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STATE-DEPENDENT STOCHASTIC NETWORKS. PART I:
APPROXIMATIONS AND APPLICATIONS WITH
CONTINUOUS DIFFUSION LIMITS

By Avi MANDELBAUM AND GENNADY PATS

Technion

In a state-dependent queueing network, arrival and service rates, as
well as routing probabilities, depend on the vector of queue lengths. For
properly normalized such networks, we derive functional laws of large
numbers (FLLNs) and functional central limit theorems (FCLTs). The
former support fluid approximations and the latter support diffusion
refinements.

The fluid limit in FLLN is the unique solution to a multidimensional
autonomous ordinary differential equation with state-dependent reflec-
tion. The diffusion limit in FCLT is the unique strong solution to a
stochastic differential equation with time-dependent reflection.

Examples are provided that demonstrate how such approximations
facilitate the design, analysis and optimization of various manufacturing,
service, communication and other systems.
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1. Introduction. The paper deals with state-dependent open
(M./M, e/ 1% queueing networks. These are exponential networks in which
arrival and service rates, as well as routing probabilities, depend on the state
—the vector of queue lengths. For properly normalized queue-length pro-
cesses, we derive functional laws of large numbers (FLLNs) and functional
central limit theorems (FCLTs). The former support fluid approximations and
the latter support diffusion refinements. This paper extends to a network
setting our results [59], where the focus is on a single station. Our model for
(My/ M,/ 1)¥ is a state-dependent adaptation of that proposed by Massey and
Whitt [60] for time-dependent networks.

Stationary analysis of state-dependent networks started with the seminal
work of Jackson [37] and culminated in the work of Serfozo [71] (that also
includes extensive references). We, on the other hand, are concerned with the
transient evolution of (M,/M,/ 1% networks. It is typically hard to analyze,
yet, it is often important. This is manifested in networks without stationary
behavior, such as critically loaded or overloaded networks, networks operat-
ing over a finite horizon or exhibiting a periodic evolution, large networks,
which often go through long relaxation phases, and more. For a variety of
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reasons, exact analysis of our networks, both transient and stationary, is
rarely possible. Hence developing different approximating schemes, for exam-
ple, fluid and diffusion, is a worthwhile undertaking.

A distinguishing feature of our models is state-dependent routing. Here,
we extend the work of Krichagina [46] that covered networks with state-
independent routing. A consequence of this feature is that the characteriza-
tion of fluid and diffusion limits involves reflection problems with noncon-
stant directions of reflection, varying with either time or state. Such maps are
not as well behaved as the usual multidimensional Skorokhod maps (in
particular, they need not be Lipschitz). Hence, we develop new tools to
establish convergence, existence and uniqueness of the limits. Our approach
to reflection problems with nonconstant directions of reflection is based on
Dupuis and Ishii [22] and [23]. (See Appendix B.)

FLLN (Theorem 4.6) holds in probability. The fluid limit in FLLN is the
unique solution to a multidimensional autonomous ordinary differential
equation (DE) with state-dependent reflection. As a consequence, the fluid
limit of a network is an absolutely continuous function, each coordinate of
which can hit and leave zero through time. (This is in contrast to the
one-dimensional case [59]; see Figure 2 that displays a periodic orbit.) The
proof of FLLN is based on the Lipschitz property of time-dependent reflection
operator, established in Appendix B. Our original approach was based on
differential inclusions, as in [46]. The current treatment, however, is simpler
and was inspired by an anonymous referee.

The weak limit given in FCLT (Theorem 7.2) is the unique strong solution
to a stochastic differential equation (SDE) with time-dependent reflection. In
general, our diffusion limits are Markov processes with discontinuous sample
paths and weak convergence is with respect to Skorokhod’s M;-topology (see
Section 15 for more details). However, in this paper we prove a restricted
version of FCLT, which is still very useful in applications. This theorem gives
rise to continuous diffusion limits, in which case the convergence is with
respect to Skorokhod’s oJ,-topology, which further reduces to U-convergence
[9]. Here, again, we develop ideas of Krichagina [46], some of which were also
anticipated by Anulova [5] (but without proofs). The extension to discontinu-
ous diffusion limits can be found in Pats [65] and will appear in a future
paper [64].

The state-dependent model, proposed in Section 2, provides a flexible
framework for accommodating a wide variety of phenomena in queueing
networks. The results obtained support the design, analysis and optimization
of various manufacturing, service, communication and other systems. Some
examples, elaborated on in Sections 10 and 11, are manufacturing and
computer networks with congestion-dependent routing, services and possibly
also various forms of breakdowns [84, 70, 75, 3], learning systems [78],
epidemics models [36], traffic assignment models and resource allocation
problems [20]. (See Sections 10 and 11 for details.) Moreover, in Section 11 we
demonstrate that our approximations are also useful for the analysis of
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various networks that do not fit exactly into our framework. In particular,
with an appropriate choice of parameters, our limit theorems lead to reason-
able approximations for closed networks, networks with large finite buffers,
networks governed by shortest-queue routing and more.

Our FLLN and FCLT also unify and generalize existing approximations for
many particular models. Examples are state-independent networks [14, 15]
and state-dependent overloaded networks [4], both specialized to exponential
networks, and some time-dependent networks. (See Sections 10, 11 and 15 for
more references and examples.)

The remainder of the paper is organized as follows. In Section 2, we
introduce our model of the (M,/M,/ 1)X network. Section 3 presents a semi-
martingale representation of the queueing processes, which is the starting
point for our proofs of FLLN and FCLT. In Section 4 we formulate FLLN and
provide some guidelines to its proof. In Section 5 we add alternative charac-
terizations of fluid limits. These characterizations support the definition of
overloaded, critically loaded and underloaded regimes, provided in Section 6,
and they furnish insights into the nature of the fluid limits. The formulation
of our FCLT is presented in Section 7, again followed by a proof outline.
FLLN and FCLT for idle-time processes are given in Section 8. Refinements
are discussed in Section 9. Sections 10 and 11 are devoted to applications of
our results. In Section 12, we prove the semimartingale representation of the
queueing process. We prove FLLN and FCLT in Sections 13 and 14, respec-
tively. Section 5 contains a proof of the DE characterization of fluid limits.
Work in progress, covering discontinuous diffusion limits and time-dependent
networks, is motivated in Section 15. The Appendixes provide the technical
background for our limit theorems. In particular, Appendix B contains a
summary of some new results on the time-dependent reflection problem that
appeared elsewhere [57]. Our main notations are summarized in Appendix D.

2. The model of the (M, /M, / DX network. We consider an open
queueing network that consists of K stations. Each station operates as a
single M,/M,/1 queue [59]. Transitions of customers between stations are
governed by a family of transition probability matrices. A distinguishing
feature of our model is that the transition probabilities, as well as the arrival
and service rates, depend on the state of the network, namely, the queue
lengths at the stations.

Formally, we analyze the RZX.valued stochastic queueing process @ =
{Q(#), t > 0} that satisfies the relations

21 Q1) = Q(O) +A(t) + F(4) = D(),
(22) A = N7 [ [ 0@ d,

LS t
(2.3) Fy(t) = ;fo HU[S,(w)] € my(Q(u—))} dD;(u),
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t
(2:4) Dy(t) = [ HQu(u~) > 0}dS, (w),

(25) 5.0 = N7 [ [ (@) d,

where ¢t > 0,k =1,...,K, A= (A,,..., AT and similarly for F and D.[We
put Q0 —) = Q(0).] Here, @ is constructed in terms of the following primi-
tives: @Q(0) € RX is a random vector; A = {Ay,..., Ag}?, w={uy,..., ugt’:
R¥ — RY are given measurable functions; (U[Il}{.,, j=1,..., K, are se-
quences of ii.d. random variables, uniformly distributed on [0, 1]; N;, N, ,
k=1,...,K, are standard (rate 1), right-continuous with left-limits (RCLL)

Poisson processes; ;;: RX— £[0,1], j,k = 1,..., K, are measurable (Clarke
[16], page 111) set-valued functions, such that

All the random quantities in (2.1)-(2.5) are defined on a common complete
probability space. Since N,", N, , k= 1,..., K, have RCLL sample paths by
assumption, we see that @, A, F, D and S are RCLL as well. (Note that
integrals [§ stand for [, ,.) A straightforward pathwise construction of
(2.1)-(2.5) establishes the existence and uniqueness of @ up to (a possible)
explosion time. The simplicity of this construction is due to the pure-jump
character of the primitives. (One could also use the more general argument of
Ethier and Kurtz ([25], Theorem 4.1, Chapter 6), through which @ can be
defined by a recurrent procedure.)

The quantities involved in the construction have the following interpreta-
tion: @(0) is an initial queue vector; A = {A(¢), t = 0} and F = {F(2), ¢t > 0}
are counting processes—the kth coordinates A,(¢) and F,(¢) represent the
cumulative number of exogenous and endogenous arrivals to station & during
[0, t], respectively. Furthermore, D = {D(¢), ¢ > 0} and S = {S(¢), ¢ > 0} are
counting processes—D,(¢) represents the cumulative number of departures
from station % during [0, ¢], whereas S,(¢) counts potential departures
from station k; this potential is fully realized during intervals [r, ¢] over
which @,(s) >0, s €[r,t]. Now, MQ) = (M(Q),..., Ax(@)T and w(Q) =
(u(Q), ..., ug(@)T are, respectively, vectors of instantaneous exogenous
arrival and service rates at the state @. Next, let p;,(§ ) denote the Lebesgue
measure of 7;,(£), ¢ € RE, From (2.6) it follows that the nonnegative matrix-
valued function P: R¥ — RE*X given by P(+) = [ p;,(-)]¥,_,, has the prop-
erty that P(¢) is substochastic for every ¢ € RX; that is,

K
0< ijk(')ﬁl, j=1,...,K.
k=1

Thus, P(Q) is a matrix of instantaneous state-dependent transition probabili-
ties at state . Indeed, in view of (2.3), a customer leaving station j at time u
(at this moment S; and D; both jump) is routed to station & for which

(2.7) UJ[SJ(u)] € 7m;(Q(u—)).
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Given S;(u) and Q(u —), the event (2.7) has probability p;(@(x—)), and
there exists at most one & for which it prevails. If (2.7) is violated for all &,
the customer leaves the network.

MAIN ASSUMPTIONS ON PRIMITIVES.

(M1) The random quantities @(0), N;, N, and {U,[I]};_,, k= 1,..., K, are
assumed to be mutually independent.

(M2) Assume that A, u satisfy a linear growth constraint. That is, there
exists a constant L; > 0 such that

INCEY VIp(€)le < Ly(1 +1£l), ¢éeREK

(M3) Assume that the spectral radii r(P(+)) satisfy sup, cgx r(P(¢)) < L.
(M4) Assume that E|Q(0)| < c°.

REMARK 2.8. The queueing process @ constructed above is a Markov jump
process on the K-dimensional nonnegative integer lattice ([25], Theorem 4.1,
Chapter 6). It follows from Proposition 13.4 presented below that Assumption
(M2) ensures nonexplosion of . The sample paths of @ are RXvalued
functions, which are RCLL and piecewise constant.

3. Martingale representation. We restate (2.1)—(2.5) in a form that is
amenable to analysis. Specifically, (2.1)-(2.5) are equivalent to

Q(t) = Q(0) + fOtO(Q(u)) du + a(t)

(3.1)
+j0‘ [1-PT(Q(u)]dY(x), t=0,

(3.2) 6(+) = A() + [PT(+) = I] u("),

(3.3) a=M"+ M - M?,

(3.4) Y() = [ H@(u) = 0} u(@(w)) du,

(3.5) Me=A-A, M/=F-F, M%=D-D,

(3.6) A1) = ['M@w)) du,

37 F(0) = [PT(Qu-))HQu~) > 0}u(Q(w) du,

(3.8) D(r) = ["HQu~) > 0) u(@(w)) du.

Here A, F and D are given by (2.2)-(2.5).
The following technical lemma provides the mathematical framework for
our proofs of FLLN and FCLT later on. We shall show that A, F and D are
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the compensators for A, F and D, respectively (see, e.g., [11], Theorem T8,
Chapter 1). The proof of this lemma is postponed to Section 12, as it has no
significance for the understanding of later development.

LEmMA 8.9. Let (Q,5, P) denote the common complete probability space
on which the random quantities involved in (2.1)-(2.5) are defined. Suppose
that the Main Assumptions in Section 2 are satisfied. Then there exists a
filtration F on (Q,5, P), satisfying the “usual conditions” ([40], page 10),
such that M®, M’ and M? given by (3.5) are vector-valued locally square
integrable ([69], page 35) F-martingales.

REMARK 3.10. The representation (3.1)-(3.4) of the queueing process has
the following interpretation. The function 0(®) in (3.1) describes the poten-
tial net flow rate through the networks, at state @. Indeed, the coordinate 6,
(k=1,...,K)is given by

K
0,(Q) = A (Q) + E:lpjk(Q)/J'j(Q) — i, (Q).

Here, the first term on the right-hand side is the rate of exogenous arrivals
to station %, the second term is the rate of potential endogenous arrivals to
station £ from other stations, and the last term is the potential departure
rate at station k. The potential is fully realized if none of the stations is idle.
The discrepancy between the real and potential net flow is captured by Y
[see (3.4)]. This discrepancy accumulates during idle periods in the network.

Finally, the martingale « in (3.1) encompasses the jumps of the queueing
process. As will be seen later, « is negligible on the fluid scale and gives rise
to the continuous martingale part on the diffusion scale.

4. Fluid approximations (FLLN). Consider a sequence (M} /M;/1¥,
n=12,..., of queueing networks, each of which is specified by (2.1)—(2.5)
and satisfies the Main Assumptions in Section 2.

A superscript n indicates that the corresponding quantity is related to
the nth network. Introduce the rescaled processes q" = {q"(¢), ¢t > 0}, n =
1,2,..., by

1
(4.1) a"(1) = ~@"(1).
In view of (3.1)(3.8), ¢" has the representation

1
g"(t) =q"(0) + — [ 9"(ng"(w)) du + a"(t)
(4.2) 0

+/0t[1_ [P"(ng"(u))]"] dy"(w), t=z0,
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(4.3) 6"() = N'() + [[P*()]" = I]w(),
(4.4) an=%(M‘1’”+van_Md,n)’
(4.5) y'() = —f q"(u) = 0}u*(nqg™(u)) du,

Ma,n:An_An’ M,n:Fn_Fn’ Md,n=Dn_DAn’
t
10 =N,:(f N (na" () du,

Fy(t) = Z f "(8](w)) € mji(ng"(u—))} dDj(w),
Di(t) = f()’fl{qz(y—) > 0} dS} (u),

SE(0) = N ([ k(g (a) )

Ar(e) = [(a*(ng"(w)) du,

Fr(2) = ['[P*(ng"(u=))]"Hg"(u =) > 0} u"(ng" () du,

D7) = [I{g"(u~) > 0) u"(ng" (w)) du.

