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Abstract

We consider a controlled queueing system of the G/M/n/B +GI type, with many
servers and impatient customers. The queue-capacity B is the control process. Cus-
tomers who arrive to a full queue are blocked and customers who wait too long in
the queue abandon. We study the tradeoff between blocking and abandonment, with
cost accumulated over a random, finite time-horizon, which yields a queueing control
problem (QCP).

In the many-server Quality and Efficiency-Driven (QED) regime, we formulate and
solve a diffusion control problem (DCP) that is associated with our QCP. The DCP so-
lution is then used to construct asymptotically optimal controls (of the threshold type)
for QCP. A natural motivation for our QCP is telephone call centers, hence the QED
regime is natural as well. QCP then captures the tradeoff between busy signals and
customer abandonment, and our solution specifies an asymptotically optimal number
of trunk-lines.
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1 Introduction

We consider a queueing system with a single customer class and a fixed number of inde-
pendent but statistically identical servers. The customers leave the system after com-
pleting their service. They are served according to a “First-Come-First-Serve”(FCFS)
discipline. When all the servers are busy catering to customers, incoming new cus-
tomers form a queue. The queue capacity is a system manager’s choice, with infinite
capacity also allowed. The system manager can choose the queue capacity to be a
non-negative integer-valued, time-dependent random variable, which may depend on
past history as well as current state of the system. Incoming customers are blocked
(rejected) if arriving when the queue is full at capacity. Once in queue, they aban-
don if their patience expires, which happens after random times, iid across customers.
(The system manager must remove waiting customers from the queue, at times when
queue capacity is reduced below current queue-length. In such a situation, there is an
associated cost, which is proportional to the number of removed customers.)

In our Queueing Control Problem (QCP), the only control available to the system
manager is the queue-capacity. This capacity can depend on past history subject
to some constraints. It is also possible to view our QCP as an admission control
problem of a queueing system, where the manager rejects the incoming customers
when the current capacity of the system is full. The objective is to minimize a cost
functional which is trading off blocking against abandonments: the larger the queue-
capacity the less blocked customers which, in turn, leads to longer queues, hence more
waiting and thus more abandonment. In fact, we also allow revenues from completed
services, which provides an incentive against losing customers (via either blocking or
abandonment). Mathematically, however, profit maximization turns out equivalent to
cost minimization.

1.1 Motivation: Call Centers in the QED Regime

The motivation for our study is telephone call centers: being blocked amounts to
encountering a busy-signal, waiting in queue entails seizing a trunk-line (typically “lis-
tening to music”), and abandoning is hanging-up (prior to being served). In practice,
due to diminishing technological costs but also the lack of a rationalized tradeoff, call
centers opt for the option of infinite-trunking: essentially no busy-signals - namely all
customers join the queue. Our goal here is to identify the circumstances under which
such practice is optimal - it is not always so - and to quantify its losses when optimality
fails.

Operationally, call centers can be viewed as queueing systems [9]. Due to their
increasing significance in Western Economies, call centers have given rise to ample
research which has demonstrated that asymptotic queueing theory, as the number of
servers increases, is well suited for their analysis. Typically, call centers sign a long-
term lease of trunk lines with a telecommunications provider. They may not have
the freedom to change the capacity of their trunk lines too often. However, a call
center can always refuse incoming calls when there are too many customers queueing
up for service. In concert with this state of affairs, we analyze the above QCP in a
heavy-traffic many-server regime. Formally, we shall consider a sequence of queueing
models in the “Quality and Efficiency-Driven” (QED) many-server heavy-traffic regime,
which is characterized by condition (2.1) below; here, the number of servers n and the
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arrival rate λn jointly increase indefinitely so that a “square-root staffing-rule” prevails:
n ≈ Rn + β

√
Rn, where Rn = λn/µ is the system’s offered-load; for related research,

we refer to [13, 5, 10].
The QED regime (2.1) was first formalized by Halfin and Whitt [13], who estab-

lished both steady-state and process (diffusion) limits for the GI/M/n model. In [10],
abandonments were added and [32] addressed the heavy traffic approximation for the
G/GI/n model. Massey and Wallace [27] allowed finite queueing-capacity and [19, 18]
and [29] analyzed the M/M/n/B+M queue with both blocking and abandonment. Re-
cently [6] established, for the G/G/n+GI queue, an asymptotic relationship between
the number of abandoning customers and the integral of queue length in diffusion-scale
- we use their results here. For the G/GI/n+GI queue, diffusion approximations for
both queue length and virtual waiting times were developed in [26]. Our setup for
the abandonment mechanism is adapted from [6] and [26]. Additional related work
appears in [1], [2], [5], [31] and [37]. Our mathematical framework follows [1], [2] and
[29], the latter being a very useful survey with an extensive reference list.

1.2 Related work and our contribution

In a recent article [20], Kocaga and Ward also consider an admission control problem
for the GI/M/n/B+M queue, with the blocking and customer abandonment features.
They minimize a long-run expected average cost functional, via an admission-control
policy that chooses queue capacity that depends on the total number of customers
currently in the system. When the arrivals are Poisson and the number of servers is
finite, they formulate the problem as a Markov Decision Problem(MDP), for which
an algorithm is developed to compute a threshold-type optimal policy. They derive
an approximating Diffusion Control Problem (DCP) within the Halfin-Whitt (QED)
regime, and obtain a static threshold-type optimal control policy for the DCP. Ex-
tensive numerical experiments show that the optimal threshold for the DCP and its
value function are excellent approximations for those of the MDP’s, even when the
number of servers is small, at the level of 10-20. (This accuracy has been repeatedly
confirmed, since first identified in [5]; recently, it has found mathematical grounding in
[34, 35].) In general, computations related to QCPs are numerically taxing; hence, the
application of diffusion approximations via DCPs provides a useful elegant method for
understanding optimal solutions of QCPs and their qualitative behavior.

In our model, queue capacity may depend on the current state as well as the past
history of the system. Following the formulation of the problem in [20], ours can
also be interpreted as an admission control problem, but the long-run average cost
minimization problems, such as in [20], address only steady-state performance, while
the problem addressed here depends on transient behavior of the system as well. Hence
the optimal value in [20] does not depend on the initial state and is also insensitive to
costs incurred over a short time horizon. In call center operations, faced with a time-
varying arrival rate, it is common practice to divide the day into short time periods and
use a model with a constant arrival rate in each of these short time periods. Therefore,
it is important to introduce a cost functional on each of these short time periods which is
sensitive to transient behavior and dependent on initial data. In fact, steady state costs,
such as those in [20] seem less relevant here. Motivated by this application, we model
such a time period by a random interval [0, τ ] where τ is exponentially distributed with
a parameter γ and is independent of system dynamics. We introduce a cost functional
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over this random time interval [0, τ ] which is equivalent to an infinite-time horizon
discounted cost functional (2.60) (see Sections 2.5 and 2.6). This cost structure is
indeed sensitive to transient behavior, as manifested by our value function being a
function of the initial state. Mathematical analysis of the corresponding second-order
HJB equation in (3.7), associated with our value function, is more challenging than
that of the long-run average cost problems. (The HJB equation for the latter problems
can be reduced to a first-order equation.) The asymptotically optimal lower bound for
the cost functional of the QCPs is the value function of the DCP, as established in
Theorems 4.1 and 4.2. Indeed, this value function depends on the initial data, as seen
in (3.26) and (3.27).

Further contributions are as follows: In our queueing model, we incorporate history
dependent queue-capacity choices. A QCP is formulated with path-dependent queue-
capacity choices to minimize an infinite-horizon discounted cost functional. Next, we
derive an approximating DCP, which is equipped with the same cost functional, within
the Halfin-Whitt (QED) regime. Admissible processes of this DCP are quite general,
and the corresponding stochastic differential equation (SDE) exhibits a non-linear drift
coefficient. We also allow path-dependent reflection barriers in this SDE. In Theorem
3.7, we obtain an explicit “threshold-type” Markovian optimal strategy for the DCP.
Then, in Theorem 4.1, we show that the value function of the DCP is an asymptotic
lower bound for the value functions of the scaled QCP’s, with general path-dependent
queue-capacity policies. These general policies may include non-threshold type path-
dependent queue-capacity policies as well. Finally, using the optimal threshold of
the DCP, we construct a sequence of constant (static) queue-capacity policies for the
scaled QCP’s and then establish their asymptotic optimality in Theorem 4.2. Since
our proposed asymptotic optimal policies are with constant queue-capacities, we need
only weak convergence results for diffusion scaled queue-lengths with constant queue-
capacities. This result was obtained in Theorem 2.2 and, in the case of Markovian
abandonment with finite queue-capacity, it is available in [29]. We also strengthen
Theorem 2.2 by establishing convergence of the cost functionals.

1.3 Survey of Results

The paper is organized as follows: We introduce our queueing model, related weak
convergence results and the cost structure in Section 2. We allow a general arrival
process (no Markovian assumptions), subject to the assumptions (2.1), (2.3) and (2.4).

Our model is of the G/M/n/B+GI type. There are n exponential servers; the queue
capacity is finite or infinite, which is time-dependent, random and at the discretion of
a system controller. (If the controller starts with infinite capacity, then it will be
kept infinite throughout.) The abandonment process is general, namely (im)patience
is assumed to be random with a distribution function F , and customers abandon only
while queueing. Motivated by profit maximization in large call centers, which involve
various cost factors in their maintenance, we seek to optimize the cost functional (2.60).

Let the number of servers n tend to infinity, with the arrival-rate and queue-capacity
scaled as in (2.1) and (2.42) respectively. Weak convergence of the relevant processes
under Markovian abandonment was already established for the systems with a constant
queue-capacity (see [29] and references therein). In particular, the total-population
process converges to a diffusion process with an upper reflection barrier when the
normalized queue-capacity converges to this barrier. Moreover, the process of blocked
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customers in the nth system converges weakly to the local-time process of the diffusion
at its reflection barrier. Here we use the recent work of [6] and generalize the weak
convergence results to allow general patience-time distributions. We also provide a
proof that the expected cost for the nth system, when properly scaled as in (2.60),
converges to that of the limiting diffusion process.

In Section 3, we formulate the Diffusion Control Problem (DCP) arising from our
Queueing Control Problem (QCP). This turns out to be a singular control problem.
For queueing systems in conventional heavy traffic, where the arrival and service rates
both converge to the same finite value, an admission control problem that is similar to
ours is analyzed in [36]; stochastic control problems associated with admission control
and the control of service rates were addressed recently in [11] and [12]. In contrast,
our DCP has a non-linear drift coefficient and state space on (−∞,∞) while in those
articles, the state space was [0,∞) since the diffusion-scaled queue-length converges to
a non-negative diffusion process under conventional heavy-traffic regime. Non-linearity
of the drift here leads to technical difficulties in verifying the optimality of our candidate
policy.

We are able to derive a complete solution to the DCP associated with our QCP.
We solve it in Theorem 3.7, which is the first of our two main results. Specifically, we
show that when the lost profit per rejected customer is greater than or equal to the
threshold value in (3.23), the optimal control is the null process, namely there is no
blocking of customers; the corresponding state-process for the DCP is then a diffusion
on the entire real line. If, on the other hand, the lost profit per rejected customer is
less than this threshold, the optimal state-process is a reflected diffusion with an upper
reflection barrier, and the optimal control is its local-time process at this barrier. The
reflection barrier serves as the optimal scaled queue capacity for DCP. Our results also
show that the value function of DCP is a smooth convex solution of the associated
Hamilton-Jacobi-Bellman equation.

In Section 4, we obtain convergence of the expected value of the cost functional of
the nth system to that of the limiting diffusion. Our methods are influenced by those in
[2]. In particular, the moment condition (2.4) guarantees that our results remain valid
for general arrival processes. (For diffusion approximations of general arrival processes,
we refer to [21] and [37].) Our DCP solution then yields an asymptotically optimal
policy for the original queueing system, or QCP. This is proved in Theorems 4.1 and
4.2, which is our second set of main results. More specifically, and in complete analogy
to DCP, we show that when the lost profit per rejected customer is greater than or
equal to the threshold (3.23), having no blocked customers (no busy signals in a call
center) is an asymptotically optimal policy. Conversely, if the lost profit per rejected
customer is less than this threshold, the asymptotically optimal queue-capacity for the
nth system is a finite constant, as given in (4.5).
Remark: In our model, we have not imposed any costs that arise from changing queue-
capacity, which is relevant for policies in which the latter is time-dependent. When
customers are rejected by such queue-capacity changes, it leads to additional revenue
losses (such as giving away coupons or future concessions) since they were kicked out
while waiting patiently in the queue. This, in turn, will add additional costs to the cost
funtional. But our optimal strategy for DCP, as well as the asymptotically optimal
strategies for QCPs, are associated with constant queue-capacities and, therefore, such
scenarios are avoided. Consequently, our policies still remain (asymptotically) optimal
if there were additional costs incurred each time the system controller changes the
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queue-capacity.

1.4 Busy Signal or Abandonment?

Our results yield insights on the tradeoff between busy-signal and abandonment in call
centers. Indeed, the threshold p0 in (3.23) can be interpreted as the discounted cost of
abandonment: it consists of the cost of waiting until abandonment plus the cost for the
abandonment itself. As expected, when busy-signal costs exceed abandonment costs,
it is optimal to have ample trunk-lines that render the busy-signal phenomenon negli-
gible. But introducing a busy signal could also be beneficial (blocking costs dominated
by abandonment costs). In this case, the queue-capacity is to be dimensioned propor-
tionally to the square-root of the number of servers n. Thus, the number of trunk-lines
to be deployed is n + zp

√
n; here zp is the optimal reflection boundary obtained for

DCP in Section 3, which is characterized by (3.34) (Numerical computations of zp are
given in Section 3.4). With this dimensioning, our asymptotically optimal queueing
systems operate in the QED regime, as analyzed in [18, 27, 19, 29] for the case of
Poisson arrivals. Hence, the approximations in these references, covering operational
performance measures (extensively in [19]), can be readily employed. In particular,
the fraction of customers that encounter a busy-signal, and the fraction of those who
abandon, are both of order 1/

√
n.

To gain insight into the existence of such a threshold p0, consider an M/M/n+M
queue with an infinite buffer. The waiting time for a customer who, upon arrival, faces
an “extremely long” queue is the minimum of two independent exponential random
variables, with parameters θ (for abandonment) and γ (for observation period) respec-
tively. The cost of waiting per unit time is a and the mean waiting time is 1

(θ+γ) . Hence

p0 = a
(θ+γ) represents the expected cost for this customer. If the rejection cost p > p0,

it is reasonable to let this customer wait in the queue regardless of the queue-length
at the customer’s arrival. On the other hand, if p < p0, it is reasonable to reject the
customer by maintaining a finite queue-capacity.

In summary, our solution yields a simple, asymptotically optimal design rule for
the queueing model, which is quite easy to implement in a call center setting. The
threshold p0 (and the corresponding queue-capacity

√
nzp when p < p0) can be easily

calculated from system parameters.

Notation.
We denote the function space of real-valued right-continuous functions with left lim-
its, defined on [0,∞), by D[0,∞) ≡ D([0,∞),R). Similarly, the function space of
real-valued right-continuous functions with left limits, defined on [0, T ] is denoted by
D[0, T ]. The function space of Rk valued, right-continuous functions with left limits,
defined on [0,∞) is denoted by Dk[0, T ], where k ≥ 1. These function spaces are
endowed with the standard Skorokhod J1 topology. The identity function is denoted
by e, where e(t) ≡ t for all t. The uniform norm on an interval [0, T ] for a function f
in D[0, T ] is defined by

||f ||T = sup
0≤t≤T

|f(t)|,

for any T > 0. Similarly, for a process X with paths in D[0, T ], the norm ||X||T is
defined by ||X||T = sup

0≤t≤T
|X(t)|. Throughout, we use ⇒ to denote weak convergence
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of processes. We also follow the convention that the infimum of an empty set is infinity.
For any real number x, x+ represents max{0, x} and x− is max{0,−x}. For any two
real numbers a and b, a ∧ b stands for min{a, b}.

2 The Queueing Control Problem (QCP)

2.1 The Stochastic Model

All our stochastic processes are defined on a complete probability space (Ω,F, P ). We
have a sequence of queueing systems indexed by n = 1, 2, · · ·, where the parameter n
represents the number of servers in the nth system. All these systems operate under the
First Come First Served (FCFS) discipline. Their service times are iid, exponentially
distributed with mean 1

µ and independent of the arrival process. Incoming customers
are impatient and they leave the system if they wait too long in the queue. This
abandonment mechanism works as follows: with each customer, there is an associated
clock. This clock rings after a random time, which has the distribution function G. If
the clock rings while the customer is waiting in the queue then the customer abandons
the system. Otherwise, the clock is ignored and the customer gets served. These clocks
are all iid and independent of the arrival and service processes, as well as the history
of the system up to that time. Such a description of abandonment is reasonable with
invisible queues, for example, those in telephone call centers.

Services and impatience do not vary with the number of servers n, but the arrival
process does. To denote the dependence on n, for the nth system, n will appear as a
subscript in all associated parameters and processes. Specifically, let (λn) be a sequence
of positive real numbers which satisfies

lim
n→∞

λn − µn√
n

= −µβ, (2.1)

where β is a constant. For the nth queueing system, we allow a general arrival process
An with sample paths in the function space D[0,∞), with An(0) = 0, and which
satisfies assumptions (2.3) and (2.4) below. To this end, introduce the normalized
arrival process Ân by

Ân(t) =
An(t)− λnt√

n
, t ≥ 0. (2.2)

We make two assumptions on this normalized arrival process. First, we assume that

Ân ⇒ σ1W1 , (2.3)

as n tends to infinity, where σ1 is a positive constant and W1 is a standard Brownian
motion. Second, we also assume the following moment condition:

E[sup
[0,T ]
|Ân(t)|2] ≤ K(1 + Tm) , (2.4)

for two positive constants K and m. Both of these constants are assumed independent
of T and n.

