

QED Q's

Supporting Material (Downloadable)

M. "Call Centers: Research Bibliography with Abstracts." Version 7, December 2006.

Gans, Koole, and M.: "Telephone Call Centers: Tutorial, Review and Research Prospects." *MSOM, 2003.* (Sec. 3-4, possibly 2.)

Telephone Call/Contact Centers

Service Engineering

Brown, Gans, M., Sakov, Shen, Zeltyn, Zhao: "Statistical Analysis of a Telephone Call Center: A Queueing-Science Perspective." *JASA, 2005.*

Erlang: "On the rational determination of the number of circuits." Written in the 20's; In "*The life and works of A.K. Erlang,*" 1948.

Halfin and Whitt: "Heavy Traffic Limits for Queues with Many Exponential Servers." *OR, 1981.*

Jelenkovic, M. and Moncillovic: "Heavy Traffic Limits for Queues with Many Deterministic Servers." *QUESTA, 2004.*

Borst, M. and Reiman: "Dimensioning Large Telephone Call Centers." *OR, 2004.*

Whitt's website: both the ED and QED regimes.

e.mail : avim@tx.technion.ac.il

Website: <http://ie.technion.ac.il/serveng>

4CallCenters: Personal Tool for WFM

Supporting Material (Downloadable)

M. "Call Centers: Research Bibliography with Abstracts."

Version 7, December 2006.

Gans, Koole, and M.: "Telephone Call Centers: Tutorial, Review and Research Prospects." *MSOM*, 2003. (Sec. 3-4, possibly 2.)

Brown, Gans, M., Sakov, Shen, Zeltyn, Zhao: "Statistical Analysis of a Telephone Call Center: A Queueing-Science Perspective." *JASA*, 2005.

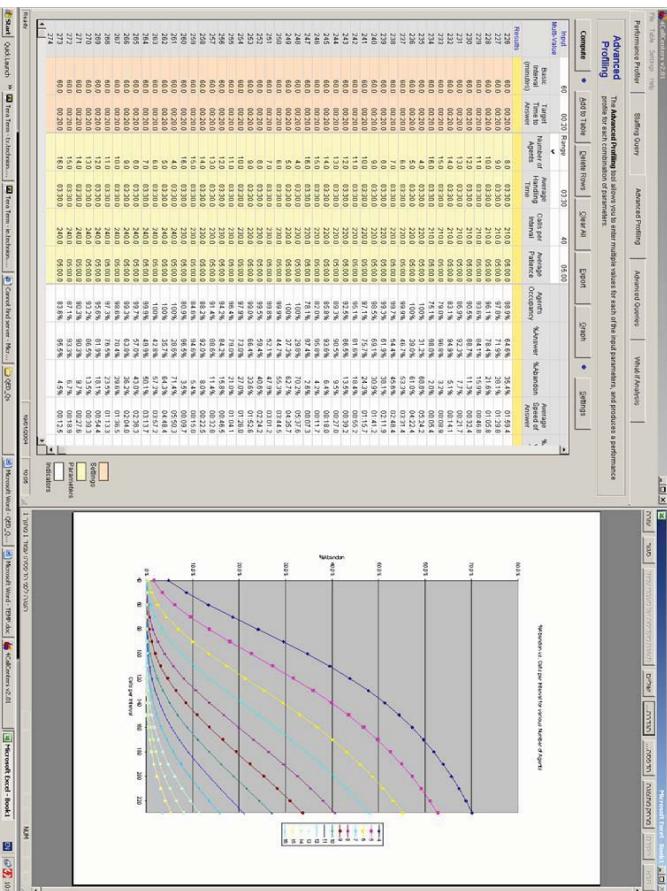
Erlang: "On the rational determination of the number of circuits." Written in the 20's; In "*The life and works of A.K. Erlang*," 1948.

Halfin and Whitt: "Heavy Traffic Limits for Queues with Many Exponential Servers." *OR*, 1981.

Jelenkovic, M. and Momcilovic: "Heavy Traffic Limits for Queues with Many **Deterministic** Servers." *QUESTA*, 2004.

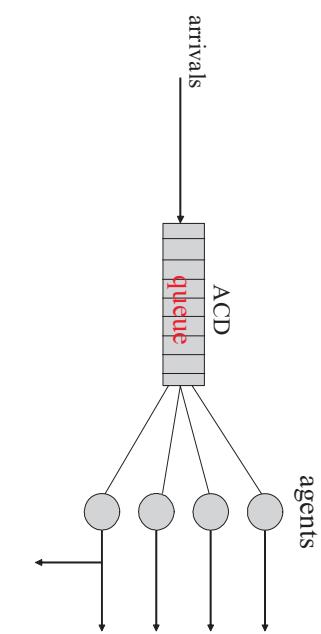
Borst, M. and Reiman: "Dimensioning Large Telephone Call Centers." OR, 2004.

Whitt's website: both the ED and QED regimes.



