

Skills-Based Routing and its

Operational Complexities

Service Engineering

e.mail : avim@tx.technion.ac.il

Website: <http://ie.technion.ac.il/serveng>

Contents

1. Introduction to Skills-Based-Routing (SBR):

Examples: CRM, Distributed Call Centers

Truly a Multi-Disciplinary Challenge

2. Focus: Agent Scheduling, Customer Routing and

Workforce Staffing.

3. E-Driven SBR: Index strategies in the General Case

4. QED SBR: Special Cases (V, Upside-Down V, N)

5. Dimensioning V and reversed-V: Square-Root Staffing

BONUS SUPPLEMENT: E-TAILING'S FUTURE

Business
e.b GEN

www.businessweek.com

BusinessWeek

OCTOBER 23, 2000

A PUBLICATION OF THE McGRAW-HILL COMPANIES

Mutual Funds

How to avoid a big tax bill

Wall Street

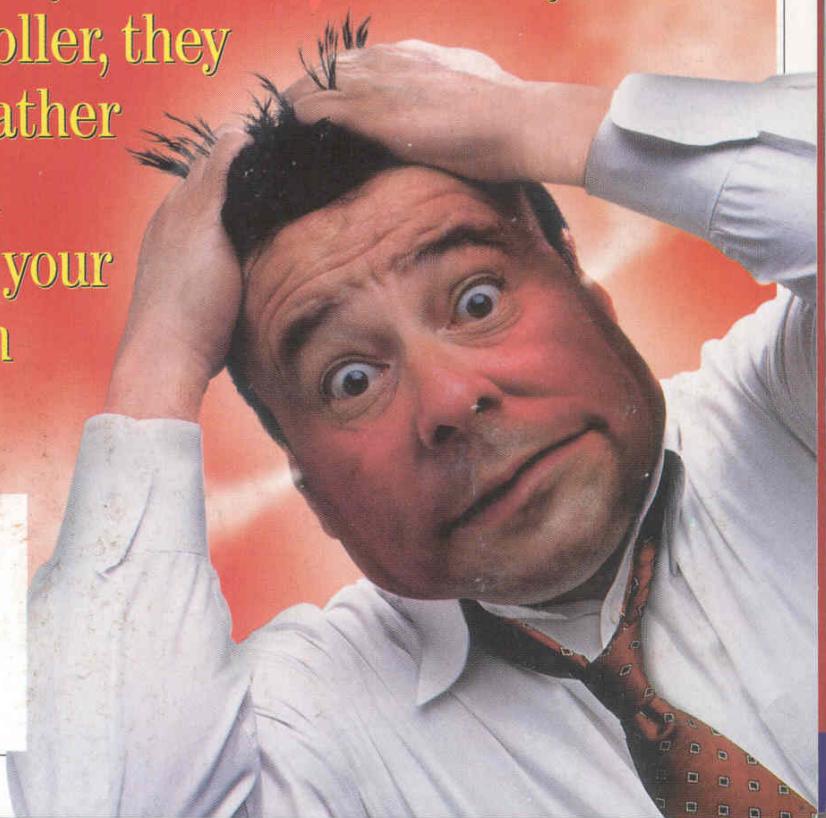
Will tech's slide keep spreading?

Dot-coms

The search for new business models

Managed Care

Employers seek a new solution


#BXBBGDD*****CAR-RT SORT**B083
#06032865631763#J010201 018489
52/INDUSTRIAL 0830
ENGINEERING LIBRARY 103
PO BOX 830657
BIRMINGHAM AL 35283-0657

AOI Keyword: BW

WHY SERVICE STINKS

Companies know just how good a customer you are—and unless you're a high roller, they would rather lose you than fix your problem

Common Performance

BCMS SKILL REPORT

Switch Name: FDC/HAMPDEN

Skill: 37

Skill Name: !BA AUTH1

Date: 7:00 pm WED MAR 10, 1999

DAY	ACD CALLS	SPEED ANS	ABAND CALLS	ABAND TIME	AVG TALK TIME	TOTAL		Acceptable Service Level: 30	
						AFTER CALL	FLOW IN	FLOW OUT	AUX/ OTHER STAFF
3/04/99	637	0:19	219	0:26	1:57	92:05	0	0	4310:06
3/05/99	849	0:06	135	0:06	1:35	179:58	0	0	4299:43
3/06/99	1330	0:11	363	0:13	1:42	280:22	0	0	5592:29
3/07/99	1213	0:12	358	0:18	1:46	226:20	0	0	4830:15
3/08/99	631	0:26	382	0:33	1:57	150:50	0	0	3743:04
3/09/99	570	0:40	487	0:43	1:52	148:41	0	0	3979:04
3/10/99	512	0:29	292	0:28	1:41	243:06	0	0	3046:00
SUMMARY	<u>5742</u>	<u>0:18</u>	<u>2236</u>	<u>0:26</u>	<u>1:46</u>	<u>1321:22</u>	0	0	****:**
									9.6 63

