Data-Based Service Engineering (Science, Management)

in Call Centers, Hospitals, ...

Avishai Mandelbaum

Technion, Haifa, Israel

http://ie.technion.ac.il/serveng

Penn & Technion, MSOM, June 2010

◆ロト ◆部 ▶ ◆ 恵 ▶ ◆ 恵 ・ 釣 Q C

Research Partners

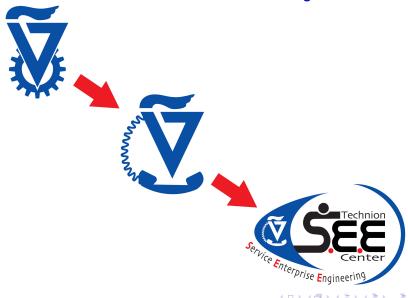
Students:

Aldor*, Baron*, Carmeli, Feldman, Garnett*, Gurvich*, Khudiakov*, Maman*, Marmor, Reich, Rosenshmidt*, Shaikhet*, Senderovic, Tseytlin*, Yom-Tov, Zaied, Zeltyn*, Zohar*, Zviran, ...

► Empirical/Statistical Analysis:

Brown, Gans, Zhao; Shen; Ritov, Goldberg; Allon, Bassamboo, Gurvich; Armony, . . .

► Theory:


Armony, Atar, Feigin, Gurvich, Jelenkovic, Kaspi, Massey, Momcilovic, Reiman, Shimkin, Stolyar, Wasserkrug, Whitt, Zeltyn, . . .

► Industry:

IBM Research (OCR: Carmeli, Vortman, Wasserkrug, Zeltyn), Rambam Hospital, Hapoalim Bank, Mizrahi Bank, Pelephone Cellular, . . .

► Technion SEE Center / Labaratory: Feigin; Trofimov, Nadjharov, Gavako, Kutsyy; Liberman, Koren, Rom; Research Assistants, ...

The Technion SEE Center / Laboratory Data-Based Research & Teaching

History, Resources (Downloadable)

- Math. + C.S. + Stat. + O.R. + Mgt. ⇒ IE&M
- "Service-Engineering" Course (≥ 1995): http://ie.technion.ac.il/serveng - website http://ie.technion.ac.il/serveng/References/teaching_paper.pdf

History, Resources (Downloadable)

- Math. + C.S. + Stat. + O.R. + Mgt. ⇒ IE&M
- "Service-Engineering" Course (≥ 1995): http://ie.technion.ac.il/serveng - website http://ie.technion.ac.il/serveng/References/teaching_paper.pdf
- ► SEE Center (≥ 2007); SEELab following StatLab (≥ 2000): Data, Reports, Tutorials. http://ie.technion.ac.il/Labs/Serveng
- ► OCR Project (≥ 2008): IBM Research + Rambam Hospital + Technion IE&M http://ie.technion.ac.il/Labs/Serveng/closed/OCR_Documents.php

History, Resources (Downloadable)

- Math. + C.S. + Stat. + O.R. + Mgt. ⇒ IE&M
- "Service-Engineering" Course (≥ 1995): http://ie.technion.ac.il/serveng - website http://ie.technion.ac.il/serveng/References/teaching_paper.pdf
- ► SEE Center (≥ 2007); SEELab following StatLab (≥ 2000): Data, Reports, Tutorials. http://ie.technion.ac.il/Labs/Serveng
- ▶ OCR Project (≥ 2008): IBM Research + Rambam Hospital + Technion IE&M http://ie.technion.ac.il/Labs/Serveng/closed/OCR_Documents.php
- ► Technion IE&M = Outsourcing Knowledge (Research, Practice)

Technion Research Impact: An Example

Web Images Videos Maps News Shopping Gmail more ▼ Sign in Google scholar call centers Scholar Articles and patents anytime include citations Results 1 - 10 of about 2.510.000. (0.06 sec) IPDFI Telephone call centers: Tutorial, review, and research prospects psu.edu (PDF) N Gans, G Koole, A Mandelbaum - Manufacturing and service operations 2003 - Citeseer * The Wharton School, University of Pennsylvania, Philadelphia, PA 19104, USA gans@wharton.upenn.edu ... † Vrije Universiteit. De Boelelaan 1081a. 1081 HV Amsterdam. The Netherlands koole@few.vu.nl ... 1 Industrial Engineering and ... Cited by 455 - Related articles - View as HTML - All 32 versions IPDFI Designing a call center with impatient customers technion.ac.il [PDF] O Garnet, A Mandelbaum, M ... - Manufacturing & Service ..., 2002 - iew3.technion.ac.il ABSTRACT. The most common model to support workforce management of telephone call centers is the M/M/N/B model, in particular its special cases M/M/N (Erlang C, which models out busy-signals) and M/M/N/N (Erlang B, disallowing waiting). All of these models lack a ... Cited by 245 - Related articles - View as HTML - All 18 versions Statistical Analysis of a Telephone Call Center psu.edu (PDF) I Brown N Gans A Mandelbaum A Sakov H - Journal of the American 2005 - ASA A call center is a service network in which agents provide telephone-based services. Customers who seek these services are delayed in tele-queues. This article summarizes an analysis of a unique record of call center operations. The data comprise a complete operational history ... Cited by 205 - Related articles - All 41 versions Dimensioning large call centers bell-labs.com [PDF] S Borst, A Mandelbaum, MI Reiman - Operations research, 2004 - JSTOR CWI, P. O. Box 94079, 1090 GB Amsterdam, The Netherlands, and Bell Labs, Lucent Technologies, Murray Hill, New Jersey 07974-0636, sem.borst@cwi.nl Avi Mandelbaum Faculty of Industrial Engineering and Management, Technion, Haifa 32000, Israel, avim@tx. ... Cited by 156 - Related articles - BL Direct - All 19 versions Queueing models of call centers: An introduction psu.edu [PDF] G Koole, A Mandelbaum - Annals of Operations Research, 2002 - Springer ... the modern call center is a complex socio-technical system. It thus enjoys central features that