It is easy to construct a renewal-type arrival process An that satisfies both assump-
tions (2.3) and (2.4) above. For example, let (vi) be a sequence of iid positive random
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variables with E[vi] = 1 and Var(vi) = c2 > 0. Let (λn) be a sequence of positive real
numbers that satisfies (2.1). Introduce the process An by

An(t) = sup{m ≥ 0 :

m∑
j=1

vj ≤ λnt} ,

for t ≥ 0. Here
∑0

j=1 vj is considered zero. Then Ân, defined according to (2.2),

satisfies (2.3) with σ21 = c2µ, and it also satisfies (2.4). For details, we refer to Lemma
2 of [2] and [21].

Next we introduce two processes Φn and Ψn, capturing the state of the queueing
systems. Let Φn(t) be the number of customers waiting in queue at time t, and let
Ψn(t) be the number of customers being served at time t. Then, both quantities Φn(t)
and Ψn(t) are non-negative; since n represents the number of servers in the nth system,
it follows that

0 ≤ Ψn(t) ≤ n , (2.5)

for all t ≥ 0. It is also convenient to assume that the initial values Φn(0) and Ψn(0)
are deterministic. Let Qn(t) be the total number of customers in the nth system at
time t. Then clearly

Qn(t) = Φn(t) + Ψn(t) , (2.6)

for all t ≥ 0. Here Qn(0) represents the number of customers in the nth system at time
zero; we assume that their patience is infinite and they will not abandon the system.
Such an assumption is not restrictive, as explained by Lemma 1, in Section 2 of [26].
We also postulate that, in the presence of queueing customers, all the servers must be
busy (“work-conservation”). Hence the identities

Φn(t) = (Qn(t)− n)+ and Ψn(t) = n− (Qn(t)− n)− = Qn(t) ∧ n

must hold, for all t ≥ 0. Recall that the service times of customers were taken to
be exponentially distributed with mean 1

µ , where µ is a given constant. To represent

the service completions during the interval [0, t] for the nth system, we begin with
a unit-intensity Poisson process {Sn(t) : t ≥ 0}. We assume that the process Sn is
independent of the arrival process An. Then the number of service completions by all
the servers during [0, t] is represented by Sn(µ

∫ t
0 Ψn(s)ds).

As indicated, customers abandon the queue according to the patience-time distri-
bution G. To represent abandoning customers in our model, we let Gn(t) denote the
number of customers who have abandoned the system during [0, t]. Since the initial
customers have infinite patience, they will not make any contribution to the process
Gn. For the ith arrival, let tni represent the arrival time, vni represent the service time
and dni represent the patience-time of the customer. We assume that the sequences
(tni ), (vni ) and (dni ) are independent of each other, (vni ) is iid with exp(µ) and the
sequence (dni ) also iid with the probability distribution function G. Each abandoning
customer reduces profit margins, as explained later in this section. We assume that
the distribution function G satisfies G(0) = 0, and it is right-differentiable at zero with
a positive right derivative

θ = lim
x→0+

G(x)

x
<∞. (2.7)
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Similar assumptions were made in the recent works of [6] and [26], which analyze many-
server queueing systems with general patience-time distributions.

We allow the system manager to choose a queue-capacity for the nth system. When
the queue is full, incoming customers will be rejected. Each rejected customer incurs
a loss in profits. For the nth system, a non-negative integer-valued stochastic process
mn(·) represents the process of controlled queue capacity. One is also allowed to assign
the value mn(t) = ∞, for all t ≥ 0, which corresponds to infinite queue-capacity; in
this case, no customers are ever rejected. This queue-capacity process mn is the only
control at the disposal of the manager of the nth system. The choice of a large queue-
capacity reduces blocking of customers and increases profit margins. But, at the same
time, such a large capacity is likely to give rise to long queues, which will increase the
number of abandonments from the system, leading to a loss of income. This tradeoff,
between blocking and abandonment, naturally gives rise to a cost minimization, or a
profit maximization problem, which is the underlying theme of our paper.

We impose the following constraints on the controlled queue-capacity process mn.
It has piecewise constant paths that are right-continuous with left limits (RCLL). At
any time t, the random variable mn(t) can be infinite or it may take non-negative
integer values. Furthermore, the control mn(t) is allowed to depend on the current
state, as well as the whole history of the system up to time t. Therefore, we assume
that the process mn is adapted to the information filtration (Fn,t)t≥0, given below in
(2.13). In addition, the process mn adheres to the following conditions:

(i) For each n, mn(0) is a non-negative, non-random quantity, which
can be finite or +∞.

(2.8)

(ii) If mn(0) = +∞, then mn(t) ≡ +∞ for all t ≥ 0. (2.9)

(iii) If mn(0) < ∞, then mn(t) < ∞, for all t ≥ 0, and it satisfies
the following growth condition: there exists δ0 > 0 such that, for all
0 < δ < δ0,

E[ sup
|t−s|<δ

|mn(t)−mn(s)|] ≤
√
n p(T )[ρ(δ) + f(n)] ,

where the supremum is taken over all s, t ∈ [0, T ] such that |t−s| < δ.
Here p(·) is a positive polynomial function; ρ is a positive, bounded
continuous function defined on [0,∞), which satisfies lim

r→0
ρ(r) = 0;

the function f is non-negative and satisfies lim
n→∞

f(n) = 0.

(2.10)

The above conditions will be mainly used in Section 4 to obtain a convergent subse-
quence of the normalized queue-capacity process mn√

n
in the function space D[0,∞).

Loosely speaking, the above conditions impose a change of queue-capacity that at any
time t will be at most of order

√
n. Consequently, we do not allow infinite changes of

queue-capacity. In the case where the controlled queue-capacity mn is restricted to be
a deterministic time-dependent function, all our results prevail with (2.10) replaced by
the following weaker assumption:

|mn(t)−mn(s)| ≤
√
n p(T )[ρ(|t− s|) + f(n)] .

Note that assumptions on the control allow constant mn policies. At a jump point
of mn, say t = t0, if Φn(t0−) > mn(t0) then a number of customers that equals
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[Φn(t0−)−mn(t0)] are to be removed from the queue; this is in order to reach the queue-
length of Φn(t0) = mn(t0). Such a removal incurs a blocking cost that is proportional
to [Φn(t0−)−mn(t0)]

+. (Our cost structure is formalized later.)
Using the above description, we obtain the following equation for the total customer

population Qn in the system (see Theorem 2.6 of [4], also the discussion in Section 7.3
and equation (114) of [29]):

Qn(t) = Qn(0) +An(t)− Sn(µ

∫ t

0
Ψn(s)ds)−Gn(t)− Un(t) , (2.11)

where

Un(t) =

∫ t

0
I[Qn(s)=n+mn(s)](s)dAn(s) +

∑
0≤s≤t

[Qn(s−)− (n+mn(s))]+. (2.12)

Gn(t) is the number of customers that abandon the queue during [0, t] and Un(t)
represents the cumulative number of customers blocked or removed by the system
manager during [0, t]. When the queue is full, new arrivals are blocked and the total
number of such blocked customers during [0, t] is represented by the integral term of
(2.12). Furthermore, at a jump point s of the queue-capacity process, the manager
changes the queue-capacity from mn(s−) to mn(s); if n + mn(s) < Qn(s−) < n +
mn(s−) holds, then a number of customers that equals the quantity [Qn(s−) − (n +
mn(s))]+ will be removed from the queue. The last term of (2.12) represents the
number of such removed customers during [0, t]. Hence, if the queue-capacity is a
constant, then the last term of (2.12) vanishes.

The Skorokhod mapping on the interval [0, n + mn(·)] (see the next subsection,
as well as Theorem 2.6 of [4]), guarantees that Un is the unique non-decreasing non-
negative process that enforces the constraint Qn(t) ≤ n+mn(t), at all t ≥ 0 (see also
[29]).

For each n fixed, let us introduce the filtration Fn = {Fn,t : t ≥ 0} by

Fn,t = σ(An(s), Sn(µ

∫ s

0
Ψn(r)dr), Gn(s),Φn(s),Ψn(s) : 0 ≤ s ≤ t) , (2.13)

completed by all the null sets. This σ−algebra represents all the information available
to the system manager at time t. Furthermore, the reflection mapping defined on
[0, n+mn] guarantees that the processes Qn and Un are adapted to the filtration Fn;
for details, see Theorem 7.4 of [29].

2.2 Basic Estimates.

Consider the fluid-scaled arrival process Ān defined by

Ān(t) =
An(t)

n
, (2.14)

for all t ≥ 0. By (2.1), it is evident that lim
n→∞

λn
n = µ > 0. Hence, for any T > 0, by

(2.1) we have

lim
n→∞

||Ān − µe||T = 0 in probability, (2.15)
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where e(t) ≡ t is the identity function. Moreover, by (2.4), we can also obtain

lim
n→∞

E[||Ān − µe||2T ] = 0. (2.16)

Introduce the normalized state process Xn, normalized abandonment process Gn and
the associated non-decreasing process Vn by

Xn(t) =
Qn(t)− n√

n
, (2.17)

Ĝn(t) =
Gn(t)√

n
, (2.18)

and

Vn(t) =
Un(t)√
n

, (2.19)

for all t ≥ 0; here (Qn, Un) satisfies (2.11) and (2.12), with a queue-capacity process
mn. Then, following the derivation of Theorem 7.6 of [29], one can write the normalized
state process Xn in terms of a martingale representation with respect to the filtration
(Fn,t) in (2.13), as described below. (Throughout the following discussion, we assume
that Xn(0) is deterministic, lim

n→∞
Xn(0) = x exists and x is finite.) From (2.11) and

(2.12), we write

Xn(t) = Xn(0)+Ân(t)−Mn(t)− Ĝn(t) +
(λn − µn)t√

n

+

∫ t

0
µX−n (s)ds− Vn(t) ,

(2.20)

for all t ≥ 0. Here,

Mn(t) =
1√
n

[Sn(µ

∫ t

0
Ψn(s)ds)− µ

∫ t

0
Ψn(s)ds] , (2.21)

for all t ≥ 0. This representation is similar to the equation (126) of [29]. The scaled
process Mn is a right-continuous, square-integrable martingale with respect to the
filtration (Fn,t), and its predictable quadratic variation is given by

〈Mn〉(t) =
µ

n

∫ t

0
Ψn(s)ds =

µ

n

∫ t

0
(Qn(s) ∧ n)ds. (2.22)

It also holds that
E[ sup

0≤t≤T
〈Mn〉(t)] ≤ µT, (2.23)

for all T > 0. In particular, E[〈Mn〉(t)] <∞, for all t ≥ 0.
All the above martingale results are analogous to the proof of Theorem 7.6 of [29].

Moreover, the optional quadratic variation process (square-bracket process) of Mn is
given by

[Mn,Mn](t) =
1

n
Sn(µ

∫ t

0
Ψn(s)ds), (2.24)
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for all t ≥ 0. Thus, [Mn,Mn](T ) ≤ 1
nSn(µnT ) and hence using Doob’s inequality, we

also obtain
E[sup

[0,T ]
|Mn(t)|2] ≤ CT , (2.25)

for t ≤ T , where C > 0 is a generic constant, independent of T > 0, and l ≥ m + 1.
Following the proofs of Theorems 7.2 and 7.7 of [29], we also have the following weak
convergence result in D[0,∞):

Mn(·)⇒ √µ W2 , (2.26)

where W2 is a standard Brownian motion, independent of W1 in (2.3).

We now establish the following lemma, which describes some useful basic estimates.

Lemma 2.1. Assume (2.1), (2.3) and (2.4), together with the convergence of the initial
values lim

n→∞
Xn(0) = x. Then the following results hold:

(i)
sup
n≥1

E[||Xn||2T ] ≤ C1(1 + T k), (2.27)

(ii)
sup
n≥1

E[Ĝn(T )2] ≤ C2(1 + T k), and (2.28)

(iii)
sup
n≥1

E[Vn(T )2] ≤ C3(1 + T k), (2.29)

where the constants Ci > 0, for i = 1, 2, 3, k > 1 are generic constants, independent of
T as well as the sequence of queue-capacity processes (mn).

Proof. Introduce the process ζn by

ζn(t) = xn + Ân(t)−Mn(t) +
(λn − µn)t√

n
, (2.30)

for all t ≥ 0, where Xn(0) = xn. Notice that when Xn(t) takes large positive values, the
processes Gn and Vn may increase and it helps Xn to decrease towards ζn. Similarly, if
Xn(t) takes large negative values, the term

∫ t
0 µX

−
n (s)ds may influence Xn to increase.

Therefore, we are able to obtain an upper bound for ||Xn − ζn||T as described below.
First, by (2.1), (2.3) and (2.25), it is evident that

sup
n≥1

E[||ζn||2T ] ≤ C(1 + T k), (2.31)

where C > 0 and k ≥ 1 are generic constants independent of T . Hence, ||ζn||T is finite
a.s. and we intend to show that ||Xn||T ≤ 3||ζn||T , almost surely, using a pathwise
argument. Introduce the process Yn by

Yn(t) = Xn(t)− ζn(t) = µ

∫ t

0
X−n (s)ds− Ĝn(t)− Vn(t), (2.32)

for all t ≥ 0. Notice that Yn has sample paths of bounded variation. Fix ω in the
probability space Ω so that M ≡ M(ω) = ||ζn||T is finite. Suppose that Yn(t) > 2M ;
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then Xn(t) > M and thus ∆Yn(t) = −(∆Gn(t)+∆Vn(t)) ≤ 0, for 0 ≤ t ≤ T . Similarly,
if Yn(t) < −2M , then Xn(t) < −M and hence ∆Yn(t) = µX−n (t)∆t > 0. Let H be the
non-negative, twice continuously-differentiable function given by

H(x) =

{
(|x| − 2M)4 if |x| > 2M,

0 if |x| ≤ 2M

Notice that H ′(x) < 0 on (−∞,−2M), H ′(x) = 0 on [−2M, 2M ] and H ′(x) > 0
on (2M,+∞). Since Yn has paths of bounded variation, we obtain H(Yn(t)) =∫ t
0 H

′(Yn(s))dYn(s) ≤ 0. Consequently, |Yn(t)| ≤ 2M for all 0 ≤ t ≤ T . This in
turn yields that ||Xn||T ≤ 3||ζn||T a.s., which together with (2.31), implies (2.27) in
part (i).

For part (ii), since Gn and Vn are non-negative, non-decreasing processes, by (2.32),
we obtain

0 ≤ Ĝn(t) + Vn(t) ≤ µ
∫ t

0
X−n (s)ds+ |Yn(t)|,

for all 0 ≤ t ≤ T . Hence, using the discussion in the proof of part (i), we deduce that
0 ≤ Ĝn(T ) + Vn(T ) ≤ (3µT + 2)||ζn||T . This, combined with (2.31), yields parts (ii)
and (iii), which completes the proof.

2.3 The Skorokhod Map

We now summarize several important properties of the Skorokhod map defined in the
function space D[0,∞). These properties are essential for later computations.

For a given function κ in D[0,∞), the Skorokhod map Γκ : D[0,∞) → D[0,∞)
with upper reflection boundary κ, is defined by

Γκ(f)(t) = f(t)− sup
[0,t]

(f(s)− κ(s))+, (2.33)

for each f in D[0,∞). Let Vf (t) = sup[0,t](f(s) − κ(s))+. Then the pair (Γκ(f), Vf )
is called the Skorokhod decomposition of the function f , with respect to the upper
reflection boundary κ. Clearly, Γκ(f)(t) ≤ κ(t), for all f in D[0,∞) and for all t ≥ 0.

We shall refer to the function κ as the reflection curve, or reflection boundary.
First we assume that κ is a non-negative function in D[0,∞). Later we discuss the
situation that κ is a random process. For properties of the reflection map with a time-
dependent reflection boundary, we refer to [4]. In the case κ is identically zero, the
upward reflection map is analyzed in [14] and [22].

Using the representation (2.33), a direct computation yields

sup
[0,T ]
|Γκ(f)(t)− Γκ(g)(t)| ≤ 2||f − g||T , (2.34)

for any f and g in D[0,∞), and all T > 0. Hence, the Skorokhod map, with respect
to any reflection curve κ in D[0,∞), is Lipschitz continuous under the sup norm in
D[0, T ] for each T > 0. In our computations in Section 4, we make use of the fact that
the Lipschitz constant 2 is independent of the reflection curve. Let 0 represent the zero
function, which is identically zero on [0,∞). Then, by (2.33), for any non-negative κ in
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D[0,∞), Γκ(0) is identically zero. Hence, for a given κ in D[0,∞), this fact combined
with (2.34), yields

sup
[0,T ]
|Γκ(f)(t)| ≤ 2||f ||T , (2.35)

for all f in D[0,∞) and T > 0.
The following monotonicity property is also useful for our computations, and it

readily follows from Propositions 3.4 and 3.5 of [4]: Let κ, f and g be in D[0,∞) and
h(t) = f(t) − g(t), t ≥ 0. If h is a non-negative, non-decreasing function in D[0,∞),
then

Γκ(f)(t) ≥ Γκ(g)(t), (2.36)

for all t ≥ 0.
Next, let (κn) be a convergent sequence of non-negative functions in D[0, T ] such

that lim
n→∞

sup[0,T ] |κn(t)−κ(t)| = 0, for some κ in D[0, T ]. Then, using (2.33), we obtain

sup
0≤t≤T

|Γκn(f)(t)− Γκ(f)(t)| ≤ sup
0≤t≤T

| sup
0≤s≤t

(f(s)− κn(s))+ − sup
0≤s≤t

(f(s)− κ(s))+|

≤ sup
0≤t≤T

|κn(s)− κ(s)|.

