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Phase I

P
hase I of these investigations involved form

ulation of a conceptual m
odel that w

ould 
perm

it data collection and analysis germ
ane to the problem

 of am
bulance diversion. As 

preparation for this study, a w
ide range of relevant m

edical publications, policy 
statem

ents and com
m

issioned studies w
ere review

ed. This w
as follow

ed by personal 
interview

s w
ith representatives in governm

ent, hospital adm
inistration, public health and 

the Em
ergency M

edicine com
m

unity. Inform
ation w

as gathered from
 throughout 

M
assachusetts and from

 other key states. P
articular attention w

as given to experience 
in areas w

here crow
ding is particularly severe including m

etropolitan B
oston, S

an 
Francisco, Los A

ngeles and the states of A
rizona and Florida. O

verall, num
erous 

potential root causes of diversion had been articulated both in the m
edical literature and 

lay press, but em
pirical data to support them

 w
ere lacking. Available research tended to 

be descriptive, docum
enting the extent of crow

ding w
ithout clear delineation of its 

sources. V
arious solutions had been proposed and im

plem
ented, all w

ithout consistent 
benefit. A

 partial sum
m

ary of this analysis has been previously released by the 
M

assachusetts H
ealth P

olicy Forum
 of B

randeis U
niversity. 

A
n operations m

anagem
ent perspective suggested straightforw

ard input-throughput- 
output analysis. H

ospital utilization data provided by the D
ivision of H

ealth C
are Finance 

and P
olicy w

as therefore review
ed alongside diversion data provided by regional EM

S 
providers. A

nalysis of this inform
ation revealed the likely operation of m

echanism
s both 

internal and external to em
ergency departm

ents. In addition to sim
ple supply/dem

and 
im

balances for em
ergency care, diversion and utilization patterns suggested 

bottlenecks and backlogs related to the com
petition of em

ergency and non-em
ergency 

patients for sim
ilar resources. The interrelationships of hospital services then becam

e 
the focus of attention and patient care pathw

ays w
ere explored w

ith adm
inistrators from

 
the tw

o study hospitals. 

Tw
o paradigm

s for the quantitative study of interrelationships am
ong hospital 

departm
ents w

ere considered. The first involved an analytical approach w
herein each 

relationship w
as identified, its stochastic character estim

ated, and appropriate Page 1 of 29 
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athem
atical m

odels applied. The second involved a sim
ulation approach, w

herein 
stochastic relationships w

ere em
bedded into com

puter softw
are that translated real 

patient flow
 inputs into utilization and capacity inform

ation. C
om

puter sim
ulation w

as 
ultim

ately selected as the route of choice because of its scalability and adaptability. 

Phase II

D
ata C

ollection/A
nalysis Effort:

The study w
as perform

ed at tw
o hospitals in M

assachusetts: H
ospital A

, a large tertiary 
academ

ic hospital, and H
ospital B

, a m
edium

-sized acute care com
m

unity hospital. The 
follow

ing data w
ere collected: 

–
42 days of inform

ation covering: 
–

6000+ adm
issions 

–
8000+ E

D
 visits 

–
2000+ staffing/capacity data points 

–
300,000+ patient m

ovem
ent/status data points 

In order to analyze the relationship betw
een diversion status and other factors w

ithin the 
hospital environm

ent all m
easures w

ere split into observations at one hour increm
ents. 

The study period of 42 days, w
ith 24 hours per day, yielded a total of 1008 full sets of 

observations. The analysis required collection of patient flow
 data w

ell beyond the usual 
capabilities of contem

porary hospital inform
ation system

s. 

P
oint-biserial coefficients of correlation, w

ith diversion status as the binary variable, 
w

ere exam
ined against a variety of factors. C

om
parisons w

hen using full hours of 
diversion versus partial hours as the “true” condition did not reveal significant 
differences, so partial diversion hours w

ere evaluated as the “true” binary throughout 
the analysis for the sake of consistency. 

It is im
portant to note that in the real w

orld the decisions to com
m

ence or cease 
diversion status are, but their nature, highly subjective. B

ecause the purpose of the 
study w

as to exam
ine the root causes of diversion, w

e did not approach the task from
 

the standpoint of critiquing or attem
pting to influence this inherent operational 

subjectivity. A
s a result, any such analysis is itself subjective to a certain degree. 

B
ecause both hospitals straddled E

M
S

 regional borders and diversion rules vary by 
region, each hospital’s data w

as used for the sake of determ
ining diversion status rather 

than using centralized E
M

S
 data. A

lso, all diversions w
ere considered equally rather 

than separately analyzing the factors related to each individual diversion type. 