We list below the assumptions on the primitives A", u", P", and ¢"(0),
which are used in the formulations and proofs of our theorems.

ASSUMPTIONS A.
(A1) Assume that

1 1
—A(n€) > A(E),  —wui(ng) > u(€),

P*(n¢) - P(€), u.o.c.,
as n T, where A, uw and P are given vector- and matrix-valued locally
Lipschitz functions and, moreover, sup; ¢ gx r(P(§)) < 1.
(A2) Assume that [A*(né). V| u " (né)l. < nL (1 + €D, ¢ € RE, where n =
1,2,... and L, is a given positive constant. '
(A3) Assume that ¢"(0) -, q(0), as n 1=, where q(0) € RX is a given deter-
ministic vector and the sequence {E|g"(0)[} is bounded uniformly in n.

The asymptotic behavior of {¢"} is described by the following theorem, the
proof of which is postponed to Section 13.

THEOREM 4.6 (FLLN). Suppose that Assumptions A are satisfied. Then
{q"} converges, u.o.c. over [0,%) in probability, as n 1, to a deterministic
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absolutely continuous function q. This q is the unique solution to the following
DE with state-dependent reflection:

q(t) = q(0) + fOtO(q(u)) du
+f0t[I_PT(Q(u))]dy(u)zO, t>0,

(4.7)
y is nondecreasing in each coordinate, y(0) = 0,
f: 1"[q(t) > 0] dy(t) = 0,

where

(4.8) 0(+) = A(*) + [PT(") —I] u(").

In what follows, ¢ will be referred to as the fluid limit associated with the
network sequence under consideration. To gain insight into the form of g,
compare (4.2) with (4.7), in view of Assumptions A: a” turns out to be
negligible and all other terms are easily matched. Existence and uniqueness
of the solution to (4.7) follow from [23], due to the Lipschitz properties of A, u
and P and the uniform boundedness of r(P) [see Assumption (A1)].

REMARK 4.9. The special case of (4.7) when P = const is widely covered in
the literature. (See [31], [54], [22] and references therein.) This particular
case is known as a differential equation with oblique reflection [31].

Recall the following geometric interpretation of I — PT [54]. The kth
column r* of I — PT, k=1,..., K, is the direction in which ¢ is reflected
when it hits the hyperplane &, = 0. Moreover, if ¢ hits a point at which
several facets &, = 0 intersect, then the direction of reflection belongs to some
cone. This cone is generated by the corresponding vectors r*. Thus, in the
case P = const, the directions of reflection are constant. By contrast, in (4.7),
the directions of reflection vary from point to point on the boundary. In line
with this, the reflection problem (4.7) is called state-dependent. This is in
contrast to time-dependent problems in which the directions of reflection are
allowed to vary with time only. Time-dependent reflection problems provide
the mathematical framework for our FCLT (see Section 7) and Appendix B is
devoted to them.

5. An alternative representation of the fluid limit. In this section
we provide a characterization of the fluid limit ¢, defined by (4.7), as the
unique solution to a state-dependent projected DE (see Appendix A). (For the
notion of a projected DE within the context of normal reflection, see [6], page
266.) This characterization provides an explicit algorithm for the construction
of g and exposes distinctions between fluid approximations for networks and
for single stations. (We employ this algorithm in the example at the end of
this section, which exhibits a two-station network with a periodic fluid limit.)
Moreover, this DE characterization will be used in Section 6 to help introduce
the notion of traffic intensities.
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From now on, denote .# = RX, Further, let N,(x) and T.( x) be, respec-
tively, the tangent and normal cones to . at y €.%. (Recall the definitions of
the normal and tangent cones from Appendix D.) Clearly,

No(x) ={¢eRE: ¢, = 0if k &.7(x)),

5.1
(5. To( x) = {¢ € R¥: ¢, > 0 whenever & €.7%( x)}.

THEOREM 5.2. The solution q to (4.7) is the unique solution to the projected
DE

(5.3) g(+) =7 {0(q()},  F() = (To(), P(1)),

with the initial condition q(0).

Proor. In view of the definition of the state-dependent projection II
(Definition A.1), this theorem actually states that there exists a function m
such that the following conditions are satisfied for almost every ¢:

(5.4) q(t) = 6(a(2)) + [I - PT(q(t))]m(t),
(5.5) q(t) € To(q(2)),  —m(t) € No(q(2)),
(5.6) q(t)" - m(t) = 0.

First, we prove that any solution to (5.4)-(5.6) satisfies (4.7). To this end, let
y(+) = [;m(s) ds. Then the first equation in (4.7) is satisfied. Next, from the
second inclusion in (5.5), it follows that y is nondecreasing and the comple-
mentarity (last) condition in (4.7) holds. Moreover, since ¢(¢) € T..(q(¢)), we
obtain that ¢(¢)-n < 0 for all n € N,(q(¢)) (for almost every ¢) and thus
q(+) e

Now we show that the solution g to (4.7) satisfies (5.4)—(5.6). Indeed, let
m = y. Evidently, (5.4) and the second inclusion in (5.5) are satisfied. Further,
since q(+) €.%, we have that ¢(¢)” - n = 0 for all n € N_.(q(#)) (for almost all
¢). In particular, ¢(¢) € To(q(¢)) and ¢(¢)T-m(¢) = 0. The proof is thus
complete. O

REMARK 5.7. Theorem 5.2 indicates that the fluid limit for a network is a
solution to some multidimensional DE with a discontinuous right-hand side
(cf. [6], page 266). Indeed, it follows from (5.4)—(5.6) that when ¢(-) €.5°, the
projection IT in (5.3) is an identity mapping. Therefore, g(-) = 0(-). If, at an
instant ¢, g hits 4% at a point y, ¢(¢) becomes the oblique projection of 6( x)
onto T x).

An appropriate framework for investigating DEs with discontinuous
right-hand sides [such as (5.3)] is differential inclusions (see [6] and [26]).
Krichagina [46] was the first to apply the martingale approach within the
context of differential inclusions to derive FLLN for networks with state-
independent routing.

It was explained in [59] that the fluid limit for a single station is a
monotone absolutely continuous function, which absorbs at zero if it ever
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reaches it. (The reason for this is that the fluid limit for a single station is
closely related to the unique solution of an autonomous first-order ordinary
differential equation. It is known that this solution is a strictly monotone or
constant function [28], page 40.) The following corollary points to the fact
that, for networks, the origin of the coordinates is the absorbing point for
fluid limits. It is an immediate consequence of the uniqueness of the solution
to (5.3).

COROLLARY 5.8. If q(¢,) = 0 for some t, > 0, then q(t) = 0 for all t > ¢,.

In contrast to a single station, fluid limits for networks are, in general,
nonmonotone functions; each coordinate can hit and leave zero. To illustrate
this, we present an example with a periodic fluid limit, in which one of the
coordinates hits and leaves zero periodically. The example also provides
insight into the nature of representations (4.7) and (5.3). This example can be
skipped without loss of reading continuity. (A comprehensive analysis of
trajectories of fluid limits as solutions to DEs with discontinuous right-hand
sides is beyond the scope of our paper. For this issue, refer to the book by
Filippov [26], Chapter 4.)

ExampLE. Consider the two-station tandem network depicted in Figure 1,
with the primitives

6n, if0<@,Q;<n,
6n +20(Q, — n) if @, > n,
/\I(Q) = Q +\
6n —5(Q, —n) (—2 - 1) ) , otherwise,
n
3n, if0<Q,Q, <n,
pi(Q) = 6n+20(Q1—n)++4(Q2—n)+, if @y, > n,
6n + 20(Q, — n)+, otherwise,

A2=O’ /-L2=5n’ P(.)=|:O 1]:

for some n €.Z,. Here, @ = (Q,, @,), where @, and @, are values of the
queues at the first and the second station, respectively.

)\1 (Ql 1Q2)
—

1 > 2 —

11(Q1,Q2) M2

Fic. 1. A two-station tandem network with a periodic fluid limit.
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By Theorem 4.6, the fluid limit for this network is a solution to (4.7) with

6, if0<é,6 <1,
(59) A(&)=(6+20(&-1)7, if £ > 1,
(6 —5(& —1) (& 1)), otherwise,
3, lf §1, §2 < 1>
(5.10)  u (&) ={6+20(¢ - 1) +4(&-1)", if &> 1,
6 +20(¢&; — 1)+, otherwise,
(5.11) Ay=0, wy=5 P()= [8 é]

where &, & > 0. Assume that @,(0) = @,(0) = 2n; that is, g,(0) = ¢,(0) = 2.
(The form of the fluid limit is sensitive to the initial state. Points other than
®:(0) = Q,(0) = 2n need not give rise to periodic orbits.) The fluid limit for
this network is depicted in Figure 2a and b. The path goes into a periodic
orbit, and g, g, evolve as periodic functions after the initial transient phase.
These graphs are obtained by numerical integration of (5.4)—(5.6).

Constructing the trajectory of the fluid limit. Below, we discuss how the
parameters of the network, given by (5.9)-(5.11), give rise to the fluid limit
depicted in Figure 2a and b. Substituting (5.9)-(5.11) into (4.8) yields the
expression for 4. The vector field generated by 0 is illustrated in Figure 2c.
This vector field, together with the reflection matrix [1 — PT], defines ¢ and,
eventually, g. [See (5.4)—(5.6).] Namely, when ¢4, g, > 0, the trajectory of ¢
evolves according to 6 (see Remark 5.7). Further, when ¢ hits dR2, [I — PT]
comes into play. Specifically, recall from Remark 4.9 that the columns of
[I—-PT], r* =[1, —1] and r2 =[0,1]’ constitute the directions in which ¢
is reflected when it hits the boundary y; = 0 or x, = 0, respectively. For
example, consider point in time ¢' = 2.24. At that instant, g hits the bound-
ary x; =0 at point [0,4.4]. Calculations give that 6(0,4.4) =[—-164,
11.4]. Now, (5.4)-(5.6) yield that g 2 [I — PT(q(¢t')]m = [16.4, —16.4] and
G(t'+) = 6(q(¢")) + g = [0, —5]. Note that g is colinear to r', as it must be.
[These calculations are illustrated in Figure 2d.] According to ¢(¢'+), ¢
starts moving downward along the axis y; = 0 and keeps this direction until
entering the region in which 6 points toward the interior of R2. At that
instant (around the point [0, 1.33]), ¢ leaves the boundary and follows the
periodic orbit, as depicted in Figure 2a.

6. Local traffic intensities. This section sets the stage for our FCLT
presented in Section 7. We prove additional details on the issue of character-
izing traffic intensities in Section 15, within the context of M-convergence.

Introduce the function m,

m(€) = [1-P7(&)] (I79(0(&)) - 0(¢)),

(6.1)
F() = (To(*), P(4)),
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ql, q2

Fic. 2. Fluid limit for the two-station tandem network. (a) Path of the fluid limit, which starts
from point (2,2) at t = 0 and follows the arrows. (b) Trajectories of the fluid limit. The solid line
is qy, the dashed line is q5. (c) The vector field generated by 6. The broken lines divide the plane
into the different regions, which are computed by (4.8) and (5.9)-(5.11). (d) Oblique reflection:
relative position of 0(q(t"), g = [I — PT(q(¢'N19(¢t' +) and ¢(¢' +) at time t' = 2.3.
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Fic. 2. Continued.
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where ¢ € RX, In view of Theorems 4.6 and 5.2,
m(q(t)) =y(t) = m(t), for almosteveryt > 0,

where y and /m are defined by (4.7) and (5.4)—(5.6), respectively. Henceforth,
we assume that m is defined for all ¢ € [0, T'] and is given by m(-) = m(q(+)).
At each moment ¢, define the sets J7(¢), J (¢) and J°(t) of overloaded,

underloaded and critically loaded stations, respectively (cf. [46], [14] and [55])
by

JH(t) = {j: q;(t) > O},
(6.2) J(t) = {Jj: ¢;(¢) = 0, my(q(t)) > 0},

JO(t) = {J: q;(¢) = 0, m;(q(¢)) = 0}.
During its evolution, each station of the network can alternate between
overloaded, underloaded and critically loaded phases. To underline that these
phases are determined by the fluid limit, we also refer to them as overloaded,
critically loaded and underloaded asymptotic regions (cf. [55]). Our FCLT
presented in the next station reveals that each asymptotic region has its
distinctive type of diffusion limit. Specifically, the diffusion limits for over-

loaded, critically loaded and underloaded stations are diffusion, reflected
diffusion and zero processes, respectively.

7. Diffusion approximations (FCLT). Introduce the sequence of sto-
chastic processes V" = {V™(¢), t = 0}, n = 1,2,..., by

(7.1) V™(t) =vn(q"(t) = q(2)).

This sequence represents amplified deviations of the rescaled queueing pro-
cesses ¢" from their fluid limit g. The asymptotic behavior of {V "} is given by
FCLT that will be presented momentarily.

Let us start with a brief discussion on the issue of continuity of diffusion
limits. Simple analysis of (7.1) reveals that our diffusion limits could, in
general, be discontinuous. Indeed, recall the definition (6.2) of J*(¢), J (¢)
and J°(¢). If, for example, & € J* for t <t, and k € J~ for ¢ > ¢, (for some
t, > 0), then the limit of {V}"} has a jump at ¢,, with positive probability.
Since the jumps of V" are of size 1/ Vn, {V;"} cannot converge in the usual
Skorokhod o/,;-topology (the “largest jump” functional is oJ;-continuous; see,
e.g., [67]). We assert that, in fact, the convergence holds in the Skorokhod
M -topology. (See Section 15 for a more detailed discussion on this issue.)

In this paper, we prove a simplified version of FCLT, which is yet very
useful in applications. Namely, Theorem 7.2 is formulated for an interval
[0,T1, over which J*, J~ and J° do not depend on time. In this case the
limit process is continuous and the convergence holds with respect to the
J;-topology. (Actually, the convergence to a continuous limit holds with
respect to the U-topology [9].) Such a version, though simplified, still gives
rise to the general form of the diffusion limits, while avoiding the issue of
convergence near discontinuity points of the limit. General versions of FCLT,
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covering cases of discontinuous limits, appear in Pats [65] and will be
presented in a future paper [64]. (The main idea of those versions is to divide
the time interval [0, T'] into open subintervals, each of which does not contain
points of discontinuities, and to apply Theorem 7.2 separately to each of the
subintervals. The diffusion processes thus obtained are joined together in a
way that possibly gives rise to discontinuities of the final diffusion limit.)

THEOREM 7.2 (FCLT). Let the conditions of FLLN (Theorem 4.6) be
satisfied. Assume in addition that

N (né) w(ng)
A e O] B B R RO R AT

Vn (P™(n¢) = P(§)) = fp(£), w0,

as n, «, where f,, f,, and fp are given vector- and matrix-valued functions,
which are bounded and continuous. Finally, suppose that:

(i) A, u and P are differentiable with continuous bounded derivatives;
Gi) J*T(), J(+) and J°(+) are constant during [0,T];
(iii) V™(0) —, V(0), where V(0) is a given random vector with V,(0) = 0 for
allkedJ .

