

Data-Based Science for Service Engineering and Management

or: Empirical Adventures in Call-Centers and Hospitals

Avi Mandelbaum

Technion, Haifa, Israel

<http://ie.technion.ac.il/serveng>

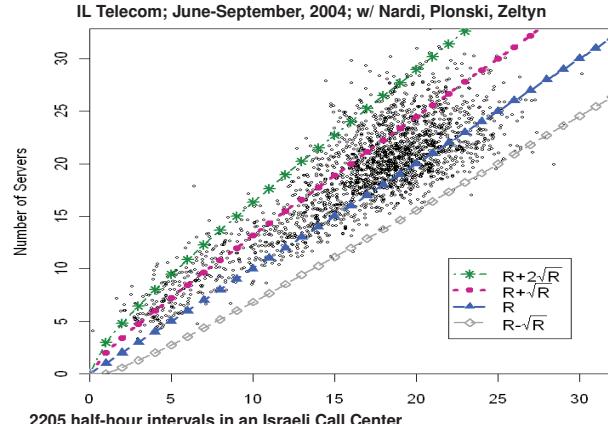
1

The Case for Service Science / Engineering

- Service Science / Engineering (vs. Management) are emerging Academic Disciplines. For example, universities (world-wide), IBM (SSME, a là Computer-Science), USA NSF (SEE), Germany IAO (ServEng), ...
- Models that explain fundamental phenomena, which are common across applications:
 - Call Centers
 - Hospitals
 - Transportation
 - Justice, Fast Food, Police, Internet, ...
- Simple models at the Service of Complex Realities (Human) Note: Simple yet rooted in deep analysis.
- Mostly What Can Be Done vs. How To

4

QED Call Center: Staffing (N) vs. Offered-Load (R)



7

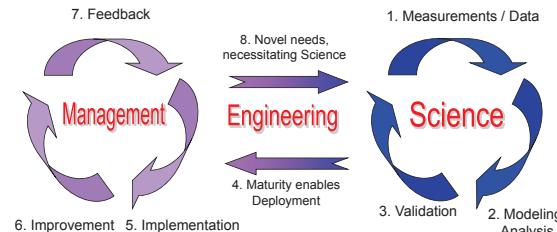
Research Partners

- Students:** Aldor*, Baron*, Carmeli, Feldman*, Garnett*, Gurvich*, Huang, Khudiakov*, Maman*, Marmor*, Reich, Rosensmidt*, Shaikh*, Senderovic, Tseytlin*, Yom-Tov*, Yuviler, Zaied, Zeltyn*, Zychlinski, Zohar*, Zvir'an*, ...
- Theory:** Armony, Atar, Gurvich, Jelenkovic, Kaspi, Massey, Momcilovic, Reiman, Shimkin, Stolyar, Wasserkrug, Whitt, Zeltyn, ...
- Industry:** Mizrahi Bank (A. Cohen, U. Yonissi), Rambam Hospital (R. Beyar, S. Israelit, S. Tzafrir), IBM Research (OCR Project), Hapoalim Bank (G. Maklef, T. Shlasky), Telephone Cellular, ...
- Technion SEE Center / Laboratory:** Feigin; Trofimov, Nadjarov, Gavako, Kutsy; Liberman, Koren, Plonsky, Senderovic; Research Assistants, ...
- Empirical/Statistical Analysis:** Brown, Gans, Zhao; Shen; Ritov, Goldberg; Gurvich, Huang, Liberman; Armony, Marmor, Tseytlin, Yom-Tov; Zeltyn, Nardi, Gorfine, ...

2

Title: Expands the Scientific Paradigm

Physics, Biology, ... : Measure, Model, Experiment, Validate, Refine. Human-complexity triggered above in Transportation, Economics. Starting with Data, expand to:



e.g. Validate, refute or discover congestion laws (Little, PASTA, SSC, ?, ?,...), in call centers and hospitals

5

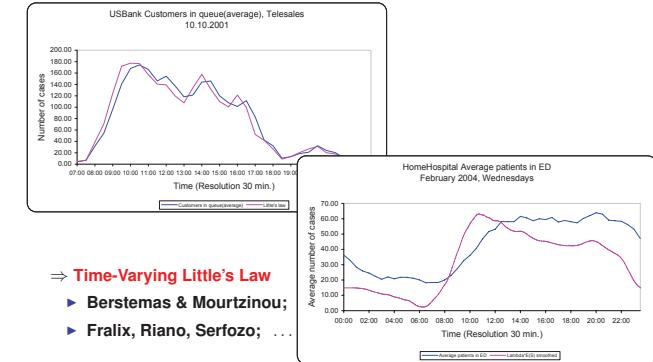
History, Resources (Downloadable)

- Math. + C.S. + Stat. + O.R. + Mgt. \Rightarrow IE (≥ 1990)
- Teaching: "Service-Engineering" Course (≥ 1995): <http://ie.technion.ac.il/serveng> - website http://ie.technion.ac.il/serveng/References/teaching_paper.pdf
- Call-Centers Research (≥ 2000)
e.g. [Call Centers](#) in Google-Scholar
- Healthcare Research (≥ 2005)
e.g. OCR Project: IBM + Rambam Hospital + Technion
- The Technion SEE Center (≥ 2007)

3

Little's Law: Call Center & Emergency Department

Time-Gap: # in System lags behind Piecewise-Little ($L = \lambda \times W$)



⇒ Time-Varying Little's Law

- Berstemas & Mourtzinou;
- Fralix, Riano, Serfozo; ...

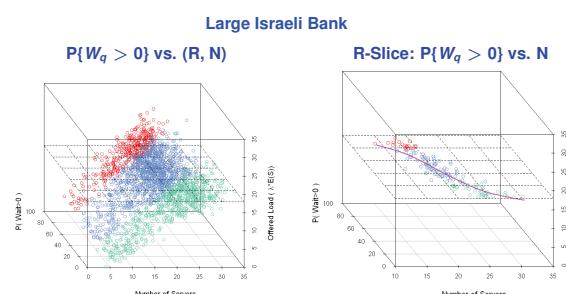
6

Operational Regimes: Scaling, Performance, w/ I. Gurvich & J. Huang

Offered A is fixed	Conventional scaling			MS scaling			NDS scaling			
	Sub	Critical	Super	QD	QED	ED	ED+QED	Sub	Critical	Super
Offered load per server	$\frac{1}{1+\beta} < 1$	$1 - \frac{1}{1+\beta} \approx 1$	$\frac{1}{1+\beta} > 1$	$1 - \frac{1}{1+\beta}$	$\frac{1}{1+\beta}$	$\frac{1}{1+\beta}$	$\frac{1}{1+\beta} - \beta \sqrt{\frac{1}{1+\beta} - 1}$	$1 - \frac{1}{1+\beta}$	$1 - \frac{1}{1+\beta}$	$1 - \frac{1}{1+\beta}$
Arrival rate λ	$\frac{1}{1+\beta}$	$\mu - \beta \mu$	$\frac{1}{1+\beta}$	$\frac{1}{1+\beta}$	$n\mu - \beta n\mu \sqrt{n}$	$\frac{n\mu}{n}$	$\frac{n\mu}{n} - \beta \mu$	$\frac{n\mu}{n}$	$\frac{n\mu}{n} - \beta \mu$	$\frac{n\mu}{n}$
Number of servers	1	n	n	1	1	1	1	1	1	1
Time-scale	n	1	1	n	n	n	n	n	n	n
Abandonment rate	θ/n	θ	θ	θ/n	θ	θ	θ/n	θ/n	θ/n	θ/n
Staffing level	$\frac{1}{n}(1+\beta)$	$\frac{1}{n}(1 - \frac{1}{1+\beta})$	$\frac{1}{n}(1 - \gamma)$	$\frac{1}{n}(1 + \delta)$	$\frac{1}{n}(1 + \delta)$	$\frac{1}{n}(1 - \gamma)$	$\frac{1}{n}(1 - \gamma) + \beta \sqrt{\frac{1}{n}(1 - \gamma)}$	$\frac{1}{n}(1 + \delta)$	$\frac{1}{n}(1 + \delta)$	$\frac{1}{n}(1 - \gamma)$
Utilization	$\frac{1}{1+\beta}$	$1 - \sqrt{\frac{\mu}{\mu - \beta \mu}}$	1	$\frac{1}{1+\beta}$	$\frac{1}{1+\beta}$	$\frac{1}{1+\beta}$	$\frac{1}{1+\beta} - \beta \sqrt{\frac{1}{1+\beta} - 1}$	$\frac{1}{1+\beta}$	$\frac{1}{1+\beta}$	$\frac{1}{1+\beta}$
$E(Q)$	$\frac{n\mu}{n}$	$\sqrt{n\mu} \cdot \frac{1}{n}(1 - \beta) - \beta$	$\frac{n\mu}{n}$	$\frac{1}{1+\beta} \cdot \frac{1}{n}(1 - \beta) - \beta$	$\frac{n\mu}{n}$	$\frac{1}{1+\beta} \cdot \frac{1}{n}(1 - \beta) - \beta$	$\frac{n\mu}{n}$	$\frac{n\mu}{n}$	$\frac{n\mu}{n}$	$\frac{n\mu}{n}$
$P(W_q > 0)$	$\frac{1 + \beta}{1 + \beta + \alpha_1}$	$\frac{1}{1 + \beta + \alpha_1}$	$\frac{1}{1 + \beta + \alpha_1}$	γ	γ	γ	$\gamma - \beta \sqrt{\frac{1}{n}(1 - \gamma)}$	γ	γ	γ
$P(W_q > 0)$	$\alpha_1(1, 0, 1)$	≈ 1	≈ 1	$\alpha_2(0, 1, 0)$	≈ 1	≈ 1	≈ 1	≈ 1	≈ 1	≈ 1
$P(W_q > T)$	$\alpha_1 \frac{1 + \beta}{1 + \beta + \alpha_1}$	$1 + O(\frac{1}{n})$	$1 + O(\frac{1}{n})$	≈ 0	≈ 0	≈ 0	≈ 0	≈ 0	≈ 0	≈ 0
Congestion $\frac{W_q}{n}$	$\alpha_1 \frac{1 + \beta}{1 + \beta + \alpha_1}$	$\sqrt{n\mu} \cdot \frac{1}{n}(1 - \beta) - \beta$	$n\mu\gamma/\theta$	$\frac{1}{1+\beta} \cdot \frac{1}{n}(1 - \beta) - \beta$	$\frac{1}{1+\beta} \cdot \frac{1}{n}(1 - \beta) - \beta$	$n\mu\gamma/\theta$	$\mu \int_{\theta}^{\infty} G(s) ds - \mu \int_{\theta}^{\infty} G(s) ds - \frac{n\mu\gamma}{n\mu\gamma - \theta}$	$\alpha_1 \frac{1}{n}$	$\frac{1}{1+\beta} \cdot \frac{1}{n}(1 - \beta) - \beta$	$n\mu\gamma/\theta$

