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Motivation

Standard assumption in service system modeling: arrival
process is Poisson with known parameters.

Emergency departments and call centers: known arrival rates
for each basic interval (say, one hour in EDs, 15 min in CCs).

Application of standard approach to basic interval (say, next
Tuesday, 9am-10am):
@ Derive Poisson parameters from historical data and some
forecasting procedure.
@ Plug parameters into a queueing model (Erlang-C, Erlang-A,
Queueing Network, Skills-Based Routing models, ...).
@ Set staffing levels according to model and service constraint
(e.g., 80% of CC customers answered within 30 sec).

Is standard Poisson assumption valid? As a rule it is not, one
observes larger variability of the arrival process than the one
expected from the Poisson hypothesis.



Research Outline

Research Outline

Design model for overdispersed arrival rate.

Validate arrival model via data analysis.

Plug arrival model into relevant queueing models.

Derive asymptotic results relevant for real-life staffing
problems and provide practical guidelines.

Validate queueing model via numerical experiments.
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Queue with Overdispersed Arrival Rate: Model Definition
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@ )\ - Expected arrival rate of a Poisson arrival process.
@ 1 - Exponential service rate.
@ n service agents.

@ G - Patience distribution: time that a customer is willing to
wait in queue.



Model Definition

Queue with Overdispersed Arrival Rate: Model Definition

The M’|M|n+ G Queue:
@ )\ - Expected arrival rate of a Poisson arrival process.
@ 1 - Exponential service rate.
@ n service agents.
@ G - Patience distribution: time that a customer is willing to

wait in queue.

Random Poisson Arrival Rate:
M = X+ XX, c<1,

where X is a random variable with zero mean and finite variance.

@ ¢ < 1/2: Conventional variability ~ QED staffing regime.
@ 1/2 < ¢ < 1: Moderate variability ~ QED-c regime (new).

@ ¢ = 1: Extreme variability ~ Efficiency-Driven regime.



Case Studies: Financial Call Center and Emergency Departmen

Financial Call Center: Data Description

Israeli bank.

Arrival counts to the Retail queue are studied.

263 regular weekdays ranging between April 2007 and April
2008.

Holidays with different daily patterns are excluded.

Each day is divided into 48 half-hour intervals.
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Financial Call Center: Arrival Rates
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Case Studies: Financial Call Center and Emergency Departmen

Financial Call Center: Overdispersion Phenomenon

Coefficient of Variation
sampled CV- solid line, Poisson CV - dashed line
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Moderate and Extreme Variability: Relation between Mean

and Standard Deviation of Arrival Rate

Number of arrivals during a basic interval (say, Tue, 9-10am):
Poisson Y with random rate M = X\ + A - X, where E(X) =0,
standard deviation o(X) >0 and 1/2 < ¢ < 1. Then,

In(a(Y)) = c-In(A) + In(a(X)).
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Moderate and Extreme Variability: Relation between Mean

and Standard Deviation of Arrival Rate

Number of arrivals during a basic interval (say, Tue, 9-10am):
Poisson Y with random rate M = X\ + A - X, where E(X) =0,
standard deviation o(X) >0 and 1/2 < ¢ < 1. Then,

In(a(Y)) = c-In(A) + In(a(X)).

Proof:
Var(Y) = A Var(X) + X + XE(X),
o(Y)/AS = o2 (X) + A2,
and

AIiﬁmoo(ln(a(Y)) — clIn(A)) = In(o(X)).

Therefore, for large A,
In(e(Y)) = c-In(A) + In(a(X)).
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Financial Call Center: Fitting Regression Model
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Financial Call Center: Fitting Regression Model

Tue-Wed, 30 min resolution Tue-Wed, 5 min resolution
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Results:
@ Two clusters exists: midnight-10:30am and 10:30am-midnight.
e Very good fit (R? > 0.97).
@ Significant linear relations for different weekdays and

time-resolution (5-30 min):
In(a(Y)) = c-In(A) + In(a(X)).
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Case Studies: Financial Call Center and Emergency Departmen

Financial Call Center: Outline of Additional Results

e Good fit of a well-known Gamma mixture model (Jongbloed
and Koole ['01]) to data of Financial Call Center.