Then the sequence {V"} converges weakly over [0,T] to a continuous Markov
process V. The process V is the unique (strong) solution to the SDE with
time-dependent reflection [ see (B.6)],

(7.4) V= @1;([1—1-]/0'1%-1@)(1)(@)),
dX(t) =f,(q(t)) dt — 5 (q(¢)) dy(¢) + 96(q(¢))V(t) dt
(7.5) — dP"(q(t)) OV(t) dy(t)

+3M2(q(¢t)) dW(¢), te[0,T],

with the initial condition X(0) = V(0). Here q, v and 6 are given by (4.7) and
(4.8), respectively, W is a standard R¥-valued Brownian motion and

(7.6) F={¢eR®: ¢ >0,VEeJ UJY,
(7.7) R(:) = [1-P"(q()],
(7.8) R(:)=[I-P"(g(:)I],
(7.9) fo=fi + P'f, —f, + fPn,

(7.10) 3 = diag{ )} + diag{ p — m} + diag{P"(p — m)}
— PT diag{ u — m} — diag{ u — m}P,

where m is given by (6.1).



STATE-DEPENDENT STOCHASTIC NETWORKS 585

In what follows, V will be referred to as the diffusion limit associated with
the network sequence under consideration.

REMARK. We assume for convenience that X(0 —) = 0. Hence,
_ -1
V() =[I-I"][I-P"(q(0)I] X(0) =X(0),

as it must be. (To verify these equalities, recall that all integrals /¢ stand for
J10,#) and see Remark B.3.)

REMARK 7.11. From the definition of © (see Appendix D) it follows that
the matrix-valued function E(-) £ 9PT(q(+)) © V(-) satisfies

K 9P, .
E,(t) = Y% 72 (g())V(t), Jj,k=1,...,K,te[0,T].
i=1 i

REMARK. Our FLLN and FCLT can be adapted to cover some cases when
A,  and P have piecewise continuous derivatives. We address this issue in
Section 9.

The proof of Theorem 7.2 is postponed to Section 14. Here, we content
ourselves with

OUTLINE OF PROOF. In view of (13.2), (13.3) and (7.1), we can write

(7.12) V= ﬁ[q)}} x + %X) - cp}}(x)],

where

(7.13) X*"=V*0) +f}—fp+B —Bp +M",
(1

(118 ) = [ {20t (w) = 0(a"(w) | du,

1 ‘ T T n

s PO = P e @] = P w)]
xI{q"(u) = 0}u"(nq"(u)) du,

(716) By () = Vn [ (#(q"(w)) ~ 0(a(w))) du,

B — 1 ) PT n PT
(717 ) = = [ [PT(@ () = PT(a(w)]

xI{q"(u) = 0}n"(nq"(u)) du,
(7.18) M" = vVna"

Straightforward analysis of (7.13)—(7.18) reveals that {X "} is C-tight (see
Lemma 14.13). Let X be any weak limit of {X"}. Then we may and do assume
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that {X"} converges u.o.c., a.s., to X. Next, rewrite V" in the following way:

(7.19) V= \/E[q)}} x + %X) - ®R(x)| + €7,
1 " 1
(7.20) € =\/E[<I>;; x+ﬁX )—qny x+ﬁX)].

Observe that {€"} converges to zero u.o.c., a.s. Indeed, in view of the Lipschitz
property of time-dependent reflection (see Theorem B.1), we have

le™llr < LIX™ = Xllr

for some L > 0. The limit of {V"} can be interpreted as some form of a
directional derivative of ®&, at the point x in the direction of X. Theorem
B.2 provides an expression for this derivative. By that theorem, {V"} con-
verges u.0.c., a.s., to a process V, which is given by (7.4). Actually, it leads to
the conclusion that {V "} is C-tight, provided that { X"} is C-tight. To complete
the proof of the theorem, we must show, first, that (7.4) and (7.5) possess a
unique strong solution (see Lemma 14.8) and, second, that X is given by (7.5)
(see Lemma 14.14).

We conclude the outline of the proof with an explanation of the correspon-
dence between (7.5) and (7.13). The first and the second terms on the
right-hand side of (7.5) are the limits of {f;"} and {f#}, respectively. [This is a
consequence of (7.3) and FLLN.] Further, applying the mean value theorem
and FLLN to (7.16) and (7.17) reveals that { B}'} and { B}} give rise in the limit
to the third and fourth terms, respectively (see Lemma 14.14). Finally,
the last (martingale) term arises from the martingale sequence {M"} (see
Lemma 14.9). O

8. Approximations for idle-time processes. A straightforward modi-
fication of arguments used in the proofs of FLLN and FCLT (Theorems 4.6
and 7.2, respectively) leads to a corresponding limit theorem for the sequence
{y™}, given by

1 .
Y= ;Y", Y*(:) = fo Kq™(u) = O} u*(ng™(uw)) du, n=1,2,....

This sequence represents a rescaled discrepancy between real and potential
departures, which arises during idle periods in the stations. Note that if at
some station &, the service rate depends on the value of queue at that station
only [that is, u(Q™) = pp ()], then
(8.1) Y = pp(0) Iy,
where I(+) = [;1{q}(v) = 0} du is the idle-time process at station £.

The following proposition constitutes the FLLN and FCLT for {y"}:

PROPOSITION 8.2. Assume that the conditions of Theorem 4.6 are satisfied.
Then {y"} converges, u.o.c. over [0, ) in probability, as n T, to a determinis-
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tic absolutely continuous function y given by (4.7). Assume further that the
conditions of Theorem 7.2 are satisfied. Then the sequence {H"}, given by

H=Vn(y"-y), n=12,..,

converges weakly to the continuous Markov process

(8:3) H(:) = [ R7H(0) a{V(2) = X(1)},
where V, X and R are characterized by (7.4), (7.5) and (7.8), respectively.

9. Discontinuous derivatives d\, dp and dP. In this section we
discuss an extension of FCLT, covering some cases when A, u and P have
piecewise continuous derivatives. In the one-dimensional case, a general
statement was given by Theorem 4.3 in [59]. We provided there a condition on
the discontinuities of A and u, under which FCLT holds without any changes.
We also derived a modified FCLT, covering cases when that condition is not
satisfied. The case of networks with piecewise continuous derivatives of
primitives is treated in [58], where, in particular, queues with reneging,
preemptive priorities, finite population and finite number of servers are
covered.

In this paper, we present a simple modification of the FCLT which is
sufficient for our applications. This version characterizes some cases when
FCLT (Theorem 7.2) holds without changes.

PRrROPOSITION 9.1. Suppose that all the conditions of Theorem 7.2 are
satisfied with the following modification: there exists &> 0 such that the
derivatives dA, du and JP are Lipschitz continuous in the set

(9.2) U Bla(?), ],

te[0,T]

where B[ ¢, ] is a Euclidean ball with center ¢ and radius . Out of this set,
we allow JA, du and IP to be piecewise continuous functions with a finite
number of discontinuities in each compact subset of RX. Then Theorem 7.2
applies without any changes.

The proof is omitted because of its similarity to the proof of Theorem 7.2.

10. Applications. In this section, we demonstrate that our state-depen-
dent networks are natural models of various real systems. Specifically, our
examples show that the model (2.1)-(2.5) fits a wide variety of queueing
networks, phenomena and forms of control. In most examples, we do not
provide explicit expressions for fluid and diffusion limits, due to space limits.
In each case, we can write down these expressions by substituting the
parameters of the models into the general equations (4.7), (7.4) and (8.3).
Note, however, that even for small-size models, such as those considered
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below, the corresponding DEs and SDEs often allow only numerical solutions.
This motivates the additional numerical examples in Section 11.

10.1. Special regimes of operation. We start with particular cases in
which the fluid and diffusion limits, given by (4.7), (7.4), (7.5) and (8.3),
substantially simplify. These cases will be used in our examples later on in
this and the next section.

Networks without underloaded stations. In this case J = & and we have
g = 6(q), where 0 is given by (4.8). Further, V is the unique (strong) solution
to the following SDE with time-dependent reflection:

V() =X() + [ [1-PT(a(0)] a¥(#),
V,>=0, ked’

(10.1) Y is nondecreasing in each coordinate, Y (0) = 0;
Y, =0, ‘k ed’;

/O' 1{V,(¢) > 0}dY,(t) =0, EkedJ°

Here X is defined by

dX(t) =f,(q()) dt + 90(q(¢))V(¢)dt +3V%(q(t))dW(t), t=0,
and f, and 3 are given by (7.9) and (7.10), respectively. Finally,
(10.2) H-Y.

Overloaded networks. This is a special case of the previous one, in which
J? = (that is, J*={1,..., K}). Then, again, ¢ = 6(g), (10.1) and (10.2)
imply that H = 0 and

dV(t) = f,(q(t)) dt + 90(q(t))V(t) dt + S¥2(q(t)) dW(t), t=0.

Note that V is a Gaussian process, provided V(0) is a normal random vari-
able, for example, independent of W.
Further, introduce the mean vector and covariance mairix functions

a() 2EV(:),  b(:) 2 Cov V() =E[(V() = a()(V(:) —a(-)"].
Then (see [40]) a and b satisfy the DEs
a(t) =fo(q(t)) + 30(q(t))a(t),
b(t) = d6(q(t))b(t) + b()[a0(q(2))]" + 2(q(2)), t=0.
Underloaded networks. In this case, J = {1,..., K} and we have
g=0, V=0;
H=—[1-P7(0)] {(£(0) - fL(0)ym)t + SV/2(0)W(¢)}, ¢=0.

(10.3)
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Here, f,, fp and 3 are the same as in Theorem 7.2 and m = —[I —
PT(0)]'6(0).

10.2. Special models. Here is a list of particular models that are covered
by our FLLN and FCLT (Theorems 4.6 and 7.2 and Propositions 9.1 and 8.2).

Networks with state-independent routing. For such models, fluid and
diffusion limits are solutions to DEs and SDEs, with reflection in constant
directions. For this case, we extend the results of Krichagina [46] to un-
bounded arrival and service rates, and we develop a framework for a rigorous
analysis of M;-convergence, to appear in [56] and [64] (see also [59] and
Section 15).

Networks with finite population, multiserver stations and state-indepen-
dent routing. In such models, rates of arrivals and services are given by
piecewise linear functions. (See Sections 5.4-5.8 in [59] for single-station
examples.) In line with this, fluid limits are solutions to autonomous linear
DEs with reflection, while diffusion limits are (reflecting) diffusion processes
of the Ornstein—Uhlenbeck type. Our theorems here generalize the corre-
sponding results of Kogan, Liptser and Smorodinskii [45], Prisgrove [68] and
Kogan and Liptser [44].

It is of interest that, for some of these networks, our fluid and diffusion
approximations provide exact expressions for mean values and covariances of
the queueing processes. For illustration, consider a sequence of single sta-
tions with primitives

AR =A-(n—-Q"), wu"(Q")=uQ",
Q"(0) = ng(0), n=12,...,

where A, u € R, and ¢(0) €{0,1,..., n}. By FLLN and FCLT and in view of
(10.3) we have

(10.4)

(105) q(t) = 3757 ~ e I —— e q(O)], a=EV=0,
b(t) = VarV(t)
(106) = ﬁ{w —e A — A) — q(0)(p? — A%)]

—e PO+ g(0)(w = )]}, £z 0.

On the other hand, standard calculations with probability generating func-
tions yield

(10.7) EQ" = ng, Var Q" = nb, n=12,...,

where g and b are given by (10.5) and (10.6) (see [74] and [27]). Observe that
(10.7) is precisely the expression that we obtain by combining (10.5) and
(10.6) with the formal relation suggested by FCLT: Q" ~, nq + Vn V. Roughly

speaking, the following facts give rise to such instances. Since u"(0) = 0, the
reflection phenomena do not arise in the original system, as well as in the
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fluid and diffusion limits. Furthermore, with linear arrival and service rates,
taking expectations in (3.1) provides a linear DE for EQ. Finally, the intrinsic
structure of the system at hand results in EQ” and Var Q" being linear in n
[see (10.7)]. Then our rescalings (4.1) and (7.1) degenerate when applied to
the corresponding mean values and variances.

State-independent networks. For such models, fluid limits are piecewise
linear nonnegative functions; diffusion limits are combinations of Brownian,
reflected Brownian diffusions and zero processes. Each station is perma-
nently overloaded, critically loaded or underloaded, but with a possible initial
transient phase. In this case, our results complement those of Chen and
Mandelbaum [14, 15].

10.3. Congestion-dependent dynamics in manufacturing and communica-
tion. The queueing networks in this subsection are small-size versions of
some well-known models. Our main concern is the ¢ransient behavior of
queueing processes, while the papers from which our models originate fo-
cused on the stationary distributions of the corresponding birth and death
processes. Further, we use these restricted models to explain a physical
meaning of state-dependent arrival and service rates, and, especially, state-
dependent routing policies. Our analysis is complemented by numerical
examples in Section 11.1.

Flexible manufacturing systems. Examples 1 and 2 are drawn from Buza-
cott and Yao [12, 84, 85] and Serfozo [70].

ExaMPLE 1. An appropriate model for various flexible manufacturing
systems is a queueing network with a finite population, where customers
(parts) follow a probabilistic shortest-queue routing scheme. For example,
consider the three-station network depicted in Figure 3, with the primitives

MQ) =X (na—Q —Qy— @),  A() =Ag() =0,
Mk(')Ean> k=1,2,3;
0 p12(') p13(')

(10.8) P()=1lo o o |
0 0 0
(b~ Q) ~
pu(Q) = (b, ¥ by) k=2,3,

for some positive A, u;, py, i3, @, b4, b, and some n €.Z .

REMARK. In this model, arrivals are generated by na independent sources,
each of which operates at rate A. Hence, na is the maximal number of
customers in the systems (the size of the population). Such forms of A;(-)
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2 L

p12(Q)
12(Q)

A (Q)
_ 1 >
#(Q)

p13(Q) 3

u3(Q)

Fic. 3. A three-station model with state-dependent routing.

arise, for example, in repairman problems (see, e.g., [35] and [34]). Further-
more, according to (10.8), customers leaving state 1 are routed with a higher
probability to the station (2 or 3) with the largest currently available waiting
room. (The parameters b, and b, specify the maximal number of customers
at station 2 and 3, respectively.) Note that, with probability (1 — py, — p13),
customers leave the network after station 1.

It is known that finite-population models with appropriate parameters
may provide reasonable approximations for closed networks. (See [79] and
numerical examples in Section 11.1.) In this case, the total number of
customers in the network is approximately constant. Then (1 — p;, — p;3)
can be interpreted as the probability that a customer, after service at sta-
tion 1, remains at this station due to saturation of stations 2 and 3.

