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Research Partners
I Students:

Aldor∗, Baron∗, Carmeli, Feldman∗, Garnett∗, Gurvich∗, Huang,
Khudiakov∗, Maman∗, Marmor∗, Reich, Rosenshmidt∗, Shaikhet∗,
Senderovic, Tseytlin∗, Yom-Tov∗, Yuviler, Zaied, Zeltyn∗, Zychlinski,
Zohar∗, Zviran∗, . . .

I Theory:
Armony, Atar, Gurvich, Jelenkovic, Kaspi, Massey, Momcilovic,
Reiman, Shimkin, Stolyar, Wasserkrug, Whitt, Zeltyn, . . .

I Industry:
Mizrahi Bank (A. Cohen, U. Yonissi), Rambam Hospital (R. Beyar, S.
Israelit, S. Tzafrir), IBM Research (OCR Project), Hapoalim Bank (G.
Maklef, T. Shlasky), Pelephone Cellular, . . .

I Technion SEE Center / Laboratory:
Feigin; Trofimov, Nadjharov, Gavako, Kutsy; Liberman, Koren,
Plonsky, Senderovic; Research Assistants, . . .

I Empirical/Statistical Analysis:
Brown, Gans, Zhao; Shen; Ritov, Goldberg; Gurvich, Huang,
Liberman; Armony, Marmor, Tseytlin, Yom-Tov; Zeltyn, Nardi,
Gorfine, . . .
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History, Resources (Downloadable)

I Math. + C.S. + Stat. + O.R. + Mgt. ⇒ IE (≥ 1990)

I Teaching: “Service-Engineering" Course (≥ 1995):
http://ie.technion.ac.il/serveng - website
http://ie.technion.ac.il/serveng/References/teaching_paper.pdf

I Call-Centers Research (≥ 2000)
e.g. <Call Centers> in Google-Scholar

I Healthcare Research (≥ 2005)
e.g. OCR Project: IBM + Rambam Hospital + Technion

I The Technion SEE Center (≥ 2007)
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The Case for Service Science / Engineering

I Service Science / Engineering (vs. Management) are emerging
Academic Disciplines. For example, universities (world-wide),
IBM (SSME, a là Computer-Science), USA NSF (SEE), Germany
IAO (ServEng), ...

I Models that explain fundamental phenomena , which are
common across applications:

- Call Centers
- Hospitals
- Transportation
- Justice, Fast Food, Police, Internet, . . .

I Simple models at the Service of Complex Realities (Human)
Note: Simple yet rooted in deep analysis.

I Mostly What Can Be Done vs. How To
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Title: Expands the Scientific Paradigm

Physics, Biology, . . . : Measure, Model, Experiment, Validate, Refine.
Human-complexity triggered above in Transportation, Economics.

Starting with Data, expand to:Service Science/Engineering/Management

7. Feedback 1. Measurements / Data

6. Improvement 5. Implementation
2. Modeling, 

Analysis
3. Validation

8. Novel needs,  
necessitating Science

4. Maturity enables 
Deployment

e.g. Validate, refute or discover congestion laws (Little, PASTA,
SSC, ?, ?,...), in call centers and hospitals
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Little’s Law: Call Center & Emergency Department

Time-Gap: # in System lags behind Piecewise-Little (L = λ×W )

Little’s Law and the Offered-Load: 
Empirical Adventures in Call Centers and Hospitals 

 
 

The Black-Box View of a Call Center:  
Number in Q vs. Little shows a time-gap. 

 
 

USBank Customers in queue(average), Telesales
10.10.2001
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HomeHospital Average patients in ED
February 2004, Wednesdays
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  בהסתכלות ממוצעת על יום באמצע השבוע לאורך מספר חודשים
  

HomeHospital Average patients in ED
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⇒ Time-Varying Little’s Law
I Berstemas & Mourtzinou;
I Fralix, Riano, Serfozo; . . .
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QED Call Center: Staffing (N) vs. Offered-Load (R)
IL Telecom; June-September, 2004; w/ Nardi, Plonski, Zeltyn

Empirical Analysis of a QED Call Center 

 
 
• 2205 half-hour intervals of an Israeli call center 
• Almost all intervals are within R R− and 2R R+  (i.e. 1 2β− ≤ ≤ ), 

implying: 
o Very decent forecasts made by the call center 
o A very reasonable level of service (or does it?) 

• QED?  
o Recall: ( )GMR x is the asymptotic probability of P(Wait>0) as a 

function of β , where x θ
µ=  

o In this data-set, 0.35x θ
µ= =  

o Theoretical analysis suggests that under this condition, for 1 2β− ≤ ≤ , 
we get 0 ( 0) 1P Wait≤ > ≤ … 

2205 half-hour intervals in an Israeli Call Center
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QED Call Center: Performance

Large Israeli Bank

P{Wq > 0} vs. (R, N) R-Slice: P{Wq > 0} vs. N

  

 

 
• Intercepting plane of the previous plot for a "constant" offered load (actually 

18 18.5R≤ ≤ ) 
• Smoother line was created using smoothing splines. 
• General shape of the smoothing line is as the Garnett delay functions! 
 
• In 2-d view, we get the following: 

 

3 Operational Regimes:
I QD: ≤ 25%

I QED: 25%− 75%

I ED: ≥ 75%
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Operational Regimes: Scaling, Performance,
w/ I. Gurvich & J. Huang
Table 1: Operational Regimes: Asymptotics, Scaling, Performance

Erlang-A Conventional scaling MS scaling NDS scaling

µ fixed Sub Critical Super QD QED ED ED+QED Sub Critical Super

Offered load per server 1
1+δ

< 1 1− β√
n
≈ 1 1

1−γ > 1 1
1+δ

1− β√
n

1
1−γ

1
1−γ − β

√
1

n(1−γ)3
1

1+δ
1− β

n
1

1−γ

Arrival rate λ µ
1+δ

µ− β√
n
µ µ

1−γ
nµ
1+δ

nµ− βµ√n nµ
1−γ

nµ
1−γ − βµ

√
n

(1−γ)3
nµ
1+δ

nµ− βµ nµ
1−γ

Number of servers 1 n n

Time-scale n 1 n

Abandonment rate θ/n θ θ/n

Staffing level λ
µ
(1 + δ) λ

µ
(1 + β√

n
) λ

µ
(1− γ) λ

µ
(1 + δ) λ

µ
+ β

√
λ
µ

λ
µ
(1− γ) λ

µ
(1− γ) + β

√
λ
µ

λ
µ
(1 + δ) λ

µ
+ β λ

µ
(1− γ)

Utilization 1
1+δ

1−
√

θ
µ

h(β̂)√
n

1 1
1+δ

1−
√

θ
µ

(1−α2)β̂+α2h(β̂)√
n

1 1 1
1+δ

1−
√

θ
µ

h(β̂)

n
1

E(Q) α1

δ

√
n
√

µ
θ
[h(β̂)− β̂] nµγ

θ(1−γ)
1√
2π

1+δ
δ2
%n 1√

n

√
n
√

µ
θ
[h(β̂)− β̂]α2

nµγ
θ(1−γ)

nµ
θ(1−γ)

(γ − β√
n(1−γ)

) o(1) n
√

µ
θ
[h(β̂)− β̂] n2µγ

θ(1−γ)

P(Ab) 1
n

1+δ
δ

θ
µ
α1

1√
n

√
θ
µ
[h(β̂)− β̂] γ 1√

2π

θ
µ

(1+δ)2

δ2
%n 1

n3/2
1√
n

√
θ
µ
[h(β̂)− β̂]α2 γ γ − β

√
1−γ√
n

o( 1
n2 ) 1

n

√
θ
µ
[h(β̂)− β̂] γ

P(Wq > 0) α1 ∈ (0,1) ≈ 1 1√
2π

1+δ
δ
%n 1√

n
≈ 0 α2 ∈ (0,1) ≈ 1 ≈ 1 ≈ 0 ≈ 1

P(Wq > T ) α1e
− δ

1+δ
µt 1 +O( 1√

n
) 1 +O( 1

n
) ≈ 0 Ḡ(T )1{G(T )<γ} α3, if G(T ) = γ ≈ 0 Φ̄(β̂+

√
θµT )