Hence, we conclude that

lim
n→∞

sup
0≤t≤T

|Γκn(f)(t)− Γκ(f)(t)| = 0, (2.37)

for each T > 0, whenever (κn) converges uniformly to κ on [0, T ].
Let (W (t))t≥0 be a Brownian motion in our complete probability space (Ω,F, P ),

and let (FWt : t ≥ 0) be the usual complete filtration generated by it. We pick a Lip-
schitz continuous drift function b : R → R with a Lipschitz constant C > 0. Consider
a non-negative valued stochastic process (κ(t))t≥0 in D[0,∞), which is adapted to the
Brownian filtration (FWt : t ≥ 0). Clearly, the definition (2.33) implies that, for any
stochastic process (Y (t))t≥0 in D[0,∞) which is also adapted to (FWt : t ≥ 0), the
path-wise reflected process Γκ(·,ω)(Y )(·, ω) is a well-defined process in D[0,∞) and is

adapted to the Brownian filtration (FWt : t ≥ 0). Since the Lipschitz constant 2 is
independent of the reflecting boundary κ in (2.34), we can obtain strong solutions to
stochastic differential equations with drift coefficient b, a constant diffusion coefficient
σ and a path-wise reflection boundary process κ(·, ω). Here we outline the proof.

Since the function b is Lipschitz continuous with Lipschitz constant C, from (2.34)
it follows that

sup
[0,T ]
|b(Γκ(f)(t))− b(Γκ(g)(t))| ≤ 2C||f − g||T ,

and the constant C is independent of f , g, the process κ and T > 0. We begin with
the strong solution Z to the equation

Z(t) = x+ σW (t) +

∫ t

0
b(Γκ(Z)(s))ds, (2.38)

where x is the initial value and σ > 0 is a fixed constant. By the existence and
uniqueness results for stochastic differential equations in Chapter 5 of [30], (2.38) has
a unique strong solution in D[0,∞), which is adapted to the Brownian filtration (FWt :
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t ≥ 0). Next, we use the non-negative adapted stochastic process (κ(t))t≥0 in D[0,∞)
and let Xx(t) = Γκ(Z)(t) and V (t) = Z(t)−Xx(t). Then, the pair (Xx, V ) is adapted
to the Brownian filtration (FWt : t ≥ 0), and is the unique Skorokhod decomposition of
the process Z. The processes Xx and V are in D[0,∞) and they satisfy

Xx(t) = x+ σW (t) +

∫ t

0
b(Xx(s))ds− V (t) , (2.39)

and ∫ t

0
I[Xx(s)<κ(s)]dV (s) = 0 , (2.40)

for all t ≥ 0. The process V is non-negative, non-decreasing with V (0) = 0. If x > κ(0),
Xx has an initial jump to κ(0);thereafter, it satisfies (2.39) starting from κ(0). In this
case, we label Xx(0−) = x, Xx(0) = κ(0) and V (0) − V (0−) = x − κ(0) > 0. If the
reflection boundary process κ has continuous sample paths, then using the definition
(2.33), it follows that the processes Xx and V also have continuous paths on the time
interval (0,∞).

2.4 Weak Convergence.

In this subsection, we use Section 7 of [29], combined with Theorem 2.1 of [6] and
Proposition 4.1 of [33] to derive a weak convergence result for properly normalized
processes, when the queue-capacity mn is a constant function. We thus try to remain
consistent with the notation of [29].

Our ultimately proposed asymptotically optimal control sequence (mn) is in fact
a sequence of deterministic constant queue-capacities. Therefore, we need the weak
convergence result in Theorem 2.2 only for constant queue-capacities (mn). This will
suffice for the asymptotic optimality result in Section 4.

In the proof of the following result, we use Theorem 2.1 of [6], which enables one
to approximate the Ĝn process by an integral of the normalized queue length. Then
we can follow the proof of Theorem 7.6 of [29], the results of [37], and Proposition 4.1.
of [33] to deduce the conclusion.

Theorem 2.2. Assume (2.1), (2.3) and (2.4), together with the convergence of the
initial values

lim
n→∞

Xn(0) = x, (2.41)

where x is a scalar. Further assume that each mn is a constant, and the following limit
exists:

lim
n→∞

mn√
n

= κ , (2.42)

with κ being a constant, satisfying 0 < κ ≤ ∞.
Then the sequence of processes {Xn : n ≥ 0} converges weakly to a diffusion process

Xx in the function space D[0,∞). This limit process is characterized by the stochastic
differential equation

Xx(t) = x+ σ1W1(t) +
√
µW2(t)− βµt−

∫ t

0
(θX+

x (s)− µX−x (s))ds− U(t), (2.43)
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over t ≥ 0. Here W1 and W2 are two independent standard one-dimensional Brown-
ian motions; U is the unique non-negative, non-decreasing process in D[0,∞), which
satisfies U(0) = 0 and ∫ ∞

0
I[X(s)<κ](s)dU(s) = 0. (2.44)

When κ = ∞, the process U vanishes at all times. The constants β and σ1 are given
in (2.1) and (2.3).

Proof. Let T > 0 be fixed. We introduce the process εn by

εn(t) = Ĝn(t)− θ
∫ t

0
X+
n (s)ds, (2.45)

for all t ≥ 0, where θ > 0 is given in (2.7). We intend to use Theorem 2.1 of [6] to
show that lim

n→∞
||εn||T = 0 in probability. This result was obtained for G/G/n + GI

queues in [6] and they allow their arrival process to be time-nonhomogeneous when the
queueing model satisfies the assumptions (10), (11), (12) and (13) in [6], as carefully
explained there. We make use of their result here.

First, introduce the process En of admitted customers to the system by En(t) =
An(t)− Un(t), t ≥ 0, where An is the arrival process and Un is the process of rejected
customers due to a full buffer. We can consider our system as a G/G/n + GI queue,
with En as the effective arrival process. Indeed, En may not be time-homogeneous, but
we can apply results in [6] after verifying their assumptions. We introduce the processes

Ēn, Ḡn by Ēn(t) = En(t)
n and Ḡn(t) = Gn(t)

n respectively, for all t ≥ 0. These processes
are non-decreasing with RCLL paths. First, notice that, by (2.28) in Lemma 2.1,
lim
n→∞

Ḡn(T ) = 0 in probability. Consequently, by (2.15), we have lim
n→∞

||Ēn−µe||T = 0,

in probability, where e is the identity map. Therefore, it is straightforward to verify
the assumption (10) in [6] (one may take cT = µ

2 there).
Similarly, assumption (11) of [6] is also evident from either (2.15) or (2.16). By part

(i) of Lemma 2.1, (2.27) clearly implies that the diffusion scaled queue-length process
is stochastically bounded and hence assumption (12) of [6] is verified.

Since we assume that initial customers do not abandon the queue, assumption
(13) of [6] trivially holds. Therefore, using Theorem 2.1 of [6], we conclude that
lim
n→∞

||εn||T = 0 in probability.

We can write the state equation for Xn in the form

Xn(t) = ζn(t)− εn(t)−
∫ t

0
h(Xn(s))ds− Vn(t), (2.46)

for all t ≥ 0, where h(x) = θx+ − µx− for all x, the process ζn as in (2.30) and εn as
above. Moreover, ∫ ∞

0
I[Xn(s)<κn](s)dVn(s) = 0 a.s. (2.47)

Since lim
n→∞

||εn||T = 0, in probability, using (2.1), (2.3), and (2.26), we conclude that the

process ζn− εn converges weakly to x+ σ1W1 +
√
µW2, in the function space D[0,∞),

where W1 and W2 are two independent standard one-dimensional Brownian motions
and the constants β and σ1 are given in (2.1) and (2.3). The function h is Lipshitz
continuous and, therefore, we can use the continuity of the integral representation of
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(2.46) in the Skorokhod J1 topology as in Theorem 7.4 of [29] (see also Section 4 of
[33], and Section 4.3 in [24]). Then, one can follow the proofs of Theorems 1.2, 7.6 and
7.7 to obtain the weak convergence of (Xn, Vn) to (Xx, U) in D2[0,∞), where (Xx, U)
satisfies (2.43). This completes the proof of the theorem.

Remark. With the aid of (2.37), the above proof of the theorem can be easily extended
to time-dependent reflection barrier processes, but as already noted, the above theorem
suffices for our purposes.

2.5 Cost Structure

The cost structure of our model reflects several types of costs, associated with the
operation of a telephone call center over a random time period [0, τ ]. Here τ is an
exponentially distributed random variable with parameter γ, which is independent of
system dynamics.

a) Abandonment costs.
With each abandoning customer, the losses for business exceed the loss of the imme-

diate profit per customer, since there is a loss of goodwill and future business. (Under
some circumstances, managers may wish to provide future preferential treatment, or
discounts or coupons for future deals, in order to regain the goodwill of abandoning
customers.)

Recall that Gn(t) is the number of abandoning customers during [0, t]. Let cab >
0 be the cost incurred per abandoning customer. Then the expected cost due to
abandonments, in the nth system, is given by

CAn = cabE[Gn(τ)]. (2.48)

b) Delay costs.
Delay cost arises when the queue length Φn(t) is positive. For the nth system, this

cost is given by

CDn = cdE[

∫ τ

0
Φn(t)dt] , (2.49)

where cd is a non-negative constant.

c) Idle server costs.
When there are not enough customers to make full use of the available servers,

there could be a cost associated with the idle servers. This can be represented by

CIn = ciE[

∫ τ

0
(n−Ψn(t))dt] , (2.50)

where ci is a non-negative constant.

d) Blocking (busy-signal) costs.
Incoming customers are blocked when the total number of customers in the system

is n+mn. In addition, if the system controller decides to reduce the queue-capacity to
a level below the queue-length at decision time, then some customers must be removed.
Such situations lead to lost revenues, and the corresponding cost is represented by

CBn = cbE[Un(τ)] , (2.51)

17



where cb is a positive constant.

e) 1-800 costs.
Here we introduce a cost that is motivated by 1-800 (toll-free) calls to a call center.

To describe the cost incurred by 1-800 calls, let ε0, 0 ≤ ε0 ≤ 1, be the fraction of such
calls received by the system. Then the associated 1-800 cost is given by

C800
n = ε0 c800E

∫ τ

0
[Φn(t) + Ψn(t)]dt , (2.52)

where c800 > 0 is a constant that represents 1-800 cost per time-unit per occupied
telephone-line. In the next section, we shall introduce an income parameter r per
call; then, rµ = r/(1/µ) represents the average income rate per time-unit of service;
on the other hand, ε0c800 represents the average rate of lost income, due to 1-800
calls. Therefore, throughout we assume that c800 is small enough so that it satisfies
rµ ≥ ε0c800.

With the above-described cost elements, the total expected cost for the nth system
is given by

Cn =ε0 c800E

∫ τ

0
[Φn(t) + Ψn(t)]dt+ +cdE[

∫ τ

0
Φn(t)dt]

+ ciE[

∫ τ

0
(n−Ψn(t))dt] + cabE[Gn(τ)] + cbE[Un(τ)].

(2.53)

2.6 Profit Maximization.

The total expected revenue in the nth system is given by rE[Hn(τ)], where r is the
income per call; for each t ≥ 0, Hn(t) = Sn(µ

∫ t
0 Ψn(s)ds), which represents the cumu-

lative number of service completions up to time t. Since τ is independent of system
dynamics, using the first martingale in (2.21), we obtain E[Hn(τ)] = µE

∫ τ
0 Ψn(s)ds.

Hence, the total expected revenue can be represented by

Rn = rµE[

∫ τ

0
Ψn(t)dt] . (2.54)

It follows from (2.53) and (2.54) that the expected profit in the nth system, Pn =
Rn − Cn, is given by:

Pn =rµE[

∫ τ

0
Ψn(t)dt]−

(
ε0 c800E

∫ τ

0
[Φn(t) + Ψn(t)]dt

+ cdE

∫ τ

0
Φn(t)dt

+ ciE[

∫ τ

0
(n−Ψn(t))dt] + cabE[Gn(τ)] + cbE[Un(τ)]

)
.

(2.55)

The manager of the nth system seeks to maximize Pn, over all possible choices of
admissible queue-capacity processes mn(·).

Next, we simplify the expression for Pn and discuss its scaled convergence. After
straightforward computations, and using Ψn(t) = n− (Qn(t)− n)−, we obtain

Pn√
n

=
(rµ− ε0c800)

√
n

γ
−E

∫ τ

0
[(a1X

+
n (t) + bX−n (t))dt+ cabĜn(τ) + p ·Vn(τ)] , (2.56)
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where

a1 = cd + ε0c800 > 0 , b = rµ+ ci − ε0c800 ≥ 0 , p = cb > 0, (2.57)

and Ĝn is given in (2.18). Next, we observe that it is possible to replace the term
cabE[Ĝn(τ)] by θcabE

∫ τ
0 X

+
n (t)dt. For this, let εn(t) be as in (2.45) in Theorem 2.2,

and notice that lim
n→∞

||εn||T = 0 in probability, as proved therein. Using (2.27) and

(2.28) of Lemma 2.1, we have sup
n≥1

E[||εn||2T ] ≤ C(1 + T k), where C > 0 and k > 1

are generic constants independent of T . Since τ is independent of system parameters,
E||εn||τ = E

∫∞
0 γe−γt||εn||tdt. Hence (||εn||t) is uniformly integrable and we conclude

that lim
n→∞

E[||εn||τ ] = 0. Consequently, lim
n→∞

E[|Ĝn(τ) − θ
∫ τ
0 X

+
n (t)dt| = 0. Therefore,

we can write

Pn√
n

=
(rµ− ε0c800)

√
n

γ
− E

∫ τ

0
[(aX+

n (t) + bX−n (t))dt+ p · Vn(τ)] + o(
1√
n

), (2.58)

where

a = θcab + cd + ε0c800 > 0 , b = rµ+ ci − ε0c800 ≥ 0 , p = cb > 0. (2.59)

It follows that the manager’s objective, which originally was to maximize profit, is
in fact to minimize the cost functional E

∫ τ
0 [(aX+

n (t)+bX−n (t))dt+p ·Vn(τ)]. Since τ is
independent of system dynamics and exponentially distributed with parameter γ, this
cost functional can be written as E

∫∞
0 γe−γt[

∫ t
0 (aX+

n (s) + bX−n (s))ds + p · Vn(t)]dt.

Using Fubini’s theorem, we observe that E
∫∞
0 γe−γt

∫ t
0 (aX+

n (s) + bX−n (s))dsdt =

E
∫∞
0 e−γs(aX+

n (s) + bX−n (s))ds and E
∫∞
0 γe−γtVn(t)dt = E

∫∞
0 γe−γt

∫ t
0 dVn(s)dt =

E
∫∞
0 e−γtdVn(t). Hence, we can write the cost functional in the form

J(Xn, Vn, p) = E

∫ ∞
0

e−γt[(aX+
n (t) + bX−n (t))dt+ p · dVn(t)] , (2.60)

and the system manager would like to minimize it over all admissible choices of queue-
capacity mn ≥ 0. In the rest of the article, we use this standard infinite horizon
discounted form of the cost functional.

To identify asymptotically optimal policies for this optimization problem, we intend
to describe a sequence of processes (Xn, Vn), and associated queue-capacity sequence
(mn), that minimize the limiting cost

lim inf
n→∞

J(Xn, Vn, p) . (2.61)

If a and b are both zero, then it is obviously optimal to choose infinite queue-capacity
(i.e. mn ≡ ∞), which makes the above cost functional identically zero. Therefore, we
always consider a > 0, b ≥ 0, and this is justified by (2.59) since b = 0 is possible, when
rµ = ε0c800 and ci = 0. In Section 4, we intend to provide an asymptotically optimal
sequence of processes (X∗n, V

∗
n ), and associated queue-capacities (m∗n), such that

lim inf
n→∞

J(X∗n, V
∗
n , p) ≤ lim inf

n→∞
J(Xn, Vn, p) , (2.62)

when compared against any other feasible sequence of processes (Xn, Vn).
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3 The Diffusion Control Problem (DCP)

3.1 Problem Formulation

In this section, we formulate and solve a one-dimensional stochastic control problem
for diffusion processes (DCP). This can be considered as the limiting form of the
cost minimization problem for the queueing systems (QCP). In Section 4, we shall
“translate” the optimal strategy of DCP back into asymptotically optimal strategies
for QCP.

Consider a controlled state-process Xx, which is a weak solution to

Xx(t) = x+ σW (t)−
∫ t

0
[βµ+ h(Xx(s))]ds− U(t) , (3.1)

where Xx(0) = x is a real number, W is a standard one-dimensional Brownian motion,
adapted to a right-continuous filtration F = {Ft : t ≥ 0} on a probability space
(Ω,F,P). The σ-algebra F0 contains all the null sets in F, and for any s ≥ 0, t ≥ 0,
the Brownian increment W (t+ s)−W (t) is independent of Ft. The parameters σ > 0,
µ > 0 and β are constants; U is a non-negative, non-decreasing right-continuous process
which is adapted to the filtration F . In our stochastic control problem, this process U
is considered to be the control process. The function h is Lipschitz continuous and is
given by

h(x) =

{
µx if x < 0

θx if x ≥ 0,
(3.2)

where µ > 0 and θ ≥ 0 are constants.
In our analysis of DCP, each vector-valued process (Xx, U,W ) satisfying (3.1) and

(3.2) is allowed to be defined in its own probability space. In the cases where the
process U is identically zero, or U is the local time process of the reflecting diffusion
Xx at an upper boundary κ, it is well known (Chapter IV, [16]) that there exists a
unique non-explosive strong solution Xx which satisfies (3.1) and (3.2). For the system
specified by (3.1), we introduce the cost functional

J(Xx, U, p) = E

∫ ∞
0

e−γt[(aX+
x (t) + bX−x (t))dt+ pdU(t)] , (3.3)

where γ, a and p are positive constants, while b is a non-negative constant.
Our diffusion control problem (DCP) is to find an optimal control process U∗, with

its corresponding state-processX∗x, which minimize the above described cost functional.
If a and b both vanish, then obviously the zero control process is optimal. Therefore,
we assume throughout that a > 0 and b ≥ 0. The results obtained in this section
remain valid for any constant σ > 0 in (3.1). But, to relate (3.1) to the queueing
control problem in (2.43), we consider

σ2 = σ21 + µ

in Section 4. Here σ1 is given in (2.3). This diffusion control problem belongs to the
class of singular optimal control problems, which has been addressed in the literature
(see, for example, [8], [38]).

