Design and Inference of a Call Center with an Answering Machine (IVR)

Polina Khudyakov

Joint work with Prof. Avishai Mandelbaum, Prof. Malka Gorfine and Prof. Paul Feigin

June 29, 2010

Outline

• Design of a Call Center with an IVR

Customer Patience Analysis

Service Time Analysis

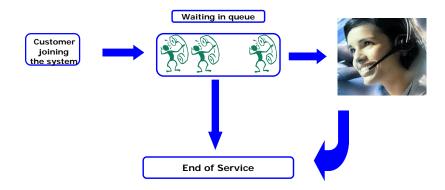
Background

- Halfin and Whitt (1981) (M/M/S)
- Massey and Wallace (2004) (M/M/S/N)
- Garnet, Mandelbaum and Reiman (2002) (M/M/S+M)

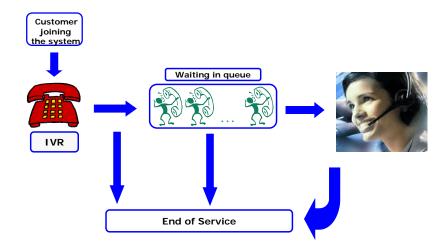
Srinivasan, Talim and Wang (2002) (Call center with an IVR)

Customer interaction with a call center (Model I)

M/M/S/N+M



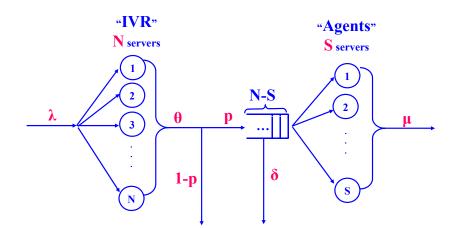
Customer interaction with a call center (Model II)



Model description

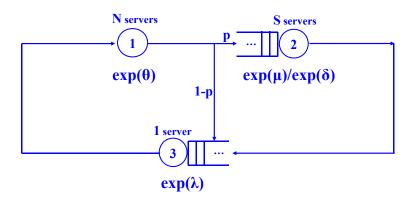
- N number of trunk lines
- $Poisson(\lambda)$ arrival process
- p probability to request agent's service
- S number of agents
- $exp(\theta)$ IVR service time
- $exp(\mu)$ agent's service time
- $exp(\delta)$ customer patience time

Schematic model



Closed Jackson Network

- Brandt, Brandt, Spahl and Weber (1997)
- Srinivasan, Talim and Wang (2004)



Stationary Probabilities

$$\pi(i,j) = \begin{cases} \pi_0 \frac{1}{i!} \left(\frac{\lambda}{\theta}\right)^i \frac{1}{j!} \left(\frac{\lambda p}{\mu}\right)^j, & j \leq S, \ 0 \leq i+j \leq N; \\ \pi_0 \frac{1}{i!} \left(\frac{\lambda}{\theta}\right)^i \frac{1}{S!} \left(\frac{\lambda p}{\mu}\right)^S \frac{(\lambda p)^{j-S}}{\prod_{k=1}^j (S\mu + k\delta)} & j \geq S, \ 0 \leq i+j \leq N; \\ 0 & \text{otherwise,} \end{cases}$$

where

$$\pi_{0} = \left[\sum_{i=0}^{N-S} \sum_{j=S}^{N-i} \frac{1}{i!} \left(\frac{\lambda}{\theta} \right)^{i} \frac{1}{S!} \left(\frac{\lambda p}{\mu} \right)^{S} \frac{\left(\lambda p \right)^{j-S}}{\prod_{k=1}^{j} (S\mu + k\delta)} + \sum_{i+j \leq N, j \leq S-1} \frac{1}{i!} \left(\frac{\lambda}{\theta} \right)^{i} \frac{1}{j!} \left(\frac{\lambda p}{\mu} \right)^{j} \right]^{-1}.$$

Exact Performance Measures

$$P(W > 0) = \sum_{i=0}^{N-S} \sum_{j=S}^{N-i} \chi(i+j,j),$$

where $\chi(k,j)$, $0 \le j < k \le N$, is the probability that the system is in state (k,j), given that a call (among the k-j customers) is about to complete its IVR service:

$$\chi(k,j) = \frac{(k-j) \pi(k-j,j)}{\sum_{l=0}^{N} \sum_{m=0}^{l} (l-m) \pi(l-m,m)}.$$

$$P(Ab|W > 0) = \frac{\sum_{i=0}^{N-S} \sum_{j=S+1}^{N} \pi(i,j)(j-S)\delta}{\sum_{i=0}^{N-S} \sum_{j=S+1}^{N} \pi(i,j) \left(S\mu + (j-S)\delta\right)},$$
$$E[W|W > 0] = \frac{1}{s} P(Ab|W > 0).$$