Φ̄(β̂)
1 +O( 1

n
)

Congestion EWq

ES α1
1+δ
δ

√
n
√

µ
θ
[h(β̂)− β̂] nµγ/θ 1√

2π

(1+δ)2

δ2
%n 1

n3/2
1√
n

√
µ
θ
[h(β̂)− β̂]α2 µ

∫∫∫ x∗

0
Ḡ(s)ds µ

∫∫∫ x∗

0
Ḡ(s)ds− µβ

√
1−γ

hG(x∗)
√
n

o( 1
n
)

√
µ
θ
[h(β̂)− β̂] nµγ/θ

• δ > 0, γ ∈ (0, 1) and β ∈ (−∞,∞);

• QD:% = 1
1+δe

δ
1+δ < 1;

• ED (ED+QED): G(x∗) = γ;

• QED:α2 = [1 +
√

θ
µ
h(β̂)
h(−β) ]−1, here β̂ = β

√
µ
θ and h(x) = φ(x)

Φ̄(x)
;

• ED+QED:α3 = Ḡ(T )Φ̄(β
√

µ
g(T ));

• Conventional: critical: P(W > T ) = P( W√
n
> T√

n
), super: P(W > T ) = P(Wn > T

n ); NDS: Super: P(W > T ) = P(Wn > T
n ).

1
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Prerequisite I: Data

Averages Prevalent (and could be useful / interesting).
But I need data at the level of the Individual Transaction:
For each service transaction (during a phone-service in a call center,
or a patient’s visit in a hospital, or browsing in a website, or . . .), its
operational history = time-stamps of events .

Sources: “Service-floor" (vs. Industry-level, Surveys, . . .)

I Administrative (Court, via “paper analysis")
I Face-to-Face (Bank, via bar-code readers)
I Telephone (Call Centers, via ACD / CTI, IVR/VRU)
I Hospitals (Emergency Departments, . . .)

I Expanding:
I Hospitals, via RFID
I Operational + Financial + Contents (Marketing, Clinical)
I Internet, Chat (multi-media)
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Pause for a Commercial:

The Technion SEE Center
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Technion SEE = Service Enterprise Engineering

SEELab: Data-repositories for research and teaching

I For example:
I Bank Anonymous: 1 years, 350K calls by 15 agents - in 2000.

Brown, Gans, Sakov, Shen, Zeltyn, Zhao (JASA), paved the way
for:

I U.S. Bank: 2.5 years, 220M calls, 40M by 1000 agents.
I Israeli Cellular: 2.5 years, 110M calls, 25M calls by 750 agents.
I Israeli Bank: from January 2010, daily-deposit at a SEESafe.
I Israeli Hospital: 4 years, 1000 beds; 8 ED’s- Sinreich’s data.

SEEStat: Environment for graphical EDA in real-time

I Universal Design, Internet Access, Real-Time Response.

SEEServer: Free for academic use
Register, then access (presently) U.S. Bank and Bank Anonymous.

Visitor: run mstsc, seeserver.iem.technion.ac.il ; Self-Tutorial
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Tutorial Cover; State-Space Collapse from Tutorial

4 overheads:

I Cover (make sure relevant to the lecture (e.g. APS, HKUST)
I Page 2 (again, make sure relevant to the lecture)
I Contents (with Stat-Space Collapse yellowed)
I The page with State-Space Collapse.

13



eg. RFID-Based Data: Mass Casualty Event (MCE)

Drill: Chemical MCE, Rambam Hospital, May 2010

מאייר -קלים ודחק
'מרתף פנימית ו-משפחות
קרדיולוגיהעורנוירולוגיהבינוניים

נספח לנוהל
קרדיולוגיה,עור,נוירולוגיה-בינוניים
חדר אוכל-קשים

ד"מלר-משולבים 

Focus on severely wounded casualties (≈ 40 in drill)
Note: 20 observers support real-time control (helps validation)
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Data Cleaning: MCE with RFID Support 
 
 
 

Data-base Company report comment 
Asset id order Entry date Exit date Entry date   Exit date      

4 1 1:14:07 PM   1:14:00 PM     
6 1 12:02:02 PM 12:33:10 PM 12:02:00 PM 12:33:00 PM   
8 1 11:37:15 AM 12:40:17 PM 11:37:00 AM   exit is missing 

10 1 12:23:32 PM 12:38:23 PM 12:23:00 PM     
12 1 12:12:47 PM 12:35:33 PM   12:35:00 PM entry is missing 
15 1 1:07:15 PM   1:07:00 PM     
16 1 11:18:19 AM 11:31:04 AM 11:18:00 AM 11:31:00 AM   
17 1 1:03:31 PM   1:03:00 PM     
18 1 1:07:54 PM   1:07:00 PM     
19 1 12:01:58 PM   12:01:00 PM     
20 1 11:37:21 AM 12:57:02 PM 11:37:00 AM 12:57:00 PM   
21 1 12:01:16 PM 12:37:16 PM 12:01:00 PM     

22 1 12:04:31 PM 12:20:40 PM     
first customer is 
missing 

22 2 12:27:37 PM   12:27:00 PM     
25 1 12:27:35 PM 1:07:28 PM 12:27:00 PM 1:07:00 PM   
27 1 12:06:53 PM   12:06:00 PM     

28 1 11:21:34 AM 11:41:06 AM 11:41:00 AM 11:53:00 AM
exit time instead 
of entry time 

29 1 12:21:06 PM 12:54:29 PM 12:21:00 PM 12:54:00 PM   
31 1 11:40:54 AM 12:30:16 PM 11:40:00 AM 12:30:00 PM   
31 2 12:37:57 PM 12:54:51 PM 12:37:00 PM 12:54:00 PM   
32 1 11:27:11 AM 12:15:17 PM 11:27:00 AM 12:15:00 PM   
33 1 12:05:50 PM 12:13:12 PM 12:05:00 PM 12:15:00 PM wrong exit time 
35 1 11:31:48 AM 11:40:50 AM 11:31:00 AM 11:40:00 AM   
36 1 12:06:23 PM 12:29:30 PM 12:06:00 PM 12:29:00 PM   
37 1 11:31:50 AM 11:48:18 AM 11:31:00 AM 11:48:00 AM   
37 2 12:59:21 PM   12:59:00 PM     
40 1 12:09:33 PM 12:35:23 PM 12:09:00 PM 12:35:00 PM   
43 1 12:58:21 PM   12:58:00 PM     
44 1 11:21:25 AM 11:52:30 AM   11:52:00 AM entry is missing 
46 1 12:03:56 PM   12:03:00 PM     
48 1 11:19:47 AM   11:19:00 AM     
49 1 12:20:36 PM   12:20:00 PM     
52 1 11:21:29 AM 11:50:49 AM 11:21:00 AM 11:50:00 AM   
52 2 12:10:07 PM 1:07:28 PM 12:10:00 PM 1:07:00 PM recorded as exit   
53 1 12:24:26 PM   12:24:00 PM     
57 1 11:32:02 AM 11:58:31 AM   11:58:00 AM entry is missing 
57 2 12:59:41 PM 1:14:00 PM 12:59:00 PM 1:14:00 PM   
60 1 12:27:12 PM 12:48:41 PM 12:27:00 PM 12:48:00 PM   
63 1 12:10:04 PM   12:10:00 PM     
64 1 11:30:29 AM 12:43:38 PM 11:30:00 AM 12:43:00 PM   

Imagine “Cleaning" 60,000+ customers per day (call centers) !
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Beyond Averages: The Human Factor

Histogram of Service-Time in a (Small Israeli) Bank, 1999
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I 6.8% Short-Services:

Agents’ “Abandon" (improve bonus, rest),
(mis)lead by incentives

I Distributions must be measured (in seconds = natural scale)
I LogNormal service times common in call centers
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(mis)lead by incentives

I Distributions must be measured (in seconds = natural scale)
I LogNormal service times common in call centers
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Validating LogNormality of Service-Duration

Israeli Call Center, Nov-Dec, 1999
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I Practically Important: (mean, std)(log) characterization
I Theoretically Intriguing: Why LogNormal ? Naturally multiplicative

but, in fact, also Infinitely-Divisible (Generalized Gamma-Convolutions)

I Simple-model of a complex-reality? The Service Process:
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(Telephone) Service-Process = “Phase-Type" Model
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Individual Agents: Service-Duration, Variability
w/ Gans, Liu, Shen & Ye

Agent 14115

Service-Time Evolution: 6 month Log(Service-Time)

I Learning: Noticeable decreasing-trend in service-duration
I LogNormal Service-Duration, individually and collectively
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Individual Agents: Learning, Forgetting, Switching

Daily-Average Log(Service-Time), over 6 months
Agents 14115, 14128, 14136
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Individual Agents: Learning, Forgetting, Switching

Daily-Average Log(Service-Time), over 6 months
Agents 14115, 14128, 14136
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Why Bother?