- $\delta > 0, \gamma \in (0,1)$ and $\beta \in (-\infty, \infty)$;
- $QD = \frac{1 + \beta}{1 + \beta + \alpha_1} < 1$;
- ED (ED+QED): $G(x) = \gamma$;
- $QD(x) = 1 + \sqrt{\frac{1 + \beta}{1 + \beta + \alpha_1}}$, here $\beta = \sqrt{\frac{1}{n}}$ and $x = \frac{\theta}{\sqrt{n}}$;
- ED+QED(x) = $\hat{G}(T)(\sqrt{\frac{1}{n}}x)$;
- Conventional: critical: $P(W > T) = P(\frac{W}{n} > \frac{1}{n})$, super: $P(W > T) = P(\frac{W}{n} > \frac{1}{n})$; NDS: Super: $P(W > T) = P(\frac{W}{n} > \frac{1}{n})$, if $G(T) < \gamma$;

QED Call Center: Performance



8

Prerequisite I: Data

Averages Prevalent (and could be useful / interesting).

But I need data at the level of the **Individual Transaction**:

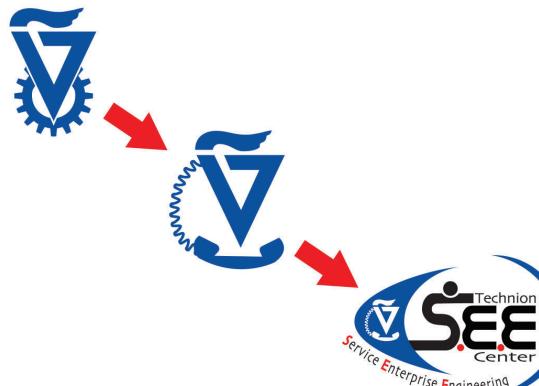
For each service transaction (during a phone-service in a call center, or a patient's visit in a hospital, or browsing in a website, or ...), its **operational history** = time-stamps of events.

Sources: "Service-floor" (vs. Industry-level, Surveys, ...)

- ▶ Administrative (Court, via "paper analysis")
- ▶ Face-to-Face (Bank, via bar-code readers)
- ▶ Telephone (Call Centers, via ACD / CTI, IVR/VRU)
- ▶ Hospitals (Emergency Departments, ...)
- ▶ Expanding:
 - Hospitals, via **RFID**
 - Operational + Financial + Contents (Marketing, Clinical)
 - Internet, Chat (multi-media)

10

Pause for a Commercial: The Technion SEE Center



11

Tutorial Cover; State-Space Collapse from Tutorial

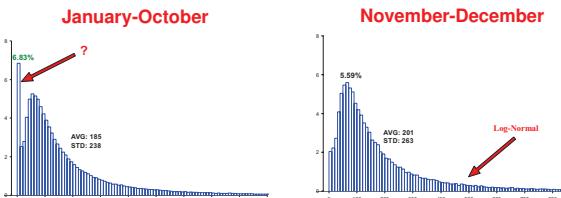
4 overheads:

- ▶ Cover (make sure relevant to the lecture (e.g. APS, HKUST)
- ▶ Page 2 (again, make sure relevant to the lecture)
- ▶ Contents (with State-Space Collapse yellowed)
- ▶ The page with State-Space Collapse.

13

Beyond Averages: The Human Factor

Histogram of Service-Time in a (Small Israeli) Bank, 1999



- ▶ **6.8% Short-Services:** Agents' "Abandon" (improve bonus, rest), (mis)lead by incentives
- ▶ **Distributions** must be measured (in seconds = natural scale)
- ▶ **LogNormal** service times common in call centers

16

eg. RFID-Based Data: Mass Casualty Event (MCE)

Drill: Chemical MCE, Rambam Hospital, May 2010

Focus on **severely wounded** casualties (≈ 40 in drill)

Note: 20 observers support real-time control (helps validation)

14

Technion SEE = Service Enterprise Engineering

SEELab: Data-repositories for research and teaching

▶ For example:

- ▶ Bank Anonymous: 1 years, 350K calls by 15 agents - in 2000. Brown, Gans, Sakov, Shen, Zeltyn, Zhao (JASA), paved the way for:
- ▶ U.S. Bank: 2.5 years, 220M calls, 40M by 1000 agents.
- ▶ Israeli Cellular: 2.5 years, 110M calls, 25M calls by 750 agents.
- ▶ Israeli Bank: from January 2010, **daily-deposit** at a SEEsafe.
- ▶ Israeli Hospital: 4 years, 1000 beds; 8 ED's- Sinreich's data.

SEEStat: Environment for graphical EDA in real-time

▶ Universal Design, Internet Access, Real-Time Response.

SEEServer: Free for academic use

Register, then access (presently) U.S. Bank and Bank Anonymous.

Visitor: run `mstsc, seeserver.iem.technion.ac.il`; Self-Tutorial

12

Data Cleaning: MCE with RFID Support

Asset id	order	Data-base		Company report		comment
		Entry date	Exit date	Entry date	Exit date	
4	1	1:14:07 PM			1:14:00 PM	
6	1	12:02:10 PM	12:33:10 PM	12:02:00 PM	12:33:00 PM	
8	1	11:51:54 AM	12:28:30 PM	11:51:00 AM	12:28:00 PM	exit is missing
10	1	12:23:32 PM	12:38:23 PM	12:23:00 PM	12:38:00 PM	
12	1	12:12:47 PM	12:35:33 PM	12:35:00 PM	12:35:00 PM	entry is missing
15	1	1:07:15 PM		1:07:00 PM		
16	1	11:18:10 AM	11:31:04 AM	11:18:00 AM	11:31:00 AM	
17	1	1:03:15 PM		1:03:00 PM		
18	1	1:07:42 PM		1:07:00 PM		
19	1	12:01:58 PM		12:01:00 PM		
20	1	11:37:21 AM	12:57:02 PM	11:37:00 AM	12:57:00 PM	
21	1	12:01:16 PM	12:37:16 PM	12:01:00 PM	12:37:00 PM	
22	1	12:04:31 PM	12:20:40 PM			first customer is missing
22	2	12:27:37 PM		12:27:00 PM		
25	1	12:27:35 PM	1:07:28 PM	12:27:00 PM	1:07:00 PM	
27	1	12:06:53 PM		12:06:00 PM		
28	1	11:21:34 AM	11:41:06 AM	11:41:00 AM	11:53:00 AM	exit time instead of entry time
29	1	12:21:06 PM	12:54:29 PM	12:21:00 PM	12:54:00 PM	
31	1	11:40:54 AM	12:30:16 PM	11:40:00 AM	12:30:00 PM	
31	2	12:27:57 PM	12:54:51 PM	12:37:00 PM	12:54:00 PM	
32	1	12:11:45 PM	12:15:17 PM	11:27:00 AM	12:15:00 PM	
33	1	12:26:55 PM	12:46:20 PM	12:26:00 PM	12:46:00 PM	strong exit time
35	1	11:13:48 AM	11:40:50 AM	11:31:00 AM	11:40:00 AM	
36	1	12:26:23 PM	12:29:30 PM	12:06:00 PM	12:29:00 PM	
37	1	11:31:50 AM	11:48:18 AM	11:31:00 AM	11:48:00 AM	
37	2	12:59:21 PM		12:59:00 PM		

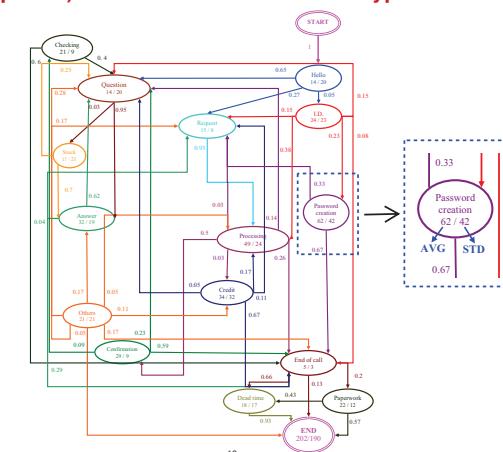
Imagine "Cleaning" 60,000+ customers per day (call centers) !

