

Data-Based Science for Service Engineering and Management

or: Empirical Adventures
in Call-Centers and Hospitals

Avi Mandelbaum

Technion, Haifa, Israel

<http://ie.technion.ac.il/serveng>

Research Partners

- ▶ **Students:**

Aldor*, Baron*, Carmeli, Feldman*, Garnett*, Gurvich*, Huang, Khudiakov*, Maman*, Marmor*, Reich, Rosenshmidt*, Shaikhet*, Senderovic, Tseytlin*, Yom-Tov*, Yuviler, Zaied, Zeltyn*, Zychlinski, Zohar*, Zviran*, ...

- ▶ **Theory:**

Armony, Atar, Gurvich, Jelenkovic, Kaspi, Massey, Momcilovic, Reiman, Shimkin, Stolyar, Wasserkrug, Whitt, Zeltyn, ...

- ▶ **Industry:**

Mizrahi Bank (A. Cohen, U. Yonissi), Rambam Hospital (R. Beyar, S. Israelit, S. Tzafrir), IBM Research (OCR Project), Hapoalim Bank (G. Maklef, T. Shlasky), Pelephone Cellular, ...

- ▶ **Technion SEE Center / Laboratory:**

Feigin; Trofimov, Nadjharov, Gavako, Kutsy; Liberman, Koren, Plonsky, Senderovic; Research Assistants, ...

- ▶ **Empirical/Statistical Analysis:**

Brown, Gans, Zhao; Shen; Ritov, Goldberg; Gurvich, Huang, Liberman; Armony, Marmor, Tseytlin, Yom-Tov; Zeltyn, Nardi, Gorfine, ...

History, Resources (Downloadable)

- ▶ Math. + C.S. + Stat. + O.R. + Mgt. \Rightarrow IE (≥ 1990)
- ▶ **Teaching: "Service-Engineering" Course (≥ 1995):**
<http://ie.technion.ac.il/serveng> - website
http://ie.technion.ac.il/serveng/References/teaching_paper.pdf
- ▶ **Call-Centers Research (≥ 2000)**
e.g. <Call Centers> in Google-Scholar
- ▶ **Healthcare Research (≥ 2005)**
e.g. **OCR Project**: IBM + Rambam Hospital + Technion
- ▶ **The Technion SEE Center (≥ 2007)**

The Case for Service Science / Engineering

- ▶ **Service Science / Engineering** (vs. Management) are emerging **Academic Disciplines**. For example, universities (world-wide), IBM (SSME, a là Computer-Science), USA NSF (SEE), Germany IAO (ServEng), ...

The Case for Service Science / Engineering

- ▶ **Service Science / Engineering** (vs. Management) are emerging **Academic Disciplines**. For example, universities (world-wide), IBM (SSME, a là Computer-Science), USA NSF (SEE), Germany IAO (ServEng), ...
- ▶ Models that explain **fundamental phenomena**, which are **common** across applications:
 - **Call Centers**
 - **Hospitals**
 - **Transportation**
 - Justice, Fast Food, Police, Internet, ...
- ▶ **Simple models** at the Service of **Complex Realities** (Human)
Note: Simple yet rooted in **deep analysis**.

The Case for Service Science / Engineering

- ▶ **Service Science / Engineering** (vs. Management) are emerging **Academic Disciplines**. For example, universities (world-wide), IBM (SSME, a là Computer-Science), USA NSF (SEE), Germany IAO (ServEng), ...
- ▶ Models that explain **fundamental phenomena**, which are **common** across applications:
 - **Call Centers**
 - **Hospitals**
 - **Transportation**
 - Justice, Fast Food, Police, Internet, ...
- ▶ **Simple models** at the Service of **Complex Realities** (Human)
Note: Simple yet rooted in **deep analysis**.
- ▶ Mostly **What Can Be Done** vs. **How To**

Title: Expands the Scientific Paradigm

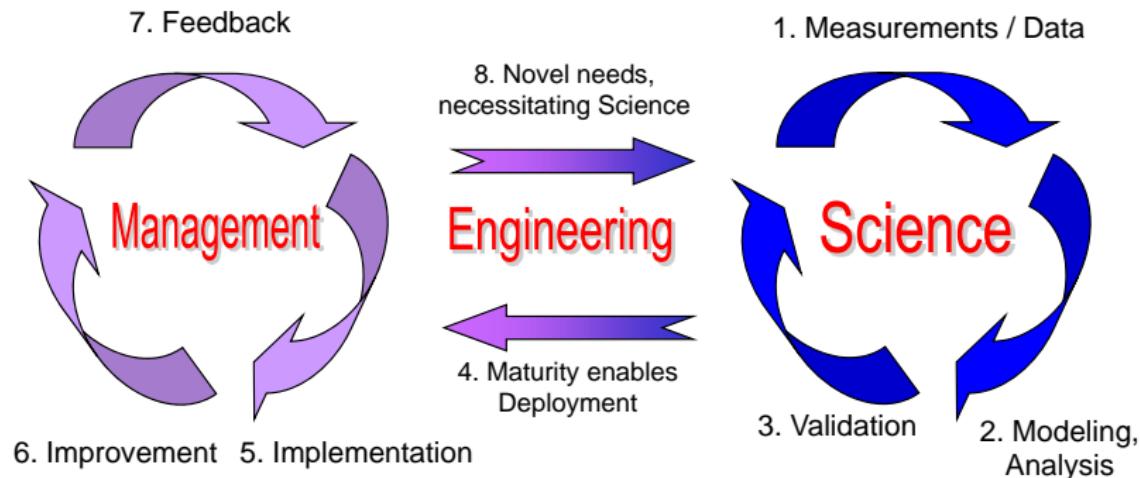
Physics, Biology, . . . : Measure, Model, Experiment, Validate, Refine.
Human-complexity triggered above in Transportation, Economics.

Title: Expands the Scientific Paradigm

Physics, Biology, ... : Measure, Model, Experiment, Validate, Refine.

Human-complexity triggered above in Transportation, Economics.

Starting with **Data**, expand to:

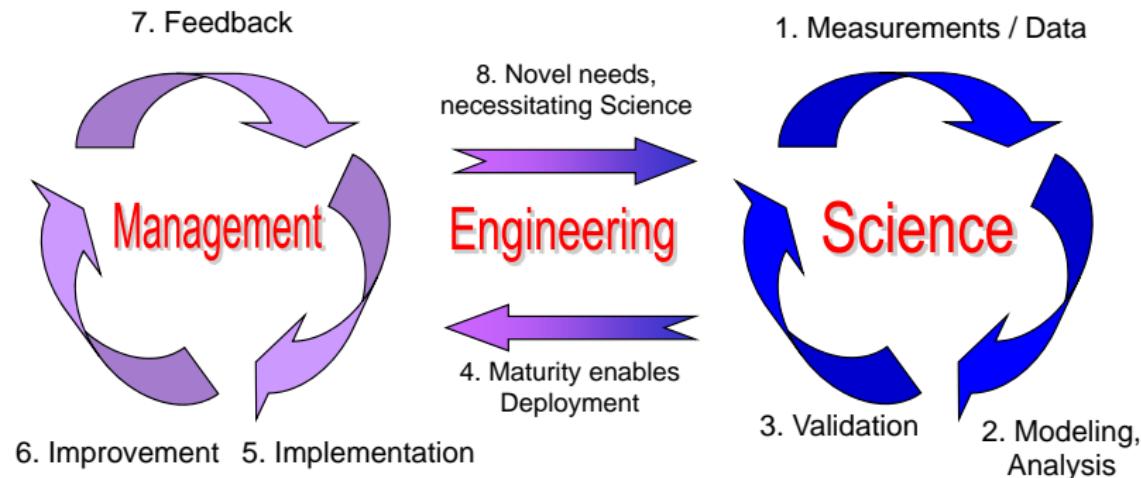


Title: Expands the Scientific Paradigm

Physics, Biology, ... : Measure, Model, Experiment, Validate, Refine.

Human-complexity triggered above in Transportation, Economics.

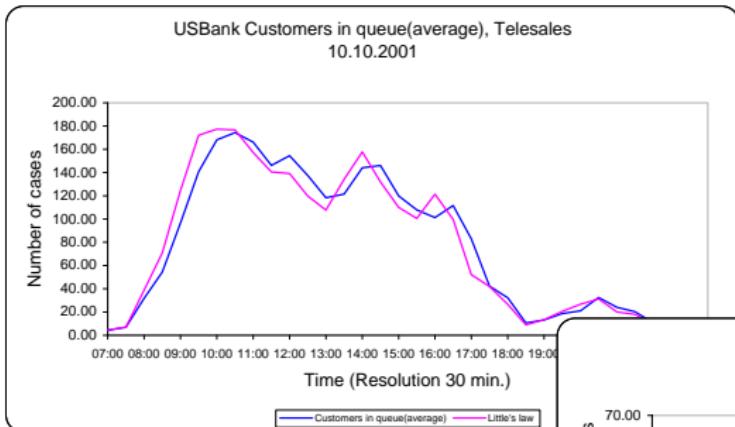
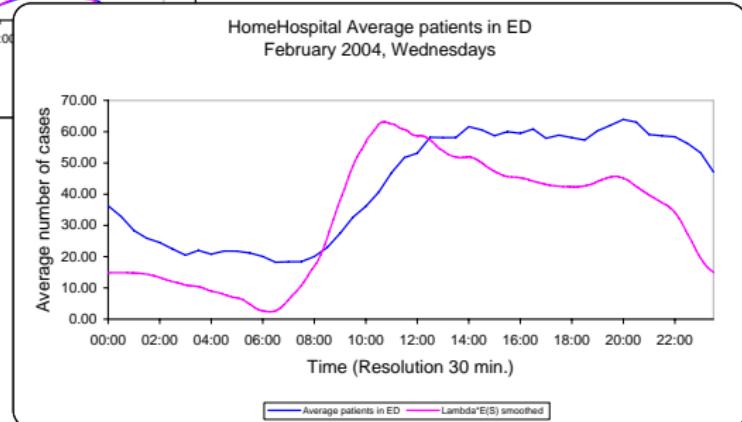
Starting with **Data**, expand to:



e.g. Validate, refute or discover **congestion laws** (Little, PASTA, SSC, ?, ?, ...), in call centers and hospitals

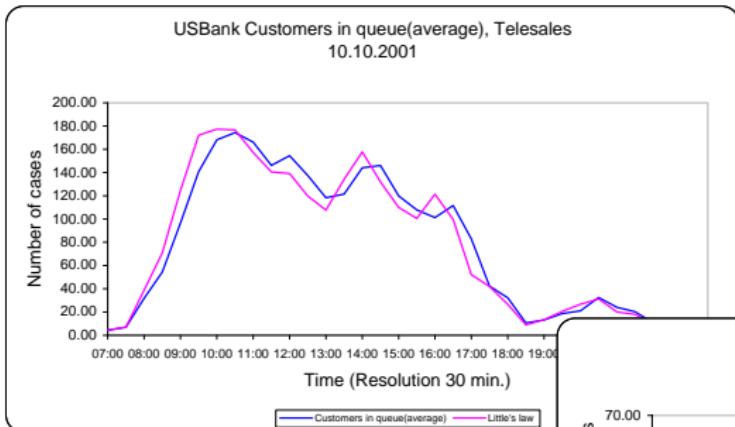
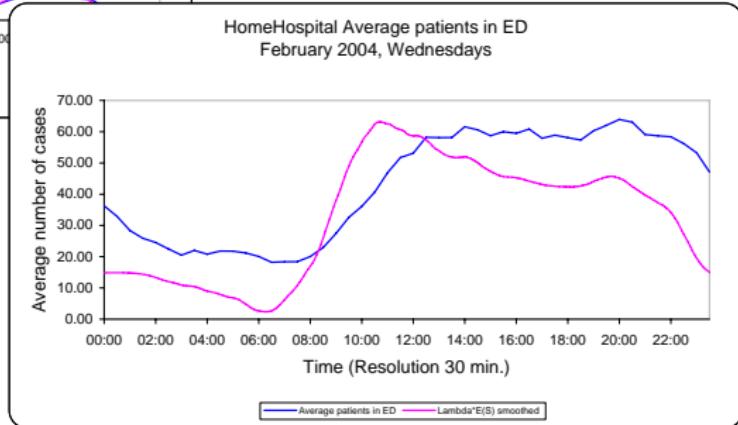
Little's Law: Call Center & Emergency Department

Time-Gap: # in System lags behind **Piecewise-Little** ($L = \lambda \times W$)



Little's Law: Call Center & Emergency Department

Time-Gap: # in System lags behind **Piecewise-Little** ($L = \lambda \times W$)

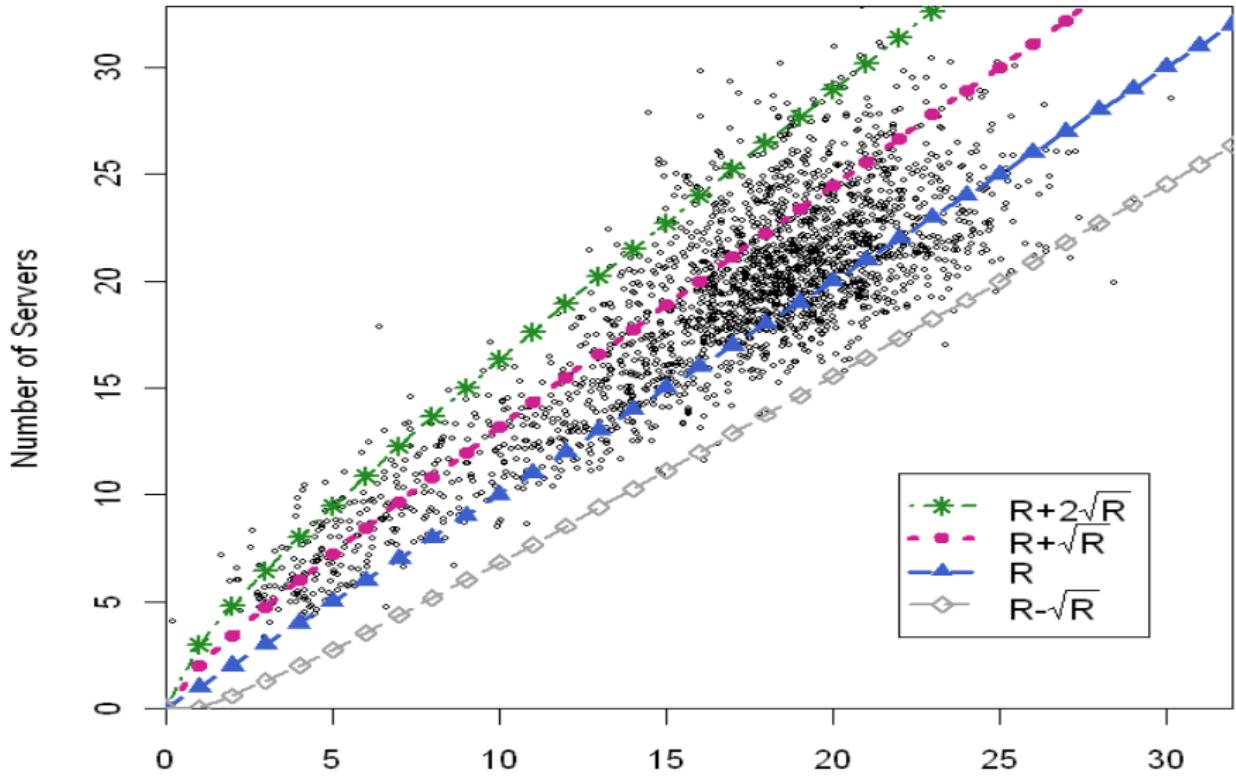


⇒ **Time-Varying Little's Law**

- ▶ **Berstemas & Mourtzinou;**
- ▶ **Fralix, Riano, Serfozo; ...**

QED Call Center: Staffing (N) vs. Offered-Load (R)

IL Telecom; June-September, 2004; w/ Nardi, Plonski, Zeltyn

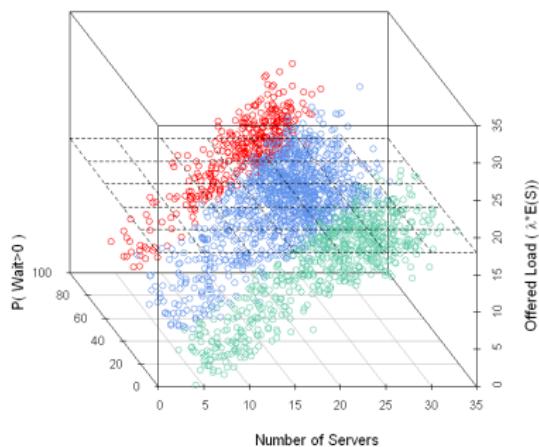


2205 half-hour intervals in an Israeli Call Center

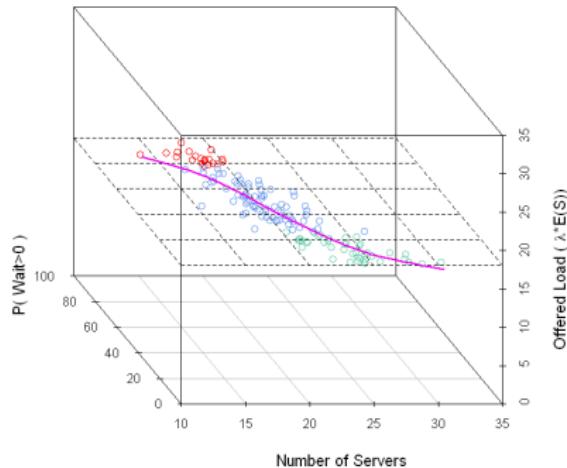
QED Call Center: Performance

Large Israeli Bank

$P\{W_q > 0\}$ vs. (R, N)



R-Slice: $P\{W_q > 0\}$ vs. N



3 Operational Regimes:

- **QD:** $\leq 25\%$
- **QED:** $25\% - 75\%$
- **ED:** $\geq 75\%$

Operational Regimes: Scaling, Performance, w/ I. Gurvich & J. Huang

Erlang-A μ fixed	Conventional scaling			MS scaling				NDS scaling		
	Sub	Critical	Super	QD	QED	ED	ED+QED	Sub	Critical	Super
Offered load per server	$\frac{1}{1+\delta} < 1$	$1 - \frac{\beta}{\sqrt{n}} \approx 1$	$\frac{1}{1-\gamma} > 1$	$\frac{1}{1+\delta}$	$1 - \frac{\beta}{\sqrt{n}}$	$\frac{1}{1-\gamma}$	$\frac{1}{1-\gamma} - \beta \sqrt{\frac{1}{n(1-\gamma)^3}}$	$\frac{1}{1+\delta}$	$1 - \frac{\beta}{n}$	$\frac{1}{1-\gamma}$
Arrival rate λ	$\frac{\mu}{1+\delta}$	$\mu - \frac{\beta}{\sqrt{n}}\mu$	$\frac{\mu}{1-\gamma}$	$\frac{n\mu}{1+\delta}$	$n\mu - \beta\mu\sqrt{n}$	$\frac{n\mu}{1-\gamma}$	$\frac{n\mu}{1-\gamma} - \beta\mu\sqrt{\frac{n}{(1-\gamma)^3}}$	$\frac{n\mu}{1+\delta}$	$n\mu - \beta\mu$	$\frac{n\mu}{1-\gamma}$
Number of servers	1			n				n		
Time-scale	n			1				n		
Abandonment rate	θ/n			θ				θ/n		
Staffing level	$\frac{\lambda}{\mu}(1+\delta)$	$\frac{\lambda}{\mu}(1+\frac{\beta}{\sqrt{n}})$	$\frac{\lambda}{\mu}(1-\gamma)$	$\frac{\lambda}{\mu}(1+\delta)$	$\frac{\lambda}{\mu} + \beta\sqrt{\frac{\lambda}{\mu}}$	$\frac{\lambda}{\mu}(1-\gamma)$	$\frac{\lambda}{\mu}(1-\gamma) + \beta\sqrt{\frac{\lambda}{\mu}}$	$\frac{\lambda}{\mu}(1+\delta)$	$\frac{\lambda}{\mu} + \beta$	$\frac{\lambda}{\mu}(1-\gamma)$
Utilization	$\frac{1}{1+\delta}$	$1 - \sqrt{\frac{\theta h(\hat{\beta})}{\mu \sqrt{n}}}$	1	$\frac{1}{1+\delta}$	$1 - \sqrt{\frac{\theta(1-\alpha_2)\hat{\beta} + \alpha_2 h(\hat{\beta})}{\mu \sqrt{n}}}$	1	1	$\frac{1}{1+\delta}$	$1 - \sqrt{\frac{\theta h(\hat{\beta})}{\mu n}}$	1
$\mathbb{E}(Q)$	$\frac{\alpha_1}{\delta}$	$\sqrt{n} \sqrt{\frac{\mu}{\theta}} [h(\hat{\beta}) - \hat{\beta}]$	$\frac{n\mu\gamma}{\theta(1-\gamma)}$	$\frac{1}{\sqrt{2\pi}} \frac{1+\delta}{\delta^2} \varrho^n \frac{1}{\sqrt{n}}$	$\sqrt{n} \sqrt{\frac{\mu}{\theta}} [h(\hat{\beta}) - \hat{\beta}] \alpha_2$	$\frac{n\mu\gamma}{\theta(1-\gamma)}$	$\frac{n\mu}{\theta(1-\gamma)} (\gamma - \frac{\beta}{\sqrt{n(1-\gamma)}})$	$o(1)$	$n \sqrt{\frac{\mu}{\theta}} [h(\hat{\beta}) - \hat{\beta}]$	$\frac{n^2\mu\gamma}{\theta(1-\gamma)}$
$\mathbb{P}(Ab)$	$\frac{1}{n} \frac{1+\delta}{\delta} \frac{\theta}{\mu} \alpha_1$	$\frac{1}{\sqrt{n}} \sqrt{\frac{\theta}{\mu}} [h(\hat{\beta}) - \hat{\beta}]$	γ	$\frac{1}{\sqrt{2\pi}} \frac{\theta(1+\delta)^2}{\delta^2} \varrho^n \frac{1}{n^{3/2}}$	$\frac{1}{\sqrt{n}} \sqrt{\frac{\theta}{\mu}} [h(\hat{\beta}) - \hat{\beta}] \alpha_2$	γ	$\gamma - \frac{\beta\sqrt{1-\gamma}}{\sqrt{n}}$	$o(\frac{1}{n^2})$	$\frac{1}{n} \sqrt{\frac{\theta}{\mu}} [h(\hat{\beta}) - \hat{\beta}]$	γ
$\mathbb{P}(W_q > 0)$	$\alpha_1 \in (0, 1)$	≈ 1		$\frac{1}{\sqrt{2\pi}} \frac{1+\delta}{\delta} \varrho^n \frac{1}{\sqrt{n}} \approx 0$	$\alpha_2 \in (0, 1)$	≈ 1		≈ 1	≈ 0	≈ 1
$\mathbb{P}(W_q > T)$	$\alpha_1 e^{-\frac{T}{1+\delta} \mu t}$	$1 + O(\frac{1}{\sqrt{n}})$	$1 + O(\frac{1}{n})$	≈ 0		$\tilde{G}(T) 1_{\{G(T) < \gamma\}}$	α_3 , if $G(T) = \gamma$	≈ 0	$\frac{\Phi(\hat{\beta} + \sqrt{\theta} \mu T)}{\Phi(\hat{\beta})}$	$1 + O(\frac{1}{n})$
Congestion $\frac{\mathbb{E}W_q}{\mathbb{E}S}$	$\alpha_1 \frac{1+\delta}{\delta}$	$\sqrt{n} \sqrt{\frac{\mu}{\theta}} [h(\hat{\beta}) - \hat{\beta}]$	$n\mu\gamma/\theta$	$\frac{1}{\sqrt{2\pi}} \frac{(1+\delta)^2}{\delta^2} \varrho^n \frac{1}{n^{3/2}}$	$\frac{1}{\sqrt{n}} \sqrt{\frac{\mu}{\theta}} [h(\hat{\beta}) - \hat{\beta}] \alpha_2$	$\mu \int_0^{x^*} \tilde{G}(s) ds$	$\mu \int_0^{x^*} \tilde{G}(s) ds - \frac{\mu\beta\sqrt{1-\gamma}}{h_G(x^*)\sqrt{n}}$	$o(\frac{1}{n})$	$\sqrt{\frac{\mu}{\theta}} [h(\hat{\beta}) - \hat{\beta}]$	$n\mu\gamma/\theta$

• $\delta > 0, \gamma \in (0, 1)$ and $\beta \in (-\infty, \infty)$;

• QD: $\varrho = \frac{1}{1+\delta} e^{\frac{T}{1+\delta} \mu t} < 1$;

• ED (ED+QED): $G(x^*) = \gamma$;

• QED: $\alpha_2 = [1 + \sqrt{\frac{\theta}{\mu} \frac{h(\hat{\beta})}{h(\hat{\beta}) - \beta}}]^{-1}$, here $\hat{\beta} = \beta\sqrt{\frac{\mu}{\theta}}$ and $h(x) = \frac{\phi(x)}{\Phi(x)}$;

• ED+QED: $\alpha_3 = \tilde{G}(T) \tilde{\Phi}(\beta\sqrt{\frac{\mu}{g(T)}})$;

• Conventional: critical: $\mathbb{P}(W > T) = \mathbb{P}(\frac{W}{\sqrt{n}} > \frac{T}{\sqrt{n}})$, super: $\mathbb{P}(W > T) = \mathbb{P}(\frac{W}{n} > \frac{T}{n})$; NDS: Super: $\mathbb{P}(W > T) = \mathbb{P}(\frac{W}{n} > \frac{T}{n})$.