“First National City Bank Operating Group”

Erlang-C (M/M/N): # Agents

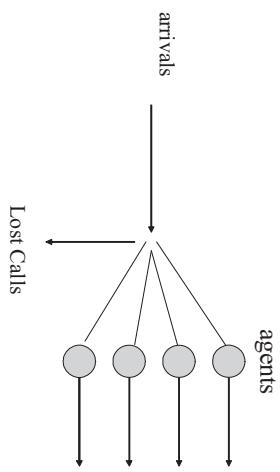


“By tradition, the method of meeting increased work load in banking is to increase staff. If an operation could be done at a rate of 80 transactions per day, and daily load increased by 80, then the manager in charge of that operation would hire another person; it was taken for granted...” (Harvard Case)

1:1 Staffing - Classical IE (Erlang-C)

8 transactions per hour \Rightarrow $E(S) = \underline{7:30}$ minutes (=M)

Erlang-B (M/M/N/N): # Trunks



λ/hr	<u>N Agents</u>	<u>$\rho = \text{OCC}$</u>	<u>$L_q = \text{Que}$</u>	<u>$W_q = \text{ASA}$</u>
8	2	50%	0.3	2:30
16	3	67%	0.9	3:20
24	4	75%	1.5	3:49
32	5	80%	2.2	4:09

Lost Calls

λ/hr	N	$\rho = \text{OCC}$	$L_q = \text{Que}$	$W_q = \text{ASA}$
72	10	90%	60	5:01
120	16	93.8%	11	5:29
400	51	98%	42	6:18
640	81	98.8%	70	6:32
1,280	161	99.4%	145	6:48
2,560	321	99.7%	299	7:00
3,600	451	99.8%	423	7:04
				7:30 !
				∞
				∞

⇒ **Efficiency-Driven Operation**
(Heavy-Traffic)

Intuition: at 100% utilization, N servers = 1 fast server

Indeed $\bar{W}_q \approx \bar{W}_q \mid W_q > 0 = \frac{1}{N} \cdot \frac{\rho_N}{1 - \rho_N} \cdot E(S) \rightarrow E(S) = 7:30 !$

$$\text{since } \rho_N = \frac{\lambda_N \times E(S)}{N} = \frac{8(N-1) \times 7.5 / 60}{N} = \frac{N-1}{N} = 1 - \frac{1}{N}$$

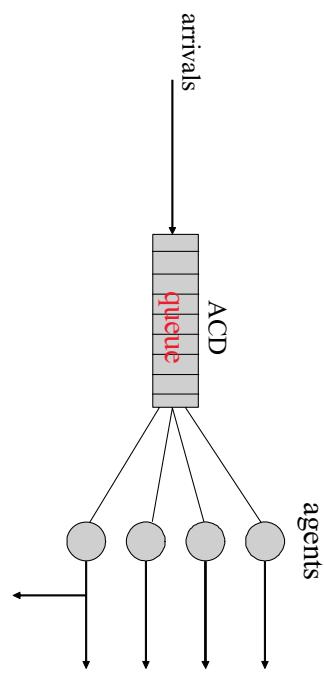
$$N(1 - \rho_N) = 1 \quad , \quad \rho_N \rightarrow 1.$$

Copy of Summary Interval - Order PK

Time	Avg Ans W	Speed	Avg Aban	ACD	Calls	Avg ACD Time	Avg ACW Time	Aban #	% ACD Calls	% Ans Time	Avg Ans Calls	Calls Per Ans Staff	% Serv	% Aux	% ACW	% ACD	P
Totals	:00:02	:00:28	10456	:03:47	:00:25	46	53	85	70	149	8						
12:00 AM*	:00:00	:00:00	26	:04:31	:00:02	1	76	51	7	4	51	2	16	81			
12:30 AM*	:00:03	:04:10	14	:07:27	:00:33	1	89	52	5	3	48	1	26	63			
1:00 AM*	:00:00	9	:04:54	:11:29	0	91	90	1	7	90	0	26	65				
5:30 AM*	0		0			0	0	0	0	0		33	0	0			
6:00 AM*	:00:00	12	:03:21	:00:18	0	21	100	7	2	100	9	2	18				
6:30 AM*	:00:00	27	:02:51	:00:20	0	32	100	14	2	100	5	3	29				
7:00 AM*	:00:00	62	:03:34	:00:15	0	38	100	21	3	100	13	4	34				
7:30 AM*	:00:00	93	:03:11	:00:34	0	36	100	30	3	100	7	4	32				
8:00 AM*	:00:00	120	:03:37	:00:40	0	39	100	47	3	100	8	6	33				
8:30 AM*	:00:00	193	:03:04	:00:14	0	44	100	61	3	100	10	7	37				
8:00 AM*	:00:01	293	:03:25	:00:25	0	54	89	75	4	97	9	7	47				
8:30 AM*	:00:02	:00:06	381	:03:45	:00:22	2	80	87	81	4	93	8	8	52			
10:00 AM*	:00:02	:00:01	416	:03:49	:00:26	1	63	87	94	4	96	5	8	55			
10:30 AM*	0		349	:03:35	:00:33	0	52	99	95	4	99	6	8	44			
11:00 AM*	:00:00	252	:03:50	:00:27	0	51	100	102	3	100	7	8	45				
11:30 AM*	:00:00	348	:03:44	:00:18	0	49	100	97	4	100	8	6	46				
12:00 PM*	:00:01	354	:03:59	:00:18	0	52	95	95	4	95	8	5	47				
12:30 PM*	:00:00	336	:03:38	:00:21	0	52	99	97	3	99	9	8	46				
1:00 PM*	:00:00	347	:03:53	:00:32	0	51	99	98	4	99	11	8	44				
1:30 PM*	:00:00	368	:03:52	:00:14	0	56	99	99	4	99	11	7	50				
2:00 PM*	:00:01	393	:03:55	:00:17	0	51	100	108	4	100	10	5	46				
2:30 PM*	:00:00	403	:03:58	:00:13	0	54	100	112	4	100	10	4	50				
3:00 PM*	:00:00	:00:04	410	:04:02	:00:16	1	57	88	110	4	98	8	5	51			
3:30 PM*	:00:00	347	:03:59	:00:14	0	60	100	100	3	100	7	5	45				
4:00 PM*	:00:00	382	:03:48	:01:37	0	54	100	98	4	100	6	7	47				
4:30 PM*	:00:00	379	:03:41	:00:19	0	55	99	97	4	99	8	5	50				
5:00 PM*	:00:00	411	:03:53	:00:19	0	53	100	109	4	100	8	5	48				
5:30 PM*	:00:01	387	:03:58	:00:19	0	58	99	98	4	99	10	6	51				
6:00 PM*	:00:01	:00:21	371	:03:28	:00:25	1	53	98	91	4	98	9	6	47			
6:30 PM*	:00:00	280	:03:26	:00:13	0	41	100	90	3	100	8	4	37				
7:00 PM*	:00:00	269	:03:24	:00:17	0	42	100	78	3	100	9	5	38				