Our FLLN and FCLT give fluid and diffusion limits for this network, as
n T (that is, approximations as the population and waiting rooms grow).
These limits are solutions to (4.7), (7.4) and (8.3), with

ME) =r(a—E =& = &) M) = () =0;

0 p12(') P13(')
() =y, B=1,2,3; P(:)=|o 0 o |
0 0 0
(b — &)
plk(§)=Tb2, k=2,3;&,&,6>=0.

ExamPLE 2. Another useful model for various manufacturing systems is a
star network with workstations linked by a material handling system and
governed by reversible (probabilistic) shortest-queue routing. To be specific,
consider a network consisting of K stations, with station 1 as the center (see
Figure 4). Assume that A(-) = n(1,0,...,0)7 and u(-) = nu, for some A > 0,
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12 2 3 13
P12(Q2) \ / P13(Q3)
1

A1
- >
M1 .
P1x(Qx)
157 ¢
— kK — .

Fic. 4. A star network with state-dependent routing.

positive vector uw and some n € 2 ,. Further let

0 P12(') P1K(')
pop-|t 0 e
(10.9) 1 0 0
_(nb - Q)" -
plk(Q)_W; k=2,... K,

for some b, > 0,k =1,..., K, and some n € .2 ,. Then the fluid and diffusion
limits for this network are solutions to (4.7), (7.4) and (8.3), where A(:) =
(1,0,...,07, w(-) = wand P(-) as in (10.9), with

(by — &)

, E=2,....K, ¢ RE
TX.b, & +

pu(€) =

Computer communication networks. Models with adaptive routing and
adaptive rates of processing are useful in optimization and performance
evaluation of computer networks. Examples 3 and 4 below are representative
of such models (see [75], [47], [10], [77] and also [12] and [84]). Example 5 is
taken from [33] and [62].

ExaMPLE 3. Consider a three-station network (see Figure 3), with the
primitives A(+), u(+) and P(-) as in Example 1, except that

(nb, - Q)"
n(by, +b;) — @y — Q3

(10.10) pu(Q) = k=2,3;

for some by, b;,a > 0.
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REMARK 10.11. When the above model is used to model computer net-
works, the first station can be interpreted as a central processor, and the
second and third stations are interpreted as peripheral devices. The meaning
of parameters n,a,b;, b, is similar to that in Example 1, and (10.10)
describes a probabilistic shortest-queue policy. However, in contrast to Exam-
ple 1,if @, + Q; < n(by + by), then p,y + p;3 = 1. That is, as long as b, and
b, are sufficiently large (e.g., b, + b3 > a), our model describes a network
without losses. Reducing b, and b, introduces losses. We analyze numeri-
cally both of these cases in Section 11.

Fluid and diffusion limits for this network are given by (4.7), (7.4) and
(8.3), with A(+), u(+) and P(-) as in Example 1, except that

(by = &)
by + by — & — &7

plk(f): k=2737 5175275320-

ExampPLE 4. Consider the tandem three-station network in Figure 5, with
primitives A(+) and w(+) as in Example 1, and

pa( ) 0 0 Q,+Q
P()=| 0 py(:) 0] P(Q)=—7,
(10.12) 0 0 0 !
Q3
po(@Q) = n_bz’

for some b;, b, > a > 0. Here, the effective service rates at stations 1 and 2
decrease as the saturation of downstream stations increases. (The model can
be easily recast as a network with state-dependent service rates and state-
independent routing.)

The fluid and diffusion limits are solutions to (4.7), (7.4) and (8.3), with
A(+) and wp(-) as in Example 1, P(+) as in (10.12) and

& + &3 és
pi(€) = b p2(§)=3—; £>0,k=1,23.
1 2
p1(Q2,Q3) p2(Qs)
Al(QlyQ2»Q3) v' 1 ,= 9 . 3
H1 2] 13

Fic. 5. A tandem network with adaptive feedback.
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ExamMPLE 5. Another useful model is a general K-station network with
state-independent arrival rates and routing, and with service rates given by

(10.13) (Q) = e L ho1 K
. M aZ+Q’ k ko yeees ,
for some nonnegative a,, £ = 1,..., K, and some n € 2 ,. In this case,
wé
me(€) = — s k=1,...,K, £ RE
k

It is notable that, in (10.13), alternatively setting a} = a, or a} = Vn a,, leads
to the systems studied by Yamada ([82] and [83], respectively). (For an
extended discussion on this issue, see Section 11.3 and also Sections 4.6 and
5.9 in [59)).

10.4. Learning systems. A manufacturing system with learning (improve-
ment) is a system in which the time necessary to complete an operation is
reduced as it is repeated over and over. The relationship that expresses this
increase in service rate is called a learning curve. (See, e.g., [78], page 280.)
We now describe a simple state-dependent network, which can be used as a
basis for models of learning. Consider a two-station tandem network, as that
depicted in Figure 1, but with primitives

Q,
MO mra N =0 (@ =l 2,

w9 =0 Py =[5 1]

for some n €2, A >0 and an increasing positive function w. The first
station is a system with learning, and w is the corresponding learning curve.
In practice, the learning curve is typically of the form u(&¢) = c(1 + €)%, ¢ >
0, « €(0,1).

The model presented above animates the one in [78] as a state-dependent
networks. (In [78], learning systems are characterized by the forward equa-
tions for the corresponding birth and death processes.)

The fluid and diffusion limits arise as n 7o, that is, when arrival and
service rates become large. These limits are solutions to (4.7), (7.4) and (8.3),
with

M(0) = A, Ay(0) =05 pi(€) = m(€s), mo(*) = 0;
P(.)=|:8 (]i]’ 61’5220‘

Some practically interesting problems that arise within the context of
learning models are listed:

1. Investigating the stabilizing effect of learning on systems subject to large
constant, increasing, periodic or other time-inhomogeneous arrival process
(representing, for example, an unexpected surge of demands.)



STATE-DEPENDENT STOCHASTIC NETWORKS 595

2. Studying multiserver systems governed by a machine-release policy [78]:
machines are released from the system when, due to learning, processing
is fast enough so that utilization falls below some predetermined thresh-
old.

Such examples will be presented in [56], devoted to time-dependent networks.
(See also Section 15, where we relate time- and state-dependent queueing
networks.)

10.5. Epidemic models. Another interesting field of applications is epi-
demics, namely, spreads of infections. A simple model of a stochastic epidemic
can be described as follows (see [36]). A population is subdivided into three
classes (groups): those who are susceptible to the infection, those who are
infected and those who have recovered and are immune to reinfection. The
class of infectives is further subdivided into subclasses according to stages of
the incubation period and the progress of disease. Infections occur at a rate
proportional to the current number of individuals in the classes of both
susceptibles and infectives. This model of stochastic epidemic can be repre-
sented as a K-station tandem network (see Figure 6) with the primitives

M) = = A (1) = g (1) =0,
byQy + - +bg 1 Qx_
Ml(Q) =aQ1' 2Q2 . K IQK 1’

lu’k(Q)zcka, k=2,...,K—1,
1, i=1,...,K—1, k=j+1,
pjk(Q)={O J J

otherwise,
for some positive a, b,,¢,, k = 1,..., K, and some n € Z,. According to the
description above, @, is the current number of individuals susceptible to
the infection, @,,..., @x_,; are the numbers of individuals in the K — 2

subclasses of the group of infectives and @y is the number immune to re-
infection.
The fluid and diffusion limits for this network are solutions to (4.7), (7.4)
and (8.3), with
M) = = Ag(?) = ug(*) =0,
ui(§) =aéy - (bgéy + - +bg_1€x 1),
Mk(§)=ck§k, k=2,...,K_1,
1, =1,....,.K—-1,k=j+1,
o) ={y J

e RE.
otherwise, ¢ *

1 2‘—b-ooo——->K-]_ > K

1(Q) u2(Q2) pr—1(Qrx—1)

Fic. 6. A queueing model of epidemics.
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Note that we can easily incorporate various sources of heterogeneity between
individuals by adding a new station for each homogeneous group.

Isham [36] analyzed several stochastic epidemic models. In particular,
using Gaussian diffusion approximations, she estimated the first two mo-
ments of processes of interest. Our approximations lead exactly to the same
results. (We perform similar calculations, applied to other models, in Section
11.) The theoretical justification for [36] is the FCLTs presented, for example,
in [7], [48] and [49]. Note that, in epidemic models, limits do not involve the
reflection phenomenon, and therefore the corresponding limit theorems are a
particular case of our FLLN and FCLT.

10.6. Data networks with bursty sources. The model we now describe was
studied from various viewpoints by Anick, Mitra and Sondhi [3], Knessl and
Morrison [43] and Kushner and Martins [52].

Consider a data-transmission system, which receives messages from n
independent sources. The sources alternate between on and off states and
create messages during the on periods. Assume that the duration of each on
(off) period is exponentially distributed with mean value 1/ (1/v). During
an on period, each source sends messages according to a Poisson process with
rate A. The service time of the transmission system is exponentially dis-
tributed with mean value 1/n u. This model can be represented as a queueing
network that consists of two nonlinked stations, with parameters

+

M(Q) = A-Q,, (Q) = v (n—Qy) ; () = np,
Mo (Q) = - (@ A n); P(:) =0.
The first station represents the data-transmission system, while the second
station is introduced to model on and off periods of the sources: being at
station 2 corresponds to being off.

The fluid and diffusion limits arise as n 1«; that is, as the number of
sources and the rate of service become large. The limits are solutions to (4.7),
(7.4) and (8.3), with

ME) =A b, (6 =v(1-&)5  wm()=a
me(§) =m-(§2A1);  P(:)=0; §,£20.
For example, if ¢(0) = [0, v/(v + 9)]T and u = Av/(v + 7), then we get the
expressions in [52]:

q =q(0),

dAV,(£) = AV,(¢) dt + 1/271"—77 dW,(¢) + dY (1),
dV,y(¢) = — (v + mV,y(2) de + 1/2% AW, (2).

10.7. Multiprocessor systems with breakdowns. By analogy with Section
10.6, we can construct a multiserver (multiprocessor) system, where each of
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the servers is subject to independent random breakdowns and repairs. Such a
system was considered by Mitrani and Puhalskii [63].

To be specific, assume that there are n identical independent parallel
processors. The processors alternate between on and off and they are opera-
tive during the on periods. Further, suppose that the duration of each on
(respectively, off) period is exponentially distributed with mean value 1/
(respectively 1/v). Jobs arrive to the system according to a Poisson process
with the rate nA. The service time is exponentially distributed with mean
value 1/w. This model can be represented as a queueing network that
consists of two nonlinked stations and has the following parameters:

M(0) = nA, Az(Q):V'(n_Qz)Jr, pi(Q) = p- (@1 A Qy),
pe(Q) = n- (Qy A n); P(-) =0.
As in Section 10.6, the first station is actually the multiprocessor system,
while the second station models on and off periods of the processors. This
model animates the birth and death processes from [63] as a state-dependent
queueing network.
The fluid and diffusion limits arise as n 1 o; that is, as the number of

processors and the rate of service become large. These limits are solutions to
(4.7), (7.4) and (8.3), with

M(€) = A, )‘2(5):”'(1_52)+; ui(€) = - (N &),
mo(€) =m- (€3 N 1); P(:)=0; £&,& = 0.

REMARK. Setting uy(@) = n-(Q, A cn), for some ¢ € (0, 1], leads to a
more general system, in which processors may be forced to wait in queue for
repair.

10.8. Multiserver systems with breakdowns and blocking. Consider a
two-station tandem system. Each station is a multiprocessor system with
breakdowns of processors (as in Section 10.7). A distinguishing feature of this
system is that the buffer at the second station has a finite capacity. The
service rate of the first station is adapted to the buffer content of the second
by having fewer servers work when buffer content is high. In particular,
when the buffer is full, all the servers at the first station stop serving. [See
w4(+) below.] An appropriate model for this system is a four-station queueing
network with the primitives

M() =na, Ay() =0, A3(Q) = vs- (agn — Q3)+,
A(Q) = vy~ (ayn — Q4)+;
m(Q) = w-[QA(bn = Q)" AR],  wa(Q) = A [@ A Qu,
m3(®) = m3 - (@3 A czn), re(Q) = My (Qy A cyn);

R

0, otherwise,
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for some positive A, w, &, b, v, M, ¢, B = 3,4, and some n €Z,. In this
model, stations 1 and 2 are the multiprocessor systems. Stations 3 and 4
model breakdowns of processors at stations 1 and 2, respectively.
The fluid and diffusion limits for this network are solutions to (4.7), (7.4)
and (8.3), with
+

M(0) =4, Ay(1) =0, Ag(€) = vg-(ag — &)
A(€) = V4'(a4_§4)+;
M1(§)=M'[§1/\(b_§z)+/\§3], we(€) = - [ & A&,
ms(§) = m3 (&5 A c3), ma(€) =y (€4 A ey);

1 =1,k =2,
pjk(§)={ ’ /

>0,k=1,...,4.
0, otherwise, &

The system described above is analogous to that considered by Mitra [61],
but our blocking mechanism is different. Specifically, we change w, gradually
with @, while in [61], rates change in an abrupt fashion only when buffers
are either full or empty. We can incorporate the latter blocking mechanism in
our state-dependent framework by using piecewise linear service rates, simi-
lar to those used in Section 11.2, to model finite buffers.

10.9. Stochastic traffic assignment models. We can show that various
stochastic traffic assignment models, as in Davis and Nihan [20], can be
modeled by a queueing network with state-dependent routing probabilities

eXP(_Cjk(Q)a) )
LK jexp(—c; (@) a)’
1 K
(@) = OB K,

n

pjk(Q) =

for some nonnegative «, Bj"k, Jyk,i=1,..., K, and some n € Z . It is shown
in [20] that, as the number of individual travelers becomes large, the net-
work’s traffic volumes can be approximated by the sum of a nonlinear
deterministic function and a time-varying linear Gaussian process. These
approximations correspond to our fluid and diffusion limits.

10.10. Human-service systems. Many queues that are encountered in our
life are state- and time-dependent. Some examples are public service centers,
telephone systems, banks, hospitals and others. In these systems, customers
react to state changes: they typically prefer short queues, jockey, renege and
so on. State-dependent queueing networks provide, therefore, a natural
framework for design, performance analysis and optimization of service
systems. An example of using state-dependent queues for approximate analy-
sis of service was given by Worthington [81], who applied models of queues
with reneging (see Section 5.8 in [59]) to the hospital waiting-list problem.
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Other examples are [80] and [39] (see also [76]). They considered the problem
of finding the right number of servers in multiserver service systems, so as to
keep the probability of delay under some predetermined level. In [80], the
staffing problem was solved by infinite-server approximations for a system
with a time-homogeneous arrival process. In contrast, the arrival process in
[39] is time-inhomogeneous; hence, the “right” number of servers s becomes
time-dependent as well. In other words, when there are s(¢) servers in the
system, the service rate is w(Q, #) = u - (@ A s(¢)) and the problem thus is to
choose the right function s(¢). Actually, such a system is representative of
queues, which are both state- and time-dependent. Approximating such
systems is important for future research (see also Section 15).

