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Abstract. A state-dependent queune is an exponential service system, where arrival
and service rates depend on queue length. For properly normalized gueueing processes,
we derive functional strong laws of large numbers and functional central limit theorems.
The former support fluid approximations and the latter diffusion refinements. Our
analysis is based on strong approximations, which provide a unified framework for most
existing approximations of state-dependent queues.
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1. Introduction. State-dependent exponential Mg /M /1 queues are
models in which arrival and service rates depend on the state &—the queue
length. For properly normalized queueing processes, we derive functional
strong law of large numbers (FSLLN, Theorem 4.1) and functional central
limit theorems (FCLT, Theorems 4.2 and 4.3). The former support fluid
approximations and the latter diffusion refinements. The current analysis
is a first step in an ongoing effort to cover queueing networks.

The strong limit in FSLLN (henceforth called the fluid limit) is the
unique solution to an autonomous first-order ordinary differential equation
with reflection. In such an equation, the derivative depends explicitly only
on state. Consequently, the fluid limit of a single queue is a monotone
continuous function, which absorbs at zero if it ever reaches it.

The weak limit given in FCLT (henceforth called the diffusion limit)
1s the unique strong solution to a stochastic differential equation with a
certain type of reflection. The diffusion limits are Markov processes with
upper semi-continuous sample-paths. Weak convergence is with respect to
Skorokhod’s M -topology (see Appendix B and the discussion in Subsec-
tion 4.5).

QOur technique for obtaining limit theorems is based on strong approx-
imations. It is similar to Kurtz [31], who considers density-dependent
population processes, for which limits do not involve the reflection phe-
nomenon (see also Ethier and Kurtz {14, Chapter 11 §2,3]). It differs from
Kurtz [32],[33] and [34], that relies on multiparameter time transforma-
tions.

In Section 5, derivations of many available fluid and diffusion approx-
imations- for state-dependent queues are unified. Examples covered are
models with reneging, finite population and finite or infinite number of
servers, We are not assuming boundedness of arrival rates, service rates or
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populations, at the expense of some additional technicalities in our proofs.

Pioneering works on fluid and diffusion approximations for queues
are Oliver and Samuel [39], Newell (e.g., [38]), Kingman (e.g., [24],[25)),
Borovkov [5],[6], and Iglehart and Whitt [20],[21]. Tor later advances,
readers are referred to the following survey papers and references therein:
Whitt [46], covering the period up to 1974, Lemoine [35], up to 1978, Coff-
man and Reiman [12], through 1984, Glynn [15], through 1990 and finally

Chen and Mandelbaum [9],[10}, up to 1992. Related recent research is An-

ulova [2] and Krichagina [30], who take a martingale approach to cover, as
far as the single queue is concerned, special cases of our models. Additional
representative examples of martingale-based fiuid and diffusion approxima-
tions are Kogan et al. [28] and Kogan and Liptser [27], where certain types
of closed exponential networks with state—dependent service are treated.
Fluid approximations for state- and time-dependent queueing networks are
described in [9]. Our analysis resembles Mandelbaum and Massey [37], who
establish strong approximations, FSLLN and FCLT for the time-dependent
M,/M;/1 system. The similarity is mainly a consequence of the fact that,
in both models, diffusion approximations enjoy time-dependent drifts and
variances (see (4.9)).

We use the model of an M, /M, /1 queue with the so-called autonomous
server (Borovkov [5]). This means, roughly speaking, that the server is
working permanently while actual departures are generated only when the
system is not empty. (For an additional discussion see, e.g., Iglehart and

Whitt [20]). Our mathematical formulation (equations (2.1)—(2.4)) are asin .

Prabhu [41] and Bremaud [7], but we focus on approximations rather than
exact analysis. Fluid and diffusion approximations for state-independent
systems have been commonly analyzed within the framework of “non-
autonomous” server models (see the survey papers mentioned above). Dif-
ficulties, however, arise even in the mere interpretation of state-dependent
non-autonomous queues, so this will not be pursued any further.

The M /M¢/1 queue is, in fact, a one-dimensional birth and death pro-
cess (see Subsection 2.2). As such, it has been amply covered and a broad
spectrum of (mainly elementary) tools is available and sufficient for its anal-
ysis. Here, however, we are concerned with transient evolution, and this
seems challenging enough to deserve the analysis that follows. Also pro-
vided is a framework for most existing approximations of state-dependent
queues, including stationary distributions when they exist. (Extensions to
queueing networks, namely multi-dimensional birth and death processes,
are currently being developed.)

The remainder of the paper is organized as follows. In Section 2 we
present our model of the M¢/M¢/1 queue and discuss different represen-
tations of 1ts queueing process. Section 3 deals with reflection maps, that
characterize subsequent fluid and diffusion limits. In Section 4 we out-
line FSLLN and FCLT. Section 5 is devoted to applications of our results.
Proofs of the main theorems are provided in Sections 6 and 7. In sec-
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tion 8 we outline directions for future research. Technical background on
Skorokhod’s reflection problem and on M;j-convergence is presented in Ap-
pendices A and B, while the main notation is summarized in Appendix C.

2. The model of the M;/M¢/1 queue. The subject of our study
is the state-dependent Mg/M,/1 quene. We analyze its queueing process
@ = {Q:,t > 0}, whose value at time ¢, Q;, describes the total number
of customers, waiting or being served at that time. A formal pathwise
construction of ¢ is an outcome of the observation that there exists a
unique stochastic process @, satisfying the following relations at all ¢+ > 0:

(2.1) , Q: = Qo+ A — Dy,
(2.2) A= /OtA(Qu)dU>,

t
(2.3) D = fe 1[Qu_>0] dS,,

(2.4) S¢ = N- ( fc t ,u(Qu)du).

Here () is constructed in terms of the following primitives:

(Ju is a nonnegative random variable,

A, p are nonnegative locally Lipschitz functions on [0, co),

N., N_ are standard (rate 1) Poisson processes.
(The path construction is straightforward and of no significance to later
development, hence it is omitted). The random Qg, N4, N_ are defined
on a common probability space and are assumed to be independent. The
entities involved in the construction have the following interpretation: Qg
is an initial queue; A = {A;,t > 0} and D = {D; ,t > 0} are RCLL point
processes— A; and I, represent the cumulative number of arrivals and de-
partures during (0,1] respectively; finally, A(Q) and p(Q) are, respectively,
instantaneous arrival and service rates while at state Q. Equations (2.3)
and (2.4) indicate that there are no departures when customers are absent.
Thus, S = {S;,t > 0} represents a potential for departures, which is fully
realized only when @ > 0.

Remark 2.1. The sample-paths of  are piecewise constant RCLL
functions. I @ is non-explosive, that is P {Q; < oo, V¢ > 0} =1, then
D[0, o0) is a suitable space for sample—paths. Otherwise, a one-point com-
pactification of IR can be used, with A and p appropriately modified. A
simple sufficient condition, that ensures non-explosion of @, is a linear
growth constraint on A:

(2:5) MO SEQ1+9), £20,

for some constant K > 0, The limit theorems in this paper are stated
for non-explosive processes. (Generalizations are only commented on; see
Proposition 3.1 and Remark 4.1.) y
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2.1. Representation in terms of reflection. We recast equations
(2.1)~(2.4) in a form that is convenient for analysis, namely the reflection
problem described in Appendix A:

Q=X +Y: 20, t>0,
(2.6) Y nondecreasing, Yy = 0,

/ml[QpO] dv; =0,
0

where

(27 Xi = Qo+ N (/;A(Qu)du)ﬂ?vw ( /Dtu(czu)du),
(28) Y, = /:HQUW:OMSH.

The process Y represents cumulative losses of potential departures, due to
server idleness.

Substituting X and Y into (2.6) and comparing the result with defini-
tion (2.1) of @ reveals that only the last equation of (2.6) requires verifi-
cation. This equation is a complementarity relation between ¥ and Q: ¥,
increases at time t only if ¢, = 0. By (2.8), it is equivalent to

(29) LOO 1[Q1>0] 1[@1_:0] dsS; =0,

whose verification we now outline. Assume, to the contrary, that (2.9) is
not satisfied or, equivalently, that for some ¢ > 0: @, =0, @Q; > 0, and
Si— # S, that is S; = S;— + 1. In words, the following two events occur
at time ¢: first, a customer arrives to an emply system-—A jumps; second,
a potential service is completed—S jumps. However, as long as Q@ =0, 4
and S evolve like independent Poisson processes with intensities A(0) and
1(0) respectively (see (2.2) and (2.4)). Such processes a.s. do not jump
simultaneously, hence (2.9) a.s. prevails.

Remark 2.2. Equations (2.6) differ from the standard Skorokhod’s
reflection problem in that here, X itself depends on Q. Nevertheless, it
turns out useful that

Q=2(X), Y =¥(X),

where @ and ¥ are the Lipschitz operators in Appendix A, and X is given
by (2.7). o 0

2.2. Representation as a birth and death process. The distri-
bution of ¢} is the same as that of a birth and death process on the integers,
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starting at o and evolving according to the following transition rates:

Tk k41 = AE), k=0,1,...,
Tk k-1 = I‘t(k)i k= 1:25 SRR
90,—1 = 0;

(Theorem 4.1 of Chapter 6 in Ethier and Kurtz [14]). In particular, the
effective service rate at a time ¢ > 0is pros5(Q1) = 1[Qs > 0]u(Qy).

3. Reflection problems. In this section, we introduce two reflection
problems that provide the mathematical framework for our main theorems.

