
D
esigning

a
Telephone

C
allC

enter
w
ith

Im
patientC

ustom
ers

w
ith

O
ferG

arnett

M
arty

R
eim

an

S
ergey

Zeltyn

A
ppendix:Strong

A
pproxim

ations
ofM

/M
/N
+
N

S
ource:E

rlangA
Q
E
D
andS

TR
O
N
G
FIN

A
L.tex

1

M
/M
/N
+
M
System

•
Poisson

arrivals-rate
λ

•
S
ervice

tim
es
–

e
x
p
(μ

)

•
N
statistically

identicalagents
attending

to
single

queue

•
S
ervice

policy
FC
FS

•
C
ustom

ers’patience:
e
x
p
(θ)

Q
=

{
Q

(t),t≥
0}
-num

berofcustom
ers

in
the

system

B
irth

&
D
eath:transition

diagram

“E
verything”calculable

via
stationary

distribution

π
k
= ⎧⎪⎪⎪⎨⎪⎪⎪⎩

(λ
/
μ
)

k

k
!

π
0

0
≤

k
≤

N

k
∏j=
N

+
1 (

λ

N
μ

+
(j−

N
)θ )

(λ
/
μ
)

N

N
!

π
0

k
>

N

w
here

π
0
= ⎡⎣

N
∑k
=

0

(λ
/
μ
)

k

k
!

+
∞∑k

=
N

+
1

k
∏j=
N

+
1 (

λ

N
μ

+
(j−

N
)θ )

(λ
/
μ
)

N

N
! ⎤⎦

−
1

2



M
/M
/N
+
M
C
haracteristics

N
otation:

•
P{

A
b}
-abandonm

entprobability
(fraction)

•
P{

W
a
it

>
0}
-w
aiting

probability
(fraction)

•
P{

B
lo

ck}
-blocking

probability
in
an

M
/M

/N
/N

system

1.
S
tationary

distribution
alw
ays

exists
(S
andw

iched
betw

een
infinite-serverm

odels)

2.
P{

A
b}

=
θ·

E
[W

a
it]

Proof:
λ
P{

A
b}

=
θ·

E
[N
um
berin

queue
]
,now

use
Little.

3.
P{

A
b}
increases

m
onotonically

in
θ
,λ

P{
A

b}
decreases

m
onotonically

in
N

,μ

(B
hattacharya

and
E
phrem

ides
(1991))

4.
P{

A
b}≤

P{
B

lo
ck}

(B
oxm

a
and

de
W
aal(1994))

5.
lim
N
↑∞

P
N {

A
b}

=
1− (

1∨
lim
N
↑∞

ρ
N )

−
1

3

ExactC
alculations

•
V
-virtualw

aiting
tim
e

=
w
aiting

tim
e
ofa

custom
er

w
ith
infinite

patience
(testcustom

er).

•
X
-custom

er’s
patience

(X
∼

e
x
p
(θ)

,independentof
V
).

•
W
ait≡

V
∧

X
-actualw

aiting
tim
e.

Perform
ance

m
easures

ofthe
form

E
[f

(V
,X

)]:
C
alculable,in

num
erically

stable
procedures

(4C
allC

enters).

f
(v

,x
)

E
[f

(V
,X

)]

1{
v
>

x}
P{

V
>

X
}
=

P{
A

b}
1

(t,∞
) (v∧

x
)

P{
W

a
it

>
t}

1
(t,∞

) (v∧
x
)1{

v
>

x}
P{

W
a
it

>
t;

A
b}

(v∧
x
)1{

v
>

x}
E

[W
a
it;

A
b]

(v∧
x
)1

(t,∞
) (v∧

x
)1{

v
>

x}
E

[W
a
it;

W
a
it

>
t;

A
b]

g
(v∧

x
)

E
[g

(W
a
it)]

From
these

obtain
m
ore

“natural”m
easures,forexam

ple

P{
A

b|W
a
it

>
t}

=
P{

W
a
it

>
t;

A
b}

P{
W

a
it

>
t}
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Q
ED

M
/M
/N
+
M

(θ
N

≡
θ
)

Follow
ing

H
alfin-W

hitt(1981)and
Flem

m
ing-S

im
on-S

tolyar(1996)

Theorem
:
Let

α
≡

lim
N
→

∞
P

N {
W

a
it

>
0}

β
≡

lim
N
→

∞
√

N
( 1−

ρ
N
)

