

Service Engineering (Science, Management)

Avi Mandelbaum
Technion IE&M

Course Contents

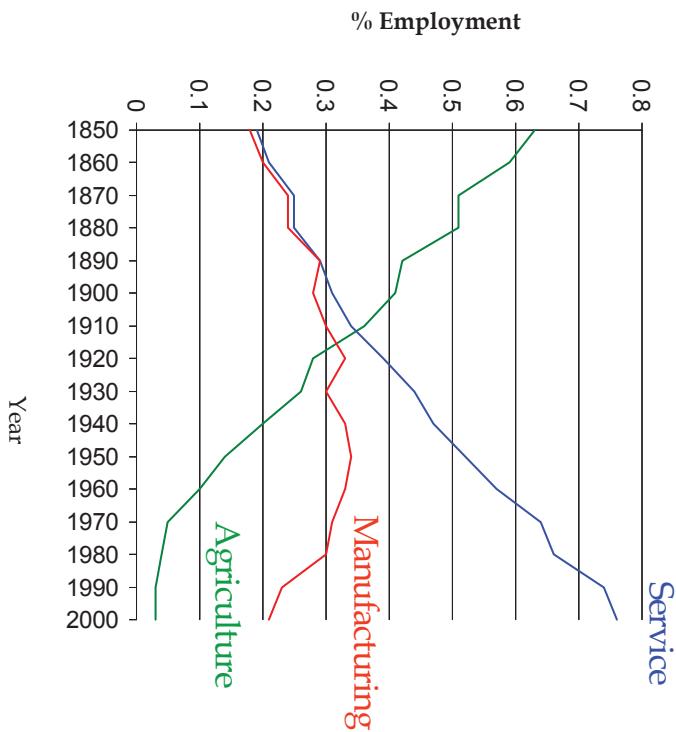
- Introduction to “Services” and “Service-Engineering”
- The Two Prerequisites: Measurements, Models (Operational)
- Empirical (Data-Based) Models
- Fluid (Deterministic) Models
- Stochastic Framework: Dynamic-Stochastic PERT/CPM
- The Building Blocks of a Basic Service Station:
 - Arrivals; Forecasting
 - Service Durations; Workload
 - (Im)Patience; Abandonment
 - Returns (During, After, Positive, Negative)
- Stochastic Models of a Service Station
 - Markovian Queues: Erlang B/C/A, . . . /R, Jackson
 - Non-Parametric Queues: $G/G/n$, . . .
- Operational Regimes and Staffing: ED, QD, QED
- Heterogeneous Customers and Servers (CRM, SBR)

Background Material

Downloadable from the **References** menu in
<http://ie.technion.ac.il/serveng/References>

Gans (U.S.A.), Koole (Europe), and M. (Israel):
“Telephone Call Centers: Tutorial, Review and Research Prospects.”
MSOM, 2003.

Brown, Gans, M., Sakov, Shen, Zeltyn, Zhao:
“**Statistical** Analysis of a Telephone Call Center: A Queueing-
Science Perspective.” JASA, 2005.


Trofimov, Feigin, M., Ishay, Nadjarov:
”**DataMOCCA**: Models for Call/Contact Center Analysis. (Model
Description and Introduction to User Interface.)” Technion Report,
2004-2006.

Technion’s “**Service-Engineering**” course lectures: Measurements, Arrivals, Service Times, (Im)Patience, Fluid Models, QED Q’s.

M. “Call Centers: Research **Bibliography** with Abstracts.”
Version 7, December 2006.

Introduction to “Services”

U.S. Employment by Sector, 1850 - 2000+

Scope of the Service Industry

- Wholesale and retail trade;
- Government services;
- Healthcare;
- Restaurants and food;
- Financial services;
- Transportation;
- Communication;
- Education;
- Hospitality business;
- Leisure services.

Our Application Focus: **telephone call centers**, which play an important role in most of these sectors.

We focus on:

- Function: **Operations** (vs./plus IT, HRM, Marketing)
- Dimension: Accessibility, **Capacity** (vs. RM, SCM,...)
- Modelling Framework: **Queueing** Theory (plus Science)
- Applications: **Call/Contact Centers** (Healthcare,...)

Services: Subjective Trends

Service-Engineering

”Everything is Service”

Rather than buying a **product**, why not **buy only the service it provides**? For example, **car leasing**; or, why setup and run a **help-desk** for technical support, with its costly fast-to-obsolete hardware, growing-sophisticated software, high-skilled peopleware and ever-expanding infoware, rather than let **outsourcing** do it all for you?

“Data; Technology and Human Interaction

Far too little reliance on **data**, the language of nature, in formulating models for the **systems and processes of the deepest importance to human beings**, namely those in which **we are actors**. Systems with fixed rules, such as physical systems, are relatively simple, whereas systems involving human beings expressing their microgoals ... can exhibit incredible complexity; there is yet the hope to devise tractable models through **remarkable collective effects** ...

(Robert Herman: ”Reflection on Vehicular Traffic Science”.)

Fusion of Disciplines: POM/IE, Marketing, IT, HRM
The highest challenge facing banks with respect to efficient and effective innovation lies in the **”New Age Industrial Engineer”** that must combine technological knowledge with process design in order to create the delivery system of the future.
(Frei, Harker and Hunter: ”Innovation in Retail Banking”).

Goal (Subjective):

Develop scientifically-based design principles (**rules-of-thumb**) and tools (**software**) that support the balance of service **quality**, process **efficiency** and business **profitability**, from the (often conflicting) views of customers, servers and managers.

Contrast with the traditional and prevalent

- **Service** Management (U.S. Business Schools)

- Industrial **Engineering** (European/Japanese Engineering Schools)

Additional **Sources** (all with websites):

- Fraunhofer **IAO** (Service Engineering, 1995): ... application of engineering science know-how to the service sector ... models, methods and tools for systematic development and design of service products and service systems ...

- **NSF SEE** (Service Enterprise Engineering, 2002): ... Customer Call/Contact Centers ... staff scheduling, dynamic pricing, facilities design, and quality assurance ...

- **IBM SSME** (Services Science, Management and Engineering, 2005): ... new discipline brings together computer science, operations research, industrial engineering, business strategy, management sciences, social and cognitive sciences, and legal sciences ...

Staffing: How Many Servers?

The First Prerequisite: Data & Measurements

Fundamental problem in service operations: Healthcare, . . . , or

Call Centers, as a representative example:

- People: $\approx 70\%$ operating costs; $\geq 3\%$ U.S. workforce.
- Business-Frontiers but also *Sweat-Shops* of the 21st Century.

Reality

- **Complex** and becoming more so
- Staffing is Erlang-based (1913!)
- ⇒ Solutions urgently needed
- Technology can accommodate smart protocols
- Theory lags significantly behind needs
- ⇒ Ad-hoc methods prevalent: heuristics- or simulation-based.

Research Progress

based on

- **Simple Robust Models**, for theoretical insight into complex realities. Their analysis requires and generates:
- Data-Based **Science**: Model, Experiment, Validate, Refine.
- Management Principles, Tools: **Service Engineering**.

Future Research:

Healthcare, Multimedia, Field-Support; Operation+Marketing,

Robert Herman ("Father" of Transportation Science): Far too little reliance on **Data, the language of nature**, in formulating models for the systems of the deepest importance to human beings, namely those in which we are actors.

Empirical "Axiom": The Data One Needs is **Never** There For One To Use (Always Problems with Historical Data).

Averages do NOT tell the whole story

Individual-Transaction Level Data: Time- Stamps of Events

- **Face-to-Face:** T, C, S, I, O, F (QIE, RFID)
- **Telephone:** ACD, CTI/CRM, Surveys
- **Internet:** Log-files
- **Transportation:** measuring devices on highways/intersections

Our Databases: Operations

(vs. Marketing, Surveys, . . .)

- Face-to-Face data (branch banking) – recitations; QUESTA
- Telephone data (small banking call center) – homework; JASA
- **DataMOCCA** (large cc's: repository, interface) – class/research; Website

Measurements: Face-to-Face Services 23 Bar-Code Readers at an Israeli Bank

Measurements: Telephone Services Log-File of Call-by-Call Data

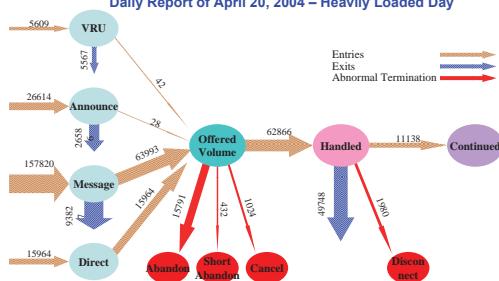
vin+call_id	customer_id	priority	type	date	vin	entry	vin	exit	vin	time	q_start	q_end	ext	q_lmm	outcome	set_start	set_end	ext	set_time	server
A.01.01.44749	21/04/440	2	PS	990001	1145:33	11:45:39	16	1145:39	1145:39	00:00:00	11:45:39	11:45:39	11:45:39	11:45:39	AGENT	11:46:57	11:51:00	243	DORIT	
A.01.01.44750	12/857816	1	PS	990005	1449:00	14:49:06	16	1449:00	14:51:00	00:00:00	14:49:00	14:51:00	14:49:00	14:49:00	AGENT	14:52:59	14:54:29	00:00	ROTH	
A.01.01.44967	58566291	2	PS	990005	1445:42	14:45:48	16	1445:42	14:45:48	00:00:00	14:45:42	14:45:48	14:45:42	14:45:48	AGENT	15:02:31	15:04:10	00:00	ROTH	
A.01.01.44988	0	NW	990005	1510:17	15:10:20	15:10:20	16	1510:17	15:13:19	00:00:00	15:10:17	15:13:19	15:10:17	15:10:17	HANG	00:00:00	00:00:00	00:00:00	NO_SERVER	
A.01.01.44969	63192346	2	PS	990005	1522:07	15:22:13	16	1522:13	15:25:21	00:00:00	15:22:07	15:25:21	15:22:07	15:22:07	AGENT	15:25:20	15:25:25	15:25:25	STEREN	
A.01.01.44970	0	NW	990005	1531:33	15:31:44	15:31:44	16	1531:33	15:31:44	00:00:00	15:31:00	15:31:44	15:31:00	15:31:44	AGENT	15:31:45	15:34:16	15:34:16	STEREN	
A.01.01.44975	35920755	2	PS	990005	1537:29	15:37:34	16	1537:29	15:38:24	00:00:00	15:37:29	15:38:24	15:37:29	15:38:24	AGENT	15:38:18	15:40:56	15:40:56	TOVA	
A.01.01.44972	64185333	2	PS	990005	1544:32	15:44:37	15	1544:32	15:45:27	00:00:00	1544:32	15:45:27	15:44:32	15:45:27	AGENT	15:47:56	15:49:02	15:49:02	TOVA	
A.01.01.44973	34965748	1	PS	990005	1553:05	15:53:11	16	1553:05	15:53:11	00:00:00	1553:05	15:53:11	15:53:05	15:53:11	AGENT	15:56:38	15:56:45	15:56:45	MORIAH	
A.01.01.44974	74380917	2	NE	990005	1559:34	15:59:40	16	1559:34	15:59:40	00:00:00	15:59:34	15:59:40	15:59:34	15:59:40	AGENT	16:02:33	16:26:04	16:26:04	ELI	
A.01.01.44975	35920755	2	PS	990005	1607:51	16:07:51	15	1607:51	16:08:01	00:00:00	1607:51	16:08:01	16:07:51	16:08:01	HANG	00:00:00	00:00:00	00:00:00	NO_SERVER	
A.01.01.44976	0	NW	990005	1611:38	16:11:48	10	1611:38	16:11:48	00:00:00	1611:38	16:11:50	10	1611:38	16:11:50	HANG	00:00:00	00:00:00	00:00:00	NO_SERVER	
A.01.01.44977	33188977	2	PS	990005	1614:27	16:14:33	16	1614:27	16:14:33	00:00:00	1614:27	16:14:33	16:14:27	16:14:33	AGENT	16:42:21	16:47:56	16:47:56	ANAT	
A.01.01.44978	23817067	2	PS	990005	1619:17	16:19:17	16	1619:17	16:19:39	00:00:00	1619:17	16:19:39	16:19:17	16:19:39	AGENT	16:19:38	16:21:57	16:21:57	TOVA	
A.01.01.44979	0	PS	990001	1503:26	15:03:30	10	1503:26	15:03:30	00:00:00	1503:26	15:03:30	15:03:26	15:03:30	AGENT	15:03:35	15:06:36	15:06:36	ZOHARI		
A.01.01.44975	2519700	2	PS	990001	1514:46	15:14:51	15	1514:46	15:15:10	00:00:00	1514:46	15:15:10	15:14:51	15:15:10	AGENT	15:15:09	15:17:00	15:17:00	SHARON	
A.01.01.44976	0	PS	990001	1522:48	15:26:00	12	1522:48	15:26:00	00:00:00	1522:48	15:26:00	15:22:48	15:26:00	AGENT	15:25:59	15:28:15	15:28:15	MORIAH		
A.01.01.44977	34767385972	2	PS	990001	1534:57	15:35:03	16	1534:57	15:35:11	00:00:00	1534:57	15:35:11	15:34:57	15:35:11	AGENT	15:35:13	15:35:13	15:35:13	ANAT	
A.01.01.44978	0	PS	990001	1546:30	15:46:39	19	1546:30	15:46:39	00:00:00	1546:30	15:46:39	15:46:30	15:46:39	AGENT	15:46:38	15:51:51	15:51:51	VICKY		
A.01.01.44979	78191137	2	PS	990001	1556:03	15:56:06	19	1556:03	15:56:28	00:00:00	1556:03	15:56:28	15:56:03	15:56:28	AGENT	15:56:28	15:59:02	15:59:02	MORIAH	
A.01.01.44970	2519700	2	PS	990001	1614:31	16:14:46	15	1614:31	16:14:51	00:00:00	1614:31	16:14:51	16:14:31	16:14:51	AGENT	16:14:44	16:16:02	16:16:02	BLENSION	
A.01.01.44971	0	PS	990001	1618:39	16:19:12	13	1618:39	16:19:12	00:00:00	1618:39	16:19:12	16:18:39	16:19:12	AGENT	16:39:11	16:43:35	16:43:35	VICKY		
A.01.01.44972	0	PS	990001	1651:40	16:51:50	10	1651:40	16:51:50	00:00:00	1651:40	16:51:50	16:51:40	16:51:50	AGENT	16:51:49	16:53:51	16:53:51	ANAT		
A.01.01.44973	0	PS	990001	1702:19	17:02:29	19	1702:19	17:02:29	00:00:00	1702:19	17:02:29	17:02:19	17:02:29	AGENT	17:02:28	17:07:42	17:07:42	VICKY		
A.01.01.44974	32387482	1	PS	990001	1718:18	17:18:24	16	1718:18	17:18:24	00:00:00	1718:18	17:18:24	17:18:18	17:18:24	AGENT	17:19:00	17:19:35	17:19:35	VICKY	
A.01.01.44975	0	PS	990001	1738:53	17:39:05	12	1738:53	17:39:05	00:00:00	1738:53	17:39:05	17:38:53	17:39:05	AGENT	17:39:04	17:40:43	17:40:43	TOVA		
A.01.01.44976	0	PS	990001	1755:59	17:55:09	10	1755:59	17:55:09	00:00:00	1755:59	17:55:09	17:55:59	17:55:09	AGENT	17:55:08	17:55:09	17:55:09	NO_SERVER		
A.01.01.44977	37635930	2	PS	990001	1818:47	18:18:52	15	1818:47	18:18:52	00:00:00	1818:47	18:18:52	18:18:47	18:18:52	AGENT	18:18:50	18:18:51	18:18:51	BLENSION	
A.01.01.44978	0	PS	990001	1838:43	18:38:52	19	1838:43	18:38:52	00:00:00	1838:43	18:38:52	18:38:43	18:38:52	AGENT	18:38:51	18:39:54	18:39:54	MORIAH		
A.01.01.44979	0	PS	990001	1851:47	18:52:02	15	1851:47	18:52:02	00:00:00	1851:47	18:52:02	18:51:47	18:52:02	AGENT	18:52:02	18:55:39	18:55:39	TOVA		
A.01.01.44980	0	PS	990001	1919:04	19:19:17	13	1919:04	19:19:17	00:00:00	1919:04	19:19:17	19:19:04	19:19:17	AGENT	19:19:15	19:20:06	19:20:06	MEIR		
A.01.01.44981	0	PS	990001	1939:19	19:39:30	11	1939:19	19:39:30	00:00:00	1939:19	19:39:30	19:39:19	19:39:30	AGENT	19:39:29	19:41:42	19:41:42	BLENSION		
A.01.01.44982	0	PS	990001	2008:13	20:08:25	12	2008:13	20:08:25	00:00:00	2008:13	20:08:25	20:08:13	20:08:25	AGENT	20:08:28	20:08:41	20:08:41	NO_SERVER		
A.01.01.44983	0	PS	990001	2023:51	20:23:54	14	2023:51	20:23:54	00:00:00	2023:51	20:23:54	20:23:51	20:23:54	AGENT	20:24:04	20:24:33	20:24:33	BLENSION		
A.01.01.44984	0	PS	990001	2036:54	20:37:14	20	2036:54	20:37:14	00:00:00	2036:54	20:37:14	20:36:54	20:37:14	AGENT	20:37:13	20:38:07	20:38:07	BLENSION		
A.01.01.44985	0	PS	990001	2050:07	20:50:16	19	2050:07	20:50:16	00:00:00	2050:07	20:50:16	20:49:59	20:50:16	AGENT	20:50:15	20:51:32	20:51:32	ANAT		
A.01.01.44986	0	PS	990001	2134:41	21:04:51	10	2134:41	21:04:51	00:00:00	2134:41	21:04:51	21:03:59	21:04:51	AGENT	21:04:50	21:05:39	21:05:39	TOVA		
A.01.01.44987	0	PS	990001	2125:00	21:25:13	13	2125:00	21:25:13	00:00:00	2125:00	21:25:13	21:24:59	21:25:13	AGENT	21:25:13	21:28:30	21:28:30	AVI		
A.01.01.44988	0	PS	990001	2150:40	21:50:54	14	2150:40	21:50:54	00:00:00	2150:40	21:50:54	21:49:59	21:50:54	AGENT	21:50:54	21:51:56	21:51:56	AVI		
A.01.01.44989	0	PS	990001	2234:11	22:34:17	6	2234:11	22:34:17	00:00:00	2234:11	22:34:17	22:33:46	22:34:17	AGENT	22:34:11	22:41:14	22:41:14	AVI		
A.01.01.44990	0	PS	990001	2246:27	22:46:37	10	2246:27	22:46:37	00:00:00	2246:27	22:46:37	22:45:19	22:46:37	AGENT	22:46:26	22:47:03	22:47:03	AVI		
A.01.01.44991	0	PS	990001	2305:07	23:05:16	16	2305:07	23:05:16	00:00:00	2305:07	23:05:16	23:05:07	23:05:16	AGENT	23:05:13	23:06:49	23:06:49	VICKY		
A.01.01.44992	67158997	1	PS	990001	2328:52	23:28:58	6	2328:52	23:28:58	00:00:00	2328:52	23:28:58	23:28:52	23:28:58	AGENT	23:30:29	23:33:02	23:33:02	DARIMON	
A.01.01.44993	1517126	2	PS	990002	0012:04	00:12:04	7	0012:04	00:12:04	00:00:00	0012:04	00:12:04	00:12:04	00:12:04	HANG	00:00:00	00:00:00	00:00:00	NO_SERVER	
A.01.01.44994	0	PS	990002	0012:04	00:12:04	7	0012:04	00:12:04	00:00:00	0012:04	00:12:04	00:12:04	00:12:04	AGENT	00:12:11	00:12:44	00:12:44	ANAT		
A.01.01.44995	0	PS	990002	07:50:05	07:50:16	11	07:50:05	07:50:16	00:00:00	07:50:05	07:50:16	07:50:05	07:50:16	AGENT	07:50:16	07:53:07	07:53:07	STEREN		