3.1. A differential equation with reflection. Consider the follow-
ing problem: given gy—a nonnegative number, and #-—a locally Lipschitz
function on [0, c0), find a pair (g, y) of absolutely continuous functions such
that

,

¢
g = Qo+f B(gs)ds+y: 20, t2>0,
0
(3.1) { y nondecreasing, yp = 0,

o)
. 0

Remark 3.1. Analogously to Remark 2.2, (3.1) can be rewritten as
¢=2(z), y=¥(z),

where
Te = qo +/ g(?s)dsx
0

and @, ¥ are the reflection operators from Appendix A. O

Existence, uniqueness and some properties of the solution to (3.1) are
given by

ProPOSITION 3.1. If § is locally Lipschitz then there exists a unique
solution (q,y) to (3.1). For this solution, q is a monotone function and it
is non-explosive if and only if at least one of the following two conditions
Is satisfied:

0{&:) <0, for some&; > qo,
ar
R |

— ds = 0.
g0 0(s)

Remark 3.2. If 0(£) > 0 for all £ > ¢, then a linear growth of 4 over
[70,20) (as in (2.5)) suffices for the second (integral) condition. 0
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Qutline of the Proof. Uniqueness follows from the Lipschitz proper-
ties of #, @, and ¥. To prove existence, associate with (3.1) the following
ordinary differential equation:

(3.2) 2z = 0(zt), z0=qo.

When 8 is locally Lipschitz, such an equation has a unique solution up
to (a possible) ezplosion time [16]. This solution must be either strictly
monotone or a constant function {16, page 40]. It gives rise to the unique
solution of (3.1) in the following manner: ¢ coincides with z up to the
time ¢ > 0 when z intersects zero, past which ¢ vanishes. (If z is non-
negative on (0, 00) then ¢ = 2.) The first (non-positivity) condition of the
theorem ensures that ¢ remains bounded, and the second (integral)—that
g approaches infinity only at infinite time. 0

To support later analysis, we now elaborate on the explicit forms that
solutions to (3.1) can take. They are described in the following four Cases:

1. Strictly positive

1.1 Strictly increasing.
If 6(¢) >0 forall £ > qp, then

G =6(q:), t>0; @ T1o0; y=0.

1.2 Sirictly increasing with horizontal asympiote.
If there exists &; > ¢ such that

9(51) =0 and 9(5) > O: E € [QU 561):
then
Ge=0(q:), t>0; ¢ 17&; y=0.

1.3 Strictly decreasing with horizontal asymptote.
If go > 0, and there exists & € [0, o), such that

0(€1) =0 and 0(€) <0, €€ (£1,40},
then
de = 0(q:), t>0; ¢ ll&; y=0.

1.4 Non-zero conslant.
If g0 > 0 and 8(go) = 0 then

g=q0 y=0.

2. Vanishing, without reflection

If g = 0 and 6(0) = 0 then
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3. Vanishing, with reflection

If g6 =0 and 8(0) < 0 then
¢g=0, w=—0(0), t>0.

4. Strictly decreasing and absorbing at zero

If go >0 and #(¢) < 0 for all € € [0, ¢g] then
¢ = 0(qt), t€[0,%0],
¢ =0, t2to;
{ y: =0, tE[O,tD],
v, = —0{0)(t — to), t>tg,

where 1o =inf { > 0 : ¢ = 0}, 0 <ty < 0.

Remark. Explosion can occur only in Case 1.1, otherwise ¢ is bounded.
Furthermore, ¢ does not leave zero after reaching it. 0

3.2. Derivatives of reflection operators. For a background and
references on Mj-convergence see Appendix B. Notations are summarized
in Appendix C. All functions below are defined on [0, o00). The following
lemma plays a key role in our later formulation and proof of FCLT.

LEMMA 3.2. Let b and = be continuous functions. Assume that zq > 0
and that x is either strictly monotone or constant. Suppose further that
bo > 0 if 29 = 0. Then, the sequence of continuous functions, given by

Y(nz+b) — ¥(nz)=(nz+b)- —nz—, n=1,2,..,

decreases monotonically, as n 1 oo, to an upper semi-continuous function
b. This convergence holds in the M)-topology.

The proof is omitted as it resembles that of Lemma 4.2 in [37)].
For each z satisfying the conditions of Lemma 3.2, denote by €70, co)
the set of continuous functions

r A C[0,00), xg > 0,
@y o2 { gL 270

Introduce the operators ¥* and &7, with domain C*[0, 00), by

23, o7(b) 2 b+ o).

(3.4) ¥ (b)
The notation ®7(b) is justified in view of the M;-convergence
(3.5) @(ne+b) — @(nx) =b+ ¥(nz +b) — ¥(nz) — b+ T (b),

which prevails by the‘ continuity of & and the continuity of addition in the
M;-topology (See Appendix B).
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To justify the title of the current subsection, note that Lemma 3.2 can
be stated as follows:

lirn é [(c + £b) — W(z)] = T*(b),

in the M;-topology. Thus, ¥¥(b) can be interpreted as some form of a
directional derivative of the operator & — W¥(z), at the point z in the
direction . Analogously, ®(b) is a directional derivative of the operator
z — ®(z).

The transformation &7 is central for our results. We now elaborate
on its explicit forms, recalling that its domain is C*[0, co) for those z that
satisfy the conditions of Lemma 3.2. The following four Cases arise:

1. Identity operator
If z is strictly positive over (0, 0c), then

3% (b) = b.

2. .Ordinary reflection operator
If z is identically zero, then

3% (b) = B(b).

3. Delayed zero operator
If « is strictly decreasing with zg = 0, then

z bo, t=0,
q’*(b):{ 0. >0

4. Restricted identity operator
If z is strictly decreasing with zy > 0, and if z(Z5) = 0 for some
tg € (0,00), then

bt: t<t03
@f(b)x 0, t>t01
OVby,, t=tg.

Remark 3.3. If ¥°(b) is a continuous function at some point b, then
the Mj-convergence in Lemma 3.2 reduces to U-convergence. A similar
assertion holds with respect to ®® and the convergence in (3.5). Conse-
quently, in Cases 1 and 2 the convergence in (3.5) is uniform on compact
subsets of [0, cc). In Case 3, the convergence is uniform on compact subsets
of (0,00) if by # 0, and of [0, o0) otherwise. In Case 4, the convergence is in
(5[0, o), M1), and the values of ® are upper semi-continuous functions.
Furthermore, in Case 4 when b;, < 0 (respectively b;, > 0), the convergence
is uniform on compact subsets of [0,4y) and [ty 00) (respectively [0, tp] and
(to,o00)). If by, = 0, the convergence is uniform on compact subsets of

[0, c0). 0
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The following explicit expression applies to ®* (by analogy to (4.5),(4.6)
in [37]): a
®"(b) = sup (—b,), ¢ >0,
SEfft
where
ff;z{ogsgtm;: sup :n;;},
Ou<t
" bt 3 ry < 0:
btz btf\O, .’131:-_—0,
0, z; > 0.
Such a representation is expected to be useful for the analysis of queues
that are both time and state dependent.

4. Main theorems. FSLLN and FCLT are presented in Subsection
4.1 and 4.2 respectively. A refinement of FCLT, useful in applications, is
formulated in Subsection 4.3. In Subsection 4.4 we analyze the rescaling
procedure that lead to our limit theorems. The subject of Section 4.5 is an
interpretation of discontinuous diffusion limits. We conclude the section
with alternative types of rescaling. This motivates a later discussion, in
Subsection 4.6, of models that are not covered in the current paper.

4.1. Fluid approximations (FSLLN). Consider a sequence
Mg /MP/1, n=1,2,..., of queneing systems, each as in (2.6)-(2.8). The
n-th system is described in terms of the following primitives: a random vari-
able Gy representing the initial queue, and non-negative locally Lipschitz
functions A" and u" defining, respectively, the dependence of the arrival
and service rates on the queue length @™ . The queueing process Q™ can

be realized as the unique solution to the following reflection problem (see
Remark 2.2):

Q" = a(x™),
WOY xp=qpan, ([ @) -n ([ (@) ds )

Introduce the rescaled processes ¢" = {¢I',# > 0} given by

kg3 1 i
(42) i = Q7
Then, due to the homogeneity of @ and ¥ (Appendix A),
— @(.’En),, -
4.3) 1 - 1 -
( Ty =q5 +—Ny (f A (nQL’“)dS) —~—=N_ (f p (W?)d8> :
n 0 n 0
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The asymptotic behavior of {¢” } emerges from the following theorem, the
proof of which is postponed to Section 6.

TugoreM 4.1 (FSLLN). Suppose that

1 n 1 kit
(A4)  =A"(nE) — AE) and " (n€) — p(e), woc,
as n T oo, where A and p are given locally Lipschitz functions, as well as

1 : . "

o —A"(nf) < K(1+¢&), >0, where K is a given positive constant;
n

s ]iTm 4y = qo a.s., where qq is a given non-negative scalar, and the
nToo

sequence { Eqf } of expectations is uniformly bounded.
0 Y

Then, as n T oo, the sequence {¢"} of solutions to (4.3) converges u.o.c.
over [0, 00), a.s., to a deterministic function q, given by

q = ®(z),
ro= gt | (@) () ds.