⇒
N

∼
λμ
+

β √
λμ

γ
≡

lim
N
→

∞
√

N
P

N {
A

b}
⇒

P{
A

b}∼
γ

√
N

Then

1
>

α
>

0
iff

∞
>

β
>

−∞
iff

∞
>

γ
>

0

in
w
hich

case

α
=

w
(−

β
, √

μ
/
θ)

γ
=

[√
θ
/
μ

·
h
(β √

μ
/
θ)

−
β ]·

α

H
ere

w
(x

,y
)

=

[
1

+
h
(−

x
y
)

y
h
(x

) ]−
1

,

h
(x

)
=

φ
(x

)

1−
Φ

(x
)

,
hazard

rate
ofstd.norm

al

5

D
esigning

a
Q
ED

C
allC

enter
(Zeltyn)

(A
pproxim

ate)Perform
ance

M
easures

P{
W

a
it

>
0}

≈
[
1

+
h
(r

β
)

r
h
(−

β
) ]−

1

,
r
= √

μθ

E [
W

a
it

E
[S

] ∣∣∣∣
W

a
it

>
0 ]

≈
1

√
N

·
r·[ h

(r
β
)−

r
β
]

P{
A

b}
≈

1
√

N
·
h
(r

β
)−

r
β

r
· [

1
+

h
(r

β
)

r
h
(−

β
) ]−

1

P{
A

b|W
a
it

>
0}

≈
1

√
N

·
h
(r

β
)−

r
β

r

P {
W

a
it

E
[S

]
>

t
√

N ∣∣∣∣
W

a
it

>
0 }

≈
Φ̄

( r
β

+
t/

r)

Φ̄
(r

β
)

P {
A
b ∣∣∣∣

W
a
it

E
[S

]
>

t
√

N }
≈

1
√

N
·
h
(r

β
+

t/
r)−

r
β

r

E [
W

a
it

E
[S

] ∣∣∣∣
A

b ]
≈

1
√

N
·
r2
· [

1

h
(r

β
)−

r
β
−

r
β ]

H
ere

Φ̄
(x

)
=

1−
Φ

(x
)
,

h
(x

)
=

φ
(x

)/Φ̄
(x

)
,
hazard

rate
of

N
(0

,1
).
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N
ew

O
perationalR

egim
es

(M
/M
/N
+
N
)

N
ρ

P{W
a
it

>
0}

P{
A

b}

E
fficiency

driven
R

−
εR

1
+

ε
1

ε

Q
uality

driven
R

+
εR

1−
ε

∼
0

∼
0

Q
E
D

R
+

β √
R

1−
β

√
N

α
(β

)
Δ

(β
)

√
N

−∞
<

β
<

∞
0

<
α

<
1

C
om

pare
w
ith

Previous
(M
/M
/N
,H
alfin-W

hitt)

E
R

+
ε

1−
εN

1
−

Q
R

+
εR

1

1
+

ε
∼

0
−

Q
E
D

R
+

β √
R

1−
β

√
N

α
(β

)
−

0
<

β
<

∞
0

<
α

<
1

7

Sequence
ofM

/M
/N
+
M
,
N
=
1,2,...

M
otivation:

Insight,N
um
ericalstability

Focus:
Large

C
allC

enters
—

λ
,N

large.

Fram
ew
ork:

S
equence

of
M

/M
/N

+
M
system

s,
indexed

by
N

•
Q

N
=

{
Q

N
(t),

t≥
0}:totalnum

berin
system

;

•
V

N
=

{
V

N
(t),

t≥
0}:

virtualw
aitofan

infinite-patience
custom

er

•
Param

eters
λ

N
,

μ,
θ

N

θ
N

↑∞
im
patient

θ
N

↓
0

patient
θ

N
≡

θ
“rational”

O
ffered

load
R

N
=

λ
Nμ

(ρ
N

=
R

N
/N

)

A
pproxim

ations
ofP

rocess
and

S
tationary

D
istribution

Q̂
N
(t)

=
1

√
N

[Q
N
(t)−

N
]
,

0
≤

t≤
∞

V̂
N
(t)

=
√

N
V

N
(t)

8



A
pproxim

ating
Q
ueueing

and
W
aiting

•
Q

N
=

{
Q

N
(t),

t≥
0}

:
Q

N
(t)

=
num

berin
system

at
t≥

0.

•
Q̂

N
=

{
Q̂

N
(t),t≥

0}
:
stochastic

process
obtained

by
centering

and
rescaling:

Q̂
N

=
Q

N
−

N
√

N

•
Q̂

N
(∞

)
:
stationary

distribution
of

Q̂
N

•
Q̂

=
{
Q̂

(t),t≥
0}

:
process

defined
by:

Q̂
N
(t)

d→
Q̂

(t).