Measurements: Prevalent Averages (ACD Data)

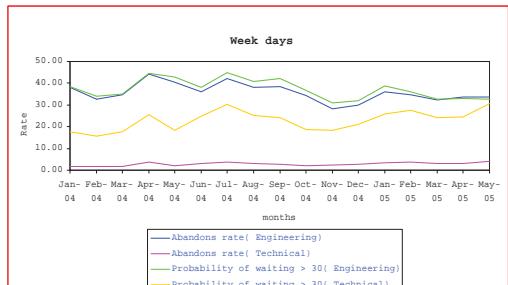
Command Center Intraday Report

Date		Updated Through: All Day											
06/13 - Tue		Recv'd	Ans'w	Abn %	ASA	AHT	OCC %	On Prod	On FTE	Sch Open	Sch FTE	Sch Avail %	
Total:													
INO	Charlotte	20,577	19,850	3.5%	30	307	95.1%	85.4%	2227	234.6	95.0%	0.95	0.95
INO	Columbus MCSC	7,973	7,773	2.5%	36	314	94.4%	89.8%	89.2	94.5	94.4%	0.95	0.95
INO	Phoenix	17,102	16,577	2.7%	31	298	92.7%	91.8%	187.3	194.8	96.2%	0.95	0.95
INO	Scranton	1,257	1,254	0.2%	6	515	78.5%	28.9%	28.5	35.1	81.2%	0.99	0.99
INO	Tampa	9,174	8,859	3.4%	42	396	91.5%	93.6%	123.1	125.9	97.8%	0.99	0.99
CEN	Bourbonnais	6,070	5,937	2.2%	33	362	86.7%	90.2%	86.0	88.4	97.3%	0.99	0.99
CEN	Bristol	10,967	10,505	1.5%	25	355	95.1%	93.1%	136.3	135.6	97.5%	0.99	0.99
CEN	Columbus Claims	5,258	5,153	2.0%	27	293	86.7%	89.8%	60.5	62.2	97.3%	0.99	0.99
STH	Atlanta	7,514	7,338	2.3%	40	318	82.1%	89.5%	98.6	99.8	98.5%	0.99	0.99
STH	Sherman	19,669	18,833	4.3%	46	252	93.8%	90.6%	175.5	174.9	100.4%	0.99	0.99
STH	Wilmington	10,422	9,888	5.1%	21	285	92.1%	108.7	114.6	94.3%	0.99	0.99	0.99
WST	Visalia	14,277	14,164	0.8%	10	382	87.2%	85.0%	215.2	220.6	97.5%	0.99	0.99

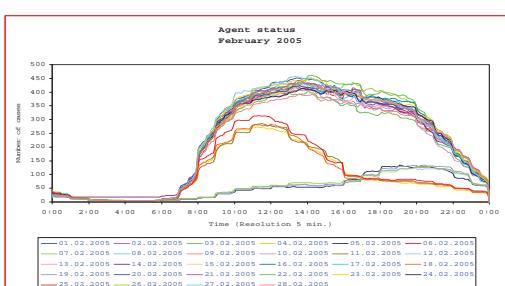
12 cc's

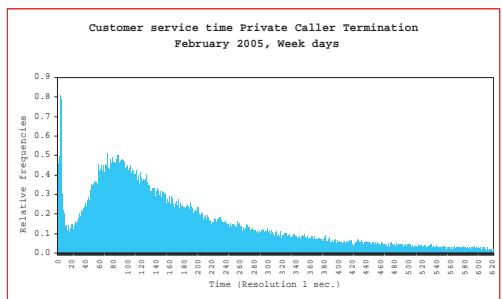

████████ - Center

6/13/00 - Tue

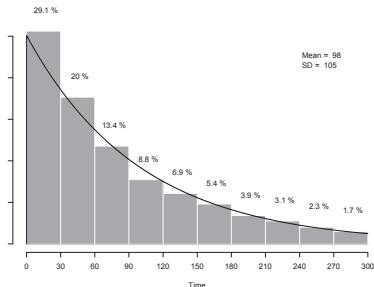

DataMOCCA

Daily Report

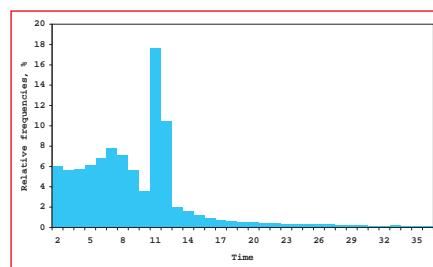

Daily Report of April 20, 2004 – Heavily Loaded Day


Time Series

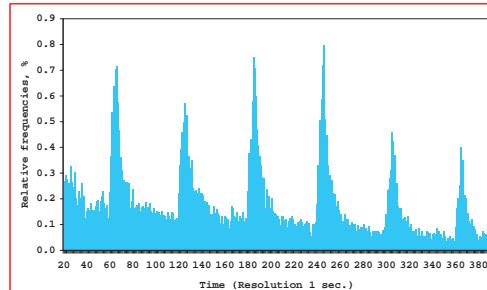
Cross Tabulation



Histogram



Beyond Averages: Waiting Times in a Call Center


Small Israeli Bank

Large U.S. Bank

Medium Israeli Bank

8

The Second Prerequisite: (Operational) Models

Empirical Models

- Conceptual
 - Service-Process Data = Flow Network
 - **Service Networks = Queueing Networks**

Descriptive

- QC-Tools: Pareto, Gantt, Fishbone Diagrams,...
- Histograms, Hazard-Rates, ...
- Data-MOCCA: Repository + Interface

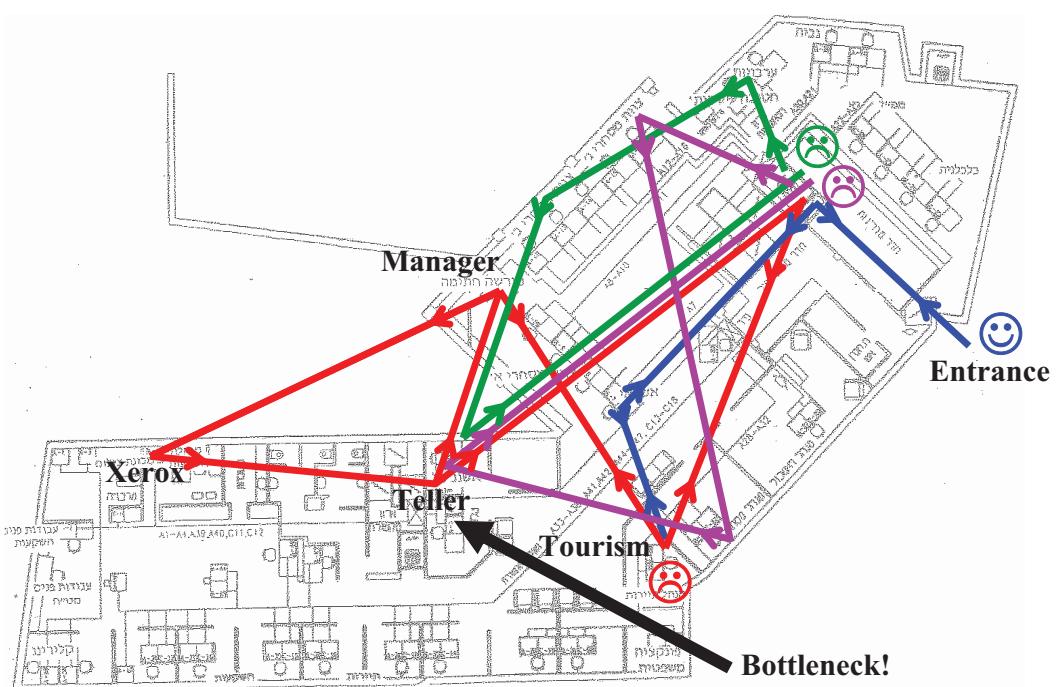
Explanatory

- Nonparametric: Comparative Statistics, Regression,...
- Parametric: Log-Normal Services, (Doubly) Poisson Ar-
rivals, Exponential (Im)Patience

Analytical Models

- Fluid (Deterministic) Models
- Stochastic Models (Birth & Death, $G/G/n$, Jackson,...)

Conceptual Model: Service Networks = Queueing Networks


- People, waiting for service: teller, repairman, ATM
- Telephone-calls, to be answered: busy, music, info.
- Forms, to be sent, processed, printed; **for a partner**
- Projects, to be developed, approved, implemented
- Justice, to be made: pre-trial, hearing, retrial
- Ships, for a pilot, berth, unloading crew
- Patients, for an ambulance, emergency room, operation
- Cars, in rush hour, for parking
- Checks, waiting to be processed, cashed

• **Queues Scarce Resources, Synchronization Gaps**

Costly, but here to stay

- Face-to-face Nets (Chat) (min.)
- Tele-to-tele Nets (Telephone) (sec.)
- Administrative Nets (Letter-to-Letter) (days)
- Fax, e.mail (hours)
- Face-to-ATM, Tele-to-IVR
- Mixed Networks (Contact Centers)

Conceptual Model: Bank Branch = Queueing Network

Bank Branch: A Queuing Network

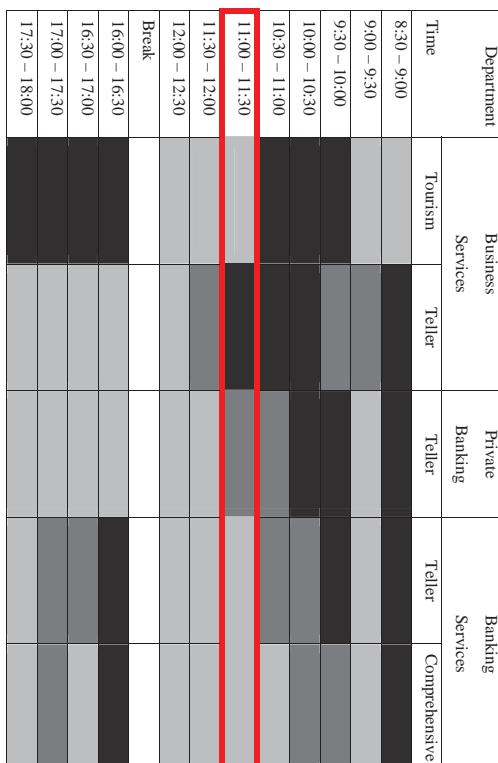
Transition Frequencies Between Units in The Private and Business Sections:

		Private Banking			Business					
From Unit	To Unit	Bankers	Authorized Personal	Compens - ations	Tellers	Tellers	Overdrafts	Authorized Personal	Full Service	Exit
Private Banking	Bankers		1%	1%	4%	4%	0%	0%	0%	90%
	Authorized Personal	12%		5%	4%	6%	0%	0%	0%	73%
	Compensations	7%	4%		18%	6%	0%	0%	1%	64%
Services	Tellers	6%	0%	1%		1%	0%	0%	0%	90%
	Tellers	1%	0%	0%	0%	1%	0%	0%	2%	94%
	Overdrafts	2%	0%	1%	1%	19%	5%	8%	64%	
Personal	Authorized Personal	2%	1%	0%	1%	11%	5%		11%	69%
	Full Service	1%	0%	0%	0%	8%	1%	2%		88%
	Entrance	13%	0%	3%	10%	58%	2%	0%	14%	0%

Legend:

0% - 5% | 5% - 10% | 10% - 15% | > 15%

Dominant Paths - Business:


Unit	Station 1	Station 2	Total	
Parameter	Tourism	Teller	Dominant Path	
Service Time	12.7	4.8	17.5	
Waiting Time	8.2	6.9	15.1	
Total Time	20.9	11.7	32.6	
Service Index	0.61	0.41	0.53	

Dominant Paths - Private:

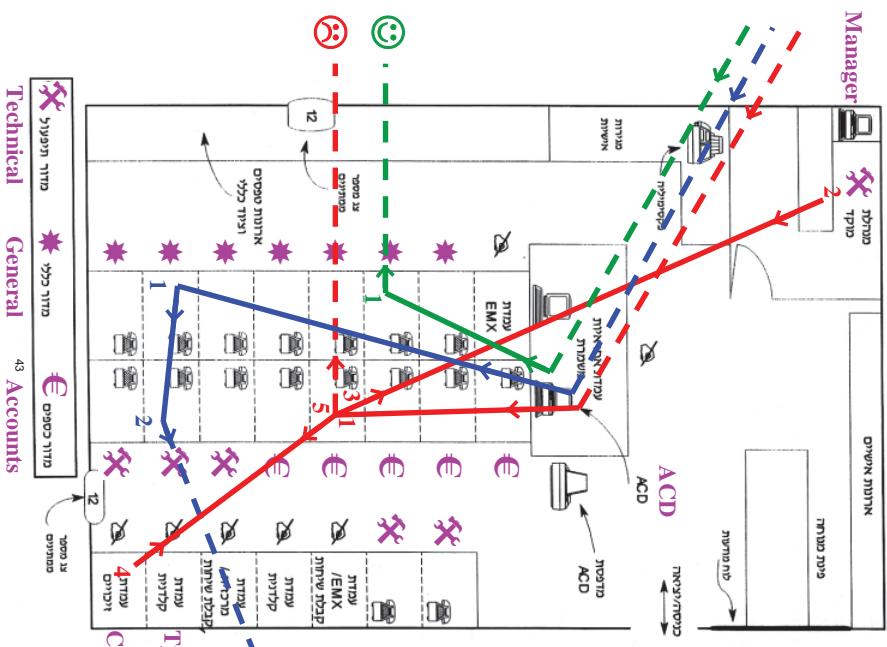
Unit	Station 1	Station 2	Total	
Parameter	Banker	Teller	Dominant Path	
Service Time	12.1	3.9	16.0	
Waiting Time	6.5	5.7	12.2	
Total Time	18.6	9.6	28.2	
Service Index	0.65	0.40	0.56	

Service Index = % time being served

Mapping the Offered Load (Bank Branch)

Legend:

Not Busy
Busy
Very Busy

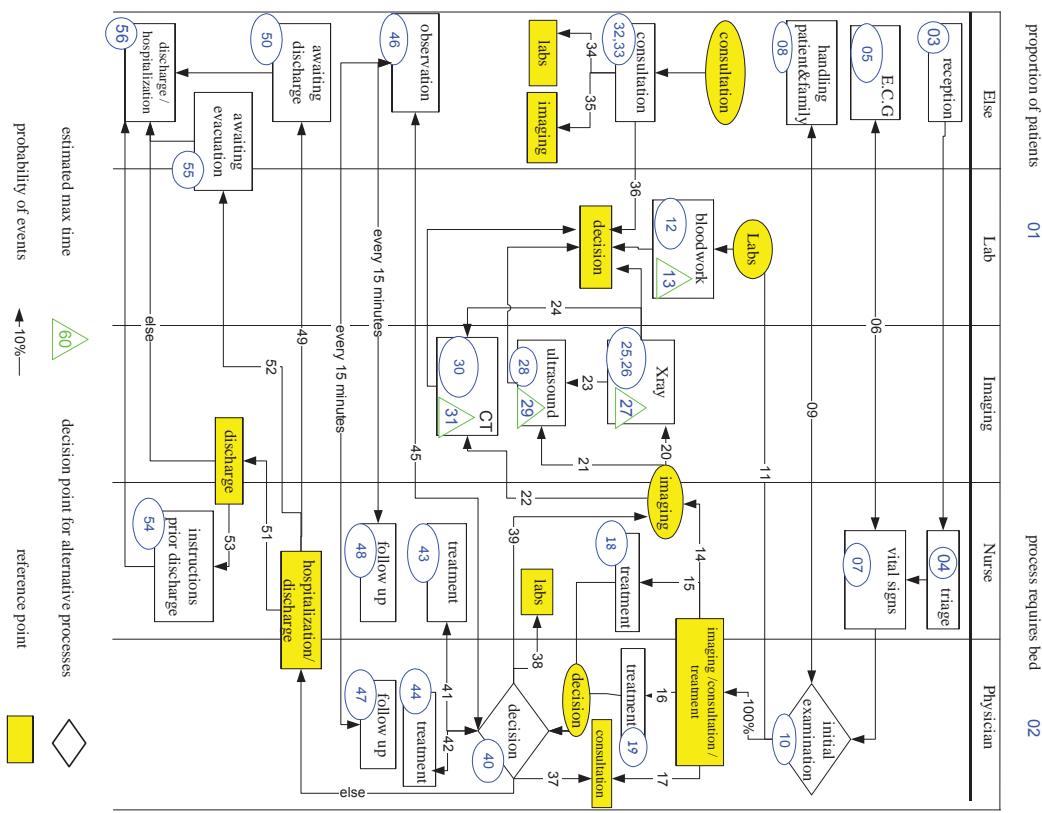

Note: What can / should be done at 11:00 ?

Conclusion: Models are not always necessary but measurements are !