11. Numerical examples. The numerical examples in this section con-
stitute an attempt to demonstrate the quality of our fluid and diffusion
approximations and to demonstrate their use in facilitating the analysis of
various queueing networks. Section 11.1 is devoted to a three-station network
(see Figure 3) governed by various routing policies. In Section 11.2, we show
that our approximations also fit systems with large finite buffers despite the
fact that they are derived for networks with infinite buffers. In Section 11.3,
we compare different rescaling procedures, by applying them to a multiserver
queue.

Consider a sequence (M} /M / DX n=1,2,..., of state-dependent net-
works, which satisfies the conditions of FLLN and FCLT (Theorems 4.6 and
7.2 and Proposition 8.2). The theorems suggest that, for sufficiently large n,

(11.1) Q"() ~nq(+) + VrV (),
(11.2) EQ"(‘) ~nq(:) + VnEV(:), Cov@"(-) ~nCovV(-),
(11.3) Y7(+) S ny(s) + mH(Y,

(11.4) EY"*(:) ~ny(:) + Vyn EH("), CovY"() ~nCovH(").
These relations justify our methods below for approximating queueing and
idle-time processes by their corresponding fluid and diffusion limits.

REMARK. Equations (11.1) and (11.2) suggest, at least formally, that also

d
Q"(*) ~ ng(*) + VnV(x),
(11.5) EQ"(=) ~ nq(=) + VnEV(=),
Cov Q"(*) ~ n Cov V(),
assuming, of course, that the corresponding stationary values and distribu-
tions exist. A rigorous justification of (11.5) is not available to the best of our
knowledge. Examples of theorems that support such approximations are

given in [29], [41], [25], Chapter 4, Section 9, and [53]. Since our focus is on
the transient behavior of networks, we do not pursue this further here.
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Our analysis combines the following tools:

1. Analytical solution of DEs (fluid) and SDEs (diffusion) whenever possible.

2. Numerical solution of DEs and SDEs (as in [42]) using MATLAB or cus-
tomized software.

3. Simulation of the original queueing systems using SIMAN /ARENA [66].

11.1. Networks with state-dependent routing. This subsection is devoted
to analysis of the three-station network depicted in Figure 3 and described by
Examples 1 and 3 in Section 10.3. By means of fluid approximations, we
compare different routing strategies given by (10.8), (10.10) and others. As
pointed out in Section 10.3, this model captures significant features of many
manufacturing and computer systems (see [47], [75] and [84]).

In [47], [75] and [84], the focus is on the stationary phase and numerical
results pertain to a small number of customers in the network. In contrast,
our goal here is to analyze large systems in their transient phase. In addition,
we attempt to show the following results:

1. Our fluid limits provide reasonable approximations for queues in general
and for idle times of overloaded stations.

2. Our fluid approximations are useful for comparing different routing poli-
cies and aid in the identification of close-to-optimal modes of operation.

3. The state-dependent routing (10.10) can be used to approximate the short-
est-queue routing policy. (The analysis of the latter is often intractable.)
Moreover, using our state-dependent routing leads to improved perfor-
mance of the network.

4. Our open-network models can approximate closed networks.

Through our numerical experiments, we seek to improve or optimize a set
of performance measures. We now describe these measures, which arise from
interpretation of the network as a computer or manufacturing systems (see
Section 10.3 and the references cited above):

Performance criteria.

Throughput: The potential of the two peripheral devices (stations 2 and 3)
should be fully realized (they should be critically loaded or overloaded). Then
the system throughput is the total service rate at stations 2 and 3.

Queues: The magnitude of the queue at the central processor should be
relatively small (station 1 should be underloaded or at most critically loaded).

Balance: The operation of stations 2 and 3 should be balanced, in the sense
of similar magnitudes of queues (even though service rates may differ). The
queues at stations 2 and 3 should be bounded.

Blocking: If stations 2 and 3 have limited buffer capacities, then the
probability of blocking should be low. (In the model considered, customers
blocked at station 1 leave the network and are considered lost.)

Stability: If there exists a stationary distribution, then the transient phase
should be relatively short.
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As a start, consider the three-station network, of Example 3 in Section
10.3. Recall from Remark 10.11 that as long as b, and b5 are sufficiently
large, our model describes a network without losses. In contrast, reducing b,
and b, introduces losses. We consider these cases in turn below.

Networks without losses. Comparison of fluid approximations with simu-
lation: In Figure 7, we compare the queueing and idle-time processes com-
puted from 300 simulations and from numerical solution of DEs for fluid
approximations. The following parameters were chosen:

A=5, a=10, jp, =10, jp,=2

11.6
( ) g =17, by, =b; =25, ®(0) = 0.
Figure 7a and b exhibits data for EQ"” and EI" for n = 100; Figure 7c and d
exhibits data for EQ"™ and EI” for n = 1000. A comparison between Figure
7a and b and ¢ and d demonstrates that the quality of the fluid approximation
improves as n increases.

REMARK. Approximations for the idle-time processes by the fluid limits
are less satisfactory than those for the queueing processes. We can improve
these approximations through the second-order diffusion refinement in Prop-
osition 8.2 [see (11.3) and (11.4)].

The fluid limit can produce even better approximations. Figure 8, demon-
strates this for the network with A, a, u;, uq, by, b5 and Q(0) taken as in
(11.6), u3 = 2 and n = 100, where

:5a a=10> /“(’1:10? /.L2=/,L3=2,

(11.7) by, =b;=25, Q(0) =0, n = 100.

The fit here is almost perfect. Based on empirical experience, we attribute
this to the symmetry u, = u,. In the sequel, we focus on asymmetric cases,
when w; > uy V g and py # ug [as in (11.6)]. It is explained in [75] that
such a combination of parameters is the most unfavorable, from the view-
point of the performance criteria described above. Hence, the advantages of
our state-dependent routing are the most pronounced. In particular, a com-
parison of Figure 7 with Figure 8 shows that in the latter symmetric network,
the operation is the same as that of a network with state-independent routing
P12 = P15 = 1/2, and the transient phase is relatively short.

Analysis of Figure 7a and b leads to the following observations:

1. Station 1 is overloaded until ¢ = 6.8 and underloaded thereafter; station 2
is permanently overloaded; station 3 is underloaded until # = 1.5 and
overloaded thereafter.

2. At t = 6.8, the network enters the stationary phase, in the sense that the
fluid approximation remains constant thereafter. The evolution during the
transient phase cannot be deduced from exact analysis. The following
calculations provide insight into the stationary behavior. Within the sta-
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tionary phase, stations 2 and 3 are overloaded and, hence, the throughput
of the network is u, + ug = 900. Since A, = 5-(1000 — @, — @, — @,)",
we have that during this phase @, + @, + @; = 820. Furthermore, the
stationary value of the traffic intensity at station 1 is p = 900,/1000 and,
hence, the stationary value of @, is p/(1 — p) = 9. (This small queue
corresponds to zero fluid approximation.) Next, the fluid approximations
demonstrate that the stationary values of queues at stations 2 and 3 are
460 and 360, respectively. Therefore, by (10.10), we have that p,, = 2/9
and p;3 = 1/9 within the stationary phase; that is, p5/p15 = ny/ts. This
relation means that the faster service is loaded more. We analyze below
this routing policy and show that it is less effective than the state-depen-
dent routing (10.10).

Comparison of different routing policies: Figure 9 compares four different
routing policies: (a) shortest-queue routing; (b) state-dependent routing, given
by (10.10) with b, = b; = 4.5; (c) state-independent routing with p;, = p;53 =
0.5; (d) state-independent routing with pi,/p;53 = me/ms (load the faster
server more). The other parameters are chosen as in (11.6). Figure 9 yields
the following observations:

1. Policy (a) has the best performance measures: (i) The potential of stations
2 and 3 is fully realized. The stationary throughput is equal to 200 + 700
= 900. (ii) Operation of stations 2 and 3 is balanced in the sense of equal
queues, despite different service rates. The queues at these stations do not
exceed 400. (iii) The queue at station 1 is asymptotically (for large #) small.
(Station 1 is asymptotically critically loaded.)

2. Policy (b) achieves performance that is close to that of policy (a). However,
our state-dependent routing is theoretically more tractable than the short-
est-queue policy.

3. Under policy (c), the operation has the worst performances. The stationary
throughput of the system is as low as 410. [The stationary value of
), + @, + Q, is approximately 916; hence, A; = 5 (1000 — 916) = 420.
The stationary throughput equals, therefore, 200 + 420/2 = 410.] The
value of @, is very high, while stations 1 and 3 are underloaded.

4. Policy (d) is better than policy (c), but worse than policy (b).

Networks with losses. Reducing b,,b; (i.e., reducing the permissible
queues at stations 2 and 3) introduces losses into the system. We compare
performances under the following policies: (a) state-dependent routing, given
by (10.10) with b, = b, = 4; (b) finite buffer system with buffers b, = b, = 4
and p;, = p;5 = 0.5; (c) finite buffer system, with buffers b, = b; = 4 and
DP1a/D1s = Mo/ g (d) state-dependent routing given by (10.8) with b, = b; =
4. We chose the same parameters as in (11.6), except that b, = b, = 4, and
we take n = 100. Figure 10 yields the following conclusions:

1. Policy (a) leads to the best performance: (i) The potential of stations 2 and
3 is fully utilized. The stationary throughput is equal to 200 + 700 = 900.
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(ii) Operation of stations 2 and 3 is balanced in the sense of asymptotically
equal queues, despite different service rates. The queues at these stations
do not exceed 400. (iii) The queue at station 1 is asymptotically small.
(This station is asymptotically critically loaded.) (iv) The stationary proba-
bility of losses is as small as 0.08.

2. Other policies are inferior to policy (a). In particular: (i) The stationary
throughput is 200 + 1000/2 = 700 under policies (b) and (d), while the
first station is overloaded. (ii) Under policy (¢) the throughput is 900, but
the first station is overloaded. (iii) The stationary probability of losses
approximately equals 0.3.

REMARK. Note that the total number of customers in the networks in both
Figures 9 and 10 stabilizes fast into a constant. This suggests that our
approximations for open networks can be used to approximate corresponding
closed systems. The issue was addressed in detail by Whitt [79].

11.2. Large finite buffers. The networks considered in this paper have
unlimited buffers. However, our results can be applied to approximate net-
works with large buffers (of order n). Such models arise, for example, in large
human-service systems, communication networks and others, where waiting
rooms are made sufficiently large to assure that blocking rarely occurs.

We approximate a single station M /M /(C + 1) whose arrival rate is A,
service rate u and buffer size C, where

(11.8) A=2n, w=n, C=n
for n = 1000. The approximation is a state-dependent single station with an

infinite buffer and parameters

[@-(c-ne)]’ }

&

(11.9) XNQ)=2-{n

uw=n;C=n,

for n = 1000. We assert that, with an appropriate choice of & < C/n, the
fluid and diffusion limits for this model provide reasonable approximations
for the original system with finite buffer. The rationale for this approximation
is that AM@Q) is constant up to @ = C — ne and it vanishes for @ > C. Thus,
when & < C/n, M@Q) is close to the rate of effective arrivals in the finite-buffer
model.

To be specific, let @Q(0) = 0. Fluid and diffusion limits for the system
defined by (11.9) are given by (4.7), (7.4) and (8.3), with

B [5—(18—8)] }  u=1,4(0) =0,

AE) =2 {1

Analysis of Figure 11 reveals that our approximations provide good estima-
tors for EQ(-) and Var Q(-) during both the transient and the stationary
phases.
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Fig. 11. Finite buffer model. Fluid and diffusion approximations versus simulation results. The
solid lines are computed from fluid and diffusion approximations for the queueing system given by
(11.9), with & = 0.004 and n = 1000. The dashed lines are computed from 10,000 simulations of
the original finite buffer system with A = 2000, u = 1000 and C = 1000: (a) EQ; (b) 0 Q.
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The histograms in Figure 12 demonstrate that the distribution of @ is well
approximated by the normal distribution arising from our diffusion limit over
a wide range of t. In particular, chi-square and Kolmogorov—Smirnov tests
show that for ¢ = 0.5 and ¢ = 0.8, the empirical distributions fit the approxi-
mating normal distributions with a significance level of 0.95. However, for
larger ¢ (when the system operates within the stationary phase), we cannot
expect a good fit between the empirical distribution of ¢ and the approximat-
ing normal distribution provided by our diffusion approximations. Indeed,
even for ¢t = 0.9 [see Figure 12d], the tail of the empirical density does not fit
the approximating normal density. To understand this phenomenon, note
that the discrete asymmetric stationary distribution of M/M/(C + 1) is
given by

1- A
1_—l)(§)wpk, p=;, k=0,...,C+1;
it is asymmetric, hence it cannot be approximated by a symmetric normal
distribution. A rough explanation for this bad fit is as follows. When the
system operates within the stationary phase, the free space in the buffer is no
longer of order n. (For our case, p = 2 and, hence, the buffer is almost full
within the stationary phase; see Figure 11.) To investigate queues with
smaller buffers, we must use models and, respectively, diffusion approxima-
tions with additional reflection boundary at ¢ = C. This reflection boundary
introduces asymmetric distributions that would fit (11.10). (See, e.g., [32] and
[18])

Figure 13 exhibits a comparison between the finite buffer queue given by
(11.8) and the approximations for the state-dependent queue given by (11.9),
both with n = 10. We can see that for relatively small buffers (A = 20,
u = 10 and C = 10), our approximations are less satisfactory.

(11.10) Py =

11.3. Numerical comparison of different rescaling procedures. The issue
of different rescaling procedures was addressed in detail by Mandelbaum and
Pats [59]. A summary of [59] is required to motivate the numerical examples
presented below. Assume, instead of (7.3), that for some « > 0,

ot
G

Ao = A6,

(11.11) /n —M(f)) - f.(€),

Vn (P™(n%) — P(£)) = fp(£), wo.c,

when n 7. Our limit theorems correspond to « = 1. Alternative rescaling
procedures were considered by Yamada: the case a = 0 was treated in [82],
where the diffusion limit is of a Bessel type with a negative drift; the case
a = 1/2 was considered in [83], where the diffusion limit is a solution to a
stochastic differential equation with state-dependent coefficients (while in our
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FiG. 12. Finite buffer model. Comparison of the empirical distribution of @ at different times,
computed from 10,000 simulations, with normal distributions provided by diffusion approxima-
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Fic. 13. Finite buffer model. Comparison of diffusion approximations and simulation results.
The solid lines are computed from fluid and diffusion approximations for the queueing system
with u =1 and A given by (11.9), with & = 0.004, n = 10. The dashed lines are computed from
10,000 simulations of the finite buffer system, with A = 20, u = 10 and C = 10: (a) EQ; (b) ¢ Q.
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case, coefficients are time-dependent). The fluid limits vanish in both [82] and
[83].

