
Markovian N-Server Queues

(Birth & Death)
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Arrivals Poisson (λ) ;

Services exp(µ) (E(S) = 1/µ) ;

Servers N statistically identical , serving FCFS ;

Offered load R = λ× E(S) = λ/µ Erlangs;

ρ = R/N Erlangs per server.

Q(t) = number in system (served + queued) at time t.

W (k) = queueing time of k-th arrival.

Steady State: Q(∞), W (∞), when exists.

Non-idling ⇒ [Q(t)−N ]+ = queue-length, and

[Q)(t)−N ]− = number of idle servers.
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Examples: M/M/N, Blocking, Abandonment

M/M/∞: λk ≡ λ, µk = k · µ , k ≥ 1.

Steady state πk = e−RRk/k! Poisson (R)

M/M/N/N: λk ≡ 0, k ≥ N .

Steady state πk =
Rk

k!

/
N∑

n=0

Rn

n!
, 0 ≤ k ≤ N ;

Erlang-B P{Blocked} .
= E1,N = πN , by PASTA

M/M/N: λk ≡ λ, µk = (k ∧N) · µ , k ≥ 1.

Steady state ⇔ ρ =
λ

Nµ
< 1 , servers’ utilization.

Erlang-C P{Wait > 0} .
= E2,N =

∑

k≥N

πk

W (∞) | W (∞) > 0
d
= exp

(
mean =

1

Nµ(1− ρ)

)

M/M/N+M: λk ≡ λ, µk = (k ∧N) · µ + (n− k)+θ , k ≥ 0.

2



Restriction to a Set via Time-Change

X Markov , X(∞)
d
= π

τA(t) =
∫ t

0
1{X(u)∈A}du time in A

a

A
c

A

A

-1

t

t aA A A
c

XA(t) = X
(
τ−1
A (t)

)
X restricted to A: Markov

XA(∞)
d
= X(∞)|X(∞) ∈ A

Example : M/M/N/N
d
= M/M/∞ restricted to {0,1, . . . , N}.

E1,N = Pr{XR = N}/Pr{XR ≤ N},
XR

d
= Poisson (R)

3



M/M/N/N (Erlang-B): Restricted M/M/ ∞

0 1 N-1 N N+1

1 2 N-1 N N+1

µ 2µ (N-1)µ Nµ µN+1

M/M/∞:

Q(t) = number in system at time t ≥ 0, Q(∞)
d
= π

Then

Q− = Q restricted to {0,1, . . . , N} : M/M/N/N ; (λ, µ).

P (Q−(∞) = N) =
π(N)∑N
i=0 π(i)

= E1,N

Proof: Q− is a Markov Process:

Sojourn time in state i ∈ {0,1, . . . , N − 1} is exp(λ + iµ).

State N : Each visit lasts exp(r = λ + Nµ)

Number of visits is Geo(p = Nµ
λ+Nµ

).

Fact: Geometric(p) sum of i.i.d. exponentials (r)
d
= exp(p · r)

⇒ Sojourn time in state N
d
= exp(Nµ).

Conclude: Q−
d
= M/M/N/N .
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Up/Down Crossings

Busy Period Idle Period 

N+1(N-1)µ

0 1 N-1 N

µ 2µ Nµ

N+1

µ

Define: Idle Period

TN−1,N = E
[
1st hitting time of N |Q(0) = N − 1

]
.

Then TN−1,N =

∑N−1
i=0 πi

λN−1πN−1
=

1

λπ−(N − 1)
,

where π− is the distribution of the restricted Q−.

Similarly: Busy Period

TN,N−1 = E
[
1st hitting time of N − 1|Q(0) = N

]
.

Proof :

Number of Idle Excursions
d
= Geometric≥0(

λN−1

λN−1 + µN−1
)

TN−1,N =
1

π−(N − 1)µN−1︸ ︷︷ ︸
E(Idle Excursion)

× µN−1

λN−1︸ ︷︷ ︸
E(# of Excursions)
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M/M/N+M (Erlang-A)

Nµ+

Busy Period Idle Period 

(N-1)µ

0 1 N-1 N
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Nµ+2

Q(t) = number in system at time t ≥ 0

Q− = Q restricted to {0,1, . . . , N − 1} : M/M/N-1/N-1 ; λ, µ.

Q+ = Q restricted to {N, N + 1, . . .} : M/M/1+M ; λ, Nµ + θ, θ.

Evolution of Q: Alternates between M/M/1+M (Q+) and

M/M/N-1/N-1 (Q−).

P (Wait > 0)=
TN,N−1

TN,N−1 + TN−1,N
=

[
1 +

TN−1,N

TN,N−1

]−1

, by PASTA,

where

TN,N−1 =
1

µNπ+(0)
,

TN−1,N =
1

λN−1π−(N − 1)
=

1

λ E1,N−1
.
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M/M/N+M (Erlang-A): Continued

Hence,

P (Wait > 0) =

[
1 +

TN−1,N

TN,N−1

]−1

=

[
1 +

π+(0)

ρ E1,N−1

]−1

,

in which

E1,N−1 =
RN−1/(N − 1)!∑N−1

k=0 Rk/k!
,

π+(0) =
(λ/θ)Nµ/θ/(Nµ/θ)!∑∞

i=0 (λ/θ)Nµ/θ+i/(Nµ/θ + i)!
.