�
�

��

�
�

Q̂
N
(t)

Q̂
N
(∞

)

Q̂
(t)

Q
(∞

)

t→
∞

t→
∞

N
→

∞
N

→
∞

A
pproxim

ating
(V
irtual)W

aiting
Tim

e

V̂
N

=
√

N
V

N
⇒

V̂
= [

1μ
Q̂ ]

+

(P
uhalskii,1994)

9

W
eak

C
onvergence

of
Stationary

D
istribution

A
ssum

e
lim

N
→

∞
√

N
(1−

ρ
N
)
=

β,−∞
<

β
<

∞
.

A
llow

θ
N
to
vary

w
ith

N
↑∞

.

Q̂
N
(∞

)
converges

iffatleastone
ofthe

follow
ing

prevails:

1.
θ

N
≡

θ
or

θ
N

↑∞

2.
β

>
0

in
w
hich

case
Q̂

N
(∞

)
d→

Q̂
(∞

),w
here

D
ensity

function
f
(x

)
of

Q̂
(∞

):

θ
N

↓
0
,

β
>

0
f
(x

)
= {

A
1 φ

(β
+

x
)

x
≤

0

A
2
e
x
p
(−

β
x
)

x
>

0

θ
N

≡
θ

f
(x

)
= ⎧⎨⎩

B
1 φ

(β
+

x
)

x
≤

0

B
2 φ (

β √
μ
/
θ

+
x √

θ
/
μ )

x
>

0

θ
N

↑∞
f
(x

)
= {

C
φ
(β

+
x
)

x
≤

0

0
x

>
0

10



W
eak

C
onvergence

ofProcesses
⎛⎝ρ

N
∼

1−
β

√
N

;
N

∼
λμ

+
β √√√√

λμ

⎞⎠

Theorem
:

Q̂
N

d→
Q̂

if
Q̂

N
(0

)
d→

Q̂
(0

).

Theorem
:

V̂
N

d→
V̂

d=
1μ

Q̂
+
.

θ↓
0

Patient ⎧⎨⎩
d
Q̂

(t)
=

f
(Q̂

)d
t
+

√
2
μ

d
B

(t)

f
(x

)
= {

−
μ
(β

+
x
)

x
≤

0

−
μ
β

x
>

0

(
O

U
Q̂

≤
0

B
M

Q̂
>

0 )
M
/M
/N

Erlang
C

θ↑∞
Im
patient ⎧⎨⎩

d
Q̂

(t)
=

−
μ
(β

+
Q̂

(t))d
t

+
√

2
μ

d
B

(t)−
d
Y

(t)

Y
(0

)
=

0
,

Y
↑
0

,
Q̂

d
Y

=
0

(R
O

U
Q̂

≤
0
)

M
/M
/N
/N

Erlang
B

θ
fixed

R
ational ⎧⎨⎩

d
Q̂

(t)
=

f
(Q̂

)d
t
+

√
2
μ

d
B

(t)

f
(x

)
= {

−
μ
(β

+
x
)

x
≤

0

−
(μ

β
+

θ
x
)

x
>

0

(
O

U
Q̂

≤
0

O
U

Q̂
>

0 )

(B
-standard

B
row

nian
M
otion)

(β
-as

before)
11

D
esigning

a
C
allC

enter-Selecting
a
M
odel

•
Very

im
patientcustom

ers
-
M

/M
/N

/N
m
odel

•
Very

patientcustom
ers

-
M

/M
/N

m
odel

•
“B
alanced”abandoning

-
M

/M
/N

+
M
,
θ
fixed

W
hatifG

eneralPatience
w
ith
distribution

function
G
?

S
teady-state

form
ulae

prevailw
ith

θ↔
G

′(0
).

12



M
/M
/N
+G

System
C
ustom

ers’patience:generaldistribution
G
,w
ith

g
0
=

G
′(0

).

Steady-State
R
esults

•
B
accelli&

H
ebuterne

(1981)-virtualw
ait,abandon

probability.

•
B
randt&

B
randt(1999,2002)-stationary-queue

distribution.

Q
ED

R
egim

e

M
ain

C
ase:

G
(0

)
=

0
,

g
0

>
0
(no

balking).

U
se

M
/M

/N
+

M
form

ulae:
θ→

g
0 ,

r
= √

μg
0 .

H
ence,

P{A
b}

≈
g
0 ·E

[W
].

SpecialC
ases:

•
B
alking

(G
(0

)
>

0
,

g
0

>
0
);

•
g
0
=

0:
k-th

derivative
of

G
atzero

positive,
k
≥

2

(E
rlang,P

hase-type);

•
g
0
=

0:D
elayed

patience
distributions

(const,
c+exp(θ)).