That is, q is the unique solution to the differential equation with reflec-
tion (3.1), with

(4.6) (&) = ME) —u(8), €20

In what follows, ¢ will be referred to as the fluid limit associated with
the queueing sequence under consideration. An analogous result holds for
the sequence {y"}, that is associated with losses of potential departures
due to idleness. Specifically, for

(4.5)

n_ 1 n
Yy —..n‘II(X )

with X™ as in (4.1), we have y* — y = ¥(z), as., u.o.c., where z is as

in (4.5).

Remark 4.1. The growth condition imposed on A" ensures non—explo-
sion of ¢" and q. We believe, however, that FSLLN can be generalized to
cover cases when ¢" and/or ¢ are explosive (see Remarks 2.1, 3.2). The
theorem ought then to remain valid over the domain of existence of ¢. In
particular, Theorem 4.1 ought to hold over [0, co) when the linear growth
constraint on A" is replaced by any condition that ensures non-explosion of
g. Necessary and sufficient conditions for ¢ to be non-explosive are given by
Proposition 3.1. An example of a lirnit theorem that gives rise to explosive
processes is Barbour [3]. 0

The forms of the solutions to (3.1), listed at the end of Subsection 3.1,
characterize possible fluid limits which, in turn, identify four modes of
operation for the M¢/M¢/1 queue. They are depicted in Figure 1 and
described by the following four Cases (based on (4.6)):
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1. Permanent large queues

1.1 Overloaded: A(€) > p(€) forall € > ¢q.
1.2 Overloaded, with asymptotic transition to eritically loaded: there
exists &1 > qp such that

M) = ul61); ME) > p(€), €€, &)

1.3 Underloaded, with large initial queune and asymptotic transition
to critically loaded: qo > 0, and there exists & € [0, g0), such
that

M) = p&r); AME) < pu(g), €€ (&1, g0

L4 Critically loaded with large initial queue: go > 0, Algo) = p(qe).
2. Critically loaded: g0 = 0 and A(0) = u(0).
3. Underloaded: ¢y = 0 and A0) < p(0).

4. Underloaded with large initial queue: gy > 0 and A(€) < u(8),
5 € [O: QD}

~ 4.2. Diffusion approximations (FCLT). Introduce the sequences
of stochastic processes V* = {V*,¢ >0}, n=1,2, .. ., glven by

(4.7) Vi =Vn(gd —q), t>0.

This sequence amplifies deviations of the rescaled queuelng processes ¢
from their fluid limit ¢. The asymptotic behavior of {V"} is the subject of
the next theorem, the proof of which is presented in Section 7.

THEOREM 4.2 (FCLT). Let the conditions of Theorem 4.1 (FSLLN) be
satisfied. Assume further that A,y in (4.4) are continuously differentiable
with locally Lipschitz derivatives,

Vn [ﬁgﬂ“—f}- — )\(:S)J — Hi(€), u.o.c,
VA B0 )] — 1), wouc,

where fi , f, are locally Lipschitz functions, and that Vi 4, Vo,asn T oo,
where Vy Is a given random variable. _ :

Then the sequence {V"} converges weakly in (D[0,00), M) to a Markov
process V. with upper semi-continuous sample-paths. The process V is the
unique (strong) solution to the following stochastic differential equation
with reflection:

([ V =37(X), |
&(4-9) ! Xe=Vo "*”fg. (/(a) ‘fu(qs))d5+f0 (N(gs) = 1 (g:)) Vs ds
+/ \/A(QS)‘;'#(QS)dWs_-

0

(4.8)
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Here  and g are given by (4.5), % is the operator defined by (3.4), and
W is a standard Brownian motion.

In what follows, V' will be referred to as the diffusion limit associated
with the queueing sequence under consideration.

The possible forms of z in (4.5) (Cases 1-4 at the end of Subsection 4.1)
reveal that z adheres to the conditions imposed in Lemma 3.2, and thus &%
is well-defined. In correspondence with the specific forms of % (Cases 1-4
at the end of Subsection 3.2), the relations (4.9) reduce to the following
four Cases (see Figure 1 for suggestive sample paths of V):

1. Permanent large queues

(4.9) is the linear stochastic differential equation:

dVi = [falge) — fulae) + (N (ge) — p'(qe)) Vi) dt

+ vV Mas) + p(qe) dW,

In particular, if Vg is a Gaussian variable then V is a Gaussian
process. With the notation

m 2 EV;,  hy 2 E[V; — mi)?,

we have [22]

e = f3(00) = Fula0) + (¥ (@) = (a0,
he = 20X (q:) — 1 (q:))he + Aaz) + par),
mg = EVy,

hg = VarVj.

2. Critically loaded

(4.9) is a stochastic differential equation with reflection (see Re-
mark 2.2 and Subsection 3.1):

V= a(x),

where

Xo = Vo + (M(0) — ,u’(()))/ Veds+ /2X0) W, .
o 0
Equivalently,
dVy = (N(0) — p'(0))Va dt + /2X(0) dW; + dY;, Y = ¥(X).

3. Underloaded
(4.9) degenerates to

Vi=0, t>0.
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4. Underloaded with large initial queue

For t < %o, (4.9) coincides with the linear stochastic differential
equation of Case 1, and for ¢ > ¢4, it reduces to

— Ov%o*; t =1y,
V‘“{O, t>1.

Further applications of (4.9) to specific A, u, gy and V;, are the subject of
Section 5.

4.3. Generalizations. We now present an extension of FCLT, cov-
ering A and u with piecewise continuous derivatives. This version will be
used 1n Subsection 5.6, in the analysis of finite server queues.

THEOREM 4.3. Assume that all the conditions of Theorem 4.2 are
satisfied, but allow the derivatives X' and ' to be piecewise continuous
functions with a finite number of discontinuities in each compact subinter-
val of (0, 00).

If, in addition,

gt = gqo > 0,
(4.10) { M{go—) # N(go+) or p'(go+) # i (qo+),

then the sequence {V"} converges weakly in (D[0,00),.J;) to the unique
(strong) solution of the following stochastic differential equation (without
reflection ):

dVi = [falqo) = fu(go) + FV)] dt + /Mao) + plgo) dWy
where

_ ] (Mgo+) = {go+))v, v>0,
flv) = { (AM{(go~) — M’(qgm))v, v < 0.

If (4.10) does not prevail, then Theorem 4.2 applies without any changes,

Comments on the proof of the theorem will be given in Subsection 7.7.
Note that under (4.10), the diffusion limit has continuous sample-paths.
Furthermore, (4.10) describes the only case that renders in doubt the exis-
tence of the second integral on the right-hand side of (4.9).

4.4. Time acceleration. The FSLLN rescaling (4.2) and (4.4) is
equivalent to a procedure of accelerating time and aggregating space units,
both by a factor of n. Indeed, consider the simplest, yet illuminating,
example of {A"} and {u"} that satisfy (4.4):

(4.11) w©=m (), e =n (£).

n n
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for some given A and u. Equations (4.11) arise naturally for systems with
linear, or piecewise-linear, dependence of arrival and service rates on the
queue length. (See Subsections 5.4-5.8.) Alternatively to (4.11), consider -
a sequence MQ/ME"/I, n=1,2,..., of queneing systems, with rates

(4.12) ve =2 (%) ro=u(),

" and queueing processes @". Introduce the processes §* = {rj”? ,t > 0}, given
by

. 1 -
(4.13) G = ~Qhue)

Then, rewriting equations (4.1) in terms of A®, i, and changing variables
yields:

(4.14) G =4q¢" n=12....

4.5. An interpretation of discontinuous diffusion limits. In this
subsection we attempt a qualitative explanation of some phenomena that
are amplified by our analysis.

As apparent from Subsection 4.2 and Subsection 4.1 (see Case 4), the
diffusion limit has a discontinuity in light traffic (underloaded) with large
initial queues: X&) < u(€), for all £ € [0, g0}, and

1
EQ’S — gg >0, as.,, nftoo.

Discontinuity arises at time to > 0, given by tq = inf {t > 0 : ¢; = 0}.

For simplicity of presentation, let us assume that QF = ngq, for some
go € Z%, and the rates in the n-th system are given by (4.11). We suppose
also that the V™ converges a.s. to a process V with upper semi-continuous
sample paths.

Consider first the case Vi, > 0 and thus Q7 //n — V;,. To expose
the causes of discontinuity, consider ™, which is a birth and death process
on the integers with the following transitions rates:

qF g1 = nA(R/n), k=0,1,...,
(4.15) 0 g1 = nplk/n), k=1,2,...,
' QS,_q :0,

One distinguishes three pha,ses- in the evolution of ()":

1. First relaxation phase of duration #p: at the beginning of this
phase, the queue length is ngp, reducing to ~ /nV;, at the end.
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2. Second relaxation phase of duration ~ 1/./n, starting at ¢g. This
phase arises from the fact that the queue length at the outset is
~ +/nV;,, while the rates in (4.15) are ~ nA(0) and ~ nu(0) over
this phase (A(0) < p(0)). This phase shrinks, as n | oo ultimately
resulting in a discontinuity of V at t5. At the end of the phase,
the queue is o(y/n).

3. Light traffic phase. Fluid and diffusion limits vanish, as for the
underloaded state-independent queues with constant rates A(0) <
#(0) and with small, o(+/n), initial queues. (See Subsection 5.1
for the explicit expressions of fluid and diffusion limits in state-
independent systems.)

When Vi, < 0, similar conclusions apply. The only difference is that the
first phase ends ~ 1/4/n prior to g, the second phase terminates and the
third phase starts at time ;. _

When V' has a discontinuity at time zero (Case 3, Subsection 4.2 and
Subsection 4.1}, the first phase is skipped in the evolution of Q".