The domain for asymptotic analysis: QED

Model I (M/M/S/N+M)

(i)
$$\lim_{\lambda \to \infty} N - S = \eta \sqrt{\frac{\lambda}{\mu}}, \quad 0 < \eta < \infty;$$

(ii)
$$\lim_{\lambda \to \infty} S = \frac{\lambda}{\mu} + \beta \sqrt{\frac{\lambda}{\mu}}, -\infty < \beta < \infty.$$

Model II (Call Center with an IVR)

(i)
$$\lim_{\lambda \to \infty} N - S = \frac{\lambda}{\theta} + \eta \sqrt{\frac{\lambda}{\theta}} - \infty < \eta < \infty;$$

(ii)
$$\lim_{\lambda \to \infty} S = \frac{\lambda p}{\mu} + \beta \sqrt{\frac{\lambda p}{\mu}}, -\infty < \beta < \infty$$
.

QED Approximations (Model I)

Theorem:

Let the variables λ , S and N tend to ∞ simultaneously and satisfy QED conditions, where μ is fixed. Then the asymptotic behavior of the system is described in terms of the following performance measures:

• the probability P(W > 0) that a served customer waits after the IVR:

$$\lim_{\lambda \to \infty} P(W > 0) = \left(1 + \frac{\sqrt{\frac{\delta}{\mu}} \Phi(\beta) \varphi(\beta \sqrt{\frac{\mu}{\delta}})}{\varphi(\beta) \left[\Phi(\eta \sqrt{\frac{\delta}{\mu}} + \beta \sqrt{\frac{\mu}{\delta}}) - \Phi(\beta \sqrt{\frac{\mu}{\delta}})\right]}\right)^{-1},$$

• the probability of abandonment, given waiting:

$$\lim_{\lambda \to \infty} \sqrt{S} P(Ab|W > 0) = \frac{\sqrt{\frac{\delta}{\mu}} \varphi(\beta \sqrt{\frac{\mu}{\delta}}) - \beta \left[\Phi(\eta \sqrt{\frac{\delta}{\mu}} + \beta \sqrt{\frac{\mu}{\delta}}) - \Phi(\beta \sqrt{\frac{\mu}{\delta}}) \right]}{\Phi(\eta \sqrt{\frac{\delta}{\mu}} + \beta \sqrt{\frac{\mu}{\delta}}) - \Phi(\beta \sqrt{\frac{\mu}{\delta}})}.$$

QED Approximations (Model II)

Theorem:

Let the variables λ , S and N tend to ∞ simultaneously and satisfy the QED conditions, where $\mu, \rho, \theta, \delta$ are fixed. Then the asymptotic behavior of our system, is captured by the following performance measures:

• the probability P(W > 0) that a served customer waits after the IVR:

$$\lim_{\lambda\to\infty}P(W>0)=\left(1+\frac{\gamma}{\xi_1-\xi_2}\right)^{-1};$$

• the probability of abandonment, given waiting:

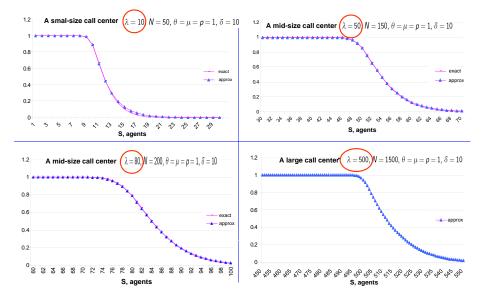
$$\lim_{\lambda \to \infty} \sqrt{S} P(Ab|W>0) = \frac{\sqrt{\frac{\delta}{\mu}} \varphi(\beta\sqrt{\frac{\mu}{\delta}}) \Phi(\eta) - \beta\int\limits_{\beta\sqrt{\frac{\mu}{\delta}}}^{\infty} \Phi(\eta + (\beta\sqrt{\frac{\mu}{\delta}} - t)\sqrt{\frac{\rho\theta}{\mu}}) \varphi(t) dt}{\int\limits_{\beta\sqrt{\frac{\mu}{\delta}}}^{\infty} \Phi(\eta + (\beta\sqrt{\frac{\mu}{\delta}} - t)\sqrt{\frac{\rho\theta}{\mu}}) \varphi(t) dt}$$