Arrivals

Abandons 40%

Switch Name: FDC/HAMPDEN

Skill: 46

Skill Name: !BA AUTHORIZATION

Date: 7:00 pm WED MAR 10, 1999

DAY	ACD CALLS	SPEED ANS	ABAND CALLS	ABAND TIME	AVG TALK TIME	TOTAL		Acceptable Service Level: 30	
						AFTER CALL	FLOW IN	FLOW OUT	AUX/ OTHER STAFF
3/04/99	1185	0:22	479	0:31	2:08	190:16	0	0	4213:22
3/05/99	1805	0:05	308	0:04	1:38	337:20	0	0	4299:43
3/06/99	2437	0:12	642	0:12	1:51	444:03	0	0	5592:29
3/07/99	2260	0:13	558	0:14	1:46	326:33	0	0	4830:14
3/08/99	1260	0:35	676	0:28	2:06	308:19	0	0	3743:04
3/09/99	1126	0:40	653	0:34	2:10	250:40	0	0	3979:04
3/10/99	890	0:30	472	0:32	2:16	162:13	0	0	3046:00
SUMMARY	<u>10963</u>	<u>0:19</u>	<u>3788</u>	<u>0:22</u>	<u>1:55</u>	<u>2019:24</u>	0	0	****:**
									9.6 65

30%

BCMS SKILL REPORT

Switch Name: FDC/HAMPDEN

Skill: 33

Skill Name: GA Authorization

Date: 7:01 pm WED MAR 10, 1999

DAY	ACD CALLS	SPEED ANS	ABAND CALLS	ABAND TIME	AVG TALK TIME	TOTAL		Acceptable Service Level: 30	
						AFTER CALL	FLOW IN	FLOW OUT	AUX/ OTHER STAFF
3/04/99	1248	0:27	61	0:42	1:57	330:04	0	0	4390:04
3/05/99	1521	0:14	37	0:20	1:58	353:48	0	0	6035:35
3/06/99	2388	0:20	130	0:34	2:10	550:16	0	0	6369:58
3/07/99	1748	0:14	66	0:30	2:08	432:16	0	0	4616:11
3/08/99	925	0:18	50	1:00	1:53	191:06	0	0	3835:19
3/09/99	856	0:26	57	0:53	1:54	125:16	0	0	4388:02
3/10/99	959	1:15	125	1:55	1:48	186:44	0	0	4198:39
SUMMARY	<u>9645</u>	<u>0:25</u>	<u>526</u>	<u>0:57</u>	<u>2:02</u>	<u>2169:30</u>	0	0	****:**
									10.6 76

6%

BCMS SKILL REPORT

Switch Name: FDC/HAMPDEN

Date: 7:02 pm WED MAR 10, 1999

NationsBank CRM: What are the relationship groups?

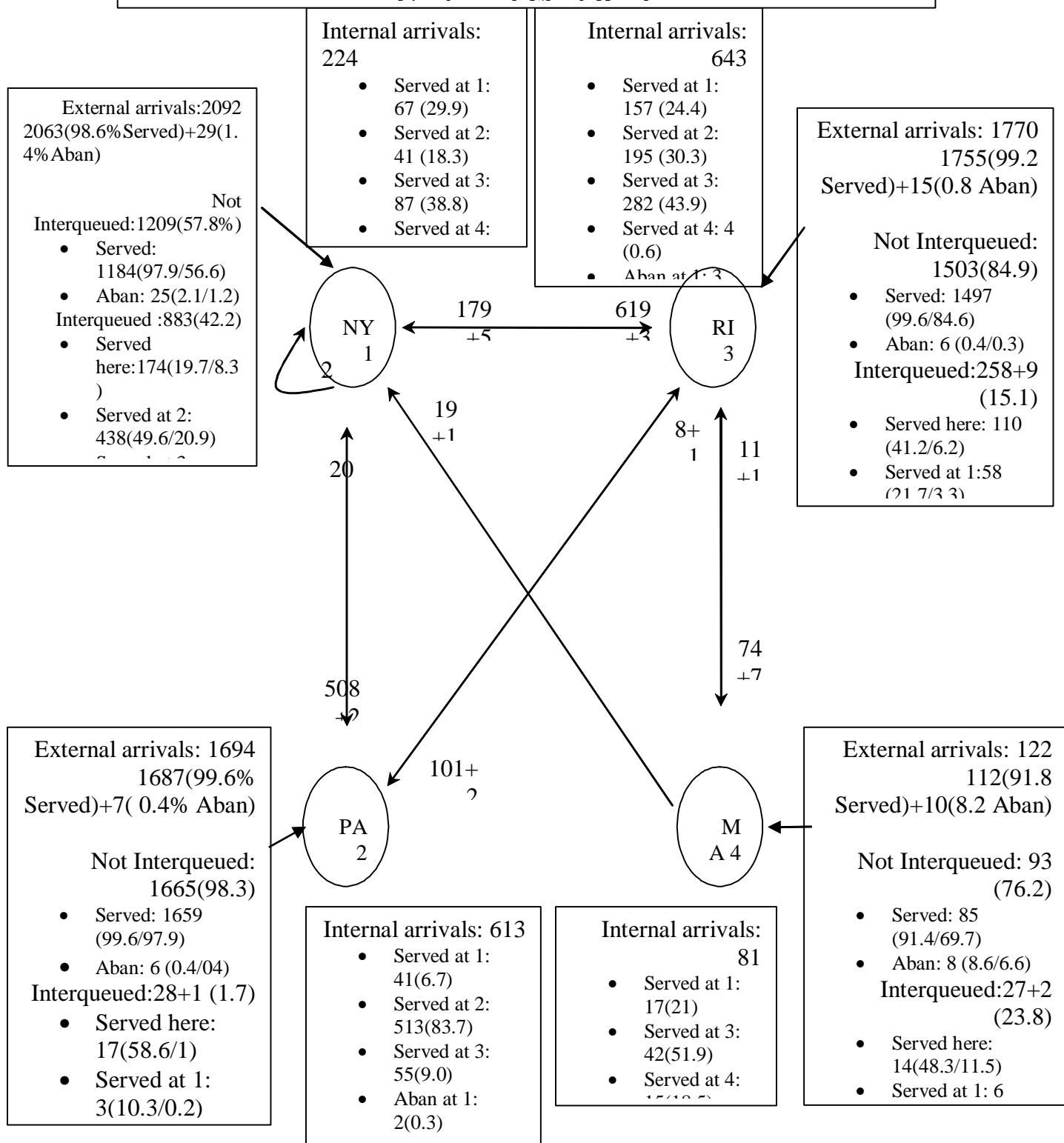
- The groups
 - RG1 : high-value customers
 - RG2 : marginally profitable customers (with potential)
 - RG3 : unprofitable customer
- What does it mean for a customer in each group to be **profitable**? **Customer Revenue Management**

