
M
arkovian

N
-ServerQ

ueues
(B
irth

&
D
eath)

0
1

N
-
1

N
N
+
1

1
2

N
-
1

N
N
+
1

μ
2
μ

(
N
-
1
)
μ

N
μ

μ
N
+
1

A
rrivals

Poisson
(λ

)
;

S
ervices

e
x
p
(μ

)
(E

(S
)
=

1
/
μ
)
;

S
ervers

N
statistically

identical,
serving

FC
FS

;

O
ffered

load
R
=

λ×
E

(S
)
=

λ
/
μ

E
rlangs;

ρ
=

R
/N

E
rlangs

perserver.

Q
(t)

=
num

berin
system

(served
+
queued)attim

e
t.

W
(k

)
=

queueing
tim
e
of

k-th
arrival.

S
teady

S
tate:

Q
(∞

),
W

(∞
),w

hen
exists.

N
on-idling

⇒
[Q

(t)−
N

] +
=
queue-length,and

[Q
)(t)−

N
] −
=
num

berofidle
servers.

1

Exam
ples:M

/M
/N
,B
locking,A

bandonm
ent

M
/M
/∞
:

λ
k ≡

λ,
μ

k
=

k·
μ

,
k
≥

1.

S
teady

state
π

k
=

e −
R
R

k/
k
!

Poisson
(R

)

M
/M
/N
/N
:

λ
k ≡

0
,

k
≥

N
.

S
teady

state
π

k
=

R
k

k
! /

N
∑n
=

0

R
n

n
!

,
0
≤

k
≤

N
;

E
rlang-B

P{B
locked}

.=
E

1
,N

=
π

N
,
by
PA
S
TA

M
/M
/N
:

λ
k ≡

λ,
μ

k
=

(k∧
N

)·
μ

,
k
≥

1.

S
teady

state
⇔

ρ
=

λN
μ

<
1

,
servers’utilization.

E
rlang-C

P{W
ait

>
0}

.=
E

2
,N

= ∑k≥
N

π
k

W
(∞

)|
W

(∞
)

>
0

d=
e
x
p (

m
ean

=
1

N
μ
(1−

ρ
) )

M
/M
/N
+M
:

λ
k ≡

λ,
μ

k
=

(k∧
N

)·
μ

+
(n

−
k
)
+

θ
,

k
≥

0.

2



R
estriction

to
a
Setvia

Tim
e-C

hange

X
M
arkov

,
X

(∞
)

d=
π

τ
A
(t)

= ∫
t0
1{

X
(u

)∈
A} d

u
tim
e
in

A

a

A
c

A

A

-1t

t
a

A
A

A
c

X
A
(t)

=
X (τ −

1
A

(t) )
X
restricted

to
A
:M
arkov

X
A
(∞

)
d=

X
(∞

)|X
(∞

)∈
A

Exam
ple:

M
/M
/N
/N

d=
M
/M
/∞

restricted
to{0

,1
,...,N

}.

E
1
,N

=
P

r{
X

R
=

N
}
/
P

r{
X

R
≤

N
}
,

X
R

d=
Poisson

(R
)

3

M
/M
/N
/N
(Erlang-B

):R
estricted

M
/M
/∞

0
1

N
-
1

N
N
+
1

1
2

N
-
1

N
N
+
1

μ
2
μ

(
N
-
1
)
μ

N
μ

μ
N
+
1

M
/M

/∞
:

Q
(t)

=
num

berin
system

attim
e

t≥
0,

Q
(∞

)
d=

π

Then
Q

−
=

Q
restricted

to{0
,1

,...,N
}
:M
/M
/N
/N
;(λ

,μ).

P
(Q

−
(∞

)
=

N
)
=

π
(N

)
∑

Ni=
0
π
(i)

=
E

1
,N

Proof:
Q

−
is
a
M
arkov

P
rocess:

S
ojourn

tim
e
in
state

i∈
{
0
,1

,...,N
−

1}
is

e
x
p
(λ

+
iμ

).

S
tate

N
:
E
ach

visitlasts
e
x
p
(r

=
λ

+
N

μ
)

N
um
berofvisits

is
G

eo(p
=

N
μ

λ
+

N
μ
)

.

Fact:
G
eom

etric(p
)
sum

ofi.i.d.exponentials
(r)

d=
e
x
p
(p·

r)

⇒
S
ojourn

tim
e
in
state

N
d=

e
x
p
(N

μ
).