where

$$\xi_1 = \sqrt{\frac{\mu}{\delta}} \frac{\varphi(\beta)}{\varphi(\beta/\frac{\mu}{\delta})} \int\limits_{\gamma}^{\eta} \Phi\left((\eta - t)\sqrt{\frac{\delta}{\rho\theta}} + \beta\sqrt{\frac{\mu}{\delta}}\right) \varphi(t) dt,$$

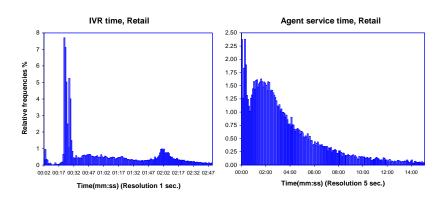
$$\xi_2 = \sqrt{\frac{\mu}{\delta}} \frac{\varphi(\beta)}{\varphi(\beta\sqrt{\frac{\mu}{\delta}})} \Phi(\beta\sqrt{\frac{\mu}{\delta}}) \Phi(\eta), \qquad \qquad \gamma = \int\limits_{-\infty}^{\beta} \Phi\left(\eta + (\beta - t)\sqrt{\frac{p\theta}{\mu}}\right) \varphi(t) dt.$$

Illustration of the P(W > 0) approximation



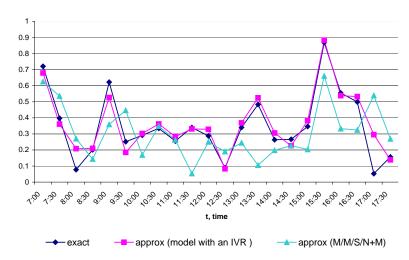
Data Description

- Service type Retail (80% of total customers)
- April 12, 2001 (an ordinary week day)
- Observed time period is from 07:00 till 18:00
- About 600 agents per shift

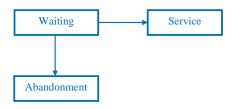


True vs. Approximated Performance Measures

P(W>0) and its approximation



Customer Patience Analysis



- Customer patience is the willingness of a customer to wait before being served
- Customers receive the service before they lose their patience
- Censored data
- Survival analysis

Customer Patience Analysis (cont.)

- Does customers' individual features influence on their waiting behavior?
 - ▶ observed ⇒ covariates
 - unobserved ⇒ frailty

Customer Patience Analysis (cont.)

- Does customers' individual features influence on their waiting behavior?
 - ▶ observed ⇒ covariates
 - ▶ unobserved ⇒ frailty
- How customers' experience with the system affect of their waiting behavior?

Customer Patience Analysis (cont.)

- Does customers' individual features influence on their waiting behavior?
 - ▶ observed ⇒ covariates
 - unobserved ⇒ frailty
- How customers' experience with the system affect of their waiting behavior?
- Data selection

The Model

Conditional hazard function

$$\lambda_{ij}(t|w_i) = \lambda_{0j}(t)w_i e^{\beta^T Z_{ij}}$$
 $i = 1, ..., n \quad j = 1, ..., m_i$

- $\lambda_{0i}(t)$ is an unspecified baseline hazard function of call j
- β is a p-dimensional vector of unknown regression coefficients
- w_i are i.i.d. random variables with known density $f(w) \equiv f(w; \theta)$
- ullet heta is an unknown vector of parameters

Estimation Procedure

Gorfine, Zucker and Hsu (Biometrika, 2006)

$$L = \prod_{i=1}^{n} \prod_{j=1}^{m_i} \{\lambda_{0j} (T_{ij}) e^{\beta^T Z_{ij}} \}^{\delta_{ij}} \prod_{i=1}^{n} \int_{0}^{\infty} w^{N_{i\cdot}(\tau)} e^{-wH_{i\cdot}(\tau)} f(w) dw$$

Step 1.

Given the value of $\gamma = (\theta, \beta^T)$ estimate $\left\{\Lambda_{0j}(\tau)\right\}_{i=1}^m$ by using

$$\Delta \hat{\Lambda}_{0j}(\tau_{jk}) = \left(\sum_{i=1}^{n} dN_{ij}(\tau_{jk})\right) / \left(\sum_{i=1}^{n} h_{ij}(\tau_{jk}) Y_{ij}(\tau_{jk})\right)$$

Step 2.