For a given x in R, we call the quintuple ((Ω,F,P),F ,W,Xx, U) an admissible
control system if
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(i) (Xx, U) is a weak solution to (3.1), and

(ii) the cost functional J(Xx, U, p) is finite.

When there is no ambiguity, and with a slight abuse of the notation, we simply use
the pair (Xx, U) to represent an admissible control system. Notice that the finiteness
of the cost functional implies that the state process is nonexplosive. To define the value
function, we introduce the set

A(x) = {(Xx, U) : (Xx, U) is admissible} . (3.4)

This set is nonempty for each x in R, since we can obtain a reflecting diffusion process
with an upper reflection barrier at a point κ, for which our computations later in this
section reveal that the corresponding cost functional is finite. The value function of
the diffusion control problem is given by

Vp(x) = inf
A(x)

J(Xx, U, p) , (3.5)

for each x in R.
Next, we describe the formal Hamilton-Jacobi-Bellman (HJB) equation related to

our DCP. First, introduce the differential operator G by

G =
σ2

2

d2

dx2
− (βµ+ h(x))

d

dx
− γ , (3.6)

where the constants γ, β, µ and σ, are as described earlier, and the function h appears
in (3.2). The formal HJB-equation can now be written as

min
{
GF (x) + ax+ + bx− , p− F ′(x)

}
= 0 . (3.7)

Here, the solution F is a sufficiently smooth function which satisfies the growth condi-
tion

|F ′(x)| ≤ C0 (3.8)

for all x, where C0 is a positive constant. Our results show that the value function
in (3.5) is a twice continuously differentiable function, which satisfies both (3.7) and
(3.8).

3.2 A Verification Lemma

Next, we establish a verification lemma which helps us identify an optimal strategy. It
guarantees that any smooth function that satisfies the conditions (3.7) and (3.8) is a
lower bound for the value function.

Lemma 3.1. Let F be a twice continuously differentiable function on R. Assume that
F satisfies (3.7), (3.8) and the growth condition |F (x)| ≤ C(1 + ax+ + bx−), for all
x ∈ R, with C being a positive constant. Then F (x) ≤ Vp(x), for all x ∈ R, where Vp
is the value function defined in (3.5).

Remark. Assumption (3.8) in fact yields the growth condition assumed in the above
lemma, when a and b are both positive. We assume this growth condition to ensure
that the conclusion of the lemma remains true when a > 0 and b = 0.
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Proof. Let (Xx, U) be an admissible control system. Then the cost functional J(Xx, U, p)
is finite and consequently E

∫∞
0 e−γtdU(t) is also finite. Using Fubini’s theorem, we

observe that∫ ∞
0

e−γtdU(t) =

∫ ∞
t=0

∫ ∞
s=t

γe−γsdsdU(t) = γ

∫ ∞
0

e−γtU(t)dt .

Therefore, one can write

J(Xx, U, p) = E

∫ ∞
0

e−γt[aX+
x (t) + bX−x (t) + γ pU(t)]dt. (3.9)

The finiteness of J(Xx, U, p) now implies that lim inf
t→∞

e−γtE[aX+
x (t)+bX−x (t)+γ pU(t)] =

0 . Therefore, we can find a deterministic sequence (Tn) that is increasing to infinity
and

lim
n→∞

e−γTnE[aX+
x (Tn) + bX−x (Tn) + p γU(Tn)] = 0. (3.10)

Next we apply the generalized Itô’s lemma (see [28], p. 285) to obtain

F (Xx(Tn))e−γTn =F (x) + σ

∫ Tn

0
e−γsF ′(Xx(s−))dW (s)

+

∫ Tn

0
e−γsGF (Xx(s−))ds−

∫ Tn

0
e−γsF ′(Xx(s−))dU(s)

+
∑

0≤s≤Tn

e−γs[∆F (Xx(s)) + F ′(Xx(s−))∆U(s)] ,

(3.11)

where ∆F (Xx(s)) = F (Xx(s)) − F (Xx(s−)), and ∆U(s) = U(s) − U(s−). Using
assumption (3.8), it is easy to see the quantities

E[
∑

0≤s≤Tn

e−γs[|∆F (Xx(s))|]] and E[
∑

0≤s≤Tn

e−γs|F ′(Xx(s−))|∆U(s)]

are both bounded by C0E[
∫∞
0 e−γtdU(t)], where C0 > 0 is a constant. Hence, they are

finite. Furthermore, (3.8) also implies that E
[∫ Tn

0 e−γsF ′(Xx(s−))dW (s)
]

= 0. Next,

let {U c(t) : t ≥ 0} be the continuous part of the process {U(t) : t ≥ 0}. Then, using
the above facts, together with (3.11), we obtain

E[F (Xx(Tn))]e−γTn =F (x) + E

∫ Tn

0
e−γsGF (Xx(s−))ds

− E
∫ Tn

0
e−γsF ′(Xx(s−))dU c(s)

+ E
∑

0≤s≤Tn

e−γs[∆F (Xx(s))] .

(3.12)

Notice that ∆F (Xx(s)) = F ′(ζ(s))(Xx(s) − Xx(s−)), for some ζ(s) which lies be-
tween Xx(s) and Xx(s−). But (Xx(s) −Xx(s−)) = −(U(s) − U(s−)) ≤ 0. By (3.7),
F ′(ζ(s)) ≤ p, and therefore, ∆F (Xx(s)) ≥ −p ∆U(s), for all s ≥ 0. Consequently,
E

∑
0≤s≤Tn

e−γs[∆F (Xx(s))] ≥ −pE
∑

0≤s≤Tn
e−γs[∆U(s)]. By (3.7), we also obtain that
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−E
∫ Tn
0 e−γsF ′(Xx(s−))dU c(s) ≥ −pE

∫ Tn
0 e−γsdU c(s). Using these facts, together

with (3.7) and (3.12), we get

E[F (Xx(Tn))]e−γTn ≥F (x) + E

∫ Tn

0
e−γsGF (Xx(s−))ds− pE

∫ Tn

0
e−γsdU(s)

≥F (x)− E
∫ Tn

0
e−γt[(aX+

x (t) + bX−x (t))dt+ pdU(t)] .

This implies that

E[F (Xx(Tn))]e−γTn + J(Xx, U, p) ≥ F (x) . (3.13)

Next, we use the assumption |F (x)| ≤ C(1+ax++bx−), for all x, together with (3.10),
to conclude that lim

n→∞
E[F (Xx(Tn))]e−γTn = 0. Hence, (3.13) yields J(Xx, U, p) ≥

F (x), for all x, and the conclusion of the lemma follows.

3.3 Analysis of the HJB-equation.

In this subsection, we pave the way to construct a solution to the HJB-equation (3.7).
This will help obtain an optimal state process, which is a reflected diffusion process on
an interval (−∞, zp], where zp is a positive constant, yet to be determined.

We begin with the interval (−∞, 0), considering the family of solutions to GF (x)−
bx = 0 and F ′(x) < p, for all x < 0 and F (−∞) =∞. By elementary computations,
we can write such a solution in the following form:

F (x) = kF∞(x) +
b

γ + µ
(
βµ

γ
− x) , (3.14)

for all x ≤ 0, where k is an arbitrary real number, and F∞ is a bounded solution to the
homogeneous equation GF (x) = 0, on the interval (−∞, 0). The fundamental set of
this homogeneous differential equation consists of two linearly independent solutions.
We pick the solution F∞ that satisfies (3.15) and (3.16) below. The other solution
grows exponentially fast near negative infinity and therefore, it violates our growth
condition (3.8). Hence, it does not make any contribution in our analysis.

First, we construct a solution F∞ that satisfies GF∞(x) = 0, on the interval (−∞, 0),
with the following boundary conditions:

σ2

2
F ′′∞(x)− (βµ+ µx)F ′∞(x)− γF∞(x) = 0 for x < 0, (3.15)

F∞(0) = 1, and lim
x→−∞

F∞(x) = 0. (3.16)

In our discussion below, we extend the function F∞ to (−∞,∞), so that it satisfies
(3.15) everywhere.

Lemma 3.2. There is a unique solution F∞ that satisfies (3.15) and (3.16) above.
Furthermore, F∞ is a strictly positive, strictly convex increasing function on (−∞, 0),
which satisfies min{F∞(x), F ′∞(x), F ′′∞(x)} > 0, for all x ≤ 0, as well as lim

x→−∞
F ′∞(x) =

0.
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The proof of this lemma is independent of the results in the rest of this section;
hence we present it in the appendix.

Remark.

1. The conclusion F ′′∞(0) > 0 in the above lemma implies that βµF ′∞(0) + γ > 0,
and this will be crucial in our construction of a solution to the HJB-equation.

2. In the case when γ = µ, a closed-form solution for F∞ can be obtained by
elementary methods. In fact

F∞(x) = K e
γ

σ2
[(x+β)2−β2]

∫ x

−∞
e−

γ

σ2
(u+β)2du ,

where K is a positive constant which is given by K = (
∫ 0
−∞ e

−γ
σ2

(u+β)2du)−1.

In particular, F ′∞(0) = 2γβ
σ2 + Ke−

γ

σ2
β2

, and this will be useful for numerical
computations in Section 3.4.

In terms of the function F∞ in the above lemma, we now construct a family of
functions {Fk} on (−∞, 0), indexed by k running over the non-negative real numbers.
Specifically,

Fk(x) = kF∞(x) +
b

γ + µ
(
βµ

γ
− x) , x < 0, (3.17)

where k is an arbitrary non-negative real number. To choose the correct value of k,
so that Fk is the desired solution on (−∞, 0), we must look at the solutions to the
HJB-equation (3.7) on the interval (0,∞).

For each real value k, we begin with the solution Hk to the initial value problem

GHk(x) + ax = 0, for x ≥ 0 , (3.18)

with the initial data in agreement with Fk(0) and F ′k(0). Hence,

Hk(0) = k +
βbµ

γ(γ + µ)
and H ′k(0) = kF ′∞(0)− b

(γ + µ)
. (3.19)

From the standard theory of differential equations, there is a unique solution Hk for
each k, which also satisfies (3.19) at the origin. Note that the graph of Hk joins
smoothly with that of Fk at the origin and, consequently, Hk(0) = Fk(0), H ′k(0) =
F ′k(0) and H ′′k (0) = F ′′k (0). We need to investigate the behavior of H ′k for various
values of k. Therefore, we introduce the function

Gk(x) = H ′k(x), for all x ≥ 0. (3.20)

By differentiating (3.18), we obtain

σ2

2
G′′k(x)− (βµ+ θx)G′k(x)− (θ + γ)Gk(x) + a = 0, x > 0 . (3.21)

Using (3.19) and the fact that (3.18) remains valid at the origin, we deduce the initial
conditions

Gk(0) = kF ′∞(0)− b

(γ + µ)
and

σ2

2
G′k(0) = k(βµF ′∞(0) + γ) . (3.22)
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Hence, Gk(0) = F ′k(0) and G′k(0) = F ′′k (0). Note that, for a fixed real number k,
the above initial value problem uniquely characterizes the solution Gk on the interval
[0,∞). Next, we make two important observations. First, for a given Gk, we can
uniquely determine the function Hk by Hk(x) = Hk(0) +

∫ x
0 Gk(u)du, where Hk(0)

satisfies

γHk(0) =
σ2

2
G′k(0)− βµGk(0) = γk +

βbµ

(γ + µ)
.

Second, the differential equation (3.21) for Gk has a unique constant solution given by
Y = a/(θ + γ), which is independent of k. This quantity plays an important role in
determining our optimal strategy. Therefore, we introduce the constant p0 > 0 by

p0 =
a

θ + γ
. (3.23)

Since p0 > 0, by (3.22), it is evident that for each k ≥ 0, the function Gk is not equal
to the constant solution p0. Our next lemma summarizes the properties of the family
of functions {Gk : k ≥ 0}.

Lemma 3.3. Let p0 be the constant defined in (3.23). For each real number k ≥ 0, let
Gk be the function given in (3.20). Then the following holds:

(i) Gk(x) is jointly continuous in (k, x), for k ≥ 0 and x ≥ 0.

(ii) Let k > 0. If G′k(ζ) = 0 for some ζ > 0, then x = ζ is a local maximum for Gk
and Gk(ζ) < p0. Furthermore, on the interval [0,∞), Gk cannot have any local
minima and it can have at most one local maximum.

(iii) If r1 > r2 > 0, then Gr1(x) > Gr2(x) and G′r1(x) > G′r2(x), for all x ≥ 0.

(iv) Let k > 0. If Gk(x0) ≥ p0 for some x0 ≥ 0, then G′k(x) > 0 for all x ≥ x0.

(v) If k = 0, then G0(0) = −b
(γ+µ) ≤ 0, and G0 is strictly decreasing on [0,∞).

Proof. Since the function Gk(x) is the unique solution to the initial value problem
described in (3.21) and (3.22), and the initial data in (3.22) is continuous in the variable
k, assertion (i) follows from the standard theory of differential equations (see Chapter
5 of [15]).

Next, let G′k(ζ) = 0, for some ζ > 0. Then, using (3.21), we have

σ2

2
G′′k(ζ) = (θ + γ)[Gk(ζ)− p0] , (3.24)

where p0 is given in (3.23). Let k > 0 and suppose that G′k(ζ) = 0 and Gk(ζ) > p0,
for some ζ > 0. Then, by (3.24), G′′k(ζ) > 0 and x = ζ is a strict local minimum. But,
G′k(0) = kF ′′∞(0) > 0 and, therefore, Gk is strictly increasing in an interval (0, δ) for
some δ > 0. Consequently, Gk has a local maximum at a point x0 such that 0 < x0 < ζ
and Gk(x0) > p0. Since G′k(x0) = 0, then (3.24) implies that G′′k(x0) > 0, and this is a
contradiction. Hence Gk(ζ) ≤ p0. If Gk(ζ) = p0, then we know that G′k(ζ) = 0 and Gk
satisfies (3.21); also recall that y = p0 is a constant solution to (3.21). Hence, by the
uniqueness of solutions to (3.21), we conclude that Gk(x) ≡ p0, for all x. This again
contradicts the fact that G′k(0) > 0, and hence Gk(ζ) < p0.

If Gk has a local minimum at some point y0 > 0, then by (3.24), Gk(y0) > p0.
But G′k(0) > 0, and therefore Gk has a local maximum at some point ζ such that
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0 < ζ < y0 and Gk(ζ) > p0. This contradicts the above proof. Consequently, Gk has
no local minima on the interval [0,∞).

To prove (iii), let r1 > r2 > 0, and let P (x) = Gr1(x)−Gr2(x), for x ≥ 0. Recall that

F ′∞(0) > 0 and σ2

2 F
′′
∞(0) = (βµF ′∞(0) + γ) > 0, as in Lemma 3.2. Then, using (3.22),

it follows that P (0) > 0 and P ′(0) > 0. Furthermore, P satisfies the homogeneous

equation σ2

2 P
′′(x) − (βµ + θx)P ′(x) − (θ + γ)P (x) = 0, for x > 0. Hence, P cannot

have any positive local maxima. This implies that P (x) > 0, for all x ≥ 0. Therefore,
if P ′(ζ) = 0, for some ζ > 0, then from the above differential equation, it follows that
P ′′(ζ) > 0 and x = ζ is necessarily a local minimum. This, together with the fact that
P ′(0) > 0, implies that P ′(x) > 0, for all x ≥ 0. Hence, Assertion (iii) follows.

For part (iv), let Gk(x0) ≥ p0, for some x0 > 0. Suppose that G′k(x0) < 0. Since
G′k(0) > 0, it follows that there is a local maximum at a point ζ such that 0 < ζ < x0,
and Gk(ζ) > p0. This contradicts part (ii) above. Therefore, G′k(x0) ≥ 0. Since
Gk(x0) ≥ p0, G

′
k(x0) = 0 also contradicts part (ii). Hence, G′k(x0) > 0. Now we can

use again part (ii) to conclude that G′k(x) > 0, for all x ≥ x0. This yields part (iv).

To prove part (v), notice that G0(0) = −b
γ+µ , G′0(0) = 0 and, by (3.21), σ2

2 G
′′
0(0) =

−[a+ (γ+θ)b
(γ+µ) ] < 0. Hence, G0 is strictly decreasing in an interval [0, δ), for some δ > 0.

Then, using (3.24), similarly to the proof of part (ii), we can show that G0 is strictly
decreasing in [0,∞). This completes the proof of the lemma.

To facilitate the discussion of our next lemma, we make the following observation:
Let us choose k1 > 0 such that k1F

′
∞(0) = a

γ+θ + b
γ+µ . Then, by (3.22), Gk1(0) = p0

and G′k1(0) = k1F
′′
∞(0) > 0. Now, we can use part (iv) of the above lemma to conclude

that G′k1(x) > 0, for all x > 0. Using parts (i), (iii) and (iv) of Lemma 3.3, and by
a straightforward argument, we conclude that there is an ε > 0 and δε > 0 such that
Gk(x) > p0, for all x > δε, whenever k > k1 − ε. Then, it also follows that, for each
k > k1 − ε, Gk is strictly increasing on the interval [0,∞). We use these facts in the
proof of the next lemma, which is central for constructing our optimal strategy. It
shows a dichotomy about the existence of a local maximum for the function Gk.