Conceptual Model: Call-Center Network

Conceptual Model: Call-Center Network

Schematic Chart – Telephone Call-Center 1994



Current Status - Analysis

	Accounts Center	General Center	Technical Center
Peak days in a week	Sun, Fri	Sun	Sun
Peak days in a month	12	8-14, 2-3	10-20
Avg. applications no. in a day	4136	2476	1762
Avg. applications no. in an hour - λ_{avg}	253.6	193	167
Peak hours in a day			
Avg. applications no. in peak hours - λ_{max}	422	313	230
Avg. waiting time (secs.)	10.9	20.0	55.9
Avg. service time (secs.)	83.5	131.3	143.2
Service index	0.88	0.87	0.72
Abandonment percentage	2.7	5.6	11.2
Avg. waiting time before abandonment (secs.)	9.7	16.8	43.2
Avg. staffing level	9.7	10.3	5.2
Target waiting time	12	25	-

Conceptual Model: Hospital Network

Emergency Department: Generic Flow

Conceptual Model: Burger King Bottlenecks

Bottleneck Analysis: Short – Run Approximations Time – State Dependent Q-Net

TOUR F / A WORKER-PACED LINE FLOW PROCESS AND A SERVICE FACTORY 155

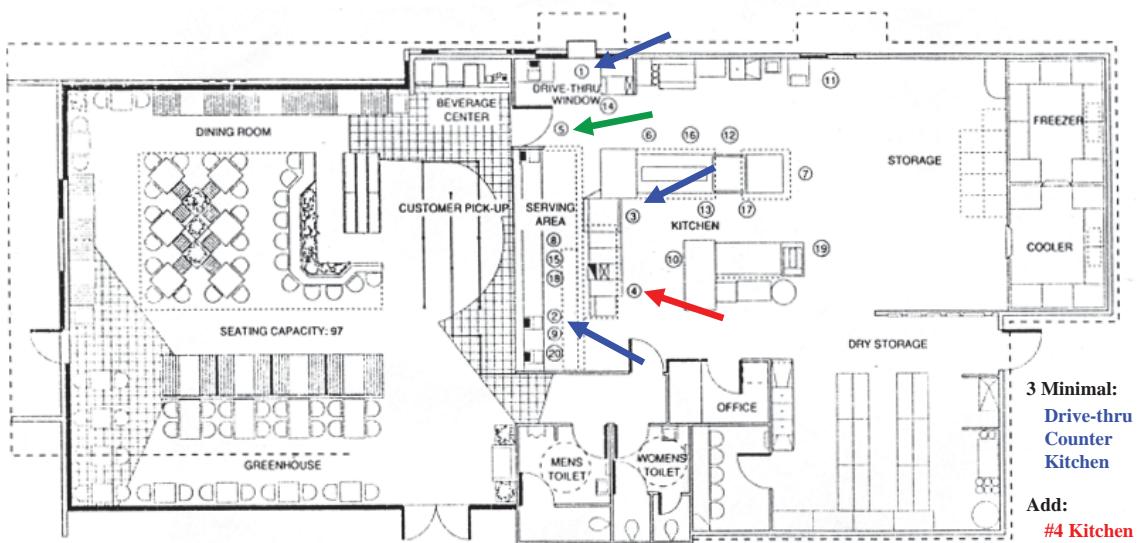
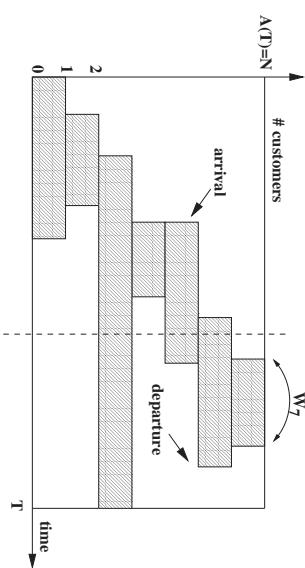


FIGURE F1 Layout of the Noblesville Burger King. The circled numbers indicate the sequence of additions of workers to the kitchen as demand increases.

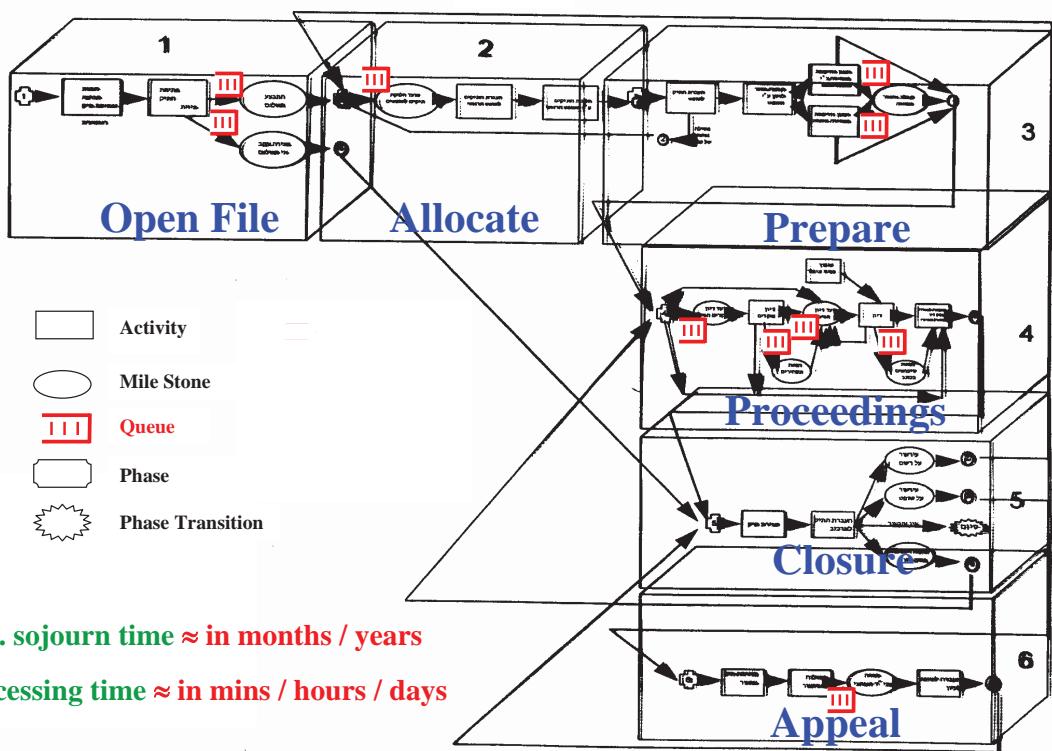
Analytical Models: Little's Law, or The First Law of Congestion

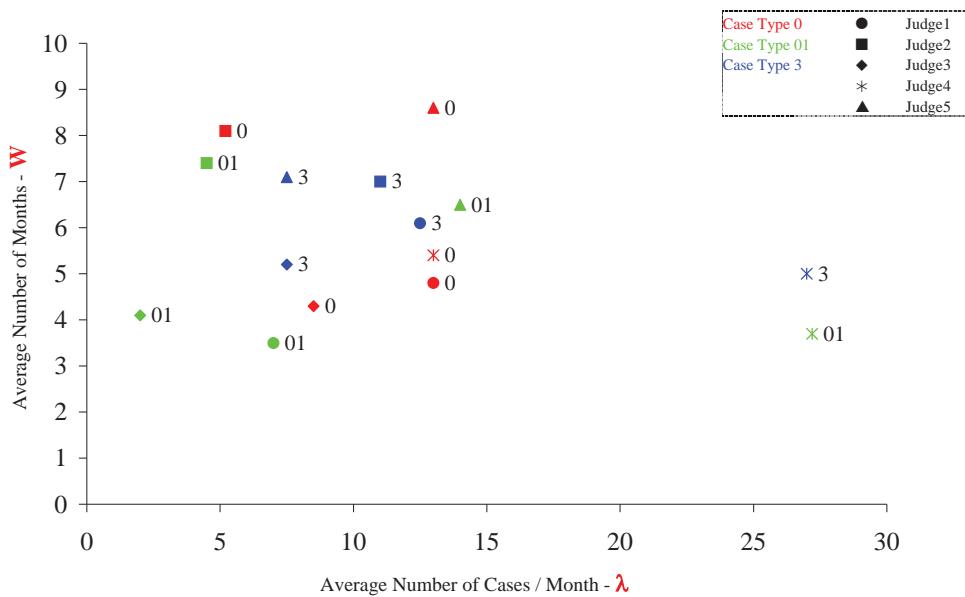


- λ = average arrival rate;
- L = average number within system;
- W = average time within system.

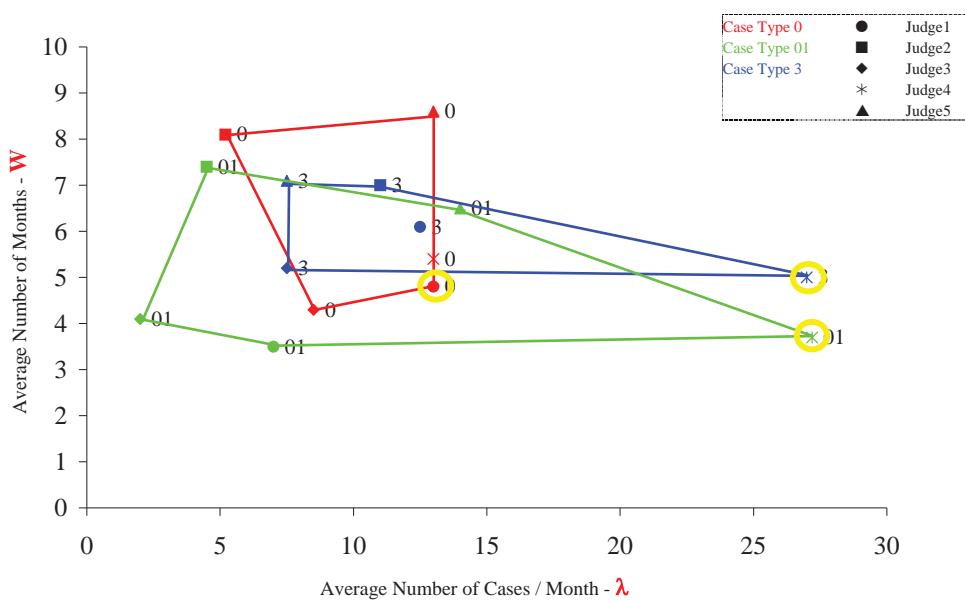
Little's Law

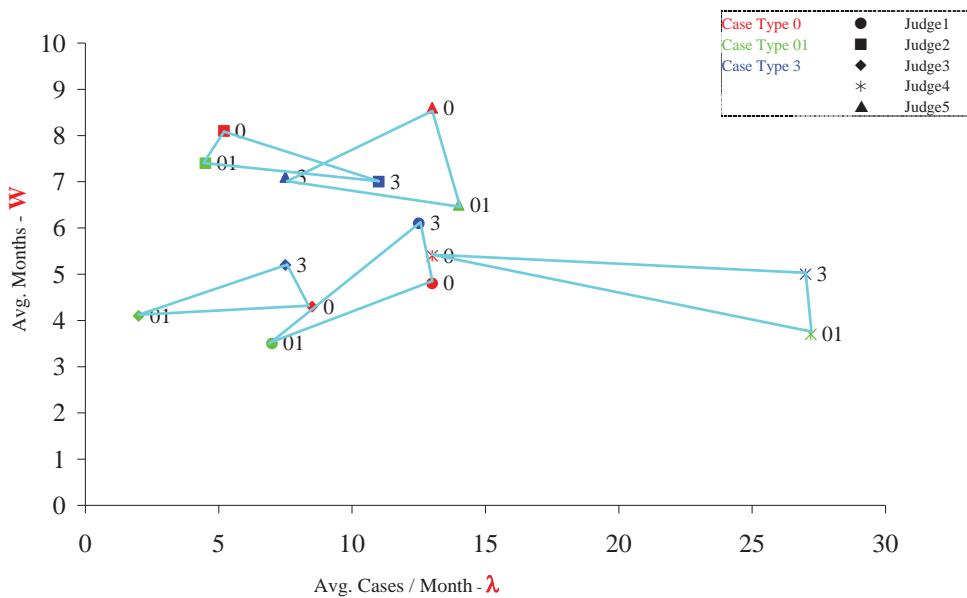
$$L = \lambda W$$


Finite-Horizon Version

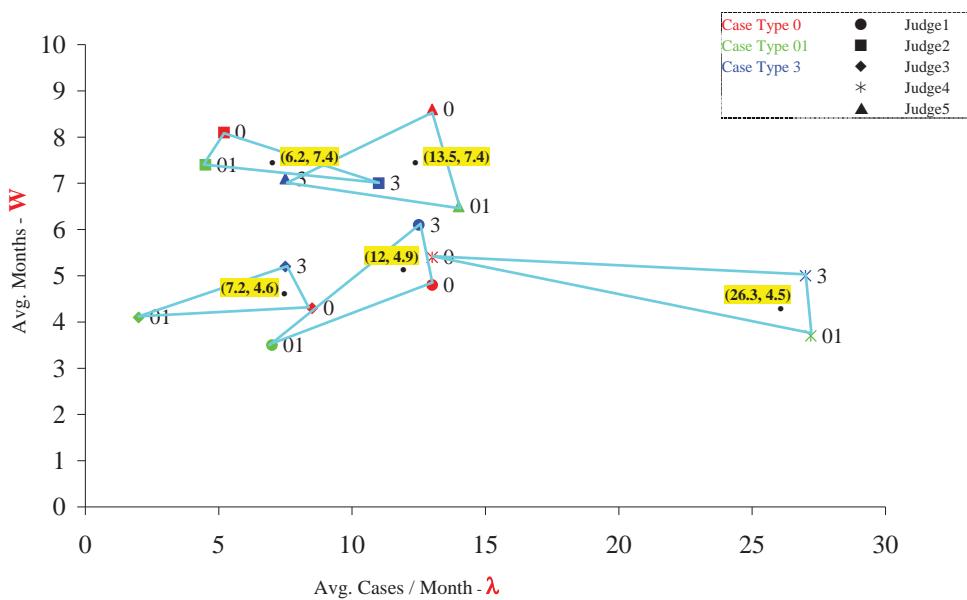

Long-Run (Stochastic) Example

$$M/M/1: L = \frac{\rho}{1 - \rho} = \frac{\lambda}{\mu - \lambda}, \quad W = \frac{1}{\mu - \lambda} = \frac{1}{\mu(1 - \rho)}.$$

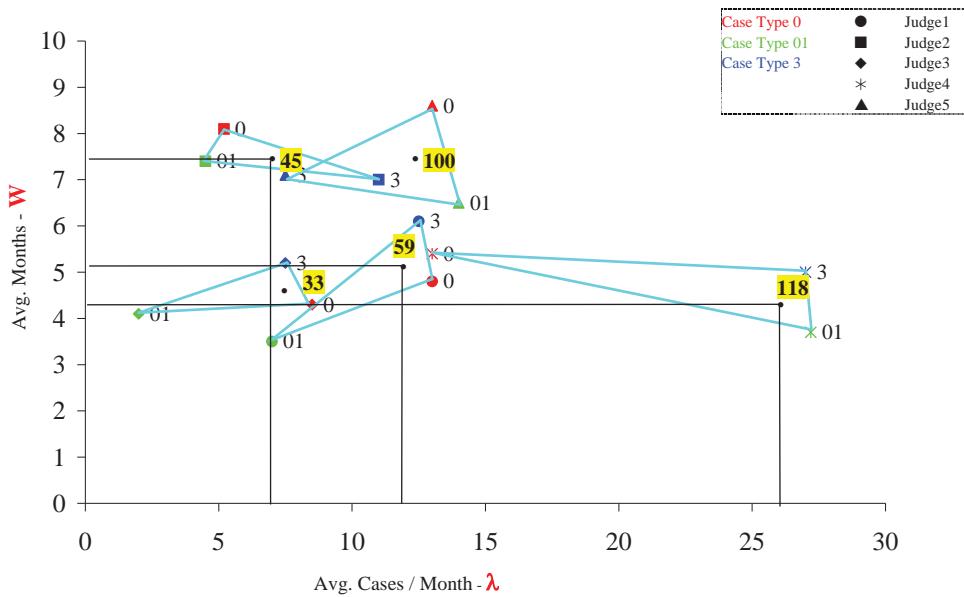

Conceptual Model: The Justice Network, or The Production of Justice


Judges: Operational Performance - Base case

3 Case-Types: Performance by 5 Judges



5 Judges: Performance by 3 Case-Types

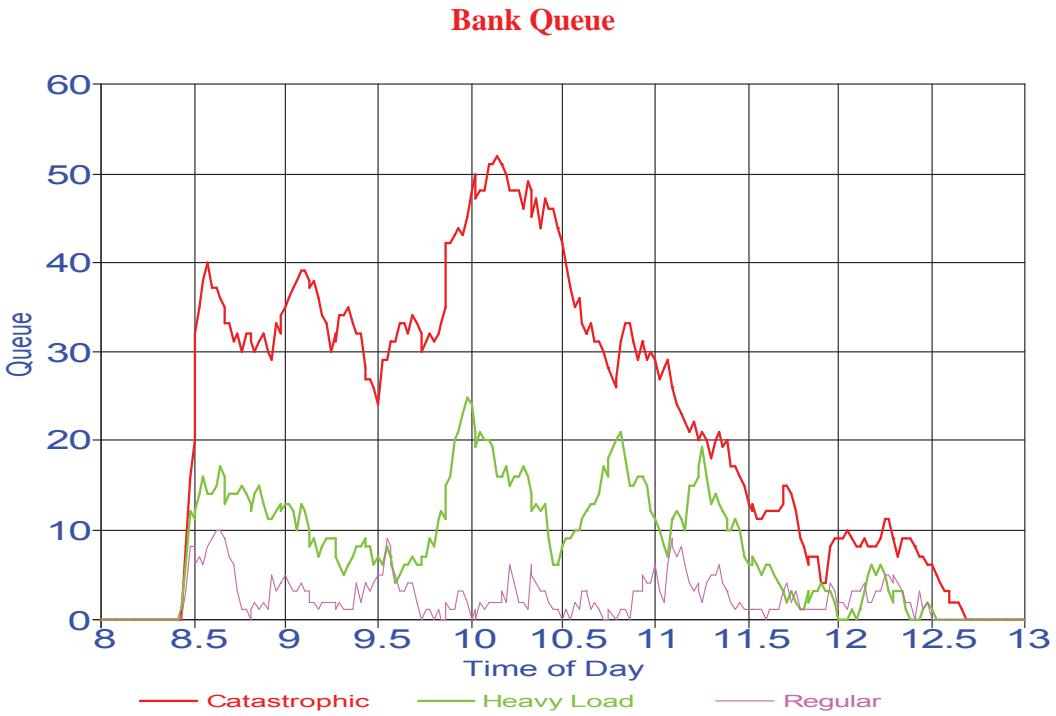

27

Judges: Performance Analysis

28

Judges: Best/Worst Performance

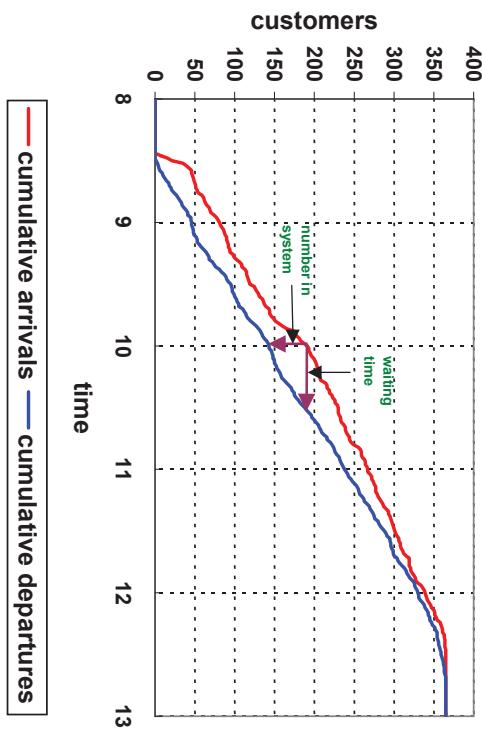
Customers/units are modeled by fluid (continuous) flow.