A
sym

ptotic
analysis

possible
forallspecialcases,w

hich
yields

vary-
ing

convergence
rates.

13

A
ppendix

M
/M
/N
+
M
:
Strong

A
pproxim

ations

Param
eters:

λ,
μ,

θ,
N

B
uilding

B
locks:

A
i ,

independentPoisson
(1)processes

M
odel:

Q
=

{
Q

(t),
t≥

0}
totalnum

berin
system

Q
(t)

=
Q

(0
)

+
A

1 (λ
t)

arrivals

−
A

2 (∫
t

0
μ
·[Q

(u
)∧

N
]d

u )
services

−
A

3 (∫
t

0
θ·[Q

(u
)−

N
] +

d
u )

abandons

Strong
A
pproxim

ations:
on
the

sam
e
probability

space
w
ith

A
i ’s,there

are
S
B
M

B
i ’s
such

that

A
i (t)

=
t
+

B
i (t)

+
O

(lo
g

t),
t↑∞

.

⇒
A
pproxim

ate
Q
by
substituting

above

A
i (t)↔

t
+

B
i (t)

.

14



A
pproxim

ation:
Q

(t)
=

Q̃
(t)

+
o ( √

N )
,u.o.c.,

via
A

i (t)↔
t
+

B
i (t)

Q̃
(t)

=
Q

(0
)
+

λ
t

+
B

1 (λ
t)

− ∫
t

0
μ
·[Q̃

(u
)∧

N
]d

u
−

B
2 (∫

t

0
μ
·[Q̃

(u
)∧

N
]d

u )

− ∫
t

0
θ·[Q̃

(u
)−

N
] +

d
u

−
B

3 (∫
t

0
θ·[Q̃

(u
)−

N
] +

d
u )

Insight?

Lim
ittheorem

s
(FS

LLN
,FC

LT)
as

N
↑∞

,

for
Q̃

N
,
hence

for
Q

N
:

Forexam
ple,

1N
Q

N
(t)

=
1N

Q̃
N
(t)

+
o(1

).

15

Q
ED

M
/M
/N
+
N
:
A
pproxim

ations,Lim
its

Forsim
plicity

Q
N
(0

)≡
N
:

allservers
busy,no

queue.

R
ecall

λ
N

=
μ
N

−
μ
B √

N
,

μ
,θ

Theorem
:
S
trong

A
pproxim

ation.

Q
N
(t)

=
N

+
√

N
Q̂

(t)
+

o ( √
N )

u.o.c.,as
N

↑∞

or
1

√
N

[Q
(t)−

N
]

d≈
Q̂

(t)
0
≤

t≤
∞

,

w
hered

Q̂
(t)

= [−
μ
β

+
μ
Q̂

−
(t)−

θ
Q̂

+
(t) ]

d
t
+ √

2
μ

d
B

(t)
;

nam
ely

Q̂
is
a
diffusion

w
ith

μ
(x

)
= {

−
μ
β
−

θ
x

x
≥

0

−
μ
β
−

μ
x

x
≤

0
,

σ
2(x

)≡
2
μ

.

⇒
FSLLN

1N
Q

N
(t )→

1
u.o.c.,a.s.

⇒
FC
LT

√
N [

1N
Q

N
−

1 ]
=

1
√

N
[Q

N
−

N
]

d→
Q̂

16



Q
ED

M
/M
/N
+
N
:
FSLLN

Q̃
N
(t)

=
N

+
λ

N
t
+

B
1 (λ

N
t)

− ∫
t

0
μ
·[Q̃

N
(u

)∧
N

]d
u−

B
2 (∫

t

0
μ
·[Q̃

N
(u

)∧
N

]d
u )

− ∫
t

0
θ·[Q̃

N
(u

)−
N

] +
d
u−

B
3 (···)

FSLLN
:

1N
Q̃

N
(t)

=
1

+
1N

λ
N

t
+

1N
B

1 (
N

·
λ

N

N
t )

− ∫
t

0
μ
· [

1N
Q̃

N
(u

)∧
1 ]

d
u−

1N
B

2 (
N ∫

t

0
μ
· [

1N
Q̃

N
(u

)∧
1 ]

d
u )

−
...

O
bserve

1N
λ

N
t→

μ
t

since
λ

N
=

μ
N

−
μ
β √

N

and
1N

B
i (N

t)→
0

FS
LLN

forS
B
M
.