Lemma 3.4. Let p0 be the constant defined in (3.23). Then, there is a finite constant
k0 > 0 satisfying the following assertions:

(i) The function Gk0 is strictly increasing on [0,∞) and lim
x→∞

Gk0(x) = p0.

(ii) If k > k0, then Gk is strictly increasing on [0,∞) and lim
x→∞

Gk(x) =∞.

(iii) If 0 < k < k0, then Gk has a unique maximum at a point zk and Gk(zk) < p0.

(iv) For each p that satisfies 0 < p < p0, there is a constant kp so that 0 < kp < k0
and max

x≥0
Gkp(x) = p. In particular, this constant kp is unique.

(v) For each 0 < p < p0, let zkp be the unique maximum point of Gkp which satisfies
Gkp(zkp) = max

x≥0
Gkp(x) = p. Then 0 < p1 < p2 < p0 implies that zkp1 < zkp2 .

Proof. By part (v) of Lemma 3.3, G0(0) ≤ 0 and G0 is strictly decreasing on [0,∞).
If k > 0, then Gk(0) > 0 and G′k(0) > 0 by (3.22). Using parts (i) and (iii) of Lemma
3.3, we can find δ0 > 0 such that, for each 0 < k < δ0, the function Gk has a positive
strict local maximum. We introduce

k0 = inf{k > 0 : Gk is strictly increasing on [0.∞)}. (3.25)
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By the discussion after the proof of Lemma 3.3, we know that every k ≥ k1 is in the
above set and hence it is nonempty. Therefore, k0 is well defined and k0 ≤ k1. On
the other hand, k0 ≥ δ0 > 0, since each Gk has a local maximum when 0 < k < δ0.
Therefore, 0 < δ0 ≤ k0 < k1. Now, let us consider the function Gk0 . Since G′k0(0) > 0,
it follows that Gk0 is strictly increasing in a neighborhood of the origin. If Gk0 has a
local maximum at a point x = ζ > 0. Then, by (3.21), G′′k0(ζ) < 0 and it is a strict
local maximum. Let us choose M > 0 so that 0 < ζ < M . Using part (i) of the lemma,
we know that Gk approximates Gk0 uniformly on the interval [0,M ] if k is close to
k0. Therefore, using this, together with part (iii) of Lemma 3.3, we can find a δ1 > 0
such that, for each k in [k0, k0 + δ1), Gk has a local maximum. This contradicts the
definition of k0 in (3.25). Hence, Gk0 is strictly increasing on [0,∞).

Now suppose that Gk0(y) > p0, for some y. Then, relying on parts (i) and (iii)
of Lemma 3.3, we find a δ2 > 0 such that Gk(y) > p0, for each 0 < k0 − δ2 < k ≤
k0. Then, using part (ii) of the same lemma, the function Gk cannot have any local
extrema for each such k, and hence Gk is strictly increasing. This, again, contradicts
(3.25). Therefore, Gk0(y) ≤ p0, for all y ≥ 0. But, if Gk0(y1) = p0 for some y1 > 0,
then Gk0(y) > p0, for all y > y1 and, then again, we get a contradiction as above.
Consequently, the function Gk0 is strictly increasing on the interval [0,∞) and Gk0(y) <
p0, for all y > 0. Next, we let l0 = lim

x→∞
Gk0(x), then l0 ≤ p0. We can write (3.21) in

an integral form to obtain

σ2

2
G′k0(x) + ax =(

σ2

2
G′k0(0)− βµGk0(0)) + βµGk0(x)

+ θxG′k0(x) + γ

∫ x

0
Gk0(y)dy , for x > 0 .

Using G′k0(x) ≥ 0, and dividing the whole equation by x and letting x tend to infinity,
we obtain a ≤ θl0 + γl0. Next, by (3.23), we obtain l0 ≥ p0. Consequently, we have
lim
x→∞

Gk0(x) = p0. This completes the proof of part (i).

Let k > k0. Since G′k(0) > 0, we have G′k(x) > 0, for all 0 < x < δ, for some
δ > 0. Suppose that G′k(ζ) = 0, for some ζ > δ. Then by part (ii) of Lemma 3.3,
we have Gk(ζ) < p0, G

′′
k(ζ) < 0 and x = ζ is a strict local maximum. Again, using

part (ii) of Lemma 3.3, we conclude that Gk is strictly decreasing in [ζ,∞). Since
lim
x→∞

Gk0(x) = p0, and Gk(0) > Gk0(0), we get Gk(z) = Gk0(z), for some z > 0. But

this contradicts part (i) of Lemma 3.3. Consequently, G′k(x) > 0, for all x > 0. Now
let L = lim

x→∞
Gk(x). Suppose that L is finite. Then lim inf

x→∞
G′k(x) = 0. We use the

integral form of the differential equation (3.21) to obtain

σ2

2
G′k(x) + ax =(

σ2

2
G′k(0)− βµGk(0)) + βµGk(x)

+ θxGk(x) + γ

∫ x

0
Gk(y)dy , for x > 0.

We divide this equation by x and use lim inf
x→∞

G′k(x) = 0 to take the limit along a

suitable subsequence to conclude that L = p0. Now consider the function U(x) =
Gk(x)−Gk0(x), for x > 0. Then U(x) > 0, for all x ≥ 0 and U ′(0) > 0. Furthermore
U satisfies the homogeneous equation

σ2

2
U ′′(x)− (βµ+ θx)U ′(x)− (θ + γ)U(x) = 0, for x > 0 .
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Since U(0) > 0, U ′(0) > 0 and lim
x→∞

U(x) = 0, the function U must have a positive local

maximum at a point ζ > 0. Then U ′(ζ) = 0, and by the above differential equation,
we get U ′′(ζ) > 0. This is a contradiction, hence L cannot be finite. Consequently,
lim
x→∞

Gk(x) =∞, which completes part (ii) of the lemma.

Next, consider the case 0 < k < k0. For each k, we intend to show that the function
Gk has a unique maximum on the interval [0,∞). Suppose that G′k(x) is nonzero for
all x > 0. Then G′k(x) > 0, for all x > 0, since G′k(0) > 0. Thus Gk is increasing.
But Gk(x) ≤ Gk0(x) ≤ p0, from which it follows that lim

x→∞
Gk(y) exists and is finite.

Now, following an argument very similar to the proof of part (ii) above, we can obtain
a contradiction. Thus, G′k(zk) = 0, for some zk > 0, and by (3.24), it is a strict local
maximum. By part (ii) of Lemma 3.3, there are no local minima, hence x = zk is the
unique positive maximum point. In particular, the inequality Gk(zk) < Gk0(zk) < p0
holds. This completes part (iii).

For part (iv), we introduce the function

M(k) = max
x≥0

Gk(x) ,

for each k < k0. Then M(k) < p0, and using the properties of the functions {Gk :
0 ≤ k < k0} that have been so far obtained, it follows that the function M is strictly
increasing and continuous on the interval (0, k0). Also, M(0+) = −b

γ+µ and lim
k→k0

M(k) =

p0. Hence, part (iv) follows.
The proof of part (v) is a direct consequence of the above results and part (iii) of

Lemma 3.3. This completes our proof of the lemma.

By Lemma 3.4, there is a unique constant kp > 0 such that max
x≥0

Gkp(x) = p, for

each p. Furthermore, by parts (iv) and (v) of the same lemma, there is a unique point
zkp > 0 such that

Gkp(zkp) = p .

This point zkp > 0 is the threshold used in our optimal strategy, when 0 < p < p0.
Therefore, we relabel zkp as zp, for simplicity. The following proposition describes the
behavior of this threshold point zp, as a function of p.

Proposition 3.5. Let zp be the above described threshold point, for 0 < p < p0.
Consider zp as a function of p only (while keeping all the other parameters fixed).
Then the following prevails:

(i) When 0 < p < p0, zp is a continuous, strictly increasing function of the variable
p.

(ii) lim
p→p−0

zp = +∞.

Proof. By part (v) of Lemma 3.4, it follows that zp is strictly increasing on the interval
(0,∞). To prove the continuity of the function zp, let 0 < p < p0 and keep p fixed.
First we establish the left-continuity at p. We choose a strictly increasing sequence (pn)
of positive numbers such that lim

n→∞
pn = p. Then, the sequence (zpn) is also strictly

increasing and bounded above by zp. According to Lemma 3.3 and Lemma 3.4, there is
also a corresponding strictly increasing sequence (kpn) such that 0 < kpn < kp < k0, for
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all n and Gkpn (zpn) = pn. We let Λ = lim
n→∞

zpn and k̂ = lim
n→∞

kpn , and then 0 < Λ ≤ zp
and 0 < k̂ ≤ kp. By part (i) of Lemma 3.3, it follows that Gk̂(Λ) = p. Using parts

(iii), (iv) and (v) of Lemma 3.4, we have k̂ = kp and Λ = zp. This concludes the
left-continuity at point p.

To establish the right-continuity at p, let (pn) be a strictly decreasing sequence such
that p < pn < p0, for all n and lim

n→∞
pn = p. Similar to the proof of left-continuity,

there are two strictly decreasing sequences (kpn) and (zpn) such that 0 < kp < kpn < k0,

for all n, (zpn) is bounded below by zp, and Gkpn (zpn) = pn. We let k̂ = lim
n→∞

kpn and

Λ = lim
n→∞

zpn . Using Lemmas 3.3 and 3.4, we have pn = Gkpn (zpn) ≥ Gkpn (x) ≥ Gk̂(x)

for all x. We let n tend to infinity and obtain p ≥ Gk̂(x), for all x. This implies that

k̂ ≤ kp. Then a straightforward argument implies that Gk̂(Λ) = p and, by Lemma 3.4,
it follows that Λ = zp. This yields the right-continuity of zp and hence the proof of
part (i) is complete.

Since zp is strictly increasing in p, we let Λ = lim
p→p0

zp. We suppose that Λ is finite.

As before, there is a corresponding strictly increasing function kp such that 0 < kp < k0
and Gkp(zp) = p. We let k̂ = lim

p→p0
kp. By letting p tend to p0, we obtain k̂ ≤ k0 and

thus Gk0(Λ) ≥ Gk̂(Λ) = p0. This contradicts part (i) of Lemma 3.4. Hence we conclude
that Λ is infinite, which completes our proof.

3.4 Numerical Computation of zp

For a given value of p, such that 0 < p < p0, and given the values of the parameters a,
b, γ, β, µ, θ, σ, we would like to numerically compute zp. A general numerical method
is developed in [23] for computing free boundary points, such as zp, for infinite horizon
discounted cost minimization problems, when the drift and diffusion coefficients are
linear functions. However, their method is not applicable in our situation since their
main Assumptions 2 and 3 are violated here, but we can readily develop a numerical
scheme that is based on our results. It is somewhat similar to the procedure developed
in [11], Section 5, and therefore, we indicate only the basic steps.

We intend to find the value kp of the parameter k, and the corresponding function
Gkp so that it satisfies part (iv) of Lemma 3.4. Note that, by the same lemma, zp is
the unique point satisfying Gkp(zp) = p and G′kp(zp) = 0.

We begin with computing the unique solution F∞ to the initial value problem (3.15)
and (3.16). In particular, we compute F ′∞(0). When µ = γ, a closed-form formula for
F ′∞(0) can be obtained—see Remark 2 after the statement of Lemma 3.2. To initialize
the iterative procedure, we choose k̂ > 0 such that k̂F ′∞(0) = p + b

γ+µ . Therefore, by

(3.22), Gk̂(0) = p and G′
k̂
(0) > 0. If G′

k̂
(x) = 0 for some x, then by Lemmas 3.3 and

3.4, it is the maximum of Gk̂ and we have Gk̂(x) > p. Hence kp < k̂. If G′
k̂
(x) > 0

for all x, then again kp < k̂ holds. Thus, k̂ is an upper bound for kp. By part (v) of
Lemma 3.3, it is clear that kp > 0.

In the nth step of the iteration, we let u(n) and l(n) be the upper and lower bounds
for kp. We initialize with u(0) = k̂ and l(0) = 0. In the (n + 1)th step, we assign
kn+1 = 1

2(u(n+1)+l(n+1)) and examine the solution Gkn+1 to the initial value problem
described in (3.21) and (3.22). If Gkn+1(x) > p for some x, then we update the bounds
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u(n + 1) and l(n + 1) by u(n + 1) = kn+1 and l(n + 1) = l(n). Otherwise, the above-
described lemmas guarantee that G′kn+1

(zn+1) = 0 for some zn+1, and Gkn+1(zn+1) is
the maximum value of Gkn+1 . We can now compute Gkn+1(zn+1), which is less than or
equal to p. If Gkn+1(zn+1) < p, then we update u(n+ 1) = u(n) and l(n+ 1) = kn+1.
Since u(n+ 1)− l(n+ 1) = 1

2(u(n)− l(n)) and 0 ≤ l(n) ≤ l(n+ 1) ≤ kp ≤ u(n+ 1) ≤
u(n) < k̂, it follows that the two sequences (u(n)) and (l(n)) converge to the same limit
kp. Therefore, we can stop the iterative procedure at the first n where |Gkn(zn)−p| < ε.
Here ε > 0 is an a priori given error bound. Then using part (i) of Lemma 3.3, zp is
well approximated by zn.

The following numerical computations are obtained by using a Matlab program,
based on the above algorithm, with an error bound ε = 10−3. Typically, this procedure
converges in 16–18 iterations, but may take longer if the value of p is very close to p0.
We chose the value of the parameter β to be between -1 and +1, since this is the range
of values that arises in most QED applications.

µ γ β σ θ b a p0 p zp

1 0.5 -0.2 2 0.8 3 4 3.0769 3 11.2710

1.5 2 0.3 2 1 5 8 2.6667 2 1.8050

2 2 0 3 1.5 4 7 2 1.5 2.2790

3 1 0.8 4 2 1 8 2.6667 2 3.7940

3 2 0.4 3 1 2 12 4 3 2.3960

3 2 0.4 3 1 2 12 4 3.5 3.7790

4 0.2 -0.8 5 3 6 13 4.0625 1 0.9060

5 8 -0.5 3 6 7 20 1.4286 1.4 3.0820

When p gets close to p0, the value of zp becomes large, as one expects from the results
of Proposition 3.5. Rows 5 and 6 of the above table also verify the monotonicity of zp
in the parameter p.

3.5 A Smooth Solution to the HJB-Equation

With all the necessary technical results in hand, we are now able to exhibit a twice
continuously differentiable solution to the HJB-equation (3.7), which satisfies also (3.8)
as well as the growth condition |F (x)| ≤ C(1 + ax+ + bx−), for all x in our verification
lemma (Lemma 3.1). This solution depends on p and it has different qualitative behav-
ior according to p < p0 vs. p ≥ p0, where p0 is given in (3.23). In both cases, we show
that this solution coincides with the value function of the optimal control problem.

First we consider the case 0 < p < p0. Let zp be as in Proposition 3.5, and let kp
be the constant real number that satisfies 0 < kp < k0 and Gkp(zp) = p , as in Lemma
3.4. When 0 < p < p0, we can now introduce our candidate solution Fp on (−∞,∞)
by

Fp(x) =


kpF∞(x) + b

(γ+µ)(
βµ
γ − x) if x ≤ 0,

kp + bβµ
γ(γ+µ) +

∫ x
0 Gkp(u)du if 0 ≤ x ≤ zp,

Fp(zp) + p (x− zp) if x ≥ zp,
(3.26)

where the function F∞ is characterized in Lemma 3.2.
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Next we consider the case p ≥ p0. Our candidate solution Fp0 remains the same for
all the values of p ≥ p0 and is given by

Fp0(x) =

{
k0F∞(x) + b

γ+µ(βµγ − x) if x ≤ 0,

k0 + bβµ
γ(γ+µ) +

∫ x
0 Gk0(u)du if x ≥ 0,

(3.27)

where the constant k0 > 0 and the function Gk0 are described in Lemma 3.4. The
following theorem establishes that our candidate functions are smooth solutions to the
HJB-equation. Each of these functions provides a lower bound for the corresponding
value function Vp.

Theorem 3.6. Let p0 be defined by (3.23). Then the following results hold:

(i) For 0 ≤ p < p0, the function Fp defined in (3.26) is a twice continuously differen-
tiable solution of the HJB-equation (3.7). Furthermore, Fp is a convex function
that also satisfies (3.8), and Fp(x) ≤ Vp(x), for all x, where Vp is the value
function defined in (3.5).

(ii) For p ≥ p0, the function Fp0 defined by (3.27) is a twice continuously differentiable
solution to the HJB-equation (3.7) for each such p. Furthermore, Fp0 is a convex
function that also satisfies (3.8), and Fp0(x) ≤ Vp(x), for all x and every p ≥ p0,
where Vp is the value function given in (3.5).

Proof. In both parts of the theorem, it is straightforward to check that the function Fp
is twice continuously differentiable on R. When p < p0, by Lemma 3.4, Gkp(zp) = p
and G′kp(zp) = 0. This yields the C2 property at the point x = zp.