To recapitulate, our approach leads to second-order approximations for
queueing processes: fluid limits provide approximations for the actual values
of queues, while diffusion limits provide approximations for their fluctuations
from the fluid limit. If fluid limits happen to vanish (operating within the
critically loaded region), then

(11.12) Q" /Vn SV

and the three rescaling approaches above provide approximations for systems
in which arrival and service rates are sensitive to fluctuations of queues: to
small [a =1, #(n"Y2V)], medium [« = 1/2, #(V)] or large fluctuations
[a=0, @#(n2V)].

We compare the three types of rescaling, « = 0,1/2, 1, by applying them to
a single queueing system. Consider a sequence M/'/M//1, n = 1,2,..., with
arrival and service rates given by

(1113) /\n(Qn) =pn +Cn,(Qn A 5”), Mn(Qn) — Bn + ,yn(Qn A 6n)7

where b",c", 6", B",y" are positive constants, ¢ < y". The following possi-
ble interpretations for the nth system were proposed in [59]:

1. Service is provided simultaneously by 6" servers (each at a rate y") and
by a processor-shared server (at a rate 8"). The arrival process consists of
exogenous arrivals (rate ") and served customers that leave for a while,
then return for rework with probability ¢”/y" < 1. (The time until their
return is assumed short enough that the queue does not change much, and
long enough that they are independent of exogenous arrivals.) This is a
possible model for some human-service systems.

2. Service is provided by a single server at a rate that increases with queue
length, but only up to an exhaustion level 8" + y"-§". Service rates,
which increase with queue length, arise naturally in systems with reneg-
ing. (These are queues in which a customer is lost when its sojourn time
reaches an individual random deadline [17]. In line with this interpreta-
tion, y" is the reneging rate.) Arrival rates which increase with queue
length describe a possible scenario where a long queue attracts customers
by being a source of information on service value.

Assume that @} = 0. The following three examples exhibit different diffu-
sion limits V for different choices of parameters in (11.13):

1. a=1:Letb" = B" =nb, ¢"=y*=cand 6" =nd.ThenV =V2bW + Y.
2. a=1/2:Let b =nb, " =nb +Vn, ¢" =Vne, y* = Vnc + land 6" =
Vn 8. Then

AV, = —[1+ (V, A 8)] dt + /b + c(V, A 8) dW,}!
+y/b +c(V, A 8) dW,? + dY,.
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3. a=0:Let b" = B" =nb, ¢" = nc, y* = nc + yn and 8" = 6. Then
V,=—6-t+V2c6+2bW,+Y,.

Here b, c, 6> 0, W, W', W2 are standard Brownian motions (W' and W2 are
independent) and Y is a normal reflection term. For all three examples, the
fluid limit ¢ = 0 and Q"/Vn —, V.

In what follows, numerical estimations of the queueing and idle-time
processes in the three systems are provided. To approximate the idle-time
process 1"(+) = [(KQ"(s) = 0} ds, we used the relation I" ~, VnY/B" It is
a consequence of (8.1), (11.3) and the fact that we deal with the critically
loaded regime [see (10.2)].

The parameters chosen for these experiments are b = ¢ = 0.25, § = 1, and
n = 100.

CASE 1. @ = 1. Figure 14 exhibits data for mean values and variances of
the queueing and the idle-time processes. The distributions, expectations and
standard deviations of V and Y are taken from [30], [1] and [2]:

P(V(t) <z} =P{Y(t) <z} =1-— 2@(—2‘/%), 2> 0,

(11.14) EV(t) = EY(¢t) = 2y/bt/7,

oV(t) = oY(t) = /2bt(1 — 2/m), t=0.

In Figure 15, we compare the empirical distribution of @"(2)/ Vn , calculated
from simulations, with the approximating distribution given by (11.14). As
expected, the larger n gets, the better is the quality of the diffusion approxi-
mations. However, the results above demonstrate that our diffusion approxi-
mations also give reasonable estimations for relatively small queues when
applied to critically loaded systems. Specifically, the relative error at ¢t = 3 is
4.5% for EQ", 4% for o Q", 3.6% for EI" and 9% for oI™.

CasE 2. @ = 1/2. Figure 16 depicts mean values and variances of the
queueing and idle-time processes. In Figure 17, we compare the empirical
distribution of @"(2)/ Vn , calculated from simulations, with the approximat-
ing distribution obtained by numerical integration of the SDE for V. The
relative error at ¢ = 2.5 is 1.6% for EQ", 15.8% for ¢ Q", 0.8% for EI" and
8.6% for o I". :

CASE 3. @ = 0. Figure 18 exhibits data for mean values and variances of
the queueing process Q" for n = 100 and for n = 10,000. The diffusion
approximations are computed from the equations (taken from [1] and [2])

EV(t) =271 — (¢ + 1)[1 - @(VE)] + Ve (Vr),

(11.15) EV2(¢) =271 — (1 -2t —¢?)[1 - (V)| + VE(1 + ) $(VE),
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where ¢ and ® are the standard normal density and distribution function,
respectively. Comparison of Figure 18a and b demonstrates the quality
improvement of fluid approximation as n increases. Figure 19 shows data for
mean values and variances of the idle-time processes computed from simula-
tions.

We conclude this example with some observations:

1. Analysis of Figures 14b, 16b and 19a reveals that our FCLT provides
reasonable approximations for systems which operate under nonheavy
traffic conditions. Specifically, the idle time permanently increases and
comprises about 13, 36 and 31% of the total operation time in the first,
second and third cases, respectively. Furthermore, queues in the systems
considered above are relatively small.

2. Different rescaling procedures and the corresponding diffusion approxima-
tions can facilitate the design and analysis of queueing systems. For
instance, recall the interpretation of u" in (11.13) as the service rate in a
multiserver queue. Then, the examples above mainly differ by the number
of servers relative to the queue size, which are n: Vn, Vn :Vn and 1:Vn in
examples 1, 2 and 3 respectively [the queue size is always of order vVn
according to (11.12)]. Note that a comparison between these systems is
meaningful in the sense that the potential arrival rates 6" + ¢"8” and the
total potential service rate " + y"6" are of order n in all three cases.
Thus, the examples above present three different ways to allocate service
capacity, n in total, among several servers. Analysis through Figures
14-19 gives rise to the following evaluation: (i) the magnitude of the
queues is largest in Case 1 and smallest in Case 2; (ii) the coefficients of
variations of queues are smallest in Case 1 and increase in the other two
cases; (iii) the stationary distributions for queues exists in Cases 2 and 3,
but not in Case 1; (iv) idle times reach the largest values in Case 1 and the
smallest in Case 3.

12. Proof of the martingale representation. This section is devoted
to the proof of Lemma 3.9.

Our arguments, based on a multiparameter time change, are a straightfor-
ward adaptation of those given in Ethier and Kurtz [25], Chapter 6, Section
2, Kurtz [51] and Massey and Whitt [60], Lemma 2.2. Therefore, we omit
some technical details.

To simplify the presentation, we carry out the proof under stronger condi-
tions than Main Assumption (M2) in Section 2. Namely, we assume that A
and w are bounded: there exists a constant L, such that

MCE)e VIpn(€)e <Ly, E€RE

To cover the general case, we can easily modify our arguments, taking into
account Proposition 13.4 [specifically, inequality (13.5)] and Main Assumption
(M2).
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PROVING THE MARTINGALE PROPERTY OF M AND M¢?. Introduce the follow-
ing collection of o-fields, for £k =1,..., K, t > O:

2 (t) =0(Nf(u),0<u<t), Z (t)=0(N,(u),0=<ucxt),
Z,(t) = (Ul AN (8)],1=0,1,...); k=1,...,K, t>0.
For each s = (s, 85,..., Syx) € [0,%)2K let #(s) denote the o-field given by

K
Z(s) = k\=/1 (7 (8a4-1) V7 (821) V G(52)] V 0 (),

where .7 is the collection of all null sets in J. Finally, without loss of
generality, assume that # = {#(s), s € RX} is right continuous.

Repeating the arguments of Theorem 2.2 in [25], Section 2, Chapter 6,
which are based on the uniqueness of the solution to (2.1)—(2.5), leads to the
following assertion: for all ¢# > 0, the random vector 7= (r7(¢), 77(¢),...,
7% (8), 7 (¢)), with

() = [TW(Q) ds, 7 (8) = [ m(@(s)) ds,

is a multiparameter #stopping point ([25], Section 8, Chapter 2).
Put F(¢t) =#(1(¢)) and F = {F(¢), ¢t > 0}. In view of Main Assumption
(M1) in Section 2, we infer that

(N (1) =81, Ny (83) =895, Ng(83x-1) — 8351, Ni (Sak) — Sak)

is a multiparameter martingale with respect to ## Then the optional sam-
pling theorem ([25], Theorem 8.7, Chapter 2) implies that M is a vector-
valued F-martingale, being a multiparameter time change of a multiparame-
ter martingale. Moreover, M*? is also locally square integrable, because A is
bounded [69].

We proceed with the proof of the martingale property for M¢. For the same
reasons as presented above, the process M?, given by

M =S-8, 8(t)= [ w(Qu)du, t=0,
0

is a vector-valued F-martingale. Returning to (2.1)-(2.5), we have Q(¢) € #(¢).
Therefore, the integrand in (2.4) is a predictable process and thus M? is a
(locally square integrable) F-martingale (see the integration theorem in [11],
Theorem T8, page 27).

PROVING THE MARTINGALE PROPERTY OF M,. Introduce the processes M j,e =
{M},(t), t = 0}, 1 = 1,2,3, by

M) = ["pn(Qu—)) dS;(w) = [ pu(@(u =) w(Q(w)) du,
M (8) = [UU[S(w)] € mu(@(u =)} dS,(u)

_/Otpjk(Q(u - u(Q(w)) du,
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t
Mi(t) = [ T[S, (w)] € mu(@(u =)} dS;(w)
13 .
—fopjk(Q(u—)) ds;(u), j,k=1,...,K.
Again, the integration theorem [11] implies, first, that M ﬁe is a martingale
(for all j, k) and, second, that to prove the martingale property for M7, it is
sufficient to show that M ﬁe, J,k=1,..., K, are martingales. Since M jzk =
M jlk +M f;e, we can see that the following lemma completes the proof:

LEMMA 12.1. The processes Mﬁe, Jk=1,..., K, are F-martingales.

PROOF. Our proof is similar to that of Lemma 2.2 in [60]. Fix any j, £ and
t,t, such that ¢ > ¢, > 0. Denote by S;[/] the moment of the /-jump of S,
1=1,2,....From (2.1)-(2.5) it follows that M} (¢) € #(¢). Then

E[ M} ()I5(to)] = MA(t,) + E f(t : [{y[s,(w)] € ma(Q(u-)))

~pi(Q(u—))] dS;(u)F(to)
= Mj.(t,) + léE[[l{U}[SJ(tO) +1] € mu(Q(sy; )}

—pi(Q(sy; )]sy < )7 (20)]
= Mja;e(to)’

where s;; e gj[Sj(tO) + []. The last equality is a consequence of the following
statements, which are easily verified:

(1) The random variable Uj[Sj(to) + 1] is independent of F(¢,) for all
l>1and ¢, > 0.
(i) The random variables Uj[ Sj(to) + 1] and s, ; are independent for all
l>1and ¢, = 0.
(iii)) The random variables Uj[Sj(tO) + {] and Q(s,j — ) are independent for
all /> 1and ¢, > 0.

The proof of Lemma 3.9 is now complete. O

REMARK 12.2. The same arguments as above, which are based on a
multiparameter time change and the optional sampling theorem, yield that

MeME,  k1=1,... K,

are all purely discontinuous (locally square integrable) martingales. Hence,
none of the processes M? and MZ, k,1 =1,..., K, jump simultaneously (see
[53], Theorem 1, page 49). A similar assertion is valid for any pair M7 and
M} with k#1, k,1=1,..., K.
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13. Proof of FLLN. To simplify the presentation we first carry out this
proof under Assumptions B, presented momentarily, which are stronger than
Assumptions A in Section 4. Commentary on the general case is provided in
Section 13.1.

AssumPTIONS B.
(B1) Assume that

1 1
;/\”(nf)=/\(§), ;,u,”(ng):,u,(f), P*(né¢)=P(&), uoc,

for all n =1,2,..., where A, u and P are given vector- and matrix-
valued globally Lipschitz bounded functions and sup; ¢ g« r(P(£)) < 1.

(B2) Assume that ¢"(0) —, ¢(0), where ¢(0) € RE is a given deterministic
vector.

13.1. Proofs under Assumptions B. Existence and uniqueness for the
solution to (4.7) follow from results in Dupuis and Ishii ([23], Section 5;
specifically, see Theorem 5.1 and Corollary 5.2). It turns out that in the case
when P is constant, the proof of uniqueness for DEs with reflection amounts
to combining Gronwall’s inequality with the Lipschitz property of the oblique
reflection operator [13, 46]. However, Example 4.1 and Proposition 4.1 from
[22] show that, when P is state-dependent, the corresponding reflection
operator need not be Lipschitz continuous. (For the notion of reflection
operators, see Remark B.2.) This suggests that many of the standard tools
cannot be used to establish existence and uniqueness for (4.7). Appropriate
methods for treating existence and uniqueness have been developed in [21],
motivated by nonlinear partial DEs.

Convergence of q" is based on the following

LEMMA 13.1.  The sequence {a"} given by (4.4) satisfies P-lim . .[la"|l7 = 0.

Proor. It is sufficient to show that
P = limlle/lr = 0, k=1,...,K.
nto
By Lemma 3.9, M®", M®" and M[" are locally square integrable (purely

discontinuous) martingales. Since A7, D} and F » are continuous, we have
([53], Problem 3, page 60)

(Mpmy =4y, (MP")y =Dy,  (M[")=F}.
Now Doob’s inequality ([53, Section 9, Chapter 1]) implies that, for all £ > 0,

1
P{;HM:’"HT > a} P(IME "y = ns)

IA

1 1 T
;7/7‘9‘2—E<M]gn>(T) = FE];) /\(q"(u)) du,
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and that similar inequalities hold for ||M{ ||z and [[M[ "|lz. The proof of
Lemma 13.1 is thus complete, in view of the boundedness of A and u. O

Next, note that one can recast (4.2)—-(4.5) and (4.7) and (4.8) in the form of
a time-dependent reflection problem. [See Definition B.1 and (B.6).] Specifi-
cally, given existence and uniqueness of the solutions, we have

q" = (I)Lg(xn)’

1 ..
2"(+) = q"(0) + - [ 0" (nq" () du

(13.2) -
= [ 1P (ra(w=)1" = PT(a(w))]
xI{q"(u) = 0} w"(ng"(u)) du + a’(")
and
(13.3) g=®(x), () =q(0) + [ 0(q(w)du,

where .72 RX and R(-) =[I — PT(q(+))].