15

(Telephone) Service-Process = "Phase-Type" Model

Retail Service (Israeli Bank)

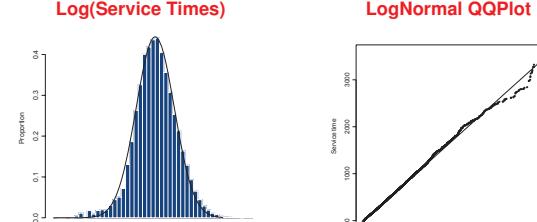
Statistics OR IE



17

Validating LogNormality of Service-Duration

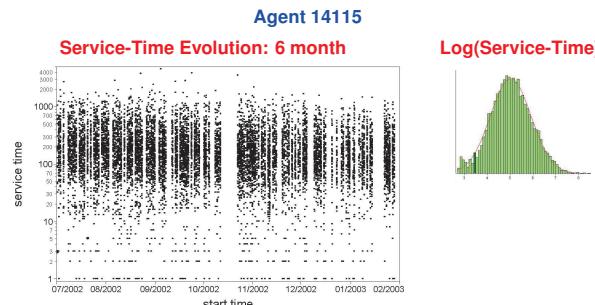
Israeli Call Center, Nov-Dec, 1999



- ▶ **Practically Important:** (mean, std)(log) characterization
- ▶ **Theoretically Intriguing:** Why LogNormal? Naturally multiplicative but, in fact, also **Infinitely-Divisible** (Generalized Gamma-Convolutions)
- ▶ Simple-model of a complex-reality? The **Service Process**:

Individual Agents: Service-Duration, Variability

w/ Gans, Liu, Shen & Ye

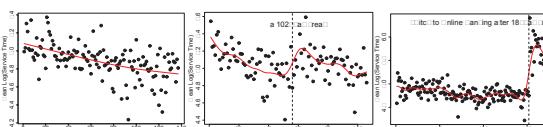


- ▶ **Learning:** Noticeable decreasing-trend in service-duration
- ▶ **LogNormal** Service-Duration, individually and collectively

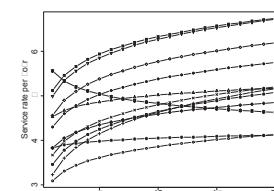
19

Individual Agents: Learning, Forgetting, Switching

Daily-Average Log(Service-Time), over 6 months
Agents 14115, 14128, 14136



Weakly Learning-Curves for 12 Homogeneous(?) Agents



Why Bother?

In large call centers:

+One Second to Service-Time implies +Millions in costs, annually

⇒ Time and "Motion" Studies (Classical IE with New-age IT)

- ▶ **Service-Process Model:** Customer-Agent Interaction
- ▶ **Work Design** (w/ Khudiakov)
 - eg. **Cross-Selling:** higher profit vs. longer (costlier) services; Analysis yields (congestion-dependent) cross-selling protocols
- ▶ **"Worker" Design** (w/ Gans, Liu, Shen & Ye)
 - eg. **Learning, Forgetting, ...** : Staffing & individual-performance prediction, in a heterogenous environment
- ▶ **IVR-Process Model:** Customer-Machine Interaction
 - 75% **bank-services**, poor design, yet scarce research; Same approach, automatic (easier) data (w/ Yuviler)

21

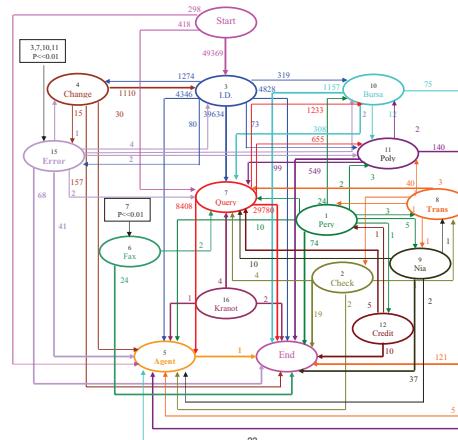
IVR-Time: Histograms

Israeli Bank: IVR/VRU Only, May 2008



22

IVR-Process: "Phase-Type" Model



23

Started with Call Centers, Expanded to Hospitals

Call Centers - U.S. (Netherlands) Stat.

- ▶ \$200 – \$300 billion annual expenditures (0.5)
- ▶ 100,000 – 200,000 call centers (1500-2000)
- ▶ "Window" into the company, for better or worse
- ▶ Over 3 million agents = 2% – 4% workforce (100K)

Healthcare - similar and unique challenges:

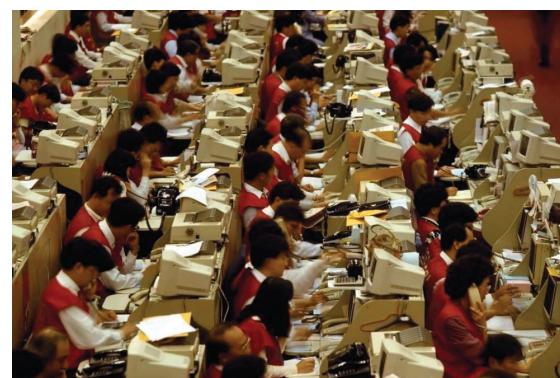
- ▶ Cost-figures far more staggering
- ▶ Risks much higher
- ▶ ED (initial focus) = hospital-window
- ▶ Over 3 million nurses

24

Call-Center Environment: Service Network

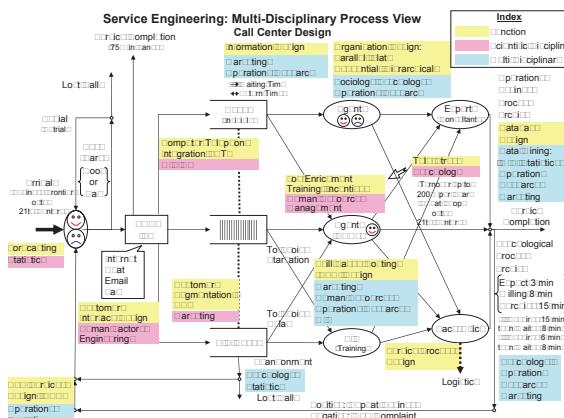
25

Call-Centers: "Sweat-Shops of the 21st Century"



26

Call-Center Network: Gallery of Models



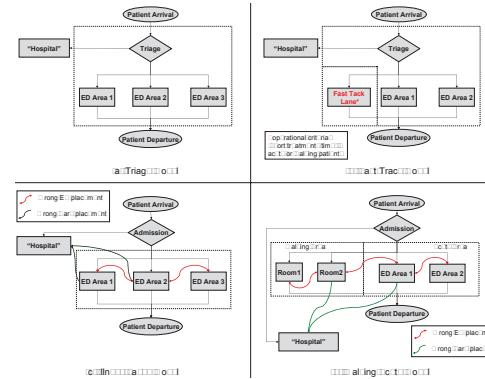
27

Emergency-Department Network: Gallery of Models

Add ED-to-IW routing

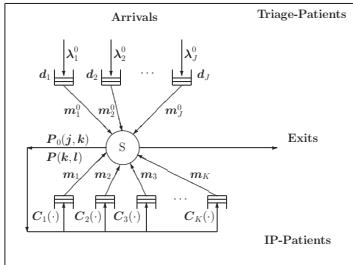
37

ED Design, with B. Golany, Y. Marmor, S. Israelit
Routing: **Triage (Clinical)**, **Fast-Track (Operational)**, ... (via DEA)
eg. Fast Track most suitable when elderly dominate



38

ED Patient Flow: The Physicians View



- Goal: Adhere to **Triage-Constraints**, then process/release In-Process Patients
- Model = Multi-class Q with Feedback: Min. convex **congestion costs** s.t. **deadline constraints** on Triage-Patients.
- Solution: In **conventional** heavy-traffic, **asymptotic least-cost** s.t. **asymptotic compliance**, via threshold (w/ B. Carmeli, J. Huang, S. Israelit, N. Shimkin; as in Plambeck, Harrison, Kumar, who applied admission control).