Rough Performance Analysis

$$Erlang-C = M/M/N$$



- Peak 10:00 – 10:30 a.m., with 100 agents
- 400 calls
- 3:45 minutes average service time
- 2 seconds ASA (Average Speed of Answer)

Rough Performance Analysis

Peak	10:00 – 10:30 a.m., with 100 agents
400 calls	
3:45 minutes average service time	
2 seconds ASA	

Offered load $R = \lambda \times E(S)$

$$= 400 \times 3:45 = 1500 \text{ min./30 min.}$$

$$= 50 \text{ Erlangs}$$

Occupancy $\rho = R/N$

$$= 50/100 = 50\%$$

⇒ **Quality-Driven Operation** (Light-Traffic)

⇒ Classical Queueing Theory

Above: $R = 50$, $N = R + 50$, \approx all served immediately.

Rule of Thumb: $N = \lceil R + \delta R \rceil$, $\delta > 0$ service-grade.

Rough Performance Analysis

Quality-driven: 100 agents, 50% utilization

⇒ Can increase offered load - by how much?

Erlang-C **N=100 E(S) = 3:45 min.**

λ/hr	ρ	$E(W_q) = \text{ASA}$	% Wait = 0
800	50%	0	100%
1400	87.5%	0:02 min.	88%
1550	96.9%	0:48 min.	35%
1580	98.8%	2:34 min.	15%
1585	99.1%	3:34 min.	12%

Quality-driven: 100 agents, 50% utilization

⇒ Can increase offered load - by how much?

Erlang-C **N=100 E(S) = 3:45 min.**

λ/hr	ρ	$E(W_q) = \text{ASA}$	% Wait = 0
800	50%	0	100%
1400	87.5%	0:02 min.	88%
1550	96.9%	0:48 min.	35%
1580	98.8%	2:34 min.	15%
1585	99.1%	3:34 min.	12%

Quality-driven: 100 agents, 50% utilization

⇒ Can increase offered load - by how much?

Erlang-C **N=100 E(S) = 3:45 min.**

$\underline{\lambda}/hr$	$\underline{\rho}$	$E(W_q) = ASA$	% Wait = 0	$\underline{\lambda}/hr$	\underline{N}	OCC	ASA	% Wait = 0
800	50%	0	100%	1585	100	99.1%	3:34	12%
1400	87.5%	0:02 min.	88%					
1550	96.9%	0:48 min.	35%					
1580	98.8%	2:34 min.	15%					
1585	99.1%	3:34 min.	12%					

⇒ **Efficiency-driven Operation (Heavy Traffic)**

$$\overline{W}_q \approx \overline{W}_q \mid W_q > 0 = \frac{1}{N} \cdot \frac{\rho_N}{1 - \rho_N} \cdot E(S) \rightarrow E(S) = 3:45 !$$

$$N(1 - \rho_N) = 1 \quad , \quad \rho_N \rightarrow 1$$

Above: $R = 99$, $N = R + 1$, \approx all delayed.

Rule of Thumb: $N = \lceil R + \gamma \rceil$, $\gamma > 0$ service grade.