3

Wharton

NationsBank's Design of the Service Encounter

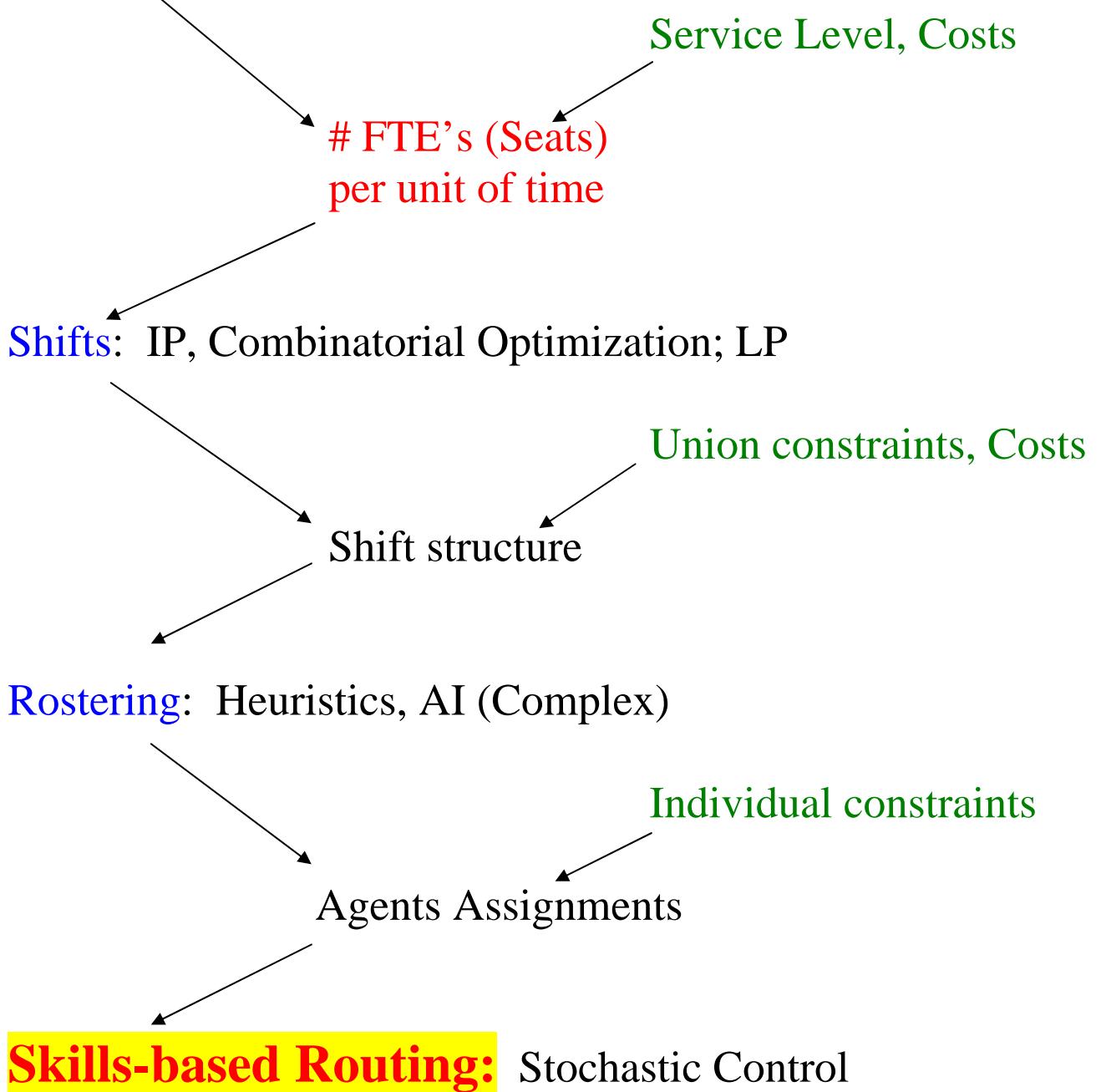
Examples of Specifications: [Assignable Grade Of Service \(AGOS\)](#)