Recall: E1,N−1 = P (Y = N − 1|Y ≤ N − 1),

where Y
d
= Pois(R), R = λ/µ.

”Similarly”

π+(0)
d
= P (X = Nµ/θ|X ≥ Nµ/θ),

where X
d
= Pois(λ/θ)

Hence

P (Wait > 0) =

[
1 +

P (X = Nµ/θ|X ≥ Nµ/θ)

ρ P (Y = N − 1|Y ≤ N − 1)

]−1

,

Note: Only π+(0) changes by the model.
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Special Cases: Erlang-C, Erlang-B, µ = θ

Erlang-C

Infinitely patient customers (θ = 0)

Nµ

Busy Period Idle Period 

(N-1)µ

0 1 N-1 N

µ 2µ Nµ

N+1

Nµ

P (Wait > 0) = E2,N = lim
θ→0

[
1 +

P (X = Nµ/θ|X ≥ Nµ/θ)

ρ P (Y = N − 1|Y ≤ N − 1)

]−1

Lemma: Let X
d
= Pois(λ/θ). Then

limθ→0 P (X = Nµ/θ|X ≥ Nµ/θ) = 1− ρ.

Proof:

lim
θ→0

(λ/θ)Nµ/θ/(Nµ/θ)!∑∞
i=0 (λ/θ)Nµ/θ+i/(Nµ/θ + i)!

=

limθ→0

[∑∞
i=0(

λ
θ
)i · ( θ

Nµ
)i/

∏i
j=1(1 + jθ

Nµ
)
]−1

=

[∑∞
i=0(λ/Nµ)i

]−1
= 1− ρ.

Conclude: Erlang-C Formula

E2,N =

[
1 +

1− ρ

ρ E1,N−1

]−1

.
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Special Cases, Continued

Erlang-B

Infinitely impatient customers (θ = ∞)

(N-1)µ

0 1 N-1 N

µ 2µ Nµ

Busy PeriodIdle Period 

P (Qt ≥ N) = lim
θ→∞

[
1 +

π+(0)

ρ E1,N−1

]−1

Lemma: Let

π+(0) =
(λ/θ)Nµ/θ exp(−λ/θ)

Nµ
θ

γ(Nµ
θ

, λ
θ
)

.

Then

limθ→∞ π+(0) = 1.

Conclude: Erlang-B Formula

E1,N =

[
1 +

1

ρ E1,N−1

]−1

.
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Special Cases, Continued

µ = θ (M/M/∞)

(N+1)µ

Busy Period Idle Period 

(N-1)µ

0 1 N-1 N

µ 2µ Nµ

N+1

(N+2)µ

P (Wait > 0) =

[
1 +

P (Y = N |Y ≥ N)

ρ P (Y = N − 1|Y ≤ N − 1)

]−1

,

≈
[
1 +

P (Y = N |Y ≥ N)

P (Y = N |Y ≤ N)

]−1

,

for large N and ρ ≈ 1.

Recall: Y
d
= Pois(R = λ/µ).
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M/M/N/N (Erlang-B) with Many Servers: N ↑ ∞

Assume: µ fixed, while λN ↑ ∞ as N ↑ ∞.

Recall: R = RN = λN/µ, ρ = ρN = RN/N .

Erlang-B: E1,N = Pr{YR = N}/Pr{YR ≤ N},
where YR

d
= Poisson (R).

R large YR
d≈ R + Z

√
R, where Z

d
= N(0,1),

suggesting N ∼ R + β
√

R, −∞ < β < ∞.

Then E1,N = Pr{N − 1 < YR ≤ N}/Pr{YR ≤ N}

≈ Pr
{

β − 1√
R

< Z ≤ β
}

/Pr{Z ≤ β}

≈ 1√
R

φ(β)/Φ(β) ≈ 1√
N

φ(β)
Φ(β)

=

= 1√
N

φ(−β)
1−Φ(−β)

= 1√
N

h(−β), h = hazard rate

of N(0,1).

Algebra: µ fixed, N ↑ ∞.

QED: N ∼ R + β
√

R, for some β, −∞ < β < ∞
⇔ λ ∼ µN − βµ

√
N

⇔ ρ ∼ 1− β√
N

, namely lim
N→∞

√
N (1− ρN) = β.

Theorem: (Jagerman, 1974) QED ⇔ lim
N→∞

√
N E1,N = h(−β).
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M/M/N (Erlang-C) with Many Servers: N ↑ ∞

Nµ

Busy Period Idle Period 

(N-1)µ

0 1 N-1 N

µ 2µ Nµ

N+1

Nµ

Q(0) = N : all servers busy, no queue.