Note that the fluid and diffusion limits both vanish beyond ¢;. These
are simple examples of state-space collapse, when the limiting process is of a
lower dimension than the process it approximates (see Reiman [42], Man-
delbaum and Chen [8]). State-space collapse occurs here, when systems
operate under light-traffic conditions. To obtain nonzero, more informa-
tive limits, one must formulate other limit theorems. Light traffic limit
theorems usually involve various cumulative processes such as sums and
integrals of the original process (see the survey by Glynn [15]). An alterna-
tive limit theorem for the distribution of Q™ in light traffic (in a particular
closed network) is presented by Kogan and Liptser {27]. It is possible to
obtain a non-degenerate diffusion limit for the second phase via a slower
rescaling, namely, considering locally a process Q" (to £ 7/./n), for some
T > 0. :

Remark. An explanation for a discontinuity of V can be given also in
terms of the transient behavior of Q7, introduced in the preceding subsec-
tion. Again, three successive phases arise in the evolution of Q": relaxation
of duration ~ nig, relaxation of duration ~ /n and, finally, light traffic
phase. The rescaling used (acceleration of time by a factor n) shrinks the
duration of the second phase, resulting in a discontinuity of V. 0

4.6. Alternative rescaling. We now describe rescaling procedures

other than (4.4),(4.8), which lead to different approximations of state-
dependent queues. Specifically, assume that

(416) 23— x©), VA |2 )] — e, woe.,
and .
(17) ~wr () — w©), Vi [ )] — 106, woe,
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as n | oo, for some specific o > 0. Evidently, our limits correspond to the
case & = 1 (see (4.4) and (4.8)). Alternative rescaling procedures were
considered by Yamada in [49] and [50]: the case o = 0 is treated in [49],
where the diffusion limit is of a Bessel type with a negative drift; the case
o = 1/2 is considered in [50], where the diffusion limit is a solution to a
stochastic differential equations with state-dependent coefficients (while in
our case the coefficients are time-dependent). The fluid limits vanish in
both [49] and [50].

A comparison of the different approaches is summarized in Table 1
(with preference to clarity of presentation over precision). The expressions
for the rates on the first upper part of Table 1 are based on (4.16). Com-
bining these expressions with the fluid and diffusions limits from the third
and forth parts of the table yields the last part.

Remark. The reflection Y in the expression for V, when o = 0, is
characterized by the condition:

¢
/%dY;:y-t, t>0,
0

for some v > 0. Such reflection gives rise to a Bessel-type distribution
for V. 0

To recapitulate, our approach leads to a second order approximations
for queueing processes: fluid limits provide approximations for actual val-
ues of queues, while diffusions limits—for their fluctuations. When fuid
limits vanish, the three approaches provide approximations for systems in
which arrival and service rates are sensitive to small (¢ = 1, @ (n=12y)),
medium (o = 1/2, O(V)) and large (o = 0, O (/nV)) fluctuations of que-
ues.

In Subsection 5.9, we compare the three types of rescaling, o« = 0,1/2, 1,
by applying them to a single queueing system.

5. Examples and applications. This section is devoted to some ap-
plications of the limit theorems presented in Section 4. In Subsections 5.1
and 5.3 we characterize the conditions under which diffusion limits are
Brownian or Ornstein-Uhlenbeck processes. In Subsection 5.2 we consider
asymptotically small initial queues. ‘

A unified approach is offered to obtain fluid and diffusion limits for
state dependent 'queueing systems. We demonstrate this through applica-
tion and simplification of some completely or partially known results (see
Subsections 5.4-5.8). Different types of rescaling are applied in Subsec-
tion 5.9 to a single model, thus highlighting their differences. In Subsec-
tion 5.10 we outline guidelines’ for implementing some of our approximas
tions. '
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5.1. State-independent models: linear fluid and Brownian
diffusion limits. Consider a sequence of state-independent queues
M™/M"™[1 with constant rates A" = nX and " = ng (= fu = 0
has been chosen in (4.8) for simplicity).

Theorems 4.1 and 4.2 yield the following expressions for the fluid and
diffusion limits:

ze=q+A—wt, g=z+y; V=0 (Vg*?-"\/)\—i—;iW‘)_

Three modes of evolution arise

1. Overloaded: A > p. Here ¢; = qo + (A — p)t and

Vo = Vo + W((A + p)e) = BMy,(0, A+ p).

2. Critically loaded: X = p. Here ¢ = qq;
If go>0,then Vi = Vo + W((A+ p)e) < BMy, (0, X + p);
If go = 0, then V = & [Vy + W((A + p)o)] £ RBMy, (0, A + 12).

3. Underloaded: A < p.
If go > 0 (large initial queues):

' qo
go+ (A —p)t, t<to= ,
7t = ot ( 2 ° p=AT
0, t > 1p
Vo + W((A+ w)i), t<to,
Vi = 0, i>t(},

max [Vo + W{((A+ u)t),0], t=tq.

If go = 0, Wy # 0 (imoderate initial queues): ¢ =0and V; =0, t > 0.
If g9 = Vo = 0 (small initial queues): ¢ =0 and V = 0.

5.2. Small initial queues. In this subsection, our limit theorems
are applied with asymptotically small initial queues, that is ¢p = Vo = 0.
This case 1s highlighted for 1ts simplicity: diffusion limits are continuous
on [0,00) and the behavior of the fluid (positive, vanishing) and diffusion
limits (with/without reflection, vanishing) depends solely on A{0), p(0).
Specifically:

1. Overloaded: A(0) > p(0). Here ¢ is strictly positive over (0, oc0)
(Cases 1.1 or 1.2 of Subsection 4.1) and V is a diffusion as in
Case 1 at the end of Subsection 4.2.

2. Critically loaded: A0) = u(0). Here ¢ = 0, and V is a reflected
diffusion (Cases 2 in Subsections 4.1 and 4.2).

3. Underloaded: A(0) < p(0). Here ¢ = 0 and V = 0 (Cases 3 in
Subsections 4.1 and 4.2).
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8.3. Constant fluid and Ornstein-Uhlenbeck diffusion limits.
We continue with queues whose diffusion limits are Ornstein-Uhlenbeck or
reflected Ornstein-Uhlenbeck processes. As previously, fx = f, = 0 in (4.8)
is chosen for simplicity.

Let A, u and & > 0 satisfy:

(5.1) M) = p(&r) and MN(&) < p/'(&).

Ornstein- Uhlenbeck diffusion imit. Add to (5.1) the assumption £, > 0.
Two cases arise:

1.g=¢&
Theorems 4.1 and 4.2 yield ¢ = £; and

dVi = (X (&) = ' (&1))Va dt + /20 (£L) dW; .
Thus V' is an Ornstein-Uhlenbeck process with

A _
my = EV; = mge™ 2%t

2 2
htéVarVg:gm_q_ ha_f_ g2t
20 2¢x

2
hs,t -é'— COV(V; ; V—t) = [ho + %(6201@/\3) _ 1)]6..05(154,3}} ,

where 0 = \/2X(£1), and a = p/(£1) N (€,). Taking Vo < & (O, -g—;—),
V is the stationary Ornstein-Uhlenbeck process with

hag = T—eolt=sl.
’ 2c¢

2. g # &
Assume, in addition, that
/\(6) > }'L(E): 5 < 51 3
)\(5) < ;L(E), f > ‘Si .
Then, it follows from Subsection 4.1 (see Cases 1.2, 1.3) that,
gt Ll & or g 11 & as t T oo. For V we have

dVy = (X{ge) = ' (g))Ve dt + /Mg0) + plge) dW, |

- The random variable V; converges weakly, as ¢ 1 oo, to
2

V{co) LN (0, g—a), where o and « are as defined above.

Reflected Ornstein-Uhlenbeck diffusion limil. Assume &, = 0 in (5.1).
The diffusion limit V. is then
dVy = (N(0) — ¢/ (0))Vi dt + +/2A(0) dW; + dY, |

which is a reflected Ornstein-Uhlenbeck process. This example was de-
scribed by Liptser and Shiryayev [36, pages 753,754].
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5.4. Finite population and general service (Liptser, Shiryayev
[36]). Consider a sequence of M/M} /1/00/n systems, as in [36, pages 638~
636]). The parameters of the n-th system are given by

@)=2 -, @)= (L),
for some A > 0 and a function p. We identify the parameters of the fluid and
diffusion limits via (4.4),(4.8): X&) = A-(1 =€), p(é), and £ = fu=0.
Let @5 and p satisfy the conditions of the FSLLN and FCLT (Theorems 4.1
and 4.2). Then the fluid limit is given by
¢ = A1~ q:) - p(q),

and if, for example, ¢; > 0 for all ¢+ > 0, the diffusion is

Ve :VO-/G.(A+#’(QS))%dS+/O. \/A(lmqs)—l-ﬂ(qs)dws.

Assume, in addition, that A (1 — £;) = p(&1) and #'(€1) > =, for some
& €(0,1], and consider separately two cases:

1. qo = & . The expressions above for ¢ and V yield ¢, = &1, and

dVe = —(A + @/ (E)WVa dt + /201 — &1) dW; .

With Vo £ A (0,02), 02 = (A1~ &))/[A + /(€1)], V becomes a
stationary Ornstein-Uhlenbeck process.
2. go # &;. Stipulating,

ME) > p(€), €<&s ME) < plf), €> 6,

we obtain that V; - V(co), where V(o) & N(0,0%), with o2
as in case 1. The random variable V(cc) can be used to approxi-
mate the long-run behavior of Q%, for sufficiently large n (see [36,
pages 653-656] and Remark 5.1).

