Markovian N-Server Queues
(Birth & Death)

V(u V(N V(2|~ V(Z V(Z.T_

n 2p (N-Dp Np BN+
Arrivals Poisson () ;
Services exp(p) (BE(S)=1/u) ;
Servers N statistically identical, serving FCFS ;

Offered load R=Xx E(S) = \/u Erlangs;

p=R/N Erlangs per server.
Q(t) = numberin system (served + queued) at time t.
W (k) = queueing time of k-th arrival.

Steady State: Q(o0), W (o0), when exists.

Non-idling = [Q(t) — N]T
[@) () — NI~

queue-length, and

number of idle servers.

Examples: M/M/N, Blocking, Abandonment

M/M/oc: MNe=A, pp=k-p , k>1

Steady state 7w, = e RRF/E! Poisson (R)

M/IM/IN/N: M\ =0, k> N.

R [/ R
Steady state T = = leﬂ , 0<Ek<N;
Erlang-B P{Blocked} = E; y =7y , by PASTA
M/M/N: A = A, ue=(kAN)-pn , k>1.
A et s
Steady state & p = Na <1 , servers’ utilization.
o

Erlang-C P{Wait > 0} = E, vy = M T
k>N

W(oo) | W(o0) >0 £ exp Aam% = jv

M/M/N+M: M=A up=(kAN) - p+n—-Ek)T6 , k>O0.




Restriction to a Set via Time-Change

X Markov , Nﬁoovmqﬂ

t
QSH\O Lex(u)eaydu time in A

Xa(t) =X (1,1 (D)) X restricted to A: Markov

X4(00) = X (00)|X(c0) € A

Example: M/M/N/N <= M/M/oo restricted to {0, 1,..., N}.

Ein
Xr

Pr{Xpr= N}/Pr{Xr < N},
Poisson (R)

II= I

M/M/N/N (Erlang-B): Restricted M/M/oco

v(_ V(N V(Zl_ V(Z v(z.ru
B 2e (N-Dp Np B

M/M/oo:
Q(t) = number in system at time ¢t > 0, Q(c0) <

Then
Q- = @ restrictedto {0,1,..., N} : M/IM/N/N ; (\, ).
PO (c)=N) = ") _ o
(Q-(o0) ) Muwnoﬁ@v 1,N

Proof: ()_ is a Markov Process:

Sojourn time in state : € {0,1,..., N — 1} is exp(A 4 iu).

State N: Each visit lasts exp(r =X+ Nu)
Number of visits is Geo(p = »ﬁat
Fact: Geometric(p) sum of i.i.d. exponentials () < exp(p-r)

= Sojourn time in state V < exp(Np).

Conclude: Q- S M/M/N/N.




Up/Down Crossings

A
% o Q h/‘\v A - -
n 2p (N-Dp Hren
. Idle Period Busy Period

Define: Idle Period
Tn-1n = E [ 1° hitting time of N|Q(0) = N — 1].

N—-1
M 1
Then MJZIH N = MU@|O T — ,
“ AN—1mN—1 AT (N —1)
where m_ is the distribution of the restricted Q) _.

Similarly: Busy Period
Tnn-1 = E [ 1 hitting time of N — 1|Q(0) = N].

Proof:
. d . AN-1
Number of Idle Excursions = Geometricso(——)
TTUAN—1 o pN—a
1 UN-1
ITn_1N = X
a7 (N —1)pn—1 AN-1
~~ S~~~
E(Idle Excursion) E(# of Ezcursions)
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IMIN+M  (Erlang-A)

N-Dp Np

Idle Period

Np+0 Np+20
Busy Period

Q(t) = number in system attime ¢ > 0

Q- = Q restrictedto {0,1,...,N — 1}
Q+ = Q restrictedto {N, N 4+ 1,...}

: M/IM/N-1/N-1; A
: MIM/1+M A Np—+0,06.

Evolution of Q: Alternates between M/M/1+M  (Q+) and
M/M/N-1/N-1 (Q_).