Labor-day Queueing at Niagara Falls

Conceptual Fluid Model

- Appropriate when **predictable variability** prevalent;
- Useful **first-order** models/approximations, often **suffice**;
- Rigorously justifiable via Functional Strong Laws of Large Numbers.

Empirical Fluid Model: Queue-Length at a Catastrophic/Heavy/Regular Day



Empirical Models: Fluid, Flow

Derived directly from event-based (call-by-call) measurements. For example, an isolated service-station:

- $A(t)$ = cumulative # arrivals from time 0 to time t ;
- $D(t)$ = cumulative # departures from system during $[0, t]$;
- $L(t) = A(T) - D(t) = \#$ customers in system at t .

Arrivals and Departures from a Bank Branch Face-to-Face Service

When is it possible to calculate waiting time in this way?

Mathematical Fluid Models

Differential Equations:

- $\lambda(t)$ – arrival rate at time $t \in [0, T]$.
- $c(t)$ – maximal potential processing rate.
- $\delta(t)$ – effective processing (departure) rate.
- $Q(t)$ – total amount in the system.

Then $Q(t)$ is a solution of

$$\dot{Q}(t) = \lambda(t) - \delta(t); \quad Q(0) = q_0, \quad t \in [0, T].$$

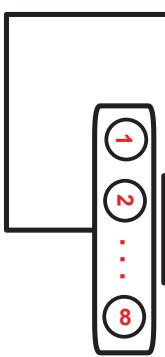
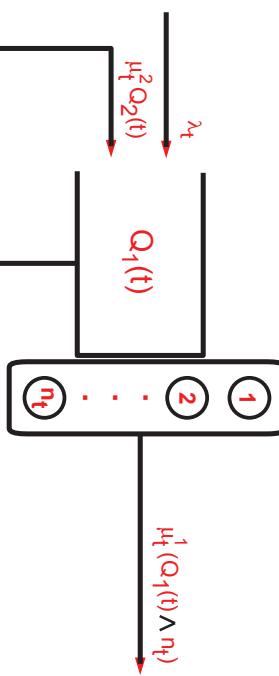
In a Call Center Setting (no abandonment)

$N(t)$ statistically-identical servers, each with service rate μ .

$c(t) = \mu N(t)$: maximal potential processing rate.

$\delta(t) = \mu \cdot \min(N(t), Q(t))$: processing rate.

$$\dot{Q}(t) = \lambda(t) - \mu \cdot \min(N(t), Q(t)), \quad Q(0) = q_0, \quad t \in [0, T].$$



How to actually solve? Mathematics (theory, numerical), or simply: Start with $t_0 = 0$, $Q(t_0) = q_0$. Then, for $t_n = t_{n-1} + \Delta t$:

$$Q(t_n) = Q(t_{n-1}) + \lambda(t_{n-1}) \cdot \Delta t - \mu \min(N(t_{n-1}), Q(t_{n-1})) \cdot \Delta t.$$

Time-Varying Queues with Abandonment and Retrials

Based on three paper with Massey, Reiman, Rider and Stolyar.

Call Center: a Multiserver Queue with Abandonment and Retrials

Primitives: Time-Varying Predictability

Fluid Model

λ_t exogenous arrival rate;
e.g., continuously changing, sudden peak.

μ_t^1 service rate;
e.g., change in nature of work or fatigue.

n_t number of servers;
e.g., in response to predictably varying workload.

$Q_1(t)$ number of customers in call center
(queue+service).

β_t abandonment rate while waiting;
e.g., in response to IVR discouragement
at predictable overloading.

ψ_t probability of no retrial.

μ_t^2 retrial rate;
if constant, $1/\mu_t^2$ – average time to retry.

$Q_2(t)$ number of customers that will retry.

In our examples, we vary λ_t only, other primitives are constant.

Replacing random processes by their rates yields

$$Q^{(0)}(t) = (Q_1^{(0)}(t), Q_2^{(0)}(t))$$

Solution to nonlinear differential balance equations

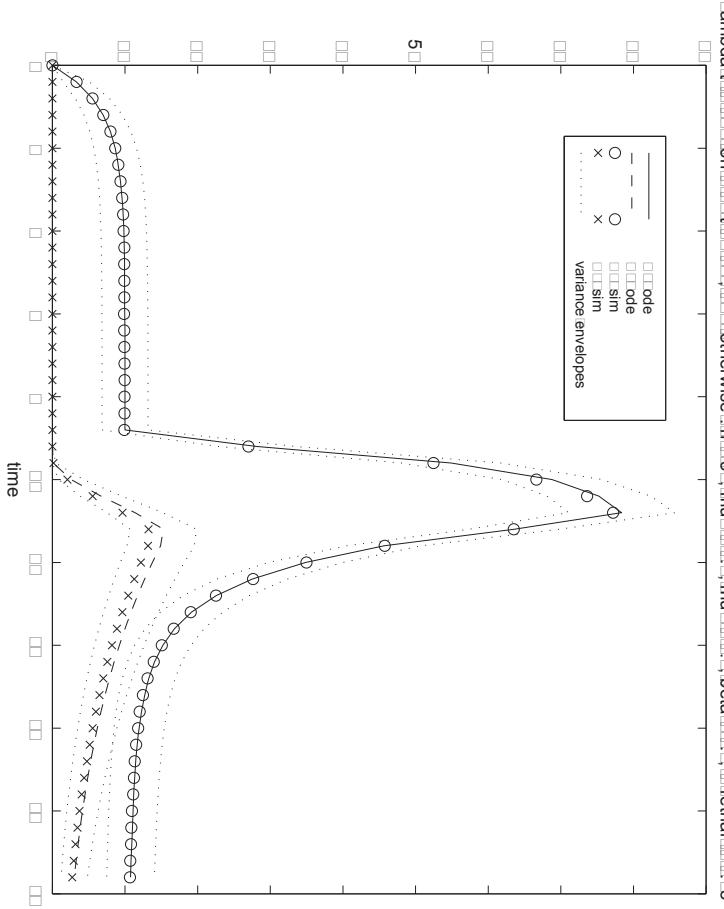
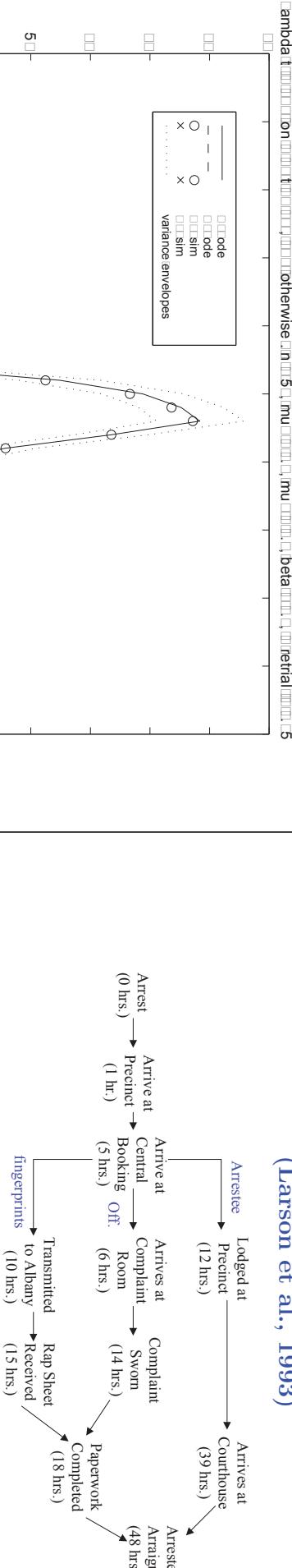
$$\begin{aligned} \frac{d}{dt} Q_1^{(0)}(t) &= \lambda_t - \mu_t^1 (Q_1^{(0)}(t) \wedge n_t) \\ &\quad + \mu_t^2 Q_2^{(0)}(t) - \beta_t (Q_1^{(0)}(t) - n_t) + \\ &\quad - \mu_t^2 Q_2^{(0)}(t) \end{aligned}$$

Justification: **Functional Strong Law of Large Numbers**,
with $\lambda_t \rightarrow \eta \lambda_t$, $n_t \rightarrow \eta n_t$.

As $\eta \uparrow \infty$,

$$\frac{1}{\eta} Q^\eta(t) \rightarrow Q^{(0)}(t), \text{ uniformly on compacts, a.s.}$$

given convergence at $t = 0$



Sudden Rush Hour

$n = 50$ servers \square $\mu = 1$

$\lambda_t = 110$ for $9 \leq t \leq 11$, $\lambda_t = 10$ otherwise

DS = Dynamic Stochastic (Fork-Join, Split-Match)
PERT = Program Evaluation and Review Technique
CPM = Critical Path Method
 Operations Research in Project Management: Standard Successful.

New-York Arrest-to-Arraignment System (Larson et al., 1993)

- CRM – task times are deterministic/averages (standard).
- S-PERT (Stochastic PERT) – task times random variables.
- DS-PERT/CPM – multi-project (dynamic) environment, with tasks processed at dedicated service stations.
 - Capacity analysis:** Can we do it? (LP)
 - Response-time** analysis: How long will it take? (S-Nets)
 - What if:** Can we do better? (Sensitivity, Parametric)
 - Optimality:** What is the best one can do?

Stochastic Model of a Basic Service Station

Building blocks:

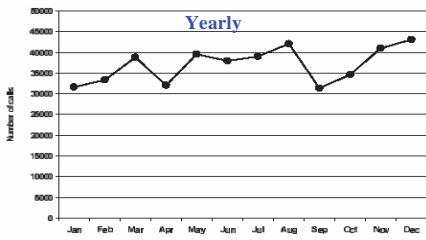
- Arrivals
- Service durations (times)
- Customers' (im)patience.
- Customers' returns (during service process, after service)

First [study](#) these building blocks one-by-one:

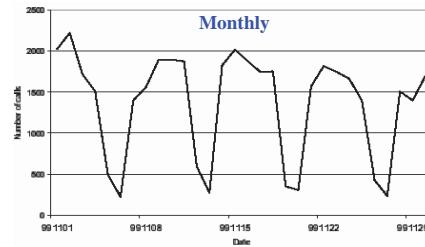
- Empirical analysis, which motivates
- Theoretical model(s).

Then integrate building blocks, via protocols, into (Basic) Models:

- Erlang-B/C (Arrivals, Services)
- Erlang-A (+ Abandonment), Erlang-R (+ Returns).

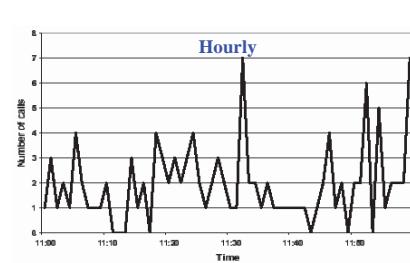

The models support, for example,

- Staffing Workforce, for which Basic Models are already useful; and beyond:
- Routing Customers
- Scheduling Servers
- Matching Customers-Needs with Servers-Skills (SBR).


Arrivals to Service

Arrivals to a Call Center (1999): Time Scale

Strategic


Tactical

Operational

Stochastic

Arrivals Process, in 1976

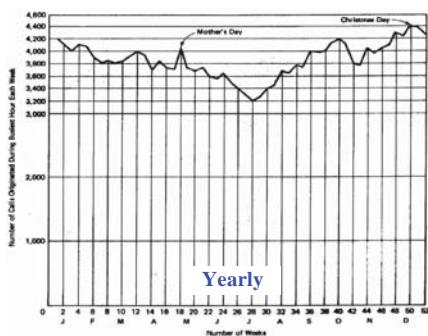


Figure 1 Typical distribution of calls during the busiest hour for each week during a year.

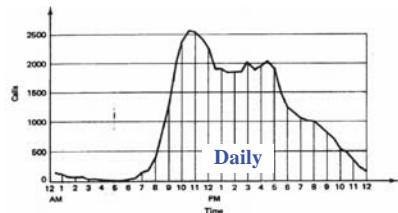


Figure 2 Daily call load for Long Beach, January 1972.

(E. S. Buffa, M. J. Cosgrove, and B. J. Luce,
"An Integrated Work Shift Scheduling System")

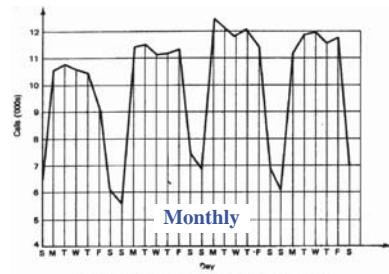


Figure 3 Typical half-hourly call distribution (Bundy D A).

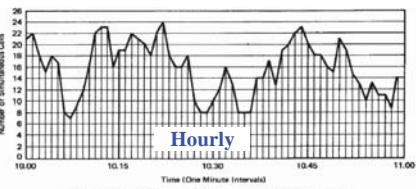
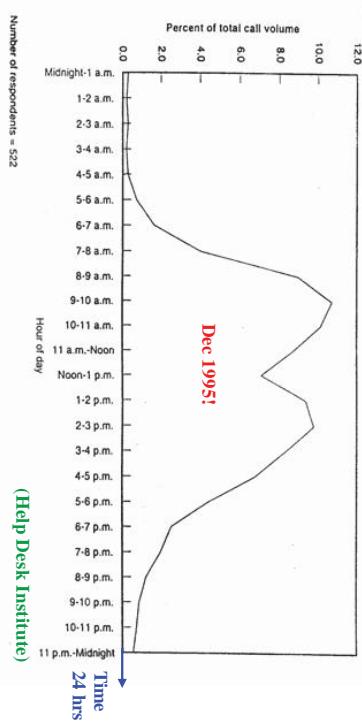
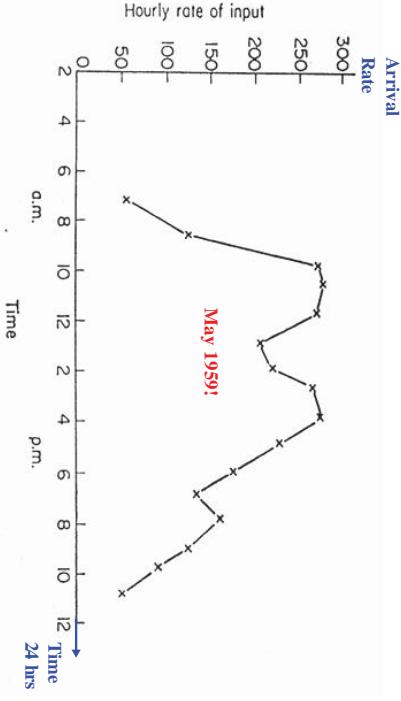
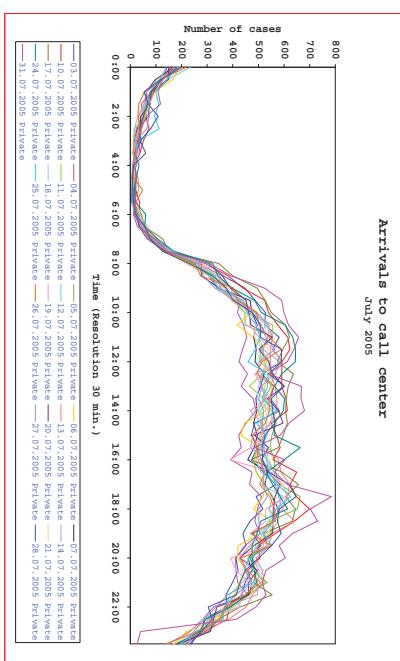



Figure 4 Typical intrahour distribution of calls, 10:00-11:00 A.M.



(Help Desk Institute)

Number of respondents = 522


Fig. 15.1 The variation in the hourly input rates of reservations calls during a typical day (in May 1959)

(Lee A.M., Applied Q-Th)

Q-Science: Predictable Variability

Arrivals to Service: Poisson Processes

- Arrivals over short (but not too short) intervals (15, 30 min) are close to homogeneous **Poisson**, with **over-dispersion**.
- Arrivals over the day are (over-dispersed) **non-homogeneous Poisson**.

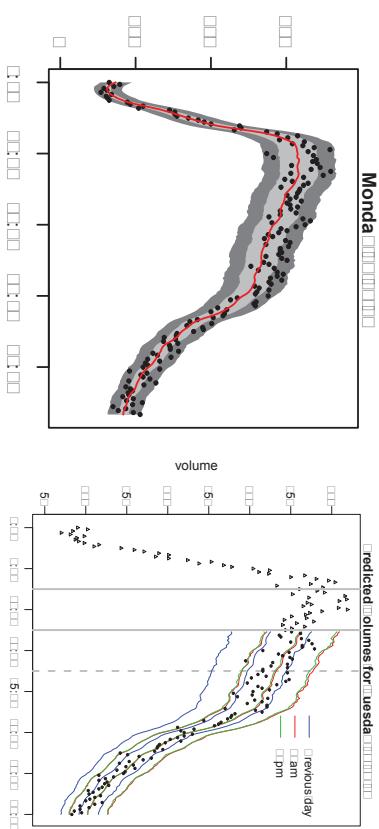
Practice: model as **Poisson** with piecewise-constant arrival rates.

Poisson Phenomena:

- **PASTA** = Poisson Arrivals **S**ee **T**ime **A**verages;
- **Biased sampling**: Why is the service time we encounter upon arrival longer than a “typical” service time?

Arrivals to Service: Forecasting

Weekday Arrival Rates (Israeli CC, MOCCA)


How to predict Poisson arrival rates? **Time Series** models. Days are divided into **time intervals** over which arrival rates are assumed constant.

Standard Resolutions: 15 min, 30 min, 1 hour.

