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Manufacturing and Service Operations Management Conference

June 29, 2010

1



Introduction Routing Policies Additional Results

Research Motivation

• Consider the process of patients’ routing from an Emergency
Department (ED) to Internal Wards (IW) in Anonymous Hospital.

• Patients’ allocation to the wards does not appear to be fair and
waiting times for a transfer to the IW are long.

• We model the “ED-to-IW process” as a queueing system with
heterogeneous server pools.

• We analyze this system under various routing policies, in search
for fairness and good operational performance, while accounting
for availability of information.

• The analysis is in steady-state and in the QED (Quality and
Efficiency Driven) regime.
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Introduction

• Anonymous Hospital is a large Israeli hospital:

? 1000 beds
? 45 medical units
? about 75,000 patients hospitalized yearly.

• Among the variety of hospital’s medical sections:

? Large ED (Emergency Department) with average arrival
rate of 240 patients daily and capacity of 40 beds.

? Five IW (Internal Wards) which we denote from A to E.

• An internal patient to-be-hospitalized, is directed to one of

the five IW according to a certain routing policy.
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ED-to-IW Routing

• Wards A-D are more or less the same in their medical
capabilities.

• Ward E treats only “walking” patients, and the routing to it
from the ED is different.

• We focus on the routing process to wards A-D only.

Capacity (# beds) and ALOS:

Ward A Ward B Ward C Ward D

Capacity (# beds) 45 30 44 42
ALOS (days) 6.368 4.474 5.358 5.562
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Integrated (Activities - Resources) Flow Chart
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Problems in the ED-to-IW Process

•Waiting times in the ED for a transfer to the IWs could
be long

• Patients’ allocation to the IWs does not appear to be fair:

? Staff - fairness:

∗ Balance occupancy rates among the wards

∗ Balance flux (number of patients per bed per time unit)

among the wards

? Patients - fairness:

∗ Multi-queues vs. a single queue
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Waiting Times
• Patients must often wait a long time in the ED until they are moved to

their IW.

• From hospital database, average time from a decision of hospitalization
till receiving a first treatment in a ward was 3.1 hours (for Wards A-D).
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IW Operational Measures

Ward A Ward B Ward C Ward D
ALOS (days) 6.368 4.474 5.358 5.562
Mean Occupancy Rate 97.8% 94.4% 86.8% 91.1%
Mean # Patients per Month 205.5 187.6 210.0 209.6
Standard capacity 45 30 44 42
Mean # Patients per Bed per Month 4.57 6.25 4.77 4.77
Return Rate (within 3 months) 16.4% 17.4% 19.2% 17.6%

* Data refer to period: 1/05/06-30/10/08 (excluding 1-3/07).

• The smallest + “fastest” ward is subject to the highest
loads.

• The patients’ allocation appears unfair, as far as the wards
are concerned.
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Other Hospitals - Comparison Table
Hosp.1 Hosp.2 Hosp.3 Hosp.4 Hosp.5 Anon.H

Number of IW 9 2 3 4 6 5

IW # beds 327 45 108 93 210 185

Average weekly
# of transfers 525 49 266 168 469 231
from ED to IW (50%) (14%) (42%) (26%) (45%) (22%)

Average weekly
# of transfers 1.606 1.089 2.463 1.806 2.233 1.249
per IW bed

IW Occupancy* 107.5% 118% 106.5% 116.4% 110% 93.8%

ED ALOS (hours) 2.2 6 2.83 6.8 2.5 4.2

IW ALOS (days) 3.9 3.9 3.5 6.1 3.5 5.2

Average waiting
time in ED ? 4 1 8 0.5 3
for IW (hours)

Wards differ? yes yes no yes no yes

Routing cyclical last digit cyclical vacant cyclical cyclical
Policy order of id order bed order** order**

* Based on ynet article.

** Account for different patient types and ward capacities.
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The ED-to-IW Process as a Queueing System

• Arrivals = patients to-be-hospitalized in the IW

• Pools = wards

• Service rates = 1/ALOS

• Servers in pool i = beds in ward i

• Arrivals to IW - Poisson process

• LOS in IW - exponentially distributed
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Inverted-V Model (∧-model)

• Poisson arrivals with rate λ.

• K pools:

? Pool i consists of Ni i.i.d.
exponential servers with service
rates µi , i=1,2,...,K ;

?

K∑
i=1

Ni = N.