5.5. Infinite number of servers (Whitt [48]). Consider a sequence
of M"™/M /o systems, namely

NQY = nA, Q) = uQ,

for some A, p > 0. Thzs corresponds to an infinite-server queue under
heavy traffic. By (4.4), A(§) = A, p(€) = ué.

Assume that g5 = p = A/ . Since p(qg) = A, we have ¢; = p, and

dVi = —pVidt + V2X dW;
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(see Case 1.4 in Subsection 4.1 and Case 1 in Subsection 4.2). That is, if

Vo SN (0,p), then V is a stationary Ornstein-Uhlenbeck process.
For the general case go # p, we obtain

(5.2) ¢t = p+(qo~p) e,
and
(5.3) dVy = —puVi dt + /22X + (pgo — A) e~ dWW,

(Cases 1.2,1.3 in Subsection 4.1 and Case 1 in Subsection 4.2). The process
V' has a steady-state distribution A (0, p), which can be used to approxi-
mate the distribution of @™(cc). (See [15], [23] and [36, pages 653-656].)

5.6. Finite number of servers (Iglehart [18], Halfin and Whitt
[17]).

The limit procedure of Borovkov [6] and Iglehart [18]. Consider a se-
quence of M" /M /n systems such that

QY= nX, 4" (QY) = p- (@7 An),

for some A, p > 0. By (4.4), A¢) = A, (&) =p-(EA1). The traffic
intensity for the n-th system is given by

Three cases arise: p<1,p>1,p=1.

L. p<1
Assume first that g5 € [0, 1]. Then ¢ and V are the same as in the
case of an infinite number of servers (see (5.2) and (56.3)). In this
sense, the sequence of M™/M/n systems with p < 1 is asymptoti-
cally (n T oo) indistingnishable from the sequence
M"™/M/oo, n=1,2,... In other words, due to (5.2),

1
;;Q” — ¢, wo.c,as, and ¢ <1, forallt > 0,

and thus the probability P [Q? > n], that all servers are busy, con-
verges to zero, as n T oo.

If g0 € (1,00), then for t < (g0 — 1)/ (= A) 2 t; the limits co-
incide with those of the state-independent system (Subsection 5.1,
underloaded regime with large initial queues). For ¢ > ¢; the lim-

its are the same as for an infinite number of servers, given ¢qp = 1
(see (5.2) and (5.3)).
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2. p>1
For the fluid limit,

— p+(q0_p)e”ﬂ1, t<t2:
=V =)t t>1y; ty=inf{t: g > 1}.

If g9 > 1, then t; = 0 and only the second equation in the above
expression is relevant. Therefore ¢ is a combination of two limits:
a model with an infinite number of servers, ¢t < t5 (Subsection 5.5)
and a state-independent system, t > t5 (Subsection 5.1, overloaded
regime). The diffusion limit enjoys a similar structure.
3. p=1

For go € [0, 1), the limits are analogous to those of case p < 1. For
g0 € (1,00), the limits are the same as for the state-independent
critically loaded case (Subsection 5.1).

For go = 1, the fluid limit is trivial: ¢; = gqp. While u is non-
differentiable at go = 1, the generalized FCLT (Theorem 4.3) is

applicable:
dV; = f (V) dt + /2 dW,
where
0, v >0,
f('v)m{ —pv, v <0,

Thus, V' is a combination of a Brownian motion and an Ornstein-
Uhlenbeck process. Such limits were proposed by Halfin and Whitt
- [17] and are described in what now follows.

The limit procedure of Halfin and Whitt [17]. Reconsider the limit
procedure of Borovkov and Iglehart described above. For that case, if
p < 1, the probability that all servers are busy converges to zero, as n 1 oco.
Halfin and Whitt [17] proposed another limit procedure for a sequence
M7™ /M /oo (with traffic intensity in the n-th system p® < 1), such that
the probability of delay converges to a non—degenerate limit. It was shown
in {17] that i -

IimP{Q"(cc)>n}=a, 0<a<l,

ntoa

if and only if

lim (1—-p")v/n =8, 0< B < oo,

nToo”

in which case a = [1+ 2789(3) exp(ﬁz/Q)]_l. Here ® is the standard
normal distribution function. Note that Q" (oo) exists since p™ < 1.
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The limits described in [17] can also be deduced from our theorems.
Indeed, let :

AR = p-(n=BVn), p™MQ")=pu-(Q" An), u>0.
The parameters of the fluid and diffusion limits are identified via (4.4) and
(4.8): X&) =p, (&) =p - (EAD),and L =0, f, = —Bpu. Moreover,
G- S )
p“n v
that is p” 71 1, and (1 — p?)\/n — 8, as n T oo,

Assuming go = 1 and noting that u is non-differentiable at this point,
we obtain that ¢ = 1, and by the generalized FCLT (Theorem 4.3),

dVi = f (Vi) dt+ /2 Wy,

(5.4) p

where

- _IBIU'! v Z O:
fv) = { —p(B+v), v<O.

Here the diffusion limit is a combination of an Ornstein-Uhlenbeck process
and a Brownian Motion, both with negative drifts.

Note that the drift (—f3u) appears in V due to the specific rates of
convergence in (5.4), while the special choice of gy = 1 (at this point p
is non-differentiable) gives rise to the compound structure of the diffusion
limit. The stationary distribution of V can be used in approximating the
distribution of Q" (o0), as shown in [17] (see also Remark 5.1).

5.7. The repairman problems (Iglehart and Lemoine [19], Igle-
hart [18]). Consider a sequence of M/M/k"[oco/n systems. The n-th sys-
tem Is interpreted as follows [19]. There are n operating units subject to
breakdowns and k™ repair facilities. The rates of breakdown and repair are
A and p respectively. Thus Q7 here is the number of operating units which
are being repaired or are awaiting repalr at time ¢. Introduce a process
Y™ = n — Q" which describes the number of units operating at time ¢.
The fluid and diffusion limits for {¥™} can be obtained immediately from
those for {Q™}, therefore we focus on the latter only. '

The arrival and service rates in the n-th system are given by

AR =A-(n=Q"), Q) =p(Q" Ak,
Assume that ,
- : T
E—:.‘—w—w'c, \/ﬁ(k———k) —0; O<k<l,
n : n
as n [ oo. Then, by (4.4) and (4.8), AME)=A-(1—8), p(&) =p- (€A k),
and fx = f, = 0. There are three combinations of the parameters’A, u and
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k, each corresponding to an essentially different fluid and diffusion limits.
For simplicity, we pursue the cases where the fluid limit ¢ = go , which are
sufficient to demonstrate the main modes of behavior.

A A
1. —-~———<]c, g0 = v——. Here dV} = —(A+ p)V; di + Qﬁ%th.

A ~/|\~ A+ ,uk

2. Tk =1 #T Here dV; = — AV, dt + 2k dW, .
A A

3. —— =k, = —

At p = Xt

Note that p is not differentiable at qo. Hence we have (by Theo-

rem 4.3)

Apt
dVy = f (Vi) dt + 2/\ th,
where

, —Av, v > 0,
f(v) = { —(pp+ Ay, v<O.

Remark. The FSLLN reveals that, for all ¢, the probability P [Q} > k”]
of all repair facilities being busy, converges to zero in Case 1 and to unity in
Case 2. Case 1 is therefore preferable over Case 2 for real repair systems. [

Another repairman model is proposed in [18], which generalizes the
one described above (see, also, Kurtz {33]). In this model, the n-th system
has m”™ spares, in addition to the elements described previously. These
spares can, immediately replace those operating units that have failed. In
our terms, one can write

AN @YD) = A=A (@Y= m™)T, p"(QY) = i Q1 AR,
Following [18], assume that m” = nm and £” = nk. In this case,
MO =2 (1= (E=m*), p&)=p-(ENk)
and fy = f, = 0. If, for example,

k
k<X k<m, and q0=1+m—’; ,
then g = qo, and dV; = —AV, dt + /2uk dW; .

Note that our theorems apply to the more general case

\/ﬁ(%_k) __},];’.ﬁ(m__mm>__>m, asn oo, gqg>0.

n

in which fy and f, need not vanish.
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5.8. Queues with reneging (Coffman ef al. [11]). Following [11],
consider a sequence of queues with processor-shared service and reneging.
Reneging means that a customer is lost when its sojourn time reaches an
individual random deadline. Namely, we assume that, in the n-th system,
the arrival and service rates are given by:

(5.5) A"(Q%) =nA, 7 (Q”):@%wnwm/mcz”wm,

for arbitrary positive X\, @ and v. The quantity nA 4+ av/An is the service
rate, shared among all customers in the system. The parameter v is in-
terpreted as the reneging rate. Assume that go = 0. Then the fluid limit
vanishes and the diffusion limit is the reflected Ornstein-Uhlenbeck process

dv, :—a\/th—vI/;dt+\/2AdW¢+dYt,

which are limits for the critically loaded mode (Cases 2 in Subsections 4.1
and 4.2). With appropriate parameters in (5.5), one obtains limit theorems
for other regimes, beyond [11].

5.9. A comparison of different rescaling procedures. The
three types of rescaling, described in Section 4.6, are now applied to a
single queueing system, operating in different modes.