TN.N-1

InN-1+TN-1N

P(Wait > 0)=
where
TnN-1
TN-1N

i

)

pun7T(0)

T -1
“N-LN % , by PASTA,
TnNN-1

Av_o1m— (N —1)

P Ein




M/M/N+M (Erlang-A): Continued

Special Cases: Erlang-C, Erlang-B, u = 0
Hence, Erlang-C
P(Wait > 0) = T n ﬂzL,LH T n 7+(0) %Hv Infinitely patient customers (§ = 0)
Tn,N-1 pE1N-1
in which
B _ RNTL/(N —1)!
1,N—1 M\a/\”\on_. m\a\w_ )
Idle Period Busy Period
(AN /(N /6)!
ﬁ.nTAOv = 00 i . '
MU@.HO Ay\%vzt\m._é\m.\/\t\% + @v_

P(Wait > 0) = Epy = lim T +
Recall: By -1 =P(Y =N —-1]Y <N - 1),

P(X = Nu/0|X > Np/0) 17
where Y < Pois(R),

-0 pP(Y =N—-1Y <N —-1)
Lemma: Let X = Pois(A/6). Then
R=X/p. limg_o P(X = Nu/0|X > Nu/0) =1 — p.
"Similarly” Proof:
N ! (\/0)"/" /(N 1a/0)!

74+(0) = P(X = Nup/0|X > Np/0), m_IJMV MWO Ay\mvzt\f.s.\c/\t\% +4)!
where X = Pois(\/0)

Hence

lims_o WWO@& () = (L + mlz -

(e O/Nw] t=1-p.
P(Wait>0)= |1+ PX =

Nu/0|X > Np/o) 177
p P(Y =

N—-1Y <N-1)| ’
Note: Only 74 (0) changes by the model.

Conclude: Erlang-C Formula

1
B = (14 ]
O N = —
‘ pE1N-1
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Special Cases, Continued

Erlang-B
Infinitely impatient customers (6 = oo)

n 2p (N-Dp Np
Idle Period Busy Period
m4+(0) 17
P(Q:> N) = lim T +|g
—00 pE1N-_1
Lemma: Let
(A/0)NH% exp(—N/6)
ﬂ.nTAOV = Nu_Np A .
ERASTEE]
Then

[iMg— 0o ﬂ.n_.AOv =1.

Conclude: Erlang-B Formula

1 —1
By oy = T + g |
» pE1n-1

Special Cases, Continued

p=0  (M/M/oo)

n 2p (IN-Dn Np N+ (IN+2)n
Idle Period 7 Busy Period

. [ P(Y = N|Y > N)
P(Wait >0) = |14
5 pP(Y=N-1Y <N -1)
~ [14 POT=NY >N) o
| P(Y =Ny <N)| ’

forlarge N and p ~ 1.

Recall: y £ Pois(R = \/p).
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M/M/N/N (Erlang-B) with Many Servers: N T co

Assume: p fixed, while Av Too as N T .

Recal: R = Ry = An/u, p=pn = Ry/N.

m_w_mjmnm“ NHJZ = ﬁﬁﬁw\w = ZW\TQSH%W < ZT
where Yr < Poisson (R).
R large Y ~ R4+ 2ZJVE where Z < N(0,1),

suggesting N ~ R+BVR, — << oco.
Pr{N —1 < Y < N}/Pr{Ys < N}
Pr{s-k<z<p}/Priz<p}

FOB/PB) » & o=

Then F1i N

)

&Q

Q

— ,\% |MM_V|NVS = Fz h(—B), h = hazard rate
of N(0,1).
Algebra: p fixed, N T oo.
QED: N ~ R+ BvVR, forsome 3, —oo < 3 < o0
& A~ uN—BuvVN
B .
& ~ 1———, namely lim+/N (1 — = 3.
Theorem: (Jagerman, 1974) QED < |lim /N E; y = h(—p).

N—o0
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M/M/N (Erlang-C) with Many Servers: N | co

Idle Period Busy Period

Q(0) = N: all servers busy, no queue.

T -t 1—py 17¢
Recall Er, vy = T + >Tr>; = T + |2% )
TnN-1 pNE1 N1

1 1 1/p
AEin-1  Npxh(—=B)/VN ~ h(—BWN
which appliesas VN (1 — py) — 8, —00 < 8 < 0.