Prerequisite I: Data

Averages Prevalent (and could be useful / interesting).

But I need data at the level of the **Individual Transaction**:

For each service transaction (during a phone-service in a call center, or a patient's visit in a hospital, or browsing in a website, or . . .), its **operational history** = time-stamps of events .

Prerequisite I: Data

Averages Prevalent (and could be useful / interesting).

But I need data at the level of the **Individual Transaction**:

For each service transaction (during a phone-service in a call center, or a patient's visit in a hospital, or browsing in a website, or . . .), its **operational history** = time-stamps of events .

Sources: “**Service-floor**” (vs. Industry-level, Surveys, . . .)

- ▶ **Administrative** (Court, via “paper analysis”)
- ▶ **Face-to-Face** (Bank, via bar-code readers)
- ▶ **Telephone** (Call Centers, via ACD / CTI, IVR/VRU)
- ▶ **Hospitals** (Emergency Departments, . . .)

Prerequisite I: Data

Averages Prevalent (and could be useful / interesting).

But I need data at the level of the **Individual Transaction**:

For each service transaction (during a phone-service in a call center, or a patient's visit in a hospital, or browsing in a website, or . . .), its

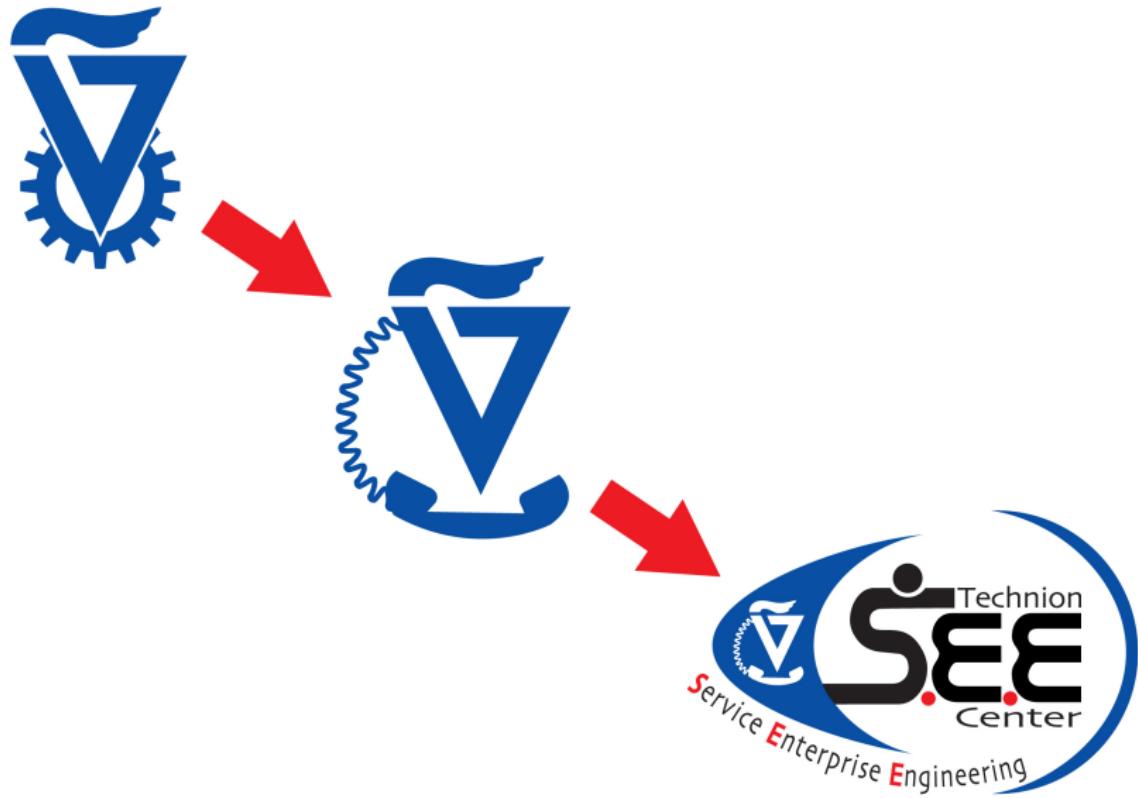
operational history = time-stamps of events .

Sources: “**Service-floor**” (vs. Industry-level, Surveys, . . .)

- ▶ **Administrative** (Court, via “paper analysis”)
- ▶ **Face-to-Face** (Bank, via bar-code readers)
- ▶ **Telephone** (Call Centers, via ACD / CTI, IVR/VRU)
- ▶ **Hospitals** (Emergency Departments, . . .)
- ▶ Expanding:
 - ▶ Hospitals, via **RFID**
 - ▶ Operational + Financial + Contents (Marketing, Clinical)
 - ▶ Internet, Chat (multi-media)

Pause for a Commercial:

Pause for a Commercial: The Technion SEE Center



Technion SEE = Service Enterprise Engineering

SEELab: Data-repositories for research and teaching

- ▶ For example:
 - ▶ Bank Anonymous: **1 years, 350K calls by 15 agents** - in 2000. **Brown, Gans, Sakov, Shen, Zeltyn, Zhao** (JASA), paved the way for:
 - ▶ U.S. Bank: **2.5 years, 220M calls, 40M by 1000 agents**.
 - ▶ Israeli Cellular: **2.5 years, 110M calls, 25M calls by 750 agents**.
 - ▶ Israeli Bank: **from January 2010, daily-deposit** at a SEESafe.
 - ▶ Israeli Hospital: **4 years, 1000 beds; 8 ED's- Sinreich's data**.

Technion SEE = Service Enterprise Engineering

SEELab: Data-repositories for research and teaching

- ▶ For example:
 - ▶ Bank Anonymous: **1 years, 350K calls by 15 agents** - in 2000. **Brown, Gans, Sakov, Shen, Zeltyn, Zhao** (JASA), paved the way for:
 - ▶ U.S. Bank: **2.5 years, 220M calls, 40M by 1000 agents.**
 - ▶ Israeli Cellular: **2.5 years, 110M calls, 25M calls by 750 agents.**
 - ▶ Israeli Bank: **from January 2010, daily-deposit** at a SEESafe.
 - ▶ Israeli Hospital: **4 years, 1000 beds; 8 ED's- Sinreich's data.**

SEEStat: Environment for graphical **EDA** in real-time

- ▶ **Universal Design, Internet Access, Real-Time Response.**

Technion SEE = Service Enterprise Engineering

SEELab: Data-repositories for research and teaching

- ▶ For example:
 - ▶ Bank Anonymous: **1 years, 350K calls by 15 agents** - in 2000. **Brown, Gans, Sakov, Shen, Zeltyn, Zhao** (JASA), paved the way for:
 - ▶ U.S. Bank: **2.5 years, 220M calls, 40M by 1000 agents**.
 - ▶ Israeli Cellular: **2.5 years, 110M calls, 25M calls by 750 agents**.
 - ▶ Israeli Bank: **from January 2010, daily-deposit** at a SEESafe.
 - ▶ Israeli Hospital: **4 years, 1000 beds; 8 ED's- Sinreich's data**.

SEEStat: Environment for graphical **EDA** in real-time

- ▶ **Universal Design, Internet Access, Real-Time Response.**

SEEServer: **Free for academic use**

Register, then access (presently) U.S. Bank and Bank Anonymous.

Visitor: run mstsc, seeserver.iem.technion.ac.il ; Self-Tutorial

Tutorial Cover; State-Space Collapse from Tutorial

4 overheads:

- ▶ Cover (make sure relevant to the lecture (e.g. APS, HKUST))
- ▶ Page 2 (again, make sure relevant to the lecture)
- ▶ Contents (with Stat-Space Collapse yellowed)
- ▶ The page with State-Space Collapse.

eg. RFID-Based Data: Mass Casualty Event (MCE)

Drill: Chemical MCE, Rambam Hospital, May 2010

Focus on **severely wounded** casualties (≈ 40 in drill)

Note: 20 observers support real-time control (helps validation)

Data Cleaning: MCE with RFID Support

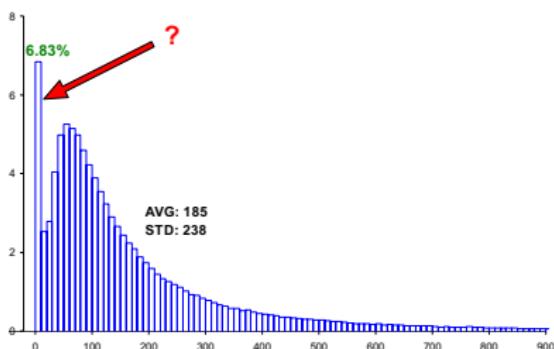
Data-base			Company report		comment
Asset id	order	Entry date	Exit date	Entry date	Exit date
4	1	1:14:07 PM		1:14:00 PM	
6	1	12:02:02 PM	12:33:10 PM	12:02:00 PM	12:33:00 PM
8	1	11:37:15 AM	12:40:17 PM	11:37:00 AM	exit is missing
10	1	12:23:32 PM	12:38:23 PM	12:23:00 PM	
12	1	12:12:47 PM	12:35:33 PM		12:35:00 PM entry is missing
15	1	1:07:15 PM		1:07:00 PM	
16	1	11:18:19 AM	11:31:04 AM	11:18:00 AM	11:31:00 AM
17	1	1:03:31 PM		1:03:00 PM	
18	1	1:07:54 PM		1:07:00 PM	
19	1	12:01:58 PM		12:01:00 PM	
20	1	11:37:21 AM	12:57:02 PM	11:37:00 AM	12:57:00 PM
21	1	12:01:16 PM	12:37:16 PM	12:01:00 PM	
22	1	12:04:31 PM	12:20:40 PM		first customer is missing
22	2	12:27:37 PM		12:27:00 PM	
25	1	12:27:35 PM	1:07:28 PM	12:27:00 PM	1:07:00 PM
27	1	12:06:53 PM		12:06:00 PM	
28	1	11:21:34 AM	11:41:06 AM	11:41:00 AM	11:53:00 AM exit time instead of entry time
29	1	12:21:06 PM	12:54:29 PM	12:21:00 PM	12:54:00 PM
31	1	11:40:54 AM	12:30:16 PM	11:40:00 AM	12:30:00 PM
31	2	12:37:57 PM	12:54:51 PM	12:37:00 PM	12:54:00 PM
32	1	11:27:11 AM	12:15:17 PM	11:27:00 AM	12:15:00 PM
33	1	12:05:50 PM	12:13:12 PM	12:05:00 PM	12:15:00 PM wrong exit time
35	1	11:31:48 AM	11:40:50 AM	11:31:00 AM	11:40:00 AM
36	1	12:06:23 PM	12:29:30 PM	12:06:00 PM	12:29:00 PM
37	1	11:31:50 AM	11:48:18 AM	11:31:00 AM	11:48:00 AM
37	2	12:59:21 PM		12:59:00 PM	

Imagine “Cleaning” 60,000+ customers per day (call centers) !

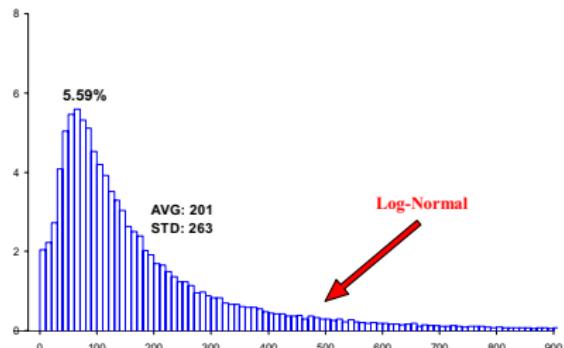
Beyond Averages: The Human Factor

Histogram of Service-Time in a (Small Israeli) Bank, 1999

January-October



November-December

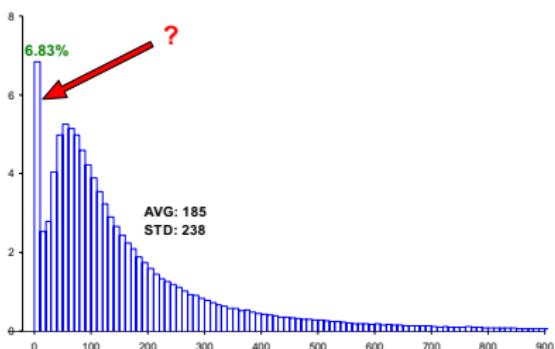


- ▶ 6.8% Short-Services:

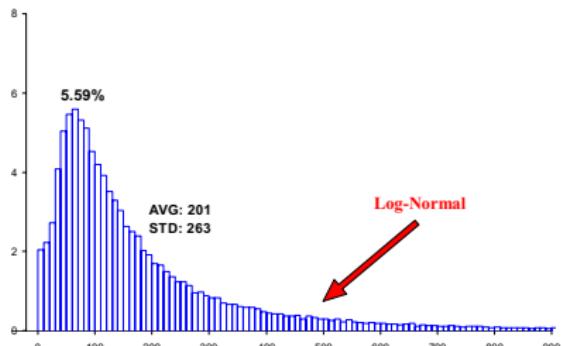
Beyond Averages: The Human Factor

Histogram of Service-Time in a (Small Israeli) Bank, 1999

January-October



November-December

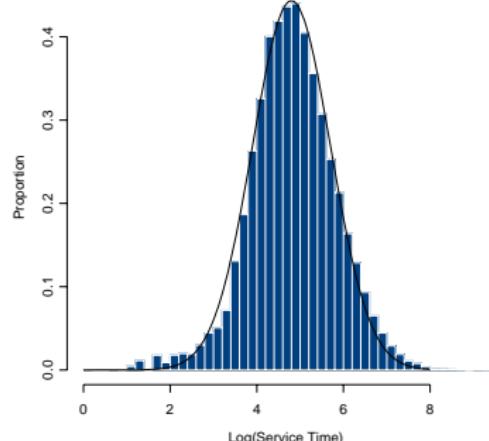


- ▶ **6.8% Short-Services:** Agents' "Abandon" (improve bonus, rest), (mis)lead by **incentives**
- ▶ **Distributions** must be measured (in **seconds** = **natural scale**)
- ▶ **LogNormal** service times common in call centers

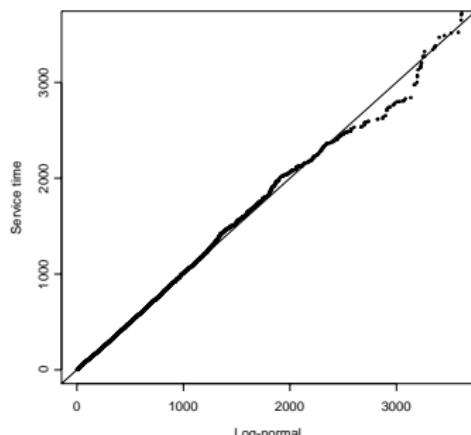
Validating LogNormality of Service-Duration

Israeli Call Center, Nov-Dec, 1999

Log(Service Times)



LogNormal QQPlot

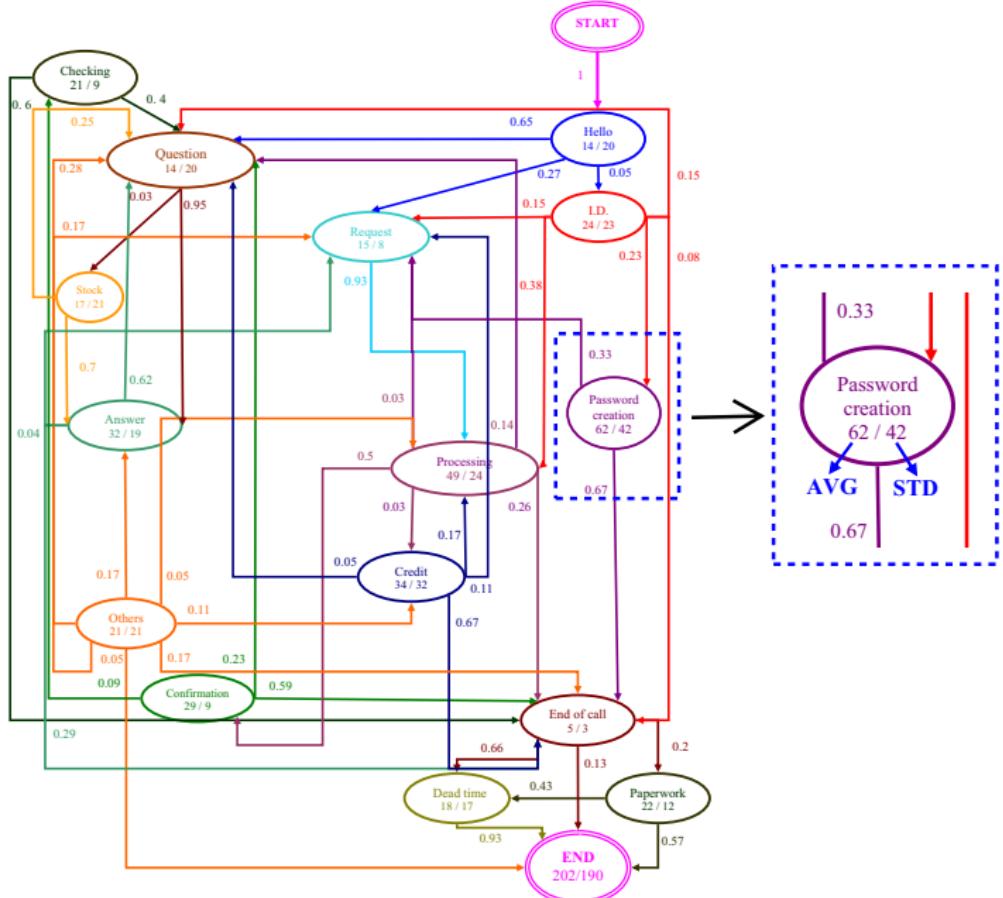


- ▶ **Practically Important:** (mean, std)(log) characterization
- ▶ **Theoretically Intriguing:** Why LogNormal ? Naturally multiplicative but, in fact, also **Infinitely-Divisible** (Generalized Gamma-Convolutions)
- ▶ Simple-model of a complex-reality? The **Service Process:**

(Telephone) Service-Process = “Phase-Type” Model

Retail Service (Israeli Bank)

Statistics OR IE

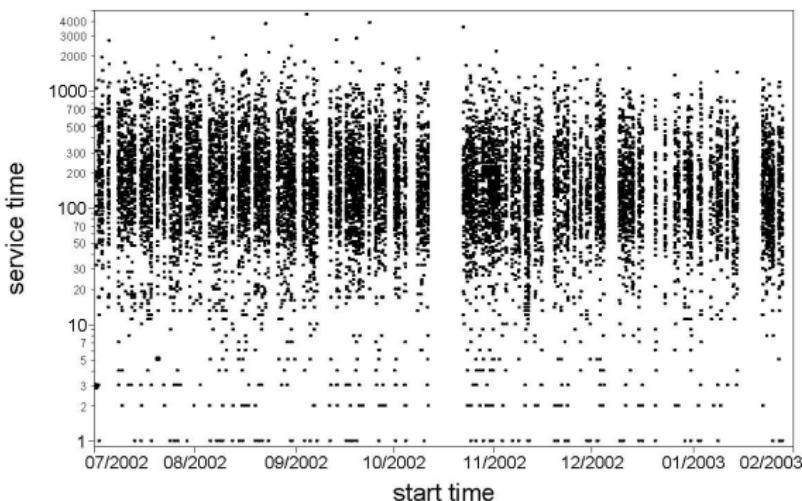


Individual Agents: Service-Duration, Variability

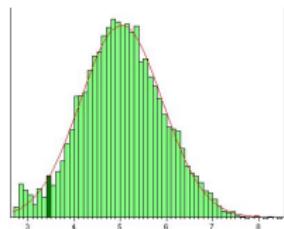
w/ Gans, Liu, Shen & Ye

Agent 14115

Service-Time Evolution: 6 month



Log(Service-Time)

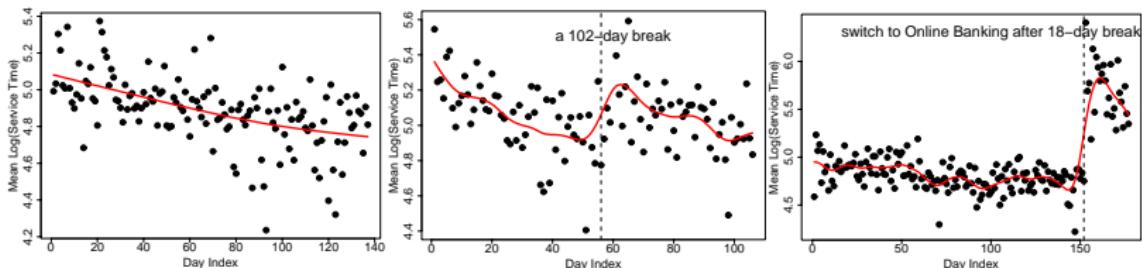


- ▶ **Learning:** Noticeable decreasing-trend in service-duration
- ▶ **LogNormal** Service-Duration, individually and collectively

Individual Agents: Learning, Forgetting, Switching

Daily-Average Log(Service-Time), over 6 months

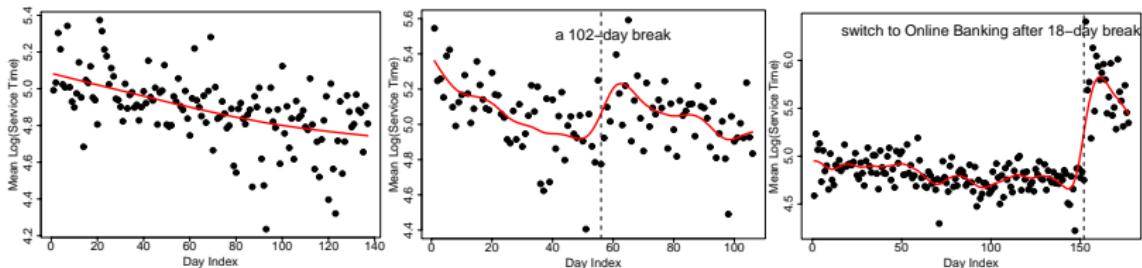
Agents 14115, 14128, 14136



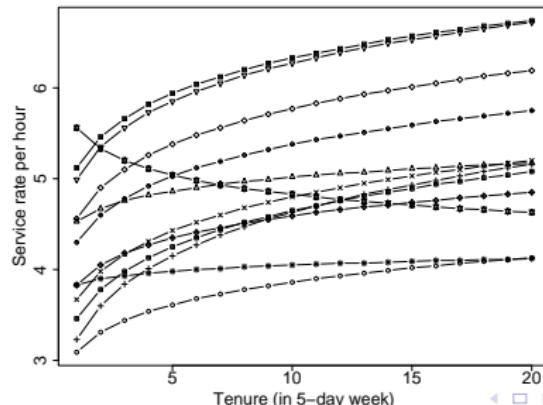
Individual Agents: Learning, Forgetting, Switching

Daily-Average Log(Service-Time), over 6 months

Agents 14115, 14128, 14136



Weakly Learning-Curves for 12 Homogeneous(?) Agents



Why Bother?