	RG1	RG2	RG3
VRU Target	70% of calls	85% of calls	90% of calls
Abandonment rate	< 1%	< 5%	< 9%
Speed of Answer	100% in 2 rings	80% in 20 seconds	50% in 20 seconds
Average Talk Time	no limit	4 min. average	2 min. average
Rep. Training	universal	product experts	basic product
Rep. Personalization	request rep / callback	FCFS	FCFS
Trans. Confirmation	call / fax	call / mail	mail
Problem Resolution	during call	within 2 business days	within 8 business days

5

Wharton

Distributed Call Center: Member1


10 AM – 11 AM (03/19/01): Interflow Chart Among the 4 Call Centers

Workforce Management: Hierarchical Operational View

Forecasting Customers: Statistics, Time-Series
Agents : HRM (Hire, Train; Incentives, Careers)

Staffing: Queueing Theory

Service Engineering

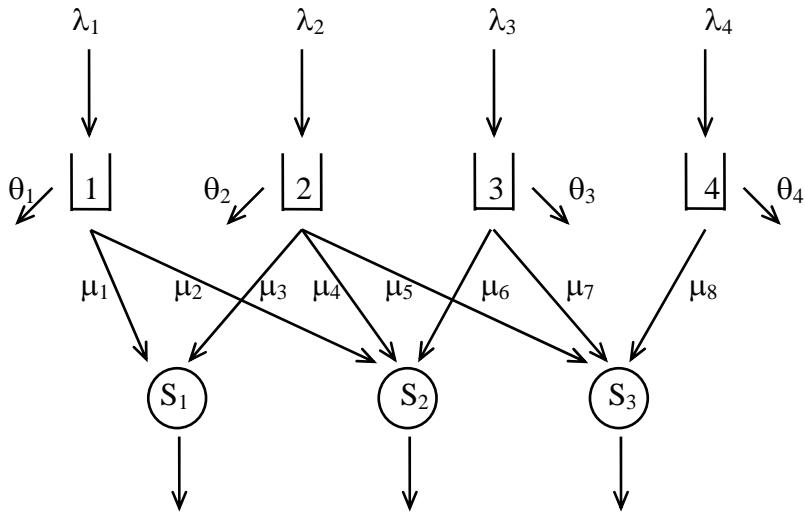
May 2000; Under Revision

An Introduction to Skills-Based Routing and its Operational Complexities

By Ofer Garnett and Avishai Mandelbaum

Technion, ISRAEL

(**Full** Version)


Contents:

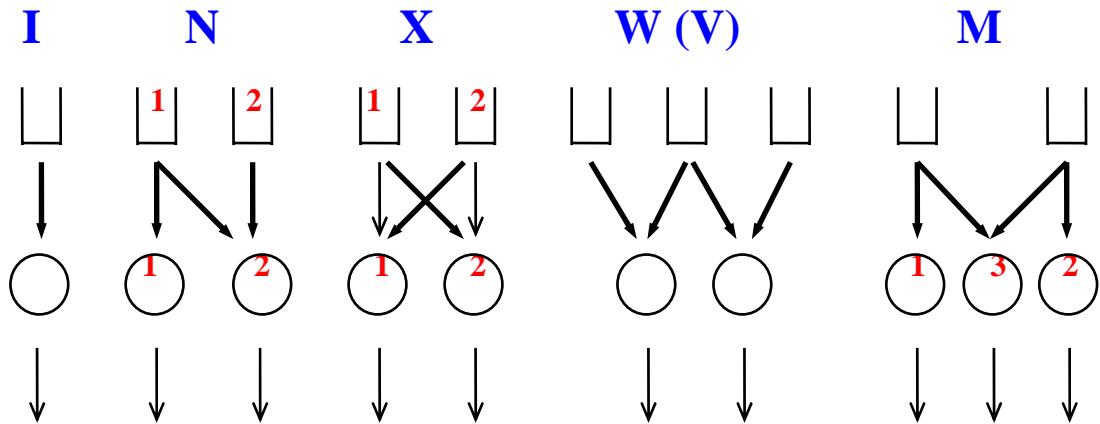
- 1. Introduction**
- 2. N-design with single servers**
- 3. X-design with multi-server pools and impatient customers**
- 4. Technical Appendix: Simulations – the computational effort**

Acknowledgement: This teaching-note was written with the financial support of the Fraunhofer IAO Institute in Stuttgart, Germany. The authors are grateful to Dr. Thomas Meiren and Prof. Klaus-Peter Fähnrich of the IAO for their assistance and encouragement.

Introduction

Multi-queue parallel-server system = schematic depiction of a **telephone call-center**:

Here the λ 's designate arrival rates, the μ 's service rates, the θ 's abandonment rates, and the S 's are the number of servers in each server-pool.


Skills-Based Design:

- **Queue:** "customer-type" requiring a specific type of service;
- **Server-Pool:** "skills" defining the service-types it can perform;
- **Arrow:** leading into a server-pool define its skills / constituency.

For example, a server with skill 2 (**S2**) can serve customers of type 3 (**C3**) at rate μ_6 customers/hour.

Customers of type 3 arrive randomly at rate λ_3 customers/hour, equipped with an impatience rate of θ_3 .

Some Canonical Designs - Animation

I – dedicated (specialized) agents

N: for example,

- C1 = VIP, then S2 are serving C1 to improve service level.
- C2 = VIP, then S2 serve C1 to improve efficiency.
- S2 = Bilingual.