C
onclude:

Q
−

d=
M

/M
/N

/N
.

4



U
p/D

ow
n
C
rossings

B
u

s
y

 P
e
r
i
o

d
 

I
d

l
e
 P

e
r
i
o

d
 

N
+
1

(
N

-
1
)
μ

0
1

N
-
1

N

μ
2

μ
N

μ

N
+

1

μ

D
efine:Idle

Period
T

N
−
1
,N

=
E [

1
sthitting

tim
e
of

N
|Q

(0
)
=

N
−

1 ].
Then

T
N
−
1
,N

=

∑
N
−
1

i=
0

π
i

λ
N
−
1 π

N
−
1

=
1

λ
π−

(N
−

1
) ,

w
here

π−
is
the

distribution
ofthe

restricted
Q

− .

S
im
ilarly:B

usy
Period

T
N

,N
−
1
=

E [
1

sthitting
tim
e
of

N
−

1|Q
(0

)
=

N ].
Proof:
N
um
berofIdle

E
xcursions

d=
G

eo
m

etr
ic≥

0 (
λ

N
−
1

λ
N
−
1
+

μ
N
−
1
)

T
N
−
1
,N

=
1

π−
(N

−
1
)μ

N
−
1

︸
︷︷

︸
E

(I
d
le

E
x
cu

r
sio

n
)

×
μ

N
−
1

λ
N
−
1

︸︷︷︸
E

(#
o
f

E
x
cu

r
sio

n
s)5

M
/M
/N
+M

(Erlang-A
)

N
μ

+

B
u

s
y

 P
e
r
i
o

d
 

I
d

l
e
 P

e
r
i
o

d
 

(
N

-
1
)
μ

0
1

N
-
1

N

μ
2

μ
N

μ

N
+

1

N
μ

+
2

Q
(t)

=
num

berin
system

attim
e

t≥
0

Q
−

=
Q
restricted

to{0
,1

,...,N
−

1}
:M
/M
/N
-1/N

-1
;
λ
,μ.

Q
+

=
Q
restricted

to{
N

,N
+

1
,...}

:M
/M
/1+M

;
λ
,N

μ
+

θ
,θ.

E
volution

of
Q
:A
lternates

betw
een

M
/M
/1+M

(Q
+
)
and

M
/M
/N
-1/N

-1
(Q

−
).

P
(W
ait

>
0
)=

T
N

,N
−
1

T
N

,N
−
1
+

T
N
−
1
,N

= [
1

+
T

N
−
1
,N

T
N

,N
−
1 ]−

1

,
by
PA
S
TA
,

w
here

T
N

,N
−
1

=
1

μ
N

π
+
(0

)
,

T
N
−
1
,N

=
1

λ
N
−
1 π−

(N
−

1
)

=
1

λ
E

1
,N

−
1

.

6



M
/M
/N
+M

(Erlang-A
):C

ontinued

H
ence,

P
(W

a
it

>
0
)
= [

1
+

T
N
−
1
,N

T
N

,N
−
1 ]−

1

= [
1

+
π

+
(0

)

ρ
E

1
,N

−
1 ]−

1,

in
w
hichE

1
,N

−
1
=

R
N
−
1/(N

−
1
)!

∑
N
−
1

k
=

0
R

k/
k
!

,

π
+
(0

)
=

(λ
/
θ)

N
μ
/
θ/

(N
μ
/
θ)!

∑
∞i=

0
(λ

/
θ)

N
μ
/
θ+

i/(N
μ
/
θ
+

i)!
.

R
ecall:

E
1
,N

−
1
=

P
(Y

=
N

−
1|Y

≤
N

−
1
),

w
here

Y
d=

P
o
is(R

),
R

=
λ
/
μ.

”S
im
ilarly”

π
+
(0

)
d=

P
(X

=
N

μ
/
θ|X

≥
N

μ
/
θ),

w
here

X
d=

P
o
is(λ

/
θ)

H
ence

P
(W

a
it

>
0
)
= [

1
+

P
(X

=
N

μ
/
θ|X

≥
N

μ
/
θ)

ρ
P
(Y

=
N

−
1|Y

≤
N

−
1
) ]−

1,

N
ote:

O
nly

π
+
(0

)
changes

by
the

m
odel.