• One centralized waiting line:

? Infinite capacity;
? FCFS, non-preemptive,

work-conserving.
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The QED (Quality and Efficiency Driven) Asymptotic Regime
Definition (Informal):

• A system with a large volume of arrivals and many servers

• Waiting times are order of magnitude shorter than service times

• Total service capacity equals the demand plus a safety capacity
(square root of the demand)

In our Hospital case:

• 30-50 servers (beds) in each pool (ward)

• Waiting times are order of magnitude shorter than service times:
hours versus days

• Servers utilization (beds occupancy) is above 80%
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Literature Review - “Slow Server Problem”

Rubinovitch M. - The Slow Server Problem
Journal of Applied Probability, vol. 22, pp. 205-213, 1983.

• System with two servers: fast and slow (N = 2, µ1 > µ2).

? uninformed customers (Random Assignment - RA),
? informed customers,
? partially informed customers.

• For each case finds a critical number ρc(µ1, µ2) such that if ρ := λ
µ1+µ2

is below ρc , the slow server should not be used, when one wishes to
minimize the steady state mean sojourn time in the system.

Cabral F.B. - The Slow Server Problem for Uninformed Customers
Queueing Systems, vol. 50-4, pp. 353-370, 2005.

• Extends the analysis to N heterogeneous servers for the case with
uninformed customers.
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Literature Review - Dynamic Control

Armony M. - Dynamic Routing in Large-Scale Service Systems with
Heterogeneous Servers

Queueing Systems, vol.51, pp. 287-329, 2005.

• Fastest Servers First (FSF) routing policy minimizes the steady state
mean waiting time in the Quality and Efficiency Driven (QED) regime.

Atar R. - Central Limit Theorem for a Many-Server Queue with Random
Service Rates

Ann. Appl. Probab., vol.18, no. 4, pp. 1548-1568, 2008.

• Analyzes FSF and Longest-Idle Server First (LISF) in a single-server
pools model, where the number of servers and their service rates are
random variables.
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Literature Review - cont.
Armony M. and Ward A. - Fair Dynamic Routing Policies in Large-Scale
Systems with Heterogeneous Servers
Operations Research, to appear.

• Propose a threshold policy that asymptotically achieves fixed server
idleness ratios while minimizing the steady state mean waiting time.

Atar R., Shaki Y.Y. and Shwartz A. - A Blind Policy for Equalizing
Cumulative Idleness
Manuscript under review, 2009.

• Propose Longest Idle Pool First (LIPF) routing policy that
asymptotically balances cumulative idleness among the pools.

Gurvich I. and Whitt W. - Queue-and-Idleness-Ratio Controls in
Many-Server Service Systems
Math. Oper. Res., vol.34, no.2, pp.363-396, 2009.

• For Parallel-Server Systems, propose Queue-and-Idleness-Ratio rules.
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Randomized Most-Idle (RMI) Routing Policy

Define Ii(t) - number of idle servers in pool i at time t .

A customer arrives at time t .

• If ∃i ∈ {1, . . . ,K} : Ii(t) > 0, the customer is routed to pool

j with probability Ij (t)∑K
k=1 Ik (t)

? Equivalent to choosing a server out of all idle servers at

random.

• Otherwise, the customer joins the queue (or leaves).

RMI is the only routing policy under which the ∧-system forms a
reversible MJP.
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RMI Exact Analysis Summary

• General queue structure (“kite”):
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• Steady-state performance measures calculation;
• Equivalence to a single-server-pools system under RA;
• Queue-length performance criterion - coupling proofs.
• Fast servers work less but serve more customers;
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RMI Stationary Distribution
• Ii (t) - number of idle servers in pool i at time t .

• I(t) - total number of idle servers/customers awaiting service:
? (I(t))+ =

∑K
i=1 Ii (t)

? {I(t) = i} for i < 0 - i customers awaiting service

• ρ =
λ∑K

i=1 Niµi
- total traffic intensity

The process {(I(t), I1(t)), . . . , IK (t)), t ≥ 0} is a reversible continuous-time
Markov chain with the stationary distribution π:

π(i, i1, . . . , iK ) =


π(0) i!

K∏
j=1

(
Nj

ij

)
(µj/λ)ij , i =

K∑
j=1

ij ≥ 0, 0 ≤ ij ≤ Nj

π(0) (ρ)−i , i ≤ 0, i1 = . . . = iK = 0

where

π(0) ≡ π(0, . . . , 0) =

 ρ

1− ρ +

N1∑
i1=0

· · ·
NK∑

iK =0

(i1 + · · ·+ iK )!
K∏

j=1

(
Nj

ij

)(µj

λ

)ij

−1
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RMI Exact Analysis - cont.
The ∧-system under RMI routing policy is equivalent to a
∧-system with N single-server pools:

• K server types:

• Ni servers operate with rate µi (
∑K

i=1 Ni = N);
• Random Assignment routing policy.