40

Operational Fairness

- "Punishing" fast wards in ED-to-IW Routing:**
 - Parallel IWs: similar clinically, differ operationally
 - Problem: Short Length-of-Stay goes hand in hand with high **bed-occupancy**, **bed-turnover**, yet clinically apt: **unfair!**
 - Solution: Both nurses and managers content, w/ **P. Momcillovic and Y. Tseytlin** (3 time-scales: hour, day, week; "compare" with call-centers SBR)
- Balancing Load across Maternity Wards:**
 - 2 Maternity Wards: 1 = **pre-birth**, 2 = **post-birth** complications
 - Problem: Nurses think the "**others-work-less**": **unfair!**
 - Goal: Balance workload, mostly via normal births
 - Challenge: Workload is **Operational, Cognitive, Emotional**
 - Operational:** Work content of a task, in time-units
 - Emotional:** e.g. Mother and fetus-in-stress, suddenly fetus dies

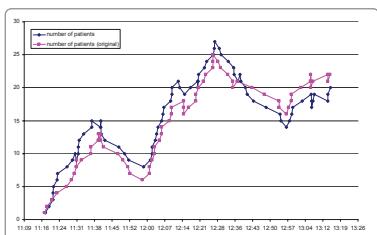
⇒ Need help: **A. Rafaeli & students (Psychology)** - Ongoing

41

Prerequisite II: Models (Fluid Q's)

"Laws of Large Numbers" capture Predictable Variability
Deterministic Models: Scale Averages-out Stochastic Individualism

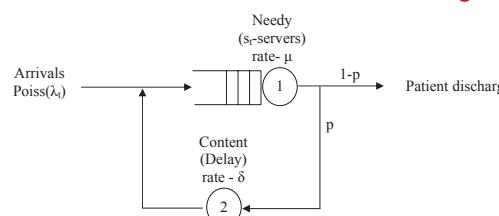
Severely-Wounded Patients, 11:00-13:00 (Censored LOS)



- Paths of doctors, nurses, patients (100+, 1 sec. resolution)
eg. (could) Help predict **"What if** 150+ casualties severely wounded ?"
- Transient** Q's:
 - Control of **Mass Casualty Events** (w/ I. Cohen, N. Zychlinski)
 - Chemical MCE** = **Needy-Content Cycles** (w/ G. Yom-Tov)

43

The Basic Service-Network Model: Erlang-R

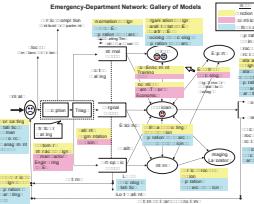


Erlang-R (IE: Repairman Problem 50's; CS: Central-Server 60's) = 2-station "**Jackson**" Network = (M/M/S, M/M/∞) :

- $\lambda(t)$ – **Time-Varying Arrival rate**
- $S(\cdot)$ – Number of Servers (Nurses / Physicians).
- μ – **Service rate** ($E[Service] = \frac{1}{\mu}$)
- p – **ReEntrant** (Feedback) fraction
- δ – **Content-to-Needy** rate ($E[Content] = \frac{1}{\delta}$)

44

Emergency-Department Network: Flow Control



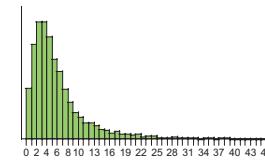
39

- Queueing-Science**, w/ Armony, Marmor, Tseytlin, Yom-Tov
- Fair ED-to-IW Routing (Patients vs. Staff), w/ Momcillovic, Tseytlin
- Triage vs. In-Process / Release in EDs, w/ Carmeli, Huang, Shimkin
- Workload and Offered-Load in Fork-Join Networks, w/ Kaspi, Zaeid
- Synchronization Control of Fork-Join Networks, w/ Atar, Zviran
- Staffing Time-Varying Q's with Re-Entrant Customers, w/ Yom-Tov

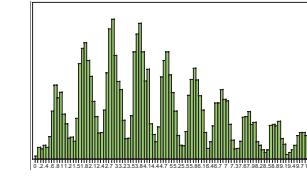
39

LogNormal & Beyond: Length-of-Stay in a Hospital

Israeli Hospital, in Days: LN



Israeli Hospital, in Hours: Mixture



Explanation: Patients released around 3pm (1pm in Singapore)

Why Bother ?

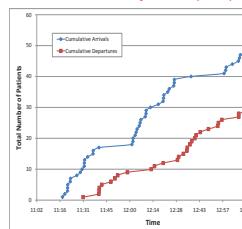
- Hourly Scale: Staffing,...
- Daily: Flow / Bed Control,...

42

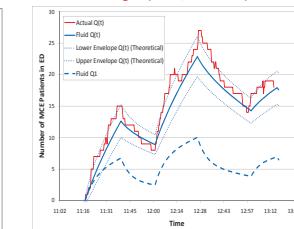
Erlang-R: Fitting a Simple Model to a Complex Reality

Chemical MCE Drill (Israel, May 2010)

Arrivals & Departures (RFID)



Erlang-R (Fluid, Diffusion)



- Recurrent/Repeated** services in MCE Events: eg. Injection every 15 minutes
- Fluid (Sample-path) Modeling, via Functional Strong Laws of Large Numbers
- Stochastic Modeling, via Functional Central Limit Theorems
 - ED in MCE: Confidence-interval, usefully narrow for **Control**
 - ED in **normal (time-varying)** conditions: Personnel **Staffing**

45

Prerequisite II: Models (Diffusion/QED's Q's)

Traditional Queueing Theory predicts that **Service-Quality** and **Servers' Efficiency** must be traded off against each other.

For example, **M/M/1** (single-server queue): **91%** server's utilization goes with

$$\text{Congestion Index} = \frac{E[\text{Wait}]}{E[\text{Service}]} = 10,$$

and only **9%** of the customers are served immediately upon arrival.

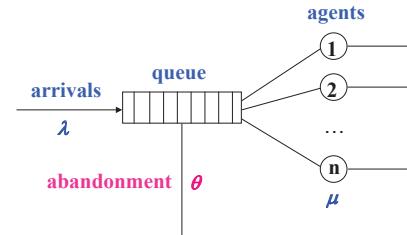
Yet, **heavily-loaded** queueing systems with **Congestion Index = 0.1** (Waiting one order of magnitude less than Service) are prevalent:

- ▶ **Call Centers:** Wait **"seconds"** for **minutes** service;
- ▶ **Transportation:** Search **"minutes"** for **hours** parking;
- ▶ **Hospitals:** Wait **"hours"** in ED for **days** hospitalization in IW's;

and, moreover, a significant fraction are not delayed in queue. (For example, in well-run call-centers, **50%** served **"immediately"**, along with over **90%** agents' utilization, is not uncommon) ? **QED**

46

The Basic Staffing Model: Erlang-A (M/M/N + M)



Erlang-A (Palm 1940's) = **Birth & Death Q**, with parameters:

- ▶ λ – Arrival rate (Poisson)
- ▶ μ – Service rate (Exponential; $E[S] = \frac{1}{\mu}$)
- ▶ θ – Patience rate (Exponential, $E[\text{Patience}] = \frac{1}{\theta}$)
- ▶ n – Number of Servers (Agents).

47

Testing the Erlang-A Primitives

- ▶ **Arrivals:** Poisson?
- ▶ **Service-durations:** Exponential?
- ▶ **(Im)Patience:** Exponential?
- ▶ Primitives independent (eg. Impatience and Service-Durations)?
- ▶ Customers / Servers Homogeneous?
- ▶ Service discipline FCFS?
- ▶ ... ?

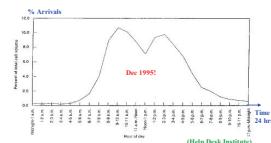
Validation: Support? Refute?

48

Arrivals to Service

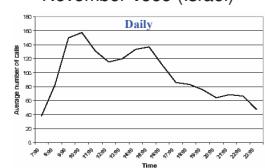
Arrival-Rates to Three Call Centers

Dec. 1995 (U.S. 700 Helpdesks)



May 1959 (England)

November 1999 (Israel)



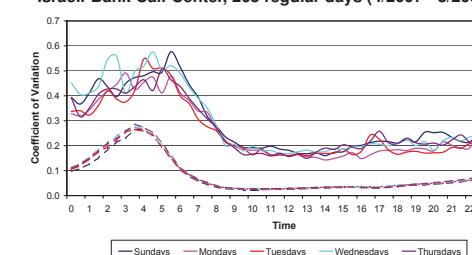
Random Arrivals "must be" (Axiomatically)
Time-Inhomogeneous Poisson

49

Arrivals to Service: only Poisson-Relatives

Arrival-Counts: Coefficient-of-Variation (CV), per 30 min.

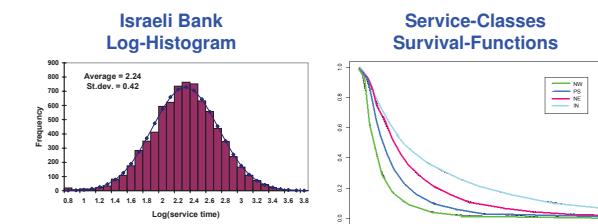
Israeli-Bank Call-Center, 263 regular days (4/2007 - 3/2008)



- ▶ Poisson CV (Dashed Line) = $1/\sqrt{\text{mean arrival-rate}}$
- ▶ Poisson CV's \ll Sampled CV's (Solid) \Rightarrow Over-Dispersion
- ⇒ Modeling (Poisson-Mixture) of and Staffing ($> \sqrt{\cdot}$) against Time-Varying Over-Dispersed Arrivals (w/ S. Maman & S. Zeltyn)

50

Service Durations: LogNormal Prevalent



- New Customers: 2 min (NW);
- Regulars: 3 min (PS);

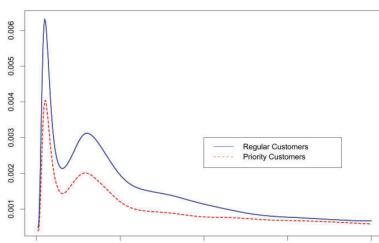
- Stock: 4.5 min (NE);
- Tech-Support: 6.5 min (IN).