Now, subtracting the equation for g in (13.3) from the equation for ¢" in
(13.2) and using the Lipschitz properties of the time-dependent reflection (see
Theorem B.1), ¢ and P, we obtain

t
la* = all = Le[1a%(0) = (@)1 + el + [l = all du), te0,7],

for all 7> 0 and for some L; > 0. Thus, the assertion of the theorem follows
from Assumption (B2), Lemma 13.1 and Gronwall’s inequality ([25], page
428).

13.2. Proofs under Assumptions A. To prove Theorem 4.6 under Assump-
tions A in Section 4, the proof above can be redone, taking into account the
following proposition.

PROPOSITION 13.4. Let Assumptions A be satisfied. Then there exist a
sequence {L"} of positive random variable and deterministic constants Ly > 1,
v > 0, such that

lg™(t)h <Lre’ -1, ¢t>=0,n=1,2,...,
L,
l b
Elg"(t)ly < Lye”* — 1, t>0,n=1,2,....

(13.5) P{L">1} <

ProoF. The proof can be carried out by repeating the arguments in Kurtz
([50], Theorem 2.1). O
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Roughly speaking, this lemma establishes probabilistic bounds on ¢", and
hence on A*(¢")/n and u"(q™)/n, n =1,2,..., as well [due to Assumption
(A2) in Section 4]. These bounds allow replication of our proof for bounded
rates under only minor modifications.

14. Proof of FCLT. Here, we extend and generalize Krichagina [46] to
cover networks with state-dependent routing. To simplify the representation,
we write down the proof of a weaker version of Theorem 7.2. Namely, we
establish the convergence of {V "} under the following conditions:

1. Assumptions B in Section 13 are satisfied.

2. A, uw and P are continuously differentiable with globally Lipschitz deriva-
tives.

3. JT(+), J(+) and J(+) are constant during [0, T'].

4. V™(0) -, V(0), where V(0) is a given random vector with V,(0) = 0 for all
ked .

In this case, f), f, and fp in (7.3) vanish. Then V is a solution to the
following SDE with time-dependent reflection:

(14.1) V= @ﬁ([z—z-]]'é-l(t)dxu)),
0
X(+) = V(0) + [ 90(q(¢)V(t)dt — [ aPT(q(t)) @V(¢) dy(t)
(14.2) o0 0
+ [ 312(q(2)) dW(2).
0

Further, in view of Assumptions B, (7.12)—(7.18) take the form

(14.3) V= ﬁ[cb}j x + %X) - ¢§(x)],
where

(14.4) X"(+) =V™(0) + Bj(+) = Bp(+) + M"(+),
(14.5) Bi() =n [ {0(g"(w)) - 0(a(w))) du,

(14.6) Bp(-) = \/ﬁfo. [P7(q"(w)) = P"(q(w))]H{q"(x) = 0} u(q"(u)) du,

(14.7) M" = na"

To prove FCLT in the general case, one can use Proposition 13.4 and a
standard cutoff (or localization) argument ([73], Section 11.1; see also [72] for
technical aspects of this argument).

14.1. The main steps. We describe below the main steps of the proof.
Proofs are provided in Section 14.2.
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LEMMA 14.8. There exists a unique strong solution V to (14.1) and (14.2).
The process V is continuous and Markovian.

LEMMA 14.9. For sequence {M"} in (14.7),
(14.10) M S,
(14.11) W(-) = [ SV3(q(t)) dW(2).
0

Here q and 3 are given by (4.7) and (7.10), respectively, and W is a standard
R%-valued Brownian motion.

LEMMA 14.12. The sequence {V"} adheres to the compact containment
condition
}im lim sup P{|[V"ll > I} = 0.
T n

LEMMA 14.13. The sequence (V", X", B}, BE, M") is C-tight.

LEmMa 14.14. Let (V, X, B,, BP,W) be any weak limit of (V", X", B},
B}, M™). Then X satisfies (14.2).

14.2. Proofs.

Proor oF LEMMA 14.8. Rewrite (14.1) and (14.2) in the form (¢ € [0, T'))
V=o}([I-I"]1X), X(0)=R'(0)V(0),
(14.15)  dX(t) = B} (t){g[a(r), ®R([1 - I"1X)(2)] dz

+312(q(2)) dW(2)},
where

glé, x]=00(&)x — dPT(£)Ox-m(¢), ¢£€RE yeRK

Note that 3(q(-)) is a Lipschitz function. Now, since ®® is nonanticipating
and Lipschitz (Theorem B.1), there exists a unique strong solution to (14.15)
and hence to (14.1) and (14.2) as well. Moreover, the continuity and Marko-
vian property of V immediately follow, in view of Propositions B.1 and B.2.
Actually, weak existence follows from our proof of the FCLT, where it is
shown that limit points of some C-tight sequence satisfy (14.1) and (14.2). O

ProOF OF LEMMA 14.9. Recall that {M"} is a sequence of locally square
integrable martingales [see Lemma 3.9, (4.4) and (14.7)]. By Theorem 4 of
Liptser and Shiryayev ([53], page 567), to establish (14.10) it is sufficient to
show that

(14.16) (M™)(t) i/OtE(q(u))du, t<[0,T].
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We now proceed with the proof of (14.16). It follows from (7.10) that

[, 2(a(w)) du
(14.17) = diag{c'(-)} + diag{c®(+)} + diag{c®"(*)}
~ [ P7(q(w)) d(diaglc*(w)}) - [ d(diag{e? () P(a(w)),
() = [ Ma(w) du, () = [ (n(a(w) = m(q(w))} du,

(14.18) '
() = [ PT(a(w){ n(a(w) = m(a(w)) du.

Next, in view of (3.3) and (14.7), we have
1
(M") = _[<Ma,n> + <Ma,n’Mf,n> _ <Ma,n’Md,n>
n

(MO Moy + (MPr) = (MPr, M)
_<Md,n’Ma,n> _ <Md,n’Mf,n> + <Md,n>]

Note that M*" M"" and M?" are purely discontinuous martingales (see
Theorem 3 in [53], page 41). Recall that for two purely discontinuous mar-
tingales M! and M2, (M', M?) coincides with the compensator of
.. AMY(uw) AM?(w). (See, e.g., [53], Theorem 3, page 41, and [24], Theorem
9.40.) Then Remark 12.2 immediately implies that

1
(M") = —[(Mom) + CMEm) + (M) = (MEn, M) = (M, M),

Continuinng computations, one can easily obtain that
(M™)(+) = diag{cl’"(-)} + diag{c2’”(-)} + diag{c3*”(-)}
(14.19) —fO.PT(Q"(u)) d(diag{c®"(u)})
~ [ d(diagle®"(w)})P(a"(w)),
() = [ Ma"(w)) du,
(14200  ¢*"() = [ H{g"(w=) > 0)u(q"(w)) du,
en() = [ PT(q" () {g"(u=) > 0} u(q"(x)) du.

The proof of (14.10) is complete once we show that each of the five terms on
the right-hand side of (14.19) converges uniformly over [0, T'] in probability to
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the corresponding term on the right-hand side of (14.17). To establish this
convergence, it is sufficient to show that, for i = 1,2, 3,
(14.21) chr(Y) ici(-), n Too.
First, since A is Lipschitz, {¢""} converges by FLLN. Now, (13.2) and As-
sumptions B imply
@" = @(x"),  #"() =q"(0) + [ 0(q"(w)) du — €"() +a"(:),
where
e"() = [ [P(a"(u=)) = PT(a(w)] dv",
(14.22) ‘
yi(r) = fo I{q"(u) = O}u(q"(w)) du.
By properties of the Stiltjes integral, FLLN implies that € —, 0 u.o.c. Then,

by Lemma 13.1 and by the Lipschitz property of time-dependent reflection,
we have

t p t
[l =PTa@)] dy"(w) > [[1 - PT(a(w))] dy(w),

where y is given by (4.7). In view of (C.2), simple arguments from calculus
imply that
(14.23) 5y,
Then the convergence in (14.21) for i = 2, 3 follows. O

ProOF OoF LEMMA 14.12. During this proof we use positive constants C,,
i = 1,2, 3. Explicit expressions for these constants are of no significance and

therefore are not given.
By the Lipschitz property of ®&, it follows from (14.3) that

v, <clx"l,, ¢t<[0,T].
Using Lipschitz properties of § and P, we infer from (14.4)—(14.7) that

X, < Vo)l + IM"l, + C'sztIIV”IIu du, t€[0,T].

Combining the two inequalities above with Gronwall’s lemma [25] implies:
1V 7lly < Cy(IVA(0)] + M7 l7 ) exp(CyT).

Now, {V™*(0)} and {M "} converge weakly by conditions of this theorem and by
Lemma 14.9, respectively. The proof of this lemma is thus complete. O

ProoF oF LEMMA 14.13. Recall (7.19), (7.20) and considerations thereafter.
It was explained there that the assertion of Lemma 14.13 would follow if
C-tightness of {X"} is established. In view of Lemma 14.9, it suffices to show



STATE-DEPENDENT STOCHASTIC NETWORKS 633

that {B)} and {Bp}, given by (14.5) and (14.6), respectively, are tight in
C%[0,T]. We restrict our attention to {BJ}, since a proof of tightness for { B3}
is completely analogous. Since 6 is Lipschitz, (14.5) yields

IBi(t) = Bi(s)I < CIV"lz(t —s), 0<t<s<T,

for some C > 0. Hence, tightness of { B} follows from Lemma 14.12 (see, e.g.,
[38], Proposition VI1.3.26). O

ProOF OF LEMMA 14.14. In view of Lemma 14.9, it suffices to show that
(14.24) By 5 [(o0(q(6)V(e)de, B S [ aP"(q(t)) @V(t) dy(2).
0 0

To prove the first limiting relation in (14.24), note that
n ’ n n n 1 u n
B = [V 0= [N aC) + V)|

Thus, combining FLLN, the bounded convergence theorem and the continu-
ous mapping theorem implies the convergence for { B;'}. Analogously,

Bi() = [ OOV (0 dy (), 5C) = [ a7 [a() + 1=V da,

where y" is given by (14.22). The proof is thus complete by (14.23) and by
properties of the Stiltjes integral. O

15. Future research. Our efforts are currently directed toward covering
discontinuous diffusion limits and approximating networks which are both
state- and time-dependent. We outline below these two directions.

15.1. M;-convergence. Discontinuous limits arise when the conditions of
FCLT (Theorem 7.2) are relaxed. We describe below the general state of
affairs. Formulations and proofs can be found in [65] and will appear in a
complete form in a future paper [64]. As already pointed out, convergence to
discontinuous limits holds in the M,-topology. Within the context of a single
station, this issue is considered in [59].

Recall that at each moment ¢, every station of the network belongs to one
of the sets J7(¢), J (¢) or J°¢); namely, it is overloaded, underloaded or
critically loaded, respectively [see (6.2)]. Theorem 7.2 reveals that diffusion
limits for stations in J* are general diffusion processes, in J° they are
reflected diffusions and for stations in /- they vanish. It is explained in
Section 7 that a diffusion limit can jump with positive probability only at
those times when the corresponding fluid limit switches from one region to
another. (We say that there are phase transitions at those times.) To be more
specific, we appeal to Mandelbaum and Massey [55], where a single time-
dependent station is treated. The following observation is behind the similar-
ity between the cases arising here and in [55]. Let g be the fluid limit for a
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given state-dependent network: ¢ is the unique solution to (4.7). Define
A(t) £ Ma(t)) + PT(q(2))n(a()),
a(t) = w(q(t)) + PT(a(t))m(a(t)), ¢=0,

where m is given by (6.1). Then ¢ is the unique solution to the normal
reflection problem

qa(t) = q(0) + fo‘(x(u) ~ i(w))du+y(t) =0, ¢=0,

y is nondecreasing in each coordinate, y(0) = 0,
]Om 17[q(t) > 0] dy(¢) = 0.

This equation has the form of a fluid approximation for a single time-depen-
dent station. Now the results of [55] imply that the diffusion limit is discon-
tinuous at ¢, (with positive probability) exactly in the following cases:

CasE 1. ¢,> 0. () keJ™(t), t €ty — e,ty), k & J (¢y); (i) there exist
sequences t" 1 ¢, and " | ¢, such that, for some & and £ > 0,

ked (t)ud(t), telt,—e,t,) and
ked’(t”), ked (I*), nle.

CASE 2. t,=0. ke J (¢), te]0,es), V,(0) # 0, for some £ and & > 0.

It turns out that even if only some coordinates of the fluid limit undergo
phase transition, then discontinuities can arise at all coordinates of the
diffusion limit.

The main idea of our FCLTs with discontinuous diffusion limits is to
analyze V" on different time scales (slowly varying time scale near points of
phase transitions.) This random time change enables us to pick up the
behavior of {V"} during short phases, which shrink under rescaling and give
rise to the discontinuities. (For additional details, see [59], Section 4.5.)

15.2. Time-dependent networks. The results obtained in this paper pro-
vide insight into the nature of fluid and diffusion approximations for net-
works, which are state- and time-dependent simultaneously. For simplicity of
presentation, we focus below on purely time-dependent networks. The gen-
eral case can be treated similarly.

Consider a K-station network given by (2.1)-(2.5). Append to this network
an additional station (K + 1), which is disconnected from all other stations,
and assume that Ag,; =1 and ug,,; = 0. Clearly, Q.. = N, (standard
Poisson). Next, suppose that the arrival and service rates at stations 1,..., K,
as well as the routing probabilities, depend only on Q. ;.

Now, FLLN for Poisson processes implies that, under our rescaling [As-
sumption (A1) in Section 4], the fluid limit for (K + Dth station is qg, (¢) =
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t, t = 0. This suggests that (4.7), which defines the fluid limit g for the
original network, reduces to a time-dependent reflection problem of the type

a(+) = q(0) +f0'e(t)du +f0'[I—PT(t)] dy(t).

Similarly, the diffusion limit would be a solution of the time-dependent
reflection problem

V() =X() + [[1-PT(0)] v (o),
X() =V + 1= [1-P/(5)1 ]

X(~FF(2) dy(2) + EV2() dW(2)).

We can thus deduce results for time-dependent networks from the corre-
sponding results for state-dependent networks by introducing an auxiliary
coordinate (additional station) in the manner outlined above. (The technique
is similar to the way a differential equation is reduced to an autonomous
equation.) However, this approach is restricted because it requires unneces-
sarily strong assumptions on rates and routing (in particular, Lipschitz
continuity). We can, alternatively, pursue a direct approach that covers
networks with discontinuous parameters. Such features are important in
applications and are currently under study [56].