In large call centers:

+One Second to Service-Time implies **+Millions** in costs, annually

⇒ **Time and "Motion" Studies** (**Classical IE** with New-age IT)

Why Bother?

In large call centers:

+One Second to Service-Time implies **+Millions** in costs, annually

⇒ **Time and "Motion" Studies** (**Classical IE** with New-age IT)

- ▶ **Service-Process Model**: Customer-Agent Interaction
 - ▶ **Work Design** (w/ **Khudiakov**)
eg. **Cross-Selling**: higher profit vs. longer (costlier) services;
Analysis yields (congestion-dependent) cross-selling protocols
 - ▶ **"Worker" Design** (w/ **Gans, Liu, Shen & Ye**)
eg. **Learning, Forgetting, ...** : Staffing & individual-performance prediction, in a heterogenous environment

Why Bother?

In large call centers:

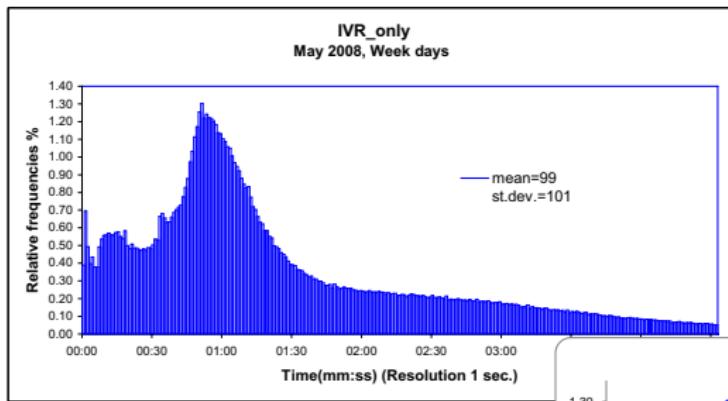
+One Second to Service-Time implies **+Millions** in costs, annually

⇒ **Time and "Motion" Studies** (**Classical IE** with New-age IT)

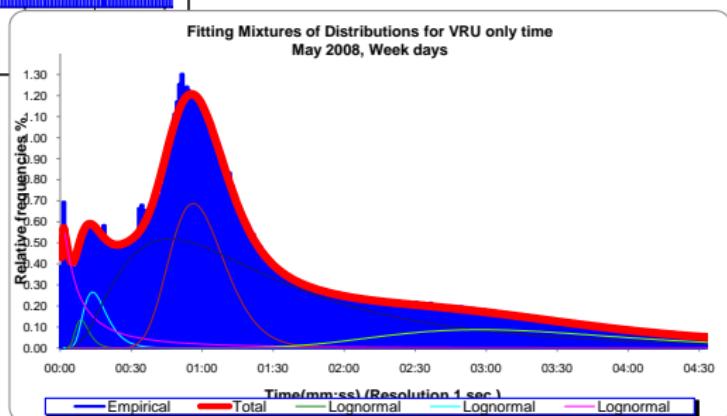
- ▶ **Service-Process Model**: Customer-Agent Interaction
 - ▶ **Work Design** (w/ **Khudiakov**)
eg. **Cross-Selling**: higher profit vs. longer (costlier) services;
Analysis yields (congestion-dependent) cross-selling protocols
 - ▶ **"Worker" Design** (w/ **Gans, Liu, Shen & Ye**)
eg. **Learning, Forgetting, ...** : Staffing & individual-performance prediction, in a heterogenous environment
- ▶ **IVR-Process Model**: Customer-Machine Interaction
75% bank-services, poor design, yet scarce research;
Same approach, automatic (easier) data (w/ **Yuviler**)

IVR-Time: Histograms

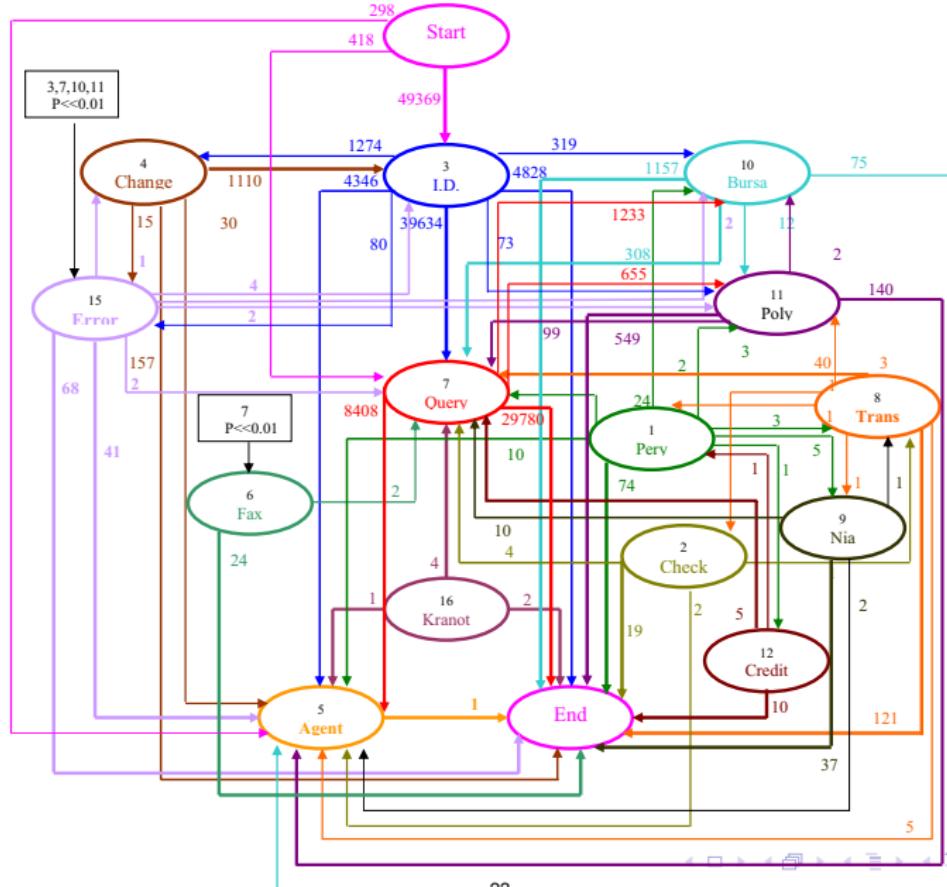
Israeli Bank: IVR/VRU Only, May 2008



Mixture: 7 LogNormals



IVR-Process: “Phase-Type” Model



Started with Call Centers, Expanded to Hospitals

Call Centers - U.S. (Netherlands) Stat.

- ▶ \$200 – \$300 billion annual expenditures (0.5)
- ▶ 100,000 – 200,000 call centers (1500-2000)
- ▶ "Window" into the company, for better or worse
- ▶ Over 3 million agents = **2% – 4% workforce** (100K)

Started with Call Centers, Expanded to Hospitals

Call Centers - U.S. (Netherlands) Stat.

- ▶ \$200 – \$300 billion annual expenditures (0.5)
- ▶ 100,000 – 200,000 call centers (1500-2000)
- ▶ "Window" into the company, for better or worse
- ▶ Over 3 million agents = **2% – 4% workforce** (100K)

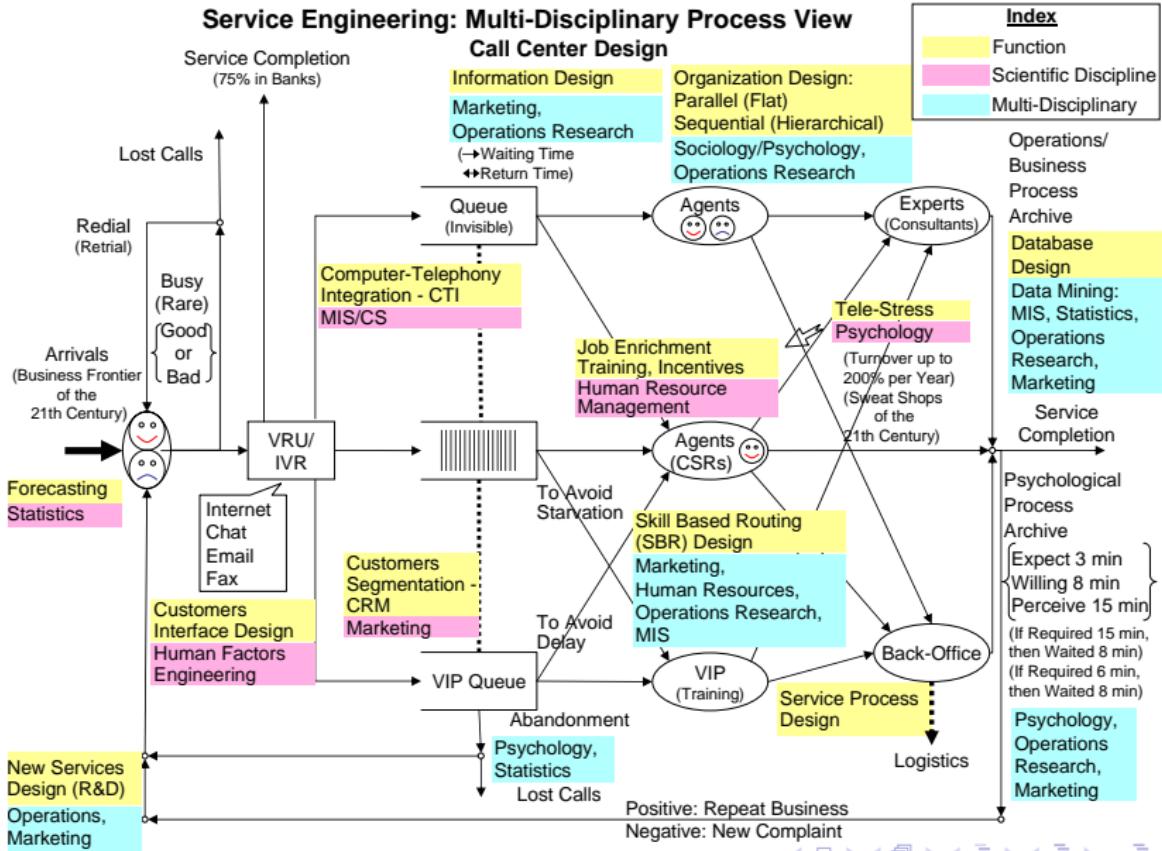
Healthcare - similar and unique challenges:

- ▶ Cost-figures far more staggering
- ▶ Risks much higher
- ▶ ED (initial focus) = hospital-window
- ▶ Over 3 million nurses

Call-Center Environment: Service Network

Call-Centers: “Sweat-Shops of the 21st Century”

Call-Center Network: Gallery of Models

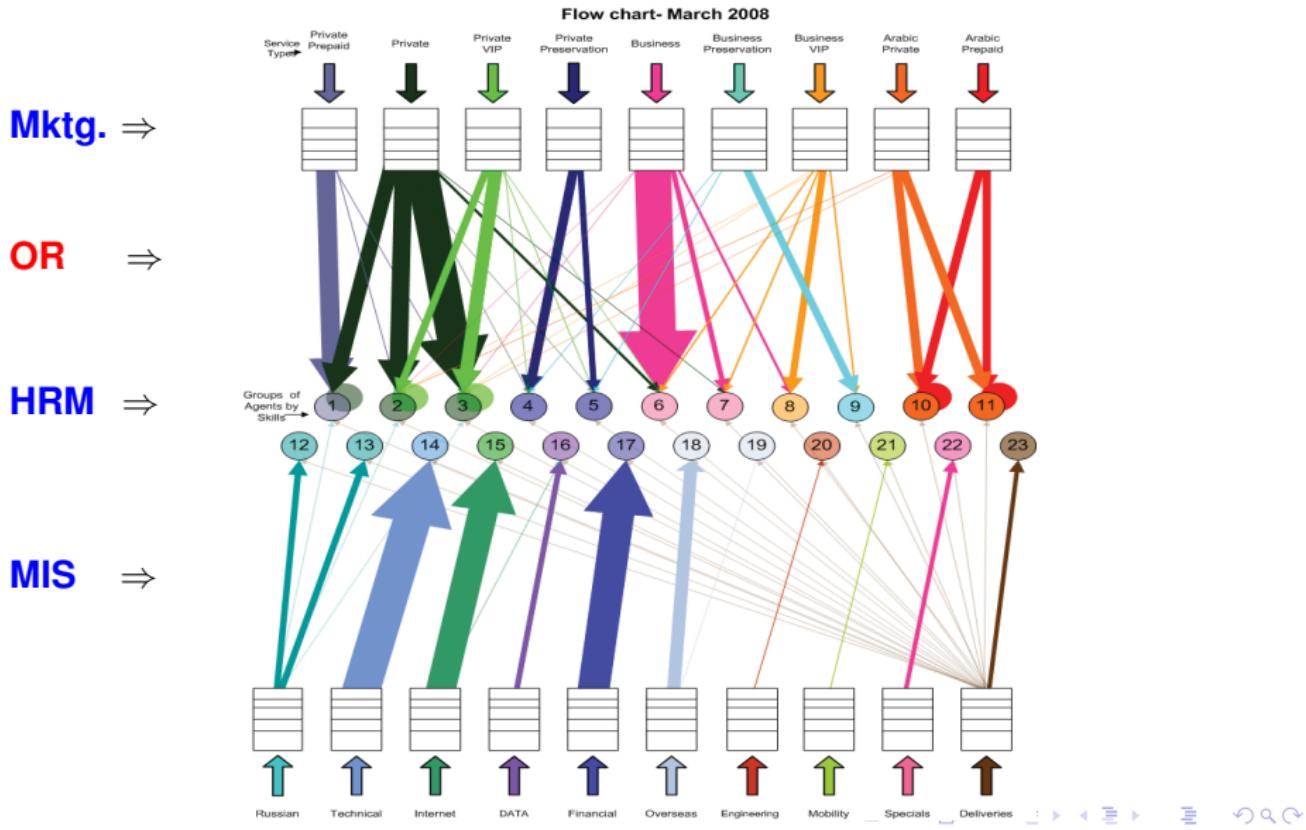


Call-Center Network: Gallery of Models

Add marks of topics to focus on

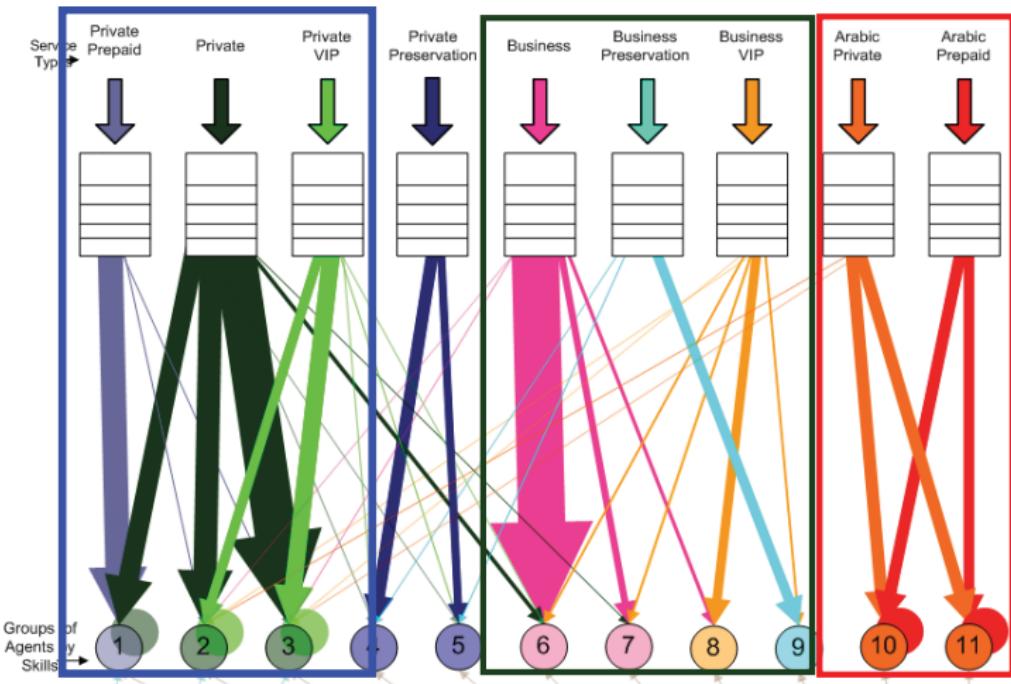
Skills-Based Routing in Call Centers

EDA and OR, with I. Gurvich and P. Liberman



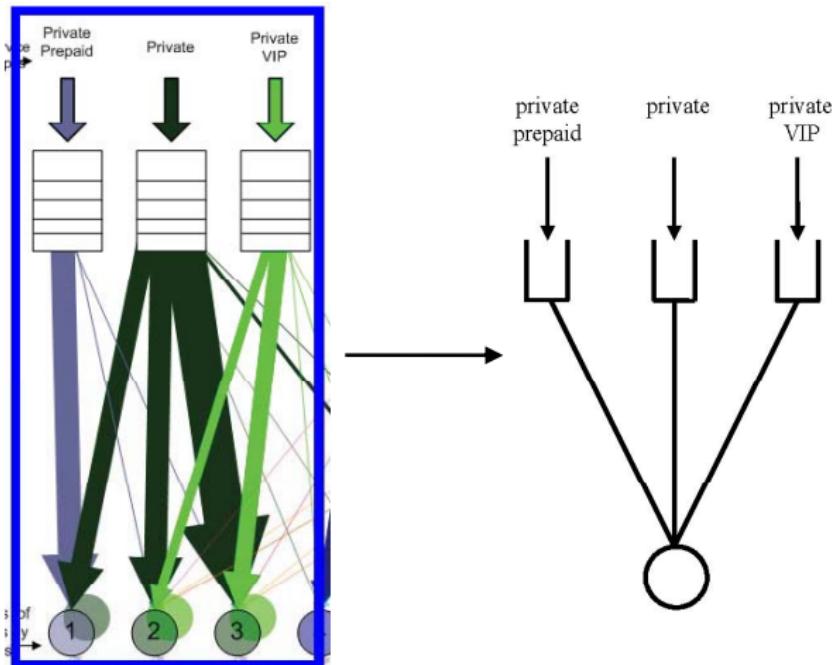
SBR Topologies: I; V, Reversed-V; N, X; W, M

Israeli Cellular, March 2008



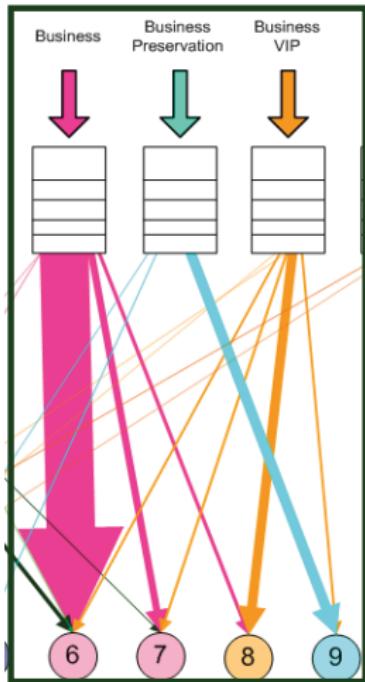
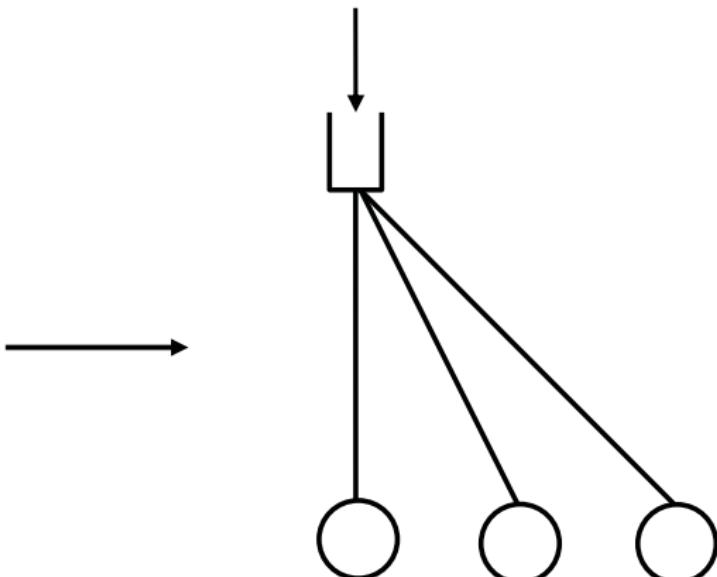
SBR: Class-Dependent Services

“Reduction” to V-Topology (Equivalent Brownian Control)



SBR: Pool-Dependent Services

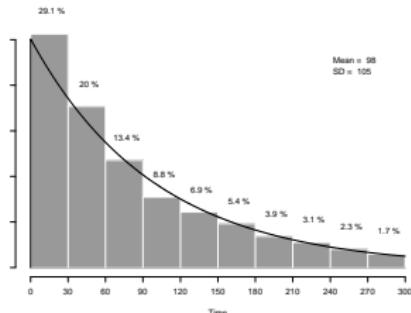
“Reduction” to Reversed-V and I (Equivalent Brownian Control)



Waiting Times in a Call Center (Theory?)

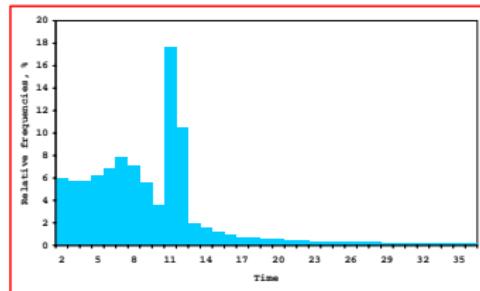
Exponential in Heavy-Traffic (min.)

Small Israeli Bank



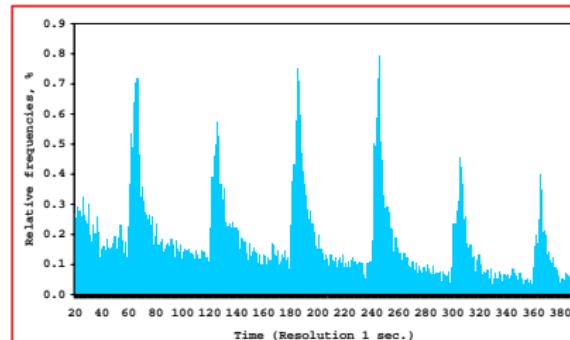
Routing via Thresholds (sec.)

Large U.S. Bank



Scheduling Priorities (sec) (later: Hospital LOS, hr.)