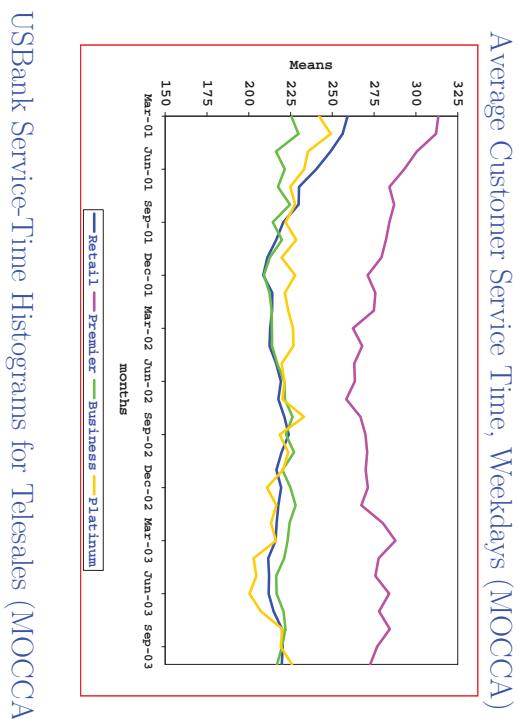
N_{jk} = number of arrivals on day j during interval k . Assume K time intervals and J days overall.

- **One-day-ahead** prediction: $N_{1,}, \dots, N_{j-1,}$ known. Predict N_{j1}, \dots, N_{jK} .
- **Several days (weeks) ahead** prediction.
- **Within-day** prediction.

Forecast Accuracy (U.S. Bank, Weinberg)

Service Times (Durations)

Service Times: Trends and Stability

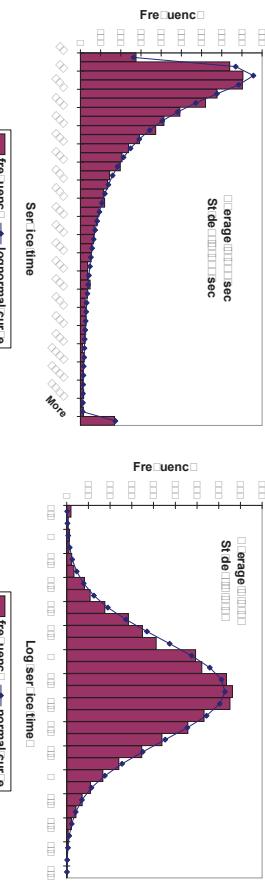

<http://iew3.technion.ac.il/serveng/Lectures/ServiceFull.pdf>

Why Significant? +1 second of 1000 agents costs \$500K yearly.

Why Interesting?

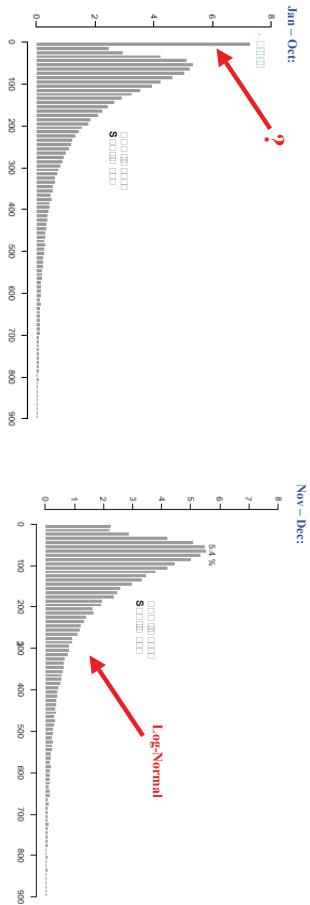
Must accurately **Model, Estimate, Predict, Analyze**:

- Resolution: Sec's (phone)? min's (email)? hr's (hospital)
- Parameter, Distribution (Static) or Process (Dynamic)?
- Does it include after-call work?
- Does it include interruptions?
- Does it account for return services?
 - Whisper time, hold time, phones during face-to-face,...

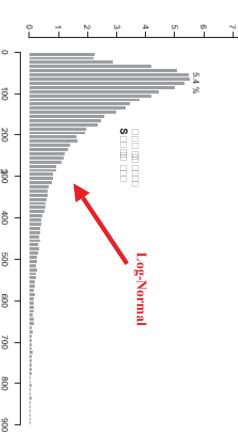

How affected by **covariates**?

- Experience and Skill of agents (Learning Curve)
- Type of Customer: Service Type, VIP Status
- Time-of-Day: Congestion-Level
- Human Factor: Incentives, pending workload, fatigue

Service Times: Static Models, or Averages Do Not Tell the Whole Story

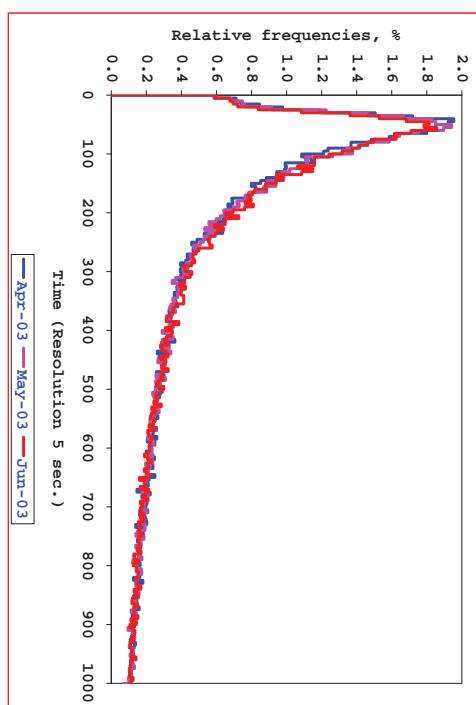
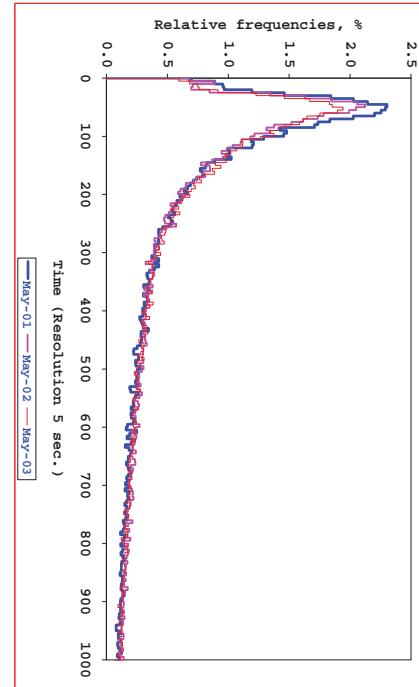

Distributions: Parametric (Exponential, Lognormal),
Semi-Parametric (Phase-Type), Non-Parametric (Empirical).

Lognormal Service Times in an Israeli Bank



A Typical Call Center?

January–October

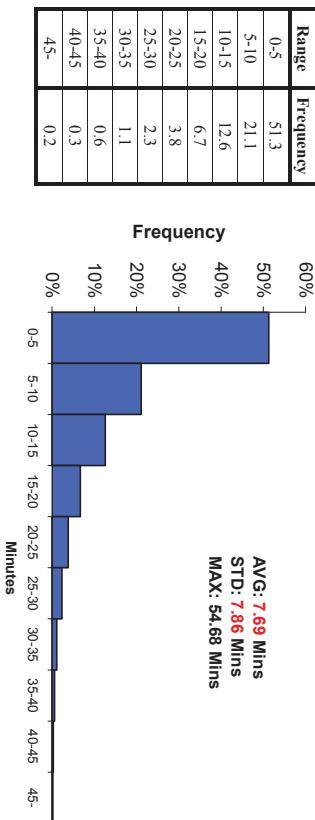



November–December

Service Times: 5 Sec's Resolution

USBank. Service-Time Histograms for Telesales (MOCCA)

Local Municipalities


Service Times: Exponential (Phone Calls)

Department	Station No.	Total Customers	Avg. Arrival Rate (1/Hr)	Avg. Service Time (Mins)	STD (Mins)	Maximal Service Time (Mins)	Utilization	Avg. Waiting Time (Mins)
Water	N/A	187	1.8 \pm 0.2	8.87 \pm 1.0	8.15	54.68	13.3%	4.76
Tellers	N/A	1328	12.6 \pm 0.5	8.82 \pm 0.4	8.55	49.37	30.8%	7.73
Cashier	N/A	757	7.2 \pm 0.4	6.64 \pm 0.4	6.94	29.95	79.7%	3.89
Manager	N/A	190	1.8 \pm 0.2	7.99 \pm 1.0	8.44	38.97	24.1%	9.16
Discounts	N/A	317	3.0 \pm 0.3	4.59 \pm 0.4	4.54	36.72	23.4%	3.65

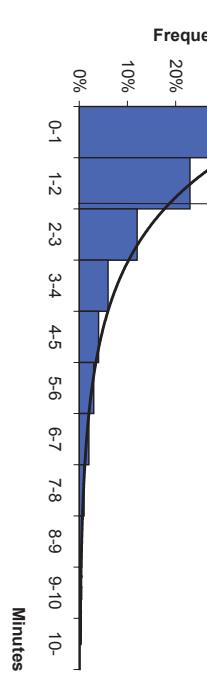
Water	1	57	N/A	7.80 \pm 1.70	7.61	31.28	6.5%	N/A
	2	130	N/A	9.34 \pm 1.20	8.37	54.68	19.3%	N/A
	3	336	N/A	9.04 \pm 0.80	8.93	49.05	48.2%	N/A
	4	208	N/A	9.93 \pm 1.00	8.82	49.12	33.0%	N/A
Tellers	5	417	N/A	8.97 \pm 0.70	8.55	49.37	59.4%	N/A
	6	144	N/A	9.53 \pm 1.20	8.75	41.70	21.8%	N/A
	7	156	N/A	8.03 \pm 1.10	7.96	35.27	19.8%	N/A
	8	67	N/A	3.74 \pm 0.70	3.58	21.03	4.0%	N/A
Cashier	9	757	N/A	6.64 \pm 0.40	6.94	29.95	79.7%	N/A
Manager	10	190	N/A	1.99 \pm 1.00	8.44	38.97	24.1%	N/A
Discounts	11	317	N/A	4.59 \pm 0.40	4.54	36.72	23.4%	N/A

*Service time ranges given with 90% confidence.

Service Time Histogram – Overall:

Call-Duration Frequency - North:

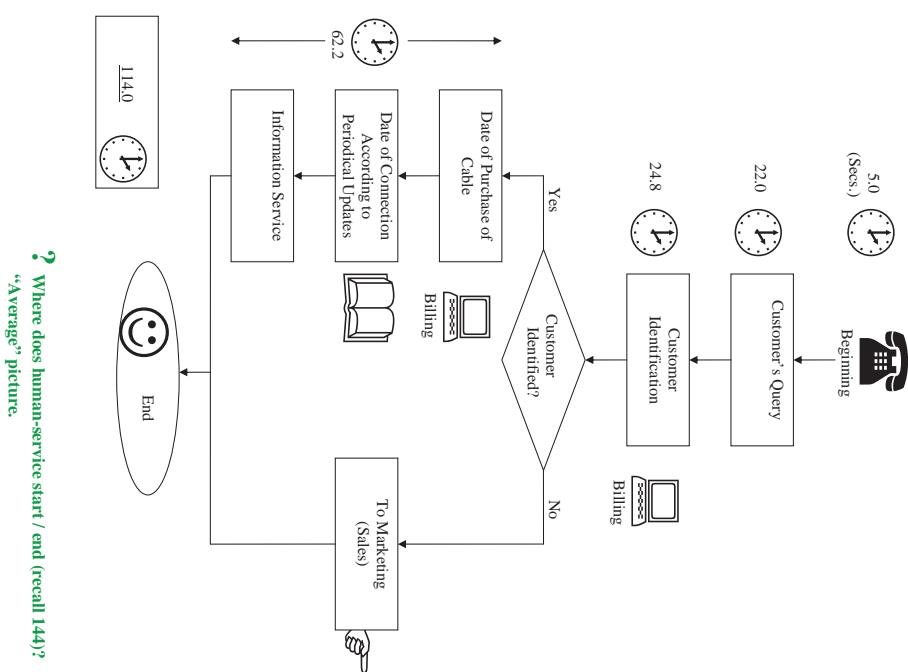
Average Call Duration: 1.95 Mins.


— Theory

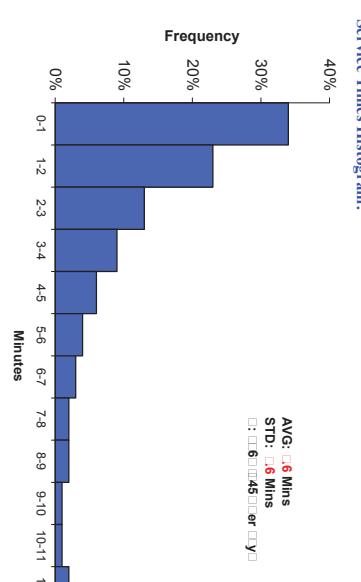
Call-Duration Frequency – Central:

Average Call Duration: 2.01 Mins.

— Theory


Q. How to recognize "Exponential" when you "see" one?

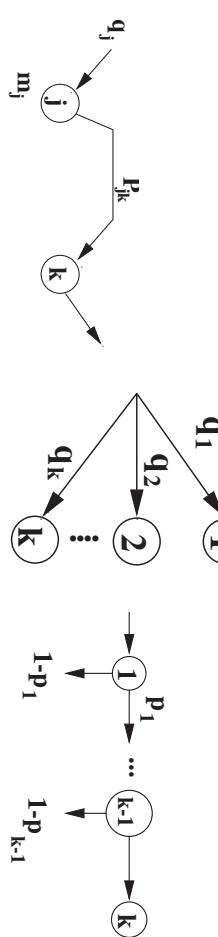
A. Geometric Approximation.


Service Times: Phase-Type Model

Service Times: Exponential, Phase-Type

Late Connections

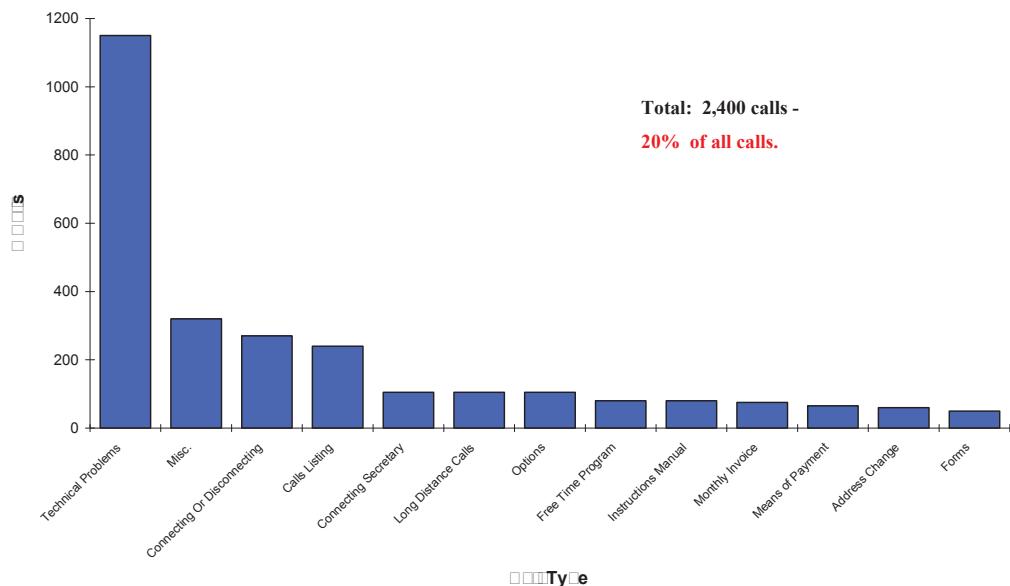
Face-to-Face Services in a Government Office



Dynamic Model: Phase-Type Duration

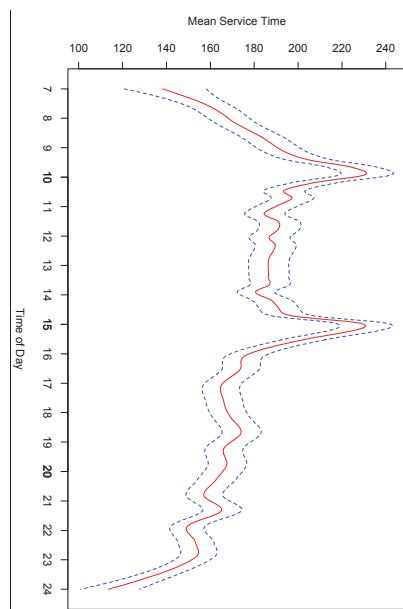
General

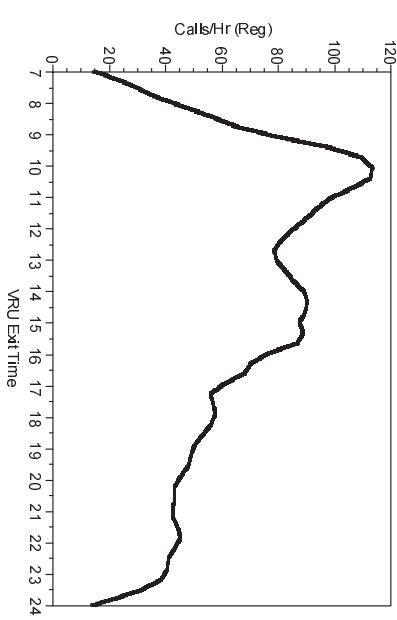
Hyperexponential


Coxian

Where does human-service start / end (recall 144)?
“Average” picture.

Service Times: Returns

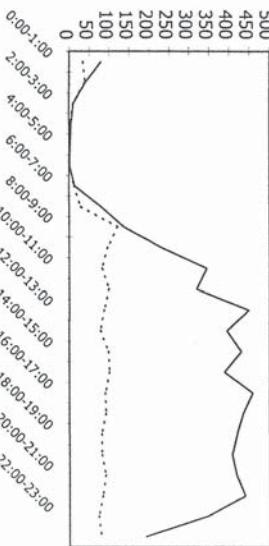

Bank Classification of “Continued – Calls”


53

Service Times: The Human Factor, or Why Longest During Peak Loads?

Mean-Service-Time (Regular) vs. Time-of-Day (95% CI)
(n=42613)

Arrivals to Queue or Service - Regular Calls (Inhomogeneous Poisson)


54

Customers' (Im)Patience

Understanding (Im)Patience

Marketing Campaign at a Call Center

Average wait 376 sec, 24% calls answered

Abandonment Important and Interesting

- One of two customer-subjective performance measures (2nd = Redials)
- Poor service level (future losses)
- Lost business (present losses)
- 1-800 costs (present gains; out-of-pocket vs. alternative)
- Self-selection: the “fittest survive” and wait less (much less)
- Accurate Robust models (vs. distorted instability-prone)
- Beyond Operations/OR: Psychology, Marketing, Statistics
- Beyond Telephony: VRU/IVR (Opt-Out-Rates), Internet (over 60%), Hospitals ED (LWBS).