APPENDIX A

Projected differential equations. In what follows, we introduce state-
dependent oblique projections. This notion is used in Section 5 to help
characterize fluid limits. We begin with the following lemma:

LEMMA A.1. Fix an arbitrary y €. = RX. For any ¢ € RX, there exists a
unique pair (z,v) € RE x RX such that

z=¢+ [I-PT(X)]U,
(A.1) zeT,(x), —v €Ny x),
2T v =0,

where To( x) and No( x) are, respectively, the tangent and normal cones to .
at x.

REMARK. In the mathematical programming literature, (A.1) is known as
the linear complementarity problem over cones (see, e.g., [19], page 31). The
lemma can be derived from general results on the linear complementarity
problem. However, to gain insight into the nature of (A.1), we provide a
simple independent proof by relating the linear complementarity problem
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(A.1) to the oblique reflection problem; that is, to the dynamic complementar-
ity problem (see Remark B.1).

Proor oF LEMMA A.1. Recall the expressions for T.( y) and N.( x) from
(5.1). Pick an arbitrary ¢, > 0. For a given y and £, introduce the piecewise
linear function x,

(A.2) x(t)=x+&(t—1t,)", t=0.
By Theorem 1 in Harrison and Reiman [31], there exists a unique pair (q, y)
of continuous functions satisfying

q(t) =x(¢t) + [I—PT(X)]y(t) >0, t>0,

(A.3) y is nondecreasing in each coordinate, y(0) = 0,

f0°°1T[q(t) > 0] dy(¢) = 0.

Moreover, for x given by (A.2), ¢ and y are piecewise linear (see the proof of
Theorem 5.2 in [14]). In particular, there exist ¢, € (¢,,%) and b, c € RX such
that

(Ad) q(t)=x+b(t—t)) , y(t)=c(t—t) , te[0,4].
Substituting (A.2) and (A.4) into (A.3) shows that
b=¢+[1-PT(x)]e,

b, >0 whenever y; =0,

(A5)
c€RX and ¢, =0 whenever y; >0,

T - c=0.
Finally, let z = b and v = c. From (A.5) it follows that these z and v satisfy
(A.1), and thus existence of the solution to (A.1) is established. The unique-

ness for (A.1) can be derived from uniqueness of the solution to (A.3) by
applying the foregoing arguments in reverse order. O

REMARK. Roughly speaking, our proof illustrates that two piecewise lin-
ear functions satisfy the dynamic complementarity problem if and only if
their slopes satisfy the linear complementarity problem over cones. (We can
establish a similar relation for absolutely continuous functions, as well as for
the jumps of step functions.)

Lemma A.1 supports the following definition:

DEFINITION A.1. Fix an arbitrary y €. and ¢ € RX. Call the vector z
satisfying (A.1) the state-dependent oblique projection of ¢ onto T..( x) with
respect to [I — PT( x)] and denote it by

H?(x){ §}}
where F( x) = (T.( x), P( x)).
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APPENDIX B

Time-dependent reflection problems. We outline some new results on
time-dependent reflection problems. Proofs are given in [57].

B.1. Formulation of the problem and main properties. Fix an arbitrary
T > 0. Let J be a given subset of {1,2,..., K} and

(B.1) I, ={¢eRX: ¢ >0forall k € J}.
Throughout this Appendix, denote I' £ T';, for simplicity of notation.
Let P(+) =[py()]¥,_; be a given nonnegative matrix-valued function,

P:[0,T] - REXX which is RCLL. Assume that P has the following proper-
ties: first, P(¢) is substochastic for every ¢ € [0, T],

K
(Bz) Zp]k(.)Sl’ J=1’aKa
k=1
second, the spectral radii r(P(-)) satisfy
(B.3) sup r(P(¢)) <1.
te[0,T]

DEFINITION B.1 (Time-dependent reflection problem). Let &€ D({{[O,T].
Then (¢, ) € D2X[0, T] is a solution to the time-dependent reflection prob-
lem for ¢ (with respect to I and R) if

B(t) = £(t) + w(t),

o(t)yel, t<][0,T];

there exists y € DX[0,T] such that ¢(-) = fR(u) dy(u),

(B4) y is nondecreasing in each coordinate, y(0) =00, ¥, =0
forall & & oJ,

[ () > () =0, ke,

where R(-) 2 [I — PT(-)].

REMARK B.1. The special case when R = const is known as the oblique
reflection problem [31] or the dynamic complementarity problem [54]. For the
geometric interpretation of R as the matrix of directions of reflection, see
Remark 4.9.

The following theorem plays a pivotal role in the proof of our FLLN and
FCLT.

THEOREM B.1 (Existence, uniqueness and Lipschitz property). Let I' =T,
be defined by (B.1) and let P satisfy (B.2) and (B.3). Assume also that P is
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absolutely continuous and
(B.5) I|Plly = L% < .

Then for each &< DE[0,T] there exists a unique pair (¢, ) € D*X[0,T]
such that (B.4) is satisfied.

Furthermore, let ¢1, % € DE[0,T1, and let (¢!, ¢') and (p2, y?) be the
solutions to (B.4) for ¢ and ¢2, respectively. Then there exists L < o such
that

o' — ¢2llr < LIEY — £2llr,  Nly' = ¢2llp < LIET — £2|I7.
Moreover, this L depends solely on K, T, L% and L7, where

L% sup '[I—PT(t)]_1|oo
tef0,T]
is finite, by (C.2). Finally, the functions ¢ and  are nonanticipating with
respect to the data &.

REMARK. Our proofs of existence and uniqueness are based on fixed-point
theorems. Proof of the Lipschitz property develops ideas of Dupuis and Ishii
[23]. This theorem can be generalized to the case when P is of bounded
variation. However, the above partial results, covering absolutely continuous
P, suffice for our purposes.

REMARK B.2. Based on Theorem B.1, we introduce two well-defined time-
dependent reflection operators ®F and WE by

(B.6) PR(E) =,  WE(E) =y
Both ®F and W are Lipschitz in the uniform metric and
IDF(E)llz < Lllgllr,  IWF(E)r < LI€lr.

It is natural to introduce the notion of state-dependent reflection operators.
These are associated with a corresponding state-dependent reflection prob-
lem. Here P and ¢ may depend on the state ¢. In particular, the reflection
term ¢ in (B.4) is given by

w() = [ [1=P7(a())] dy(w).

We have no direct use of this concepts, but an example is (4.7). See also
Remark 4.9.

PropoSITION B.1. Let I' and P satisfy the conditions of Theorem B.1. If &
is continuous (absolutely continuous), with £,(0) > 0, k € J, then ®F, WE
and y in (B.4) are continuous (absolutely continuous) as well.

ProrosITION B.2. Let (¢, i) be a solution to (B.4) for a given continuous ¢
with respect to some I' and P. Fix an arbitrary 7€ (0,T). Then (¢*, ¢*),
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given by

d*(t) = (7 + 1), gH(t) = p(r+1¢t) — (1), te[0,T—- 1],
is a solution to (B.4) for £*(t) = ¢(1) + x(v + t) — x(7), with respect to I' and
P*(¢) = P(r + t), where t €[0,T — 7).

B.2. Derivatives of time-dependent reflection operators. Our goal here is
to investigate the convergence of the sequence {V "} given by

1
(B.7) Vﬂ=m[q>;} x+—nX)—q>}§(x)], n=12,...,

=
where .2 RX, The limit of {V"} can be interpreted as some form of a di-
rectional derivative of ®2, at the point x in the direction of X. The corre-
sponding one-dimensional problem is treated by Mandelbaum and Massey
[55].

In this paper we consider only cases when {V"} converges u.o.c. to a
continuous limit. Treating discontinuous limits requires Skorokhod’s M-
topology. This issue was partially treated in [65] and will be addressed in a
future generalization of [57]. For simplicity of presentation, we restricted
ourselves to the smallest classes of functions x, X and P, which are sufficient
for our applications. Specifically, we impose on these functions the following
assumptions:

AssumpTions C.
(C1) «x is absolutely continuous, with x(0) > 0 and with Lipschitz derivative
0= x.
(C2) X is continuous, with X,(0) > 0 whenever x,(0) = 0.
(C3) P (hence R) is absolutely continuous, such that (B.2), (B.3) and (B.5) are
satisfied.

Next, denote

q" & ®F

1
x+ﬁX), q = ®E(x)
and let y* and y be the corresponding complementary functions given by
(B.4). Note that, by Proposition B.1, ¢ and y are absolutely continuous.
Observe also that by the Lipschitz property of time-dependent reflection we
have lim, ,.llg" — qllr = 0. Within the context of our limit theorems, x and X
play the following role: x is the driver of the fluid limit ¢, while X is the
driver of the diffusion limit [cf. (7.19)]. In line with this interpretation, the
limit V of {V "}, given by Theorem B.2, plays the role of the diffusion limit [cf.
(7.19)].

ProrosiTION B.3.  The function q is the unique solution to the projected DE
(see Appendix A)

Q(t) =TEO(8(0)),  5(0) = (To(a(1), P()), 20,
with the initial condition x(0).
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The proof is similar to that of Theorem 5.2 and therefore is omitted.
This proposition implies, in particular, that the function m given by

m(t) = [I—P7(t)] " (I7O{6()) - 6(2))

satisfies the following relation m(¢) = y(¢), for almost every ¢ > 0.
For each moment ¢, define now the sets J*(¢), J (¢) and J°(¢) by

J*(t) = {j: q;(¢) > 0},

J(t) = {j: q;(t) = 0, m;(¢) > 0},

JO(t) = {J: q;(¢) = 0, m,(¢) = 0}.
In our limit theorems, J™(¢), J (¢) and J%¢) act as the sets of over-
loaded, underloaded and critically loaded stations [cf. (6.2)]. Finally, we set
X0-)=0.

The following main theorem provides a deterministic framework for our

FCLT. In particular, the theorem demonstrates that the diffusion limits for

overloaded, critically loaded and underloaded stations are processes without
reflection, with reflection and the zero process, respectively.

THEOREM B.2. Assume the following statements:

(1) Assumptions C are satisfied.
Gi) J*T(+), J7(+) and J°(+) are constant during [0, T'].
(i) X,(0) =0 forallk € J".

Then the sequence {V "} converges uniformly over [0,T] to a function V. This V
is the unique solution to the time-dependent reflection problem

V= @?([1 - I—]]'R—l(t) dX(t)),
0
R=I-PT", T'={¢eRE ¢&=0,VeeJ UJY.

REMARK B.3. Note that V(0) = X(0), as it must be according to (7). In-
deed, similarly to [15], write

__ |0 0 Py Pgy Xz
I o = XO = .
[0 IN]’ i [PNB Py |’ ©) 0

Simple calculations yield

[I-I[I-PTI"] "=

I ng[zN—Pm*],
0 0

Hence V(0) =[I — I" ]I — PT(O)I"]"* X(0) = X(0).
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APPENDIX C

Properties of the routing matrix P. Let P(:) = pjk(-)]fk=1 be a
given nonnegative matrix-valued function, P: U— RX*X Here U denotes
any one of [0, T, [0,%) or R¥. Suppose further that the following conditions
are satisfied:

K
Ypp()<1, j=1,...,K, and supr(P(¢)) <L
k=1 ¢el

By the Perron—Frobenius theorem [8], these conditions imply, in a straight-
forwared manner, that the matrix [ — PT(¢)] is invertible for every ¢ €U,
and

(C.1) infdet[I — P(&)] >0,
£V
(C2) sup |[1 - PT(&)] | <,
£eU )
(C.3) max supp;;(£) < 1.
1<i<K ¢y
APPENDIX D
Notation.
Sets.
Z, and R, the sets of nonnegative integer and real num-

bers

RE the K-dimensional Euclidean space

4 RE {¢eRE: ¢ >0,forall k=1,...,K}

0 the interior of .%

RE {¢eRE: ¢, <0, forall k=1,...,K}

RExK the set of K X K-dimensional matrices with
nonnegative elements

REXKXE the set of K X K X K arrays with real ele-
ments

10, 1] the set of all open subintervals of [0, 1]

Vector and matrices.

aT

det[ P] and r(P)

I and §,

diag{a}, a € R¥

lal
| P

transpose of a vector or a matrix

the determinant and the spectral radius of a
matrix P

the identity matrix and Kronecker’s symbol
the matrix diag{a;, ..., ag}

Euclidean norm of a vector a

operator norm of a matrix P with respect to
Euclidean vector norm
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lal; and |al., a € R¥
|Pl., P € REXK
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YE .la,| and max,|a,|
makaJK=1|pk !
4

00a, @ € R g e RE [LE,0,,q,15,_,

Derivatives of vector and matrix functions.

90(¢), 0: RX - RE
IP(¢§), P: RX —» REXK

Function spaces.

DX[0,T] and CX[0,T]
D&[0,T] and C¥[0,T]

llallr

Convergence.

u.o.c.

-, and —,, P —lim

p?

Stochastic processes.

RCLL
(M)

(M*, M?)

Miscellaneous.

{a”}
V and A

at=aVv0anda = — (a AD)

f(t) = SupOSSstfs
1{S}

1{&> 0} and 1{¢é=0}; ¢ € R

Ké> 0} and [é=0}; ¢ € RE

Fl£), E€ RE
JH g, JO
I+

I, I°

[(96,(£))/ 9,15, -1
(0P, (£))/ &N o1

the set of RCLL and continuous RX-valued
functions on [0, T']

{£€ DX[0,T]: ¢,(0)=0, k< J} and {£< CX[0,
T]: £,0) >0, k € J}

sup, ., . rla(?)l, where a is a vector or a matrix
endowed with uniform topology

uniformly on compact
convergence in distribution and in prob-
ability

right-continuous with left limits

the predictable quadratic variation of a mar-
tingale M

the predictable quadratic covariation of mar-
tingales M! and M?

sequence a", n =1,2,...

maximum and minimum

the positive and negative parts of a

the upper envelope of f

indicator function of a set S

(1{¢g, > 0},..., 1{& > OPT and (1{¢; = 0},
e = 0T

diag{1{ £ > 0}} and diag{1{¢ = 0}}

{k: gk = O}

see (6.2)

diag{1{l € J*},...,{K € J*}}

diag{1{l € J7},..., {K € J7}}, diag{l{l
JO ..., {K e J%
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Conventions. Vectors are understood to be columns. For a convex set
I' cRX and y €T, N.(x) and Ty(x) denote, respectively, the normal and
tangent cones at y:

Ni(x) ={{eR¥: (" (¢~ x) <Oforall ¢TI},
Tr(x) ={¢eR¥: (T - ¢<0forall £ Ny(x)}.

A vector- or matrix-valued function f is locally Lipschitz if for every compact
set 7 c R, there exists a constant L7 such that

F(EY) —F(E2)l < L7|€" — €7, £, €% e R,
f is globally Lipschitz if L” can be chosen independently of K. Integrals [{
stand for [, ;.
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