Markovian N-Server Queues
(Birth & Death Models)
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- | Busy Period ~
Arrivals Poisson () ;
Services exp(p) (E(S)=1/un)
Servers N statistically identical, serving FCFS.

Offeredload R =X Xx E(S) = \/u Erlangs

Q(t) = number in system (served + queued) at time ¢.

W (k) = queueing time of k-th arrival.

Steady State: QQ(o00), W (oc0), when exists.

non-idling = [Q(t) — N]T

[Q(t) — N]— = number of idle servers

queue-length, and



Examples: M/M/N/K, Abandonment, Balking

M/M/cc: A=A, ur=k-pu, k> 1.

Steady state m, = e *RF/k! Poisson (R)

MIMININ:  Ap =X, pu=k-u O<Ek<N.
rF /L Re
Steady state ™= Z:O —

Erlang-B P{Blocked} = E; ny = mn , by PASTA

MIMIN: A = we=((kAN)-u , k>1.

A e .
Steady state & p = N <1 , servers’ utilization.
!

Erlang-C P{Wait > 0} = E, y = Z Tk
k>N

W(oo) | W(oo) >0 = exp <mean - N,u(ll— P)>



Restriction to a Set via Time-Change

X Markov , X(c0)~m
t
TA(t) = / Lix(uwyeardu time in A
0
1 A
Ta
t
Taa
R .
A A A t a
Xa(t) =X (t,7(1) X restricted to A: Markov

Xa(o0) ~ X(c0)[X(0) € A
Example: M/M/N/N < MIM/oco restricted to {0,1,...,N}.
Ein = Pr{Xp=N}/Pr{Xp <N},
Xgr ~ Poisson (R)



Example: M/M/N (Erlang-C)

A A 7L
otcte
21 Y Nu NH
Q_ | ,Q.

<
Y

Q(t) = number in system attime ¢t > 0

Q- = Q restricted to {0,1,...,N — 1} : M/IM/N-1/N-1; X\, u.
Q4+ = Q restrictedto {N,N+1,...} : M/M/1 A\, Np.

Evolution of Q: Alternates between M/M/1 (Q ) and
M/M/N-1/N-1 (Q_).

Tn N
P(Wait > 0) = Ey y = NN . by PASTA,

ITnNN-1+TN-1N
where ( after conditioning on the first step ):

N 1 1 | A
NN-1 = = . p=—
pnm4+(0)  Np(l —p) Nu
- 1 1
N-1N = =
AN-1m-(N —1)  AXEin-1
Hence,
Tn_1n] " 1-p |7
E2,N2[1+ ] le-i— ] :
TN.N-1 pE1n_1
in which
N
RN RF
EiN=— — R=Np=2
NN ) gl p



M/M/N/N (Erlang-B) with Many Servers: N T co

Assume: u fixed, while Ay Too as N T oo.

Recal. R = Ry = A\nx/u, p = pnv = Ry/N.

Erlang-B: El,N = PT{XR = N}/P'T’{XR < N},
where Xr < Poisson (R).

d
R large Xp ~ R+ ZVR, where Z= N(0,1),

suggesting N ~ R4+pBVR, —0 < < .

Then E1 N

Pr{N —1< Xp < N}/Pr{Xg < N}

~ Pr{B -k <2 <p}/Pr{Z<B)

N—

~ L p(8)/6(8) ~ A 2D =

— 1 _e(=8) _ 1 p
VN 1-¢(=p5) VN

N

—3), h = hazard rate.

Algebra: p fixed, N T oc.

QED: N ~ R4+ BVR, forsome 3, —oco < 8 < oo
& Anv ~ puN —BuVN
& py o~ 1—i namely Jim VN (1 — py) = 6.

TN

Theorem: (Jagerman, 1974) QED < |lim /N E1 y = h(—p).

N—oo

5



M/M/N (Erlang-C) with Many Servers: N T oo

A A n A A
ONONOEONORON
o 2u 3p Np  Nu Nu

Q_ . | Q.