Ifindeed
1N

Q̃
N
(t)→

Q
(t)

,
then

Q
(t)

=
1

+
μ
t−

μ ∫
t

0
[Q

(u
)∧

1
]d

u−
θ ∫

t

0
[Q

(u
)−

1
] +

d
u

w
hich

has
a
unique

solution
Q

(t)≡
1,

t≥
0.

Theorem
(FS

LN
):
A
s

N
↑∞

,
1N

Q
N
(t)→

1
u.o.c.

a.s.

Proof:G
ronw

all’s
inequality

17

Q
ED

M
/M
/N
:FC

LT

Q̃
N
(t)

=
N

+
λ

N
t
+

B
1 (λ

N
t)

− ∫
t

0
μ
·[N

∧
Q̃

N
(u

)]d
u−

B
2 (∫

t

0
μ
·[N

∧
Q̃

N
(u

)]d
u )

− ∫
t

0
θ·[Q̃

N
(u

)−
N

] +
d
u−

B
3 (···)

FC
LT

Q̂
N
(t)

=
1

√
N

[Q̃
N
(t)−

N
]
=

√
N [

1N
Q̃

N
(t)−

1 ]

consists
ofthe

follow
ing

ingredients:

1.
−

μ
β
t
+

1
√

N
B

1 [
N

μ (
1−

β
√

N )
t ]

2.
+

μ √
N

t−
μ √

N ∫
t

0 [
1∧

1N
Q̃

N
(u

) ]
d
u−

1
√

N
B

2 (·)

=
μ ∫

t

0
Q̂

−N
(u

)d
u−

1
√

N
B

2 (
N

μ ∫
t

0 [
1∧

1N
Q̃

N
(u

) ]
d
u )

3.
−

θ ∫
t

0
Q̂

+N
(u

)d
u−

1
√

N
B

3 (
N

θ
1

√
N ∫

t

0
Q̃

+N
(u

)d
u )
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B
asic

Properties
ofB

row
nian

M
otion

Let
B

d=
S
tandard

B
row

nian
M
otion.Then,

S
elf-sim

ilarity
1

√
N

B
(N

t)
d=

B
(t)

A
dditivity

∑
i

B
i (C

i t)
d=

B (∑
i

C
i t )

d= √∑
i

C
i ·

B
(t),

if
B

i independentS
B
M

Tim
e-C

hange
1

√
N

B
(N

·
τ
N
(t))

d→
B

(τ
(t)),

if
τ
N

d→
τ
and,say,

τ
is
continuous

determ
inistic.

19

R
ecall

1.
−

μ
β
t
+

1
√

N
B

1 [
N

μ (
1−

β
√

N )
t ]

2.
+

μ √
N

t−
μ √

N ∫
t

0 [
1∧

1N
Q̃

N
(u

) ]
d
u−

1
√

N
B

2 (·)

=
μ ∫

t

0
Q̂

−N
(u

)d
u−

1
√

N
B

2 (
N

μ ∫
t

0 [
1∧

1N
Q̃

N
(u

) ]
d
u )

3.
−

θ ∫
t

0
Q̂

+N
(u

)d
u−

1
√

N
B

3 (
N

θ
1

√
N ∫

t

0
Q̃

+N
(u

)d
u )

Ifindeed
Q̂

N
d→

Q̂
,
then

1.
d→

−
μ
β
t
+

B
1 (μ

t)

2.
d→

μ ∫
t

0
Q̂

−
(u

)d
u−

B
2 (μ

t)

3.
d→

−
θ ∫

t

0
Q̂

+
(u

)d
u−

B
3 (0

)

Theorem
(FC

LT)
A
s

N
↑∞

,
Q̂

N
d→

Q̂
,
w
here

d
Q̂

(t)
=

[−
μ
β

+
μ
Q̂

−
(t)−

θ
Q̂

+
(t)]d

t
+ √

2
μ

d
B

(t)

20



C
ustom

er-Focused
Q
ueueing

Theory

–
200

abandonm
entin

D
irect-B

anking

–
N
otscientific

R
eason

to
A
bandon

A
ctualA

bandon
Perceived

A
bandon

Perception
Tim

e
(sec)

Tim
e
(sec)

R
atio

Fed
up
w
aiting

70
164

2.34
(77%

)

N
oturgent

81
128

1.6
(10%

)

Forced
to

31
35

1.1
(4%

)

S
om
ething

cam
e
up

56
53

0.95
(6%

)

E
xpected

call-back
13

25
1.9

(3%
)

⇒
R
ational

A
bandonm

ent
from

Invisible
Q
ueues

(w
ith

S
him

kin).
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