- ▶ Service Durations are LogNormal (LN) and Heterogeneous

51

(Im)Patience while Waiting (Palm 1943-53)

Hazard Rate of (Im)Patience Distribution \propto Irritation
Regular over VIP Customers – Israeli Bank

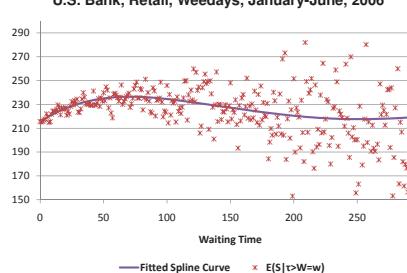


- ▶ VIP Customers are **more Patient** (Needy)
- ▶ **Peaks** of abandonment at times of **Announcements**
- ▶ Challenges: **Un-Censoring, Dependence (vs. KM), Smoothing**
- requires Call-by-Call Data

52

Dependent Primitives: Service- vs. Waiting-Time

Average Service-Time as a function of Waiting-Time
U.S. Bank, Retail, Weekdays, January-June, 2006



⇒ Focus on (**Patience, Service-Time**) jointly , w/ **Reich and Ritov**.
 $E[S | \text{Patience} = w]$, $w \geq 0$: **Service-Time of the Unserved**.

53

Erlang-A: Practical Relevance?

Experience:

- ▶ Arrival process **not pure Poisson** (time-varying, σ^2 too large)
- ▶ Service times **not Exponential** (typically close to LogNormal)
- ▶ Patience times **not Exponential** (various patterns observed).
- ▶ Building Blocks need **not be independent** (eg. long wait associated with long service; with w/ M. Reich and Y. Ritov)
- ▶ Customers and Servers **not homogeneous** (classes, skills)
- ▶ Customers return for service (after busy, abandonment; dependently; P. Khudiakov, M. Gorfine, P. Feigin)
- ▶ ... , and more.

Question: Is Erlang-A Relevant?

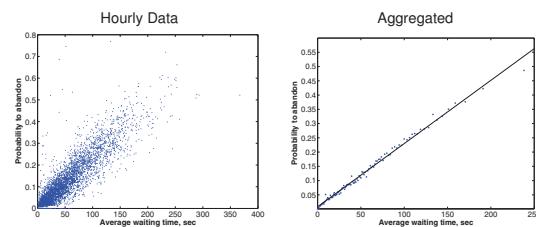
YES ! Fitting a Simple Model to a Complex Reality, both **Theoretically** and **Practically**

54

Estimating (Im)Patience: via $P\{Ab\} \propto E[W_q]$

Assume^{**} $Exp(\theta)$ (im)patience. Then, $P\{Ab\} = \theta \cdot E[W_q]$.

% Abandonment vs. Average Waiting-Time Bank Anonymous (JASA): Yearly Data



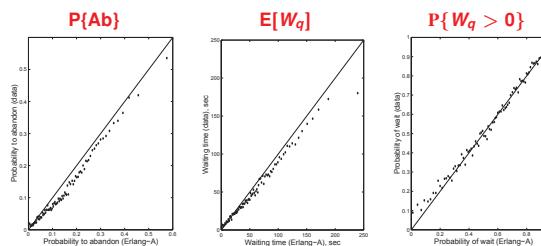
Graphs based on 4158 hour intervals.

Estimate of mean (im)patience: $250/0.55$ sec. ≈ 7.5 minutes.

55

Erlang-A: Fitting a Simple Model to a Complex Reality

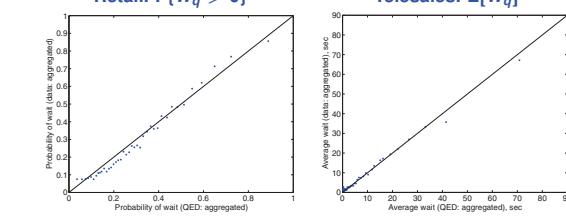
- Bank Anonymous Small Israeli Call-Center
- (Im)Patience (θ) estimated via $P\{Ab\} / E[W_q]$
- Graphs: **Hourly Performance vs. Erlang-A Predictions**, during 1 year (aggregating groups with 40 similar hours).



56

Erlang-A: Fitting a Simple Model to a Complex Reality

Large U.S. Bank Retail. $P\{W_q > 0\}$ Telesales. $E[W_q]$



Partial success – in some cases Erlang-A does not work well (Networking, SBR).

Ongoing Validation Project, w/ Y. Nardi, O. Plonsky, S. Zeltyn

57

Erlang-A: Simple, but Not Too Simple

Practical (Data-Based) questions, started in Brown et al. (JASA):

1. Fitting Erlang-A (Validation, w/ Nardi, Plonsky, Zeltyn).
2. Why does it practically work? justify **robustness**.
3. When does it fail? chart **boundaries**.
4. Generate needs for **new theory**.

Theoretical Framework: **Asymptotic Analysis**, as load- and staffing-levels increase, which reveals model-essentials:

- Efficiency-Driven (ED) regime: Fluid models (deterministic)
- Quality- and Efficiency-Driven (QED): Diffusion refinements.

Motivation: Moderate-to-large service systems (100's - 1000's servers), notably **Call-Centers**.

Results turn out **accurate** enough to also cover <10 servers:

- **Practically Important:** Relevant to **Healthcare**
(First: F. de Véricourt and O. Jennings; w/ G. Yom-Tov; Y. Marmor, S. Zeltyn; H. Kaspi, I. Zaeid)
- **Theoretically Justifiable:** Gap-Analysis by A. Janssen, J. van Leeuwaarden, B. Zhang, B. Zwart.

58

Operational Regimes: Conceptual Framework

R: Offered Load

Def. $R = \text{Arrival-rate} \times \text{Average-Service-Time} = \frac{\lambda}{\mu}$
eg. $R = 25 \text{ calls/min.} \times 4 \text{ min./call} = 100$

$N = \# \text{Agents}$? Intuition, as R or N increase unilaterally.

QD Regime: $N \approx R + \delta R$, $0.1 < \delta < 0.25$ (eg. $N = 115$)

- Framework developed in O. Garnett's MSc thesis
- Rigorously: $(N - R)/R \rightarrow \delta$, as $N, \lambda \uparrow \infty$, with μ fixed.
- Performance: Delays are rare events

ED Regime: $N \approx R - \gamma R$, $0.1 < \gamma < 0.25$ (eg. $N = 90$)

- Essentially **all** customers are delayed
- Wait same order as service-time; $\gamma\% \text{ Abandon}$ (10-25%).

QED Regime: $N \approx R + \beta \sqrt{R}$, $-1 < \beta < +1$ (eg. $N = 100$)

- Erlang 1913-24, Halfin & Whitt 1981 (for Erlang-C)
- %Delayed between 25% and 75%
- $E[\text{Wait}] \propto \frac{1}{\sqrt{N}} \times E[\text{Service}]$ (sec vs. min); 1-5% Abandon.

59

Operational Regimes: Rules-of-Thumb, w/ S. Zeltyn

Constraint	$P\{Ab\}$		$E[W]$		$P\{W > T\}$	
	Tight	Loose	Tight	Loose	Tight	Loose
Offered Load	1-10%	$\geq 10\%$	$\leq 10\%E[\tau]$	$\geq 10\%E[\tau]$	$0 \leq T \leq 10\%E[\tau]$	$T \geq 10\%E[\tau]$
Small (10's)	QED	QED	QED	QED	QED	QED
Moderate-to-Large (100's-1000's)	QED	ED,	QED	ED,	QED	ED+QED
		QED		QED if $\tau \stackrel{d}{=} \exp$		

ED: $N \approx R - \gamma R$ ($0.1 \leq \gamma \leq 0.25$).

QD: $N \approx R + \delta R$ ($0.1 \leq \delta \leq 0.25$).

QED: $N \approx R + \beta \sqrt{R}$ ($-1 \leq \beta \leq 1$).

ED+QED: $N \approx (1 - \gamma)R + \beta \sqrt{R}$ (γ, β as above).

WFM: How to determine specific staffing level N ? e.g. β .