Recall E2,N =

[
1 +

TN−1,N

TN,N−1

]−1

=

[
1 +

1− ρN

ρNE1,N−1

]−1

.

Here TN−1,N =
1

λNE1,N−1
∼ 1

Nµ× h(−β)/
√

N
∼ 1/µ

h(−β)
√

N

which applies as
√

N (1− ρN) → β, −∞ < β < ∞.

Also TN,N−1 =
1

Nµ(1− ρN)
∼ 1/µ

β
√

N

which applies as above, but for 0 < β < ∞.

Hence, E2,N ∼
[
1 +

β

h(−β)

]−1

, assuming β > 0.

QED: N ∼ R + β
√

R for some β, 0 < β < ∞
⇔ λ ∼ µN − βµ

√
N

⇔ ρ ∼ 1− β√
N

, namely lim
N→∞

√
N (1− ρN) = β.

Theorem (Halfin-Whitt, 1981) QED ⇔ lim
N→∞

E2,N =
[
1 + β

h(−β)

]−1
.
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QED Theorem (Halfin-Whitt, 1981)

Consider a sequence of M/M/N models, N = 1,2,3, . . .

Then the following 3 points of view are equivalent:

• Customer lim
N→∞

PN(Wait > 0) = α, 0 < α < 1;

• Server lim
N→∞

√
N(1− ρN) = β, 0 < β < ∞;

• Manager N ≈ R + β
√

R, R = λ× E(S) large;

Here

α =
[
1 +

β Φ(β)

φ(β)

]−1
,

where φ(·)/Φ(·) is the standard normal density/distribution.

Extremes:

Everyone waits: α = 1 ⇔ β = 0 Efficiency-driven

No one waits: α = 0 ⇔ β = ∞ Quality-Driven

13



M/M/N+M (Erlang-A) with Many Servers: π+(0)

Assume: µ, θ fixed, while λN ↑ ∞ as N ↑ ∞.

Recall: R = RN = λN/µ, ρ = ρN = RN/N .

π+(0) = Pr{Xλ = Nµ/θ}/Pr{Xλ ≥ Nµ/θ},
where Xλ

d
= Poisson (λ/θ).

N large Xλ
d≈ λ/θ + Z

√
λ/θ, where Z

d
= N(0,1),

suggesting N ∼ R + β
√

R, −∞ < β < ∞.

Then π+(0) = Pr{Nµ/θ − 1 < Xλ ≤ Nµ/θ}/Pr{Xλ ≥ Nµ/θ}

≈ Pr

{
δ − 1√

λ/θ
< Z ≤ δ

}
/Pr{Z ≥ δ}, δ = β

√
µ/θ

≈ 1√
λ/θ

φ(δ)/(1−Φ(δ)) ≈ 1√
N

√
θ
µ

φ(δ)
1−Φ(δ)

=

= 1√
N

√
θ
µ

h(δ) , h = hazard rate of N(0,1).

Algebra: µ, θ fixed, N ↑ ∞.

Proposition: QED ⇔ lim
N→∞

√
N π+(0) =

√
θ
µ
h(δ).
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M/M/N+M (Erlang-A) with Many Servers: QED

Nµ+

Busy Period Idle Period 
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Q(0) = N : all servers busy, no queue.

Recall P (Wait > 0) =

[
1 +

TN−1,N

TN,N−1

]−1

=

[
1 +

π+(0)

ρNE1,N−1

]−1

.

Here TN−1,N =
1

λNE1,N−1
∼ 1

Nµ× h(−β)/
√

N
∼ 1√

N

1/µ

h(−β)

Also TN,N−1 =
1

Nµπ+(0)
∼ 1√

N

1/µ

h(δ)/ δ
, δ = β

√
µ/θ

Both apply as
√

N (1− ρN) → β, −∞ < β < ∞.

Hence, P (Wait > 0) ∼
[
1 +

h(δ)/δ

h(−β)/β

]−1

, Garnett Function.

QED: N ∼ R + β
√

R for some β, −∞ < β < ∞
⇔ λ ∼ µN − βµ

√
N

⇔ ρ ∼ 1− β√
N

, namely lim
N→∞

√
N (1− ρN) = β.

Theorem (Garnett, M., Reiman 2002)

QED ⇔ lim
N→∞

P (Wait > 0) =
[
1 + h(δ)/δ

h(−β)/β

]−1
.
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QED Theorem (Garnett, M., Reiman ’02; Zeltyn ’03)

Consider a sequence of M/M/N + G models, N = 1,2,3, . . .

Then the following points of view are equivalent:

• QED %{Wait > 0} ≈ α, 0 < α < 1;

• Customer %{Abandon} ≈ γ√
N

, 0 < γ;

• Server OCC ≈ 1− β + γ√
N

, −∞ < β < ∞;

• Manager N ≈ R + β
√

R, R = λ× E(S) not small;

QED performance (ASA,. . . ) is easily computable, all in terms of β

(the square-root staffing level)

Covers also the Extremes:

α = 1 : N = R− γR Efficiency-driven

α = 0 : N = R + γR Quality-Driven
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