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     Example: "Real" Call Center 

(The "Right Answer" for the "Wrong Reasons") 

Time-Varying (two-hump) arrival functions common

(Adapted from Green L., Kolesar P., Soares J. for benchmarking.) 
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Assume: Service and abandonment times are both

 Exponential, with mean 0.1 (6 min.) 

     Example: "Real" Call Center 
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          Time-Varying Arrivals

Model tt NMM // + M

Parameters (t)   µ ?

 ?     Nt = Rt  + tR

Offered Load:
t

St
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           Average # in // MM t

Gives rise to   TIME-STABLE PEFORMANCE

(Why?  Think tt NMM // + M  with µ = ;

And if µ , or generally:

use the Iterative Simulation-Based Staffing Algorithm

in Feldman, M., Massey and Whitt, 2005.) 
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Delay Probability 
Delay Probability
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   Real Call Center: Empirical waiting time, given positive wait

  (1) =0.1 (QD) (2) =0.5 (QED)            (3) =0.9 (ED)

   Real Call Center: Empirical waiting time, given positive wait
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QED Staffing  ( =0 iff =0.5)
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  The "Right Answer" (for the "Wrong Reasons")

Prevalent Practice (PSA))()( SEtNt

"Right Answer" ttt RRN       (MOL) 

)()( SEStERt

Practice  "Right"  0                (QED) 

and )(t stable over service-durations 

Practice Improved )()]([ SESEtNt

When  Optimal ?   for moderately-patient customers:

1. Satisfization  At least 50% to be serve immediately 

2. Optimization  Customer-Time = 2 x Agent-Salary



Time-Varying Arrivals:  Safety-Staffing

Model tt NMM // + M

Parameters (t)   µ ?

 ?     Nt = Rt  + tR



Time-Varying Arrivals:  Safety-Staffing

Model tt NMM // + M

Parameters (t)   µ ?

 ?     Nt = Rt  + tR

µ =  : tL
d

 Poisson( )tR
d

 N(Rt, Rt),  since // MM t

t

St
t duuESEStER )()()(      offered load 



Time-Varying Arrivals:  Safety-Staffing

Model tt NMM // + M

Parameters (t)   µ ?

 ?     Nt = Rt  + tR

µ =  : tL
d

 Poisson( )tR
d

 N(Rt, Rt),  since // MM t

t

St
t duuESEStER )()()(      offered load 

Given Lt  Rt + tZ R  , 
d

Z  N(0,1) 

choose Nt = Rt + tR

 = P(W  > 0)  P(Lt  Nt) = P(Z ) = 1 – ( )t
PASTA

 = –1 (1 – )      time-stable  P(Wt > 0)  ? 



Time-Varying Arrivals:  Safety-Staffing

Model tt NMM // + M

Parameters (t)   µ ?

 ?     Nt = Rt  + tR

µ =  : tL
d

 Poisson( )tR
d

 N(Rt, Rt),  since // MM t

t

St
t duuESEStER )()()(      offered load 

Given Lt  Rt + tZ R  , 
d

Z  N(0,1) 

choose Nt = Rt + tR

 = P(W  > 0)  P(Lt  Nt) = P(Z ) = 1 – ( )t
PASTA

 = –1 (1 – )      time-stable  P(Wt > 0)  ? 

Indeed, but in fact TIME-STABLE PERFORMANCE



Time-Varying Arrivals:  Safety-Staffing

Model tt NMM // + M

Parameters (t)   µ ?

 ?     Nt = Rt  + tR

µ =  : tL
d

 Poisson( )tR
d

 N(Rt, Rt),  since // MM t

t

St
t duuESEStER )()()(      offered load 

Given Lt  Rt + tZ R  , 
d

Z  N(0,1) 

choose Nt = Rt + tR

 = P(W  > 0)  P(Lt  Nt) = P(Z ) = 1 – ( )t
PASTA

 = –1 (1 – )      time-stable  P(Wt > 0)  ? 

Indeed, but in fact TIME-STABLE PERFORMANCE

(µ , or generally : Iterative Simulation-Based Algorithm)