Next, we intend to verify the HJB-equation (3.7) for the case 0 ≤ p < p0. From our
construction of Fp, it follows that GFp(x) + ax+ + bx− = 0, whenever x ≤ zp, where
the differential operator G is defined in (3.6). At the point x = zp, this simplifies to
(βµ+ θzp)p+ γFp(zp) = azp. When x > zp,

GF (x) + ax+ + bx− =− (βµ+ θx)p− γFp(x) + ax

=− (θ + γ)(x− zp)(p− p0) > 0 ,

where p0 is given in (3.23). To obtain the last equality above, we have used (βµ +
θzp)p + γFp(zp) = azp, and the expression for Fp(x) given in (3.26), for the case
x > zp. Consequently, we have

GF (x) + ax+ + bx−

{
= 0 if x ≤ zp ,
> 0 if x > zp .

(3.28)

Next, we obtain the bound F ′p(x) ≤ p, for all x. By Lemmas 3.2, 3.4 and equation
(3.26), it follows that

F ′′p (x) =


kpF

′′
∞(x) if x ≤ 0,

G′kp(x) if 0 < x ≤ zp.
0 if x ≥ zp.

Therefore, F ′′p is non-negative. Hence, Fp is a convex function on R—indeed, it is
strictly convex on the interval (−∞, zp) and linear on [zp,∞). Consequently,

F ′p(x) =

{
< F ′p(p) = p if x < zp ,

> 0 if x ≥ zp .
(3.29)
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Using (3.28) and (3.30), we conclude that Fp is a C2-solution to the HJB-equation
(3.7), for 0 < p < p0. A straightforward argument, using Lemmas 3.2 and 3.4, shows
that |F ′p(x)| is bounded and, hence, (3.8) is also satisfied.

Using the fact that the function F∞ is bounded on (−∞, 0], as shown in Lemma
3.2 and (3.26), we also obtain the bound |Fp(x)| ≤ C(1 + ax+ + bx−), where C > 0
is a generic constant. Consequently, the function Fp satisfies all the assumptions of
Lemma 3.1 and hence, we conclude that Fp(x) ≤ Vp(x), for all x. This completes the
proof of part (i).

In the case p ≥ p0, it is easy to check that Fp0 defined in (3.27) is a C2-solution
to the differential equation GFp0(x) + ax+ + bx− = 0, for all x in R. By an argument
very similar to that in part (i), we can also establish that F ′′p0(x) > 0, for all x, and
hence it is a convex function. Note that, when x > 0, F ′p0(x) = Gk0(x) where Gk0
is given in Lemma 3.4. Then, using the convexity of the function Fp0 and part (i) of
Lemma 3.4, we deduce that F ′p0(x) < p0 ≤ p, for all x. Therefore, Fp0 is a C2-solution
to the HJB-equation (3.7), for every p ≥ p0, and it also satisfies (3.28). The proof
of the estimate |Fp0(x)| ≤ C(1 + ax+ + bx−), for all x, directly follows from (3.27).
Consequently, Fp0 satisfies all the assumptions of Lemma 3.1. We thus conclude that,
for each p ≥ p0, the inequality Fp0(x) ≤ Vp(x) holds for all x. This completes the
proof.

3.6 An Optimal Strategy

We are now ready to prove the main theorem of the present section.

Theorem 3.7. For each p > 0, let the cost functional J and the value function Vp be
defined by (3.3) and (3.5), respectively.

(i) Let 0 < p < p0, and let point zp be as in Lemma 3.4. Fix the initial point x; then
introduce the reflected diffusion process X∗p which satisfies the equation

X∗p (t) = x+ σW (t)−
∫ t

0
[βµ+ h(X∗p (s))]ds− U∗p (t) , for t > 0, (3.30)

where W is a one-dimensional Brownian motion, and U∗p is the local time process
of X∗p at point zp. (When x > zp, there is a jump to zp and, in this case, we take
X∗p (0−) = x and U∗p (0−) = (x− zp).) Then (X∗p , U

∗
p ) is an optimal strategy and

J(X∗p , U
∗
p , p) = Vp(x), for each x. Furthermore, Vp(x) ≡ Fp(x) for all x, where

Fp is given by (3.26).

(ii) Let p ≥ p0 and fix the initial point x. Consider the process X∗p0 defined by

X∗p0(t) = x+ σW (t)−
∫ t

0
[βµ+ h(X∗p0(s))]ds , (3.31)

for all t ≥ 0. The control process U∗p0 is identically zero in this case. Then, for
every p ≥ p0, (X∗p0 , U

∗
p0) is an optimal strategy and J(X∗p0 , U

∗
p0 , p) = Vp0(x) =

Vp(x), for all x. Furthermore, Vp(x) ≡ Fp0(x), for all x, where Fp0 is defined in
(3.27).

In both cases, the value function Vp satisfies (3.7) and (3.8).
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Remark. For the singular optimal control described in part (i), the principle of smooth
fit ([25]) holds. Part (ii) of the above theorem shows that the optimal strategy remains
the same for all p ≥ p0.

Proof. First, we consider the case where the initial point x ≤ zp. The existence of a
unique solution to (3.30), over all t > 0, is well known(Chapter IV, [16]).

We begin with obtaining an upper bound for E[X∗p (T )]2. Introduce the sequence
of stopping times (τn), with n > |x|, by

τn = inf{t ≥ 0 : |X∗p (t)| > n}. (3.32)

Using Itô’s lemma, through a localization procedure with (τn), we obtain

E[X∗p (T ∧ τn)2]+2E

∫ T∧τn

0
X∗p (s)(h(X∗p (s)) + βµ)ds

+2zpE[U∗p (T ∧ τn)] = x2 + σ2E[T ∧ τn] .

Since µ and θ are non-negative quantities, by the definition of h in (3.2), it follows
that x(h(x) + βµ) ≥ εx2 +K, where ε is a non-negative constant and K is a (possibly
negative) constant. Then we obtain

E[X∗p (T ∧ τn)2]+2εE

∫ T∧τn

0
X∗p (s)2ds

+2zpE[U∗p (T ∧ τn)] ≤ x2 + C1T,

where C1 is a positive constant. Consequently, we get

E[X∗p (T ∧ τn)2] ≤ x2 + C1T . (3.33)

Let Fp be given by (3.26). We apply Itô’s lemma to Fp(X
∗
p (T )). Since F ′p(zp) = p,

Fp satisfies (3.8) and (3.28), which yields

E[Fp(X
∗
p (T ))]e−γT = Fp(x)− E

∫ T

0
e−γt[(aX∗p (t)+ + bX∗p (t)−)dt+ pdU∗p (t)] .

Using (3.8) again and then (3.33), we have

E[|Fp(X∗p (T ))|]e−γT ≤ [C0 + C2E|X∗p (T )|]e−γT ≤ [C0 + C2

√
x2 + C1T ]e−γT ,

from which we conclude that lim
T→∞

E[Fp(X
∗
p (T ))]e−γT = 0. Consequently,

Fp(x) = E

∫ T

0
e−γt[(aX∗p (t)+ + bX∗p (t)−)dt+ pdU∗p (t)] .

Since Fp is finite, (X∗p , U
∗
p ) satisfies the requirements for an admissible control policy,

with any initial point x ≤ zp. This enables us to conclude that Fp(x) ≥ Vp(x), for any
x ≤ zp.

When x > zp, there is an initial jump to zp, which we represent by takingX∗p (0) = x,
X∗p (0+) = zp, and U∗p (0) = (x− zp). Therefore,

Fp(zp) + p(x− zp) = E

∫ T

0
e−γt[(aX∗p (t)+ + bX∗p (t)−)dt+ pdU∗p (t)] .
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By (3.26), Fp(x) = Fp(zp) + p(x− zp), when x > zp. Hence,

Fp(x) = E

∫ T

0
e−γt[(aX∗p (t)+ + bX∗p (t)−)dt+ dU∗p (t)]

holds when x > zp, and we conclude that Fp(x) ≥ Vp(x), for any x ≥ zp as above.
Now, we can use part (i) of Theorem 3.6 to get Fp(x) = Vp(x), for all x. Therefore, for
any initial point x, the above-described strategy (X∗p , U

∗
p ) is an optimal strategy.

The proof of part (ii) is very similar. Let x be any initial point and consider the
diffusion process X∗p0 given in (3.31). Let Fp0 be the function described in (3.27). Then,
as in the proof of Theorem 3.6, this function satisfies GFp0(x) + ax+ + bx− = 0, and
F ′p0(x) < p0 ≤ p, for all x. We apply Itô’s lemma to Fp0(X∗p0(t))e−γt and use the above
results and (3.8) to deduce

E[Fp0(X∗p0(T ))]e−γT = Fp0(x)− E
∫ T

0
e−γt[aX∗p0(t)+ + bX∗p0(t)−]dt .

Next (with the control process U∗p0 identically zero), we can derive the estimate (3.33)
by a similar argument. Then, since Fp0 also satisfies (3.8), we obtain

lim
T→∞

E[Fp0(X∗p0(T ))]e−γT = 0 ,

similarly to the proof in part (i). Consequently, we have

Fp0(x) = E

∫ T

0
e−γt[aX∗p0(t)+ + bX∗p0(t)−]dt ;

Fp0(x) is finite, hence (X∗p0 , U
∗
p0) is an admissible strategy, for every p ≥ p0, which

yields Fp0(x) ≥ Vp(x), for all x and all p ≥ p0. By part (ii) of Theorem 3.6, we then
conclude that, for a given initial point x, Fp0(x) = Vp(x), and (X∗p0 , U∗p0) is an optimal
strategy for all p ≥ p0. This completes the proof of the theorem.

Remark. The last theorem enables one to uniquely characterize the threshold zp by

zp =

{
inf{x ∈ R : V ′p(x) = p} if 0 < p < p0,

∞ if p ≥ p0.
(3.34)

Here p0 = a/(θ + γ), as defined in (3.23).

4 Asymptotic Optimality

We now exhibit an asymptotically optimal sequence of processes (Xn, Vn), each char-
acterized via a constant queue-capacity mn (with mn ≡ ∞ allowed).

4.1 Main Results

Let (Xn, Vn) be the queueing model in (2.20) with constant queue-capacity mn. Under
the assumptions (2.1)–(2.3), (2.41) and (2.42), we can employ Theorem 2.2 to conclude
that the sequence of processes (Xn, Vn) converges weakly to a reflected diffusion process
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(Xx, U) which is characterized by (2.43). The constant reflection barrier κ is as in
(2.42). Note that the Brownian motions W1 and W2 in (2.43) are independent and,
therefore, one can rewrite (2.43) in the form

Xx(t) = x+ σW (t)− βµt−
∫ t

0
(θX+

x (s)− µX−x (s))ds− U(t) ; (4.1)

if x ≤ κ, then Xx(t) ≤ κ, for all t ≥ 0, where the constant κ > 0 is given in (2.42). The
process U is non-decreasing; it increases only when Xx(t) = κ for t > 0, U(0) = 0, and
it satisfies (2.44). (For model completeness, when x > κ, the state process Xx has an
initial jump to the point κ; thereafter, it satisfies (4.1), starting from κ. To represent
this, we simply assign Xx(0−) = x, Xx(0) = κ and U(0) − U(0−) = x − κ > 0.)
Therefore, in general, the following identity holds for all t ≥ 0:

U(t)− U(0) =

∫ t

0
I[Xx(s)=κ](s)dU(s) . (4.2)

Next, the diffusion coefficient σ in (4.1) is determined by the coefficients of the inde-
pendent Brownian motions W1 and W2 in (2.43):

σ2 = σ21 + µ , (4.3)

where σ1 is given in (2.3), and µ is the service rate.
We are now ready to state the two main theorems of this paper. The first theorem

shows that the value function of the diffusion control problem given in (3.5), is a lower
bound for the sequence of cost functionals J(Xn, Vn, p), when lim

n→∞
Xn(0) = x. The

second theorem exhibits an asymptotically optimal sequence of processes (X∗n, V
∗
n ),

with lim
n→∞

X∗n(0) = x, for each x.

Theorem 4.1. [Asymptotic lower bound]
Assume that the basic assumptions (2.1)–(2.4) and (2.8)–(2.10) hold. For each p > 0,
let the value function Vp of the diffusion control problem be given by (3.5). For each x
in R, let (Xn, Vn) be a sequence of processes that satisfies (2.20), (2.41) where, for each
n, the associated cost functional J(Xn, Vn, p) is given in (2.60). Then the following
lower bound holds:

lim inf
n→∞

J(Xn, Vn, p) ≥ Vp(x) , for all x ∈ R . (4.4)

In the next theorem, we use (4.4) jointly with Theorem 2.2, to obtain an asymp-
totically optimal strategy.

Theorem 4.2. [Asymptotic optimality]
Recall p0, as defined in (3.23), and zp, the optimal threshold of the diffusion control
problem, as given in Theorem 3.7.

(i) Let 0 < p < p0. Consider any sequence (X∗n, V
∗
n ), with lim

n→∞
X∗n(0) = x, equipped

with a constant queue-capacity sequence (m∗n) that satisfies

lim
n→∞

m∗n√
n

= zp . (4.5)

Then
lim inf
n→∞

J(X∗n, V
∗
n , p) = Vp(x) , (4.6)

for all x, and therefore, the sequence (X∗n, V
∗
n ) is asymptotically optimal.
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(ii) Let p ≥ p0. Consider a sequence (X∗n, V
∗
n ) with no blocking (mn = ∞, for all n)

and lim
n→∞

X∗n(0) = x. Then

lim inf
n→∞

J(X∗n, V
∗
n , p) = Vp(x) , (4.7)

for all x; hence the sequence (X∗n, V
∗
n ) is asymptotically optimal.

The proofs of the last two theorems will be demonstrated in several steps. In the
following discussion, the initial values Xn(0) are deterministic according to our model
in Section 2, and they converge to Xx(0). The same conclusions can be made under the
assumption lim

n→∞
E|Xn(0) −Xx(0)|2 = 0, with Xn(0) being random. Throughout the

discussion below, the function κn(·) represents the normalized queue-capacity process
mn(·)√

n
, for all n ≥ 1. The process κn(·) is in D[0,∞), representing the reflection barrier

of the process Xn.

Lemma 4.3. Let all the assumptions of Theorem 4.1 hold. Assume also that
lim
n→∞

κn(0) = +∞, where κn(·) is the queue-capacity process corresponding to (Xn, Vn).

Then
lim inf
n→∞

J(Xn, Vn, p) ≥ Vp(x) , for all x ∈ R .

Proof. It suffices to consider the case lim inf
n→∞

J(Xn, Vn, p) < ∞. Without loss of gen-

erality (by choosing a subsequence, if necessary), we assume that lim
n→∞

J(Xn, Vn, p)

exists. Recall that κn(0) is non-random. If κn(0) = ∞ for infinitely many n, then by
assumption (2.9), it follows that κn(t) is infinite for all t ≥ 0 a.s. for each such n, and
there is no reflection boundary. In that case, the result follows from the work of [29],
and the proof given below can also be greatly simplified. Using (2.20) and (2.45), we
write

Xn(t) = Xn(0)+Ân(t)−Mn(t)− εn(t) +
(λn − µn)t√

n

−
∫ t

0
h(Xn(s))ds− Vn(t)

, (4.8)

where h(x) = θx+−µx−, for all x, εn is given in (2.45) and the non-decreasing process
Vn satisfies ∫ t

0
I[Xn(s)<κn(s)](s)dVn(s) = 0 , (4.9)

for all t ≥ 0(see section 7.3 of [29]). By (2.3), (2.26), and following the arguments in
[29], as well as using lim

n→∞
||εn||T = 0 in probability (as in the proof of Theorem 2.2),

we have
Ân −Mn − εn ⇒ σW, in D[0,∞).

Here W is a standard Brownian motion with the constant σ given in (4.3). This
weak convergence may prevail through a subsequence, but we can relabel it as the
original sequence. Using Skorokhod’s representation theorem, we can simply assume
that Ân−Mn− εn converges almost surely to σW , in the space D[0,∞) equipped with
Skorokhod topology. But the limiting process σW has continuous paths and, therefore,
this convergence is uniform on finite intervals, almost surely. We let

ξn(t) = Ân(t)−Mn(t) , (4.10)
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for all t ≥ 0. Then, we have

lim
n→∞

||ξn − εn − σW ||T = 0 almost surely, (4.11)

for all T > 0. Next, on the same probability space, and using the same Brownian
motion W , we consider the strong solution Xx that satisfies

Xx(t) = x+ σW (t)− µβt−
∫ t

0
h(Xx(s))ds , (4.12)

for each t ≥ 0. Here, the function h is given by h(x) = θx+−µx−, for all x. Since h is
Lipschitz continuous, the above equation has a path-wise unique, non-exploding strong
solution Xx, and the process Xx is adapted to the Brownian filtration. In particular,
since h is a Lipschitz continuous function, we can have the standard exponential bound

E[||Xx||2T ] ≤ CekT , (4.13)

available for each T > 0, where C and k are positive constants (see Chapter 5. [17]).
From part (ii) of Theorem 3.7, it is evident that (Xx, 0) is an admissible control system
for the diffusion control problem in Section 3, where 0 represents the zero process.
Consequently, the cost functional J(Xx, 0, p) is finite for each x ≥ 0.