P
atterns of diversion w

ere also exam
ined as averages across the hours of the day and 

the days of the w
eek in order to ascertain relevant hour of the day and day of the w

eek 
patterns. This data analysis w

as perform
ed separately for each of the hospitals. Page 2 of 29 
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H
ospital A

:

D
iversion Pattern “H

ospital A
 - D

iversion M
inutes by H

our”

–
There w

ere a total of 22 episodes of diversion w
hich started and ended w

ithin the 
study, w

ith an average length of 814 m
inutes. There w

as one episode that began prior 
to the study and ended after the study began and so is not included in this calculation, 
nor in any calculations w

hich involve the beginning of diversion episodes. 
–

The hourly diversion pattern show
s diversion is highest in the evening hours, settles 

back dow
n during the early m

orning hours, and then stays steady until the m
id to late 

afternoon (see Fig. 1). 
–

The goal of the project w
as to determ

ine the drivers w
hich create this pattern. 

H
ospital A

 - A
vg D

iversion M
inutes by H

our
302520151050

D
ivert M

inutes

Fig. 1 

The follow
ing 3 hypotheses w

ere tested to determ
ine the drivers of diversions: 

1.  E
D

 arrival rate is too high, leading to diversion w
hen the E

D
 becom

es full. 
2.  E

D
 processing of patients is too slow

, causing backups that lead to diversion 
3.  ED

 arrival and processing rates are fine, but there are not enough beds in the 
hospital to accom

m
odate the adm

issions. 
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There are seven sets of data (see Fig. 2), each representing a different view
 of 

arrivals into the ED
. The "Arrivals_0" category only includes new

 arrivals from
 the 

hour in question. E
ach subsequent category, from

 "A
rrivals_1" to "A

rrivals_6" 
includes one m

ore hour’s w
orth added to the total. In other w

ords, "Arrivals_1" 
includes arrivals from

 the current hour added to the arrivals from
 the previous 

hour, "A
rrivals_2" includes all of "A

rrivals_1" plus the arrivals from
 tw

o hours ago, 
and so on. This is w

hat accounts for the stacked shape as each additional hour is 
layered on top. B

ecause average length of stay w
as 340 m

inutes, 6 hours is 
used as the m

axim
um

 lag. C
orrelation coefficients from

 each of these 
cum

ulatives to Avg D
iversion M

inutes by hour are as follow
s: 

Arrivals_0 = -0.073 
Arrivals_1 = 0.001 
Arrivals_2 = 0.078 
Arrivals_3 = 0.165 
Arrivals_4 = 0.259 
Arrivals_5 = 0.359 
Arrivals_6 = 0.460 

H
ospital A

 - ED
 D

iversion vs. A
rrivals to ER

 by H
our
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Fig. 2 

There is also a possible corollary to hypothesis #1, that overall E
D

 census is a 
driver of diversion. W

hen counting the non-boarding census and com
paring it to 

diversion status, how
ever, the resulting point-biserial coefficient (r = -0.051) 

m
akes clear that this potential explanation should be rejected as w

ell. 
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again points tow
ards exam

ining hospital capacity as the prim
ary determ

inate of 
diversion.

C
ensus/Adm

issions/D
ischarges: H

ospital B

The overall relationship betw
een inpatient census and E

D
 boarders in H

ospital B
 

w
as sim

ilar to that of H
ospital A

. H
ow

ever, detailed analysis of adm
ission 

sources in H
ospital B

 is not presented because scheduled dem
and played a far 

sm
aller role than that observed in H

ospital A
. 

D
uring the study period, there w

ere 1,158 w
eekday unscheduled adm

issions 
(average: 38.6/day) and 208 w

eekday scheduled adm
issions (average: 6.9/day). 

This suggests very little operational flexibility in controlling the variability or tim
ing 

of scheduled arrivals. This likely reflects a fundam
ental difference betw

een m
ost 

com
m

unity hospitals and larger academ
ic centers. 

H
ospital B C

onclusions:

The findings at H
ospital B

 are consistent w
ith and reinforce those at H

ospital A. 
Specifically, there w

as no evidence that ED
 process tim

es w
ere tem

porally or 
m

echanistically related to E
D

 diversion w
hile the relationship betw

een E
D

 arrival 
rate and diversion w

as w
eak. Instead, the data suggest that factors outside of the 

E
D

 that com
bine to increase boarders and lim

it E
D

 capacity are m
ore im

portant. 