Consider a sequence M?/Mg“/l, n=12,..., with arrival and service
rates given by

where b7, ¢, 8™ A" ~" are positive constants, ¢” < 4. Reviewing the ex-
amples from the previous subsections, one can offer various interpretations
for the n-th system:

1. Service is provided simultaneously by 6" servers (each at arate 4™)
- and by a processor-shared server (at a rate 87). The arrival pro-
cess consists of exogenous arrivals (rate b") and served customers
that leave for a while, then return for rework with probability
¢™/y" < 1. (The time till their return is assumed short enough
that the queue does not change much, and long enough that they
are independent of exogenous arrivals.) This is a possible model

- to some human-service systems.

2. Service is provided by a single server, at a rate that increases with
queue length, but only up to an exhaustion level A I S
Arrival rates, which increase with queue length, describe a possible
scenario where a long queue attracts customers being a source of
information on service value.

Assume that @F = 0. The three examples, presented below, exhibit
different diffusion limits V, according the choice of parameters in (5.6).
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These diffusion limits are obtained through the three types of rescaling
discussed in Section 4.6, '

1. o= 1. Let b = ™ = nb, " = 4" = ¢ and 6" = né; then
V=VaW +Y;

2. @ = 1/2. Let " = nb, p» = nb + /n, = /ne, Y = ne+1
and 6" = +/n &; then

dVy = ~[1+ (Vi A dt +/b+c(Vi A8)dW}
b+ c(Vi A8)dW2 + dYy;

3. a=0. Let b = g :né,c”:nc,.*y”:nc—k\/ﬁandé”:6; then
iz =614+ v2e6+20W, +Y,.

Here b,¢,6 >0, W, W' W? are standard Brownian Motions (W? and W?
are independent) and Y is a normal reflection term. For all three examples,

the fluid limit ¢ = 0 and @™ /\/n 4. V. The examples mainly differ by the
number of servers relative to the queue size, which are n - Vi, /1 /7,
1:4/n in examples 1,2,3 respectively.

5.10. Approximating queueing systems.Our approximations
typically apply when some natural parameters of the systems are taken
to an extreme. For example, large number of servers, population size, ini-
tial queue or traffic intensity. The sequence M /Mg‘/l, n=12 ..is used
to formalize the approximation, which always takes the form

(5.7) Q" & ng ++/nV,

where ¢ and V are the fluid and diffusion limits respectively.

Remark 5.1. A relation analogous to (5.7) can be written, at least
formally, for the stationary distributions @(c0) and V(oc), when they ex-
ist. Examples of theorems that support such approximations are Halfin
and Whitt [17], Kaspi and Mandelbaum [23], Ethier and Kurtz 14, Chap-
ter 4,§9], Liptser and Shiryayev [36]. O

6. Proof of FSLLN. This section is devoted to the proof of Theo-
rem 4.1. To simplify the presentation, we consider {4.11) only. The general
case requires. minor notational changes,

The linear growth constraint on the function A implies that both
¢",n=1,2,.., and ¢ are non-explosive (see Remarks 2.1 and 3.2).

Let T" be an arbitrary positive constant. Subtracting the equation for ¢
in (4.5) from the equation for ¢” in (4.3) and using the Lipschitz property
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of ® and ¥ (see Appendix A), we obtain
fe" —qlly < Clgg—gol

+C r%m (n/o.)\(q’;)ds) —/0' g ) ds
(6.1) w0l o (o [ waas) - [ waryas

o] [ 0w -2 as

0'(#@?) - ua)ds]

for all t < T, where C is the Lipschitz constant for ® and ¥. Note that
the first term on the right-hand side of (6.1) converges to zero, by the
conditions of the theorem.

It will be proved in Lemma 6.1 below that

(6.2) VT > 03A7r <oo 3 lim|]¢" ||l7< Ar as.

t

t

+C

(A7 is a non-random scalar.) Consequently, the second and the third terms
on the right-hand side of (6.1) converge to zero, by the continuity of A and x,
combined with the FSLLN for any Poisson process N:

1
ot £) —
N(nt) ~t

=0, VI'> 0, as.

nToo T

From (6.2) and the Lipschitz property of A and u, the last two terms in (6.1)
satisfy a.s. the following inequality:

[ o =sanas] +| ["ww) - senas| <or e, a
for all but finitely many values (in general, random) of n. Here
Cr = er\w + C{; )

where C% and C% denote the Lipschitz constants for A and p respectively
in [0, (A7 V ll¢liz) + 1]. Now combining all of the above, we obtain

(6.3) HQ”—QHnSG”(TMB/O g" —gllsds, 0<t<T,

where ¢*(T), which is the sum of the first three terms on the right-hand

side of (6.1) (with ¢ = T'), converges to zero; and B = C' - C'p. Finally,

applying Gronwall’s inequality (e.g. [14, page 428]) to (6.3) completes the

proof of the theorem. O
It remains to show that

LemMMma 6.1. Assertion (6.2) holds under the conditions of Theo-
rem 4.1.
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Proof. We prove the lemma by bounding {g¢"} from above, with a se-
quence of processes {g”}, for which the assertion holds. To this end, con-
sider the sequence of processes G™ = {G?,¢ >0}, n=1,2,, .., which are

solutions to:
1 Gn
Gy =QF + Ny (n[x"/ (1 + —?—f—)ds) ,
0

where K is the constant from the linear growth condition of the theorem.
The process G™ is pure birth with parameters

k
5 = @, qg’k+1mn1{(l+5), ke Zt,

as apparent from the interpretation discussed in Subsection 2.2. A pathwise
analysis can now be used to deduce that

(6.4) QF <GP, t>0, n=1,2,..., as.

In order to prove the lemma, it is sufficient to show that (6.2) holds
with ¢} replaced by

k3

Tk G n 1 ’ n
o=t =g+ =Ny (n/ (1+gs)d8)-
n n o

However, by Theorem 2.2 of Kurtz [31], ¢" — g, u.o.c., as., as n T oo,
where g is the unique solution to

[
g.zqo—m’/ (14g,)ds, t>0.
a

Hence, assertion (6.2) for g™ is established. The proof is now complete. O

Remark. The domination argument was required, since the general the-
orems of [31] do not treat the reflection phenomenon. Note that reflection
does not arise for g”. d

7. Proof of FCLT. This section is devoted to the proof of Theo-
rem 4.2. As previously, we restrict the proof to the case (4.11) only (con-
sequently, fi = f, = 0). Commentary on the general case is provided in
Remark 7.1 at the end of Subsection 7.3.

7.1. Existence and uniqueness. First we confirm that (4.9) is well-
defined and enjoys a unique strong solution.

The right-hand side of (4.9) is well-defined. To see that, accord-
ing to the definition of ®* in (3.4) we must show, first, that = given
by (4.5) satisfies the conditions of Lemma 3.2 and second, that the ar-
gument of ®7 in (4.9) is always in C*{0, 00) (see (3.3)). First, as explained
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in Subsection 3.1, z given by (4.5) is continuous with z¢ = ¢o > 0 and
strictly monotone or constant, which is precisely what was imposed on
in Lemma 3.2. Second, it follows from (4.5) and (4.7) that if zg = gy = 0,
then Vi», n=1,2,..., are non-negative, as well as V}. Observing that the
argument of ®* is a continuous function therefore establishes that (4.9) is
well-defined, ‘

We now appeal to known results that support existence and uniqueness
of the solution to (4.9). Review the four explicit forms of (4.9) listed at
the end of Subsection 4.2. In Cases 1,3 and 4, a strong unique solution
exists by the arguments, given in Section 5.6 of the book by Karatzas and
Shreve [22]. In Case 2, ¢ = 0 and existence and uniqueness of (4.9) follows
from Theorem 4.1 of Tanaka [44].

7.2. The set-up of strong approximations. We prove FCLT
within the framework of strong approximations. For this, recall the strong
approximation result presented in Ethier and Kurtz [14, Chapter 7, Corol-
lary 5.5]. Adapted to our context, it guarantees the existence of a proba-
bility space on which a Poison process N and a Brownian motion B can
jointly be realized so that

oo |V — 1= B(o) |
50 log(2 V1)

< &0, a.s.

Thus, we may start with two independent Brownian motions Wi and W_
such that, for all ¢ > 0, the following inequalities hold a.s.:

v (o] M) as) = [ 3y ds (n/;A(q?)ds)

Ky log (2 v n/ Algd) ds) ,
0

(7.2) - (”fo#”(qﬁ)ds) - "/ot“(Q?)ds - (“fot”(‘f?)dS)

K_log (2 v n] Algy) ds) ,
0

<

(7.1)

<

for some random variables K, and K_ . Assume further that

(7.3) im V3 = Vo, as,

nloo
and Vo 1s independent of W, and W_ . (See the assumptions on the prim-
itives in Section 2.)

7.3. The main steps. As explained in Subsection 3.2, the limit pro-
cess V' is sometimes continuous over [0,00) or (0,00), in which case we
have U-convergence. (Note that this depends only on z.) To prove the
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theorem for U/-convergence, we construct a sequence {17”} of continuous
path stochastic processes such that, for all T > 0,

{ P limHV”—-f?”

=0,

ntoo T

(7.4)
vrLv.

The assertion of the theorem now follows from Theorem 4.1 of Billings-
ley [4], preparing the ground for Mi-convergence. We now outline the
main steps. Technical details are given subsequently.

Start by rewriting the expression for V" (defined by {(4.7)) in a form
that is amenable to further calculations. To this end, introduce the se-
quence of processes X™ = {XJ*,1 > 0}, by

®

Xoo= nggen [ OG- ) ds
+ Wy (n‘/a. Algy) ds) - W_ (n fo. y(q?)ds) )
Then, according to (4.3) and (4.5),
V= E [8(e”) - B(2) |
(16) = [q) (Vaz") — (if)] ; [@ (_1_55“) —3 (\/ﬁm)] .