1 1/p
Nu(l—pn) ~ B/N
which applies as above, butfor 0 < 3 < oo.

Here ITN-1Nn =

Also NJZ“Z\H =

B 1" .
H Ernv~ |1 .
ence, 2N ﬁ + ilmL , assuming 8 >0
QED: N ~ R+ p3VR forsome 8, 0< < o0
& N~ uN—pBuv/N
s p o~ 1 I;\bﬁ , namely N/_\Bgoo/\MG — pn) = 6.

\ -1
Theorem (Halfin-Whit,, 1981) QED « Iim Foy = |14 ;75| .

N—o0
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QED Theorem (Halfin-Whitt, 1981)

Consider a sequence of M /M /N models, N =1,2,3,...

Then the following 3 points of view are equivalent:

e Customer >_\:>3 Py(Wait > 0) = a, O<ax<l;
e Server >_\_3 VN(1 = py) =8, 0<B<o0o;
e Manager N ~ R+ VR, R=\x E(S) large;
Here
o) -1
a=[14 Eg “
¢(3)

where ¢(-)/®(-) is the standard normal density/distribution.

Extremes:

Everyone waits: a=1<3=0 Efficiency-driven

No one waits: a=0& 8= Quality-Driven
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M/M/N+M (Erlang-A) with Many Servers: 7 (0)

Assume: u, 0 fixed,

Recal: R = Ry = An/u,

74+(0)
where X
N large X,
suggesting N

Then m+(0) =

Q

&Q

while Ay Too as N T oo.

p = pn = Rn/N.

= Pr{X\=Np/0}/Pr{X\ > Nu/6},
< Ppoisson (N\/9).

M0+ Z/N0, where Z < N(0,1),
~ R+ BVR, —0 < < 0.

NS

Pr{Np/0 —1 < X, < Np/0}/Pr{X, > Nu/0}

?T|,\+3Amm&\wlmw3_uu (/0

7 9O/ A= 2@®) ~ o[l %0 =

1 /o —
,\ﬂ/\m k(&) , h = hazard rate of N(0,1).

Algebra: u, 0 fixed, N T co.

Proposition: QED < lim v/N 74(0) = mi&.

N—o0
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M/M/N+M (Erlang-A) with Many Servers: QED

n 2n (N-Dp Np Np+0 Np+20

Idle Period 7 Busy Period

Q(0) = N: all servers busy, no queue.

Ty in] ™ m4+(0) 17
Recall  P(Wait > 0) = T +|; - T +|_ |
TN.N-1 pNE1 N1
1 1 1 1/p
Here Tn_ = ~ ~
NN T ANEiv-1 Npx h(=B)VN  VNh(—B)
1 1 1
Also MJZJZIH = \.E = t\%

Num(0) ~VNh(3)/ 6’
Both applyas v/N (1 — py) — 8, —o0 < 3 < oo.

. h(5)/5 ﬁ .
Hence, PWait >0) ~ |1 + —2— , Garnett Function.
(Wit =0) ﬁ n(=8)/8
QED: N ~ R+ 3VR forsome 8, —oco<f3< o0
& A~ uN—Buv/N
s p o~ 1 I/\hﬂ , namely N,_\Hjoo/\ﬂﬁ —pN) = 6.

Theorem (Garnett, M., Reiman 2002)

QED & lim P(Wait > 0) = T 4 O/ QH
N—oo - h(—=8)/8 .
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QED Theorem (Garnett, M., Reiman '02; Zeltyn ’03)

Consider a sequence of M /M /N + G models, N = 1,2,3,...

Then the following points of view are equivalent:

e QED %{Wait > 0} =~ a, 0<a<l;
i
e Customer %{Abandon} ~ —, 0 <,
o{ } 7N ¥
B+
e Server oCC=~1-— , —o00 < B < o0;
VN &

Manager N ~ R+ VR, R = X x E(S) not small;

QED performance (ASA,...) is easily computable, all in terms of g

(the square-root staffing level)

Covers also the Extremes:

a=1: N=R-9R Efficiency-driven

a=0: N=R+~R Quality-Driven
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