Changing N (**Staffing**) in Erlang-C

$E(S) = 3:45$

$E(S) = 3:45$

Changing N (Staffing) in Erlang-C

Changing N (Staffing) in Erlang-C

E(S) = 3:45

E(S) = 3:45

λ /hr	N	OCC	ASA	% Wait = 0	λ /hr	N	OCC	ASA	% Wait = 0
1585	100	99.1%	3:34	12%	1585	100	99.1%	3:34	12%
1599	100	99.9%	59:33	0%	1599	100	99.9%	59:33	0%
1599	102	98.9%	100+1	13%	1599	102	98.0%	3:06	13%
1599	105	95.2%	0:23	24%	1599	105	95.2%	50%	24%

Changing N (Staffing) in Erlang-C

$$E(S) = 3:45$$

λ/hr	N	OCC	ASA	% Wait = 0
1585	100	99.1%	3:34	12%
1599	100+1	99.9%	59:33	0%
1599	100	98.9%	3:06	13%
1599	102	98.0%	1:24	24%
1599	105	95.2%	0:23	50%

\Rightarrow New Rationalized Operation

Efficiently driven, in the sense that $OCC > 95\%$;
Quality-Driven, 50% answered immediately

QED Regime = Quality- and Efficiency-Driven Regime

where $\varphi(\cdot) / \phi(\cdot)$ is the standard normal density/distribution.

$$\text{Here } \alpha = \left[1 + \frac{\beta \phi(\beta)}{\varphi(\beta)} \right]^{-1},$$

λ/hr	N	OCC	ASA	% Wait = 0
1585	100	99.1%	3:34	12%
1599	100+1	99.9%	59:33	0%
1599	100	98.9%	3:06	13%
1599	102	98.0%	1:24	24%
1599	105	95.2%	0:23	50%

Consider a sequence of M/M/N models, $N=1,2,3,\dots$.

Then the following **3 points of view** are equivalent:

- **Customer** $\lim_{N \rightarrow \infty} P_N \{ \text{Wait} > 0 \} = \alpha, \quad 0 < \alpha < 1;$
- **Server** $\lim_{N \rightarrow \infty} \sqrt{N} (1 - \rho_N) = \beta, \quad 0 < \beta < \infty;$
- **Manager** $N \approx R + \beta \sqrt{R}, \quad R = \lambda \times E(S) \text{ large};$

Extremes:

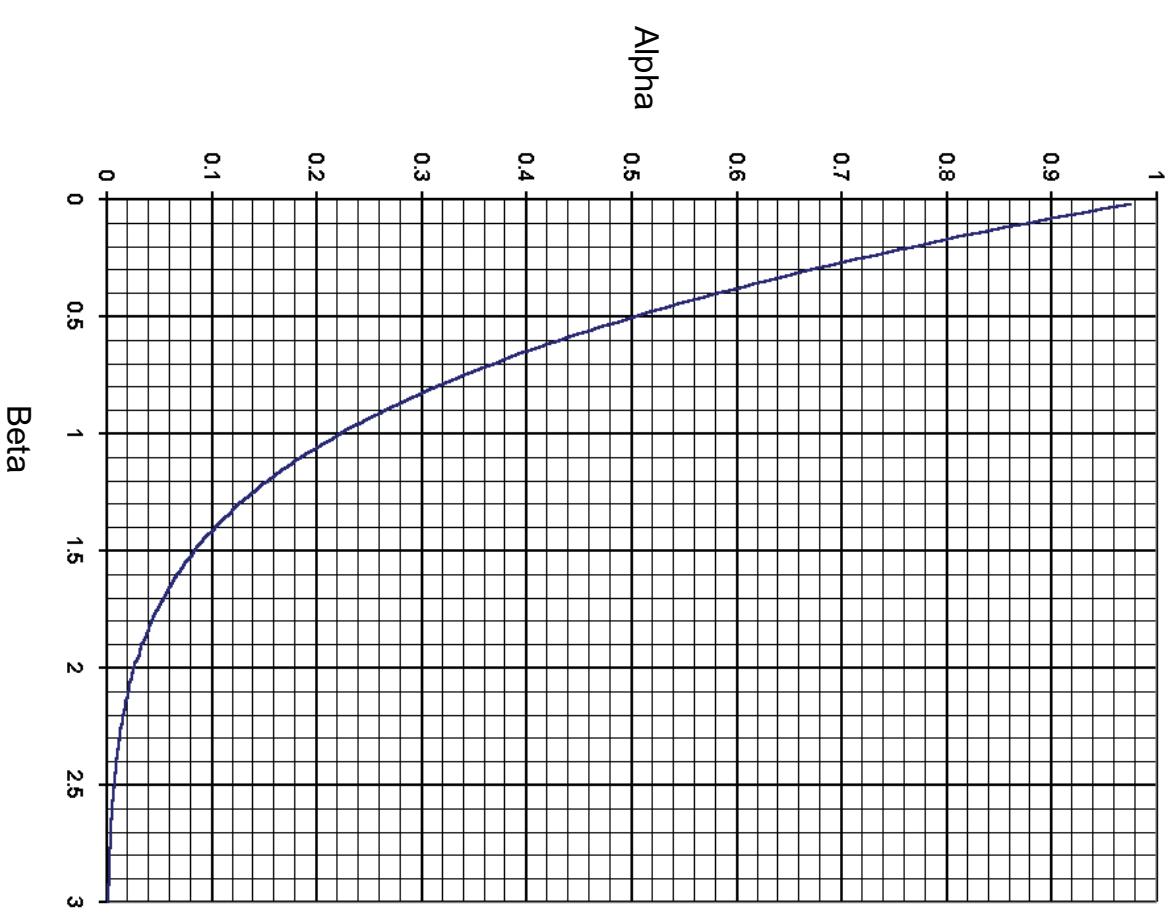
Everyone waits: $\alpha = 1 \Leftrightarrow \beta = 0$ **Efficiency-driven**