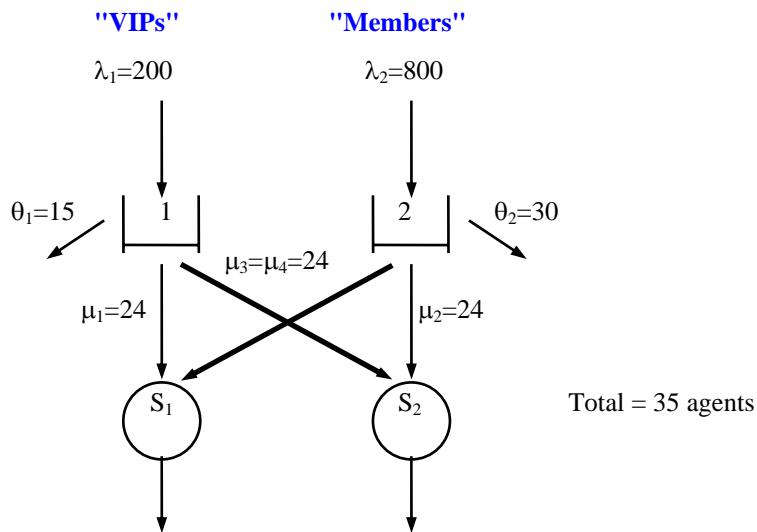
X: for example, S1 has C1 as Primary and C2 as Secondary Types.

V: Pure Scheduling; **Upside-down V:** Pure Routing.

Major Design / Engineering Decisions

1. Classifying customers into **types** (**Marketing**):
Tech. support vs. Billing, VIP vs. Members vs. New
2. Determining server **skills, incentives, numbers** (**HRM, OM, OR**)
Universal vs. Specialist, Experienced / Novice, Uni- / Multi-lingual;
Staffing: how many servers?
3. Prerequisite Infrastructure - MIS / IT / Data-Bases (**CS, Statistics**)
CTI, ERP, Data-Mining

Major Control Decisions


4. Matching customers and agents (**OR**)
 - **Customer Routing**: Whenever an agent turns idle and there are queued customers, which customer (if any) should be routed to this agent.
 - **Agent Scheduling**: Whenever a customer arrives and there are idle agents, which agent (if any) should serve this customer.
5. **Load Balancing**
 - Routing of customers to distributed call centers (eg. nation-wide)

Multidisciplinary Challenge

Skills-Based Routing: protocol for online matching of S's and C's.

- **Prevalent:** Static Priorities of customer types and agent skills
- **Index-based:** Dynamic Priorities via continuous review
- **Threshold-based:** Dynamic Management by Exception
- **Others:** discrete review, credit schemes (SLA), scripts; call backs

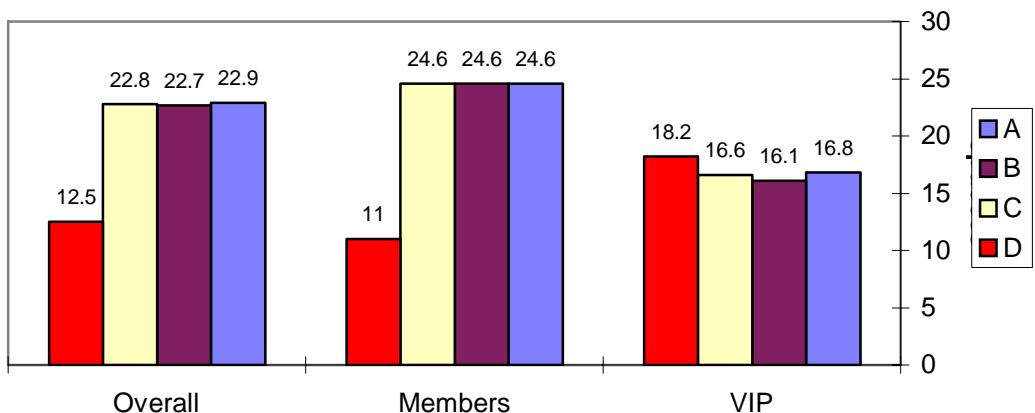
Example: Scripts for Staffing, Scheduling, Routing

Setup A : (X-design)

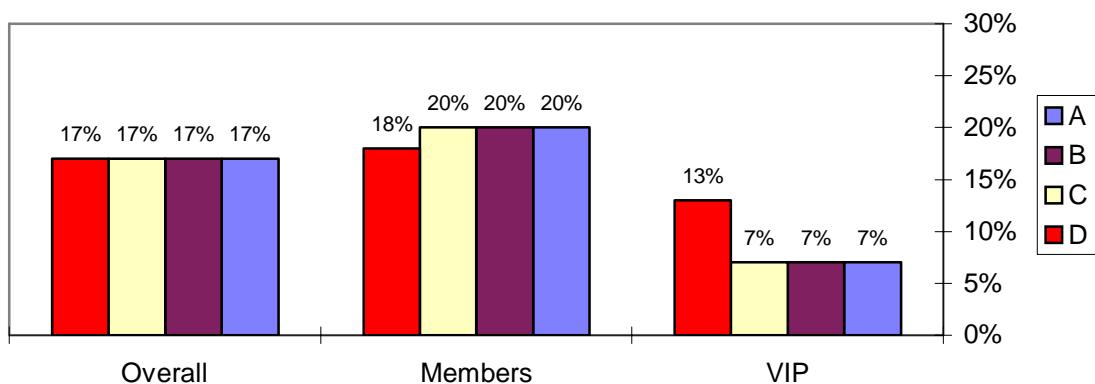
"VIP" servers : $S_1 = 20$

- If "VIP" queue not empty serve the "VIP" queue + all "Members" waiting more than **40** seconds, as a single FIFO queue.
- If "VIP" queue is empty, serve the first in the "Member" queue.