In large call centers:
+One Second to Service-Time implies +Millions in costs, annually

⇒ Time and "Motion" Studies (Classical IE with New-age IT)

I Service-Process Model: Customer-Agent Interaction
I Work Design (w/ Khudiakov)

eg. Cross-Selling: higher profit vs. longer (costlier) services;
Analysis yields (congestion-dependent) cross-selling protocols

I “Worker" Design (w/ Gans, Liu, Shen & Ye)
eg. Learning, Forgetting, . . . : Staffing & individual-performance
prediction, in a heterogenous environment

I IVR-Process Model: Customer-Machine Interaction
75% bank-services, poor design, yet scarce research;
Same approach, automatic (easier) data (w/ Yuviler)

21



Why Bother?

In large call centers:
+One Second to Service-Time implies +Millions in costs, annually

⇒ Time and "Motion" Studies (Classical IE with New-age IT)

I Service-Process Model: Customer-Agent Interaction
I Work Design (w/ Khudiakov)

eg. Cross-Selling: higher profit vs. longer (costlier) services;
Analysis yields (congestion-dependent) cross-selling protocols

I “Worker" Design (w/ Gans, Liu, Shen & Ye)
eg. Learning, Forgetting, . . . : Staffing & individual-performance
prediction, in a heterogenous environment

I IVR-Process Model: Customer-Machine Interaction
75% bank-services, poor design, yet scarce research;
Same approach, automatic (easier) data (w/ Yuviler)

21



Why Bother?

In large call centers:
+One Second to Service-Time implies +Millions in costs, annually

⇒ Time and "Motion" Studies (Classical IE with New-age IT)

I Service-Process Model: Customer-Agent Interaction
I Work Design (w/ Khudiakov)

eg. Cross-Selling: higher profit vs. longer (costlier) services;
Analysis yields (congestion-dependent) cross-selling protocols

I “Worker" Design (w/ Gans, Liu, Shen & Ye)
eg. Learning, Forgetting, . . . : Staffing & individual-performance
prediction, in a heterogenous environment

I IVR-Process Model: Customer-Machine Interaction
75% bank-services, poor design, yet scarce research;
Same approach, automatic (easier) data (w/ Yuviler)

21



IVR-Time: Histograms
Israeli Bank: IVR/VRU Only, May 2008
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IVR-Process: “Phase-Type" Model
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Started with Call Centers, Expanded to Hospitals

Call Centers - U.S. (Netherlands) Stat.

I $200 – $300 billion annual expenditures (0.5)
I 100,000 – 200,000 call centers (1500-2000)
I “Window" into the company, for better or worse
I Over 3 million agents = 2% – 4% workforce (100K)

Healthcare - similar and unique challenges:

I Cost-figures far more staggering
I Risks much higher
I ED (initial focus) = hospital-window
I Over 3 million nurses
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Call-Center Environment: Service Network
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Call-Centers: “Sweat-Shops of the 21st Century"
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Call-Center Network: Gallery of Models
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Call-Center Network: Gallery of Models

Add marks of topics to focus on
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Skills-Based Routing in Call Centers
EDA and OR, with I. Gurvich and P. Liberman

Mktg. ⇒

OR ⇒

HRM ⇒

MIS ⇒
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SBR Topologies: I; V, Reversed-V; N, X; W, M

Israeli Cellular, March 2008
Implication

Itai Gurvich (Kellogg/MEDS) Call Centers as Queueing Systems May, 2010 41 / 52
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SBR: Class-Dependent Services

“Reduction" to V-Topology (Equivalent Brownian Control)
“Many-server approximations” simplification

The class-dependent case

In what sense does the reduction work? Same Brownian control
problem.
Itai Gurvich (Kellogg/MEDS) Call Centers as Queueing Systems May, 2010 43 / 52

PhD’s: Tezcan, Dai; Shaikhet, w/ Atar; Gurvich, Whitt
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SBR: Pool-Dependent Services

“Reduction" to Reversed-V and I (Equivalent Brownian Control)
Many-server approximations simplification

The pool-dependent case

e.g. Tezcan and Dai(09’), G. & Whitt (08’), Atar et. al. (10’)
Itai Gurvich (Kellogg/MEDS) Call Centers as Queueing Systems May, 2010 42 / 52

PhD’s: Tezcan, Dai; Shaikhet, w/ Atar; Gurvich, Whitt
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Waiting Times in a Call Center (Theory?)

Exponential in Heavy-Traffic (min.)
Small Israeli Bank

quantiles of waiting times to those of the exponential (the straight line at the right plot). The �t is reasonable
up to about 700 seconds. (The p-value for the Kolmogorov-Smirnov test for Exponentiality is however 0 {
not that surprising in view of the sample size of 263,007).

Figure 9: Distribution of waiting time (1999)

Time

0 30 60 90 120 150 180 210 240 270 300

29.1 %

20 %

13.4 %

8.8 %

6.9 %
5.4 %

3.9 %
3.1 %

2.3 % 1.7 %

Mean =  98
SD =  105

Waiting time given agent

E
xp

 q
ua

nt
ile

s

0 200 400 600

0
20

0
40

0
60

0

Remark on mixtures of independent exponentials: Interestingly, the means and standard deviations in Table
19 are rather close, both annually and across all months. This suggests also an exponential distribution
for each month separately, as was indeed veri�ed, and which is apparently inconsistent with the observerd
annual exponentiality. The phenomenon recurs later as well, hence an explanation is in order. We shall be
satis�ed with demonstrating that a true mixture W of independent random varibles Wi, all of which have
coeÆcients of variation C(Wi) = 1, can also have C(W ) � 1. To this end, let Wi denote the waiting time in
month i, and suppose it is exponentially distributed with meanmi. Assume that the months are independent
and let pi be the fraction of calls performed in month i (out of the yearly total). If W denotes the mixture
of these exponentials (W =Wi with probability pi, that is W has a hyper-exponential distribution), then

C2(W ) = 1 + 2C2(M);

where M stands for a �ctitious random variable, de�ned to be equal mi with probability pi. One concludes
that if themi's do not vary much relative to their mean (C(M) << 1), which is the case here, then C(W ) � 1,
allowing for approximate exponentiality of both the mixture and its constituents.

6.2.1 The various waiting times, and their rami�cations

We �rst distinguished between queueing time and waiting time. The latter does not account for zero-waits,
and it is more relevant for managers, especially when considered jointly with the fraction of customers that
did wait. A more fundamental distinction is between the waiting times of customer that got served and those
that abandoned. Here is it important to recognize that the latter does not describe customers' patience,
which we now explain.