Queue Length (Waiting Time) Criterion

• Under the optimality criterion of mean sojourn time in the system,
sometimes it is better to discard the slow server.

• Alternative criterion: mean waiting time (mean number of customers in
queue).

• Via an appropriate coupling, the queue length and waiting times in a
system with N servers are path-wise dominated by the queue length
and waiting times in a system with N − 1 servers.
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Fast Servers vs. Slow Servers

• Ii - stationary number of idle servers in pool i .

• ρi := 1− EIi/Ni - average steady-state occupancy rate in pool i .

• γi - average flux through pool i = average number of arrivals per
server in pool i per time unit.

? γi = µiρi , by Little’s law.

Theorem 1:

For any two pools i and j: if µi > µj , then

• ρi < ρj

• γi > γj

⇒ Faster servers work less but serve more than slower ones.
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QED Scaling

Define:

• cλi = Nλ
i µi - service capacity of pool i

• cλ =
∑K

i=1 cλi - total service capacity

[Armony M., 2005]: Take λ→∞ such that:

lim
λ→∞

∑K
i=1 cλi − λ√

λ
= δ (or cλ = λ+ δ

√
λ+ o(

√
λ), as λ→∞)

lim
λ→∞

cλi
cλ

= ai (i=1,2,...,K ) − prop. of service capacity of pool i

Also define:

• µ :=
(∑K

i=1
ai
µi

)−1
, µ̂ :=

∑K
i=1 aiµi

• lim
λ→∞

Nλ
i

Nλ
=

ai

µi
µ := qi , i=1,2,...,K
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RMI: QED Analysis

Iλ - stationary total number of idle servers/customers awaiting service in the
system with arrival rate λ:

? (Iλ)+ =
∑K

i=1 I
λ
i

? {Iλ = i} for i < 0 - i customers awaiting service

Theorem 2 (Informal):

• Approximation of performance measures (delay probability, etc)

• Dimensionality Reduction (DR): Iλi ≈ ai (Iλ)+
as λ→∞

⇒ Iλi
Iλj
≈ ai

aj
as λ→∞

• Characterization of the system behavior on the sub-diffusion ( 4
√
λ)

scale; 4
√
λ-deviations of Iλi around ai (Iλ)+
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RMI: QED Analysis - cont.

Theorem 2:

Let Îλ = Iλ/
√
λ and Îλi = 1√

Iλ

(
Iλi −

Nλ
i µi∑K

i=1 Nλ
i µi
Iλ
)
, i=1,...,K .

Then, as λ→∞,(
Îλ, (Îλ1 , . . . , ÎλK )1{Îλ>0}

)
⇒
(
Î, (Î1, . . . , ÎK )1{Î>0}

)
,

where:

• Î and (Î1, . . . , ÎK ) are independent;

• P[Î ≤ 0] =
(

1 + δ/
√
µ̂ Φ(δ/

√
µ̂)

ϕ(δ/
√
µ̂)

)−1
(Delay probability)

• P[Î > x | Î > 0] = Φ(δ/
√
µ̂− x

√
µ̂)/Φ(δ/

√
µ̂), x ≥ 0;

• P[Î ≤ x | Î ≤ 0] = eδx , x ≤ 0;

• (Î1, . . . , ÎK ) is zero-mean multi-variate normal, with
EÎi Îj = ai1{i=j} − aiaj .
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Delay Probability Approximation

If µ1 = µ2 = . . . = µK :
Then µ = µ̂ = µ1 , δ/

√
µ̂ = β and P[Î ≤ 0] =

(
1 + β Φ(β)

ϕ(β)

)−1

⇒ Consistent with Erlang-C Approximation [S. Halfin and W. Whitt, 1981].