Quality-driven $\alpha = 0 \Leftrightarrow \beta = \infty$ **No one waits:**

$$\sqrt{\text{Safety-Staffing}} \quad N = \lceil R + \beta \sqrt{R} \rceil, \quad \beta > 0.$$

QED Theorem (Halfin-Whitt, 1981)

The Halfin-Whitt Delay Function



√. Safety-Staffing: Performance

$$R = \lambda \times E(S) \quad \text{Offered load (Erlangs)}$$

$$N = R + \beta \sqrt{R} \quad \beta = \text{"service-grade" } > 0$$

$$= R + \Delta \quad \sqrt{\text{safety-staffing}}$$

Expected Performance:

$$\% \text{ Delayed} \approx P(\beta) = \left[1 + \frac{\beta \phi(\beta)}{\varphi(\beta)} \right]^{-1}, \quad \beta > 0$$

$$\text{Congestion index} = E \left[\frac{\text{Wait}}{E(S)} \middle| \text{Wait} > 0 \right] = \frac{1}{\Delta}$$

$$\% \left\{ \frac{\text{Wait}}{E(S)} > T \middle| \text{Wait} > 0 \right\} = e^{-T\Delta}$$

TSF

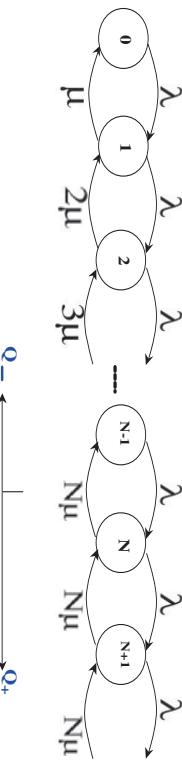
$$\text{Servers' Utilization} = \frac{R}{N} \approx 1 - \frac{\beta}{\sqrt{N}}$$

Occupancy

M/M/N (Erlang-C) with Many Servers: $N \uparrow \infty$

QED : Some Intuition

(Assume $\mu = 1$)



M/M/N: $W_N \mid W_N > 0 \stackrel{d}{=} \exp\left(\text{mean} = \frac{1}{N} \frac{1}{1 - \rho_N}\right)$

$\sqrt{N} W_N \mid W_N > 0 \stackrel{d}{=} \exp(\sqrt{N} (1 - \rho_N)) \Rightarrow \exp(\beta)$

But why $P(W_N > 0) \rightarrow \alpha$, $0 < \alpha < 1$?

$Q(0) = N$: all servers busy, no queue.

Recall $E_{2,N} = \left[1 + \frac{T_{N-1,N}}{T_{N,N-1}}\right]^{-1} = \left[1 + \frac{1 - \rho_N}{\rho_N E_{1,N-1}}\right]^{-1}$.

Here

$$T_{N-1,N} = \frac{1}{\lambda_N E_{1,N-1}} \sim \frac{1}{N \mu \times h(-\beta)/\sqrt{N}} \sim \frac{1/\mu}{h(-\beta)\sqrt{N}}$$

which applies as $\sqrt{N}(1 - \rho_N) \rightarrow \beta$, $-\infty < \beta < \infty$.

Also

$$T_{N,N-1} = \frac{1}{N \mu (1 - \rho_N)} \sim \frac{1/\mu}{\beta \sqrt{N}}$$

which applies as above, but for $0 < \beta < \infty$.

Hence, $E_{2,N} \sim \left[1 + \frac{\beta}{h(-\beta)}\right]^{-1}$, assuming $\beta > 0$.

Rules of Thumb: Operational Regimes

Strategy: Sustain Regime under Pooling

$R = \lambda \times E(S)$ units of work per unit of time (load)

Efficiency-driven $(\{\text{Wait} > 0\} \rightarrow 100\%)$

$$y = (N - R) / \sqrt{R} = (30 - 25) / \sqrt{25} = 1, \quad P(1) = 22\%$$

$$N = \lceil R + \gamma \rceil, \quad \gamma > 0 \quad \text{service grade}$$

$$\text{4 CC: } \lambda = 1200, \quad \text{AHT} = 5, \quad R = 100; \quad N=?$$

Quality-driven

$$(\{\text{Wait} > 0\} \rightarrow 0)$$

$$N = \lceil R + \delta R \rceil, \quad \delta > 0$$

Efficiency-Driven: maintain ASA at 15 sec.