Medium Israeli Bank



ER / ED Environment: Service Network

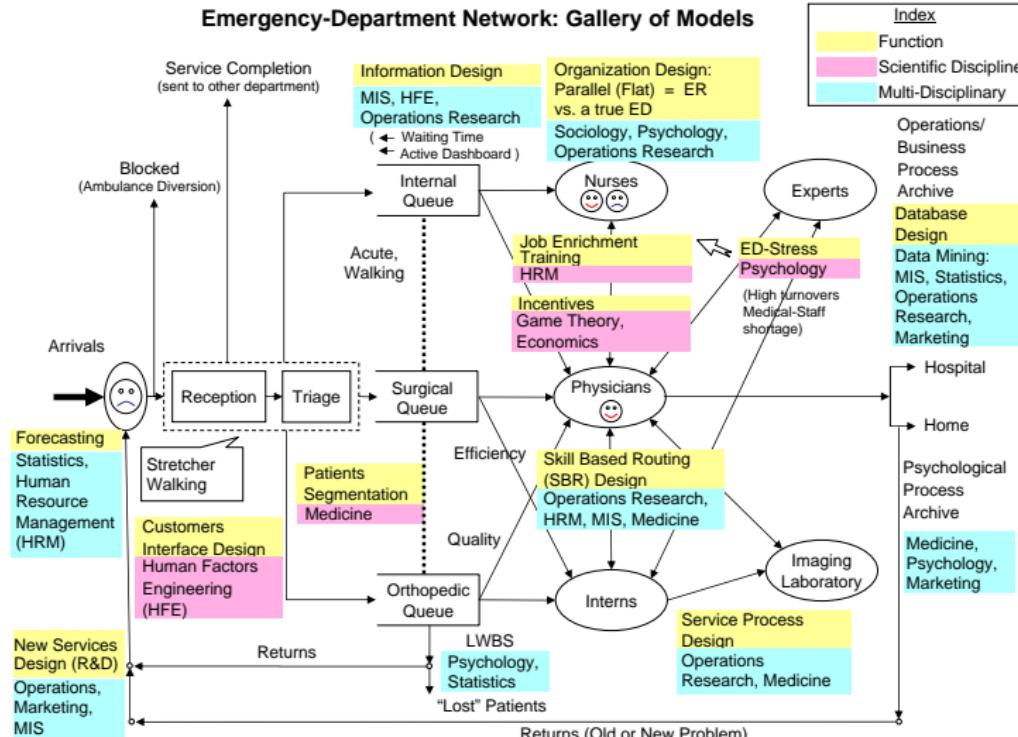
Acute (Internal, Trauma)

Walking

Multi-Trauma

Queueing in a “Good” Beijing Hospital, at 6am

Emergency-Department Network: Gallery of Models



► **Forecasting**, Abandonment = **LWBS**, SBR \approx **Flow Control**

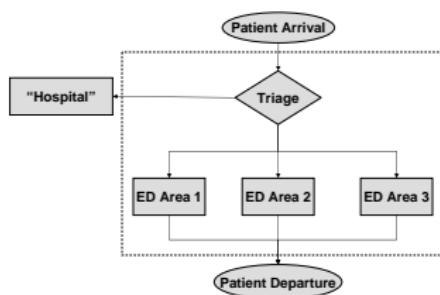
Emergency-Department Network: Gallery of Models

Add ED-to-IW routing

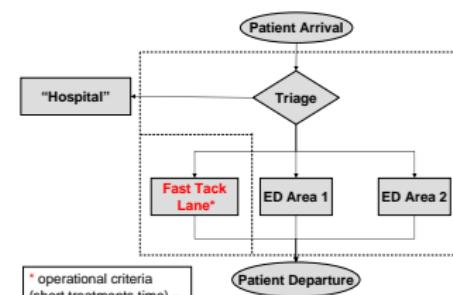
ED Design, with B. Golany, Y. Marmor, S. Israelit

Routing: **Triage (Clinical)**, **Fast-Track (Operational)**, ... (via DEA)

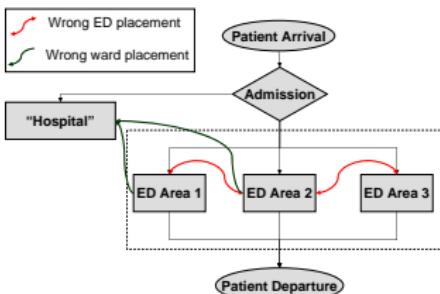
eg. Fast Track most suitable when elderly dominate



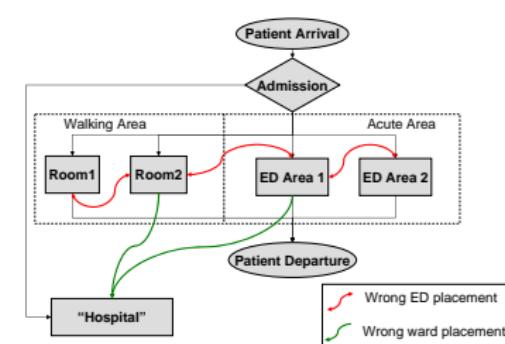
(a) Triage Model



(b) Fast-Track Model

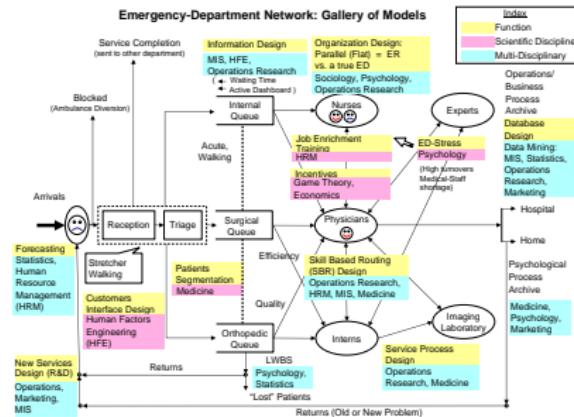


(c) Illness-based Model



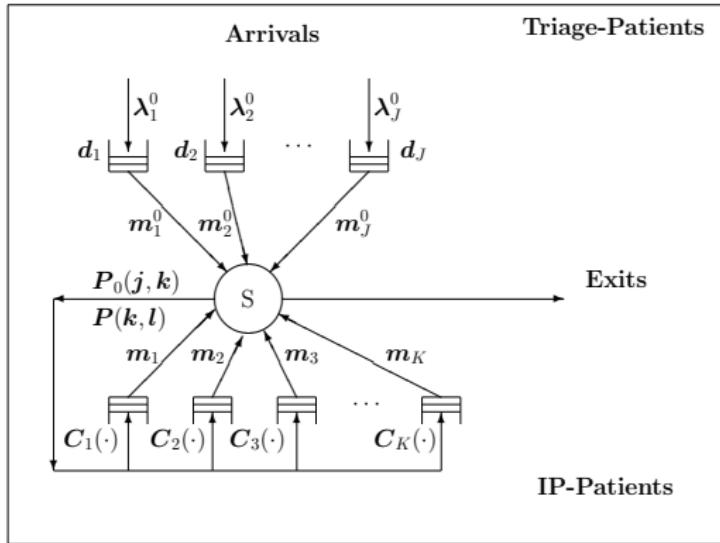
(d) Walking-Acute Model

Emergency-Department Network: Flow Control



- ▶ Queueing-Science, w/ Armony, Marmor, Tseytlin, Yom-Tov
- ▶ Fair ED-to-IW Routing (Patients vs. Staff), w/ Momcilovic, Tseytlin
- ▶ Triage vs. In-Process / Release in EDs, w/ Carmeli, Huang, Shimkin
- ▶ Workload and Offered-Load in Fork-Join Networks, w/ Kaspi, Zaeid
- ▶ Synchronization Control of Fork-Join Networks, w/ Atar, Zviran
- ▶ Staffing Time-Varying Q's with Re-Entrant Customers, w/ Yom-Tov

ED Patient Flow: The Physicians View



- ▶ **Goal:** Adhere to **Triage-Constraints**, then **process/release In-Process** Patients
- ▶ **Model** = Multi-class Q with Feedback: Min. convex **congestion costs** of IP-Patients, s.t. **deadline constraints** on Triage-Patients.
- ▶ **Solution:** In **conventional** heavy-traffic, **asymptotic least-cost** s.t. **asymptotic compliance**, via threshold (w/ **B. Carmeli, J. Huang, S. Israelit, N. Shimkin**; as in Plambeck, Harrison, Kumar, who applied admission control).

Operational Fairness

1. "Punishing" fast wards in ED-to-IW Routing:

- ▶ Parallel IWs: similar clinically , differ operationally
- ▶ Problem: Short Length-of-Stay goes hand in hand with high **bed-occupancy, bed-turnover**, yet clinically apt: **unfair!**
- ▶ Solution: Both nurses and managers content, w/ **P. Momcilovic and Y. Tseytlin** (3 time-scales: hour, day, week; "compare" with call-centers SBR)

Operational Fairness

1. "Punishing" fast wards in ED-to-IW Routing:

- ▶ Parallel IWs: similar clinically , differ operationally
- ▶ Problem: Short Length-of-Stay goes hand in hand with high **bed-occupancy, bed-turnover**, yet clinically apt: **unfair!**
- ▶ Solution: Both nurses and managers content, w/ **P. Momcilovic and Y. Tseytlin** (3 time-scales: hour, day, week; "compare" with call-centers SBR)

2. Balancing Load across Maternity Wards:

- ▶ 2 Maternity Wards: 1 = pre-birth, 2 = post-birth complications
- ▶ Problem: Nurses think the "**others-work-less**": **unfair!**
- ▶ Goal: Balance workload, mostly via normal births

Operational Fairness

1. "Punishing" fast wards in ED-to-IW Routing:

- ▶ Parallel IWs: similar clinically , differ operationally
- ▶ Problem: Short Length-of-Stay goes hand in hand with high **bed-occupancy, bed-turnover**, yet clinically apt: **unfair!**
- ▶ Solution: Both nurses and managers content, w/ **P. Momcilovic and Y. Tseytlin** (3 time-scales: hour, day, week; "compare" with call-centers SBR)

2. Balancing Load across Maternity Wards:

- ▶ 2 Maternity Wards: 1 = pre-birth, 2 = post-birth complications
- ▶ Problem: Nurses think the "**others-work-less**": **unfair!**
- ▶ Goal: Balance workload, mostly via normal births
- ▶ Challenge: Workload is **Operational, Cognitive, Emotional**
 - ▶ **Operational**: Work content of a task, in time-units
 - ▶ **Emotional**: e.g. Mother and fetus-in-stress, suddenly fetus dies

Operational Fairness

1. "Punishing" fast wards in ED-to-IW Routing:

- ▶ Parallel IWs: similar clinically , differ operationally
- ▶ Problem: Short Length-of-Stay goes hand in hand with high **bed-occupancy, bed-turnover**, yet clinically apt: **unfair!**
- ▶ Solution: Both nurses and managers content, w/ **P. Momcilovic and Y. Tseytlin** (3 time-scales: hour, day, week; "compare" with call-centers SBR)

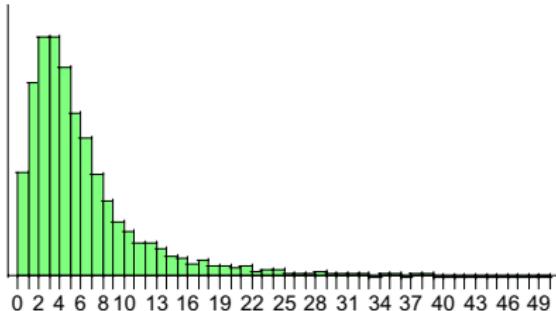
2. Balancing Load across Maternity Wards:

- ▶ 2 Maternity Wards: 1 = pre-birth, 2 = post-birth complications
- ▶ Problem: Nurses think the "**others-work-less**": **unfair!**
- ▶ Goal: Balance workload, mostly via normal births
- ▶ Challenge: Workload is **Operational, Cognitive, Emotional**
 - ▶ **Operational**: Work content of a task, in time-units
 - ▶ **Emotional**: e.g. Mother and fetus-in-stress, suddenly fetus dies

⇒ Need **help**: **A. Rafaeli** & students (**Psychology**) - Ongoing

LogNormal & Beyond: Length-of-Stay in a Hospital

Israeli Hospital, in Days: LN

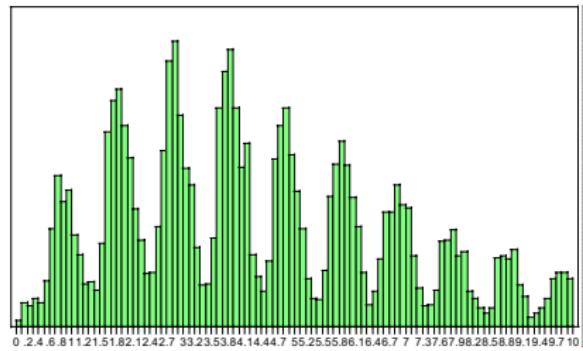


LogNormal & Beyond: Length-of-Stay in a Hospital

Israeli Hospital, in Days: LN

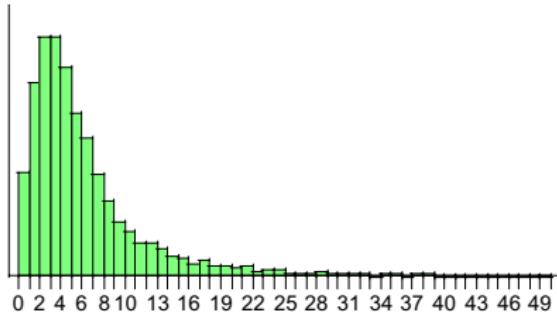


Israeli Hospital, in Hours: Mixture

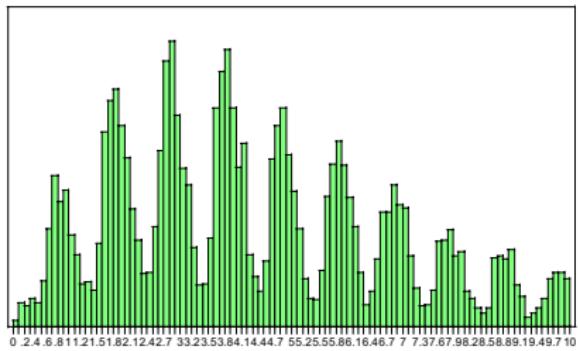


LogNormal & Beyond: Length-of-Stay in a Hospital

Israeli Hospital, in Days: LN



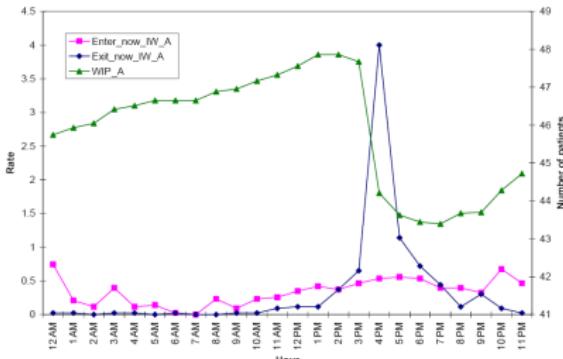
Israeli Hospital, in Hours: Mixture



Explanation: Patients released around **3pm** (1pm in Singapore)

Why Bother ?

- ▶ Hourly Scale: Staffing,...
- ▶ Daily: Flow / Bed Control,...



Prerequisite II: Models (Fluid Q's)

“Laws of Large Numbers” capture **Predictable** Variability

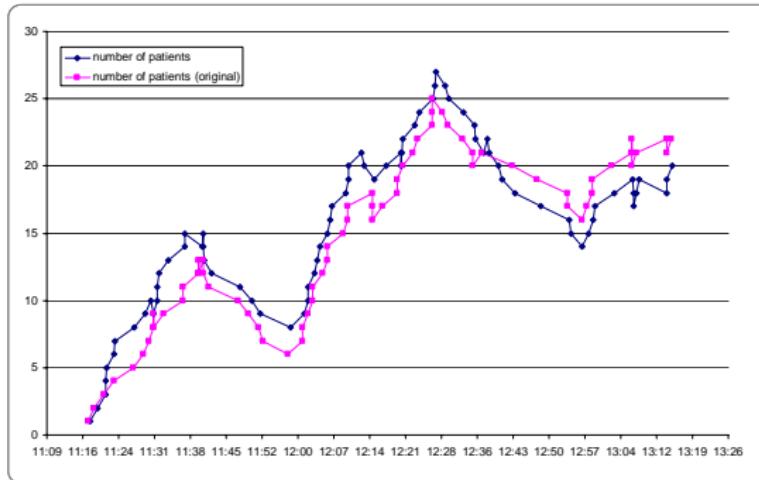
Deterministic Models: Scale Averages-out **Stochastic Individualism**

Prerequisite II: Models (Fluid Q's)

"Laws of Large Numbers" capture **Predictable** Variability

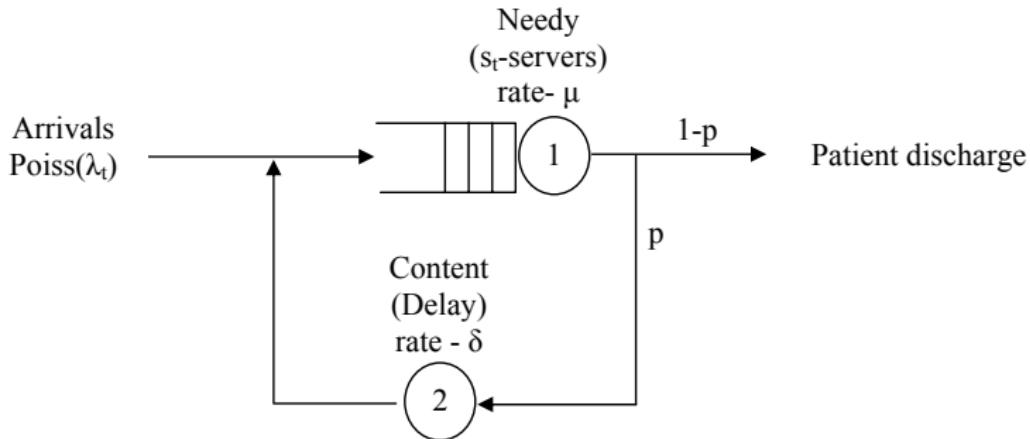
Deterministic Models: Scale Averages-out **Stochastic Individualism**

Severely-Wounded Patients, 11:00-13:00 (**Censored LOS**)



- ▶ Paths of doctors, nurses, patients (100+, **1 sec.** resolution)
eg. (could) Help predict "**What if** 150+ casualties severely wounded ?"
- ▶ **Transient** Q's:
 - ▶ Control of **Mass Casualty Events** (w/ I. Cohen, N. Zychlinski)
 - ▶ **Chemical MCE = Needy-Content Cycles** (w/ G. Yom-Tov)

The Basic Service-Network Model: Erlang-R



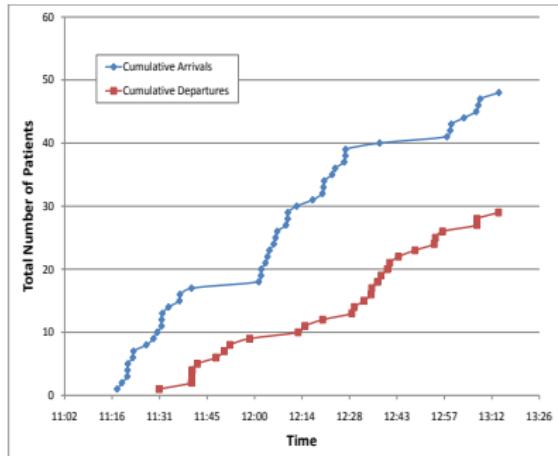
Erlang-R (IE: Repairman Problem 50's; CS: Central-Server 60's) =
2-station "Jackson" Network = (M/M/S, M/M/ ∞) :

- ▶ $\lambda(t)$ – **Time-Varying Arrival** rate
- ▶ $S(\cdot)$ – Number of **Servers** (Nurses / Physicians).
- ▶ μ – **Service** rate ($E[\text{Service}] = \frac{1}{\mu}$)
- ▶ p – **ReEntrant** (Feedback) fraction
- ▶ δ – **Content-to-Needy** rate ($E[\text{Content}] = \frac{1}{\delta}$)

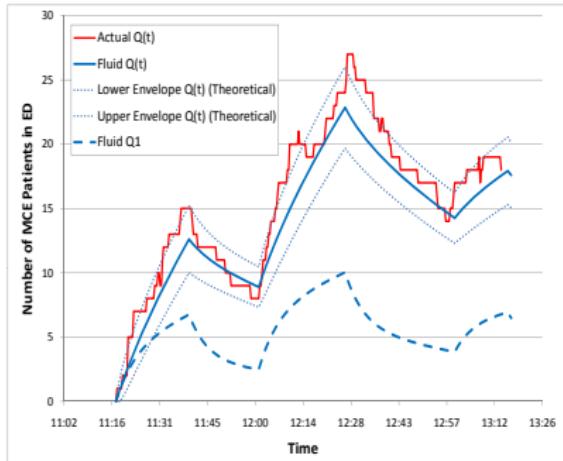
Erlang-R: Fitting a Simple Model to a Complex Reality

Chemical MCE Drill (Israel, May 2010)

Arrivals & Departures (RFID)



Erlang-R (Fluid, Diffusion)

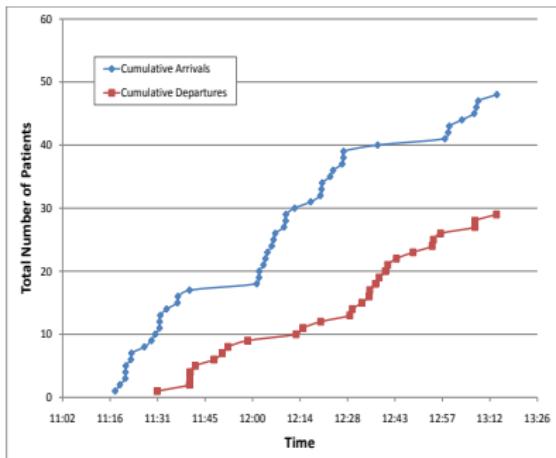


- ▶ Recurrent/Repeated services in MCE Events: eg. Injection every 15 minutes

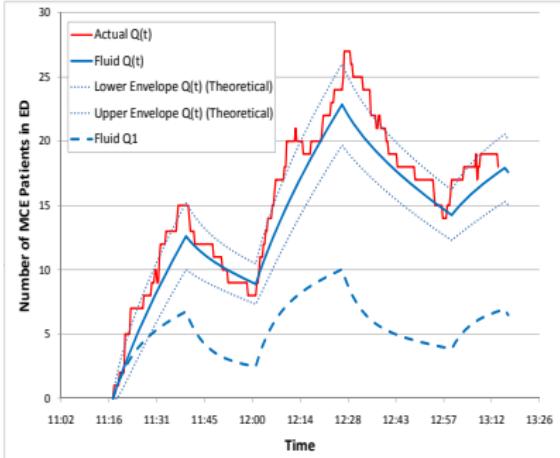
Erlang-R: Fitting a Simple Model to a Complex Reality

Chemical MCE Drill (Israel, May 2010)

Arrivals & Departures (RFID)



Erlang-R (Fluid, Diffusion)



- ▶ **Recurrent/Repeated** services in MCE Events: eg. Injection every 15 minutes
- ▶ **Fluid (Sample-path)** Modeling, via Functional Strong Laws of Large Numbers
- ▶ **Stochastic** Modeling, via Functional Central Limit Theorems
 - ▶ ED in **MCE**: Confidence-interval, usefully narrow for **Control**
 - ▶ ED in **normal (time-varying)** conditions: Personnel **Staffing**

Prerequisite II: Models (Diffusion/QED's Q's)

Traditional Queueing Theory predicts that **Service-Quality** and **Servers' Efficiency must** be traded off against each other.

For example, **M/M/1** (single-server queue): **91%** server's utilization goes with

$$\text{Congestion Index} = \frac{E[\text{Wait}]}{E[\text{Service}]} = 10,$$

and only **9%** of the customers are served immediately upon arrival.

Prerequisite II: Models (Diffusion/QED's Q's)

Traditional Queueing Theory predicts that **Service-Quality** and **Servers' Efficiency must** be traded off against each other.

For example, **M/M/1** (single-server queue): **91%** server's utilization goes with

$$\text{Congestion Index} = \frac{E[\text{Wait}]}{E[\text{Service}]} = 10,$$

and only **9%** of the customers are served immediately upon arrival.