Given value of $\{\hat{\Lambda}_{0j}\}_{j=1}^m$, estimate γ by using the score equations $U(\gamma, \{\hat{\Lambda}_{0j}\}_{j=1}^m) = 0$ Step 3.

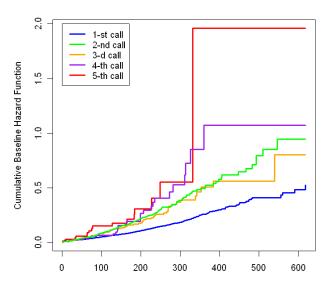
Repeat Steps 1 and 2 until convergence is reached with respect to $\left\{\hat{\Lambda}_{0j}\right\}_{i=1}^{m}$ and $\hat{\gamma}$.

Data Analysis

- The sample consists of n = 50,000
- Each customer did at most 5 calls
- Standard errors are based on 150 bootstrap samples
- Estimates of the model parameters:

	$\hat{ heta}$	$\hat{\beta}_{_{1}}$	$\hat{\beta}_{_{2}}$
Mean	0.9973	-0.3006	-0.1211
SD	0.1767	0.1046	0.0567

Data Analysis (cont.)



Test for Equality of Baseline Hazard Functions

•
$$H_0$$
: $\Lambda_{01}(t) = \Lambda_{02}(t) = \Lambda_0(t)$ for all $0 < t \le \tau$

Our test statistic:

$$S_n(\tau) = \frac{1}{\sqrt{n}} \int_0^{\tau} \hat{W}_n(s) \frac{\bar{Y}_1(s)\bar{Y}_2(s)}{\bar{Y}_1(s) + \bar{Y}_2(s)} \Big\{ d\hat{\Lambda}_{01}(s) - d\hat{\Lambda}_{02}(s) \Big\}$$

- $\bar{Y}_j(s) = \sum_{i=1}^n \hat{h}_{ij}(s) Y_{ij}(s)$
- $\hat{W}_n(s)$ a nonnegative weight function

Data analysis

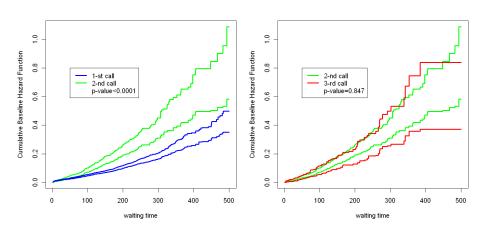
- Results of the 10 tests
- The sample consists from n = 50,000 customers:

	1 vs. 2	1 vs. 3	1 vs. 4	1 vs. 5	2 vs. 3
S _n (250)	-0.464	-0.771	-0.051	-0.048	0.027
$\hat{\sigma}_{I}(250)$	0.039	0.199	0.018	0.016	0.027
$S_n(250)/\hat{\sigma}_I(250)$	-11.915	-3.871	-2.884	-3.019	1.024
p-value	<0.001	< 0.001	0.002	0.001	0.847
FDR p-value	<0.001	0.003	0.042	0.003	1.000
	2 vs. 4	2 vs. 5	3 vs. 4	3 vs. 5	4 vs. 5
$S_n(250)$	0.058	-0.029	-0.014	-0.030	-0.019
$\hat{\sigma}_{I}(250)$	0.163	0.016	0.016	0.015	0.012
$S_n(250)/\hat{\sigma}_I(250)$	0.355	-1.841	-0.907	-2.051	-1.493
p-value	0.639	0.033	0.182	0.020	0.068
FDR p-value	1.000	0.096	1.000	0.042	0.422

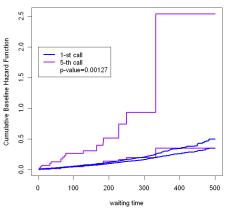
95% Pointwise Confidence Intervals

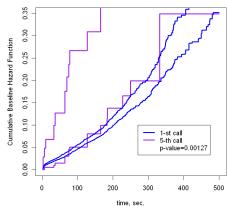
• 1-st call vs. 2-nd call

2-nd call vs. 3-rd call



1-st call vs. 5-th call





Phase Type Distribution for Agents' Service Time



Fitting the Agents' Service Time