QED Regime

$$(\{\text{Wait} > 0\} \rightarrow \alpha, \quad 0 < \alpha < 1)$$

QED:

$$N = \lceil R + \beta \sqrt{R} \rceil, \quad \beta > 0 \quad \text{Safety-Staffing}$$

Determine Regimes (Strategy), Parameters (Economics)

Strategy: Managers, Agents (Unions), Customers

Economics: Minimize agent salaries + waiting cost

Base: $\lambda = 300/\text{hr}, \quad \text{AHT} = 5 \text{ min}, \quad N = 30 \text{ agents}$

$$R = 300 \times \frac{5}{60} = 25, \quad \text{OCC} = 83.3\% \quad \text{ASA} = 15 \text{ sec}$$

$$y = (N - R) / \sqrt{R} = (30 - 25) / \sqrt{25} = 1, \quad P(1) = 22\%$$

Quality-Driven: maintain OCC at 83.3%.

$$N = 120, \quad \text{ASA} = .5 \text{ sec}, \quad y = (120 - 100)/10 = 2$$

Efficiency-Driven: maintain ASA at 15 sec.

$$N = 107, \quad \text{OCC} = 95\%, \quad y = 0.8$$

maintain $\{\text{Wait} > 0\}$ at 22% (y at 1).

$$N = 100 + 1 \cdot \sqrt{100} = 110, \quad \text{OCC} = 91\%, \quad \text{ASA} = 7 \text{ sec}$$

9 CC: $\lambda = 2700, \quad \text{AHT} = 5, \quad R = 225$

$$\begin{aligned} Q: \quad N &= 270 \\ E: \quad N &= 233 \end{aligned}$$

$$\text{QED: } N = 225 + 1 \cdot \sqrt{225} = 240, \quad \text{OCC} = 94\%, \quad \text{ASA} = 4.7 \text{ sec}$$

Strategy: Sustain Regime under Pooling

Economics: Quality vs. Efficiency

26

Economies of Scale

Base case: M/M/N with parameters λ, μ, N

Scenario: $\lambda \rightarrow m\lambda$ ($R \rightarrow mR$)

	Base Case	Efficiency-driven	Quality-driven	Rationalized
Offered load	$R = \frac{\lambda}{\mu}$	mR	mR	mR
Safety staffing	Δ	Δ	$m\Delta$	$\sqrt{m}\Delta$
Number of agents	$N = R + \Delta$	$mR + \Delta$	$mR + m\Delta$	$mR + \sqrt{m}\Delta$
Service grade	$\beta = \frac{\Delta}{\sqrt{R}}$	$\frac{\beta}{\sqrt{m}}$	$\beta\sqrt{m}$	$\boxed{\beta}$
Erlang-C = $P\{\text{Wait} > 0\}$	$P(\beta)$	$P\left(\frac{\beta}{\sqrt{m}}\right) \uparrow 1$	$P(\beta\sqrt{m}) \downarrow 0$	$\boxed{P(\beta)}$
Occupancy	$\rho = \frac{R}{R + \Delta}$	$\frac{R}{R + \frac{\Delta}{\sqrt{m}}} \uparrow 1$	$\boxed{\rho = \frac{R}{R + \Delta}}$	$\frac{R}{R + \frac{\Delta}{\sqrt{m}}} \uparrow 1$
ASA = $E\left[\frac{\text{Wait}}{E(S)} \mid \text{Wait} > 0\right]$	$\frac{1}{\Delta}$	$\boxed{\frac{1}{\Delta} = \text{ASA}}$	$\frac{1}{m\Delta} = \frac{\text{ASA}}{m}$	$\frac{1}{\sqrt{m}\Delta} = \frac{\text{ASA}}{\sqrt{m}}$
TSF = $P\left\{\frac{\text{Wait}}{E(S)} > T \mid \text{Wait} > 0\right\}$	$e^{-T\Delta}$	$\boxed{e^{-T\Delta} = \text{TSF}}$	$e^{-mT\Delta} = (\text{TSF})^m$	$e^{-\sqrt{m}T\Delta} = (\text{TSF})^{\sqrt{m}}$

(Dimensioning: with S. Borst and M. Reiman)

Quality $\mathbf{D}(\mathbf{t})$ delay cost (\mathbf{t} = delay time)
 Efficiency $\mathbf{C}(\mathbf{N})$ staffing cost (\mathbf{N} = # agents)

Optimization: \mathbf{N}^* minimizes Total Costs

- $\mathbf{C} \gg \mathbf{D}$: Efficiency-driven
- $\mathbf{C} \ll \mathbf{D}$: Quality-driven
- $\mathbf{C} \approx \mathbf{D}$: Rationalized - QED

Satisfization: \mathbf{N}^* minimal s.t. Service Constraint

Eg. %Delayed < α .