A third distinction is between the time that a customer needs to wait before reaching an agent vs. the time
that a customer is willing to wait before abandoning the system. The former is referred to as virtual waiting
time, since it amounts to the time that a (virtual) customer, equipped with an in�nite patience, would have
waited till being served; the latter will serve as our operational measure of customers' patience. While both
measures are obviously of great importance, note however that neither is directly observable, and hence must
be estimated.
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Routing via Thresholds (sec.)
Large U.S. Bank
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ER / ED Environment: Service Network

Acute (Internal, Trauma) Walking

Multi-Trauma
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Queueing in a “Good" Beijing Hospital, at 6am
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Emergency-Department Network: Gallery of Models
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Emergency-Department Network: Gallery of Models

Returns
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I Forecasting, Abandonment = LWBS, SBR ≈ Flow Control
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Emergency-Department Network: Gallery of Models

Add ED-to-IW routing
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ED Design, with B. Golany, Y. Marmor, S. Israelit

Routing: Triage (Clinical), Fast-Track (Operational), . . . (via DEA)
eg. Fast Track most suitable when elderly dominate

Triage

ED Area 1

“Hospital”

ED Area 2 ED Area 3

Patient Arrival

Patient Departure

(a) Triage Model
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Fast Tack
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(b) Fast-Track Model
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(c) Illness-based Model (d) Walking-Acute Model
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Emergency-Department Network: Flow Control
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Emergency-Department Network: Gallery of Models
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I Queueing-Science, w/ Armony, Marmor, Tseytlin, Yom-Tov
I Fair ED-to-IW Routing (Patients vs. Staff), w/ Momcilovic, Tseytlin
I Triage vs. In-Process / Release in EDs, w/ Carmeli, Huang, Shimkin
I Workload and Offered-Load in Fork-Join Networks, w/ Kaspi, Zaeid
I Synchronization Control of Fork-Join Networks, w/ Atar, Zviran
I Staffing Time-Varying Q’s with Re-Entrant Customers, w/ Yom-Tov
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ED Patient Flow: The Physicians View
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I Goal: Adhere to Triage-Constraints, then process/release In-Process Patients
I Model = Multi-class Q with Feedback: Min. convex congestion costs of

IP-Patients, s.t. deadline constraints on Triage-Patients.
I Solution: In conventional heavy-traffic, asymptotic least-cost s.t. asymptotic

compliance, via threshold (w/ B. Carmeli, J. Huang, S. Israelit, N. Shimkin; as
in Plambeck, Harrison, Kumar, who applied admission control).
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Operational Fairness

1. “Punishing" fast wards in ED-to-IW Routing:

I Parallel IWs: similar clinically , differ operationally
I Problem: Short Length-of-Stay goes hand in hand with high

bed-occupancy, bed-turnover, yet clinically apt: unfair!
I Solution: Both nurses and managers content, w/ P. Momcilovic

and Y. Tseytlin (3 time-scales: hour, day, week; “compare" with
call-centers SBR)

2. Balancing Load across Maternity Wards:

I 2 Maternity Wards: 1 = pre-birth, 2 = post-birth complications

I Problem: Nurses think the “others-work-less": unfair!
I Goal: Balance workload, mostly via normal births
I Challenge: Workload is Operational, Cognitive, Emotional

I Operational: Work content of a task, in time-units
I Emotional: e.g. Mother and fetus-in-stress, suddenly fetus dies

⇒ Need help: A. Rafaeli & students (Psychology) - Ongoing
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I Emotional: e.g. Mother and fetus-in-stress, suddenly fetus dies

⇒ Need help: A. Rafaeli & students (Psychology) - Ongoing
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LogNormal & Beyond: Length-of-Stay in a Hospital

Israeli Hospital, in Days: LN
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Israeli Hospital, in Hours: Mixture
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Explanation: Patients released
around 3pm (1pm in Singapore)

Why Bother ?
I Hourly Scale: Staffing,. . .
I Daily: Flow / Bed Control,. . .

Workload at the Internal Ward (In Progress): 
Arrivals, Departures, # Patients in Ward A, by Hour
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Prerequisite II: Models (Fluid Q’s)
“Laws of Large Numbers" capture Predictable Variability

Deterministic Models: Scale Averages-out Stochastic Individualism

# Severely-Wounded Patients, 11:00-13:00 (Censored LOS)

                       Cleaning Data – An Example: 
                       RFID data in an MCE Drill 
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I Paths of doctors, nurses, patients (100+, 1 sec. resolution)
eg. (could) Help predict “What if 150+ casualties severely wounded ?"

I Transient Q’s:
I Control of Mass Casualty Events (w/ I. Cohen, N. Zychlinski)
I Chemical MCE = Needy-Content Cycles (w/ G. Yom-Tov)
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The Basic Service-Network Model: Erlang-R

Erlang-R: 
 
 
 
 
 
 
 
 
 
 
 
 
 

Needy 
(s-servers) 

Content 
(Delay) 

1-p 
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Arrivals Patient discharge 

Needy 
(st-servers) 

rate- μ

Content 
(Delay) 
rate - δ 

1-p 
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1 

2 

Arrivals 
Poiss(λt) Patient discharge 

Erlang-R (IE: Repairman Problem 50’s; CS: Central-Server 60’s) =
2-station “Jackson" Network = (M/M/S, M/M/∞) :

I λ(t) – Time-Varying Arrival rate
I S(·) – Number of Servers (Nurses / Physicians).
I µ – Service rate (E [Service] = 1

µ
)

I p – ReEntrant (Feedback) fraction
I δ – Content-to-Needy rate (E [Content] = 1

δ
)
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Erlang-R: Fitting a Simple Model to a Complex Reality

Chemical MCE Drill (Israel, May 2010)

Arrivals & Departures (RFID) Erlang-R (Fluid, Diffusion)
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I Recurrent/Repeated services in MCE Events: eg. Injection every 15 minutes

I Fluid (Sample-path) Modeling, via Functional Strong Laws of Large Numbers
I Stochastic Modeling, via Functional Central Limit Theorems

I ED in MCE: Confidence-interval, usefully narrow for Control
I ED in normal (time-varying) conditions: Personnel Staffing
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Prerequisite II: Models (Diffusion/QED’s Q’s)

Traditional Queueing Theory predicts that Service-Quality and
Servers’ Efficiency must be traded off against each other.

For example, M/M/1 (single-server queue): 91% server’s utilization
goes with

Congestion Index =
E [Wait ]

E [Service]
= 10,

and only 9% of the customers are served immediately upon arrival.

Yet, heavily-loaded queueing systems with Congestion Index = 0.1
(Waiting one order of magnitude less than Service) are prevalent:

I Call Centers: Wait “seconds" for minutes service;
I Transportation: Search “minutes" for hours parking;
I Hospitals: Wait “hours" in ED for days hospitalization in IW’s;

and, moreover, a significant fraction are not delayed in queue. (For
example, in well-run call-centers, 50% served “immediately", along
with over 90% agents’ utilization, is not uncommon ) ? QED
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The Basic Staffing Model: Erlang-A (M/M/N + M)

agents

arrivals

abandonment

λ

µ

1

2

n

…

queue

θ

Erlang-A (Palm 1940’s) = Birth & Death Q, with parameters:

I λ – Arrival rate (Poisson)
I µ – Service rate (Exponential; E [S] = 1

µ )

I θ – Patience rate (Exponential, E [Patience] = 1
θ )

I n – Number of Servers (Agents).
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Testing the Erlang-A Primitives

I Arrivals: Poisson?
I Service-durations: Exponential?
I (Im)Patience: Exponential?

I Primitives independent (eg. Impatience and Service-Durations)?
I Customers / Servers Homogeneous?
I Service discipline FCFS?
I . . . ?