Let ε > 0 be arbitrary. Then we can find T0 > 0 such that

E

∫ ∞
T0

e−γsC(Xx(s))ds < ε , (4.14)

where C(x) = ax+ + bx− represents the running cost function. Let Γκn be the Sko-
rokhod map defined in (2.33), corresponding to the upper-reflection boundary process
κn. Introduce the process Zn by Zn(t) = Xn(t) + Vn(t), for all t ≥ 0, where (Xn, Vn)
satisfies (4.8) and (4.9). Then Γκn(Zn)(t) = Xn(t), for all t ≥ 0, and (4.8) can be
written as

Zn(t) = xn + ξn(t)− εn(t)− µβnt−
∫ t

0
h(Γκn(Zn)(s))ds , (4.15)

for all t ≥ 0 where βn = (µn−λn)√
n

and Xn(0) = xn. Next, we can also find n0 > 1 such

that |xn − x|+ µ|βn − β|T0 < ε, for all n ≥ n0. Then, by (4.12) and (4.15), we obtain

|Zn(t)−Xx(t)| ≤ ε+ |ξn(t)− εn(t)−σW (t)|+ C

∫ t

0
|Γκn(Zn)(s)− Γκn(Xx)(s)|ds

+ C

∫ t

0
|Γκn(Xx)(s)−Xx(s)|ds ,

(4.16)
for each 0 ≤ t ≤ T0 and n ≥ n0. Next, we let κ̂n(ω) = inf

[0,T0]
κn(s, ω). Using a δ > 0 in

(2.10), and a partition {0 = t0 < t1 < t2 < · · · < tr = T0}, with |ti+1 − ti| < δ, for all
i, and r a finite positive integer, we get

sup
[0,T0]

|κn(t)− κn(0)| ≤ r sup
|t−s|<δ

|κn(t)− κn(s)| ,
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for any t and s in [0, T0]. Hence, using (2.10), we have E[ sup
[0,T0]

|κn(t) − κn(0)|] ≤ Cr,

where Cr is a constant independent of n. In particular, E[|κ̂n−κn(0)|] ≤ Cr. Consider
the random set

Bn =

{
ω : κ̂n(ω) >

κn(0)

4

}
.

Then, using the above estimate, we have

P (Bc
n) ≤P

[
|κ̂n(ω)− κn(0)| ≥ 3

4
κn(0)

]
≤ 4

3κn(0)
E [|κ̂n − κn(0)|] ≤ 4Cr

3κn(0)
.

Consequently, lim
n→∞

P [Bc
n] = 0. We also introduce the set An by

An =

{
sup
[0,T0]

|Xx(t)| > κ̂n

}
.

Then,

P [An] ≤ P

[
sup
[0,T0]

|Xx(t)| > κ̂n, κ̂n >
κn(0)

4

]
+ P [Bc

n].

Now,

P

[
sup
[0,T0]

|Xx(t)| > κ̂n, κ̂n >
κn(0)

4

]
≤ P

[
sup
[0,T0]

|Xx(t)| > κn(0)

4

]
.

Using these facts, together with (4.13), we deduce that lim
n→∞

P [An] = 0.

From (4.16) we obtain

‖Zn −Xx‖t ≤ ε+ ‖ξn − εn − σW‖t+C1

∫ t

0
‖Zn −Xx‖sds

+C2 T0 ‖Xx‖T0 .IAn ,
(4.17)

for all 0 ≤ t ≤ T0, where C1 and C2 are generic constants. Here we have used (2.35),
plus the fact that Γκn(Xx)(s) = Xx(s) for all 0 ≤ s ≤ T0 on the set Acn. Using
(2.45) and Lemma 2.1, we can easily derive E[||εn||2T ] ≤ C(1 + T k), where C > 0
and k > 1 are constants independent of n. This, together with the estimates (2.4),
(2.25), and the finiteness of E[ sup

[0,T0]
|W (t)|2] implies that sup

n≥1
E[||ξn− εn−σW ||2T0 <∞.

Using this, together with (4.11), we have lim
n→∞

E[‖ξn − σW‖T0 ] = 0. Also, by (4.13)

and lim
n→∞

P [An] = 0, we obtain lim
n→∞

E[‖Xx‖T0 .IAn ] = 0. Now, taking the expected

value of (4.17), and using these facts with Gronwall’s inequality, we conclude that
lim
n→∞

E[‖Zn −Xx‖T0 ] = 0. Recall that Γκn(Zn) = Xn, and hence we have

E [‖Xn −Xx‖T0 ] =E [‖Γκn(Zn)−Xx‖T0 ]

≤E [‖Γκn(Zn)− Γκn(Xx)‖T0 ] + E [‖Γκn(Xx)−Xx‖T0 ]

≤2 E [‖Zn −Xx‖T0 ] + E [‖Γκn(Xx)−Xx‖T0 ] .

In the last line, clearly the first term on the right-hand side converges to zero as n
tends to infinity. For the second term, on the set Acn notice that Γκn(Xx)(t) = Xx(t),
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for all 0 ≤ t ≤ T0. Hence ‖Γκn(Xx)−Xx‖T0 ≤ 3 ‖Xx‖T0IAn holds almost surely. Thus,
lim
n→∞

E[‖Γκn(Xx)−Xx‖T0 ] = 0 and consequently,

lim
n→∞

E[‖Xn −Xx‖T0 ] = 0 . (4.18)

Let us consider the cost functional J(Xn, Vn, p) in (2.60). We let the running cost
C(x) = ax+ + bx−, for all x, and use (4.18) to obtain

lim
n→∞

E

∫ T0

0
e−γt|C(Xn(t))− C(Xx(t))|dt = 0 .

Consequently,

lim inf
n→∞

J(Xn, Vn, p) ≥ lim inf
n→∞

E

∫ T0

0
e−γtC(Xn(t))dt

= E

∫ T0

0
e−γtC(Xx(t))dt .

(4.19)

By (4.14), E
∫ T0
0 e−γtC(Xx(t))dt ≥ E

∫∞
0 e−γtC(Xx(t))dt− ε. Hence,

E

∫ T0

0
e−γtC(Xx(t))dt ≥ Vp(x)− ε ,

where Vp is the value function given in (3.5). Since ε > 0 is arbitrary, it follows that
lim inf
n→∞

J(Xn, Vn, p) ≥ Vp(x). This completes the proof.

To prove the above lemma in the case lim sup
n→∞

κn(0) is finite, we first need the

following technical result.

Lemma 4.4. Let κ be a non-negative adapted process, defined over [0,∞), with con-
tinuous sample paths. Let (Xx, V ) be a solution to (2.39) and (2.40), with b(x) =
−[µβ + (θx+ − µx−)], for all x, and let κ be the upper reflection boundary process.
Then, for a given ε > 0, there exists T0 > 0 such that

E

∫ ∞
T0

e−γt[C(Xx(t))dt+ p dV (t)] < ε , (4.20)

where C(x) = ax+ + bx− is the running cost function. Furthermore, T0 can be chosen
so that it does not depend on the reflection boundary process κ.

Proof. Let (Xx, V ) be a solution to (2.39) and (2.40), with b(x) = −[µβ+(θx+−µx−)],
for all x, and a continuous reflection boundary process κ. Then by the discussion
below (2.40), it follows that the processes Xx and V have continuous sample paths.
We apply Itô’s lemma via a localization procedure to Xx(t)2, and use the fact that∫ t
0 Xx(s)dV (s) ≥ 0, to obtain

E[Xx(t)2] ≤ x2 + σ2t− 2E

∫ t

0
Xx(s)(µβ + h(Xx(s))ds ,
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for all t > 0, where h(x) = θx+ − µx−, for all x. Since µ and β are constants, we can
find a large constant M > 0 such that x(µβ + h(x)) > 0, for all |x| > M . The value of
M depends only on µ, β and θ. Therefore,

E[Xx(t)2] ≤ x2 + σ2t− 2E

∫ t

0
Xx(s)(µβ + h(Xx(s))I[−M,M ](Xx(s))ds

≤ x2 + C0t ,

(4.21)

for all t > 0, where C0 is a positive constant which depends only on the constants µ,
θ, β and σ. Note that C0 is independent of t and the reflection boundary process κ.
Next, using (2.39), we can write V (t) = x+ σW (t)− µβt−

∫ t
0 h(Xx(s))ds−Xx(t), for

all t ≥ 0. Using the inequality |x| ≤ 1 + x2, we obtain the estimate

E[V (t)] ≤ 1 + +C1 t+ C2

∫ t

0
(1 + x2 + C0 s)ds+ (1 + x2 + C0 t) .

Again, the constants C0, C1 and C2 are independent of the process κ and t. Conse-
quently,

E[V (t)] ≤ (1 + x2)(1 + t) +K1 t+K2 t
2 , (4.22)

where the positive constants K1 and K2 depend only on the constants µ, θ, β and
σ, and they do not depend on the reflection boundary process κ and t. Consider the
cost functional J(Xx, V, p) associated with (Xx, V ), as given in (3.3). Using Fubini’s
theorem to obtain the representation (3.9) for J(Xx, V, p) and employing the above
estimates (4.21) and (4.22), we get

J(Xx, U, p) = E

∫ ∞
0

e−γt[aX+
x (t) + bX−x (t) + γ pV (t)]dt <∞ . (4.23)

In view of (4.21) and (4.22), we have E[aX+
x (t)+bX−x (t)+γ pV (t)] ≤ K(1+ t2), where

K > 0 is a generic constant independent of the process κ and t. This constant may
depend on the initial value x. Using Fubini’s theorem,

E

∫ ∞
T

e−γt[C(Xx(t))dt+ p dV (t)] =

∫ ∞
T

e−γtE[C(Xx(t))dt+ γp V (t)]dt ,

for all T > 0. Hence, combining the above estimates, we deduce

E

∫ ∞
T

e−γt[C(Xx(t))dt+ p dV (t)] ≤ K
∫ ∞
T

e−γt(1 + t+ t2)dt ,

for all T > 0; here, the generic constant K is independent of the reflection boundary
process κ. Now let ε > 0 be arbitrary. Then we can find T0 > 0 such thatK

∫∞
T0
e−γt(1+

t + t2)dt < ε, and thus T0 > 0 is independent of the reflection boundary process κ.
This immediately yields the desired result.

The next lemma is needed for completing the proof of Theorem 4.1.

Lemma 4.5. Let all the assumptions of Theorem 4.1 hold. Also assume that

lim sup
n→∞

κn(0) < +∞ ,

where κn(·) is the queue-capacity process corresponding to (Xn, Vn). Then

lim inf
n→∞

J(Xn, Vn, p) ≥ Vp(x) , for all x ∈ R .
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Proof. We first choose a subsequence such that lim
nk→∞

κnk(0) = lim sup
n→∞

κn(0) < +∞,

and for simplicity, identify it with the original sequence (κn). It suffices to consider the
case lim inf

n→∞
J(Xn, Vn, p) <∞. Without loss of generality (by choosing a subsequence,

if necessary), we simply assume that lim
n→∞

J(Xn, Vn, p) exists and lim
n→∞

κn(0) is finite.

For a given interval [0, T ], using a δ > 0 in (2.10) and a partition {0 = t0 < t1 < t2 <
· · · < tr = T} with |ti+1 − ti| = 1

2m < δ for all i, and r is a positive integer which is
approximately equal to 2mT . Then using (2.10), and following a computation similar
to the proof of Lemma 4.3, we obtain sup

n≥1
E[ sup

[0,T0]
|κn(t)− κn(0)|] ≤ C(1 + T k). Since,

lim
n→∞

κn(0) is finite, we deduce that

sup
n≥1

E[||κn||T ] ≤ C(1 + T k) , (4.24)

for all T > 0. Here C > 0 and k ≥ 1 are generic constants, independent of T . By
Lemma 2.1, we have the polynomial bounds

sup
n≥1

E[||Xn||2T + ||Vn||2T ] ≤ C(1 + T k), (4.25)

for all T > 0. Here C > 0 and k ≥ 1 are generic constants independent of T . Let
ε > 0 be arbitrary. Since the cost function C(·) is of linear growth, the above estimates
enable us to find T1 > 0 such that C

∫∞
T1
e−γt(1 + tk)dt < ε and consequently,

sup
n≥1

E

∫ ∞
T1

e−γt[C(Xn(s)) + γ pVn(s)]ds < C

∫ ∞
T1

e−γt(1 + tk)dt < ε , (4.26)

where C(x) = ax+ + bx−, for all x. Hence,

sup
n≥1
|J(Xn, Vn, p)− E

∫ T

0
e−γt[C(Xn(s)) + γ pVn(s)]ds| < ε, (4.27)

for all T ≥ T1. Next, we choose T > max{T0, T1}, with T0 given in Lemma 4.4, and we
restrict our attention to the function space D[0, T ] equipped with Skorokhod topology.
Consider the R2 valued process Yn = (ξn, κn), for each n. Our aim here is to show that
the sequence (Yn) is relatively compact in D[0, T ], using Corollary 7.4 in Chapter 3 of
[7]. Clearly,

||Yn||T ≤ ||ξn||T + ||κn||T .

We already know that the sequence (ξn) converges weakly to σW . These facts, together
with (4.24), implies that for a given ε > 0, we can find a large M > 0 so that

lim sup
n→∞

P [‖Yn‖T ≥M ] < ε ,

which guarantees that the sequence (Yn) is stochastically bounded in D[0, T ]. Next
we introduce the modulus of continuity w′T in D[0, T ]. However, first introduce the
function w(x,A) by

w(x,A) = sup
s, t∈A

|x(s)− x(t)| ,

for each x in D[0, T ] and A ⊆ [0, T ]. We now introduce the modulus of continuity by

w′T (x, δ) = inf sup
1≤i≤m

w(x, [ti−1, ti)) ,
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where the infimum is taken over all partitions 0 ≤ t0 < · · · < tm = T of [0, T ], such
that min

0≤i≤m
(ti − ti−1) ≥ δ. It is straightforward to check that

w′T (x, δ) = inf sup
1≤i≤m

w(x, [ti−1, ti))

also holds, where the infimum is taken over all partitions 0 ≤ t0 < · · · < tm = T of
[0, T ], such that δ ≤ ti − ti−1 < 2δ, for all 1 ≤ i ≤ m.

Now clearly,

w′T (Yn, δ) ≤ inf

(
sup

1≤i≤m
w(ξn, [ti−1, ti)) + sup

1≤i≤m
w(κn, [ti−1, ti))

)
,

where the infimum is taken over all partitions 0 ≤ t0 < · · · < tm = T of [0, T ], such that
δ ≤ (ti−ti−1) < 2δ, for all 1 ≤ i ≤ m. We can choose a partition 0 ≤ s0 < ··· < sm = T
of [0, T ], such that δ ≤ (si − si−1) < 2δ for all 1 ≤ i ≤ m, and sup

1≤i≤m
w(ξn, [si−1, si)) <

w′T (ξn, δ) + ε
2 . In addition,

sup
1≤i≤m

w(κn, [si−1, si)) ≤ sup
|u−v|<2δ

|κn(u)− κn(v)| ,

where u and v are in [0, T ]. Therefore,

w′T (Yn, δ) ≤ w′T (ξn, δ) + sup
|u−v|<2δ

|κn(u)− κn(v)|+ ε

2
.

Hence, we have

P [w′T (Yn, δ) > ε] ≤ P [w′T (ξn, δ) >
ε

4
] +

4

ε
E[ sup
|u−v|<2δ

|κn(u)− κn(v)|] .

Since the sequence (ξn) is weakly convergent to σW , there is δ > 0 such that
lim sup
n→∞

P [w′T (ξn, δ) >
ε
4 ] < ε

4 . We can also obtain the upper bound ε
4 for the second

term, using (2.10); this implies lim sup
n→∞

P [w′T (Yn, δ) > ε] < ε. Thus, the modulus

of continuity condition for (Yn) has been verified. Using Corollary 7.4 in Chapter 3
of [7], we conclude that the sequence (Yn) is relatively compact in D2[0, T ]. Since,
lim sup
n→∞

||εn||T = 0 in probability as in Theorem 2.2, we can conclude that the sequence

(ξn − εn, κn) is relatively compact in D2[0, T ]. Next, we can choose a subsequence of
(ξn − εn, κn) which converges weakly to a process (ξ, κ) in D2[0, T ] and relabel this
subsequence by the original sequence. Clearly, the process κ is non-negative. Since we
already know that the sequence (ξn) is weakly convergent to the process σW in D[0, T ],
where σ is a positive constant and W is a standard Brownian motion, we conclude that
ξ = σW . Let J(κn) = sup

0≤t≤T
|κn(t)−κn(t−)|. Then J(κn) ≤ sup

|t−s|<δ
|κn(t)−κn(s)|, and

as a direct consequence of (2.10), we obtain lim
n→∞

E[J(κn)] = 0. Hence, using Theorem

10.2 in Chapter 3 of [7], we conclude that the limiting process κ has continuous paths.
Therefore, using the Skorokhod embedding theorem, we can simply assume that

the sequence (ξn − εn, κn) is almost surely convergent to the process (σW, κ), as n
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tends to infinity in D[0, T ]. Since the limiting process (σW, κ) has continuous paths,
this convergence is uniform on [0, T ] and we have

lim
n→∞

(||ξn − εn − σW ||T + ||κn − κ||T ) = 0 , (4.28)

almost surely.
Next, we extend the process κ in (4.28) to [0,∞) continuously, by simply defining

κ(t) = κ(T ) over all t ≥ T . Then, we can construct the limiting process (Xx, V ) on
the same probability space so that it is the strong solution to (2.39) and (2.40), where
b(x) = −[µβ + (θx+ − µx−)], for all x, and with the continuous reflection boundary
process κ that satisfies (4.28). By the discussion below (2.40), it follows that the
processes Xx and V have continuous paths and are adapted to the filtration of the
Brownian motion. Consequently, (Xx, V ) is an admissible process for the diffusion
control problem and, by Lemma 4.4, the corresponding cost functional J(Xx, V, p) is
finite.