60

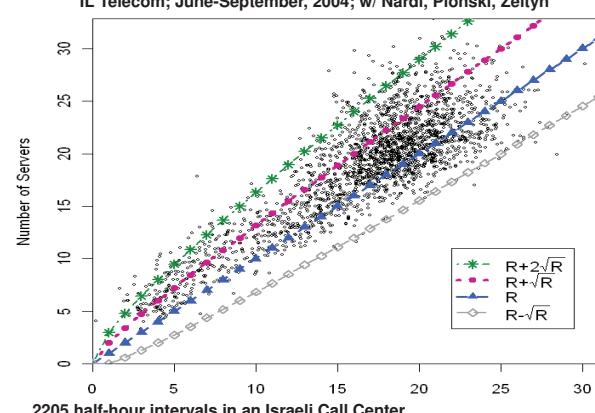
Operational Regimes: Scaling, Performance, w/ I. Gurvich & J. Huang

Erlang-A μ fixed	Conventional scaling			MS scaling			NDS scaling			
	Sub	Critical	Super	QD	QED	ED	ED+QED	Sub	Critical	Super
Offered load per server	$\frac{1}{1+\delta} < 1$	$1 - \frac{\delta}{\gamma} \approx 1$	$\frac{1}{1-\gamma} > 1$	$\frac{1}{1-\gamma}$	$1 - \frac{\delta}{\gamma}$	$\frac{1}{1-\gamma}$	$\frac{1}{1-\gamma} - \beta \sqrt{\frac{1}{1-\gamma} - \beta}$	$\frac{1}{1-\gamma}$	$1 - \frac{\delta}{\gamma}$	$\frac{1}{1-\gamma}$
Arrival rate λ	$\mu - \frac{\delta}{\gamma} \mu$	$\frac{\delta}{\gamma} \mu$	$\frac{\delta}{\gamma} \mu$	$\mu - \beta \mu \sqrt{\delta}$	$\frac{\delta}{\gamma} \mu$	$\frac{\delta}{\gamma} \mu$	$\frac{\delta}{\gamma} \mu - \beta \mu \sqrt{\frac{\delta}{\gamma} \mu - \beta}$	$\frac{\delta}{\gamma} \mu$	$\mu - \beta \mu$	$\frac{\delta}{\gamma} \mu$
Number of servers	1							n		n
Time-scale	n							1		n
Abandonment rate	θ/n			θ				θ/n		θ/n
Staffing level	$\frac{1}{\gamma} (1 + \delta)$	$\frac{1}{\gamma} (1 + \frac{\delta}{\gamma})$	$\frac{1}{\gamma} (1 - \gamma)$	$\frac{1}{\gamma} (1 + \delta)$	$\frac{1}{\gamma} (1 + \frac{\delta}{\gamma})$	$\frac{1}{\gamma} (1 - \gamma)$	$\frac{1}{\gamma} (1 + \frac{\delta}{\gamma})$	$\frac{1}{\gamma} (1 + \delta)$	$\frac{1}{\gamma} (1 - \gamma)$	$\frac{1}{\gamma} (1 - \gamma)$
Utilization	$\frac{1}{1+\delta}$	$1 - \sqrt{\frac{2-\delta}{\gamma}}$	1	$\frac{1}{1-\gamma}$	$1 - \sqrt{\frac{2(1-\gamma)(1+\delta)}{\gamma}}$	1	1	$\frac{1}{1+\delta}$	$1 - \sqrt{\frac{2-\delta}{\gamma}}$	1
$E(Q)$	$\frac{\mu}{\gamma}$	$\sqrt{\mu} \sqrt{\frac{2}{\gamma} \ln(\beta) - \beta}$	$\frac{\mu}{\gamma}$	$\sqrt{\mu} \sqrt{\frac{2(1-\gamma)(1+\delta)}{\gamma}}$	$\sqrt{\mu} \sqrt{\frac{2}{\gamma} \ln(\beta) - \beta}$	$\frac{\mu}{\gamma}$	$\frac{\mu}{\gamma} \sqrt{\frac{2(1-\gamma)(1+\delta)}{\gamma}}$	$\alpha(1)$	$\mu \sqrt{\frac{2}{\gamma} \ln(\beta) - \beta}$	$\frac{\mu}{\gamma}$
$P\{Ab\}$	$\frac{1+\delta}{\gamma} \alpha_1$	$\frac{1+\delta}{\gamma} \ln(\beta) - \beta$	γ	$\frac{1+\delta}{\gamma} \ln(\beta) - \beta$	$\frac{1+\delta}{\gamma} \ln(\beta) - \beta$	γ	$\gamma - \frac{\delta}{\gamma}$	$\alpha(1)$	$\frac{1+\delta}{\gamma} \ln(\beta) - \beta$	γ
$P\{W_q > T\}$	$\alpha_1 \in (0, 1)$	≈ 1	$\frac{1+\delta}{\gamma} \ln(\beta) - \beta \approx 0$	$\alpha_2 \in (0, 1)$		≈ 1	≈ 1	≈ 0		≈ 1
$P\{W_q > T\}$	$\alpha_1 e^{-\frac{1}{\gamma} \ln(\beta)}$	$1 + O(\frac{1}{\gamma})$	$1 + O(\frac{1}{\gamma})$	≈ 0		$G(T) \ln(\alpha_2 \gamma)$	α_2 if $G(T) = \gamma$	≈ 0	$\frac{1+\delta}{\gamma} \ln(\beta) - \beta$	$1 + O(\frac{1}{\gamma})$
Congestion $\frac{E\{Q\}}{E\{W_q\}}$	$\alpha_1 \frac{1+\delta}{\gamma}$	$\sqrt{\mu} \sqrt{\frac{2}{\gamma} \ln(\beta) - \beta}$	$n \mu \gamma / \theta$	$\frac{1+\delta}{\gamma} \ln(\beta) - \beta$	$\sqrt{\mu} \sqrt{\frac{2}{\gamma} \ln(\beta) - \beta}$	$\mu \int_0^{\infty} G(s) ds - \frac{\mu \ln(\beta)}{\gamma}$	$\alpha(1)$	$\sqrt{\mu} \sqrt{\frac{2}{\gamma} \ln(\beta) - \beta}$	$n \mu \gamma / \theta$	

61

QED Call Center: Staffing (N) vs. Offered-Load (R)

IL Telecom; June-September, 2004; w/ Nardi, Plonsky, Zeltyn

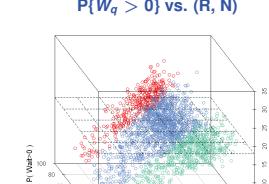


62

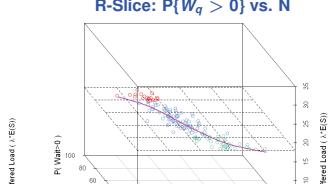
QED Call Center: Performance

Large Israeli Bank

P{W_q > 0} vs. (R, N)



R-Slice: P{W_q > 0} vs. N



3 Operational Regimes:

- **QD:** $\leq 25\%$
- **QED:** $25\% - 75\%$
- **ED:** $\geq 75\%$

63

QED Theory (Erlang '13; Halfin-Whitt '81; Garnett MSc; Zeltyn PhD)

Consider a sequence of steady-state M/M/ N + G queues, $N = 1, 2, 3, \dots$. Then the following points of view are equivalent, as $N \uparrow \infty$:

- **QED** $\% \{ \text{Wait} > 0 \} \approx \alpha$, $0 < \alpha < 1$;
- **Customers** $\% \{ \text{Abandon} \} \approx \frac{\gamma}{\sqrt{N}}$, $0 < \gamma$;
- **Agents** $\text{OCC} \approx 1 - \frac{\beta + \gamma}{\sqrt{N}}$ $-\infty < \beta < \infty$;
- **Managers** $N \approx R + \beta\sqrt{R}$, $R = \lambda \times \text{E}(S)$ not small;

► **QED performance:** Laplace Method (asymptotics of integrals).
 ► **Parameters:** Arrivals and Staffing - β , Services - μ , (Im)Patience - $g(0)$ = **patience density at the origin**.

64

QED Intuition: Why $P\{W_q > 0\} \in (0, 1)$?

1. Why **subtle**: Consider a large service system (e.g. call center).
 - Fix λ and let $n \uparrow \infty$: $P\{W_q > 0\} \downarrow 0$.
 - Fix n and let $\lambda \uparrow \infty$: $P\{W_q > 0\} \uparrow 1$.
 - \Rightarrow Must have both λ and n increase simultaneously:
 \Rightarrow (CLT) **Square-root staffing**: $n \approx R + \beta\sqrt{R}$.

2. **Erlang-A** (M/M/n+M), with parameters $\lambda, \mu, \theta; n$, in which $\mu = \theta$:
 (Im)Patience and Service-times are equally distributed.
 - Steady-state: $L(M/M/n+M) \stackrel{d}{=} L(M/M/\infty) \stackrel{d}{=} \text{Poisson}(R)$, with $R = \lambda/\mu$ (Offered-Load)
 - Poisson(R) $\stackrel{d}{\approx} R + Z\sqrt{R}$, with $Z \stackrel{d}{=} N(0, 1)$.
 - $P\{W_q(M/M/n+M) > 0\} \stackrel{\text{PASTA}}{=} P\{L(M/M/n+M) \geq n\} \stackrel{\mu = \theta}{=} P\{L(M/M/\infty) \geq n\} \approx P\{R + Z\sqrt{R} \geq n\} = P\{Z \geq (n - R)/\sqrt{R}\} \stackrel{\sqrt{\text{staffing}}}{\approx} P\{Z \geq \beta\} = 1 - \Phi(\beta)$.

3. QED Excursions

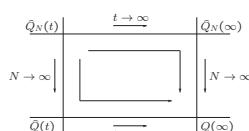
67

Process Limits (Queueing, Waiting)

- $\bar{Q}_N = \{\bar{Q}_N(t), t \geq 0\}$: stochastic process obtained by centering and rescaling:

$$\bar{Q}_N = \frac{Q_N - N}{\sqrt{N}}$$

- $\bar{Q}_N(\infty)$: stationary distribution of \bar{Q}_N
- $\bar{Q} = \{\bar{Q}(t), t \geq 0\}$: process defined by: $\bar{Q}_N(t) \xrightarrow{d} \bar{Q}(t)$.