Yet, **heavily-loaded** queueing systems with **Congestion Index = 0.1** (Waiting one order of magnitude less than Service) are prevalent:

- ▶ **Call Centers:** Wait **“seconds”** for **minutes** service;
- ▶ **Transportation:** Search **“minutes”** for **hours** parking;
- ▶ **Hospitals:** Wait **“hours”** in ED for **days** hospitalization in IW's;

Prerequisite II: Models (Diffusion/QED's Q's)

Traditional Queueing Theory predicts that **Service-Quality** and **Servers' Efficiency must** be traded off against each other.

For example, **M/M/1** (single-server queue): **91%** server's utilization goes with

$$\text{Congestion Index} = \frac{E[\text{Wait}]}{E[\text{Service}]} = 10,$$

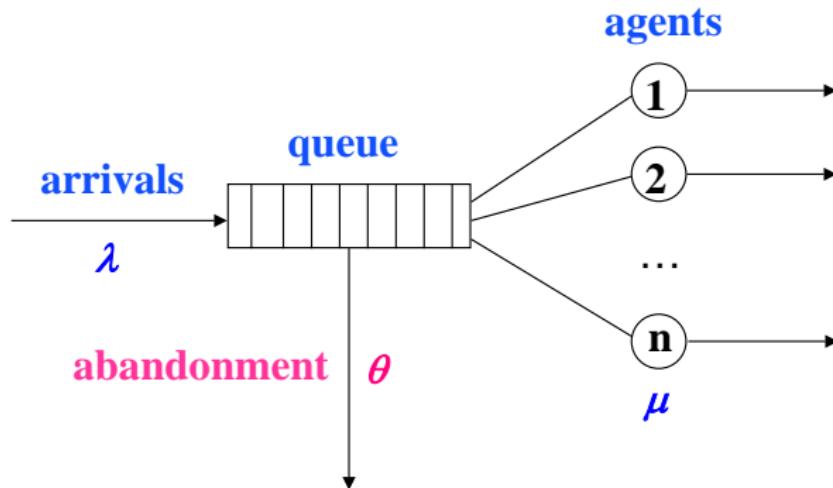
and only **9%** of the customers are served immediately upon arrival.

Yet, **heavily-loaded** queueing systems with **Congestion Index = 0.1** (Waiting one order of magnitude less than Service) are prevalent:

- ▶ **Call Centers:** Wait **“seconds”** for **minutes** service;
- ▶ **Transportation:** Search **“minutes”** for **hours** parking;
- ▶ **Hospitals:** Wait **“hours”** in ED for **days** hospitalization in IW's;

and, moreover, a significant fraction are not delayed in queue. (For example, in well-run call-centers, **50%** served “immediately”, along with over **90%** agents' utilization, is not uncommon) **?** **QED**

The Basic Staffing Model: Erlang-A (M/M/N + M)



Erlang-A (Palm 1940's) = Birth & Death Q, with parameters:

- ▶ λ – **Arrival** rate (Poisson)
- ▶ μ – **Service** rate (Exponential; $E[S] = \frac{1}{\mu}$)
- ▶ θ – **Patience** rate (Exponential, $E[\text{Patience}] = \frac{1}{\theta}$)
- ▶ n – Number of **Servers** (Agents).

Testing the Erlang-A Primitives

- ▶ **Arrivals:** Poisson?
- ▶ **Service-durations:** Exponential?
- ▶ **(Im)Patience:** Exponential?

Testing the Erlang-A Primitives

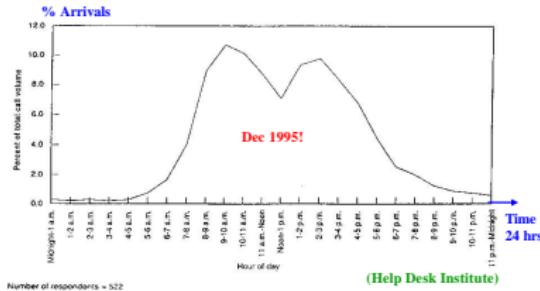
- ▶ **Arrivals**: Poisson?
- ▶ **Service-durations**: Exponential?
- ▶ **(Im)Patience**: Exponential?
- ▶ Primitives independent (eg. Impatience and Service-Durations)?
- ▶ Customers / Servers Homogeneous?
- ▶ Service discipline FCFS?
- ▶ ... ?

Validation: Support? Refute?

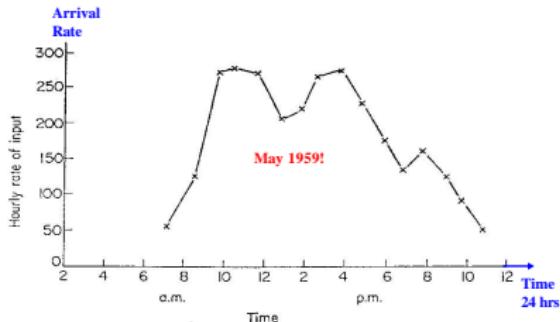
Arrivals to Service

Arrival-Rates to Three Call Centers

Dec. 1995 (U.S. 700 Helpdesks)



May 1959 (England)



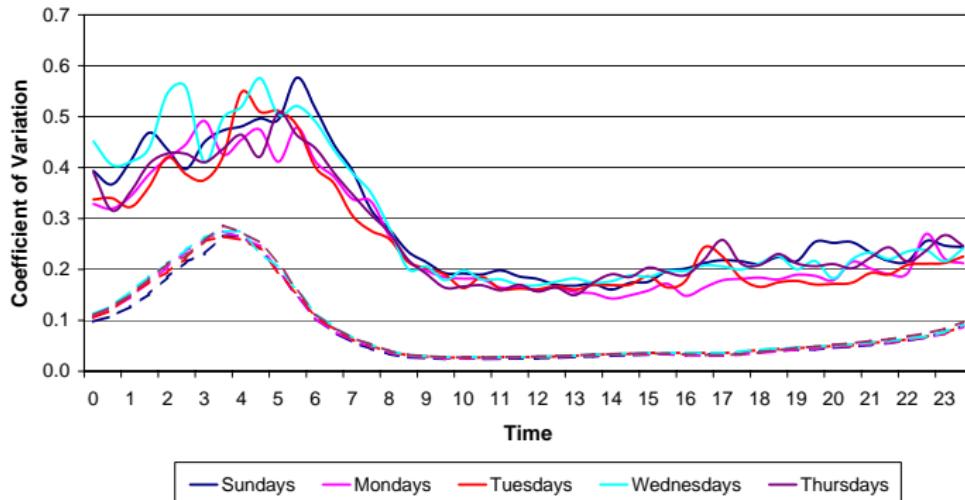
November 1999 (Israel)

Random Arrivals "must be"
(Axiomatically)
Time-Inhomogeneous Poisson

Arrivals to Service: only Poisson-Relatives

Arrival-Counts: Coefficient-of-Variation (CV), per 30 min.

Israeli-Bank Call-Center, 263 regular days (4/2007 - 3/2008)

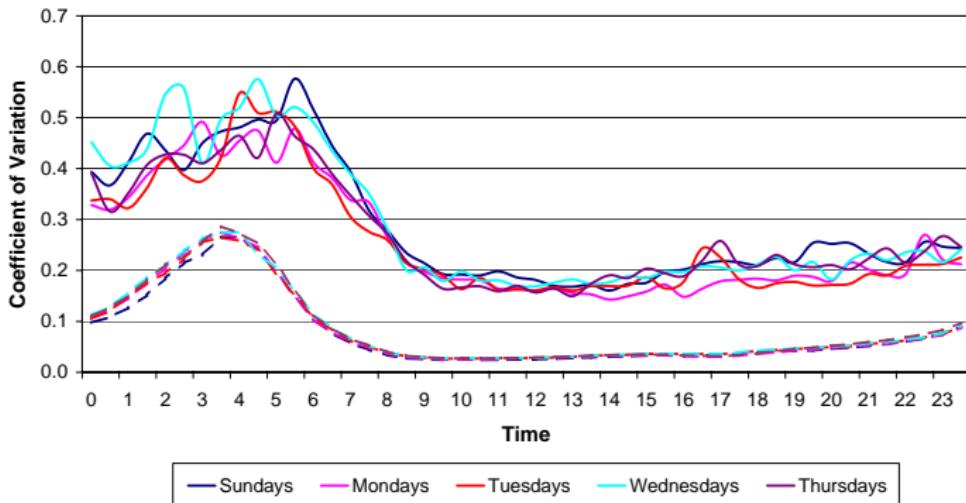


- ▶ Poisson CV (Dashed Line) = $1/\sqrt{\text{mean arrival-rate}}$
- ▶ Poisson CV's \ll Sampled CV's (Solid) \Rightarrow Over-Dispersion

Arrivals to Service: only Poisson-Relatives

Arrival-Counts: Coefficient-of-Variation (CV), per 30 min.

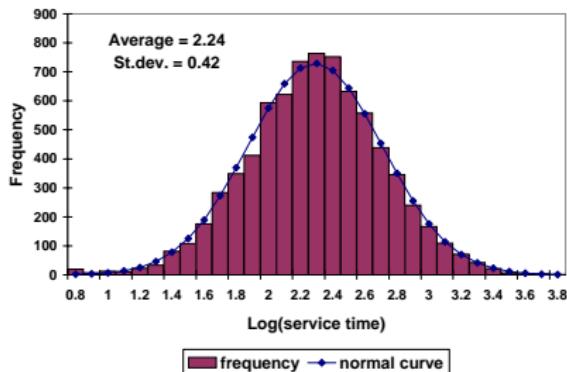
Israeli-Bank Call-Center, 263 regular days (4/2007 - 3/2008)



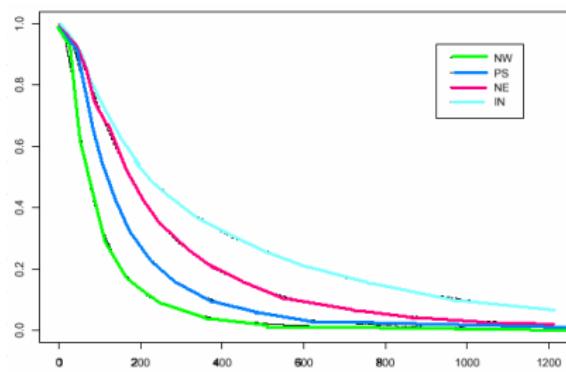
- ▶ Poisson CV (Dashed Line) = $1/\sqrt{\text{mean arrival-rate}}$
- ▶ Poisson CV's \ll Sampled CV's (Solid) \Rightarrow Over-Dispersion
- ⇒ Modeling (Poisson-Mixture) of and Staffing ($> \sqrt{\cdot}$) against Time-Varying Over-Dispersed Arrivals (w/ S. Maman & S. Zeltyn)

Service Durations: LogNormal Prevalent

Israeli Bank
Log-Histogram



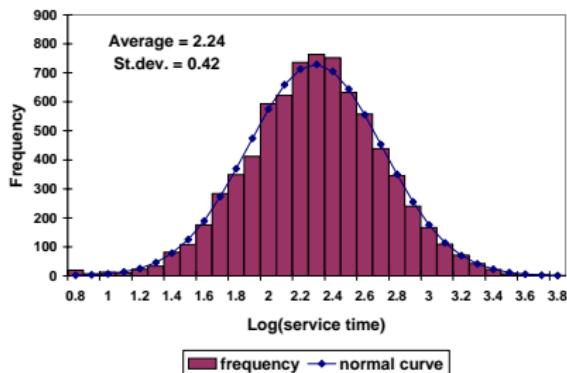
Service-Classes
Survival-Functions



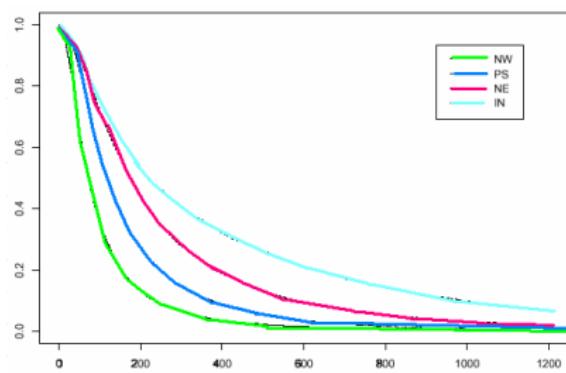
- **New Customers:** 2 min (NW);
- **Regulars:** 3 min (PS);
- **Stock:** 4.5 min (NE);
- **Tech-Support:** 6.5 min (IN).

Service Durations: LogNormal Prevalent

Israeli Bank
Log-Histogram



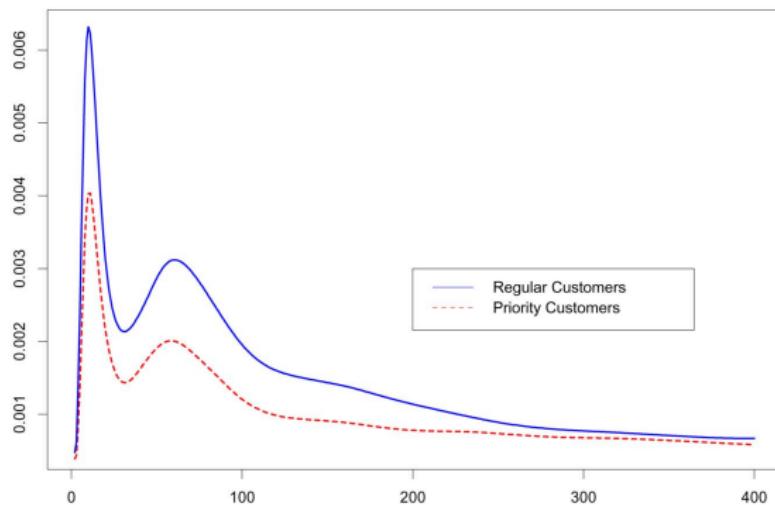
Service-Classes
Survival-Functions



- **New Customers:** 2 min (NW);
- **Regulars:** 3 min (PS);
- ▶ Service Durations are **LogNormal (LN)** and **Heterogeneous**
- **Stock:** 4.5 min (NE);
- **Tech-Support:** 6.5 min (IN).

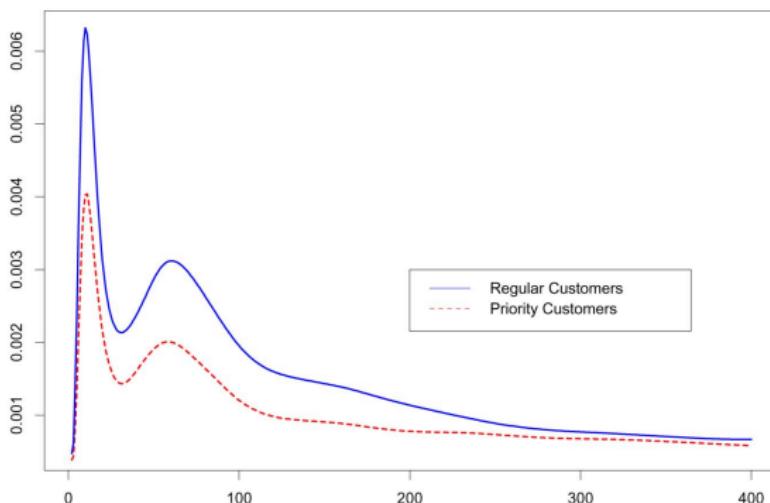
(Im)Patience while Waiting (Palm 1943-53)

Hazard Rate of (Im)Patience Distribution \propto Irritation
Regular over VIP Customers – Israeli Bank



(Im)Patience while Waiting (Palm 1943-53)

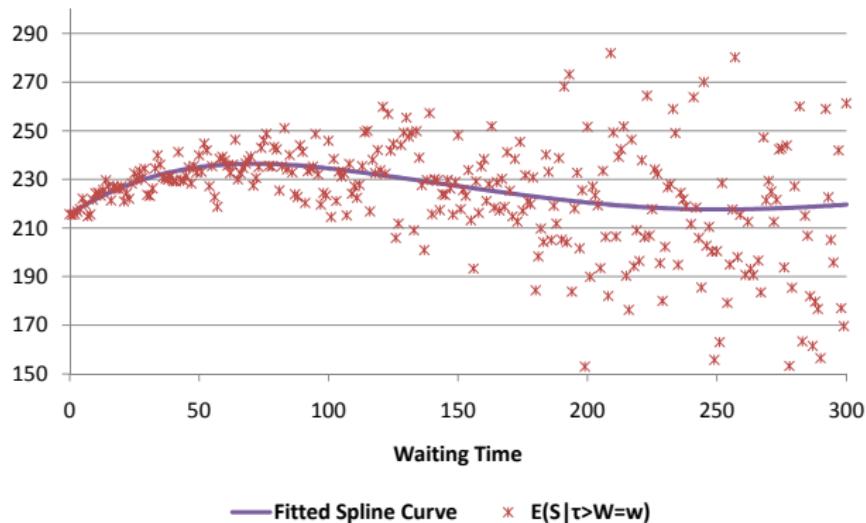
Hazard Rate of (Im)Patience Distribution \propto Irritation
Regular over VIP Customers – Israeli Bank



- ▶ VIP Customers are **more Patient** (Needy)
- ▶ **Peaks** of abandonment at times of **Announcements**
- ▶ Challenges: **Un-Censoring, Dependence (vs. KM), Smoothing**
- requires **Call-by-Call Data**

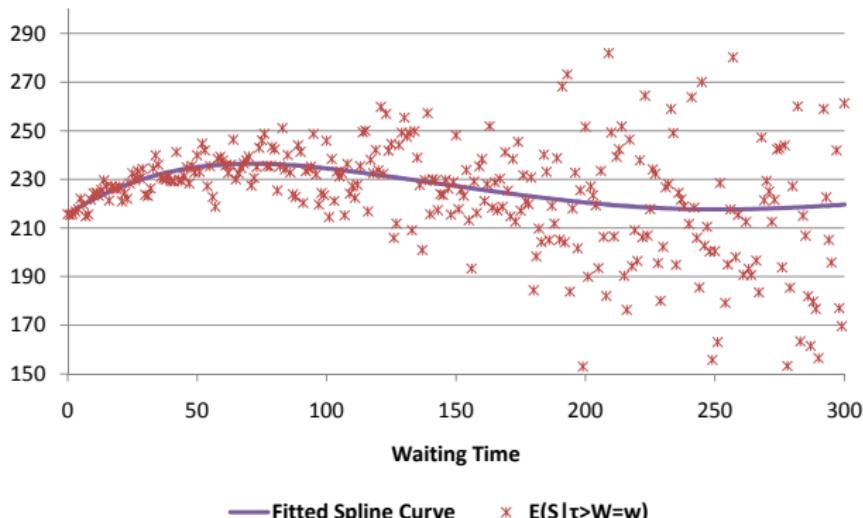
Dependent Primitives: Service- vs. Waiting-Time

Average Service-Time as a function of Waiting-Time
U.S. Bank, Retail, Wednesdays, January-June, 2006



Dependent Primitives: Service- vs. Waiting-Time

Average Service-Time as a function of Waiting-Time
U.S. Bank, Retail, Wednesdays, January-June, 2006



⇒ Focus on (Patience, Service-Time) jointly, w/ Reich and Ritov.
 $E[S | \text{Patience} = w]$, $w \geq 0$: Service-Time of the Unserved.

Erlang-A: Practical Relevance?

Experience:

- ▶ Arrival process **not pure Poisson** (time-varying, σ^2 too large)
- ▶ Service times **not Exponential** (typically close to LogNormal)
- ▶ Patience times **not Exponential** (various patterns observed).

Erlang-A: Practical Relevance?

Experience:

- ▶ Arrival process **not pure Poisson** (time-varying, σ^2 too large)
- ▶ Service times **not Exponential** (typically close to LogNormal)
- ▶ Patience times **not Exponential** (various patterns observed).
- ▶ Building Blocks need **not be independent** (eg. long wait associated with long service; with w/ **M. Reich and Y. Ritov**)
- ▶ Customers and Servers **not homogeneous** (classes, skills)
- ▶ Customers return for service (after busy, abandonment; dependently; **P. Khudiakov, M. Gorfine, P. Feigin**)
- ▶ …, and more.

Erlang-A: Practical Relevance?

Experience:

- ▶ Arrival process **not pure Poisson** (time-varying, σ^2 too large)
- ▶ Service times **not Exponential** (typically close to LogNormal)
- ▶ Patience times **not Exponential** (various patterns observed).
- ▶ Building Blocks need **not be independent** (eg. long wait associated with long service; with w/ **M. Reich and Y. Ritov**)
- ▶ Customers and Servers **not homogeneous** (classes, skills)
- ▶ Customers return for service (after busy, abandonment; dependently; **P. Khudiakov, M. Gorfine, P. Feigin**)
- ▶ . . . , and more.

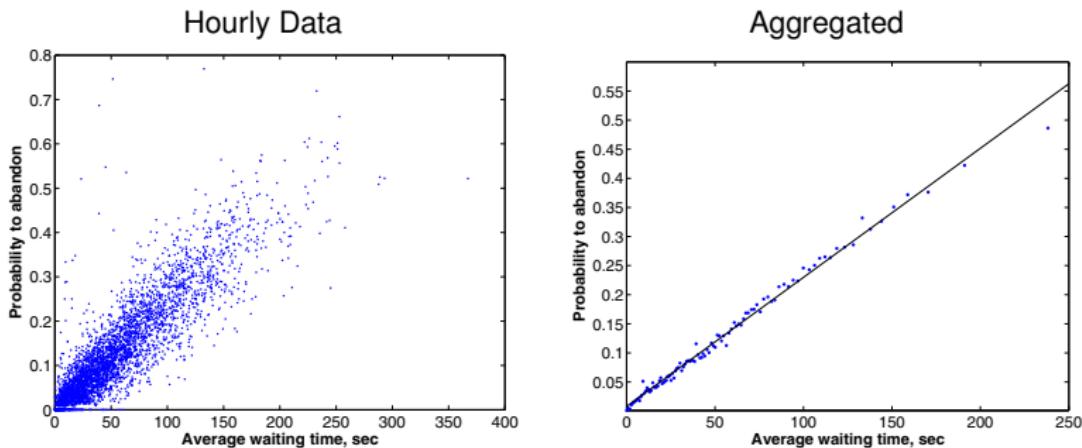
Question: **Is Erlang-A Relevant?**

YES ! Fitting a Simple Model to a Complex Reality, both **Theoretically and Practically**

Estimating (Im)Patience: via $P\{Ab\} \propto E[W_q]$

“Assume” $\text{Exp}(\theta)$ (im)patience. Then, $P\{Ab\} = \theta \cdot E[W_q]$.

% Abandonment vs. Average Waiting-Time Bank Anonymous (JASA): Yearly Data

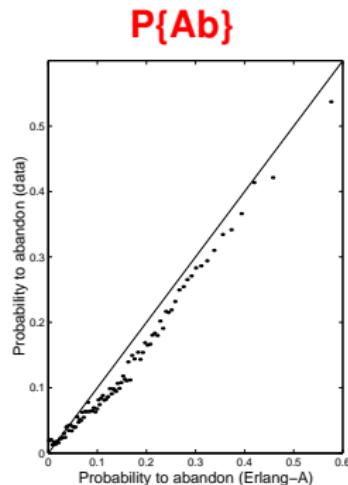
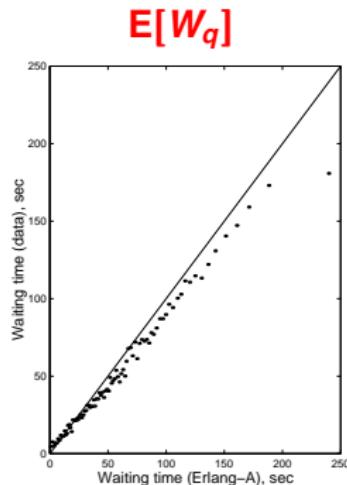
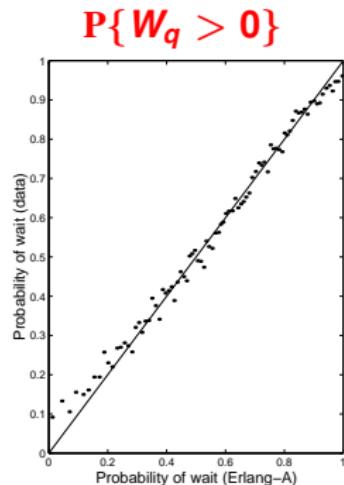


Graphs based on 4158 hour intervals.