Introduce the process Z by

Z(t) = Xx(t) + V (t) , (4.29)

for all t ≥ 0. Then Γκ(Z)(t) = Xx(t), for all t ≥ 0, where Γκ is the Skorokhod map given
in (2.40). Consider (Xn, Vn) which satisfies (4.25)-(4.27), with the reflection boundary
κn, Xn(0) = xn and lim

n→∞
xn = x. Let Zn(t) = Xn(t) + Vn(t), for all t ≥ 0. We use

the Lipschitz continuity of b(x) = −[µβ+ (θx+−µx−)], lim
n→∞

xn = x, lim
n→∞

βn = β and

then follow an estimation similar to (4.16) to obtain

||Zn − Z||t ≤ δn + ||ξn − εn − σW ||t + C

∫ t

0
|Γκn(Zn)(s)− Γκ(Z)(s)|ds ,

almost surely, where lim
n→∞

δn = 0 and C is the Lipschitz constant. Using (2.34) and

(2.37), we obtain the estimate,∫ t

0
|Γκn(Zn)(s)− Γκ(Z)(s)|ds ≤

∫ t

0
|Γκn(Zn)(s)− Γκn(Z)(s)|ds

+

∫ t

0
|Γκn(Z)(s)− Γκ(Z)(s)|ds

≤2

∫ t

0
||Zn − Z||sds+

∫ t

0
||κn − κ||sds ,

for each 0 ≤ t ≤ T . By combining the above facts, together with lim
n→∞

δn = 0, (4.28)

and then using Gronwall’s inequality, we obtain

lim
n→∞

||Zn − Z||T = 0 almost surely. (4.30)

On the other hand, using (2.34) and (2.37), we obtain

||Γκn(Zn)− Γκ(Z)||T ≤||Γκn(Zn)− Γκn(Z)||T
+||Γκn(Z)− Γκ(Z)||T
≤2||Zn − Z||T + ||κn − κ||T .
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Hence, using (4.30) and (4.28), we have lim
n→∞

||Γκn(Zn) − Γκ(Z)||T = 0 a.s. Conse-

quently,
lim
n→∞

||Xn −Xx||T = 0, a.s. (4.31)

This, combined with (4.30), yields

lim
n→∞

||Vn − V ||T = 0, a.s. (4.32)

Let J(Xn, Vn, p) be the cost functional in (2.60). Then

lim inf
n→∞

J(Xn, Vn, p) ≥ lim inf
n→∞

E

∫ T

0
e−γt[C(Xn(t))dt+ γ pVn(t)]dt

≥ E
∫ T

0
e−γt[C(Xx(t)) + γ pV (t)]dt .

We have used Fatou’s lemma to obtain the last inequality. Since (Xx, V ) is an admis-
sible control policy for the diffusion control problem in (3.5), with a continuous upper
reflection boundary κ, we can use Lemma 4.5 and the fact that T > T0, to conclude
that E

∫ T
0 e−γt[C(Xx(t)) + γ pV (t)]dt > J(Xx, V, p)− ε ≥ Vp(x)− ε. Hence,

lim inf
n→∞

J(Xn, Vn, p) > Vp(x)− ε ,

where ε > 0 is arbitrary. This completes the proof of the lemma.

Proof of Theorem 4.1.
The proof clearly follows from Lemmas 4.3 and 4.5.

In the next two results, we prove convergence of the cost functionals, related to
constant (finite or infinite) queue-capacities. These two results will then be used to
establish Theorem 4.2.

Proposition 4.6. Let (Xn, Vn) be a state-process equipped with constant queue-capacity
mn, which satisfies the conditions (2.20), (2.41) and (2.42) with a finite constant
κ in (2.42). For each integer n ≥ 1 and p > 0, the corresponding cost functional
J(Xn, Vn, p) is given by (2.60). Then, lim

n→∞
J(Xn, Vn, p) = J(Xx, U, p), for each p > 0,

where J(Xx, U, p) is defined in (3.3).

Proof. By (2.41) and (2.42), we have lim
n→∞

Xn(0) = x and lim
n→∞

mn√
n

= κ > 0, where κ is

a finite constant. Then, by Theorem 2.2, the sequence of processes (Xn, Vn) converges
weakly to the process (Xx, U) that satisfies (4.1). To show the convergence of the
cost functionals, we use the polynomial growth bounds for E[||Xn||2T ] and E[||Vn||2T ]
obtained in Lemma 2.1.

Following the application of Fubini’s theorem in the derivation of (3.9), we obtain

J(Xn, Vn, p) = E

∫ ∞
0

e−γt[aX+
n (t) + bX−n (t) + p γVn(t)]dt . (4.33)

Since (Xn, Vn) converges weakly to the process (Xx, U), using Skorokhod’s embedding
theorem, we may assume that (Xn, Vn) converges almost surely to the process (Xx, U),
in some probability space (Ω1,F1,P1). Introduce

Rn(t) = aX+
n (t) + bX−n (t) + p γVn(t) ,
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and
R∞(t) = aX+

x (t) + bX−x (t) + p γU(t) ,

on the space [0,∞)⊗Ω1. Let λ be the finite measure on the collection of Borel subsets
B of [0,∞), defined by λ(B) =

∫
B e
−γtdt. Next, consider the product measure λ⊗ P1

on the space [0,∞)⊗Ω1, equipped with the product σ-algebra B⊗ F1. Here B is the
Borel σ−algebra on [0,∞). Then Rn converges to R∞ almost surely in λ ⊗ P1, as n
tends to infinity. Clearly,

0 ≤ Rn(t) ≤ C(|Xn(t)|+ Vn(t)) ,

where C is a generic constant that does not depend on n and t. Consequently, using
Lemma 2.1, we obtain

E[||Rn||2T ] ≤ C(1 + T k) , (4.34)

for all T > 0, where C is a generic constant that does not depend on n and T . By
Fatou’s lemma, we also have E[||R∞||2T ] ≤ C(1 + T k). Now, (Rn) converges to R∞
almost surely with respect to λ ⊗ P1 and by (4.34), the sequence (Rn) is uniformly
integrable on the product space [0,∞)⊗ Ω1. Therefore, we conclude that

lim
n→∞

Eλ⊗P1 [Rn] = Eλ⊗P1 [R∞] ,

with the limit being finite. The proof of the proposition is now complete.

Next, we treat the case where the queue-capacity mn(t) is infinite (no blocking) for
all t ≥ 0. In this case, the process Vn in (2.20) is identically zero and, for this reason,
we relabel (Xn, Vn) by (Xn, 0). Similarly, for the limiting process, the reflecting barrier
κ in (4.1) and (4.2) is infinite. Therefore, the process U in (4.1) is identically zero.
Accordingly, we relabel (Xx, U) in (4.1) by (Xx, 0) in the following discussion.

Proposition 4.7. For each integer n ≥ 1, consider the process (Xn, 0) which satisfies
(2.20) and (2.41) with mn(t) = ∞ for all t ≥ 0. The associated cost functional
J(Xn, 0, p) is given by (2.60) for each p > 0. Consider (Xx, 0) which satisfies (4.1)
with κ = ∞ and the process U identically zero. Then lim

n→∞
J(Xn, 0, p) = J(Xx, 0, p)

where J(Xx, 0, p) is defined in (3.3).

Proof. By Theorem 2.2, we know that under the above assumptions, the process Xn

converges weakly to the process Xx in the function space D[0,∞), as n tends to infinity.
By Lemma 2.1, we have the polynomial growth bound

sup
n≥1

E[||Xn||2T ] ≤ C(1 + T k) , (4.35)

where C > 0 and k ≥ 1 are generic constants that do not depend on T . The rest of
the proof is very similar to that of Proposition 4.6 and therefore, it is omitted.

Using the last two propositions, we are now able to complete the proof of Theorem
4.2.
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Proof of Theorem 4.2.

Proof. To prove part (i), first let 0 < p < p0, where p0 is given in (3.23). We con-
sider a sequence of processes (X∗n, V

∗
n ) that satisfies (2.20) and (2.41), with the asso-

ciated constant queue capacity sequence (m∗n). We assume that the sequence (mn)
satisfies lim

n→∞
mn√
n

= zp, where zp is the optimal threshold point given in Theorem

3.7. Then, by Theorem 2.2, (X∗n, V
∗
n ) converges weakly to the reflected diffusion pro-

cess (X∗x, U
∗
p ), which has the upper reflection barrier at point zp. From Theorem 3.7,

(X∗x, U
∗
p ) is an optimal strategy for the diffusion control problem in (3.5). Therefore,

J(X∗x, U
∗
p , p) = Vp(x), for all x, where Vp is the value function given in (3.5). On

the other hand, by Proposition 4.6, we have lim
n→∞

J(X∗n, V
∗
n , p) = J(X∗x, U

∗
p , p). Con-

sequently, lim
n→∞

J(X∗n, V
∗
n , p) = Vp(x), and using Theorem 4.1, we conclude that the

sequence (X∗n, V
∗
n ) is asymptotically optimal. This completes the proof of part (i).

In part (ii), we consider the case p ≥ p0. Let (X∗n, V
∗
n ) be a sequence that satisfies

(2.20) and (2.41) with the associated queue-capacity mn(t) ≡ ∞, for all t ≥ 0 and all
n. Then, V ∗n is identically zero and (X∗n, V

∗
n ) converges weakly to (X∗x, 0), where X∗x

satisfies (4.1), with the process U identically zero. In Theorem 3.7, we have proved that
X∗x is the optimal process for the diffusion control problem, for every p ≥ p0. Therefore,
J(X∗x, 0, p) = Vp(x), for all x and all p ≥ p0. Combining this with Proposition 4.7,
we obtain lim

n→∞
J(X∗n, V

∗
n , p) = J(X∗x, 0, p) = Vp(x), for all x and all p ≥ p0. Using

Theorem 4.1, we conclude that the sequence (X∗n, V
∗
n ) is asymptotically optimal, which

completes the proof.

5 Appendix

Proof of Lemma 3.2

Let x ≤ 0 and consider the diffusion process Y characterized by

Y (t) = x+ σW (t)− µ
∫ t

0
(β + Y (s))ds , t ≥ 0 , (5.1)

where W is a standard Brownian motion. Next, we introduce the stopping time τ0 by

τ0 = inf{t ≥ 0 : Y (t) = 0}. (5.2)

We intend to show that the function F∞ of (3.15) and (3.16) has the stochastic repre-
sentation F∞(x) = E[e−γτ0 |Y (0) = x], for every x ≤ 0. To this end, introduce

F̃∞(x) = E[e−γτ0 |Y (0) = x] , (5.3)

for all x ≤ 0. For each N ≥ |x|, we also introduce the stopping time

τN = inf{t ≥ 0 : Y (t) = −N}. (5.4)

To construct the function F∞, we begin with a sequence of functions (Fn). Let Fn be
the unique solution to the boundary value problem

σ2

2
F ′′n (x)− (βµ+ µx)F ′n(x)− γFn(x) = 0 , for x < 0 ,
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Fn(0) = 1 , and Fn(−n) = 0 .

Then, with the use of Itô’s lemma, one can easily verify that

Fn(x) = Ex[e−γτ0I[τ0<τn]] , for − n ≤ x ≤ 0 .

Using the scale function associated with the diffusion Y , it follows that (see [17], Section
5 of Chapter 5)

P [τn < τ0|Y (0) = x] =

∫ 0
x e

µ

σ2
(y2+2βy)dy∫ 0

−n e
µ

σ2
(y2+2βy)dy

.

Therefore, P [τn < τ0|Y (0) = x] is decreasing to zero as n tends to infinity. Conse-
quently, the sequence (Fn(x)) is increasing to the function F̃∞. We fix the interval
[x, 0] and integrate the differential equation for Fn twice on this interval to obtain
an integral equation for Fn. Then we use 0 ≤ Fn(y) ≤ F̃∞(y) ≤ 1, on [−n, 0], and
lim
n→∞

Fn(y) = F̃∞(y), together with the bounded convergence theorem, to conclude

that the function F̃∞ also satisfies the same integral equation. By differentiating it
twice, we observe that F̃∞ also satisfies (3.15), together with the boundary condition
F̃∞(0) = 1.

The stochastic representation (5.3) also implies that F̃∞ is increasing and F̃ ′∞(x) ≥
0 on the interval (−∞, 0]. Consequently, lim

x→−∞
F̃∞(x) = L0 exists, with 0 ≤ L0 < 1.

Furthermore, if F̃ ′∞(ξ) = 0 for some ξ < 0, then by (3.15), F̃ ′′∞(ξ) > 0. Hence, x = ξ is a
strict local minimum. This is a contradiction since F̃∞ is increasing. Hence F̃ ′∞(x) > 0,
for all x < 0 and as a consequence, F̃∞ is strictly increasing on (−∞, 0].

Our next step is to prove that lim
x→−∞

F̃∞(x) = 0. We consider the process Z defined

by Z(t) = Y (t) + β, for all t ≥ 0, where Y is given in (3.17). Then Z is an Ornstein-
Uhlenbeck process that satisfies

Z(t) = (x+ β) + σW (t)− µ
∫ t

0
Z(s)ds , t ≥ 0 . (5.5)

For each y > x+ β, we introduce the stopping time τ̃y by

τ̃y = inf{t ≥ 0 : Z(t) ≥ y} . (5.6)

Then τ0, defined in (5.2), is identical to τ̃β, and F̃∞(x) = E[e−γτ̃β |Z(0) = x + β], for
all x < min{−β, 0}. Using the strong Markov property, we obtain

E[e−γτ̃0 |Z(0) = x+ β] = E[e−γτ̃β |Z(0) = x+ β]E[e−γτ̃0 |Z(0) = β] , if β < 0 ,

and

E[e−γτ̃β |Z(0) = x+ β] = E[e−γτ̃0 |Z(0) = x+ β]E[e−γτ̃β |Z(0) = 0] , if β > 0 .

Therefore, to reach the desired conclusion, it suffices to demonstrate that

lim
y→−∞

E[e−γτ̃0 |Z(0) = y] = 0 .

For this, consider the process Z that is characterized by Z(t) = y + σW (t) −
µ
∫ t
0 Z(s)ds. Then it is well known that, via a random time change, one can write

Z(t) = e−µt[y +B(
σ2

2µ
(e2µt − 1))] , t ≥ 0 ,
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where B is another Brownian motion. Next, we introduce a collection of stopping times
(Ty) with respect to this Brownian motion. Specifically, for each y < 0, let

Ty = inf{t ≥ 0 : B(t) = −y}.

This enables one to derive a relationship between τ̃0 and Ty, namely

τ̃0 =
1

2µ
log[(

2µ

σ2
)Ty + 1] .

The distribution of the Brownian stopping time Ty is well known (see [3]), and it will
help us compute the limit lim

y→−∞
E[e−γτ̃0 |Z(0) = y].

Observe that e−γτ̃0 = [(2µ
σ2 )Ty + 1]

− γ
2µ . It follows that

lim
y→−∞

E[e−γτ̃0 |Z(0) = y] = lim
y→−∞

E[
1

[(2µ
σ2 )Ty + 1]

γ
2µ

| B(0) = 0 ] .

Using the bounded convergence theorem, we notice that the limit on the right-hand
side vanishes since lim

y→−∞
Ty =∞ almost surely.

Consequently, lim
x→−∞

F̃∞(x) = 0. Now it is clear that F̃∞ satisfies (3.15) and (3.16).

The uniqueness of solutions to (3.15) and (3.16) can be established by the fact that the
difference of two solutions to (3.15) cannot have any positive local maxima. Therefore,
F̃∞ is identical to F∞, as characterized via the initial value problem (3.15) and (3.16).
It also has the stochastic representation (5.3).

In our next step, we show that lim
x→−∞

F ′∞(x) = 0 and the function F∞ is strictly

convex. First we extend the function F∞ to (−∞,∞), so that it satisfies the differential
equation (3.15) everywhere on (−∞,∞). Since F∞ is strictly increasing on (−∞, 0], by
(3.16) it is clear that lim inf

x→−∞
F ′∞(x) = 0. Thus, we can choose a sequence (yn) strictly

decreasing to −∞, such that yn+1 < yn < 0 and 0 < F ′∞(yn+1) < F ′∞(yn), for all n.
Consequently, there is a point ξn such that yn+1 < ξn < yn and F ′′∞(ξn) > 0. Note that
the sequence (ξn) is also strictly decreasing to −∞.

Let z = inf{x ≥ 0 : F ′∞(x) ≤ 0 }. If z is finite, then F ′∞(z) = 0 and F ′∞(x) > 0, for
all x < z, and consequently, F∞(z) ≥ F∞(0) = 1. By (3.15), Yn has paths of bounded
variation F ′′∞(z) > 0, and hence F∞ has a strict local minimum at the point x = z,
which is a contradiction. Therefore, z cannot be finite and F ′∞(x) > 0, for all x in
(−∞,∞).

Next we consider any point x1 > 0, such that x1+β > 0. Then F∞(x1) > F∞(0) = 1
and F ′∞(x1) > 0. Using (3.15), we also obtain F ′′∞(x1) > 0. Now introduce the function
H(x) = F ′′∞(x), on the interval [ξn, x1]. Then, by differentiating (3.15), we see that

σ2

2
H ′′(x)− (βµ+ µx)H ′(x)− (γ + 2µ)H(x) = 0 , on [ξn, x1] ,

H(ξn) > 0 and H(x1) > 0. Let ξn ≤ c ≤ x1 so that H(c) = min
[ξn,x1]

H(x). Suppose that

H(c) ≤ 0, then ξn < c < x1 and H ′(c) = 0. If H(c) = 0, then by the uniqueness of
the solution to the above differential equation, it follows that H is identically zero. If
H(c) < 0, again by the above differential equation, we have H ′′(c) < 0 and x = c is
a strict local maximum; this is a contradiction. Hence H(c) > 0 and, consequently,
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F ′′∞(x) > 0 on the interval [ξn, x1]. But one can choose x1 arbitrarily large and the
sequence (ξn) is decreasing to −∞. We thus conclude that F ′′∞(x) > 0, on the interval
(−∞,∞). This, together with the fact that lim inf

x→−∞
F ′∞(x) = 0, implies lim

x→−∞
F ′∞(x) =

0. Hence, F∞ is a strictly convex function that satisfies all the conclusions of Lemma
3.2. This completes the proof.
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