Validation: Support? Refute?
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Arrivals to Service
Arrival-Rates to Three Call Centers

Dec. 1995 (U.S. 700 Helpdesks) May 1959 (England)
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November 1999 (Israel)

 
 
 

Arrival Process, in 1999 
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Random Arrivals “must be"
(Axiomatically)
Time-Inhomogeneous Poisson
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Arrivals to Service: only Poisson-Relatives

Arrival-Counts: Coefficient-of-Variation (CV), per 30 min.
Israeli-Bank Call-Center, 263 regular days (4/2007 - 3/2008)Coefficient of Variation Per 30 Minutes, seperated weekdays
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I Poisson CV (Dashed Line) = 1/
√

mean arrival-rate
I Poisson CV’s� Sampled CV’s (Solid) ⇒ Over-Dispersion

⇒ Modeling (Poisson-Mixture) of and Staffing ( >
√
· ) against

Time-Varying Over-Dispersed Arrivals (w/ S. Maman & S. Zeltyn)
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Service Durations: LogNormal Prevalent

Israeli Bank Service-Classes
Log-Histogram Survival-Functions
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34- New Customers: 2 min (NW);

- Regulars: 3 min (PS);

- Stock: 4.5 min (NE);

- Tech-Support: 6.5 min (IN).

I Service Durations are LogNormal (LN) and Heterogeneous
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(Im)Patience while Waiting (Palm 1943-53)
Hazard Rate of (Im)Patience Distribution ∝ Irritation

Regular over VIP Customers – Israeli Bank 
14

  
   

16

I VIP Customers are more Patient (Needy)
I Peaks of abandonment at times of Announcements
I Challenges: Un-Censoring, Dependence (vs. KM), Smoothing

- requires Call-by-Call Data
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Dependent Primitives: Service- vs. Waiting-Time

Average Service-Time as a function of Waiting-Time
U.S. Bank, Retail, Weedays, January-June, 2006

Introduction Relationship Between Service Time and Patience Workload and Offered-Load Empirical Results Future Research

Motivation

Mean Service-Time as a Function of Waiting-Time
U.S. Bank - Retail Banking Service - Weekdays - January-June, 2006
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⇒ Focus on ( Patience, Service-Time ) jointly , w/ Reich and Ritov.
E [S |Patience = w ], w ≥ 0: Service-Time of the Unserved.
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Erlang-A: Practical Relevance?

Experience:
I Arrival process not pure Poisson (time-varying, σ2 too large)
I Service times not Exponential (typically close to LogNormal)
I Patience times not Exponential (various patterns observed).

I Building Blocks need not be independent (eg. long wait
associated with long service; with w/ M. Reich and Y. Ritov)

I Customers and Servers not homogeneous (classes, skills)
I Customers return for service (after busy, abandonment;

dependently; P. Khudiakov, M. Gorfine, P. Feigin)
I · · · , and more.

Question: Is Erlang-A Relevant?

YES ! Fitting a Simple Model to a Complex Reality, both
Theoretically and Practically
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Estimating (Im)Patience: via P{Ab} ∝ E[Wq]

“Assume" Exp(θ) (im)patience. Then, P{Ab} = θ · E[Wq] .

% Abandonment vs. Average Waiting-Time
Bank Anonymous (JASA): Yearly Data

Hourly Data Aggregated
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Graphs based on 4158 hour intervals.

Estimate of mean (im)patience: 250/0.55 sec. ≈ 7.5 minutes.
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Erlang-A: Fitting a Simple Model to a Complex Reality

I Bank Anonymous Small Israeli Call-Center

I (Im)Patience (θ) estimated via P{Ab} / E[Wq]

I Graphs: Hourly Performance vs. Erlang-A Predictions,
during 1 year (aggregating groups with 40 similar hours).
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Erlang-A: Fitting a Simple Model to a Complex Reality

Large U.S. Bank

Retail. P{Wq > 0} Telesales. E[Wq]
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Partial success – in some cases Erlang-A does not work well
(Networking, SBR).

Ongoing Validation Project, w/ Y. Nardi, O. Plonsky, S. Zeltyn
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Erlang-A: Simple, but Not Too Simple

Practical (Data-Based) questions, started in Brown et al. (JASA):
1. Fitting Erlang-A (Validation, w/ Nardi, Plonsky, Zeltyn).
2. Why does it practically work? justify robustness.
3. When does it fail? chart boundaries.
4. Generate needs for new theory.

Theoretical Framework: Asymptotic Analysis, as load- and
staffing-levels increase, which reveals model-essentials:

I Efficiency-Driven (ED) regime: Fluid models (deterministic)
I Quality- and Efficiency-Driven (QED): Diffusion refinements.

Motivation: Moderate-to-large service systems (100’s - 1000’s
servers), notably Call-Centers.

Results turn out accurate enough to also cover <10 servers:
I Practically Important: Relevant to Healthcare

(First: F. de Véricourt and O. Jennings; w/ G. Yom-Tov; Y. Marmor, S.
Zeltyn; H. Kaspi, I. Zaeid)

I Theoretically Justifiable: Gap-Analysis by A. Janssen, J. van
Leeuwaarden, B. Zhang, B. Zwart.
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1. Fitting Erlang-A (Validation, w/ Nardi, Plonsky, Zeltyn).
2. Why does it practically work? justify robustness.
3. When does it fail? chart boundaries.
4. Generate needs for new theory.

Theoretical Framework: Asymptotic Analysis, as load- and
staffing-levels increase, which reveals model-essentials:

I Efficiency-Driven (ED) regime: Fluid models (deterministic)
I Quality- and Efficiency-Driven (QED): Diffusion refinements.
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Operational Regimes: Conceptual Framework

R: Offered Load
Def. R = Arrival-rate × Average-Service-Time = λ

µ

eg. R = 25 calls/min. × 4 min./call = 100

N = #Agents ? Intuition, as R or N increase unilaterally.

QD Regime: N ≈ R + δR , 0.1 < δ < 0.25 (eg. N = 115)
I Framework developed in O. Garnett’s MSc thesis
I Rigorously: (N − R)/R → δ, as N, λ ↑ ∞, with µ fixed.
I Performance: Delays are rare events

ED Regime: N ≈ R − γR , 0.1 < γ < 0.25 (eg. N = 90)
I Essentially all customers are delayed
I Wait same order as service-time; γ% Abandon (10-25%).

QED Regime: N ≈ R + β
√

R , −1 < β < +1 (eg. N = 100)
I Erlang 1913-24, Halfin & Whitt 1981 (for Erlang-C)
I %Delayed between 25% and 75%
I E[Wait] ∝ 1√

N
× E[Service] (sec vs. min); 1-5% Abandon.
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Operational Regimes: Rules-of-Thumb, w/ S. Zeltyn
Operational Regimes in Practice

Constraint P{Ab} E[W ] P{W > T}
Tight Loose Tight Loose Tight Loose

1-10% ≥ 10% ≤ 10%E[τ ] ≥ 10%E[τ ] 0 ≤ T ≤ 10%E[τ ] T ≥ 10%E[τ ]

Offered Load 5% ≤ α ≤ 50% 5% ≤ α ≤ 50%

Small (10’s) QED QED QED QED QED QED

Moderate-to-Large QED ED, QED ED, QED ED+QED

(100’s-1000’s) QED QED if τ d= exp

ED: n ≈ R − γR.

QD: n ≈ R + δR.

QED: n ≈ R + β
√
R.

ED+QED: n ≈ (1 − γ)R + β
√
R.

1

ED: N ≈ R − γR (0.1 ≤ γ ≤ 0.25 ).

QD: N ≈ R + δR (0.1 ≤ δ ≤ 0.25 ).

QED: N ≈ R + β
√

R (−1 ≤ β ≤ 1 ).

ED+QED: N ≈ (1− γ)R + β
√

R (γ, β as above).

WFM: How to determine specific staffing level N ? e.g. β.

60



Operational Regimes: Rules-of-Thumb, w/ S. Zeltyn
Operational Regimes in Practice

Constraint P{Ab} E[W ] P{W > T}
Tight Loose Tight Loose Tight Loose

1-10% ≥ 10% ≤ 10%E[τ ] ≥ 10%E[τ ] 0 ≤ T ≤ 10%E[τ ] T ≥ 10%E[τ ]

Offered Load 5% ≤ α ≤ 50% 5% ≤ α ≤ 50%

Small (10’s) QED QED QED QED QED QED

Moderate-to-Large QED ED, QED ED, QED ED+QED

(100’s-1000’s) QED QED if τ d= exp

ED: n ≈ R − γR.