Estimate of mean (im)patience: $250/0.55$ sec. ≈ 7.5 minutes.

Erlang-A: Fitting a Simple Model to a Complex Reality

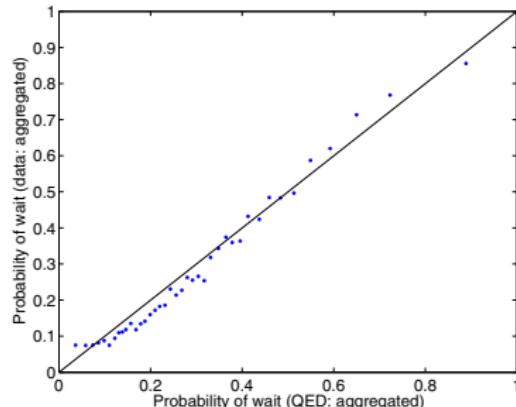
- ▶ **Bank Anonymous Small Israeli Call-Center**
- ▶ (Im)Patience (θ) estimated via $P\{Ab\} / E[W_q]$
- ▶ Graphs: **Hourly Performance vs. Erlang-A Predictions**,
during 1 year (aggregating groups with 40 similar hours).



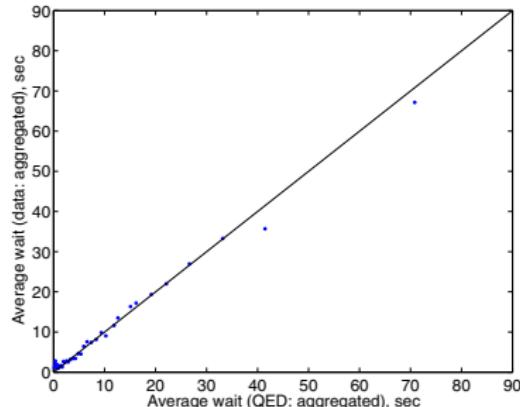
Erlang-A: Fitting a Simple Model to a Complex Reality

Large U.S. Bank

Retail. $P\{W_q > 0\}$



Telesales. $E[W_q]$



Partial success – in **some** cases Erlang-A **does not work** well
(Networking, SBR).

Ongoing **Validation** Project, w/ **Y. Nardi, O. Plonsky, S. Zeltyn**

Erlang-A: Simple, but Not Too Simple

Practical (Data-Based) questions, started in **Brown et al. (JASA)**:

1. Fitting Erlang-A (**Validation**, w/ **Nardi, Plonsky, Zeltyn**).
2. Why does it practically work? justify **robustness**.
3. When does it fail? chart **boundaries**.
4. Generate needs for **new theory**.

Erlang-A: Simple, but Not Too Simple

Practical (Data-Based) questions, started in **Brown et al. (JASA)**:

1. Fitting Erlang-A (**Validation**, w/ **Nardi, Plonsky, Zeltyn**).
2. Why does it practically work? justify **robustness**.
3. When does it fail? chart **boundaries**.
4. Generate needs for **new theory**.

Theoretical Framework: **Asymptotic Analysis**, as load- and staffing-levels increase, which reveals model-essentials:

- ▶ **Efficiency-Driven (ED)** regime: Fluid models (deterministic)
- ▶ **Quality- and Efficiency-Driven (QED)**: Diffusion refinements.

Erlang-A: Simple, but Not Too Simple

Practical (Data-Based) questions, started in **Brown et al. (JASA)**:

1. Fitting Erlang-A (**Validation**, w/ **Nardi, Plonsky, Zeltyn**).
2. Why does it practically work? justify **robustness**.
3. When does it fail? chart **boundaries**.
4. Generate needs for **new theory**.

Theoretical Framework: **Asymptotic Analysis**, as load- and staffing-levels increase, which reveals model-essentials:

- ▶ **Efficiency-Driven (ED)** regime: Fluid models (deterministic)
- ▶ **Quality- and Efficiency-Driven (QED)**: Diffusion refinements.

Motivation: Moderate-to-large service systems (**100's - 1000's** servers), notably **Call-Centers**.

Results turn out **accurate** enough to also cover **<10** servers:

- ▶ **Practically Important:** Relevant to **Healthcare**
(First: F. de Véricourt and O. Jennings; w/ **G. Yom-Tov; Y. Marmor, S. Zeltyn; H. Kaspi, I. Zaeid**)
- ▶ **Theoretically Justifiable:** Gap-Analysis by **A. Janssen, J. van Leeuwaarden, B. Zhang, B. Zwart**.

Operational Regimes: Conceptual Framework

R : Offered Load

Def. $R = \text{Arrival-rate} \times \text{Average-Service-Time} = \frac{\lambda}{\mu}$

eg. $R = 25 \text{ calls/min.} \times 4 \text{ min./call} = 100$

N = #Agents ? Intuition, as R or N increase unilaterally.

Operational Regimes: Conceptual Framework

R : Offered Load

Def. $R = \text{Arrival-rate} \times \text{Average-Service-Time} = \frac{\lambda}{\mu}$

eg. $R = 25 \text{ calls/min.} \times 4 \text{ min./call} = 100$

$N = \# \text{Agents}$? Intuition, as R or N increase unilaterally.

QD Regime: $N \approx R + \delta R$, $0.1 < \delta < 0.25$ (eg. $N = 115$)

- ▶ Framework developed in O. Garnett's MSc thesis
- ▶ Rigorously: $(N - R)/R \rightarrow \delta$, as $N, \lambda \uparrow \infty$, with μ fixed.
- ▶ Performance: Delays are rare events

Operational Regimes: Conceptual Framework

R: Offered Load

Def. $R = \text{Arrival-rate} \times \text{Average-Service-Time} = \frac{\lambda}{\mu}$

eg. $R = 25 \text{ calls/min.} \times 4 \text{ min./call} = 100$

N = #Agents ? Intuition, as R or N increase unilaterally.

QD Regime: $N \approx R + \delta R$, $0.1 < \delta < 0.25$ (eg. $N = 115$)

- ▶ Framework developed in O. Garnett's MSc thesis
- ▶ Rigorously: $(N - R)/R \rightarrow \delta$, as $N, \lambda \uparrow \infty$, with μ fixed.
- ▶ Performance: Delays are rare events

ED Regime: $N \approx R - \gamma R$, $0.1 < \gamma < 0.25$ (eg. $N = 90$)

- ▶ Essentially **all** customers are delayed
- ▶ Wait same order as service-time; $\gamma\%$ Abandon (10-25%).

Operational Regimes: Conceptual Framework

R: Offered Load

Def. $R = \text{Arrival-rate} \times \text{Average-Service-Time} = \frac{\lambda}{\mu}$

eg. $R = 25 \text{ calls/min.} \times 4 \text{ min./call} = 100$

N = #Agents ? Intuition, as **R** or **N** increase unilaterally.

QD Regime: $N \approx R + \delta R$, $0.1 < \delta < 0.25$ (eg. **N = 115**)

- ▶ Framework developed in **O. Garnett's** MSc thesis
- ▶ Rigorously: $(N - R)/R \rightarrow \delta$, as $N, \lambda \uparrow \infty$, with μ fixed.
- ▶ Performance: Delays are rare events

ED Regime: $N \approx R - \gamma R$, $0.1 < \gamma < 0.25$ (eg. **N = 90**)

- ▶ Essentially **all** customers are delayed
- ▶ Wait same order as service-time; $\gamma\%$ Abandon (10-25%).

QED Regime: $N \approx R + \beta \sqrt{R}$, $-1 < \beta < +1$ (eg. **N = 100**)

- ▶ Erlang 1913-24, **Halfin & Whitt** 1981 (for Erlang-C)
- ▶ %Delayed between 25% and 75%
- ▶ $E[\text{Wait}] \propto \frac{1}{\sqrt{N}} \times E[\text{Service}]$ (**sec vs. min**); 1-5% Abandon

Operational Regimes: Rules-of-Thumb, w/ S. Zeltyn

Constraint	P{Ab}		E[W]		P{W > T}	
Offered Load	Tight 1-10%	Loose $\geq 10\%$	Tight $\leq 10\%E[\tau]$	Loose $\geq 10\%E[\tau]$	Tight $0 \leq T \leq 10\%E[\tau]$	Loose $T \geq 10\%E[\tau]$
Small (10's)	QED	QED	QED	QED	QED	QED
Moderate-to-Large (100's-1000's)	QED	ED, QED	QED	ED, QED if $\tau \stackrel{d}{=} \text{exp}$	QED	ED+QED

Operational Regimes: Rules-of-Thumb, w/ S. Zeltyn

Constraint	P{Ab}		E[W]		P{W > T}	
Offered Load	Tight 1-10%	Loose $\geq 10\%$	Tight $\leq 10\%E[\tau]$	Loose $\geq 10\%E[\tau]$	Tight $0 \leq T \leq 10\%E[\tau]$	Loose $T \geq 10\%E[\tau]$
Small (10's)	QED	QED	QED	QED	QED	QED
Moderate-to-Large (100's-1000's)	QED	ED, QED	QED	ED, QED if $\tau \stackrel{d}{=} \text{exp}$	QED	ED+QED

ED: $N \approx R - \gamma R$ $(0.1 \leq \gamma \leq 0.25)$.

QD: $N \approx R + \delta R$ $(0.1 \leq \delta \leq 0.25)$.

QED: $N \approx R + \beta \sqrt{R}$ $(-1 \leq \beta \leq 1)$.

ED+QED: $N \approx (1 - \gamma)R + \beta \sqrt{R}$ $(\gamma, \beta \text{ as above})$.

Operational Regimes: Rules-of-Thumb, w/ S. Zeltyn

Constraint	P{Ab}		E[W]		P{W > T}	
Offered Load	Tight 1-10%	Loose $\geq 10\%$	Tight $\leq 10\%E[\tau]$	Loose $\geq 10\%E[\tau]$	Tight $0 \leq T \leq 10\%E[\tau]$	Loose $T \geq 10\%E[\tau]$
Small (10's)	QED	QED	QED	QED	QED	QED
Moderate-to-Large (100's-1000's)	QED	ED, QED	QED	ED, QED if $\tau \stackrel{d}{=} \text{exp}$	QED	ED+QED

ED: $N \approx R - \gamma R \quad (0.1 \leq \gamma \leq 0.25)$.

QD: $N \approx R + \delta R \quad (0.1 \leq \delta \leq 0.25)$.

QED: $N \approx R + \beta \sqrt{R} \quad (-1 \leq \beta \leq 1)$.

ED+QED: $N \approx (1 - \gamma)R + \beta \sqrt{R} \quad (\gamma, \beta \text{ as above})$.

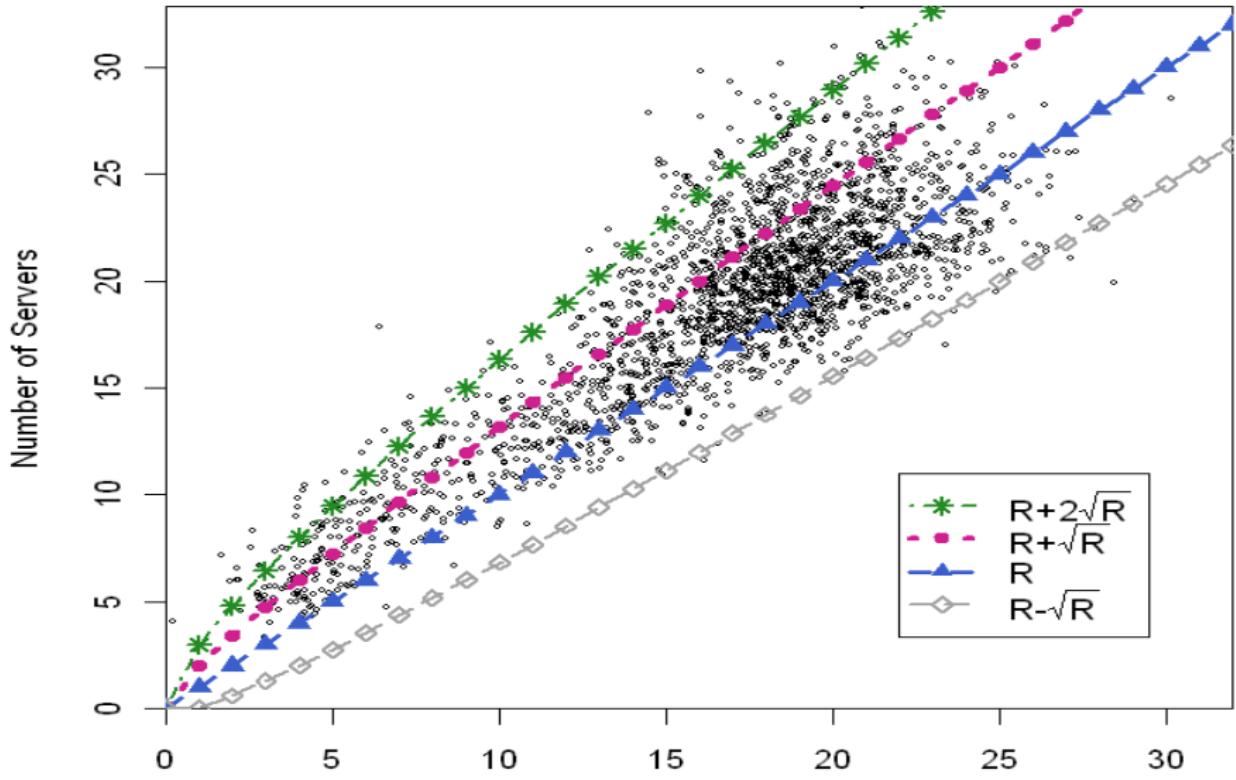
WFM: How to determine specific staffing level N ? e.g. β .

Operational Regimes: Scaling, Performance, w/ I. Gurvich & J. Huang

Erlang-A	Conventional scaling			MS scaling				NDS scaling		
	μ fixed	Sub	Critical	Super	QD	QED	ED	ED+QED	Sub	Critical
Offered load per server	$\frac{1}{1+\delta} < 1$	$1 - \frac{\beta}{\sqrt{n}} \approx 1$	$\frac{1}{1-\gamma} > 1$	$\frac{1}{1+\delta}$	$1 - \frac{\beta}{\sqrt{n}}$	$\frac{1}{1-\gamma}$	$\frac{1}{1-\gamma} - \beta \sqrt{\frac{1}{n(1-\gamma)^3}}$	$\frac{1}{1+\delta}$	$1 - \frac{\beta}{n}$	$\frac{1}{1-\gamma}$
Arrival rate λ	$\frac{\mu}{1+\delta}$	$\mu - \frac{\beta}{\sqrt{n}}\mu$	$\frac{\mu}{1-\gamma}$	$\frac{n\mu}{1+\delta}$	$n\mu - \beta\mu\sqrt{n}$	$\frac{n\mu}{1-\gamma}$	$\frac{n\mu}{1-\gamma} - \beta\mu\sqrt{\frac{n}{(1-\gamma)^3}}$	$\frac{n\mu}{1+\delta}$	$n\mu - \beta\mu$	$\frac{n\mu}{1-\gamma}$
Number of servers	1			n				n		
Time-scale	n			1				n		
Abandonment rate	θ/n			θ				θ/n		
Staffing level	$\frac{\lambda}{\mu}(1+\delta)$	$\frac{\lambda}{\mu}(1+\frac{\beta}{\sqrt{n}})$	$\frac{\lambda}{\mu}(1-\gamma)$	$\frac{\lambda}{\mu}(1+\delta)$	$\frac{\lambda}{\mu} + \beta\sqrt{\frac{\lambda}{\mu}}$	$\frac{\lambda}{\mu}(1-\gamma)$	$\frac{\lambda}{\mu}(1-\gamma) + \beta\sqrt{\frac{\lambda}{\mu}}$	$\frac{\lambda}{\mu}(1+\delta)$	$\frac{\lambda}{\mu} + \beta$	$\frac{\lambda}{\mu}(1-\gamma)$
Utilization	$\frac{1}{1+\delta}$	$1 - \sqrt{\frac{\mu}{\theta}} \frac{h(\hat{\beta})}{\mu \sqrt{n}}$	1	$\frac{1}{1+\delta}$	$1 - \sqrt{\frac{\mu}{\theta}} \frac{(1-\alpha_2)\beta + \alpha_2 h(\hat{\beta})}{\sqrt{n}}$	1	1	$\frac{1}{1+\delta}$	$1 - \sqrt{\frac{\mu}{\theta}} \frac{h(\hat{\beta})}{\mu \sqrt{n}}$	1
$\mathbb{E}(Q)$	$\frac{\alpha_1}{\delta}$	$\sqrt{n} \sqrt{\frac{\mu}{\theta}} [h(\hat{\beta}) - \hat{\beta}]$	$\frac{n\mu\gamma}{\theta(1-\gamma)}$	$\frac{1}{\sqrt{2\pi}} \frac{1+\delta}{\delta^2} \theta^n \frac{1}{\sqrt{n}}$	$\sqrt{n} \sqrt{\frac{\mu}{\theta}} [h(\hat{\beta}) - \hat{\beta}] \alpha_2$	$\frac{n\mu\gamma}{\theta(1-\gamma)}$	$\frac{n\mu}{\theta(1-\gamma)} (\gamma - \frac{\beta}{\sqrt{n(1-\gamma)}})$	$o(1)$	$n \sqrt{\frac{\mu}{\theta}} [h(\hat{\beta}) - \hat{\beta}]$	$\frac{n^2\mu\gamma}{\theta(1-\gamma)}$
$\mathbb{P}(Ab)$	$\frac{1}{n} \frac{1+\delta}{\delta} \alpha_1$	$\frac{1}{\sqrt{n}} \sqrt{\frac{\mu}{\theta}} [h(\hat{\beta}) - \hat{\beta}]$	γ	$\frac{1}{\sqrt{2\pi}} \frac{\theta}{\mu} \frac{(1+\delta)^2}{\delta^2} \theta^n \frac{1}{n^{3/2}}$	$\frac{1}{\sqrt{n}} \sqrt{\frac{\mu}{\theta}} [h(\hat{\beta}) - \hat{\beta}] \alpha_2$	γ	$\gamma - \frac{\beta\sqrt{1-\gamma}}{\sqrt{n}}$	$o(\frac{1}{n^2})$	$\frac{1}{n} \sqrt{\frac{\mu}{\theta}} [h(\hat{\beta}) - \hat{\beta}]$	γ
$\mathbb{P}(W_q > 0)$	$\alpha_1 \in (0, 1)$	≈ 1		$\frac{1}{\sqrt{2\pi}} \frac{1+\delta}{\delta} \theta^n \frac{1}{\sqrt{n}} \approx 0$	$\alpha_2 \in (0, 1)$	≈ 1		≈ 0	≈ 1	
$\mathbb{P}(W_q > T)$	$\alpha_1 e^{-\frac{4}{1+\delta}\mu t}$	$1 + O(\frac{1}{\sqrt{n}})$	$1 + O(\frac{1}{n})$	≈ 0		$\tilde{G}(T) \mathbb{1}_{\{G(T) < \gamma\}}$	α_3 , if $G(T) = \gamma$	≈ 0	$\frac{\Phi(\beta + \sqrt{\theta}\mu T)}{\Phi(\beta)}$	$1 + O(\frac{1}{n})$
Congestion $\frac{\mathbb{E}W_q}{\mathbb{E}S}$	$\alpha_1 \frac{1+\delta}{\delta}$	$\sqrt{n} \sqrt{\frac{\mu}{\theta}} [h(\hat{\beta}) - \hat{\beta}]$	$n\mu\gamma/\theta$	$\frac{1}{\sqrt{2\pi}} \frac{(1+\delta)^2}{\delta^2} \theta^n \frac{1}{n^{3/2}}$	$\frac{1}{\sqrt{n}} \sqrt{\frac{\mu}{\theta}} [h(\hat{\beta}) - \hat{\beta}] \alpha_2$	$\mu \int_0^{x^*} \tilde{G}(s) ds$	$\mu \int_0^{x^*} \tilde{G}(s) ds - \frac{\mu\beta\sqrt{1-\gamma}}{h_G(x^*)\sqrt{n}}$	$o(\frac{1}{n})$	$\sqrt{\frac{\mu}{\theta}} [h(\hat{\beta}) - \hat{\beta}]$	$n\mu\gamma/\theta$

QED Call Center: Staffing (N) vs. Offered-Load (R)

IL Telecom; June-September, 2004; w/ Nardi, Plonski, Zeltyn

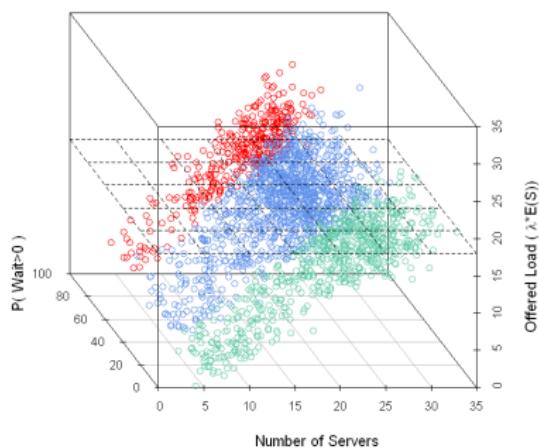


2205 half-hour intervals in an Israeli Call Center

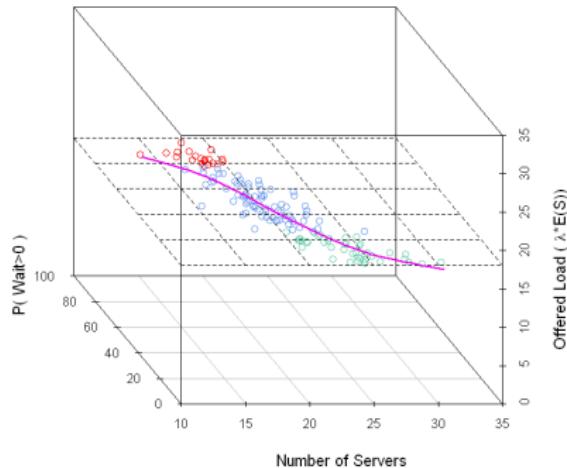
QED Call Center: Performance

Large Israeli Bank

$P\{W_q > 0\}$ vs. (R, N)



R-Slice: $P\{W_q > 0\}$ vs. N



3 Operational Regimes:

- **QD:** $\leq 25\%$
- **QED:** $25\% - 75\%$
- **ED:** $\geq 75\%$

QED Theory (Erlang '13; Halfin-Whitt '81; Garnett MSc; Zeltyn PhD)

Consider a sequence of **steady-state** M/M/ N + G queues, $N = 1, 2, 3, \dots$

Then the following points of view are **equivalent**, as $N \uparrow \infty$:

- **QED** $\% \{\text{Wait} > 0\} \approx \alpha, \quad 0 < \alpha < 1 ;$
- **Customers** $\% \{\text{Abandon}\} \approx \frac{\gamma}{\sqrt{N}}, \quad 0 < \gamma ;$
- **Agents** $\text{OCC} \approx 1 - \frac{\beta + \gamma}{\sqrt{N}} \quad -\infty < \beta < \infty ;$
- **Managers** $N \approx R + \beta\sqrt{R}, \quad R = \lambda \times \text{E(S)} \quad \text{not small};$

QED Theory (Erlang '13; Halfin-Whitt '81; Garnett MSc; Zeltyn PhD)

Consider a sequence of **steady-state** M/M/ N + G queues, $N = 1, 2, 3, \dots$

Then the following points of view are **equivalent**, as $N \uparrow \infty$:

- **QED** $\% \{\text{Wait} > 0\} \approx \alpha, \quad 0 < \alpha < 1 ;$
- **Customers** $\% \{\text{Abandon}\} \approx \frac{\gamma}{\sqrt{N}}, \quad 0 < \gamma ;$
- **Agents** $\text{OCC} \approx 1 - \frac{\beta + \gamma}{\sqrt{N}} \quad -\infty < \beta < \infty ;$
- **Managers** $N \approx R + \beta\sqrt{R}, \quad R = \lambda \times \text{E(S)} \quad \text{not small};$

- **QED performance:** **Laplace Method** (asymptotics of integrals).
- **Parameters:** Arrivals and Staffing - β , Services - μ ,
(Im)Patience - $g(0)$ = **patience density at the origin**.