<

Q(0) = N: all servers busy, no queue.

T -1 1— -1
Recall Er ny = [1 -+ Nl’N] = [1 + PN ] .
TN N-1 pnE1 N_1
1 1 1
Here TN—l,N = /,LL

ANE1 N1 N Ny x h(=B) VN - h(—B)VN
which appliesas VN (1 — py) — B, —o0 < 8 < oo.

T
Np(l — pn) BV N

which applies as above, butfor 0 < 8 < <.

Also TN,N—l =

p
h(—B)

1
Hence, E> N~ [1 -+ ] , assuming 3 > 0.
QED: N ~ R+ BVR forsome B, 0<f8< o0

& Ay ~ pN —BuVN

& prl—ﬁ, namely ]\I[im\/ﬁ(l—pN):B.

VN

~1
Theorem (Halfin-Whitt, 1981) QED <« lim s = [1 4 ﬁ} |



QED M/M/N: Steady-State

Theorem (Halfin-Whitt, 1981)

Consider a sequence M/M/N, N = 1,2,.... Then the following are

equivalent

e |lim P{Wx(c0)>0}=a, forsome O0<a<1l;

N—oo

e Iim VN (1—py) =03, forsome 0 < B < oo ;

N—oo

e \w=uN—uBVN+o(vVN), ie, N~ Ry+3VRy,

in which case

ooz=a(ﬁ)=[1-|— g

h(—B)

1
] Halfin-Whitt function

o VN Wi(oo) % Wi(so), W(oo) | W(so) >0 = exp(uf).
Moreover (Queue must be order N )

(%N [QOn(oc) — NI* VN WN<oo>) 4 (@ (o), W (o))

where Ot (0) = uW (o) = exp(B).

Proof: Let Ax(-) be Poisson(\y). Then divide by v N and take
N T ooin

AN[Wi(00)] = [Qn(co) — N]T (Haji+Newell, 1971).



QED M/M/N : Process View

Framework : Sequence of M/M/N systems,

indexedby N =1,2,...
e Qn ={Qn(t), t > 0} numberin system

o Vy ={Vn(t), t >0} virtual waiting time, under FCFS

Parameters AN, UN = [
Offered load Ry = Ay X % = A\n/p
Traffic intensity pn = Ryn/N

Each M/M/N is a Birth & Death process, which is ergodic iff py < 1,

in which case py = servers’ utilization.

QED Scaling: Ay = Nu — Buv/ N, namely

—1_ L
pN—]- VN

Approximations of Process and Stationary Distribution, as N T oc:
o Qn(t) =%lQn(#®) —N], 0<t<oo

o Vn(t) =V NVy(t).



Number in System, Centered and Rescaled: QN(t)

(w=1,8=0.5)

OSMUH UH UVW | W | w ” |

6 6
time time

N=1000 N=10000
T T T T T T 25 T T T T T

5 5
time time

Thanks to G. Shaikhet for the simulations and insight.
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Approximating Queueing and Waiting

Qn ={Qn(t), t > 0} : Qn(t) = numberinsystematt¢ > 0.

on = {Qn(t),t > 0} : stochastic process obtained by

centering and rescaling:

Qv =7

VN

Qn(o0) : stationary distribution of Qv

o Q) ={Q(t),t >0} : process defined by: Qn () L 0.

Qn (1) - Qn(o0)
N — oo\ | \N — 00
Q1) PR Q(00)

Approximating (Virtual) Waiting Time

_|_

. N 1 .
Vy=VNVy =TV = [— Q (Puhalskii, 1994)

o

10



Diffusion Processes in R!

X = {X;, t > 0} Markov process with continuous sample paths

Kolmogorov/Feller/Dynkin: characterized (Strong Markov,

Continuous) by

e Drift function u:(z) (infinitesimal mean)

E[Xite — Xi | Xo = ] = pu(@)e + o(e), €0

e Diffusion function o;(z) (infinitesimal variance)

Var [Xiye — Xt | X = 2] = o(x)e+0(e), €| O;

e Boundary behavior: inaccessible; absorbing, sticky, reflecting

Time-homogeneous: u:(z) = u(x), oi(x) = o(x).