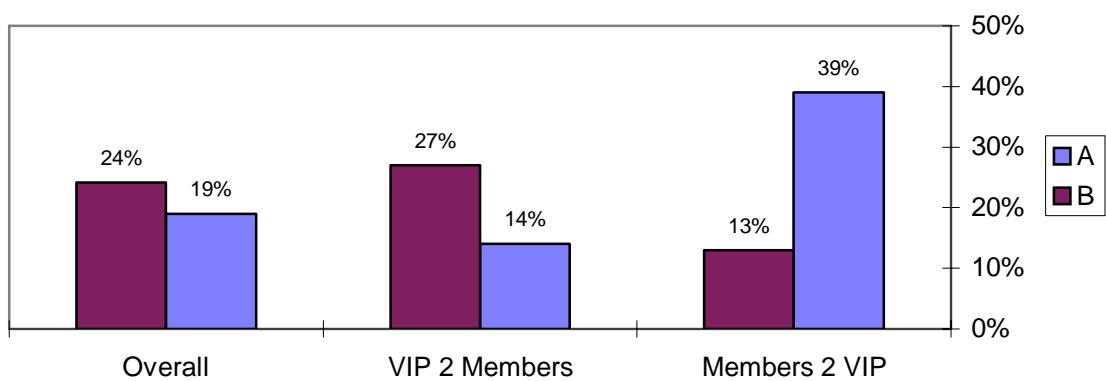
"Member" servers : $S_2 = 15$


- If "Member" queue not empty serve the "Member" queue + all "VIPs" waiting more than **6** seconds, as a single FIFO queue.
- If "Member" queue is empty, serve the first in the "VIP" queue.

Setup C : (V-design; feasible since servers are assumed equally skilled.)


Total servers: 35

- Serve as a FIFO queue, but "VIPs" enter the queue with a virtual **15** second wait (i.e. as if they had joined the queue 15 seconds earlier).


Chart 2 : 1000 Calls/hour - ASA

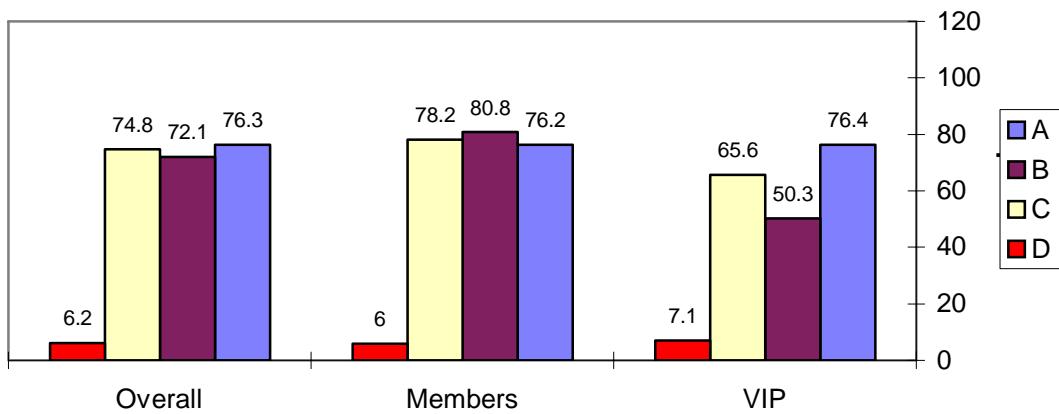

Chart 3 : 1000 Calls - Abandonment


Chart 4 : 1000 Calls - Overflows

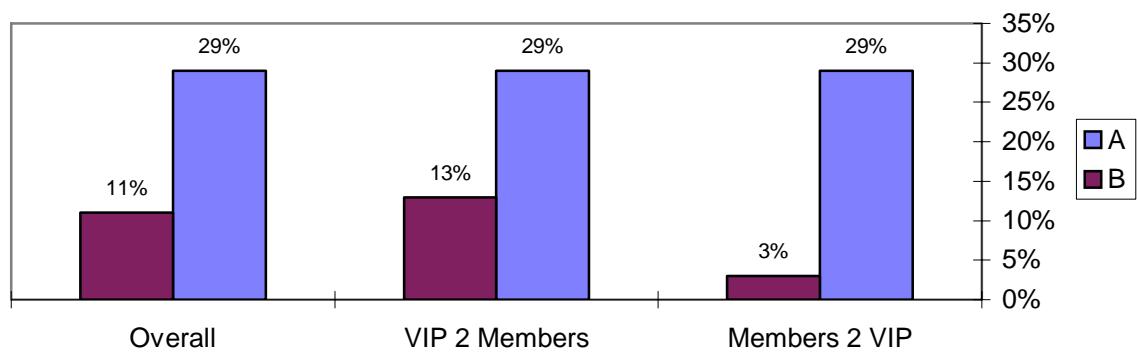
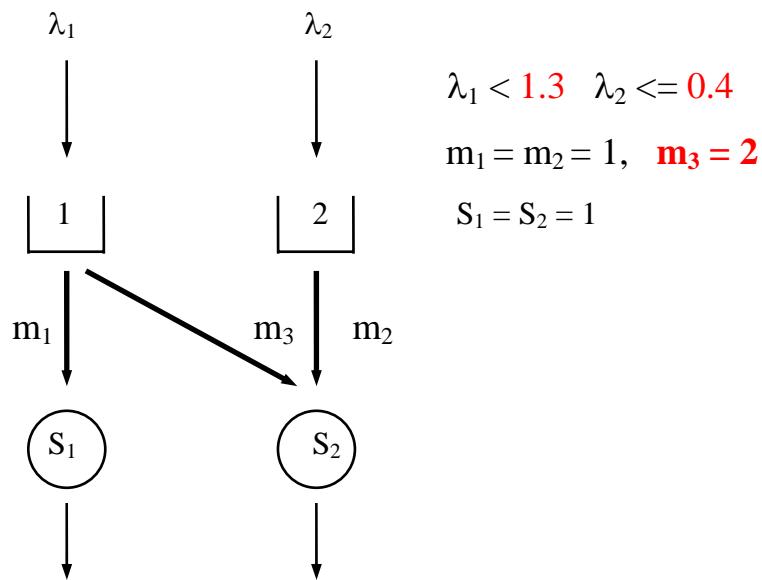