Erlang-A: QED Approximations (Examples)

Assume **Offered Load** R not small ($\lambda \rightarrow \infty$).

Let $\hat{\beta} = \beta \sqrt{\frac{\mu}{\theta}}$, $h(\cdot) = \frac{\phi(\cdot)}{1 - \Phi(\cdot)}$ = hazard rate of $\mathcal{N}(0, 1)$.

► Delay Probability:

$$P\{W_q > 0\} \approx \left[1 + \sqrt{\frac{\theta}{\mu}} \cdot \frac{h(\hat{\beta})}{h(-\beta)} \right]^{-1}.$$

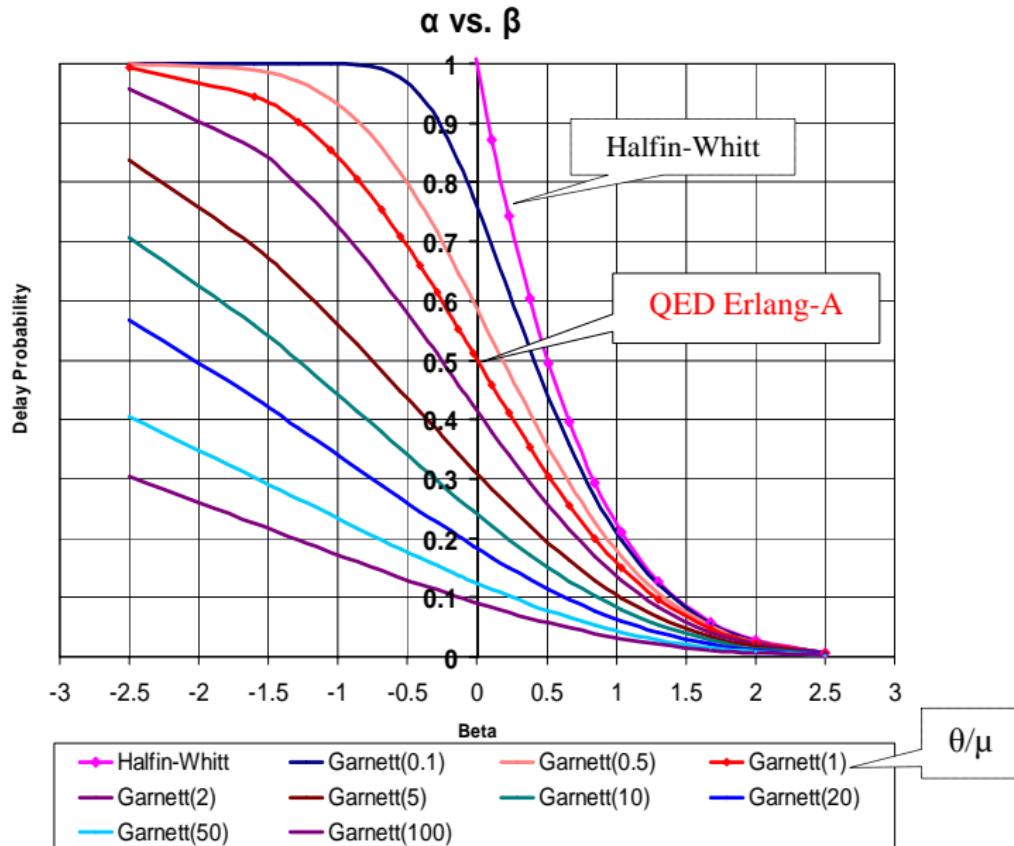
► Probability to Abandon:

$$P\{\text{Ab}|W_q > 0\} \approx \frac{1}{\sqrt{n}} \cdot \sqrt{\frac{\theta}{\mu}} \cdot \left[h(\hat{\beta}) - \hat{\beta} \right].$$

► $P\{\text{Ab}\} \propto E[W_q]$, both order $\frac{1}{\sqrt{n}}$:

$$\frac{P\{\text{Ab}\}}{E[W_q]} = \theta.$$

Garnett / Halfin-Whitt Functions: $P\{W_q > 0\}$



QED Intuition: Why $P\{W_q > 0\} \in (0, 1)$?

1. Why **subtle**: Consider a large service system (e.g. call center).
 - ▶ Fix λ and let $n \uparrow \infty$: $P\{W_q > 0\} \downarrow 0$.

QED Intuition: Why $P\{W_q > 0\} \in (0, 1)$?

1. Why **subtle**: Consider a large service system (e.g. call center).
 - ▶ Fix λ and let $n \uparrow \infty$: $P\{W_q > 0\} \downarrow 0$.
 - ▶ Fix n and let $\lambda \uparrow \infty$: $P\{W_q > 0\} \uparrow 1$.

QED Intuition: Why $P\{W_q > 0\} \in (0, 1)$?

1. Why **subtle**: Consider a large service system (e.g. call center).
 - ▶ Fix λ and let $n \uparrow \infty$: $P\{W_q > 0\} \downarrow 0$.
 - ▶ Fix n and let $\lambda \uparrow \infty$: $P\{W_q > 0\} \uparrow 1$.
 - ▶ \Rightarrow **Must** have both λ and n increase simultaneously:
 - ▶ \Rightarrow (CLT) **Square-root staffing**: $n \approx R + \beta\sqrt{R}$.

QED Intuition: Why $P\{W_q > 0\} \in (0, 1)$?

1. Why **subtle**: Consider a large service system (e.g. call center).
 - ▶ Fix λ and let $n \uparrow \infty$: $P\{W_q > 0\} \downarrow 0$.
 - ▶ Fix n and let $\lambda \uparrow \infty$: $P\{W_q > 0\} \uparrow 1$.
 - ▶ \Rightarrow **Must** have both λ and n increase simultaneously:
 - ▶ \Rightarrow (CLT) **Square-root staffing**: $n \approx R + \beta\sqrt{R}$.
2. **Erlang-A** (M/M/n+M), with parameters $\lambda, \mu, \theta; n$, in which $\mu = \theta$: (Im)Patience and Service-times are equally distributed.

QED Intuition: Why $P\{W_q > 0\} \in (0, 1)$?

1. Why **subtle**: Consider a large service system (e.g. call center).
 - ▶ Fix λ and let $n \uparrow \infty$: $P\{W_q > 0\} \downarrow 0$.
 - ▶ Fix n and let $\lambda \uparrow \infty$: $P\{W_q > 0\} \uparrow 1$.
 - ▶ \Rightarrow **Must** have both λ and n increase simultaneously:
 - ▶ \Rightarrow (CLT) **Square-root staffing**: $n \approx R + \beta\sqrt{R}$.
2. **Erlang-A** (M/M/n+M), with parameters $\lambda, \mu, \theta; n$, in which $\mu = \theta$: (Im)Patience and Service-times are equally distributed.
 - ▶ Steady-state: $L(M/M/n + M) \stackrel{d}{=} L(M/M/\infty) \stackrel{d}{=} \text{Poisson}(R)$, with $R = \lambda/\mu$ (Offered-Load)

QED Intuition: Why $P\{W_q > 0\} \in (0, 1)$?

1. Why **subtle**: Consider a large service system (e.g. call center).
 - ▶ Fix λ and let $n \uparrow \infty$: $P\{W_q > 0\} \downarrow 0$.
 - ▶ Fix n and let $\lambda \uparrow \infty$: $P\{W_q > 0\} \uparrow 1$.
 - ▶ \Rightarrow **Must** have both λ and n increase simultaneously:
 - ▶ \Rightarrow (CLT) **Square-root staffing**: $n \approx R + \beta\sqrt{R}$.
2. **Erlang-A** (M/M/n+M), with parameters $\lambda, \mu, \theta; n$, in which $\mu = \theta$: (Im)Patience and Service-times are equally distributed.
 - ▶ Steady-state: $L(M/M/n + M) \stackrel{d}{=} L(M/M/\infty) \stackrel{d}{=} \text{Poisson}(R)$, with $R = \lambda/\mu$ (Offered-Load)
 - ▶ $\text{Poisson}(R) \stackrel{d}{\approx} R + Z\sqrt{R}$, with $Z \stackrel{d}{=} N(0, 1)$.

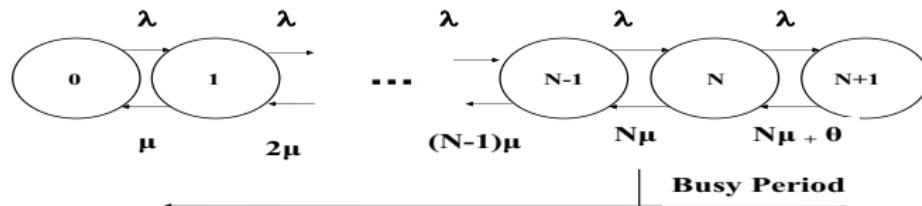
QED Intuition: Why $P\{W_q > 0\} \in (0, 1)$?

1. Why **subtle**: Consider a large service system (e.g. call center).
 - ▶ Fix λ and let $n \uparrow \infty$: $P\{W_q > 0\} \downarrow 0$.
 - ▶ Fix n and let $\lambda \uparrow \infty$: $P\{W_q > 0\} \uparrow 1$.
 - ▶ \Rightarrow **Must** have both λ and n increase simultaneously:
 - ▶ \Rightarrow (CLT) **Square-root staffing**: $n \approx R + \beta\sqrt{R}$.
2. **Erlang-A** (M/M/n+M), with parameters $\lambda, \mu, \theta; n$, in which $\mu = \theta$: (Im)Patience and Service-times are equally distributed.
 - ▶ Steady-state: $L(M/M/n + M) \stackrel{d}{=} L(M/M/\infty) \stackrel{d}{=} \text{Poisson}(R)$, with $R = \lambda/\mu$ (Offered-Load)
 - ▶ Poisson(R) $\stackrel{d}{\approx} R + Z\sqrt{R}$, with $Z \stackrel{d}{=} N(0, 1)$.
 - ▶ $P\{W_q(M/M/n + M) > 0\} \stackrel{\text{PASTA}}{=} P\{L(M/M/n + M) \geq n\} \stackrel{\mu = \theta}{=} P\{L(M/M/\infty) \geq n\} \approx P\{R + Z\sqrt{R} \geq n\} = P\{Z \geq (n - R)/\sqrt{R}\} \stackrel{\sqrt{\cdot} \text{ staffing}}{\approx} P\{Z \geq \beta\} = 1 - \Phi(\beta)$.

QED Intuition: Why $P\{W_q > 0\} \in (0, 1)$?

1. Why **subtle**: Consider a large service system (e.g. call center).
 - ▶ Fix λ and let $n \uparrow \infty$: $P\{W_q > 0\} \downarrow 0$.
 - ▶ Fix n and let $\lambda \uparrow \infty$: $P\{W_q > 0\} \uparrow 1$.
 - ▶ \Rightarrow **Must** have both λ and n increase simultaneously:
 - ▶ \Rightarrow (CLT) **Square-root staffing**: $n \approx R + \beta\sqrt{R}$.
2. **Erlang-A** (M/M/n+M), with parameters $\lambda, \mu, \theta; n$, in which $\mu = \theta$: (Im)Patience and Service-times are equally distributed.
 - ▶ Steady-state: $L(M/M/n + M) \stackrel{d}{=} L(M/M/\infty) \stackrel{d}{=} \text{Poisson}(R)$, with $R = \lambda/\mu$ (Offered-Load)
 - ▶ Poisson(R) $\stackrel{d}{\approx} R + Z\sqrt{R}$, with $Z \stackrel{d}{=} N(0, 1)$.
 - ▶ $P\{W_q(M/M/n + M) > 0\} \stackrel{\text{PASTA}}{=} P\{L(M/M/n + M) \geq n\} \stackrel{\mu = \theta}{=} P\{L(M/M/\infty) \geq n\} \approx P\{R + Z\sqrt{R} \geq n\} = P\{Z \geq (n - R)/\sqrt{R}\} \stackrel{\sqrt{\cdot} \text{ staffing}}{\approx} P\{Z \geq \beta\} = 1 - \Phi(\beta)$.
3. QED **Excursions**

QED Intuition via Excursions: Busy-Idle Cycles



$Q(0) = N$: all servers busy, no queue.

Let $T_{N,N-1} = E[\text{Busy Period}]$ down-crossing $N \downarrow N-1$

$T_{N-1,N} = E[\text{Idle Period}]$ up-crossing $N-1 \uparrow N$)

Then $P(\text{Wait} > 0) = \frac{T_{N,N-1}}{T_{N,N-1} + T_{N-1,N}} = \left[1 + \frac{T_{N-1,N}}{T_{N,N-1}}\right]^{-1}$.

QED Intuition via Excursions: Asymptotics

Calculate $T_{N-1,N} = \frac{1}{\lambda_N E_{1,N-1}} \sim \frac{1}{N\mu \times h(-\beta)/\sqrt{N}} \sim \frac{1}{\sqrt{N}} \cdot \frac{1/\mu}{h(-\beta)}$

$$T_{N,N-1} = \frac{1}{N\mu\pi_+(0)} \sim \frac{1}{\sqrt{N}} \cdot \frac{\beta/\mu}{h(\delta)/\delta}, \quad \delta = \beta\sqrt{\mu/\theta}$$

Both apply as $\sqrt{N}(1 - \rho_N) \rightarrow \beta$, $-\infty < \beta < \infty$.

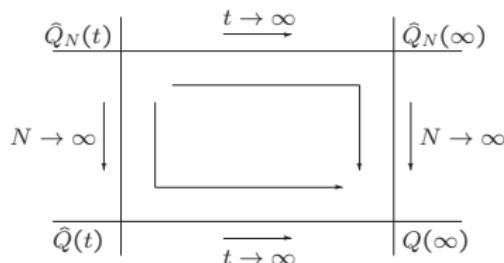
Hence, $P(\text{Wait} > 0) \sim \left[1 + \frac{h(\delta)/\delta}{h(-\beta)/\beta} \right]^{-1}$.

Process Limits (Queueing, Waiting)

- $\hat{Q}_N = \{\hat{Q}_N(t), t \geq 0\}$: stochastic process obtained by centering and rescaling:

$$\hat{Q}_N = \frac{Q_N - N}{\sqrt{N}}$$

- $\hat{Q}_N(\infty)$: stationary distribution of \hat{Q}_N
- $\hat{Q} = \{\hat{Q}(t), t \geq 0\}$: process defined by: $\hat{Q}_N(t) \xrightarrow{d} \hat{Q}(t)$.



Approximating (Virtual) Waiting Time

$$\hat{V}_N = \sqrt{N} V_N \Rightarrow \hat{V} = \left[\frac{1}{\mu} \hat{Q} \right]^+$$

QED Erlang-X (Markovian Q's: Performance Analysis)

- ▶ Pre-History, 1914: **Erlang** ($Erlang-B = M/M/n/n$, $Erlang-C = M/M/n$)
- ▶ Pre-History, 1974: Jagerman ($Erlang-B$)
- ▶ History Milestone, 1981: **Halfin-Whitt** ($Erlang-C$, $GI/M/n$)
- ▶ Erlang-A ($M/M/N+M$), 2002: w/ **Garnett** & Reiman
- ▶ Erlang-A with General (Im)Patience ($M/M/N+G$), 2005: w/ Zeltyn
- ▶ Erlang-C (ED+QED), 2009: w/ Zeltyn
- ▶ Erlang-B with Retrial, 2010: Avram, Janssen, van Leeuwaarden
- ▶ Refined Asymptotics ($Erlang\ A/B/C$), 2008-2011: Janssen, van Leeuwaarden, Zhang, Zwart
- ▶ NDS Erlang-C/A, 2009: Atar
- ▶ Production Q's, 2011: Reed & Zhang
- ▶ Universal Erlang-R, ongoing: w/ Gurvich & Huang
- ▶ Queueing Networks:
 - ▶ (Semi-)Closed: Nurse Staffing (Jennings & de Vericourt), CCs with IVR (w/ Khudiakov), Erlang-R (w/ Yom-Tov)
 - ▶ CCs with Abandonment and Retrials: w/ Massey, Reiman, Rider, Stolyar
 - ▶ Markovian Service Networks: w/ Massey & Reiman
- ▶ Leaving out:
 - ▶ **Non-Exponential Service Times**: $M/D/n$ ($Erlang-D$), $G/Ph/n, \dots, G/GI/n+GI$, Measure-Valued Diffusions
 - ▶ **Dimensioning** (Staffing): $M/M/n, \dots$, time-varying Q's, V- and Reversed-V, \dots
 - ▶ **Control**: V-network, Reversed-V, \dots , SBRNets

Back to “Why does Erlang-A Work?”

Theoretical (Partial) Answer:

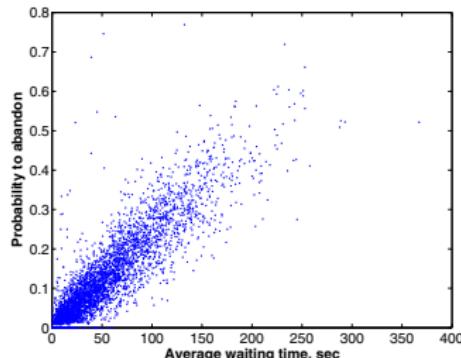
$$M_t^{?,J} / G^* / N_t + G \stackrel{d}{\approx} (M/M/N + M)_t, \quad t \geq 0.$$

- ▶ **Over-Dispersed Arrivals:** $R + \beta R^c$, c -Staffing ($c \geq 1/2$).
- ▶ **General Patience:** Behavior at the origin matters most (only).
- ▶ **General Services:** Empirical insensitivity beyond the mean.
- ▶ **Heterogeneous Customers / Servers:** State-Collapse.
- ▶ **Time-Varying Arrivals:** Modified Offered-Load approximations.
- ▶ **Dependent Building-Blocks:** eg. When (Im)Patience and Service-Times correlated (positively):
 - ▶ Predict performance with $E[S | \text{Served}]$.
 - ▶ Calculate offered-load with $E[S] = E[S | \text{Wait} = 0]$.
 - ▶ Note: staffing \leftarrow service-times \leftarrow waiting / abandonment \leftarrow staffing

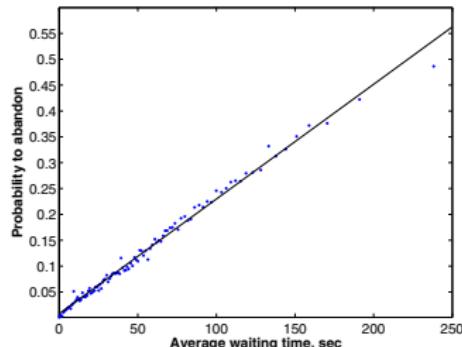
“Why does Erlang-A Work?” General Patience

Israeli Bank: Yearly Data

Hourly Data



Aggregated



Theory:

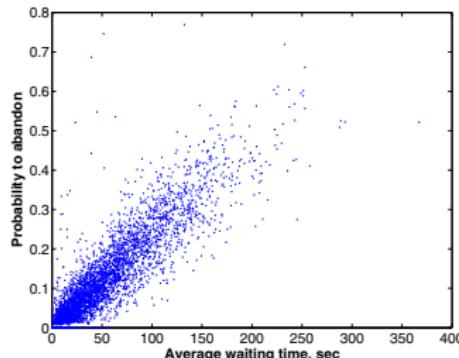
Erlang-A: $P\{Ab\} = \theta \cdot E[W_q]$;

M/M/N+G: $P\{Ab\} \approx g(0) \cdot E[W_q]$.
 $g(0)$ = Patience-density at origin

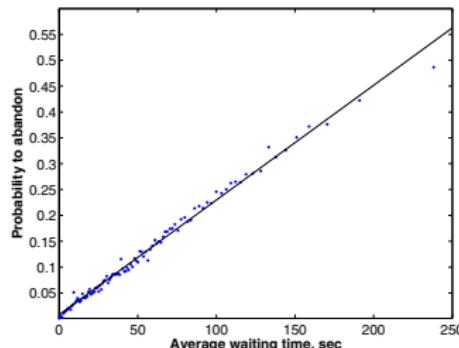
“Why does Erlang-A Work?” General Patience

Israeli Bank: Yearly Data

Hourly Data



Aggregated



Theory:

Erlang-A: $P\{Ab\} = \theta \cdot E[W_q]$;

M/M/N+G: $P\{Ab\} \approx g(0) \cdot E[W_q]$.
 $g(0)$ = Patience-density at origin

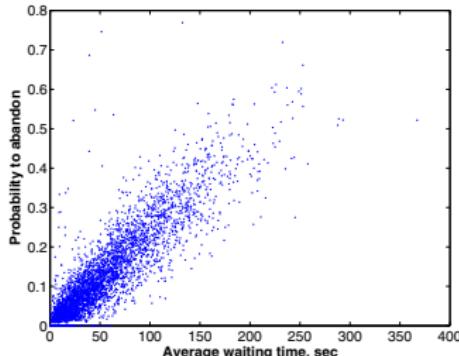
Recipe:

In both cases, use Erlang-A, with $\hat{\theta} = \widehat{P\{Ab\}} / \widehat{E[W_q]}$ (slope above).

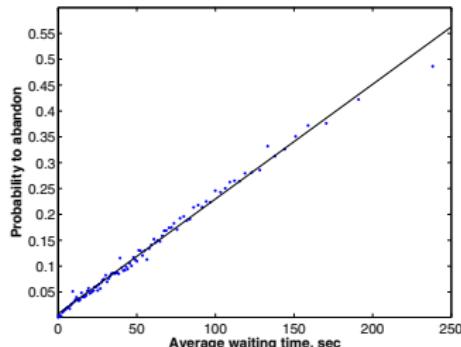
“Why does Erlang-A Work?” General Patience

Israeli Bank: Yearly Data

Hourly Data



Aggregated



Theory:

Erlang-A: $P\{Ab\} = \theta \cdot E[W_q]$;

M/M/N+G: $P\{Ab\} \approx \widehat{g}(0) \cdot \widehat{E[W_q]}$.
 $\widehat{g}(0)$ = Patience-density at origin

Recipe:

In both cases, use Erlang-A, with $\widehat{\theta} = \widehat{P\{Ab\}} / \widehat{E[W_q]}$ (slope above).

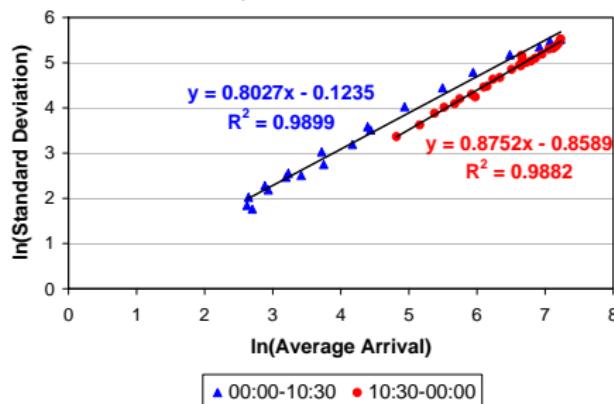
References on $\widehat{g}(0)$:

- Stationary M/M/N+GI, w/ **Zeltyn**
- Process G/GI/N+GI: w/ **Momcilovic; Dai & He**;

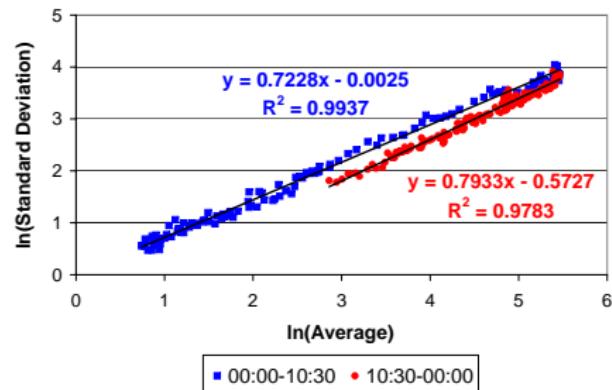
“Why does Erlang-A Work?” Over-Dispersion

In(STD) vs. In(AVG) (Israeli Bank, 4/2007-3/2008)

Tue-Wed, 30 min resolution



Tue-Wed, 5 min resolution



Significant linear relations (w/ **Aldor & Feigin**; then w/
Maman & Zeltyn):

$$\ln(\text{STD}) = c \cdot \ln(\text{AVG}) + a$$

(Poisson: $\text{STD} = \text{AVG}^{1/2}$, hence $c = 1/2, a = 0$.)