- $\alpha \approx 1$: Efficiency-driven
- $\alpha \approx 0$: Quality-driven
- $0 < \alpha < 1$: Rationalized - QED

See: Whitt's "How multi-server queues scale with ...demand"

Framework: Asymptotic theory of M/M/N, $\mathbf{N} \uparrow \infty$

28

27

Economics: √ Safety-Staffing

Square-Root Safety Staffing: $N = R + y^*(r)\sqrt{R}$
 $r = \text{cost of delay / cost of staffing}$

Optimal

$$N^* \approx R + y^* \left(\frac{d}{c} \right) \sqrt{R}$$

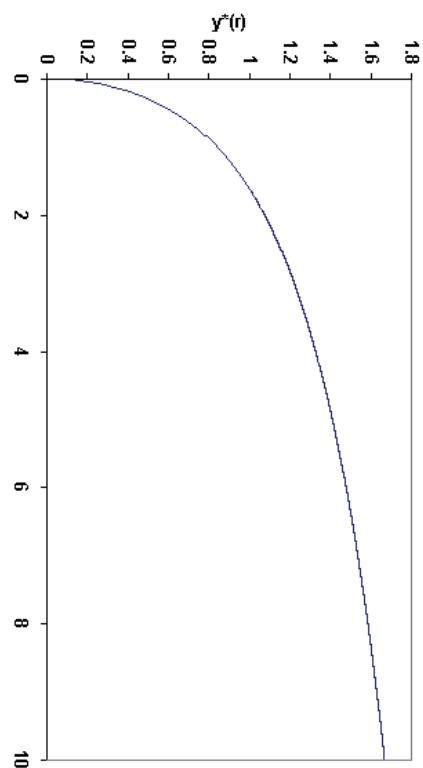
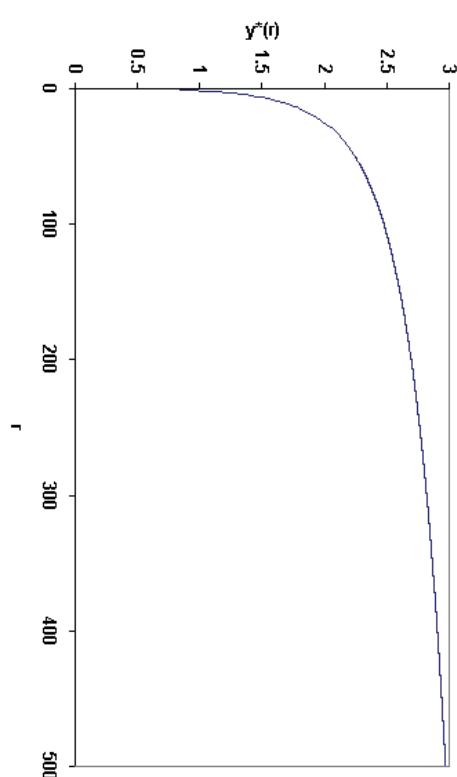
where

- d** = delay/waiting costs
- c** = staffing costs

Here $y^*(r) \approx \left(\frac{r}{1 + r(\sqrt{\pi/2} - 1)} \right)^{1/2}$, $0 < r < 10$

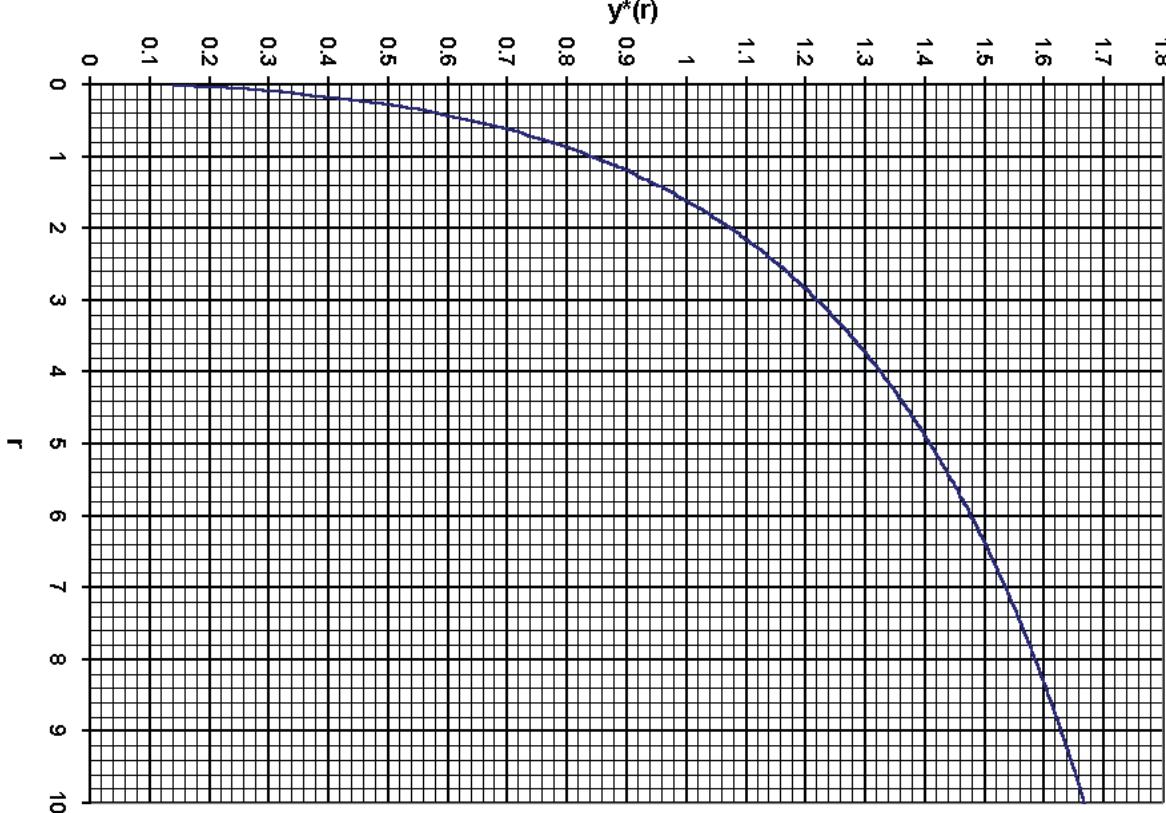
$$\approx \left(2 \ln \frac{r}{\sqrt{2\pi}} \right)^{1/2}, \quad r \text{ large.}$$