Approximating (Virtual) Waiting Time

$$\hat{V}_N = \sqrt{N} V_N \Rightarrow \hat{V} = \left[\frac{1}{\mu} \bar{Q} \right]^{+}$$

Erlang-A: QED Approximations (Examples)

Assume Offered Load R not small ($\lambda \rightarrow \infty$).

Let $\hat{\beta} = \beta \sqrt{\frac{\mu}{\theta}}$, $h(\cdot) = \frac{\phi(\cdot)}{1 - \Phi(\cdot)}$ = hazard rate of $\mathcal{N}(0, 1)$.

► Delay Probability:

$$P\{W_q > 0\} \approx \left[1 + \sqrt{\frac{\theta}{\mu} \cdot \frac{h(\hat{\beta})}{h(-\hat{\beta})}} \right]^{-1}$$

► Probability to Abandon:

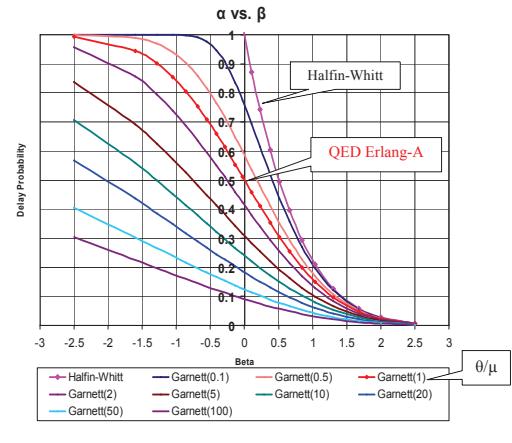
$$P\{\text{Ab} | W_q > 0\} \approx \frac{1}{\sqrt{N}} \cdot \sqrt{\frac{\theta}{\mu} \cdot [h(\hat{\beta}) - \hat{\beta}]}.$$

► $P\{\text{Ab}\} \propto E[W_q]$, both order $\frac{1}{\sqrt{N}}$:

$$\frac{P\{\text{Ab}\}}{E[W_q]} = \theta.$$

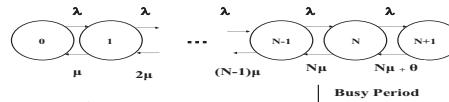
65

Garnett / Halfin-Whitt Functions: $P\{W_q > 0\}$



66

QED Intuition via Excursions: Busy-Idle Cycles



$Q(0) = N$: all servers busy, no queue.

Let $T_{N,N-1} = E[\text{Busy Period}]$ down-crossing $N \downarrow N-1$

$T_{N-1,N} = E[\text{Idle Period}]$ up-crossing $N-1 \uparrow N$

$$\text{Then } P(\text{Wait} > 0) = \frac{T_{N,N-1}}{T_{N,N-1} + T_{N-1,N}} = \left[1 + \frac{T_{N-1,N}}{T_{N,N-1}} \right]^{-1}.$$

68

QED Intuition via Excursions: Asymptotics

Calculate $T_{N-1,N} = \frac{1}{\lambda_N E_{1,N-1}} \sim \frac{1}{N\mu \times h(-\beta)/\sqrt{N}} \sim \frac{1}{\sqrt{N}} \cdot \frac{1/\mu}{h(-\beta)}$

$$T_{N,N-1} = \frac{1}{N\mu \pi_+(0)} \sim \frac{1}{\sqrt{N}} \cdot \frac{\beta/\mu}{h(\delta)/\delta}, \quad \delta = \beta\sqrt{\mu/\theta}$$

Both apply as $\sqrt{N}(1 - \rho_N) \rightarrow \beta$, $-\infty < \beta < \infty$.

Hence, $P(\text{Wait} > 0) \sim \left[1 + \frac{h(\delta)/\delta}{h(-\beta)/\beta} \right]^{-1}$.

69

QED Erlang-X (Markovian Q's: Performance Analysis)

- Pre-History, 1914: **Erlang** (Erlang-B = M/M/n/n, Erlang-C = M/M/n)
- Pre-History, 1974: Jagerman (Erlang-B)
- History Milestone, 1981: **Halfin-Whitt** (Erlang-C, GI/M/n)
- Erlang-A (M/M/n+M), 2002: w/ **Garnett** & Reiman
- Erlang-A with General (Im)Patience (M/M/N+G), 2005: w/ Zeltyn
- Erlang-C (ED+QED), 2009: w/ Zeltyn
- Erlang-B with Retrial, 2010: Avram, Janssen, van Leeuwaarden
- Refined Asymptotics (Erlang A/B/C), 2008-2011: Janssen, van Leeuwaarden, Zhang, Zwart
- NDS Erlang-C/A, 2009: Atar
- Production Q's, 2011: Reed & Zhang
- Universal Erlang-R, ongoing: w/ Gurvich & Huang
- Queueing Networks:
 - (Semi-)Closed: Nurse Staffing (Jennings & de Vericourt), CCs with IVR (w/ Khudiaidi), Erlang-R (w/ Yom-Tov)
 - CCs with Abandonment and Retrials: w/ Massey, Reiman, Rider, Stolyar
 - Markovian Service Networks: w/ Massey & Reiman
- Leaving:
 - **Non-Exponential Service Times**: M/D/n (Erlang-D), G/Ph/n, ..., G/GI/n+G, Measure-Valued Diffusions
 - **Dimensioning** (Staffing): M/M/n, ..., time-varying Q's, V- and Reversed-V, ...
 - **Control**: V-network, Reversed-V, ..., SBRNets