Over-Dispersion: Random Arrival-Rates

Linear relation between $\ln(\text{STD})$ and $\ln(\text{AVG})$ gives rise to:

Poisson-Mixture (Doubly-Poisson, Cox) model for Arrivals:
Poisson(Λ) with **Random-Rate** of the form

$$\Lambda = \lambda + \lambda^c \cdot X, \quad c \leq 1;$$

Over-Dispersion: Random Arrival-Rates

Linear relation between $\ln(\text{STD})$ and $\ln(\text{AVG})$ gives rise to:

Poisson-Mixture (Doubly-Poisson, Cox) model for Arrivals:
Poisson(Λ) with **Random-Rate** of the form

$$\Lambda = \lambda + \lambda^c \cdot X, \quad c \leq 1;$$

- ▶ c determines magnitude of over-dispersion (λ^c)
 $c = 1$, proportional to λ ; $c \leq 1/2$, Poisson-level;
 - In **Call Centers**: $c \approx 0.75 - 0.85$ (significant over-dispersion).
 - In **Emergency Departments**, $c \approx 0.5$ (Poisson).

Over-Dispersion: Random Arrival-Rates

Linear relation between $\ln(\text{STD})$ and $\ln(\text{AVG})$ gives rise to:

Poisson-Mixture (Doubly-Poisson, Cox) model for Arrivals:
Poisson(Λ) with **Random-Rate** of the form

$$\Lambda = \lambda + \lambda^c \cdot X, \quad c \leq 1;$$

- ▶ c determines magnitude of over-dispersion (λ^c)
 $c = 1$, proportional to λ ; $c \leq 1/2$, Poisson-level;
 - In **Call Centers**: $c \approx 0.75 - 0.85$ (significant over-dispersion).
 - In **Emergency Departments**, $c \approx 0.5$ (Poisson).
- ▶ X random-variable with $E[X] = 0$ ($E[\Lambda] = \lambda$), capturing the magnitude of **stochastic deviation** from mean arrival-rate: under conventional Gamma prior (λ large), X can be taken Normal with std. derived from the intercept.

Over-Dispersion: Random Arrival-Rates

Linear relation between $\ln(\text{STD})$ and $\ln(\text{AVG})$ gives rise to:

Poisson-Mixture (Doubly-Poisson, Cox) model for Arrivals:
Poisson(Λ) with **Random-Rate** of the form

$$\Lambda = \lambda + \lambda^c \cdot X, \quad c \leq 1;$$

- ▶ c determines magnitude of over-dispersion (λ^c)
 $c = 1$, proportional to λ ; $c \leq 1/2$, Poisson-level;
 - In **Call Centers**: $c \approx 0.75 - 0.85$ (significant over-dispersion).
 - In **Emergency Departments**, $c \approx 0.5$ (Poisson).
- ▶ X random-variable with $E[X] = 0$ ($E[\Lambda] = \lambda$), capturing the magnitude of **stochastic deviation** from mean arrival-rate: under conventional Gamma prior (λ large), X can be taken Normal with std. derived from the intercept.

QED-c Regime: Erlang-A, with $\text{Poisson}(\Lambda)$ arrivals, amenable to asymptotic analysis (with **S. Maman & S. Zeltyn**)

Over-Dispersion: The QED-c Regime

QED-c Staffing: Under offered-load $R = \lambda \cdot E[S]$,

$$N = R + \beta \cdot R^c, \quad 0.5 < c < 1$$

Performance measures (M/M/N + G):

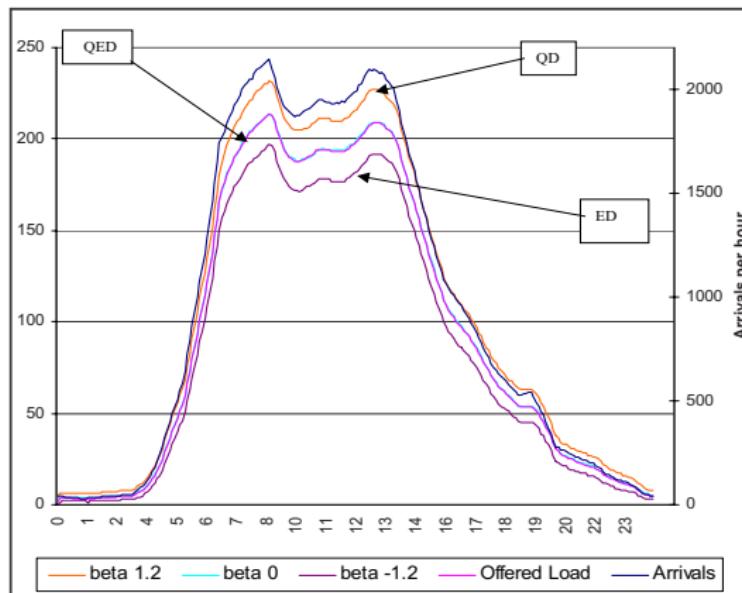
- Delay probability: $P\{W_q > 0\} \sim 1 - G(\beta)$
- Abandonment probability: $P\{Ab\} \sim \frac{E[X - \beta]_+}{n^{1-c}}$
- Average offered wait: $E[V] \sim \frac{E[X - \beta]_+}{n^{1-c} \cdot g_0}$
- Average actual wait: $E_{\Lambda, N}[W] \sim E_{\Lambda, N}[V]$

Why Does Erlang-A Work? Time-Varying Arrival Rates

Square-Root Staffing: $N_t = R_t + \beta\sqrt{R_t}$, $-\infty < \beta < \infty$

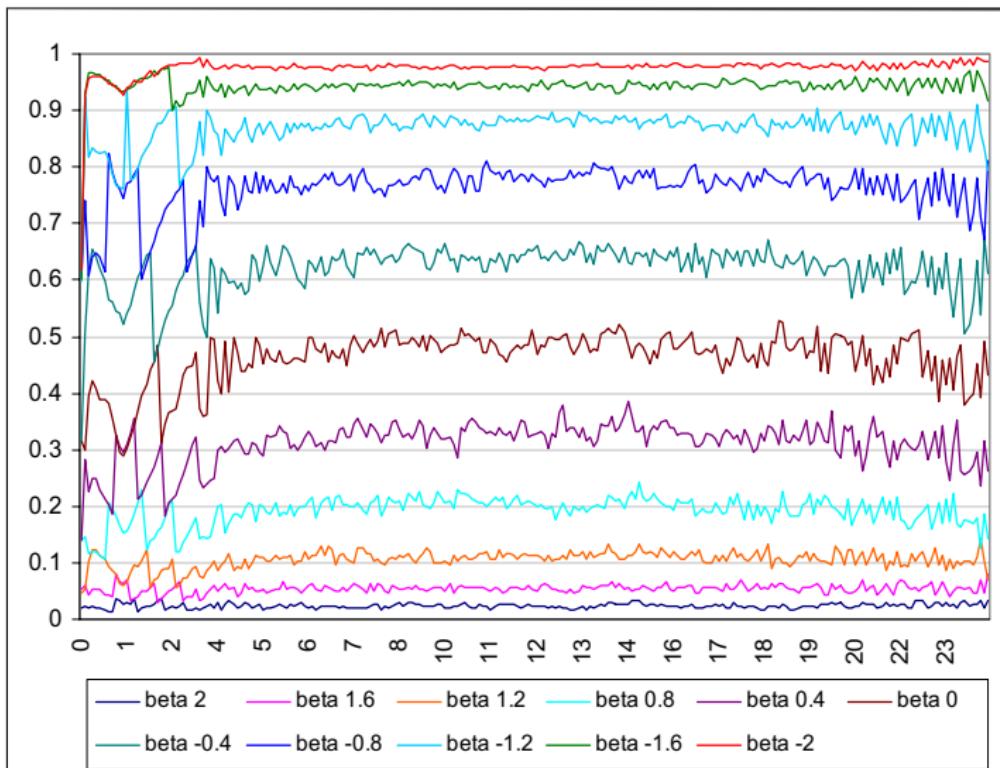
What is R_t , the **Offered-Load** at time t ? ($R_t \neq \lambda_t \times E[S]$)

Arrivals, Offered-Load and Staffing



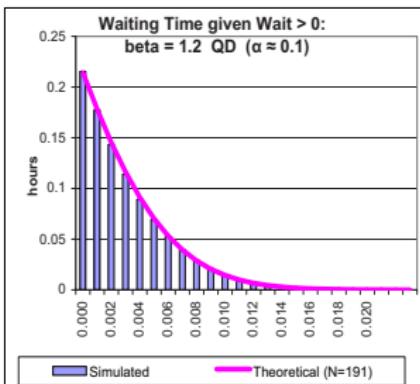
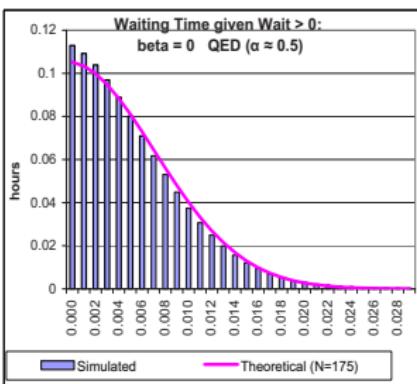
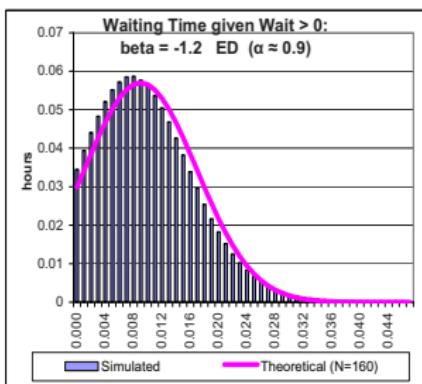
Time-Stable Performance of Time-Varying Systems

Delay Probability = As in the **Stationary Erlang-A** (Garnett)



Time-Stable Performance of Time-Varying Systems

Waiting Time, Given Waiting: Empirical vs. Theoretical Distribution



- **Empirical:** Simulate **time-varying** $M_t/M/N_t + M$ ($\lambda_t, N_t = R_t + \beta\sqrt{R_t}$)
- **Theoretical:** Naturally-corresponding **stationary** Erlang-A, with QED β -staffing (some **Averaging** Principle?)
- **Generalizes** up to a single-station within a complex network (eg. Doctors in an Emergency Department).

What is the Offered-Load $R(t)$?

- ▶ Offered-Load Process: $L(\cdot)$ = **Least** number of **servers** that guarantees **no delay**.
- ▶ **Offered-Load** Function $R(t) = E[L(t)]$, $t \geq 0$.
Think $M_t/G/N_t^? + G$ vs. $M_t/G/\infty$: **Ample-Servers**.

What is the Offered-Load $R(t)$?

- ▶ Offered-Load Process: $L(\cdot)$ = **Least** number of **servers** that guarantees **no delay**.
- ▶ **Offered-Load Function** $R(t) = E[L(t)]$, $t \geq 0$.
Think $M_t/G/N_t^? + G$ vs. $M_t/G/\infty$: **Ample-Servers**.

Four (all useful) representations, capturing “**workload before t**”:

$$\begin{aligned} R(t) = E[L(t)] &= \int_{-\infty}^t \lambda(u) \cdot P(S > t - u) du = E[A(t) - A(t - S)] = \\ &= E\left[\int_{t-S}^t \lambda(u) du\right] = E[\lambda(t - S_e)] \cdot E[S] \approx \dots \end{aligned}$$

- ▶ $\{A(t), t \geq 0\}$ Arrival-Process, rate $\lambda(\cdot)$;
- ▶ $S (S_e)$ generic Service-Time (Residual Service-Time).

What is the Offered-Load $R(t)$?

- ▶ Offered-Load Process: $L(\cdot)$ = **Least** number of **servers** that guarantees **no delay**.
- ▶ **Offered-Load Function** $R(t) = E[L(t)]$, $t \geq 0$.
Think $M_t/G/N_t^? + G$ vs. $M_t/G/\infty$: **Ample-Servers**.

Four (all useful) representations, capturing “**workload before t**”:

$$\begin{aligned} R(t) = E[L(t)] &= \int_{-\infty}^t \lambda(u) \cdot P(S > t - u) du = E[A(t) - A(t - S)] = \\ &= E\left[\int_{t-S}^t \lambda(u) du\right] = E[\lambda(t - S_e)] \cdot E[S] \approx \dots \end{aligned}$$

- ▶ $\{A(t), t \geq 0\}$ Arrival-Process, rate $\lambda(\cdot)$;
- ▶ $S (S_e)$ generic Service-Time (Residual Service-Time).
- ▶ Relating L, λ, S (“ W ”): **Time-Varying Little’s Formula**.
Stationary models: $\lambda(t) \equiv \lambda$ then $R(t) \equiv \lambda \times E[S]$.

What is the Offered-Load $R(t)$?

- ▶ Offered-Load Process: $L(\cdot)$ = **Least** number of **servers** that guarantees **no delay**.
- ▶ **Offered-Load Function** $R(t) = E[L(t)]$, $t \geq 0$.

Think $M_t/G/N_t^? + G$ vs. $M_t/G/\infty$: **Ample-Servers**.

Four (all useful) representations, capturing “**workload before t**”:

$$\begin{aligned} R(t) = E[L(t)] &= \int_{-\infty}^t \lambda(u) \cdot P(S > t - u) du = E[A(t) - A(t - S)] = \\ &= E\left[\int_{t-S}^t \lambda(u) du\right] = E[\lambda(t - S_e)] \cdot E[S] \approx \dots \end{aligned}$$

- ▶ $\{A(t), t \geq 0\}$ Arrival-Process, rate $\lambda(\cdot)$;
- ▶ $S (S_e)$ generic Service-Time (Residual Service-Time).
- ▶ Relating L, λ, S (“ W ”): **Time-Varying Little’s Formula**.
Stationary models: $\lambda(t) \equiv \lambda$ then $R(t) \equiv \lambda \times E[S]$.

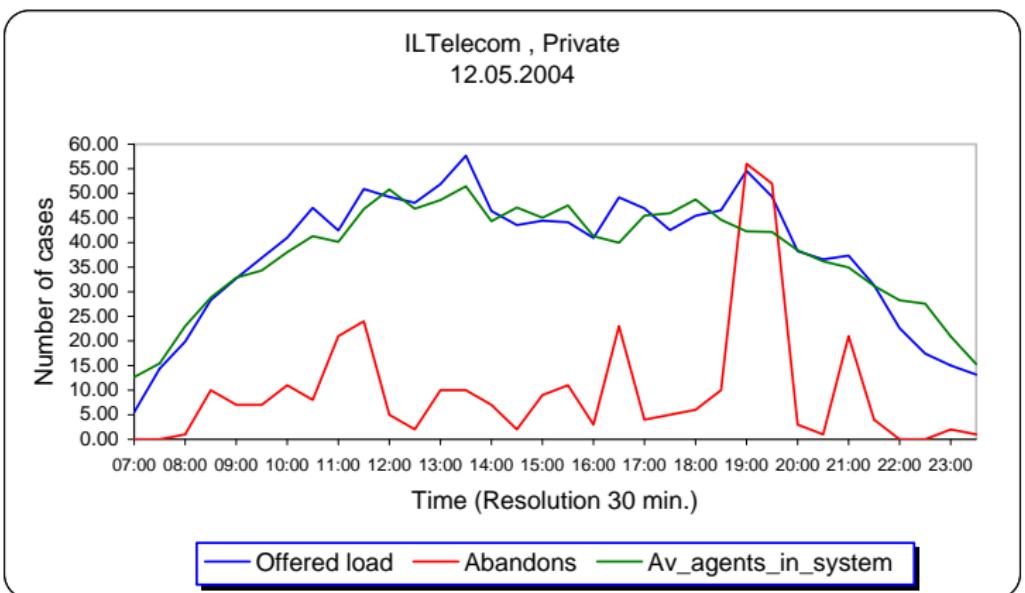
QED-c: $N_t = R_t + \beta R_t^c$, $1/2 \leq c < 1$; ($c = 1$ separate analysis).

The Offered-Load $R(t)$, $t \geq 0$

- ▶ **Backbone** of time-varying staffing:
 - ▶ Practically **robust**: up to a station within a complex network (ED).
 - ▶ Theoretically **challenging**: only Erlang-A with $\mu = \theta$ tractable.
- ▶ Process: $L(\cdot)$ = **Least** number of **servers** that guarantees **no delay**.
- ▶ **Offered-Load** Function $R(\cdot) = E[L(\cdot)]$ $(M_t/G/N_t^? + G \leftrightarrow M_t/G/\infty)$.

The Offered-Load $R(t)$, $t \geq 0$

- ▶ **Backbone** of time-varying staffing:
 - ▶ Practically **robust**: up to a station within a complex network (ED).
 - ▶ Theoretically **challenging**: only Erlang-A with $\mu = \theta$ tractable.
- ▶ Process: $L(\cdot)$ = Least number of **servers** that guarantees **no delay**.
- ▶ **Offered-Load** Function $R(\cdot) = E[L(\cdot)]$ ($M_t/G/N_t^? + G \leftrightarrow M_t/G/\infty$).

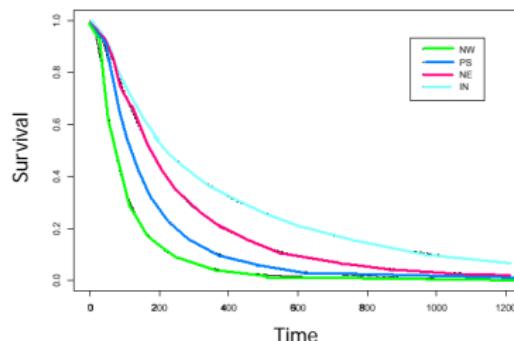


Estimating / Predicting the Offered-Load

Must account for “**service times of abandoning customers**”.

- ▶ Prevalent Assumption: Services and (Im)Patience independent.
- ▶ But recall Patient VIPs: Willing to wait more for longer services.

Survival Functions by Type (Small Israeli Bank)

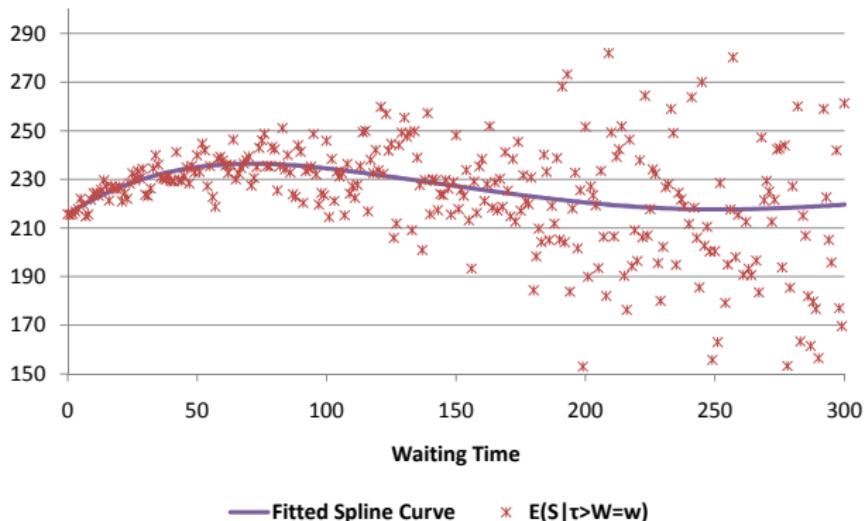


Service times stochastic order: $S_{\text{New}}^{\text{st}} < S_{\text{Reg}}^{\text{st}} < S_{\text{VIP}}^{\text{st}}$

Patience times stochastic order: $\tau_{\text{New}}^{\text{st}} < \tau_{\text{Reg}}^{\text{st}} < \tau_{\text{VIP}}^{\text{st}}$

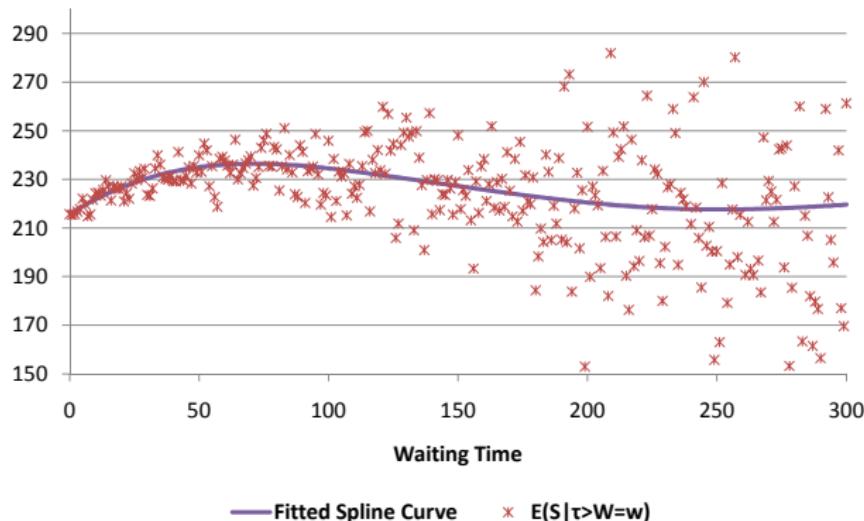
Dependent Primitives: Service- vs. Waiting-Time

Average Service-Time as a function of Waiting-Time
U.S. Bank, Retail, Weedays, January-June, 2006



Dependent Primitives: Service- vs. Waiting-Time

Average Service-Time as a function of Waiting-Time
U.S. Bank, Retail, Wednesdays, January-June, 2006



⇒ Focus on (Patience, Service-Time) jointly, w/ Reich and Ritov.
 $E[S | \text{Patience} = w]$, $w \geq 0$: Service-Time of the Unserved.

(Imputing) Service-Times of Abandoning Customers

w/ M. Reich, Y. Ritov:

1. **Estimate** $g(w) = E[S \mid \text{Patience} > \text{Wait} = w]$, $w \geq 0$:
Mean service time of those **served after waiting exactly w units** of time (via non-linear regression: $S_i = g(W_i) + \varepsilon_i$);

2. **Calculate**

$$E[S \mid \text{Patience} = w] = g(w) - \frac{g'(w)}{h_\tau(w)};$$

$h_\tau(w)$ = hazard-rate of (im)patience (via un-censoring);

3. **Offered-load** calculations: Impute $E[S \mid \text{Patience} = w]$ (or the conditional distribution).

Challenges: Stable and accurate inference of g, g', h_τ .

Extending the Notion of the “Offered-Load”

- ▶ **Business** (Banking Call-Center): Offered **Revenues**
- ▶ **Healthcare** (Maternity Wards): Fetus in stress
 - ▶ 2 patients (Mother + Child) = high **operational** and **cognitive** load
 - ▶ Fetus dies ⇒ **emotional** load dominates
- ▶ ⇒
 - ▶ Offered **Operational** Load
 - ▶ Offered **Cognitive** Load
 - ▶ Offered **Emotional** Load
 - ▶ ⇒ **Fair** Division of Load (Routing) between 2 Maternity Wards:
One attending to complications before birth, the other to complications after birth, and both share normal birth

The Technion SEE Center / Laboratory

Data-Based Service Science / Engineering