Examples:

1. wx)=p; o(x) =0 >0 Brownian Motion: BM (1, 02)
uw=20 oco=1 Standard BM (SBM)

BM, generated as N(t)—t, where N(t) — Poisson(1) process

Brownian Motion
S 8
T

a
o
T

o

I
Y
o

(=}

time
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Diffusions: Examples (Continued)

. u(x) = a —bx, o(x) = o Orenstein-Uhlenbeck (OU)

Stationary distribution < b > 0: N(%,%

. Reflected BM (u, 02), reflected at 0.  (Harrison’s book)
dX; = pdt + odBy +dY;, Xo >0
X>0,dy >0, XdY =0

Stationary distribution < p < 0: exp(2|u|/0?)

. Reflected OU on [0, o0), (Glynn and Ward), or generally (Dupuis)
{ dXt = u(Xy)dt + or(Xe)dBy + dY:;,  Xo > 0 given

X >0,dY >0, Xdy =0

Ito: Characterized by solutions to stochastic differential equations
dX; = i (Xy)dt + o4 (Xy)dB;, t>0; Xogiven.
(Reference: Karlin and Taylor, “2nd Course”; Karatzas and Shreve.)
Formalizes the “infinitesimal description”:
Xipe=Xi | Xe =2 & () - e+ 0u(2) - (Bige — By)
where B;y.— B~ N(O,¢), independent of {B,, u < t}.
(Equivalently, B = {B;, t > 0} is SBM.)
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QED M/M/N : Diffusion Approximation

v = {Qn(t), t >0} Birth and Death with
Av = uN — pbVN birth rate, constant
pun(x) = p-(xAN) death rate at state «
~ 1
Qn() = — [Qn(t) — N] Scaled queue length of

VN

customers (+) or servers (—)

Diffusion:  Var [Qn(t+¢) — Qn(t) | Qn(t) = x| =21 € + o(e)
Drift: E[Qn{t+e) +0Qn1) | Qn(t) =] =

E[QN(t+€)_QN(t)|QN(t):N+CB\/N} —
[)‘N_MN(N—F:U\/NH e+ o(e) =

{uN = uBVN — [ (N +aVN ) AN} et o(e) =

22l 2l

= —uf-e+ o(e) x>0 (BM)

} = —u(B—z")-eto(e)
= —u(B4+2x)-e+0(e) z<0 (OU)

Expect Qn 4, Q diffusion: pu(z) = —u(B —z7), o(z) = 2u

Proof:  Apply Stone (1963), as in Halfin-Whitt (1981).
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QED M/M/N : Diffusion Approximation

Theorem (Halfin-Whitt).
Consider a sequence M/M/N, N =1,2,.... Assume QED(p3).

Define Qn(t) = iN [@n(t) — N] , 0<t< o0,

=
Vn(t) =V N Vy(t) , 0<t < oo.

It (Qn(0), Va(0)) % (Q(0), V(0)), then
(Qn, V) 4, (Q, %Cﬁ) (Functional CLT),

where @ is a diffusion process starting at Q(0), with infinitesimal

parameters

—ups x>0 5
r) = , o0 (x) =2u,;
p(x) {—u(a:-l-ﬁ) 0 () 0

and steady-state distribution Q(co) given by

P{Q(o0) > 0} = a(f),
P{Q(c0) >z | Q(c0) > 0} = P (exp + RBM)

P{Q(c0) <z | Q(c0) <0} =¢(z+ B)/6(B) (normal « OU)
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E-Driven M/M/N : Approximations

Recall: 1:1 staffing gaveriseto Ay ~ uN — puy

im N(1 —py) =7, 0<vy<oo.

N—o0

Applying the usual QED scaling:  Qn (%) =\/LN(QN(t) — N),

results in a Halfin-Whitt diffusion limit with 3 = 0O: No stationary dis-

tribution for
QHw = Jim  ——(@x() - N)*.