QD: n ≈ R + δR.

QED: n ≈ R + β
√
R.

ED+QED: n ≈ (1 − γ)R + β
√
R.

1

ED: N ≈ R − γR (0.1 ≤ γ ≤ 0.25 ).

QD: N ≈ R + δR (0.1 ≤ δ ≤ 0.25 ).

QED: N ≈ R + β
√

R (−1 ≤ β ≤ 1 ).

ED+QED: N ≈ (1− γ)R + β
√

R (γ, β as above).

WFM: How to determine specific staffing level N ? e.g. β.

60



Operational Regimes: Rules-of-Thumb, w/ S. Zeltyn
Operational Regimes in Practice

Constraint P{Ab} E[W ] P{W > T}
Tight Loose Tight Loose Tight Loose

1-10% ≥ 10% ≤ 10%E[τ ] ≥ 10%E[τ ] 0 ≤ T ≤ 10%E[τ ] T ≥ 10%E[τ ]

Offered Load 5% ≤ α ≤ 50% 5% ≤ α ≤ 50%

Small (10’s) QED QED QED QED QED QED

Moderate-to-Large QED ED, QED ED, QED ED+QED

(100’s-1000’s) QED QED if τ d= exp

ED: n ≈ R − γR.

QD: n ≈ R + δR.

QED: n ≈ R + β
√
R.

ED+QED: n ≈ (1 − γ)R + β
√
R.

1

ED: N ≈ R − γR (0.1 ≤ γ ≤ 0.25 ).

QD: N ≈ R + δR (0.1 ≤ δ ≤ 0.25 ).

QED: N ≈ R + β
√

R (−1 ≤ β ≤ 1 ).

ED+QED: N ≈ (1− γ)R + β
√

R (γ, β as above).

WFM: How to determine specific staffing level N ? e.g. β.

60



Operational Regimes: Scaling, Performance,
w/ I. Gurvich & J. Huang
Table 1: Operational Regimes: Asymptotics, Scaling, Performance

Erlang-A Conventional scaling MS scaling NDS scaling

µ fixed Sub Critical Super QD QED ED ED+QED Sub Critical Super

Offered load per server 1
1+δ

< 1 1− β√
n
≈ 1 1

1−γ > 1 1
1+δ

1− β√
n

1
1−γ

1
1−γ − β

√
1

n(1−γ)3
1

1+δ
1− β

n
1

1−γ

Arrival rate λ µ
1+δ

µ− β√
n
µ µ

1−γ
nµ
1+δ

nµ− βµ√n nµ
1−γ

nµ
1−γ − βµ

√
n

(1−γ)3
nµ
1+δ

nµ− βµ nµ
1−γ

Number of servers 1 n n

Time-scale n 1 n

Abandonment rate θ/n θ θ/n

Staffing level λ
µ
(1 + δ) λ

µ
(1 + β√

n
) λ

µ
(1− γ) λ

µ
(1 + δ) λ

µ
+ β

√
λ
µ

λ
µ
(1− γ) λ

µ
(1− γ) + β

√
λ
µ

λ
µ
(1 + δ) λ

µ
+ β λ

µ
(1− γ)

Utilization 1
1+δ

1−
√

θ
µ

h(β̂)√
n

1 1
1+δ

1−
√

θ
µ

(1−α2)β̂+α2h(β̂)√
n

1 1 1
1+δ

1−
√

θ
µ

h(β̂)

n
1

E(Q) α1

δ

√
n
√

µ
θ
[h(β̂)− β̂] nµγ

θ(1−γ)
1√
2π

1+δ
δ2
%n 1√

n

√
n
√

µ
θ
[h(β̂)− β̂]α2

nµγ
θ(1−γ)

nµ
θ(1−γ)

(γ − β√
n(1−γ)

) o(1) n
√

µ
θ
[h(β̂)− β̂] n2µγ

θ(1−γ)

P(Ab) 1
n

1+δ
δ

θ
µ
α1

1√
n

√
θ
µ
[h(β̂)− β̂] γ 1√

2π

θ
µ

(1+δ)2

δ2
%n 1

n3/2
1√
n

√
θ
µ
[h(β̂)− β̂]α2 γ γ − β

√
1−γ√
n

o( 1
n2 ) 1

n

√
θ
µ
[h(β̂)− β̂] γ

P(Wq > 0) α1 ∈ (0,1) ≈ 1 1√
2π

1+δ
δ
%n 1√

n
≈ 0 α2 ∈ (0,1) ≈ 1 ≈ 1 ≈ 0 ≈ 1

P(Wq > T ) α1e
− δ

1+δ
µt 1 +O( 1√

n
) 1 +O( 1

n
) ≈ 0 Ḡ(T )1{G(T )<γ} α3, if G(T ) = γ ≈ 0 Φ̄(β̂+

√
θµT )

Φ̄(β̂)
1 +O( 1

n
)

Congestion EWq

ES α1
1+δ
δ

√
n
√

µ
θ
[h(β̂)− β̂] nµγ/θ 1√

2π

(1+δ)2

δ2
%n 1

n3/2
1√
n

√
µ
θ
[h(β̂)− β̂]α2 µ

∫∫∫ x∗

0
Ḡ(s)ds µ

∫∫∫ x∗

0
Ḡ(s)ds− µβ

√
1−γ

hG(x∗)
√
n

o( 1
n
)

√
µ
θ
[h(β̂)− β̂] nµγ/θ

1
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QED Call Center: Staffing (N) vs. Offered-Load (R)
IL Telecom; June-September, 2004; w/ Nardi, Plonski, Zeltyn

Empirical Analysis of a QED Call Center 

 
 
• 2205 half-hour intervals of an Israeli call center 
• Almost all intervals are within R R− and 2R R+  (i.e. 1 2β− ≤ ≤ ), 

implying: 
o Very decent forecasts made by the call center 
o A very reasonable level of service (or does it?) 

• QED?  
o Recall: ( )GMR x is the asymptotic probability of P(Wait>0) as a 

function of β , where x θ
µ=  

o In this data-set, 0.35x θ
µ= =  

o Theoretical analysis suggests that under this condition, for 1 2β− ≤ ≤ , 
we get 0 ( 0) 1P Wait≤ > ≤ … 

2205 half-hour intervals in an Israeli Call Center
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QED Call Center: Performance

Large Israeli Bank

P{Wq > 0} vs. (R, N) R-Slice: P{Wq > 0} vs. N

  

 

 
• Intercepting plane of the previous plot for a "constant" offered load (actually 

18 18.5R≤ ≤ ) 
• Smoother line was created using smoothing splines. 
• General shape of the smoothing line is as the Garnett delay functions! 
 
• In 2-d view, we get the following: 

 

3 Operational Regimes:
I QD: ≤ 25%

I QED: 25%− 75%

I ED: ≥ 75%
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QED Theory (Erlang ’13; Halfin-Whitt ’81; Garnett MSc; Zeltyn PhD)

Consider a sequence of steady-state M/M/N + G queues, N = 1, 2, 3, . . .
Then the following points of view are equivalent, as N ↑ ∞:

Consider a sequence of  M/M/N+G  models, N=1,2,3,…

Then the following points of view are equivalent: 

� QED      %{Wait > 0} � � ,           0 < �  < 1 ;

� Customers       %{Abandon} �
N
�  ,            0 < �  ;

� Agents OCC
N
�� �

�� 1 �	  < �  < 	 ;

� Managers RRN ���   , 
� �R  E(S)   not small; 

QED performance (ASA, ...) is easily computable, all in terms 

of �  (the square-root safety staffing level) – see later. 

I QED performance: Laplace Method (asymptotics of integrals).
I Parameters: Arrivals and Staffing - β, Services - µ,

(Im)Patience - g(0) = patience density at the origin.
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Erlang-A: QED Approximations (Examples)

Assume Offered Load R not small (λ→∞).