Performance measures: $\Delta = y^* \sqrt{R}$ safety staffing



$$\begin{aligned} P\{\text{Wait} > 0\} \approx P(Y^*) &= \left[1 + \frac{y^* \phi(y^*)}{\varphi(y^*)} \right]^{-1} \quad \text{Erlang-C} \\ \text{TSF} &= P\left\{ \frac{\text{Wait}}{E(S)} > T \mid \text{Wait} > 0 \right\} = e^{-T\Delta} \\ \text{ASA} &= E\left[\frac{\text{Wait}}{E(S)} \mid \text{Wait} > 0 \right] = \frac{1}{\Delta} \\ \text{Occupancy} &= 1 - \frac{\Delta}{N} \approx 1 - \frac{y^*}{\sqrt{N}} \end{aligned}$$

$y^*(r)$, $r = \text{cost of delay} / \text{cost of staffing}$



R = Offered Load (not small)

Efficiency-Driven: $N = R + 2$ (or 3, or...);

Expect that essentially **all** customers are delayed in queue, that average delay is about 1/2 (or 1/3, or...) average service-time, and that agents utilization is extremely high (close to 100%).

Quality-Driven: $N = R + (10\% - 20\%) R$

Expect essentially **no** delays of customers.

QED: $N = R + 0.5\sqrt{R}$

Expect that about **half** of the customers are not delayed in queue, that average delay is about one-order less than average service-time (seconds vs. minutes), and that agents utilization is high (90-95%).

Can determine regime scientifically:

Strategy: Retain performance levels under Pooling (4CC demo)

Economics: Minimize agent salaries + congestion cost, or

Satisfization: Least Number of Agents s.t. Constraints

Scenario Analysis: 80:20 Rule (Large Call Center)

Prevalent std: at least 80% customers wait less than 20 sec.

Formally: $\%(\text{Wait} > 20 \text{ sec.}) < 0.2$

- Base Case: $\lambda = 100$ calls per min (avg)

$M = 4$ min. service time (avg)

$R = 400$ Erlangs offered load (large)

$$y^* \left(\frac{d}{c} \right) = 0.53, \quad \text{by } \% \{ \text{Wait} > 20 \text{ sec.} \} = P(y^*) e^{-1.67y^*} = 0.2$$

Hence: $N^* = 400 + 0.53 \sqrt{400} = 411$, by $\sqrt{\cdot}$ safety-staffing

$$\text{And } \frac{d}{c} = (y^*)^{-1} (0.53) = \mathbf{0.32}, \quad \text{by inverting } y^*$$

Low valuation of customers' time, at $\frac{1}{3}$ of servers' time, yet reasonable 80:20 performance? enabled by scale!

Valuation of customers' time as being worth 75-fold of agents' time seems reasonable only in **extreme circumstances**:

- What if $\frac{d}{c} = 5$?

$N^* = 429$ agents (vs. 411 before)

Agents' accessibility (idleness) = 7% (vs. 3% before)

Hence, 1 out of 100 waits over 20 sec. (vs. 1 out of 5)

Scenario Analysis: “Reasonable” Service Level ?

Theory: The least N that guarantees $\% \{ \text{Wait} > 0 \} < \varepsilon$ is close to $N^* = R + P^{-1}(\varepsilon) \sqrt{R}$ (again $\sqrt{\cdot}$ safety-staffing).

Example: $\lambda = 1,800$ calls at peak hour (avg)

$M = 4$ min. service time (avg)

$$R = 1800 \times \frac{4}{60} = 120 \text{ Erlangs offered-load}$$

Service level constraint: 1 out of 100 delayed (avg), namely 99% answered immediately.

$$\Rightarrow N^* = R + P^{-1}(0.01) \sqrt{R} = 120 + 2.38 \sqrt{120} = 146 \text{ agents}$$

$$\Rightarrow \frac{d}{c} = (y^*)^{-1}(2.38) = 75: \text{ very high service index}$$

Note: **Satisfication easier to model but Costs easier to grasp.**