
(solid lines) and the average simulation results over 500 replica-
tions (dashed lines). These four examples, among many others,
show that the fluid model accurately describes the underlying
average of the stochastic system it approximates.

Appendix C. Proof of Theorem 1

Due to the uniqueness of q (Proposition 1), it suffices to show
that δ and q̄i, i = 1, . . . , k, in Eqs. (14)–(16) satisfy the model
equations in (11). In particular, it suffices to show that the steady-
state equations in (13) are satisfied. Since the second equation in
(13) is trivially satisfied, one is left only with the first equation.

When δ = λ and q̄j = λ/µj, j = 1, . . . , k, the first line in (13)
yields the following:

λ =λ · 1{λ< µ1(H1+N1)}

+ [λ ∧ µ1 (N1 ∧ (H2 + N2 − λ/µ2))] · 1{λ=µ1(H1+N1)}.
(C.1)

The first right-hand side term trivially satisfies the equation. The
second right-hand-side term is larger than zerowhen λ = µ1(H1+

N1).When δ = λ, from (14)we know that λ ≤ µ1N1. Therefore, the
second indicator in (C.1) equals onewhenH1 = 0 and λ = µ1N1. In
this case, the second right-hand side term isλ∧µ1N1∧µ1(H2+N2−

µ1N1/µ2) = µ1N1 = λ. The second equality derives from (14):
when δ = λ, we get that λ = µ1N1 ≤ (H2 + N2)/(1/µ1 + 1/µ2),
which is equivalent to N1 ≤ H2 + N2 − µ1N1/µ1. Therefore, (C.1)
is satisfied. It is easy to show that the second line in (13) is also
satisfied by q̄j = λ/µj, j = 1, . . . , k.

Now, when δ < λ, from (13) we get that q̄1 = H1 +N1 (the first
indicator in the first line is zero), and we get that

δ = λ ∧ µ1 (N1 ∧ (H2 + N2 − q̄2)) = µ1 (N1 ∧ (H2 + N2 − q̄2)) . (C.2)

If Station 1 is the first bottleneck (i = 1, in (16)) then, from (12) and
(14), we get that δ = µ1N1 ≤ µ1(H2 + N2 − µ1N1/µ2); therefore,
(C.2) is satisfied with q̄2 = δ/µ2.

Otherwise, if Station 1 is not the bottleneck then, δ < µ1N1.
Since q̄1 = H1 + N1, from (12) we get that δ = µ1(H2 + N2 − q̄2)
and therefore, q̄2 = H2+N2−δ/µ1. We obtain that δ = (µ1N1)∧δ,
which satisfies Eq. (C.2).

For completing the proof for q̄i, i = 3, . . . , k, in (15), we analyze
separately the stations before the first bottleneck (inclusive) and
the stations after it. We begin with the stations before the bottle-
neck. Suppose that Station i, 3 ≤ i ≤ k, is the first bottleneck. From
(12) we get that δ = µ2 [q̄2 ∧ N2 ∧ (H3 + N3 − q̄3)]. Since δ <

µ2N2, we get that δ = µ2 [q̄2 ∧ (H3 + N3 − q̄3)]. Assume that q̄2
is the minimum, then q̄2 = δ/µ2 = H2 +N2 − δ/µ1 and therefore,
δ = (H2 + N2)/(1/µ1 + 1/µ2), which contradicts the assumption
that Station i is the first bottleneck. Hence, δ = µ2(H3 + N3 − q̄3)
and q̄3 = H3 + N3 − δ/µ2. We iteratively continue this argument
up until the first bottleneck.

For the stations after the bottleneck, suppose that Station i,
2 ≤ i ≤ k − 1, is the first bottleneck. From (12) and (13),
we get that δ = µi+1 [q̄i+1 ∧ Ni+1 ∧ (Hi+2 + Ni+2 − q̄i+2)]. When
q̄i+1 = δ/µi+1 and q̄i+2 = δ/µi+2, we get that δ = δ ∧ µi+1Ni+1 ∧

µi+1(Hi+2 + Ni+2 − δ/µi+2). Since i is the first bottleneck, then
δ ≤ µi+1Ni+1, as well as δ ≤ (Hi+2 + Ni+2)/(1/µi+1 + 1/µi+2),
which is equivalent to δ ≤ µi+1(Hi+2 + Ni+2 − δ/µi+2). Hence,
(13) is satisfied. We iteratively continue this argument up until
Station k.
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