Let β̂ = β

√
µ

θ
, h(·) =

φ(·)
1− Φ(·) = hazard rate of N (0,1).

I Delay Probability:

P{Wq > 0} ≈
[

1 +

√
θ

µ
· h(β̂)

h(−β)

]−1

.

I Probability to Abandon:

P{Ab|Wq > 0} ≈ 1√
n
·
√
θ

µ
·
[
h(β̂)− β̂

]
.

I P{Ab} ∝ E[Wq] , both order 1√
n :

P{Ab}
E[Wq]

= θ.
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Garnett / Halfin-Whitt Functions: P{Wq > 0}
HW/GMR Delay Functions

 α vs. β
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QED Intuition: Why P{Wq > 0} ∈ (0, 1) ?

1. Why subtle: Consider a large service system (e.g. call center).
I Fix λ and let n ↑ ∞: P{Wq > 0} ↓ 0.

I Fix n and let λ ↑ ∞: P{Wq > 0} ↑ 1.
I ⇒ Must have both λ and n increase simultaneously:
I ⇒ (CLT) Square-root staffing: n ≈ R + β

√
R.

2. Erlang-A (M/M/n+M), with parameters λ, µ, θ; n, in which µ = θ:
(Im)Patience and Service-times are equally distributed.

I Steady-state: L(M/M/n + M)
d
= L(M/M/∞)

d
= Poisson(R), with

R = λ/µ (Offered-Load)
I Poisson(R)

d
≈ R + Z

√
R, with Z d

= N(0, 1).

I P{Wq(M/M/n + M) > 0} PASTA
= P{L(M/M/n + M) ≥ n} µ=θ

=

P{L(M/M/∞) ≥ n} ≈ P{R + Z
√

R ≥ n} =

P{Z ≥ (n − R)/
√

R}
√
· staffing
≈ P{Z ≥ β} = 1− Φ(β).

3. QED Excursions
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2. Erlang-A (M/M/n+M), with parameters λ, µ, θ; n, in which µ = θ:
(Im)Patience and Service-times are equally distributed.

I Steady-state: L(M/M/n + M)
d
= L(M/M/∞)

d
= Poisson(R), with

R = λ/µ (Offered-Load)
I Poisson(R)

d
≈ R + Z

√
R, with Z d

= N(0, 1).

I P{Wq(M/M/n + M) > 0} PASTA
= P{L(M/M/n + M) ≥ n} µ=θ

=

P{L(M/M/∞) ≥ n} ≈ P{R + Z
√

R ≥ n} =

P{Z ≥ (n − R)/
√

R}
√
· staffing
≈ P{Z ≥ β} = 1− Φ(β).

3. QED Excursions
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QED Intuition via Excursions: Busy-Idle CyclesM/M/N+M (Erlang-A) with Many Servers: N ↑ ∞M/M/N+M (Erlang-A) with Many Servers: N ↑ ∞

0 1 N-1 N N+1

Busy Period 

µ 2µ
Nµ(N-1)µ Nµ +

Q(0) = N : all servers busy, no queue.

Let TN,N−1 = Busy Period (down-crossing N ↓ N − 1 )

TN−1,N = Idle Period (up-crossing N − 1 ↑ N )

Then P (Wait > 0) =
TN,N−1

TN,N−1 + TN−1,N
=

[
1+

TN−1,N

TN,N−1

]−1

.

Calculate TN−1,N =
1

λNE1,N−1
∼ 1

Nµ× h(−β)/
√
N

∼ 1√
N

· 1/µ

h(−β)

TN,N−1 =
1

Nµπ+(0)
∼ 1√

N
· β/µ

h(δ) /δ
, δ = β

√
µ/θ

Both apply as
√
N (1− ρN) → β, −∞ < β < ∞.

Hence, P (Wait > 0) ∼
[
1+

h(δ)/δ

h(−β)/β

]−1

.

1

Q(0) = N : all servers busy, no queue.

Let TN,N−1 = E[Busy Period] down-crossing N ↓ N − 1

TN−1,N = E[Idle Period] up-crossing N − 1 ↑ N )

Then P (Wait > 0) =
TN,N−1

TN,N−1+TN−1,N
=
[
1 +

TN−1,N
TN,N−1

]−1
.
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QED Intuition via Excursions: Asymptotics

M/M/N+M (Erlang-A) with Many Servers: N ↑ ∞

0 1 N-1 N N+1

Busy Period 

µ 2µ
Nµ(N-1)µ Nµ +

Q(0) = N : all servers busy, no queue.

Let TN,N−1 = Busy Period (down-crossing N ↓ N − 1 )

TN−1,N = Idle Period (up-crossing N − 1 ↑ N )

Then P (Wait > 0) =
TN,N−1

TN,N−1 + TN−1,N
=

[
1+

TN−1,N

TN,N−1

]−1

.

Calculate TN−1,N =
1

λNE1,N−1
∼ 1

Nµ× h(−β)/
√
N

∼ 1√
N

· 1/µ

h(−β)

TN,N−1 =
1

Nµπ+(0)
∼ 1√

N
· β/µ

h(δ) /δ
, δ = β

√
µ/θ

Both apply as
√
N (1− ρN) → β, −∞ < β < ∞.

Hence, P (Wait > 0) ∼
[
1+

h(δ)/δ

h(−β)/β

]−1

.

1
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Process Limits (Queueing, Waiting)
• Q̂N = {Q̂N(t), t ≥ 0} : stochastic process obtained by
centering and rescaling:

Q̂N =
QN − N√

N

• Q̂N(∞) : stationary distribution of Q̂N

• Q̂ = {Q̂(t), t ≥ 0} : process defined by: Q̂N(t)
d→ Q̂(t).

�
�

�

�

� �

Q̂N(t) Q̂N(∞)

Q̂(t) Q(∞)

t → ∞

t → ∞

N → ∞ N → ∞

Approximating (Virtual) Waiting Time

V̂N =
√

N VN ⇒ V̂ =

[
1

μ
Q̂

]+

(Puhalskii, 1994)

stochastic process

Waiting Time
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QED Erlang-X (Markovian Q’s: Performance Analysis)
I Pre-History, 1914: Erlang (Erlang-B = M/M/n/n, Erlang-C = M/M/n)
I Pre-History, 1974: Jagerman (Erlang-B)
I History Milestone, 1981: Halfin-Whitt (Erlang-C, GI/M/n)
I Erlang-A (M/M/N+M), 2002: w/ Garnett & Reiman
I Erlang-A with General (Im)Patience (M/M/N+G), 2005: w/ Zeltyn
I Erlang-C (ED+QED), 2009: w/ Zeltyn
I Erlang-B with Retrial, 2010: Avram, Janssen, van Leeuwaarden
I Refined Asymptotics (Erlang A/B/C), 2008-2011: Janssen, van Leeuwaarden,

Zhang, Zwart
I NDS Erlang-C/A, 2009: Atar
I Production Q’s, 2011: Reed & Zhang
I Universal Erlang-R, ongoing: w/ Gurvich & Huang
I Queueing Networks:

I (Semi-)Closed: Nurse Staffing (Jennings & de Vericourt), CCs with IVR (w/
Khudiakov), Erlang-R (w/ Yom-Tov)

I CCs with Abandonment and Retrials: w. Massey, Reiman, Rider, Stolyar
I Markovian Service Networks: w/ Massey & Reiman

I Leaving out:
I Non-Exponential Service Times: M/D/n (Erlang-D), G/Ph/n, · · · , G/GI/n+GI,

Measure-Valued Diffusions
I Dimensioning (Staffing): M/M/n, · · · , time-varying Q’s, V- and Reversed-V, · · ·
I Control: V-network, Reversed-V, · · · , SBRNets
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Back to “Why does Erlang-A Work?"

Theoretical (Partial) Answer:

M?,J
t /G∗/Nt + G

d≈ (M/M/N + M)t , t ≥ 0.