7

S
pecialC

ases:E
rlang-C

,E
rlang-B,

μ
=

θ

E
rlang-C
Infinitely

patientcustom
ers

(θ
=

0)

N
μ

B
u

s
y

 P
e
r
i
o

d
 

I
d

l
e
 P

e
r
i
o

d
 

(
N

-
1
)
μ

0
1

N
-
1

N

μ
2

μ
N

μ

N
+

1

N
μ

P
(W

a
it

>
0
)
=

E
2
,N

=
lim
θ→

0 [
1

+
P
(X

=
N

μ
/
θ|X

≥
N

μ
/
θ)

ρ
P
(Y

=
N

−
1|Y

≤
N

−
1
) ]−

1

Lem
m
a:
Let

X
d=

P
o
is(λ

/
θ).

Then
lim

θ→
0
P
(X

=
N

μ
/
θ|X

≥
N

μ
/
θ)

=
1−

ρ
.

P
roof:

lim
θ→

0

(λ
/
θ)

N
μ
/
θ/

(N
μ
/
θ)!

∑
∞i=

0
(λ

/
θ)

N
μ
/
θ+

i/(N
μ
/
θ
+

i)!
=

lim
θ→

0 [∑
∞i=

0 (
λθ )

i·(
θ

N
μ
)

i/ ∏
ij=

1 (1
+

jθ
N

μ
) ]−

1
=

[∑
∞i=

0 (λ
/N

μ
)

i ]−
1
=

1−
ρ.

C
onclude:E

rlang-C
Form

ula

E
2
,N

= [
1

+
1−

ρ

ρ
E

1
,N

−
1 ]−

1

.

8



S
pecialC

ases,C
ontinued

E
rlang-B
Infinitely

im
patientcustom

ers
(θ

=
∞
)

(
N

-
1
)
μ

0
1

N
-
1

N

μ
2

μ
N

μ

B
u

s
y

 P
e
r
i
o

d
I
d

l
e
 P

e
r
i
o

d
 

P
(Q

t ≥
N

)
=

lim
θ→

∞ [
1

+
π

+
(0

)

ρ
E

1
,N

−
1 ]−

1

Lem
m
a:
Let

π
+
(0

)
=

(λ
/
θ)

N
μ
/
θ
e
x
p
(−

λ
/
θ)

N
μθ
γ
(

N
μθ
,

λθ )
.

Then

lim
θ→

∞
π

+
(0

)
=

1
.

C
onclude:E

rlang-B
Form

ula

E
1
,N

= [
1

+
1

ρ
E

1
,N

−
1 ]−

1.

9

S
pecialC

ases,C
ontinued

μ
=

θ
(M

/M
/∞

)

(
N

+
1
)
μB

u
s
y

 P
e
r
i
o

d
 

I
d

l
e
 P

e
r
i
o

d
 

(
N

-
1
)
μ

0
1

N
-
1

N

μ
2

μ
N

μ

N
+

1

(
N

+
2
)
μ

P
(W

a
it

>
0
)

=

[
1

+
P
(Y

=
N
|Y

≥
N

)

ρ
P
(Y

=
N

−
1|Y

≤
N

−
1
) ]−

1

,

≈
[
1

+
P
(Y

=
N
|Y

≥
N

)

P
(Y

=
N
|Y

≤
N

) ]−
1,

forlarge
N
and

ρ≈
1.

R
ecall:

Y
d=

P
o
is(R

=
λ
/
μ
).

10



M
/M
/N
/N

(Erlang-B
)w
ith

M
any

Servers:
N

↑∞
A
ssum

e:
μ
fixed,

w
hile

λ
N

↑∞
as

N
↑∞

.

R
ecall:

R
=

R
N

=
λ

N
/
μ,

ρ
=

ρ
N

=
R

N
/N
.

E
rlang-B

:
E

1
,N

=
P

r{
Y

R
=

N
}
/
P

r{
Y

R
≤

N
}
,

w
here

Y
R

d=
Poisson

(R
).

R
large

Y
R

d≈
R

+
Z √

R
,

w
here

Z
d=

N
(0

,1
),

suggesting
N

∼
R

+
β √

R
,−∞

<
β

<
∞
.