(7.5)

7 Vo

Equations (7.5) and (7.6) imply that

(7.7) V™= A"+ [@(v/nz + H” + ") — ®(/nz)] .

Here the processes H" = {H} ,t > 0},n=1,2,..., are given by
o= v [ W) - e d

(7.8)

1 ¢ 1 ¢

+ =W (n/)\qs d.s)meM(n/ s ds),
=W ([ A@)ds) = 2= (o [ uta)

and the processes A" and €”, by

(7.9) A" = @(ﬁx”)—q)(—if“),

(7.10) € = & el el

L

(111) &) = va L’(A@:)—_qu))ds—\/ﬁ /O'w(q;ﬂ—p(qs))ds
- [ @) - Wy v s

[

(112) @() = %m ([ 3ayas) = =i (n ["x@as),
@13 ) = 22w (o [ utands) = 2w (o [ e ds).
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We claim that there exist processes V" = {V t>0} and
H™ = {H},t > 0}, such that

(V" == (i),
(7.14) 4 HY =V + fo.()\’(qs) — Wgs)V; ds + %W** (n/O Ags) ds)
(o[ s as).

Note that the arguments, used to establish that (4.9) is well-defined and
possesses a unique strong solution, apply equally to ( 7.14). For convenience,
rewrite equation (4.9) in a form similar to (7.14):

(V= ¢7(H),
(7.15) { He = Va+f0(/\’(qs)—u’(q3))v;ds
+ [ VAGTF aGaTaw,.

\

In view of the scale invariance property of any Brownian motion B, B(s) 4

B(ne)/+/n, and because

W ([ My as) - w ([ e is) & [ ) aw,

the relations (7.14) and (7.15) yield that for all n:

-
(7.16) { =

ity

Comparing now (7.16) with (7.4) reveals that only the first assertion of (7.4)
remains to be proved. For this, rewrite (7.7) in the form

Vo= A" 4 [@(\/ﬁx-{—ﬂ"‘%«e”) ——fb(\/'r—zx—i—ﬁ”)
+ |2(/Ae+ B - a(vaz)|,

that enables us to sketch the general idea behind the rest of the conver-
gence proof. It will be shown that the first (A™) and second terms in (7.17)
(the expression within the first pair of brackets on the right-hand side) con-
verge in probability to zero, as n T oo, with respect to the U-topology. The
last term in (7 .17) is then shown to converge weakly in the Mi-topology
to ®@°(H) = V. The proof of the theorem is thus complete, by the con-
tinuity property of addition (see Appendix B) and because the limits of
the first and second terms in (7.17) are continuous and non-random. (See

(7.17)
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Theorem 4.4 by Billingsley [4] and the paper by Whitt [47] for more de-
tails.) However, the convergence proof for the second term in (7.17) is
not straightforward, since this term itself depends on V™ (see (7.8)). As a
standard tool in such situations, Gronwall’s inequality will be used.

' The proof will be carried out in two steps—first, U-convergence, fol-
lowed by M;-convergence.

Remark 7.1. To prove the general case, given by (4.8) with nonzero
fr, fu, one can replicate all the considerations, but with

T o= g [ - a@) ds 4 VR / “(aa) = Fulg?)) ds

vy (nof M?) ds) -~ w. (n | uta) ds) ,
Y = e [0 - @V s+ [ (e = fula)ds

oo %V(@ (n /0. /\(qs)ds) — m\};ﬂi_ (n fg. p(gs)ds) ,
instead of (7.5) and (7.8).

7.4. U-convergence. In this subsection we prove the theorem for
those cases where, as n | co,

(7.18) &(/nz+b) — d(y/nz) — &*(b), n.o.c.,

for all b € C*[0,c0). (See Cases 1,2 and 3 in Subsection 3.2.)

We fix T > 0, restrict attention to the interval [0,7] and verify the
first assertion in (7.4). Subtracting the expression for V", given by (7.14),
from (7.17) and using the Lipschitz property of ® (C being the Lipschitz
constant), one can write for ¢t < 7"

an . f/'n

< A+ Ol + C | = BT

t

(7.19) . N
+||e(vaz + ") - a(vas) — o7 (H")

l’r '
For the third term on the right-hand side of (7.19) we have (¢t < T'):

Vn_f}n

ds,

&

. . t
(7.20) HH”’ - H*|| < |V - Vol + C’T/
. g

where Cp = ||X(g¢s) — 1#/(gs)||p 1s finite by the continuity of A, u’ and ¢.
Combining (7.19) with (7.20) and applying Gronwall’s inequality yields

Vn___f/"n

t

(7.21) !
<(CWVG = Vol + [|A™Ip + Clle|lp + legllg)e” <,
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where the process €7 is given b
p o 15 g Y

e = d(yvnz+ H") - d(v/az) ~ &7 (™).

In view of (7.3), U-convergence will be established once it is shown that
the second, third and fourth terms in the parentheses on the right-hand
side of (7.21) converge in probability to zero. Each of these terms will now
be analyzed separately.

Review the definition (7.9) of A™. Denote the quantities between the
absolute value signs on the left-hand side in (7.1) and in (7.2) by AZ(¢)
and AJ(%) respectively. It follows, by the Lipschitz property of ® (C being
the Lipschitz constant), that

n 1 wn

Due to the FSLLN (or by Lemma 6.1) and by the locally Lipschitz property
of A and y, relations (7.1), (7.2} and (7.22) imply the convergence, asn T co:

(7.22) [lAMlp <C

<O (1agll + 17,

AT AL
7.23 A" — 0 w.0.c., a.s,
(7.23) T \/—

Review now the definition (7.10) of ¢”. We show that each term in the
sum on the right-hand side of {7.10) converges in probability to zero with
respect to the U-topology, and, hence, ¢ does so too.

It will be shown in Lemma 7.1 {see Subsection 7.6) that
(7.24) lim |{e"{], =0, a.s.

ntoo

We now apply Lemma 7.2 presented in Subsection 7.6, with

z/o‘)\(q?)ds, 7s =f0. Ags) ds

(7.25) P — lim ||e}]], = 0.

nToo

to get

(The conditions of Lemma 7.2 are satisfied by the FSLLN and because of
the auxiliary assertion (7.30) obtained in Lemma 7.1.) Similarly, we obtain

(7.26) P lim He2 | = 0.

Finally, (716) and (7.18) imply
(7.27) ‘ P — liTm licsilr = 0.

This completes the proof of I/-convergence.
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7.5. M;-convergence. We now consider the case

®(vVnz+b) — B(/nz) — &), asn | oo,

in the M;-topology, but not in the U-topology (see Cases 4 in Subsec-
tion 3.2). Then, combining (7.17) with (7.16) reveals that the third term
in (7.17), namely the expression within the last pair of brackets, converges
weakly in the M;-topology to ®°(H) = V. It will be shown further that the
second term in (7.17) converges in probability to zero with respect to the
U-topology. In view of (7.23), the proof is then complete. (See Theorem 4.4
by Billingsley [4] and the paper by Whitt [47] and recall the arguments at
the end of Subsection 7.3.)

In order to show that the second term in (7.17) converges to zero in
the U-topology, we apply the Lipschitz property of ®° to this term and
obtain (¢t < T):

8t 4 87 4-) - ota B

t

(7.28)

< Cllerlly +C ||Em - n

T

It will be shown further that the last term on the right-hand side of (7.28)
converges to zero in probability. Then, combining (7.28) with definition
(7.10) of € and using (7.24)~(7.26) proves the desired assertion.

In order to deduce that the last term in (7.28) converges in probability
to zero, review inequality (7.20). Since the first term on the right-hand side
of (7.20) converges to zero a.s. (by (7.3)), it is sufficient to check that the
second term 1n (7.20), for ¢ = T, converges in probability to zero. But this
follows from Remark 3.3 and (7.30), and the fact that theorem is already
proved for the case of U/-convergence.

7.6. Lemmata.
LEMMA 7.1. The sequence {€"} given by (7.11) satisfies (7.24).

Proof. Our calculations resemble those in Chapter 8,83 of the book by
Liptser and Shiryayev [36, pages 635,636], where they are presented in the
context of martingale theory.

From the definition (7.11) of € and by the locally Lipschitz continuity
of A" and 4’ we obtain, in view of the definition (4.7) of V7"

Ol < [ (W ohar ~ eVl - a) - NV
(7.29) + |1 (s + 93} — g Wnla? ~ ) — p'(g,) V) ds
< Crlv™li " - allt, ¢<T

where ! , o2 € [0,1], and C7 is a constant. By the FSLLN (Theorem 4.1),
it follows from the last equation that to prove the lemma it is sufficient to
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show that the following holds a.s.:
- (7.30) Im([V"], < oo, 1< T

In order to prove (7.30) we continue as follows. From the definition of
V"™ (see (4.7)) one obtains

VP < Cvnlle™ -l

) Vi (3ve ([ ey ds) - | A ds)
+C ﬁ(%N— (njggn(Q?)dS) "/D.M(Q’?)ds)

+o|lva / (Mg") — A(g,)) ds

< CH/O”HCI

[

, 1< T
1

+C x/ﬁfa (1(gy) — plqs)) ds

Using the FSLLN and the local Lipschitz continuity of A and p, we obtain
the existence of a (possibly) random M, and positive non-random scalars
Fr, Ly, such that for all n > M the following inequality holds a.s. (t<T):

7l < ot c||va (h o o)

(7.31) )

Fr

+C|

Vn (%N_ (ns) — 3)
Note that, as n | oo,

N (%N+ (ne) — ) W, as

1
+LTf V™I, ds.
0

Fr

and analogously for N_. This fact, the convergence (7.3) of {V{} and
Gronwall’s inequality applied to (7.31) complete the proof of the lemma. 0
Condition (7.30) implies the so-called compact containment condition
(see Ethier and Kurtz [14, page 129]):
| lim fim n = <T.
Jim %nP{HV |, > ¢} O,K t<T
This condition is often involved in proving weak limit theorems and is used
in the following

LEMMA 7.2, Let {g"} be a sequence of stochastic processes with mono-
tone increasing sample paths. Let ¢ be a monotone increasing determinis-
tic function, and let B denote a Brownian motion. Further, for all n, let
96 = go = 0. Assume, in addition, that for all T > a,

(7.32) liTm Hg™ — gllp =0, as.,
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and

(7.33) N B P (Vills™ = glly > ¢} = 0.
Then

(7.34) - i%%l T |B(ng™) — B(ng)||z = 0,
for all T > 0.