- **Observing** (Im)Patience – Heterogeneity:
Under a single roof, the fraction abandoning varies from 6% to 40%, depending on the type of service/customer.

- **Describing** (Im)Patience Dynamically:
Irritation proportional to Hazard Rate (Palm's Law).

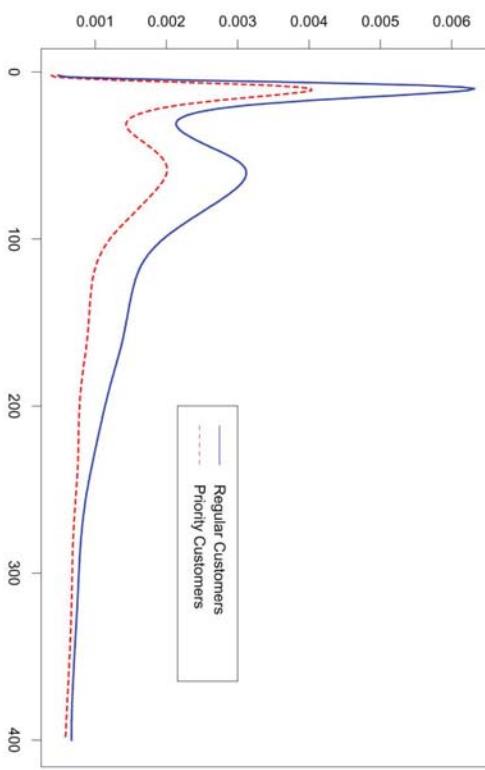
- **Managing** (Im)Patience:

- VIP vs. Regulars: who is more “Patient”?
- What are we actually measuring?
- (Im)Patience Index:
“How long Expect to wait” relative to
“How long Willing to wait”.

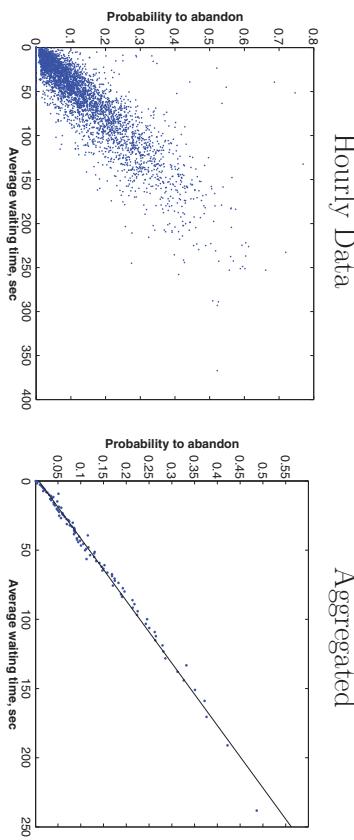
- **Estimating** (Im)Patience: Censored Sampling.
- **Modeling** (Im)Patience:

- The “Wait” Cycle:
Expecting, Willing, Required, Actual, Perceived, etc.
The case of the Experienced & Rational customer.
- (Nash) Equilibrium Models.

Palm's Law of Irritation (1943-53):


\propto Hazard-Rate of (Im)Patience Distribution

$$P\{Ab\} \propto E[W_q]$$


Claim: (Im)Patience that is $\exp(\theta)$ implies

$$P\{Ab\} = \theta \cdot E[W_q].$$

Small Israeli Bank (1999):
Regular over Priority (VIP) Customers

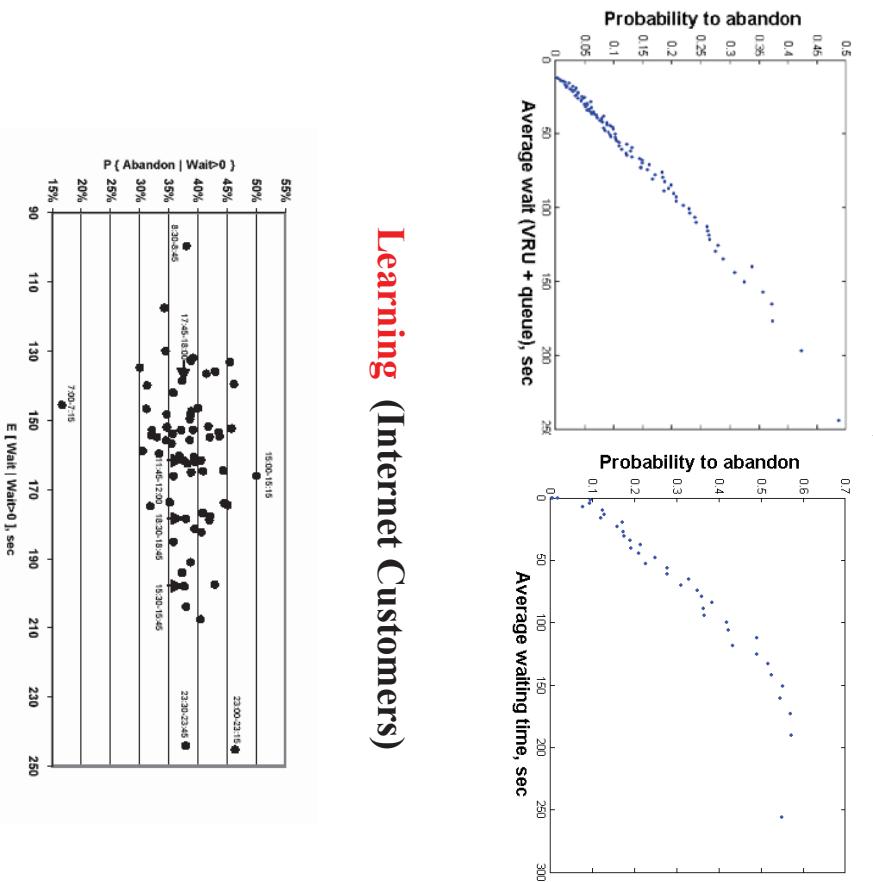
Small Israeli Bank: 1999 Data

Hazard-Rate function of $\tau \geq 0$ (absolutely continuous):

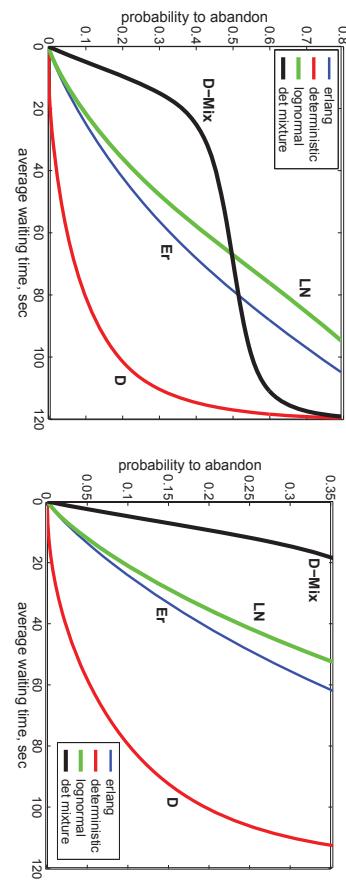
$$h(t) = \frac{g(t)}{1 - G(t)},$$

g = Density function of τ ,
 G = Distribution function of τ .

Intuition: $P\{\tau \leq t + \Delta | \tau > t\} \approx h(t) \cdot \Delta$.


The graphs are based on 4158 hour intervals.

Regression \Rightarrow average patience $(1/\theta) \approx \frac{250}{0.56} \approx 446$ sec.


But (im)patience at this bank is **not** exponential ! ?

Moreover,

Queueing Science: Human Behavior

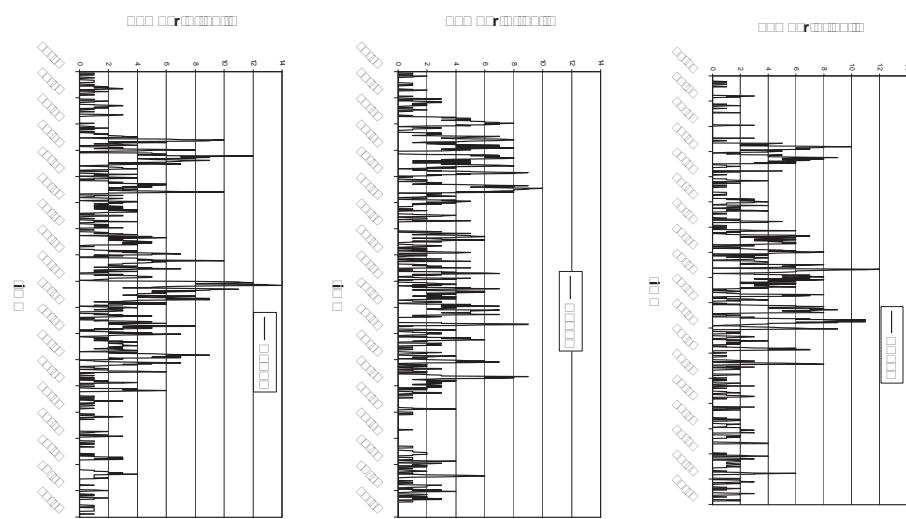
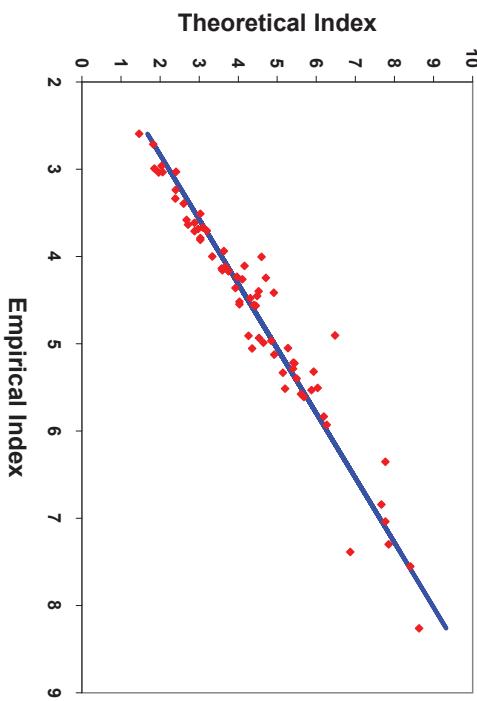
Examples of non-linear relations

- **D:** Deterministic: 2 minutes exactly;
- **Er:** Erlang with two $\exp(\text{mean}=1)$ phases;
- **LN:** Lognormal, both average and standard deviation equal to 2;
- **D-Mix:** 50-50% mixture of two constants: 0.2 and 3.8.

Learning (Internet Customers)

A Patience Index

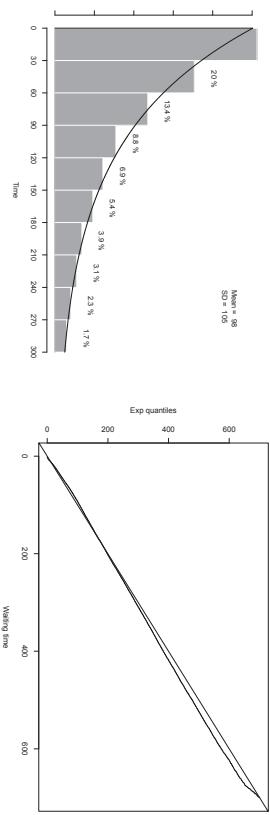
Queues = Integrating the Building Blocks



How to quantify (im)patience?

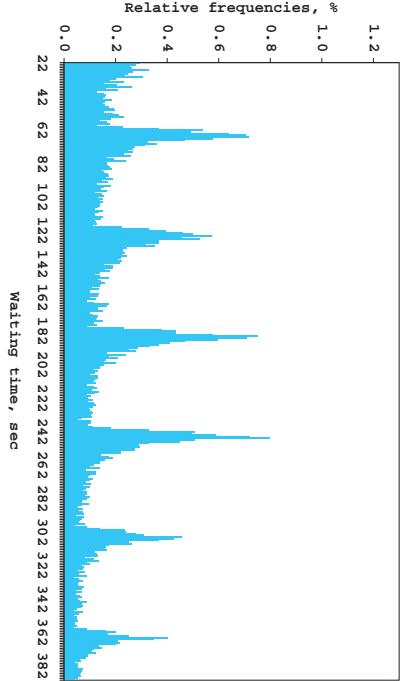
Theoretical Patience Index = $\frac{\text{Willing to Wait}}{\text{Expected to Wait}}$.

How to measure? Calculate? Assume **Experienced** customers. Then, a simple (but not too simple) model suggests the easy-to-measure:

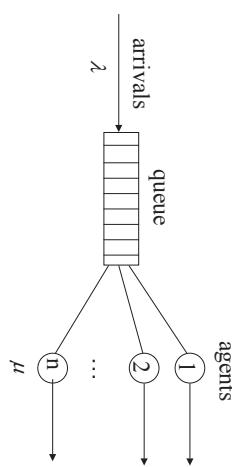
$$\text{Empirical Patience Index} \triangleq \frac{\% \text{ Served}}{\% \text{ Abandoned}}.$$


Patience index – Empirical vs. Theoretical

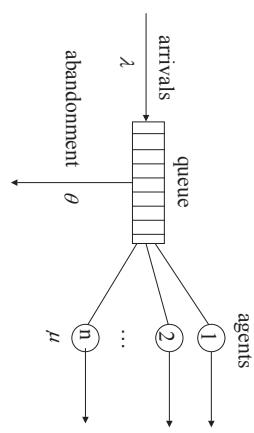
Delays = Integrating the Building Blocks


Basic (Markovian) Queueing Models of a Basic Service Station

Exponential Delays:
Small Call Center of an Israeli Bank (1999)


Delays:

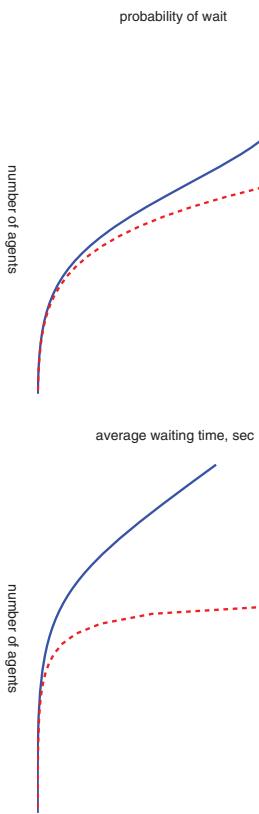
Medium-Size Call Center of an Israeli Bank (2006)



Poisson arrivals, Exponential service times, Exponential (im)patience.
Mathematical Framework: Markov Jump-Processes (Birth&Death).

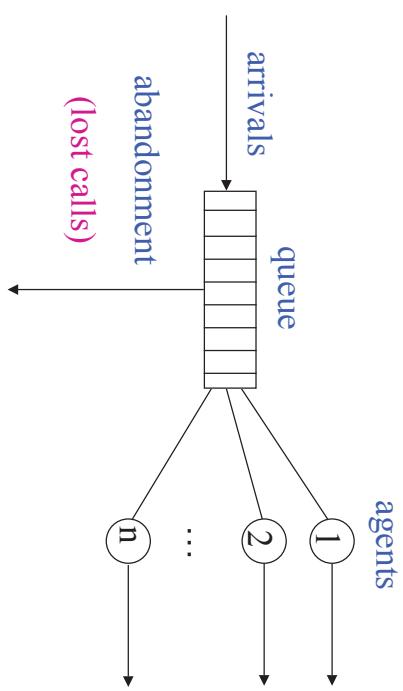
M/M/n (Erlang-C) Queue

M/M/n+M (Palm/Erlang- λ) Queue


Additional Markovian Models: **Balking**, **Trunks**; **Retrials**.
Applications: Performance Analysis, Design (EOS), Staffing.

„The Fittest Survive” and Wait Less - Much Less!

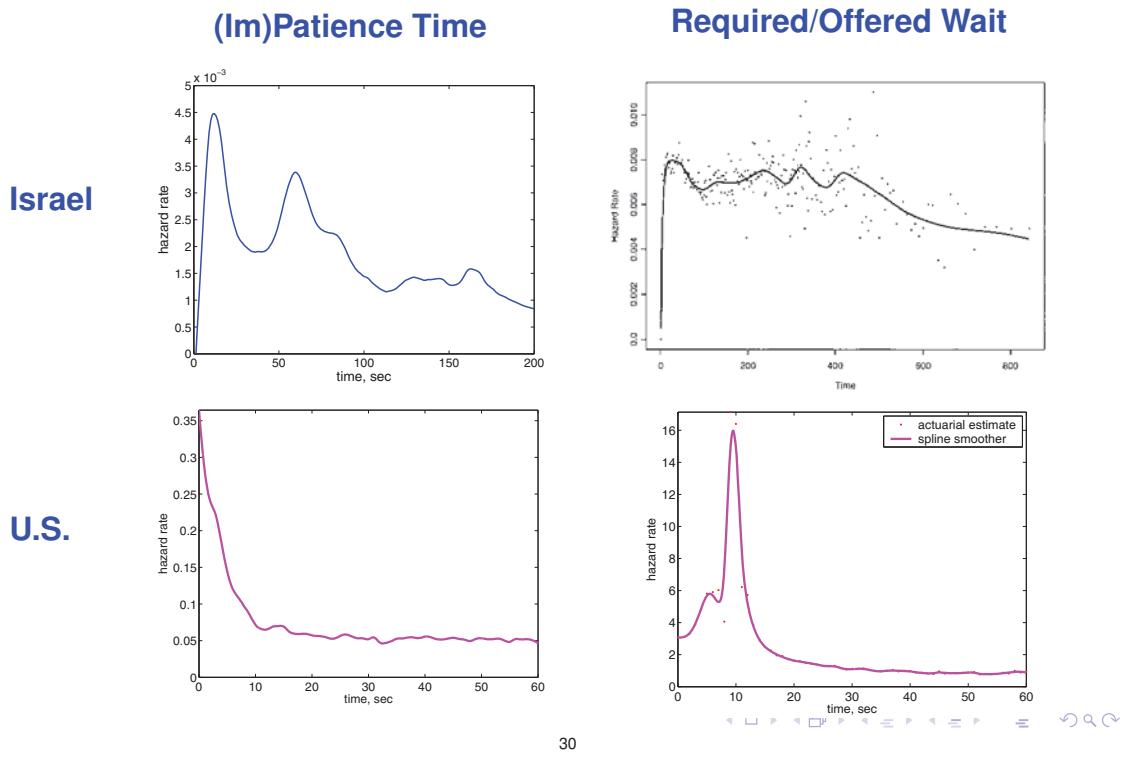
Modelling (Im)Patience: Time Willing vs. Time Required to Wait


Erlang-A vs. Erlang-C

48 calls per min, 1 min average service time,
2 min average patience

If 50 agents:

	M/M/n	M/M/n+M	M/M/n, $\lambda \downarrow 3.1\%$
Fraction abandoning	–	3.1%	–
Average waiting time	20.8 sec	3.7 sec	8.8 sec
Waiting time's 90-th percentile	58.1 sec	12.5 sec	28.2 sec
Average queue length	17	3	7
Agents' utilization	96%	93%	93%


- (Im)Patience Time $\tau \sim G$:
Time a customer **willing to wait** for service.