I Over-Dispersed Arrivals: R + βRc , c-Staffing (c ≥ 1/2).

I General Patience: Behavior at the origin matters most (only).

I General Services: Empirical insensitivity beyond the mean.

I Heterogeneous Customers / Servers: State-Collapse.

I Time-Varying Arrivals: Modified Offered-Load approximations.

I Dependent Building-Blocks: eg. When (Im)Patience and
Service-Times correlated (positively):

I Predict performance with E [S |Served].
I Calculate offered-load with E [S] = E [S |Wait = 0].
I Note: staffing← service-times← waiting / abandonment← staffing
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“Why does Erlang-A Work?" General Patience
Israeli Bank: Yearly Data

Hourly Data Aggregated
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Theory:
Erlang-A: P{Ab} = θ · E[Wq]; M/M/N+G: P{Ab} ≈ g(0) · E[Wq].

g(0) = Patience-density at origin

Recipe:
In both cases, use Erlang-A, with θ̂ = P̂{Ab}/Ê[Wq] (slope above).
References on g(0):

- Stationary M/M/N+GI, w/ Zeltyn
- Process G/GI/N+GI: w/ Momcilovic; Dai & He;
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“Why does Erlang-A Work?" Over-Dispersion

ln(STD) vs. ln(AVG) (Israeli Bank, 4/2007-3/2008)

Tue-Wed, 30 min resolutionln(sd) vs ln(average) per 30 minutes. Sundays
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Significant linear relations (w/ Aldor & Feigin; then w/
Maman & Zeltyn ):

ln(STD) = c · ln(AVG) + a

(Poisson: STD = AVG1/2, hence c = 1/2, a = 0.)
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Over-Dispersion: Random Arrival-Rates

Linear relation between ln(STD) and ln(AVG) gives rise to:

Poisson-Mixture (Doubly-Poisson, Cox) model for Arrivals:
Poisson(Λ) with Random-Rate of the form

Λ = λ + λc · X , c ≤ 1 ;

I c determines magnitude of over-dispersion (λc)
c = 1, proportional to λ; c ≤ 1/2, Poisson-level;

- In Call Centers: c ≈ 0.75− 0.85 (significant over-dispersion).
- In Emergency Departments, c ≈ 0.5 (Poisson).

I X random-variable with E [X ] = 0 (E [Λ] = λ), capturing the
magnitude of stochastic deviation from mean arrival-rate:
under conventional Gamma prior (λ large), X can be taken
Normal with std. derived from the intercept.

QED-c Regime: Erlang-A, with Poisson(Λ) arrivals, amenable to
asymptotic analysis (with S. Maman & S. Zeltyn)
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Over-Dispersion: The QED-c Regime

QED-c Staffing: Under offered-load R = λ · E[S],

N = R + β · Rc , 0.5 < c < 1

Performance measures (M/M/N + G):

- Delay probability: P{Wq > 0} ∼ 1−G(β)

- Abandonment probability: P{Ab} ∼ E [X − β]+

n1−c

- Average offered wait: E [V ] ∼ E [X − β]+

n1−c · g0

- Average actual wait: EΛ,N [W ] ∼ EΛ,N [V ]
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Why Does Erlang-A Work? Time-Varying Arrival Rates

Square-Root Staffing: Nt = Rt + β
√

Rt , −∞ < β <∞
What is Rt , the Offered-Load at time t ? ( Rt 6= λt × E[S] )

Arrivals, Offered-Load and Staffing
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Time-Stable Performance of Time-Varying Systems

Delay Probability = As in the Stationary Erlang-A (Garnett)
Delay Probability
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Time-Stable Performance of Time-Varying Systems

Waiting Time, Given Waiting:
Empirical vs. Theoretical Distribution

Waiting Time given Wait > 0:  

beta = 1.2  QD  (  0.1)
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Simulated Theoretical (N=191)

Waiting Time given Wait > 0:

 beta = 0   QED (  0.5)
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Simulated Theoretical (N=175)

Waiting Time given Wait > 0:

beta = -1.2   ED  (  0.9)
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Simulated Theoretical (N=160)

- Empirical: Simulate time-varying Mt/M/Nt + M (λt ,Nt = Rt + β
√

Rt )

- Theoretical: Naturally-corresponding stationary Erlang-A, with QED
β-staffing (some Averaging Principle?)

- Generalizes up to a single-station within a complex network (eg.
Doctors in an Emergency Department).
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What is the Offered-Load R(t)?

I Offered-Load Process: L(·) = Least number of servers that
guarantees no delay.

I Offered-Load Function R(t) = E [L(t)], t ≥ 0.
Think Mt/G/N?

t + G vs. Mt/G/∞: Ample-Servers.

Four (all useful) representations, capturing “workload before t":

R(t) = E [L(t)] =

∫ t

−∞
λ(u) · P(S > t − u)du = E

[
A(t)− A(t − S)

]
=

= E
[∫ t

t−S
λ(u)du

]
= E [λ(t − Se)] · E [S] ≈ ... .

I {A(t), t ≥ 0} Arrival-Process, rate λ(·);
I S (Se) generic Service-Time (Residual Service-Time).
I Relating L, λ,S (“W ”): Time-Varying Little’s Formula.

Stationary models: λ(t) ≡ λ then R(t) ≡ λ× E[S].

QED-c: Nt = Rt + βRc
t , 1/2 ≤ c < 1; (c = 1 separate analysis).
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The Offered-Load R(t), t ≥ 0
I Backbone of time-varying staffing:

I Practically robust: up to a station within a complex network (ED).
I Theoretically challenging: only Erlang-A with µ = θ tractable.

I Process: L(·) = Least number of servers that guarantees no delay.
I Offered-Load Function R(·) = E [L(·)] (Mt/G/N?

t + G ↔ Mt/G/∞).
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Estimating / Predicting the Offered-Load

Must account for “service times of abandoning customers".

I Prevalent Assumption: Services and (Im)Patience independent.
I But recall Patient VIPs: Willing to wait more for longer services.

Survival Functions by Type (Small Israeli Bank)

31

Service Time (cont’)
Survival curve, by types

Time

Su
rv
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Service times stochastic order: SNew

st
< SReg

st
< SVIP

Patience times stochastic order: τNew

st
< τReg

st
< τVIP

82



Dependent Primitives: Service- vs. Waiting-Time

Average Service-Time as a function of Waiting-Time
U.S. Bank, Retail, Weedays, January-June, 2006

Introduction Relationship Between Service Time and Patience Workload and Offered-Load Empirical Results Future Research

Motivation

Mean Service-Time as a Function of Waiting-Time
U.S. Bank - Retail Banking Service - Weekdays - January-June, 2006
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⇒ Focus on ( Patience, Service-Time ) jointly , w/ Reich and Ritov.
E [S |Patience = w ], w ≥ 0: Service-Time of the Unserved.
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(Imputing) Service-Times of Abandoning Customers

w/ M. Reich, Y. Ritov:

1. Estimate g(w) = E [S |Patience > Wait = w ], w ≥ 0:
Mean service time of those served after waiting exactly w units
of time (via non-linear regression: Si = g(Wi ) + εi );

2. Calculate

E [S |Patience = w ] = g(w)− g′(w)

hτ (w)
;

hτ (w) = hazard-rate of (im)patience (via un-censoring);

3. Offered-load calculations: Impute E [S |Patience = w ]
(or the conditional distribution).

Challenges: Stable and accurate inference of g,g′,hτ .
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Extending the Notion of the “Offered-Load"

I Business (Banking Call-Center): Offered Revenues

I Healthcare (Maternity Wards): Fetus in stress
I 2 patients (Mother + Child) = high operational and cognitive load
I Fetus dies⇒ emotional load dominates

I ⇒
I Offered Operational Load

I Offered Cognitive Load

I Offered Emotional Load

I ⇒ Fair Division of Load (Routing) between 2 Maternity Wards:
One attending to complications before birth, the other to
complications after birth, and both share normal birth
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The Technion SEE Center / Laboratory
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