Proof. Introduce the random variables 7™ and 7" by

" =nllg" = glly ,

T" = n(g™(T) v ¢(T)).
Evidently, 0 < T" < T™. Without loss of generality, consider the case

0< 1™ < T™.
Fix ¢ > 0. By (7.33),

R i
ggr{.r; hrILnP {—ﬁ > f} = (.

In view of (7.32), we can choose £, > 0, a natural number N. and a set B,
such that for all n > N,

(7.35) | P{% >£E}<s,

and

| In < Fr 29 2n(g(T) vV 1) on B,,
P{B{} <e.

Denoting

- ‘”1\/“-5 IIB(ng™) - B(ng)lly ,

S, B, 7) ={u,v: 0<uv<a, f<lu—v|<q},




276 AVI MANDELBAUM AND GENNADY PATS

we obtain for n > N,:

Plar><) < P{a>a\B}+Pim)

< P { sup  |B(u) ~ B(v)| > 5\/5} +€

S(F™,0,T™)

EA

P{ sup  |B(u) — B(v)| > a\/a}
S(F™ 0,80/

+P { sup |B(u) — B(v)] > 5\/5} + €.
S(F™ £e/n,T™)
By (7.35), the second term on the right-hand side of the last inequality is
less than ¢, and therefore we restrict our attention to the first term only.
Recall Lemma 1.2.1 in the book by Csorgé and Révész [13], which
asserts the following. For any positive 6, there exists a constant C' = C(§)
such that the inequality

P{ sup |B(u) — B(v)| > p\/é} <C(+ —F—)e“‘é’"’fﬁ

S(F,0,t) £

holds for every positive p and 0 < £ < F'. (This form of Lemma 1.2.1 in {13]
is taken from {10].) Using this assertion and continuing our calculation, we
obtain

P {A™ > ¢}

< 26+ P{supsirn o.e,ym) B(1) = B)| > s (bey/m)/2 |
52a+c(1+w«%}m)e‘a%% ,

which implies the assertion of the lemma.

7.7. Proof of Theorem 4.3. The proof of Theorem 4.3 is omitted,
being similar to that of Theorem 4.2, except for the following comments.
Recall that fluid limits ¢ are strictly monotone or constant and recon-
sider (7.29) (the step in the proof where the Lipschitz properties of A, u’
are used). By a ‘sim_ple modification of the arguments, one concludes that
Theorem 4.2 holds without any changes, with the exception of the special
situation (4.10). In that case, one must separate the analysis of (7.29) to
the right and the left neighborhood of ¢q.
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8. Directions for future research. Of interest are extensions to
the current model that cover time- and state-dependent rates, other per-
formance measures such as waiting time and work-loads, and random or
discontinuous A and p. The latter would enable, among other things, anal-
ysis of models with finite buffers, breakdowns and batch service.

Other possible extensions are to non-exponential models. The ap-
proach taken here should carry over, but the details would naturally de-
pend on the particular model at hand. (See, for example, a steady-state
analysis of state-dependent M¢/G¢/1 queues in Knessl et al. [26]; diffusion
approximations of phase-type models in Whitt [48] and Krichagina [29];
fluid and diffusion approximations of various semi-Markovian models in
Anisimov [1]). |

Work is currently ongoing on approximating state~dependent networks,
that includes state-dependent routing. Fluid hmits for such networks
are solutions to autonomous ordinary differential equations with state—
dependent oblique reflection. Diffusion limits are solutions to stochastic
differential equations with fime—dependent oblique reflection. The diffu-
sion limits are Markov processes with possibly discontinuous sample-paths.
Weak convergence is with respect to Skorokhod’s M -lopology.

Fluid limits of networks (as solutions to a multi-dimensional differen-
tial equation) need not be monotone functions and can leave a boundary,
after having reached 1t. As a consequence, the diffusion limits could have
multiple points of discontinuity. Furthermore, the characterization of fluid
and diffusion limits involves reflection problems with non-constant direc-
tions of reflections, varying with time and state. Such mappings are less
well-behaved than the usual multi-dimensional Skorokhod maps (in partic-
ular, they need not be Lipschitz). All this suggests that new tools must
be developed in order to establish convergence, existence and uniqueness
of the limits.

A. Skorokhod’s reflection problem. We use the following version
of the one-dimensional Skorokhod’s reflection problem (taken from [9]):

THEOREM. For any z € Dp[0,00), there exist a unique pair (¢,y) €
Dyi0, 00) x Do[0, x0) satisfying

Qt:$t+yt20} tZO;

"y nondecreasing, with yg = 0,

f_ 1[g:>0ldy: = 0.
0 - .
The operators @ and ¥ :‘With domain Dy[0, o0}, given by

q:@(a}), y= l:[)'(x),
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are both Lipschitz continuous with respect to the uniform norm. N amely,
there exists a constant C > 0, such that

o) ~ @), < Clla'-2?|,,
H\I"(ml)“\p(wz)”T < CHxl_ﬁHT,

for all 2!, 2% € Dg[0,00) and T > 0. Furthermore, ® and ¥ are both
homogeneous of degree 1:

S(yz) = 72(=),
U(yz) = v9¥(z),

for all x € Dy[0, 00) and v > 0.

Note that both the theorem cited above and all properties of & and
¥ hold when we use, instead of Dp[0,00), the space of the IR%valued
RCLL functions with non-negative values at zero. However, only in the
one-dimensional case do ® and ¥ have the explicit forms:

‘I’t(l‘) = Sup (33:): i 2 0?
0<s<t
P(r) = z+¥(z)==x +z=.

B. Weak convergence. We use in this paper the set I~)[0, co) of all
real-valued functions on {0, c0) with right and left limits at each point.
Values of functions are assumed to be equal to either the left or the right
limit. Note that discontinuities at zero are admissible. B

Our weak convergence results are proved for the space (D[0, o), M1),
that is 15[0, oo) endowed with Skorokhod’s M -topology, see [43]. The ap-
propriate definitions of the Mj-topology and, respectively M;-convergence,
for D[0,00) (which slightly differs from the space used in [43]) can be
given within the unified graph approach of Pomarede [40]. For the exten-
sion of Pornarede’s definitions to the non-compact interval [0, 00), see, e.g.,
Whitt [45] and [47].

We use the following properties of the M;-topology:

1. Let {2"} converge to z in the M;-topology. If z is an element of
C[0, o), then the M;-topology reduces to the topology of uniform conver-
gence on compact sets (U/-topology). Uniform convergence is referred to as
U-convergence. '

2. Theorem 3.1. by Pomarede [40], on Mi-convergence: Let 2" —s gz,
y" — y,asn 1 oc. Then, z” + y* — z + v, if z and y have no common
points of discontinuity.

In Theorem 4.3 we use the ordinary Skorokhod space (D[0, o0}, J1).




C. Notation.

RCLL

1.0.C

1[5]
fiTla
frlla

Vv and A
a” = —(an0)
f(t)z sup fs

0<s <t
1fllp = sup |f]
0<s<T

Z+ and IRY
C[0, o0)
C()[O, OO)
DI, co)
Dy[0, 00)

QE [0, OO)
DI0, o0)
(D[O: OO): Jl)
(D[0, 00), M)
a,

P—-1lim

N (8,67%)
BM(§,0%)
Ble(&, 0'2)
RBM(6,0%)

RBM,(6,0%)
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right-continuous with left limits
uniformly on compact

indicator function of a set S

f is strictly increasing and tl%{.r; fi=a

f is strictly decreasing and }}rm fi=a
o0

maximum and minimum
the negative part of a
the upper envelope of f

the uniform norm of f on the interval [0, T

the sets of non-negative integer and real
numbers

the set of continuous real-valued functions on
[0, 00) |

(£ €Cl0,50)| fo > 0}

the set of RCLL real-valued functions

{f € D[0, )| fo > 0}

the set of RCLL FE-valued functions

see Appendix B

the space D[0, o) endowed with Skorokhod’s
Ji-topology

the space D0, 00) endowed with Skorokhod’s
M -topology

18 distributed as

convergence in distribution

limit in probability

the normal distribution with mean é§ and
variance o2

Brownian motion with drift § and variance o2,
starting at 0

Brownian motion with drift § and variance o2,
starting at =z '

Reflected Brownian motion with drift § and
variance o2, starting at 0

Reflected Brownian motion with drift § and

. variance o2, starting at =
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