- **Offered Wait** V :

Time a customer **required to wait** for service,
in other words, waiting-time of an infinitely-patient customer.

- If $\tau \leq V$, customer **Served**;
otherwise, customer **Abandons**;
- **Actual wait** $W = \min(\tau, V)$.

Call Center Data: Hazard Rates (Un-Censored)

30

Predicting Performance

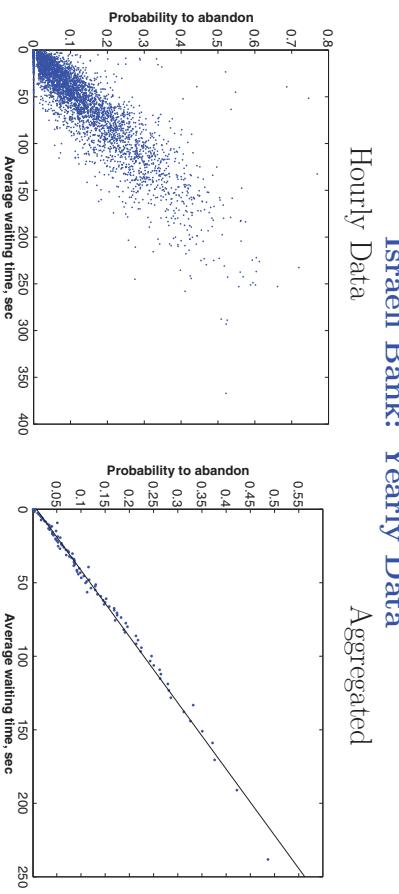
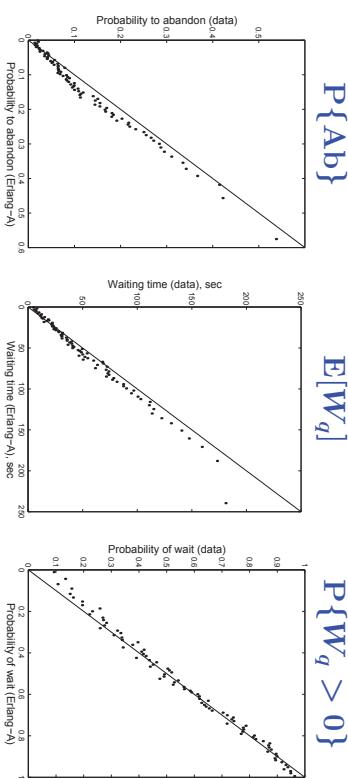
Model Primitives (eg. Erlang-A):

- Arrivals to service (eg. Poisson)
- (Im)Patience while waiting τ (eg. Exp)
- Service times (eg. Exp)
- Number of Agents.

Model Output: Offered-Wait V

Operational Performance Measure calculable in terms of (τ, V) .

- eg. Average Wait = $E[\min\{\tau, V\}]$
- eg. % Abandonment = $P\{\tau < V\}$



Applications:

- Performance Analysis
- Design, Phenomena (Pooling, Economies of Scale)
- Staffing – How Many Agents (FTE's = Full-Time-Equivalent's)
- Note: Control requires model-refinements - later, in SBR.

Erlang-A: A Simple Model at the Service of Complex Realities

Queueing Science: In Support of Erlang-A

- Small Israeli bank (10 agents);
- Data-Based Estimation of Patience ($P\{\text{Ab}\}/E[W_q]$);
- Graph: Actual Performance vs. Erlang-A Predictions (aggregation of 40 similar hours).

Data: $P\{\text{Ab}\} \propto E[W_q]$.

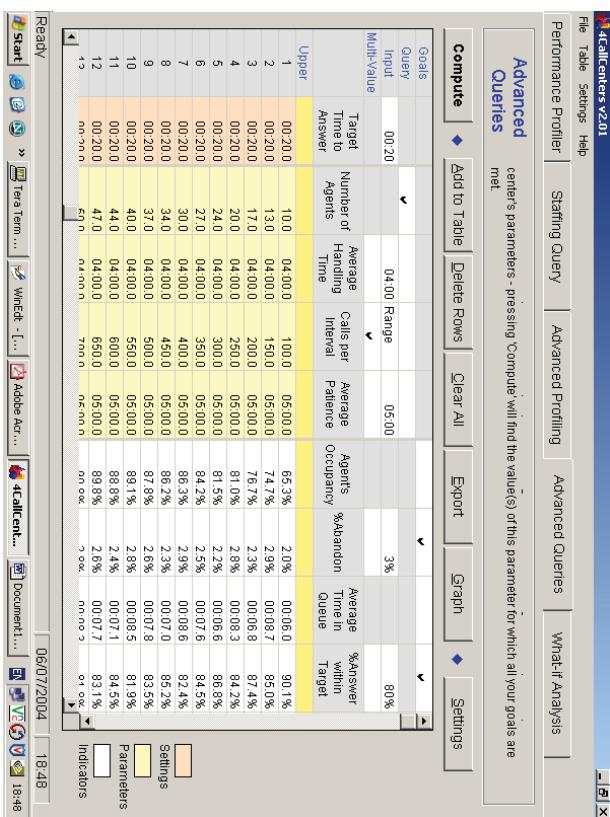
Theory: $P\{\text{Ab}\} = \theta \cdot E[W_q]$, **if** (Im)Patience = $\text{Exp}(\theta)$.

Proof: Let λ = Arrival Rate. Then, by Conservation & Little:

$$\lambda \cdot P\{\text{Ab}\} = \theta \cdot E[L_q] = \theta \cdot \lambda \cdot E[W_q], \quad \text{q.e.d.}$$

Recipe: Use Erlang-A, with $\hat{\theta} = P\{\text{Ab}\}/E[\bar{W}_q]$ (slope above).

But (Im)Patience is **not** Exponentially distributed!?


Queueing Science: via Data & Theory, Linearity. Robust.
Service Engineering: via Theory & Simulations, often-enough,

- **Question:** Why Erlang-A works? indeed, all its underlying assumptions fail (Arrivals, Services, Impatience)
- **Towards a Theoretical Answer:** Robustness and Limitations, via Asymptotic (QED) Analysis.
- **Practical Significance:** Asymptotic results applicable in small systems (eg: healthcare).

4CallCenters: Personal Tool for Workforce Management

Calculations based on the M.Sc. thesis of Ofer Garnett.
Is extensively used in Service Engineering.
Install at
<http://ie.technion.ac.il/serveng/4CallCenters/Downloads.htm>

4CallCenters: Output Example

4CallCenters: Congestion Curves

Vary input parameters of Erlang-A and display output (performance measures) in a table or graphically.

Example: $1/\mu = 2$ minutes, $1/\theta = 3$ minutes;
 λ varies from 40 to 230 calls per hour, in steps of 10;
 n varies from 2 to 12.

Probability to abandon

Average wait

Red curve: offered load per server fixed.

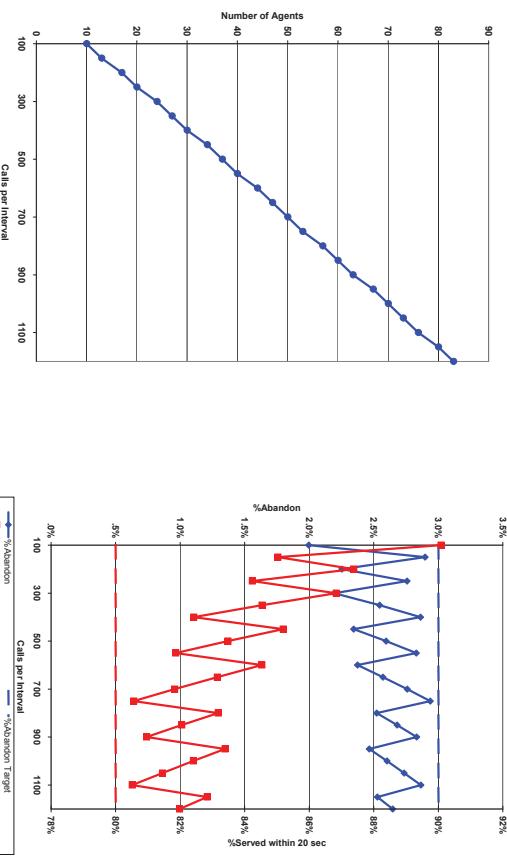
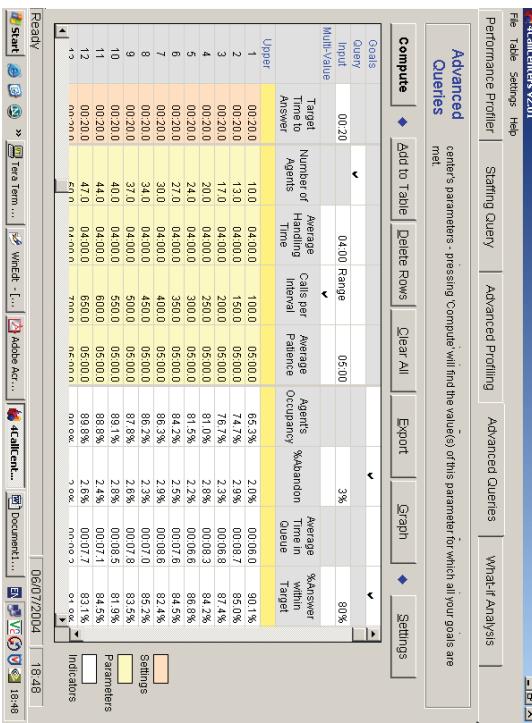
EOS (Economies-Of-Scale) observed.

Why the two graphs are similar?

4CallCenters: Advanced Staffing Queries

Advanced Staffing Queries II

Recommended staffing level



Target performance measures

Set multiple performance goals.

Example: $1/\mu = 4$ minutes, $1/\theta = 5$ minutes;
 λ varies from 100 to 1200, in steps of 50.

Performance targets:
 $P\{Ab\} \leq 3\%$; $P\{W_q < 20 \text{ sec}; \text{Sr}\} \geq 0.8$.

4CallCenters output

EOS: 10 agents needed for 100 calls per hour but only 83 for 1200 calls per hour.

Ready

Start

Help

File

Table

Settings

Help

Performance Profiler

Staffing Query

Advanced Profiling

Advanced Queries

What-if Analysis

center's parameters - pressing 'Compute' will find the value(s) of this parameter for which all your goals are met

Compute

Add to Table

Delete Rows

Clear All

Export

Log

Settings

File

Table

Settings

Help

Performance Profiler

Staffing Query

Advanced Profiling

Advanced Queries

What-if Analysis

center's parameters - pressing 'Compute' will find the value(s) of this parameter for which all your goals are met

Compute

Add to Table

Delete Rows

Clear All

Export

Log

Settings

File

Table

Settings

Help

Performance Profiler

Staffing Query

Advanced Profiling

Advanced Queries

What-if Analysis

center's parameters - pressing 'Compute' will find the value(s) of this parameter for which all your goals are met

Compute

Add to Table

Delete Rows

Clear All

Export

Log

Settings

File

Table

Settings

Help

Performance Profiler

Staffing Query

Advanced Profiling

Advanced Queries

What-if Analysis

center's parameters - pressing 'Compute' will find the value(s) of this parameter for which all your goals are met

Compute

Add to Table

Delete Rows

Clear All

Export

Log

Settings

File

Table

Settings

Help

Performance Profiler

Staffing Query

Advanced Profiling

Advanced Queries

What-if Analysis

center's parameters - pressing 'Compute' will find the value(s) of this parameter for which all your goals are met

Compute

Add to Table

Delete Rows

Clear All

Export

Log

Settings

File

Table

Settings

Help

Performance Profiler

Staffing Query

Advanced Profiling

Advanced Queries

What-if Analysis

center's parameters - pressing 'Compute' will find the value(s) of this parameter for which all your goals are met

Compute

Add to Table

Delete Rows

Clear All

Export

Log

Settings

File

Table

Settings

Help

Performance Profiler

Staffing Query

Advanced Profiling

Advanced Queries

What-if Analysis

center's parameters - pressing 'Compute' will find the value(s) of this parameter for which all your goals are met

Compute

Add to Table

Delete Rows

Clear All

Export

Log

Settings

File

Table

Settings

Help

Performance Profiler

Staffing Query

Advanced Profiling

Advanced Queries

What-if Analysis

center's parameters - pressing 'Compute' will find the value(s) of this parameter for which all your goals are met

Compute

Add to Table

Delete Rows

Clear All

Export

Log

Settings

File

Table

Settings

Help

Performance Profiler

Staffing Query

Advanced Profiling

Advanced Queries

What-if Analysis

center's parameters - pressing 'Compute' will find the value(s) of this parameter for which all your goals are met

Compute

Add to Table

Delete Rows

Clear All

Export

Log

Settings

File

Table

Settings

Help

Performance Profiler

Staffing Query

Advanced Profiling

Advanced Queries

What-if Analysis

center's parameters - pressing 'Compute' will find the value(s) of this parameter for which all your goals are met

Compute

Add to Table

Delete Rows

Clear All

Export

Log

Settings

File

Table

Settings

Help

Performance Profiler

Staffing Query

Advanced Profiling

Advanced Queries

What-if Analysis

center's parameters - pressing 'Compute' will find the value(s) of this parameter for which all your goals are met

Compute

Add to Table

Delete Rows

Clear All

Export

Log

Settings

File

Table

Settings

Help

Performance Profiler

Staffing Query

Advanced Profiling

Advanced Queries

What-if Analysis

center's parameters - pressing 'Compute' will find the value(s) of this parameter for which all your goals are met

Compute

Add to Table

Delete Rows

Clear All

Export

Log

Settings

File

Table

Settings

Help

Performance Profiler

Staffing Query

Advanced Profiling

Advanced Queries

What-if Analysis

center's parameters - pressing 'Compute' will find the value(s) of this parameter for which all your goals are met

Compute

Add to Table

Delete Rows

Clear All

Export

Log

Settings

File

Table

Settings

Help

Performance Profiler

Staffing Query

Advanced Profiling

Advanced Queries

What-if Analysis

center's parameters - pressing 'Compute' will find the value(s) of this parameter for which all your goals are met

Compute

Add to Table

Delete Rows

Clear All

Export

Log

Settings

File

Table

Settings

Help

Performance Profiler

Staffing Query

Advanced Profiling

Advanced Queries

What-if Analysis

center's parameters - pressing 'Compute' will find the value(s) of this parameter for which all your goals are met

Compute

Add to Table

Delete Rows

Clear All

Export

Log

Settings

File

Table

Settings

Help

Performance Profiler

Staffing Query

Advanced Profiling

Call Centers: Hierarchical Operational View

Operational Regimes in Many-Server Queues

Forecasting Customers: Statistics, Time-Series

Agents : HRM (Hire, Train; Incentives, Careers)

Staffing: Queueing Theory

FTE's (Seats)
per unit of time

Service Level, Costs

Shifts: IP, Combinatorial Optimization; LP

Union constraints, Costs

Shift structure

Rostering: Heuristics, AI (Complex)

Individual constraints

Agents Assignments

Skills-based Routing: Stochastic Control

The Quality-Efficiency Tradeoff in services (call centers).

Offered Load: $R = \lambda \times \bar{E}[S]$ Erlangs, namely minutes of work (=service) that arrive per minute.

Efficiency-Driven (ED):

$$n \approx R - \gamma R, \quad \gamma > 0.$$

Understaffing with respect to the offered load.

Quality-Driven (QD):

$$n \approx R + \delta R, \quad \delta > 0.$$

Overstaffing with respect to the offered load.

Quality and Efficiency-Driven (QED):

$$n \approx R + \beta \sqrt{R}, \quad -\infty < \beta < \infty.$$

The **Square-Root Staffing Rule:**

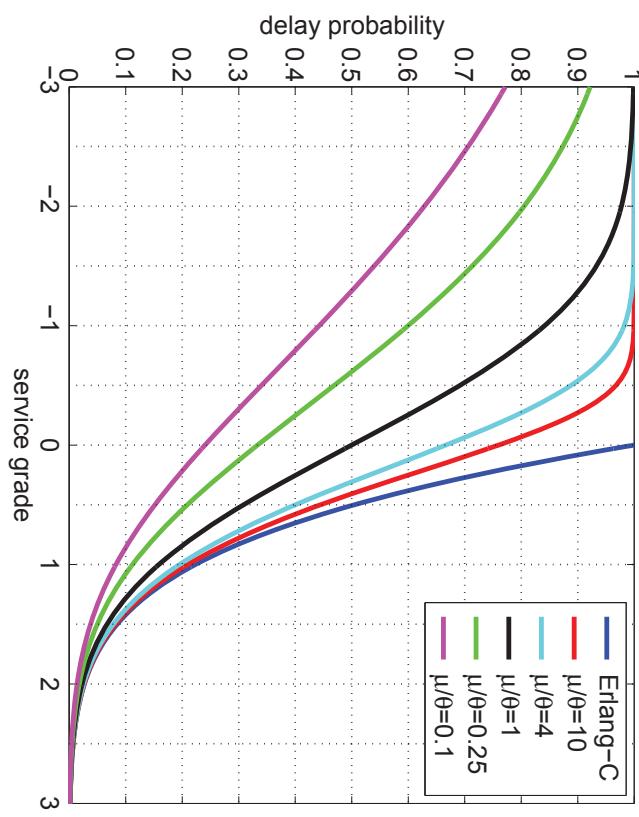
- Introduced by **Erlang**, already in 1924!
- Rigorized by **Halfin-Whitt**, only in 1981 (Erlang-C);
- Above version: with Garnett, Reiman, Zeltyn (Erlang-A/G).

Operational Regimes: Rules-of-Thumb

The QED Regime in Erlang-A: Delay Probability

Assume that offered load R is not small ($\lambda \rightarrow \infty$).

ED regime:


$$n \approx R - \gamma R, \quad 0.1 \leq \gamma \leq 0.25.$$

- Essentially **all** customers delayed prior to service;
- $\%A$ abandoned $\approx \gamma$ (10-25%);
- Average wait ≈ 30 seconds - 2 minutes.