Then
E

1
,N

=
P

r{
N

−
1

<
Y

R
≤

N
}
/
P

r{
Y

R
≤

N
}

≈
P

r {
β
−

1
√

R
<

Z
≤

β }
/
P

r{
Z

≤
β}

≈
1

√
R

φ
(β

)/Φ
(β

)
≈

1
√

N

φ
(β

)
Φ

(β
)
=

=
1

√
N

φ
(−

β
)

1−
Φ

(−
β
)

=
1

√
N

h
(−

β
),

h
=
hazard

rate
of

N
(0

,1
).

A
lgebra:

μ
fixed,

N
↑∞

.

Q
ED
:

N
∼

R
+

β √
R
,
forsom

e
β,−∞

<
β

<
∞

⇔
λ

∼
μ
N

−
β
μ √

N

⇔
ρ

∼
1−

β
√

N
,
nam

ely
lim

N
→

∞ √
N

(1−
ρ

N
)
=

β.

Theorem
:(Jagerm

an,1974)
Q
E
D

⇔
lim

N
→

∞ √
N

E
1
,N

=
h
(−

β
).

11

M
/M
/N
(Erlang-C

)w
ith

M
any

Servers:
N

↑∞

N
μ

B
u

s
y

 P
e
r
i
o

d
 

I
d

l
e
 P

e
r
i
o

d
 

(
N

-
1
)
μ

0
1

N
-
1

N

μ
2

μ
N

μ

N
+

1

N
μ

Q
(0

)
=

N
:

allservers
busy,no

queue.

R
ecall

E
2
,N

= [
1

+
T

N
−
1
,N

T
N

,N
−
1 ]−

1

= [
1

+
1−

ρ
N

ρ
N

E
1
,N

−
1 ]−

1

.

H
ere

T
N
−
1
,N

=
1

λ
N

E
1
,N

−
1 ∼

1

N
μ
×

h
(−

β
)/ √

N
∼

1
/
μ

h
(−

β
) √

N

w
hich

applies
as

√
N

(1−
ρ

N
)→

β
,−∞

<
β

<
∞
.

A
lso

T
N

,N
−
1
=

1

N
μ
(1−

ρ
N
)

∼
1
/
μ

β √
N

w
hich

applies
as
above,

butfor
0

<
β

<
∞
.

H
ence,

E
2
,N

∼ [
1

+
β

h
(−

β
) ]−

1,
assum

ing
β

>
0.

Q
ED
:

N
∼

R
+

β √
R

forsom
e

β,
0

<
β

<
∞

⇔
λ

∼
μ
N

−
β
μ √

N

⇔
ρ

∼
1−

β
√

N
,
nam

ely
lim

N
→

∞ √
N

(1−
ρ

N
)
=

β.

Theorem
(H
alfin-W

hitt,1981)Q
E
D

⇔
lim

N
→

∞
E

2
,N

= [1
+

β
h
(−

β
) ]−

1.

12



Q
ED

Theorem
(H
alfin-W

hitt,1981)

C
onsidera

sequence
of

M
/M

/N
m
odels,

N
=

1
,2

,3
,...

Then
the

follow
ing

3
points

ofview
are

equivalent:

•
C
ustom

er
lim

N
→

∞
P

N
(W

a
it

>
0
)
=

α
,

0
<

α
<

1
;

•
S
erver

lim
N
→

∞ √
N

(1−
ρ

N
)
=

β
,

0
<

β
<

∞
;

•
M
anager

N
≈

R
+

β √
R

,
R

=
λ×

E
(S

)
large;

H
ere

α
= [1

+
β

Φ
(β

)

φ
(β

) ]−
1,

w
here

φ
(·)/Φ

(·)
is
the

standard
norm

aldensity/distribution.

E
xtrem

es:

Everyone
w
aits:

α
=

1
⇔

β
=

0
Efficiency-driven

N
o
one

w
aits:

α
=

0
⇔

β
=

∞
Q
uality-D

riven

13

M
/M
/N
+M

(Erlang-A
)w
ith

M
any

Servers:
π
+

(0
)

A
ssum

e:
μ
,

θ
fixed,

w
hile

λ
N

↑∞
as

N
↑∞

.

R
ecall:

R
=

R
N

=
λ

N
/
μ,

ρ
=

ρ
N

=
R

N
/N
.