Example: exact values vs. QED approximations

K = 2
q2 = 2q1 = 2/3
µ1 = 2µ2 = 2
δ = 0.5
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Nλ
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Nλ

2 : 6− 256.
0 50 100 150 200 250 300 350 400 450 500

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6

arrival rate

pr
ob

ab
ili

t o
f d

el
ay

 

 

exact value
QED approximation

27



Introduction Routing Policies Additional Results

Dimensionality Reduction Illustration

• K = 2, λ = 3950, µ1 = 15, µ2 = 7.5, N1 = 138, N2 = 276
(δ = 3, a1 = a2 = 1/2)

• {Iλ(t), t ≥ 0} evolve on
√
λ-scale (

√
λ ≈ 62.8)

• {Iλ1 (t)− a1(Iλ(t))+, t ≥ 0} evolve on 4
√
λ-scale ( 4

√
λ ≈ 7.93)
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Fair Routing Criteria
Occupancy balancing

? Idleness-criterion: compare the idleness ratios
1− ρλi
1− ρλj

Flux balancing

? Flux-criterion: compare the flux ratios
γλi
γλj

=
µiρ

λ
i

µjρλj

In the QED regime lim
λ→∞

γλi
γλj

=
µi

µj
⇒ strive for ρλi < ρλj if µi > µj .

In RMI - from Theorem 2:

• I
λ
i (t)
Iλj (t)

→ ai (Iλ(t))+

aj (Iλ(t))+
=

ai

aj
, thus

• 1− ρλi
1− ρλj

=
EIλi
Nλ

i

Nλ
j

EIλj
→ aiqj

ajqi
=
µi

µj
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Longest-Idle Server First (LISF) Routing Policy

• LISF policy routes a customer to the server that has been idle
for the longest time, among all idle servers.

• Atar (2008), Armony and Ward (2008) show that, asymptotically
(as λ→∞):

?
Iλi (t)
Iλj (t)

→ ai(Iλ(t))+

aj(Iλ(t))+
=

ai

aj
, thus

?
1− ρλi
1− ρλj

=
EIλi
Nλ

i

Nλ
j

EIλj
→

aiqj

ajqi
=
µi

µj

⇒ LISF and RMI are equivalent on the diffusion scale.

∗ LISF requires more information than RMI.
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Idleness-Ratio (IR) Routing Policy

IR policy, a special case of QIR policies (Gurvich and Whitt (2008)) ,
routes an arriving customer to the pool with the highest idleness
imbalance:

• Introduce a weight vector (w1,w2, . . . ,wK ), wi > 0,
∑K

i=1 wi = 1.

• A customer arriving at time t is routed to pool
arg max{Iλi (t−)− wi(Iλ(t−))+}

• Asymptotically (as λ→∞):
1− ρλi
1− ρλj

=
EIλi
EIλj

Nλ
j

Nλ
i
→

wiqj

wjqi

⇒ If wi = ai , IR and RMI are equivalent on the diffusion scale.

∗ IR requires more information than RMI - for determining ai ’s.
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RMI versus IR: Sub-diffusion Scale

Typical sample paths of Iλ
1 (t)− a1(Iλ(t))+, t ≥ 0 :
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λ ≈ 2.3
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Partial-information Routing - Simulation Analysis

• RMI requires the information on the number of available beds at each
ward at the moment of routing.

• The occupancy status in the IWs is not available on a real-time basis;
instead, the ED relies on one bed census update per day.

• It is necessary to estimate the system state at the decision time, based
on the system state at the last update time point.

Joint project with A. Zviran

• Create a computer simulation model of the ED-to-IW process in
Anonymous Hospital.

• Examine various routing policies, while accounting for availability of
information in the system.
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Simulations

Summary of Results:

• Weighted Algorithm - minimizes at each decision point a convex
combination of the two conflicting demands: balanced occupancy rates
and balanced flux.

• Implementation in partial information access systems results in almost
no worsening in performance.

Estimating occupancy:

• Mj - number of occupied beds in ward j ; updated at time point T .

• Number of occupied beds in ward j at time t =
max{Mj −Mj · µj · (t − T ), 0}, ∀j ∈ {1, . . . , 4}.

• Mk = Mk + 1, after routing to ward k .
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Contribution

• Modeling ED-to-IW process: an important phase of

patients’ flow in hospitals

• Data analysis of the ED-to-IW process

• Quantify operational fairness

• Propose a practical routing algorithm - RMI

• Analyze RMI: in steady-state and in the QED regime

(sub-diffusion insights)

• Compare RMI to LISF and IR: RMI results in the same

server fairness but requires less information.
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Future Research

• Extend theoretical analysis to several customer (patient)

classes

• Include Ward E in the theoretical study

• Model hospital staff: two-scale (doctors/nurses and beds)

model

• Attempt to capture possible dependency between the

routing algorithm and service rates

• Psychological study: waiting time versus sojourn time

criterion
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Thank You!
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