To identify a more informative scaling, recall:

Whn(oo) | Wn(o0) >0 < exp (mean = Nu(ll— PN)).

Also,
]\Ifim P{Wnx(c0) > 0} = 1.

Hence,
- d
Wy(o0) 5 W(so) = exp(uy).
And (by Haji & Newell)

LIQn(o) = NI* % Qo) £ ui¥(o0) £ exp(1).

Expect a non-degenerate behavior of

An(®) = L1 ~ N1 4 Q1) , 0 <t < oo

15



Process View: Simulations of Qx(t)

E driven (with Q, (0)=0) ,N=10000

o
3

=)
T

o
o
T

Number in system, centered and rescaled

o

| | | |
20 25 30 35

time

|
15

o
o -
=)

40

Proposition: Let lim N(1 — py) = 7,

N—oo

If L[Qn(0) — N] 5 Q(0) , then

Number in system, centered and rescaled

0.9

0.8

0.7~

0.6~

0.5

0.4

031

0.2

0.1

Y

o Q(0)
Qn() — Q1) =4 _
Q(0)e
Proof:
Diffusion:
Drift:

—nx - €+ o(e)

E[Qn(t+e) + Qn() | Qn(t) =]
O-et+o(e) >0

x <0

E-Driven (with Q, (0)=N/2) , N=10000

0 < vy < oo

if Q(0) > 0,

if Q(0) < 0.

Var [Qn(t+¢) — Qn(t) | Qn(t) = x| = 0+ o(e)

} = pux~ - e+ o(e).

Conclude Qn LA Q:plx) =pux—, o(x) =0.
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Discovered that Qx(t),0 < t < oo degenerates, as N T oco. But

Qn(o0) = %[QN(OO) — N]T N exp(7). What’s going on?

Two explanations (assuming Q(0) > 0, non-random, for simplicity):
1. Fork > N (with A = Nu — vyu ),

Tk+CN7]€ = Q(N) * Tk—i—l,k = @(N) * 0(1) — OO, as N T 0.

Hence, Qn(t) takes close to infinite time to move a one-unit dis-

tance, suggesting that, in the limit, Q(t) freezes.

2. Consider Q7: the restriction of the Qy to {N, N + 1, ..}.
Q]—\F, 2 M/M/1with \T = Ny — vy, pm = Np.

< M/M/1 with X = AL — u, i =k — u, accelerated by N.
Formally, Q1 (t) = £QF(t) % Q(0)*is a fluid limit , since

L QO with X, 71)

_ 1
Q) = N@ﬁ(t)( with A", 1)

The limit is deterministic, hence a degenerate stationary distribution.

To get a diffusion limit, accelerate:

QH(0) = L@EVH (with A, ) £ ZQE(V ) (with 3. 71)
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Simulations of QN (t) = +[QN(Nt) — N]

Starting at 0, N=2000, pu=1, yv=0.5 Starting at 1, N=2000, u=1, y=0.5

3

o

IS
T

IS
T

w
T

w
T

o
o

number in system, centered and rescaled
N

number in system, centered and rescaled
N

! ! ! ! ! !
1000 2000 3000 4000 5000 6000 7000

Nt-time (0<t<3.5) Nt-time (0<t<3.5)

o
o

Theorem: Let Iim N(1 —py) =, 0 <y < co.

N—oo

Define Oy (t) = +[Qn(INt) — N]. Then

Qn(t) 2 Q(t) = RBM(—ypu, 21).
Proof:

Diffusion: on(z) —w o(x) = (2 — 27 )u

—py 20

Drift:  un(z) — p(z) = {
4o <0

Via random time-change: Q(t) < RBM (—yp,2u).
(RBM > 0: Since the infinitesimal drift “is 400" atx < 0.)
Note: Q(oc0) < exp(~), establishing convergence over 0 <t < co.

Note: Vi (t) % V(¢) < %Q(t), 0 < t < oo : no scaling needed.

(Check at t = oo, using Haji & Newell).
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