π
+
(0

)
=

P
r{

X
λ
=

N
μ
/
θ}

/
P

r{
X

λ ≥
N

μ
/
θ}

,

w
here

X
λ

d=
Poisson

(λ
/
θ).

N
large

X
λ

d≈
λ
/
θ
+

Z √
λ
/
θ,

w
here

Z
d=

N
(0

,1
),

suggesting
N

∼
R

+
β √

R
,−∞

<
β

<
∞
.

Then
π

+
(0

)
=

P
r{

N
μ
/
θ−

1
<

X
λ ≤

N
μ
/
θ}

/
P

r{
X

λ ≥
N

μ
/
θ}

≈
P

r {
δ−

1
√

λ
/
θ

<
Z

≤
δ }

/
P

r{
Z

≥
δ},

δ
=

β √
μ
/
θ

≈
1

√
λ
/
θ

φ
(δ)/( 1−

Φ
(δ))

≈
1

√
N √

θμ
φ
(δ)

1−
Φ

(δ)
=

=
1

√
N √

θμ
h
(δ)

,
h

=
hazard

rate
of

N
(0

,1
).

A
lgebra:

μ
,θ

fixed,
N

↑∞
.

P
roposition:

Q
E
D

⇔
lim

N
→

∞ √
N

π
+
(0

)
= √

θμ
h
(δ).

14



M
/M
/N
+M

(Erlang-A
)w
ith

M
any

Servers:Q
ED

N
μ

+

B
u

s
y

 P
e
r
i
o

d
 

I
d

l
e
 P

e
r
i
o

d
 

(
N

-
1
)
μ

0
1

N
-
1

N

μ
2

μ
N

μ

N
+

1

N
μ

+
2

Q
(0

)
=

N
:

allservers
busy,no

queue.

R
ecall

P
(W

a
it

>
0
)
= [

1
+

T
N
−
1
,N

T
N

,N
−
1 ]−

1

= [
1

+
π

+
(0

)

ρ
N

E
1
,N

−
1 ]−

1

.

H
ere

T
N
−
1
,N

=
1

λ
N

E
1
,N

−
1 ∼

1

N
μ
×

h
(−

β
)/ √

N
∼

1
√

N

1
/
μ

h
(−

β
)

A
lso

T
N

,N
−
1
=

1

N
μ
π

+
(0

)
∼

1
√

N

1
/
μ

h
(δ)/

δ
,

δ
=

β √
μ
/
θ

B
oth

apply
as

√
N

(1−
ρ

N
)→

β
,−∞

<
β

<
∞
.

H
ence,

P
(W

a
it

>
0
)∼ [

1
+

h
(δ)/

δ

h
(−

β
)/

β ]−
1,
G
arnett

Function.

Q
ED
:

N
∼

R
+

β √
R

forsom
e

β,
−∞

<
β

<
∞

⇔
λ

∼
μ
N

−
β
μ √

N

⇔
ρ

∼
1−

β
√

N
,
nam

ely
lim

N
→

∞ √
N

(1−
ρ

N
)
=

β.

Theorem
(G
arnett,M

.,R
eim

an
2002)

Q
E
D

⇔
lim

N
→

∞
P
(W

a
it

>
0
)
= [1

+
h
(δ)/

δ
h
(−

β
)/

β ]−
1.
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Q
ED

Theorem
(G
arnett,M

.,R
eim

an
’02;Zeltyn

’03)

C
onsidera

sequence
of

M
/M

/N
+

G
m
odels,

N
=

1
,2

,3
,...

Then
the

follow
ing

points
ofview

are
equivalent:

•
Q
ED

%
{
W

a
it

>
0}≈

α
,

0
<

α
<

1
;

•
C
ustom

er
%

{
A

ba
n
d
o
n}≈

γ
√

N
,

0
<

γ
;

•
S
erver

O
C

C
≈

1−
β

+
γ

√
N

,
−∞

<
β

<
∞

;

•
M
anager

N
≈

R
+

β √
R

,
R

=
λ×

E
(S

)
notsm

all;

Q
E
D
perform

ance
(A
S
A
,...)

is
easily

com
putable,allin

term
s
of

β

(the
square-rootstaffing

level)

C
overs

also
the

E
xtrem

es:

α
=

1
:

N
=

R
−

γ
R

Efficiency-driven

α
=

0
:

N
=

R
+

γ
R

Q
uality-D

riven
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