WHAT IF : 1500 Calls/hour - ASA

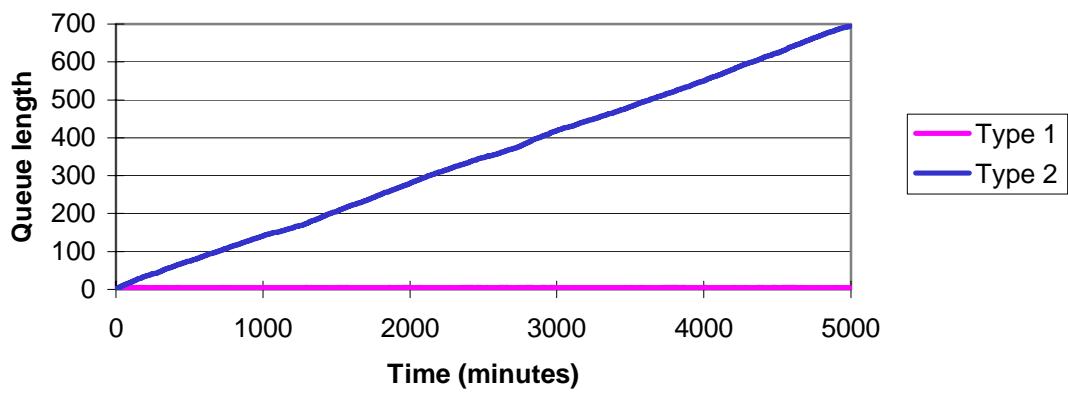
Chart 7 : 1500 Calls - Abandonment

Chart 8 : 1500 Calls - Overflows

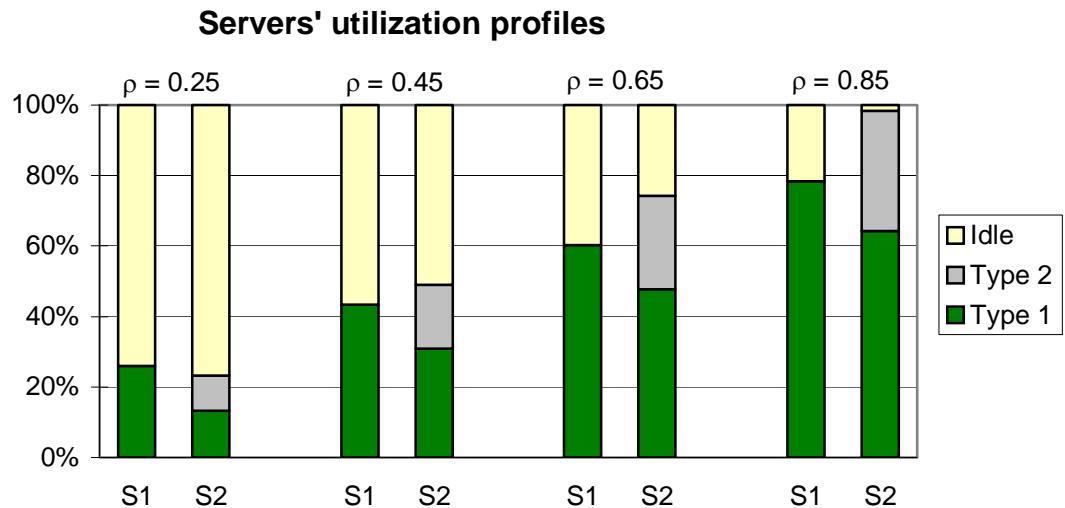

Reality

- Technology enables smart systems
- Reality becomes increasingly complex
- Solutions are urgently needed
- Theory lags significantly behind needs
- **Ad-hoc methods:** heuristics, simulation-based