@ Relation between our main model and Gamma Poisson
mixture model is established.

@ Distribution of X is derived under Gamma assumption: it is
asymptotically normal given a large arrival rate.

12



Case Studies: Financial Call Center and Emergency Departmen

Emergency Department: Data Description

@ Rambam hospital Emergency Department.

@ 194 weeks between from January 2004 till October 2007 (five
war weeks are excluded from data).

@ The analysis is performed using two resolutions: hourly arrival
rates (168 intervals in a week) and three-hour arrival rates (56
intervals in a week).

13



Case Studies: Financial Call Center and Emergency Departmen

Emergency Department: Arrival Rates

Average Hourly Number of Arrivals
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Case Studies: Financial Call Center and Emergency Departmen

Emergency Department: Over-Dispersion Phenomenon

One-hour resolution Three-hour resolution
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@ Moderate over-dispersion.

e Conventional variability (¢ = 1/2) seems to be a reasonable
assumption for hourly resolution.

15



QED-c Regime: Fixed Arrival Rate

QED-c staffing rule:

n = 2+ﬁ<2>c+o(\f)\), BeER, ce(1/2,1).
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QED-c Regime: Fixed Arrival Rate

QED-c staffing rule:

n = 2+/3<2>C+o(ﬁ), BER, ce(1/2,1).

Assume an M|M|n+ G queue with fixed arrival rate \.
Take A to oc:

e (3 > 0: Over-staffing.

o 3 < 0: Under-staffing.

For both cases we provide asymptotically equivalent expressions (or
bounds) for P{W, > 0}, P{Ab} and E[W,], where W, - waiting
time.

Proofs: Based on M/M/n+G building blocks from Zeltyn and
Mandelbaum['05], carried out via the Laplace Method for
asymptotic calculation of integrals.
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QED-c Regime: Random Arrival Rate

Theorem

Assume random arrival rate M = X\ + \ut=X, ¢ € (1/2,1),
E[X] = 0, finite o(X) > 0, and staffing according to the QED-c
staffing rule with the corresponding c. Then, as A — oo,

a. Delay probability: Pm.n{Wq >0} ~ 1—F(B).
E[X —
b. Abandonment probability: Pm.n{Ab} ~ [nl_cﬂ]Jr
E[X —
c. Average waiting time: Em n[Wgq] ~ ,Elcﬂg]Jr
- 80

where gp=patience density at the origin.

Proofs: based on conditioning on values of X and results for
QED-c staffing rule.



QED-c Regime: Numerical Experiments

Examples: Consider two distributions of X
@ Uniform distribution on [-1,1],
@ Standard Normal distribution.
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Practical Guidelines

@ Determine “uncertainty coefficient” ¢ via regression analysis.

e If 1/2 < ¢ < 1, assume that X is asymptotically normal,
calculate standard deviation from regression model.

e Apply QED-c (or QED, Efficiency-Driven) asymptotic results
in order to determine appropriate staffing.

10



Outline of Additional Results

@ Queueing Theory. Asymptotic performance measures derived
and constraint satisfaction problems solved for:

o QED regime (¢ =1/2).
o Efficiency-Driven regime (¢ = 1), discrete and continuous
distribution of X.

@ Numerical Experiments. Very good fit between asymptotic
results and the exact ones (simulation).

e Time-varying Expected Arrival Rate. Enhance ISA
algorithm developed by Feldman with the features of random
arrival rate in the M;/M/n+ G queue.

Goal: determine time-dependent staffing levels aiming to
achieve a time-stable delay probability.
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Future Research Challenges

@ Incorporating forecasting errors into our model (in the spirit
of Steckley et al., 2007).

@ Scaling problem: dependence of ¢ on the basic interval
duration.

e Time-varying queueing models: achieving time-stable
performance measures (probability to abandon, average wait).

e Validation of M?/M/n+M (or M?/M/n+G) model in call
center environment (and probably other service systems).

21
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