Phase II Sum
m

ary:

D
etailed flow

 analysis in tw
o very different types of hospitals yielded sim

ilar 
findings w

ith respect to the root cause of em
ergency departm

ent crow
ding and 

am
bulance diversion. N

either increased patient inflow
 nor increased process tim

e 
could be strongly related to diversion status. Instead, diversion w

as seen as an 
outflow

 problem
, w

ith busy em
ergency departm

ents crow
ding as patients aw

ait 
transfer to crow

ded inpatient services. This problem
 is exacerbated in hospitals 

w
ith large volum

es of scheduled adm
issions, since these necessarily com

pete for 
the sam

e resources. The “collision” of scheduled and unscheduled patient flow
s 

results in diversion patterns that are specific and reproducible. B
ecause 

scheduled patient flow
s are theoretically controllable, better understanding of this 

phenom
enon m

ay suggest m
eans of decreasing diversion. If the experience here 

m
ay be generalized, w

e conclude that institutions w
ith sm

all (or uncontrollable) 
scheduled patient flow

s w
ill require addition of resources on the inpatient side if 

diversion is to be substantially reduced. 
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C
alls arrive by different scenarios: som

etim
es arrivals during a day have a bell-form

 w
ith peak around 12:00 

(scenario II) and in som
e days w

e can see peaks in evenings around 18:00 (scenario I). 

N
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A
t the sam

e tim
e, the form

 of the agents' staffing does not changed for the days w
ith different scenario for 

arrivals.

N
um

ber of agents (R
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There are tw
o type of the num

ber of agents w
ith tags H

O
T and actual. The first num

ber w
as calculated from

 
the H

O
T data in the follow

ing w
ay:

N
um

ber of agents (N
et)* %

 of occupancy = agents (H
O

T). 

The actual num
ber w

as calculated in the follow
ing w

ay: 

N
um

ber of answ
ered calls * (average service tim

e +30 seconds) = agents (actual). 

This num
ber describes the num

ber of servers w
orking w

ithout idle tim
e. 

O
ur conclusion from

 this figure and the follow
ing in the analysis below

 that the num
ber of agents (H

O
T) is 

m
uch bigger than it w

as in reality. 

e agents' staffing d
R
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The figure above show
s inconsistency in form

s of the offered load and agents' staffing. A
ll values presented 

in this figure are averages of the offered load in tw
o different scenarios and the num

ber of agents, calculated 
in each 30 m

inutes interval. 

The follow
ing 4 figures show

 the average num
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w
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15.01.09. Even in this day w
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s in the service in m

orning and evening hours.
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this figure are averages of the num
ber of arrivals com
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A
verage service tim

e changes dram
atically during the day. W

e can see that in the evening average service 
tim

e is m
uch bigger than in the m

idday. This m
eans that the offered load in the evening is bigger than in the 

m
idday. 
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C
onstant staffing levels, based on steady-state M
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, 

w
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=long-run average num
ber of arrivals. 
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– Point-w

ise Stationary A
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e-varying staffing levels, based on steady-state

M
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/N
, w

ith 
=

(t) at each tim
e t. 

C
ould result in tim

e-varying (highly oscillating)

perform
ance (utilization, service), w

hich is undesirable. 
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   Real Call Center: Empirical waiting time, given positive wait 

  (1) α=0.1 (QD)         (2) α=0.5 (QED)            (3) α=0.9 (ED)     
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            Iterative A
lgorithm

InputsSystem
 prim

itives:

arrivalfunction,  service-tim
e distribution,

patience distribution (w
hen relevant) ; 

Target delay probability 
 ; 

 Tim
e horizon [0,T] . 

O
utputs

Staffing
function, aim

ing at

a delay probability 
 is over [0,T] . 

Starting point: The infinite-server heuristics by 

Jennings, M
., M

assey, W
hitt (1996) 

A
lgorithm

 (cont.) 

N
otation:

]
,0

[
T

t
  (practically t=0,  

)
,

2
,

N
i (t)– staffing level at tim

e t,

   determ
ined in iteration i=1,2,…

Li (t)– num
ber in the system

 at t,

   under staffing function si (t).

A
lgorithm

:

(1) i=0; N
0 (t)

 (delay probability =0) 

(2) Evaluate the distribution of L
i (t), using sim

ulation.

(3) D
eterm

ine N
i+1 (t) as follow

s: 

T
t

0
,}

}c
)t
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m
in{
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)t

(
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i
1

i
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(4) C
heck stopping condition: 

if
1

)(
)(

1
i

i
N

N
, then N

i+1 ( .) is our staffing level;

else i := i+1, and go back to (2) . 

(
) Last iteration.  The algorithm

 converges to a   

Staffing Function
N

( .) least for w
hich

)}
(

)
(

{
t

N
t

L
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,
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t
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