Research Status

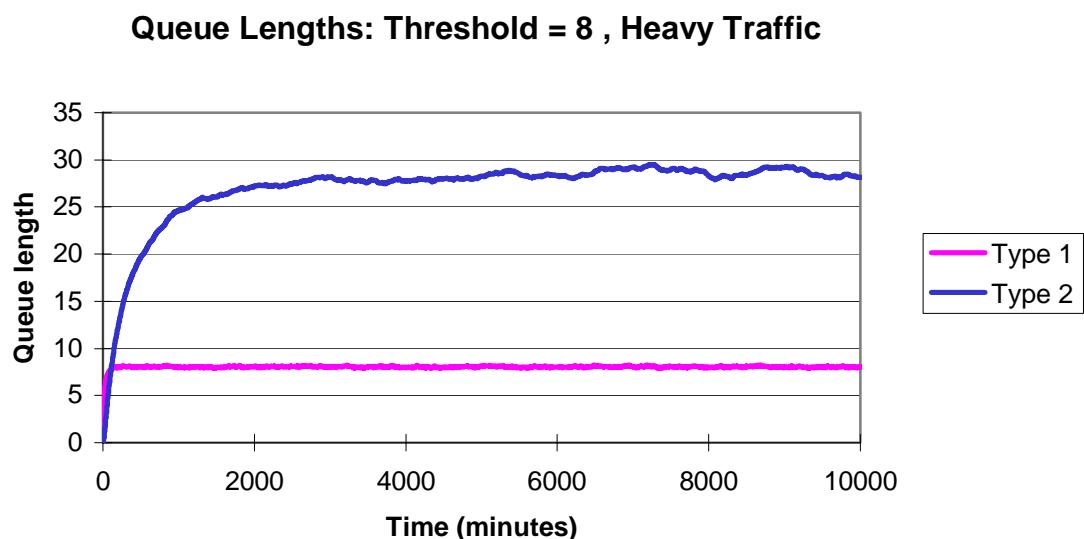

- Efficiency-driven SBR well understood and solved
- QED SBR is challenging and advancing
- **Small yet significant models for theoretical insight**
- Principles/Guidelines for design, staffing, control
- Implementation: fine-tuning of parameters, scale-up

Static Priorities (Cross-Training): Some Subtleties



- C_1 are **VIP**, hence S_2 **helps** S_1 by giving priority to C_1 over C_2 .
- If both servers are idle - **Ci** customers are routed to server **Si**

Queue length: S_2 helps with VIP C_1 , Heavy Loading -



Q2 "explodes, while Q2 is negligibly small – why ?

Instability: **S2 overworked** serving C1 and neglecting C2,
while S1 is **20% idle**.

To avoid "overzealous help", apply **Threshold Control**:
S2 assists S1 only when Q1 is at or above a certain threshold

Both Q1 and Q2 are stable.
Now fine-tuning of the threshold value

Efficiency-Driven SBR - the "EASY" Case (Stolyar)

Examples: Scarce agents, hence must be well utilized.

Email-dominance, hence can delay response.

Classical special case: **V**-design

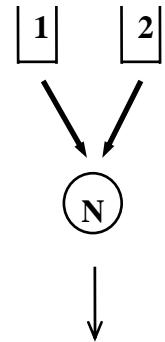
- **Agent Scheduling**: upon service completion, if

1. Same mean service times: serve the costliest queue (largest c)
2. Same delay costs: serve the shortest service (smallest m)
3. Generally: serve the largest c/m (= index).

General (N, X, W, M, \dots) solution: **Index Control** is optimal, under sufficient skills-overlap (complete resource pooling; Harrison, Lopez).

- **Customer Routing**: irrelevant, since essentially all customers wait.

- **Agent Scheduling**: upon service completion, the server chooses the queue with the largest index and serves its "oldest" customer.


- **Index**: marginal waiting-cost per unit of average service-time
(Example: "waiting-time" of "oldest" customer in queue)

However: well-managed telephone services are **not**
(or, typically, should not be) E-Driven !?

V-Design: Pure Scheduling

N agents, fully flexible

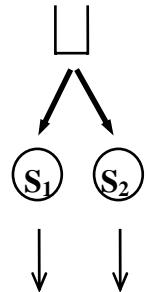
$C1 = \text{VIP}$

Optimal Scheduling: **Agent Reservation** (Yahalom)

- $C1 (= \text{VIP})$ always served, when possible;
- $C2$ served only if # of idle agents exceeds a **threshold**.

QED regime: $\sqrt{\cdot}$ **Safety-Staffing**, as before (Gurvich)

Threshold Size (relative to N) determines Service Levels:


- Large: $C1$ is Q-served, $C2$ is E-served
- Small: $C1$ and $C2$ indistinguishable QED
- Moderate: $C1$ is Q-served, $C2$ is QED

$\sqrt{\cdot}$ Safety-Staffing is **asymptotically optimal**.

Reversed-V Design: Pure Routing

Homogeneous Customers

Heterogeneous Agents: **S2 = Faster**

Optimal Routing: **"Slow-Server" phenomenon** (Rykov)

- S2(=Fast) always employed, if possible;
- S1(= Slow) employed if **# in queue** exceeds a threshold.

QED regime: $\sqrt{\cdot}$ **Safety-Staffing** – see below (Armony)

- No threshold needed: just have all servers work when possible, ensuring that the "fast" get the priority.

Asymptotically optimal staffing:

1. Given a delay probability, determine $S_1 + S_2$ via $\sqrt{\cdot}$ Safety.
2. Given staffing costs, determine S_1 / S_2 .

Distributed call centers: in progress.