71

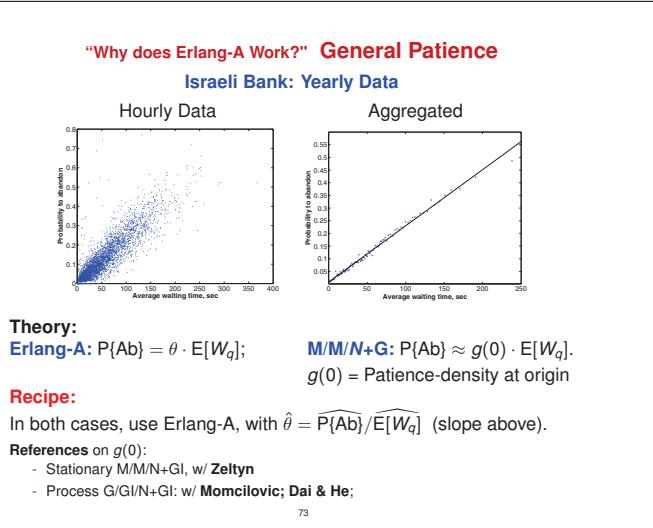
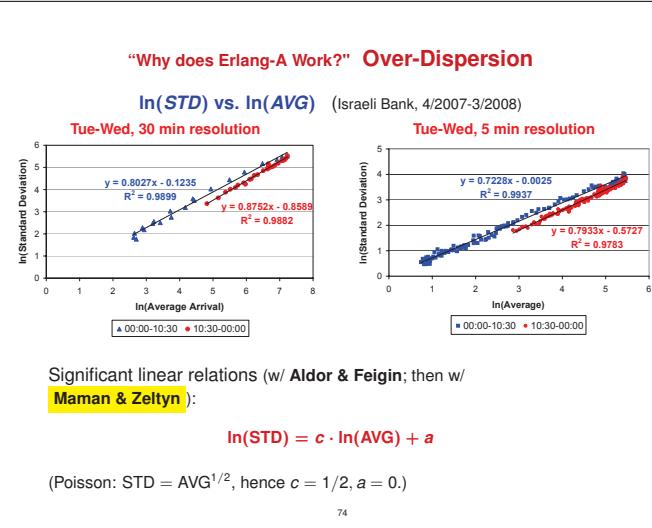
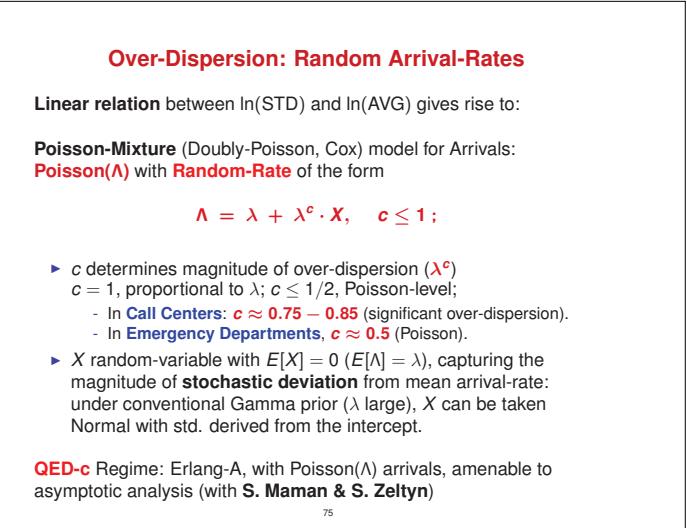
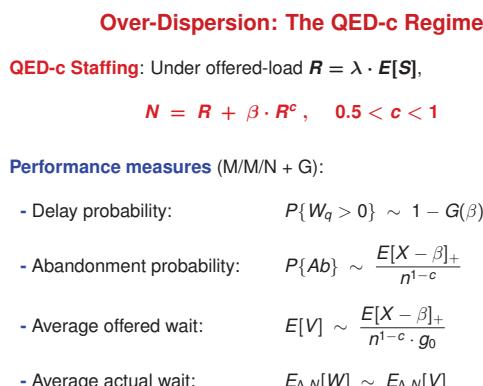
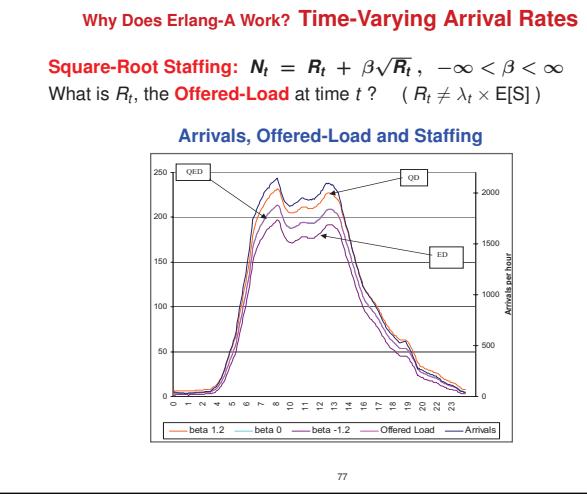
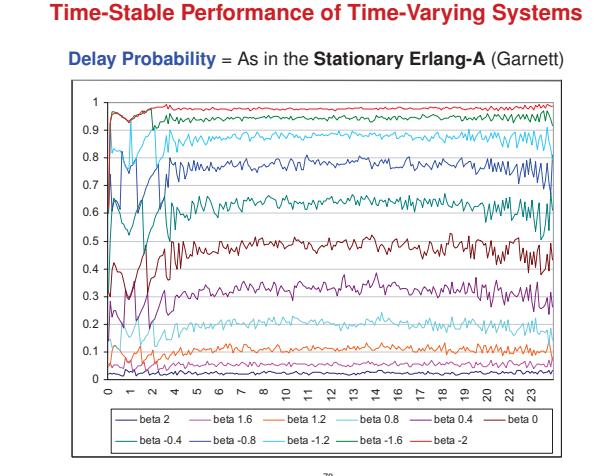
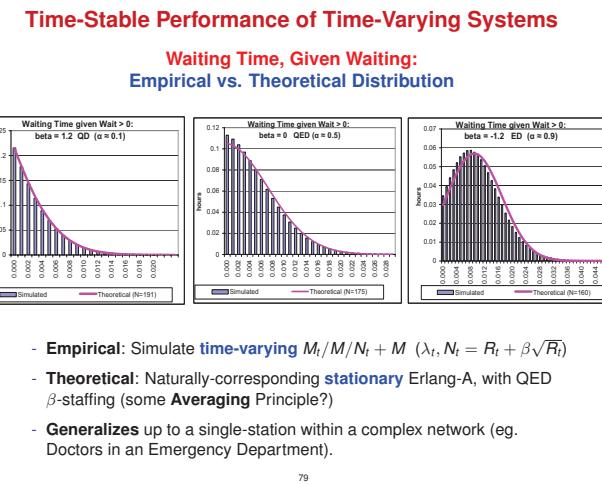
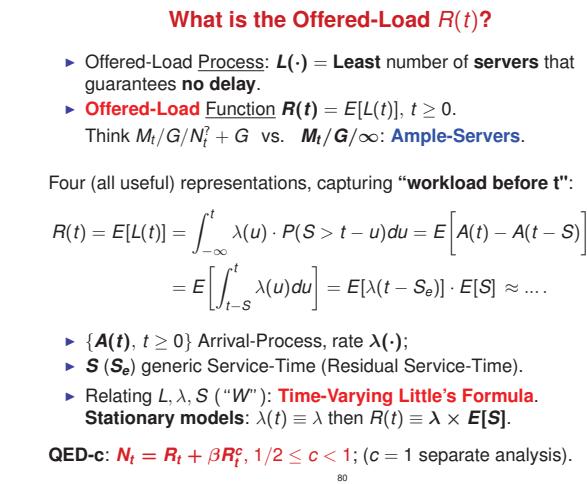
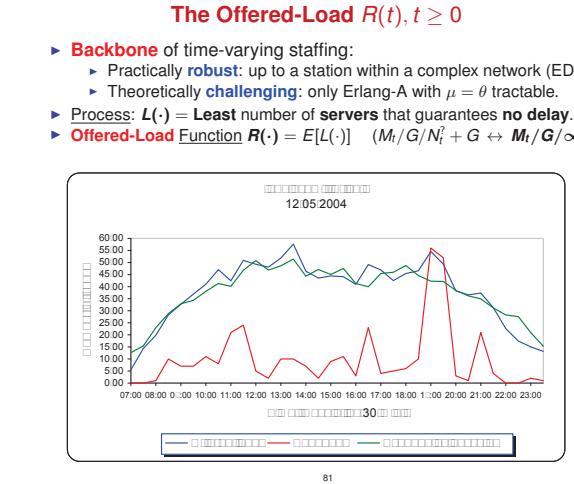
Back to "Why does Erlang-A Work?"

Theoretical (Partial) Answer:

$$M_t^{2,J} / G^* / N_t + G \stackrel{d}{\approx} (M/M/N+M)_t, \quad t \geq 0.$$

- **Over-Dispersed Arrivals**: $R + \beta R^c$, c-Staffing ($c \geq 1/2$).
- **General Patience**: Behavior at the origin matters most (only).
- **General Services**: Empirical insensitivity beyond the mean.
- **Heterogeneous Customers / Servers**: State-Collapse.
- **Time-Varying Arrivals**: Modified Offered-Load approximations.
- **Dependent Building-Blocks**: eg. When (Im)Patience and Service-Times correlated (positively):
 - Predict performance with $E[S | \text{Served}]$.
 - Calculate offered-load with $E[S] = E[S | \text{Wait} = 0]$.
 - Note: staffing \leftarrow service-times \leftarrow waiting / abandonment \leftarrow staffing

72

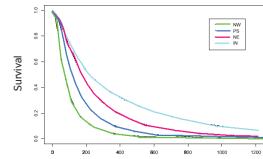


Estimating / Predicting the Offered-Load

Must account for “service times of abandoning customers”.

- ▶ Prevalent Assumption: Services and (Im)Patience independent.
- ▶ But recall Patient VIPs: Willing to wait more for longer services.

Survival Functions by Type (Small Israeli Bank)



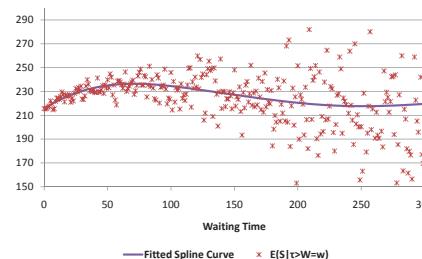
Service times stochastic order: $S_{\text{New}} \stackrel{\text{st}}{<} S_{\text{Reg}} \stackrel{\text{st}}{<} S_{\text{VIP}}$

Patience times stochastic order: $\tau_{\text{New}} \stackrel{\text{st}}{<} \tau_{\text{Reg}} \stackrel{\text{st}}{<} \tau_{\text{VIP}}$

82

Dependent Primitives: Service- vs. Waiting-Time

Average Service-Time as a function of Waiting-Time
U.S. Bank, Retail, Weekdays, January-June, 2006



⇒ Focus on (Patience, Service-Time) jointly , w/ Reich and Ritov.

$E[S | \text{Patience} = w]$, $w \geq 0$: Service-Time of the Unserved.

83

(Imputing) Service-Times of Abandoning Customers

w/ M. Reich, Y. Ritov:

1. Estimate $g(w) = E[S | \text{Patience} > \text{Wait} = w]$, $w \geq 0$: Mean service time of those served after waiting exactly w units of time (via non-linear regression): $S_i = g(W_i) + \varepsilon_i$;

2. Calculate

$$E[S | \text{Patience} = w] = g(w) - \frac{g'(w)}{h_r(w)};$$

$h_r(w)$ = hazard-rate of (im)patience (via un-censoring);

3. Offered-load calculations: Impute $E[S | \text{Patience} = w]$ (or the conditional distribution).

Challenges: Stable and accurate inference of g, g', h_r .

84

Extending the Notion of the “Offered-Load”

- ▶ Business (Banking Call-Center): Offered Revenues
- ▶ Healthcare (Maternity Wards): Fetus in stress
 - ▶ 2 patients (Mother + Child) = high operational and cognitive load
 - ▶ Fetus dies ⇒ emotional load dominates
- ▶ ⇒
 - ▶ Offered Operational Load
 - ▶ Offered Cognitive Load
 - ▶ Offered Emotional Load
- ▶ ⇒ Fair Division of Load (Routing) between 2 Maternity Wards: One attending to complications before birth, the other to complications after birth, and both share normal birth

85

The Technion SEE Center / Laboratory

Data-Based Service Science / Engineering

86