QD regime:

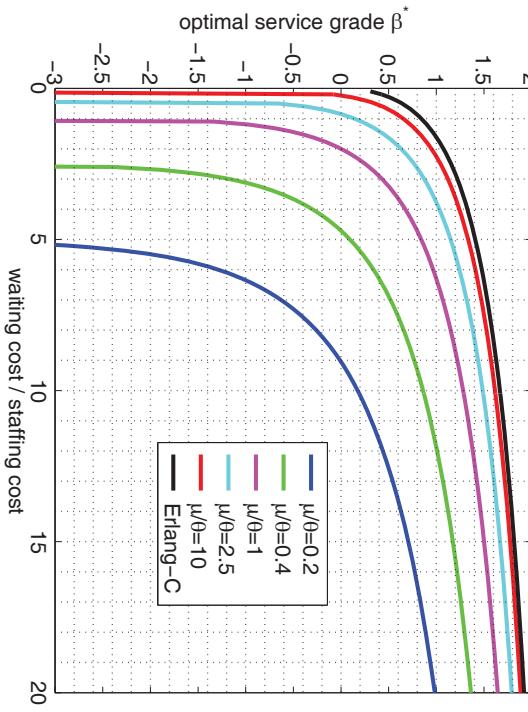
$$n \approx R + \delta R, \quad 0.1 \leq \delta \leq 0.25.$$

Essentially **no** delays.

Note. Erlang-C is the limit of Erlang-A, as patience increases indefinitely.

- $\%$ Delayed between **25%** and **75%**;
- $\%A$ bandoned is 1-5%;
- Average wait is one-order less than average service-time (seconds vs. minutes).

Dimensioning Erlang-A: Optimal QoS


Non-Parametric Queueing Models: A Basic Service Station

$$\text{Cost} = c \cdot n + d \cdot \lambda E[W_q].$$

(Abandonment cost can be accommodated via $P\{Ab\} = \theta E[W_q]$.)

Optimal staffing level:

$$n^* \approx R + \beta^*(r; s)\sqrt{R}, \quad r = d/c, \quad s = \sqrt{\mu/\theta},$$

Analysis:

• Non-Exponential i.i.d. (Im)Patience.

• Intractable Models, hence resort to Approximations;

• Single- and Moderately-Few Servers in Heavy-Traffic;
(Many-Server Models with General Service Times is still a Theory in the Making);

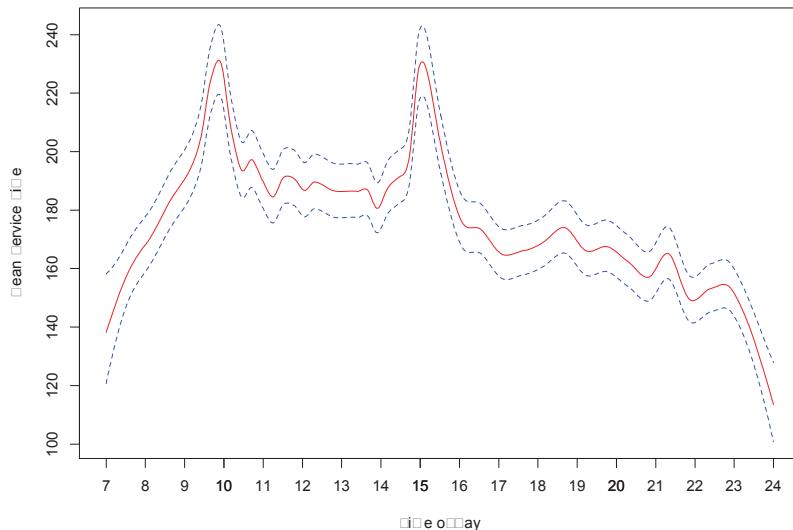
• Steady-State Analysis;

• Two-Moment Theory: Means and Coefficients-of-Variations;

• Priorities;

• Optimal Scheduling of Customer Classes: The $c\mu$ -Rule, and Relatives.

• $r < \theta/\mu$ implies that “close-the-gate” is optimal.

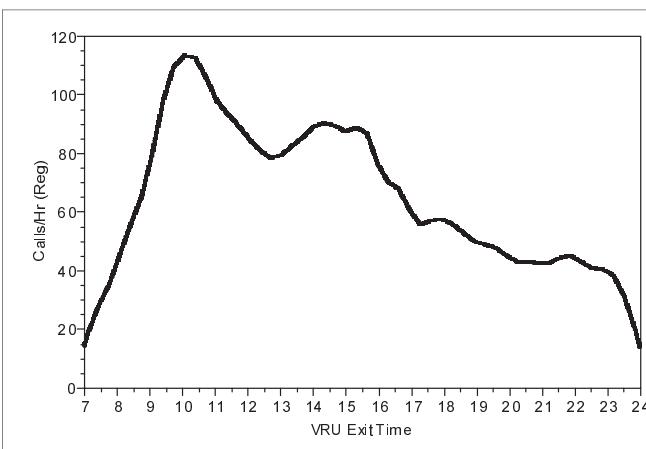

• $r \leq 20 \Rightarrow \beta^* < 2$; $r \leq 500 \Rightarrow \beta^* < 3$!

• Remarkable accuracy and robustness, via numerical tests.

Interdependence of the Building Blocks

81

Figure 12: Mean Service Time (Regular) vs. Time-of-day (95% CI) ($n = 42613$)



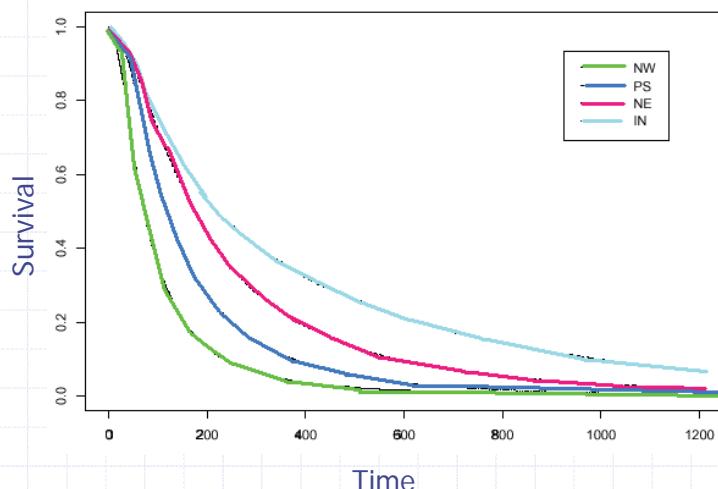
Arrival Rates: Longest Services at Peak Loads

82

Arrivals: Inhomogeneous Poisson

Figure 1: Arrivals (to queue or service) – “Regular” Calls

Service Times: Short and Long

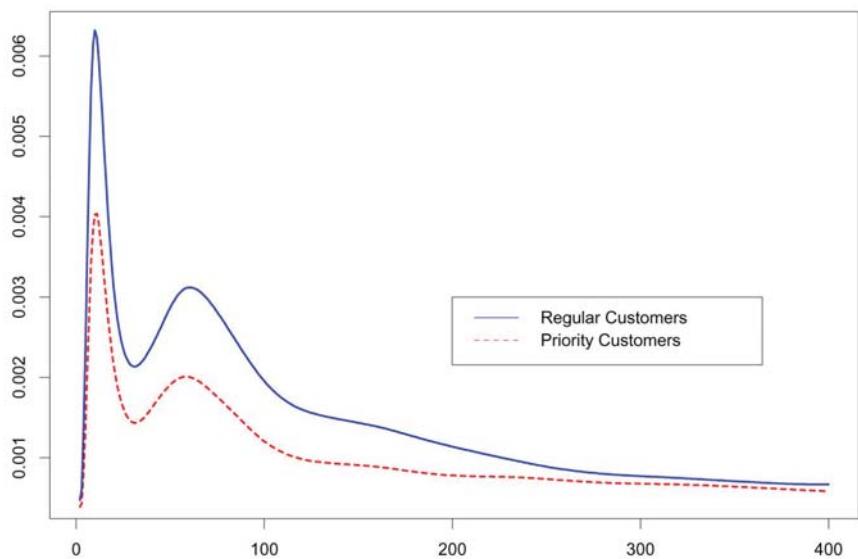

Service Time

	Overall	Regular service	New customers	Internet	Stock
Mean	188	181	111	381	269
SD	240	207	154	485	320
Med	114	117	64	196	169

Service Times: Stochastically Ordered

Service Time

Survival curve, by Types



Means (In Seconds)

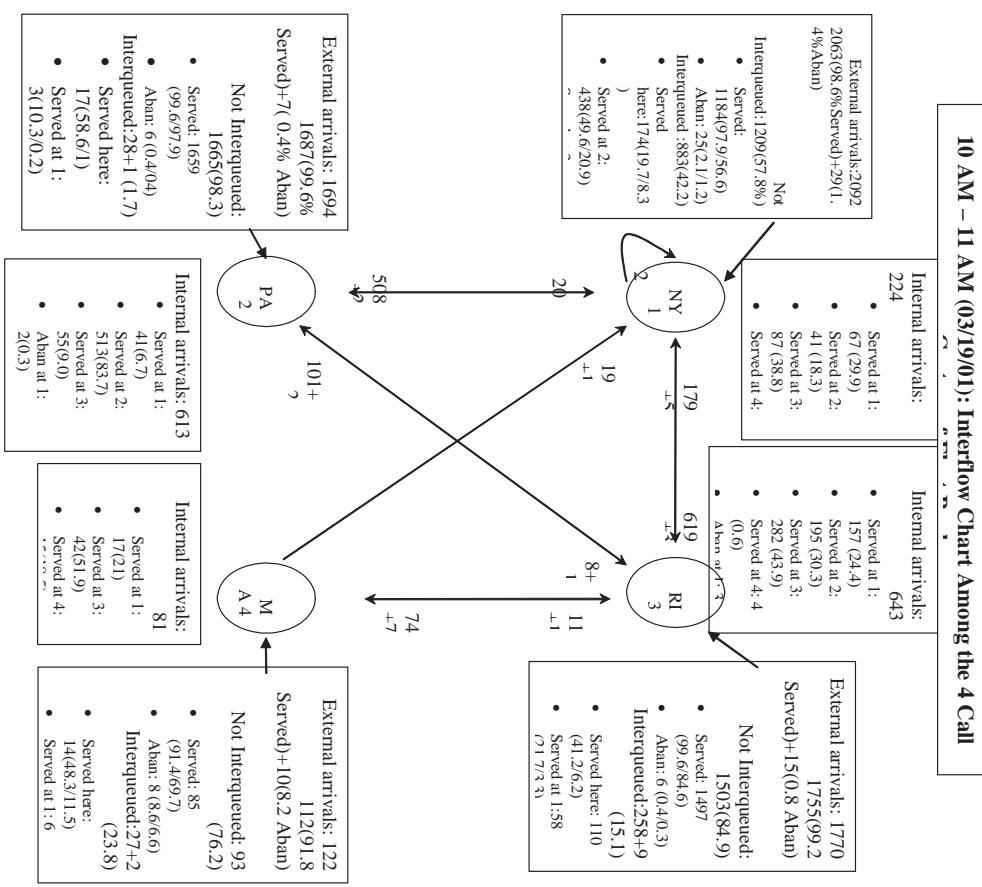
- NW (New) = 111
- PS (Regular) = 181
- NE (Stocks) = 269
- IN (Internet) = 381

(Im)Patience: Regulars vs. VIP

Hazard Rate: Empirical (Im)Patience

Customer Relationships Management

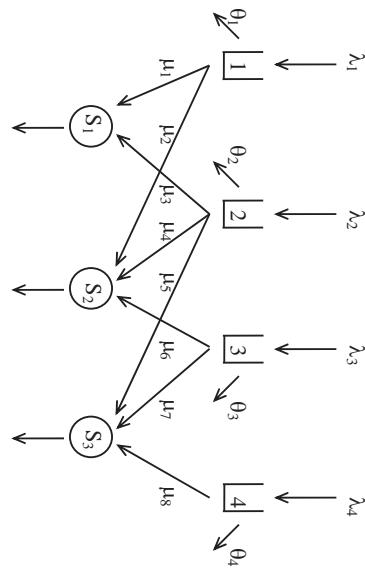
Distributed Call Center (U.S. Bank)


NationsBank's Design of the Service Encounter

Assignable Grade Of Service

VRU Target	70% of calls	85% of calls	90% of calls
Abandonment rate	< 1%	< 5%	< 9%
Speed of Answer	100% in 2 rings	80% in 20 seconds	50% in 20 seconds
Average Talk Time	no limit	4 min. average	2 min. average
Rep. Personalization	universal	product experts	basic product
Trans. Confirmation	call / fax	call / mail	mail
Problem Resolution	during call	within 2 business days	within 8 business days

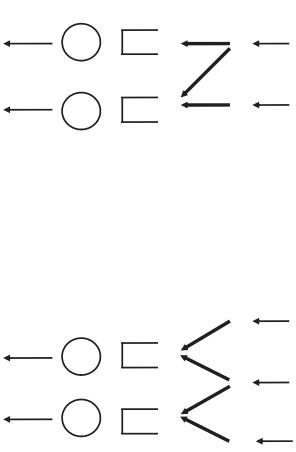
NationsBank CRM: Relationship Groups:


- RG1: high-value customers;
- RG2: marginally profitable customers (with pot.)
- RG3: unprofitable customer.

Skills-Based Routing: Operational Complexities

Some Canonical Designs - Animation

Multi-queue parallel-server system = schematic depiction of a **telephone call-center**:

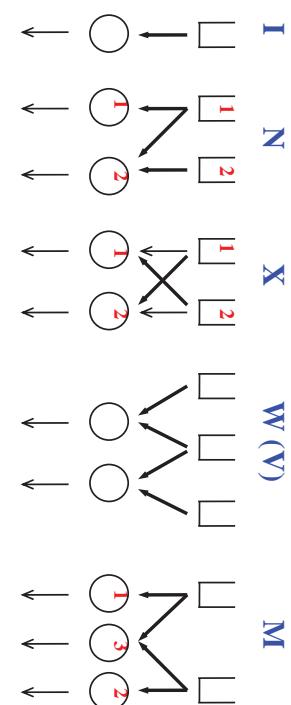

Here the λ 's designate arrival rates, the μ 's service rates, the θ 's abandonment rates, and the S 's are the number of servers in each server-pool.

Skills-Based Design:

- **Queue:** "customer-type" requiring a specific type of service;
- **Server-Pool:** "skills" defining the service-types it can perform;

- **Arrow:** leading into a server-pool define its skills / constituency.

For example, a server with skill 2 (**S2**) can serve customers of type 3 (**C3**) at rate μ_6 customers/hour. Customers of type 3 arrive randomly at rate λ_3 customers/hour, equipped with an impatience rate of θ_3 .


I – dedicated (specialized) agents
N: for example,

- C1 = VIP, then S2 serve C1 to improve service level.
- C2 = VIP, then S2 serve C1 to improve efficiency.

- S2 = Bilingual.

X: for example, S1 has C1 as Primary and C2 as Secondary Types.

V: Pure Scheduling; **Upside-down V**: Pure Routing.

Major Design / Engineering Decisions

1. Classifying customers into **types** (**Marketing**):

Tech. support vs. Billing, VIP vs. Members vs. New

2. Determining server **skills, incentives, numbers** (**HRM, OM, OR**)

Universal vs. Specialist, Experienced / Novice, Uni- / Multi-lingual;

Staffing: how many servers?

3. Prerequisite Infrastructure - MIS / IT / Data-Bases (**CS, Statistics**)

CTI, ERP, Data-Mining

Major **Control** Decisions

4. Matching customers and agents (**OR**)

- **Customer Routing:** Whenever an agent turns idle and there

are queued customers, which customer (if any) should be routed to this agent.

- **Agent Scheduling:** Whenever a customer arrives and there

are idle agents, which agent (if any) should serve this customer.

5. **Load Balancing**

- Routing of customers to distributed call centers (e.g. nation-wide)

SBR: Where are We?

Still a **challenge**, both theoretically and practically.

- “Exact” analysis of Markovian models (but mostly “queue-less”), by Koole et al.
- The ED-regime is relatively-well covered, in conventional heavy-traffic a-la Stolyar’s (control) and the fluid-models of Harrison et al (staffing + control, accommodating also non-parametric models with “time-varying randomness”).
- Control in the QED-regime is “theoretically-covered” by Atar et al. (exponential service-times).
- Staffing + Control in the QED-regime covers special cases: Gurvich, Armony; Dai, Tezcan; Gurvich, Whitt, ...

Still plenty to do.

Interesting and Significant Additional Topics

- Stochastic Service Networks:
 - Classical Markovian: Jackson and Gordon-Newell, Kelly/BCMP Networks;
 - Non-Parametric Network Approximations (QNA, SBR).
- Service Quality (Psychology, Marketing);
- Additional Significant Service Sectors: Healthcare, Hospitality, Retail, Professional Services (Consulting), ...; e-health, e-retail, e-, ...;
- Convergence of Services and Manufacturing:
After-Sale or Field Support (life-time customer-value);
- Service Supply-Chains;
- New-Service Development (or Service-Engineering in Germany);
- Design and Management of the Customer-System Interface:
Multi-Media Channels; Appointments; Pricing; ...
- Revenue Management (Finite Horizon, Call Centers, ...)

1. Kella, Meilijson: Practice \Rightarrow Abandonment important
2. Shimkin, Zohar: No data \Rightarrow Rational patience in Equilibrium
3. Carmon, Zakay: Cost of waiting \Rightarrow Psychological models
4. Garnett, Reiman; Zeltyn: Palm/Erlang-A to replace Erlang-C/B as the standard Steady-state model
5. Massey, Reiman, Rider, Stolyar: Predictable variability \Rightarrow Fluid models, Diffusion refinements
6. Ritov, Sakov, Zeltyn: Finally Data \Rightarrow Empirical models
7. Brown, Gans, Haipeng, Zhao: Statistics \Rightarrow Queueing Science
8. Atar, Reiman, Shaikhet: Skills-based routing \Rightarrow Control models
9. Nakibly, Meilijson, Pollatchek: Prediction of waiting \Rightarrow Online Models and Real-Time Simulation
10. Garnett: Practice \Rightarrow 4CallCenters.com
11. Zeltyn: Queueing Science \Rightarrow Empirically-Based Theory
12. Borst, Reiman; Zeltyn: Dimensioning M/M/N+G
13. Momicilovic: Non-Parametric (G/GI/N+GI) QED Q's
14. Jennings, Feldman, Massey, Whitt: Time-stable performance (ISA)

Call Centers = Q's w/ Impatient Customers 15 Years History, or “A Modelling Gallery”