The Technion SEE Center / Laboratory

SEELab: Hub for data-based research and teaching

- ► History: I.E. Dean, B. Golany, recruited Hal and Inge Marcus.
 - ► Technion (parallel to Penn): In 2007, w/ P. Feigin, V. Trofimov.
 - ▶ Wharton: L. Brown, N. Gans, H. Shen (UNC).
 - industry

SEELab: Hub for data-based research and teaching

- ▶ History: I.E. Dean, B. Golany, recruited Hal and Inge Marcus.
 - ► Technion (parallel to Penn): In 2007, w/ P. Feigin, V. Trofimov.
 - ▶ Wharton: L. Brown, N. Gans, H. Shen (UNC).
 - industry (partial list):
 - U.S. Bank: 2.5 years, 220M calls, 40M by 1000 agents.
 - ► Israeli Cellular: 2.5 years, 110M calls, 25M calls by 750 agents.
 - Israeli Bank: from January 2010, daily-deposit at a SEESafe.
 - ► Israeli Hospital: 4 years, 1000 beds; 8 ED's Sinreich's data.

SEELab: Hub for data-based research and teaching

- ▶ History: I.E. Dean, B. Golany, recruited Hal and Inge Marcus.
 - ► Technion (parallel to Penn): In 2007, w/ P. Feigin, V. Trofimov.
 - Wharton: L. Brown, N. Gans, H. Shen (UNC).
 - industry (partial list):
 - U.S. Bank: 2.5 years, 220M calls, 40M by 1000 agents.
 - ► Israeli Cellular: 2.5 years, 110M calls, 25M calls by 750 agents.
 - ► Israeli Bank: from January 2010, daily-deposit at a SEESafe.
 - ► Israeli Hospital: 4 years, 1000 beds; 8 ED's Sinreich's data.

SEEStat: Environment for graphical EDA in real-time

Universal Design, Universal Access, Real-Time Response.

SEELab: Hub for data-based research and teaching

- ▶ History: I.E. Dean, B. Golany, recruited Hal and Inge Marcus.
 - ► Technion (parallel to Penn): In 2007, w/ P. Feigin, V. Trofimov.
 - Wharton: L. Brown, N. Gans, H. Shen (UNC).
 - industry (partial list):
 - U.S. Bank: 2.5 years, 220M calls, 40M by 1000 agents.
 - Israeli Cellular: 2.5 years, 110M calls, 25M calls by 750 agents.
 - Israeli Bank: from January 2010, daily-deposit at a SEESafe.
 - ► Israeli Hospital: 4 years, 1000 beds; 8 ED's Sinreich's data.

SEEStat: Environment for graphical EDA in real-time

- Universal Design, Universal Access, Real-Time Response.
- Clean DBs: Operational-history of individual transactions.
- ► Interface: At varying resolutions (seconds, minutes, hours, days, months), graphically, in real-time.
- ► **Tools**: Classic Stat, and beyond (Survival Analysis, Distribution Fitting, Mixtures, Smoothing, . . .)

SEELab: Hub for data-based research and teaching

- ▶ History: I.E. Dean, B. Golany, recruited Hal and Inge Marcus.
 - ► Technion (parallel to Penn): In 2007, w/ P. Feigin, V. Trofimov.
 - Wharton: L. Brown, N. Gans, H. Shen (UNC).
 - industry (partial list):
 - U.S. Bank: 2.5 years, 220M calls, 40M by 1000 agents.
 - Israeli Cellular: 2.5 years, 110M calls, 25M calls by 750 agents.
 - Israeli Bank: from January 2010, daily-deposit at a SEESafe.
 - ► Israeli Hospital: 4 years, 1000 beds; 8 ED's Sinreich's data.

SEEStat: Environment for graphical EDA in real-time

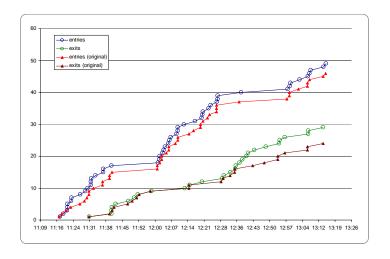
- Universal Design, Universal Access, Real-Time Response.
- Clean DBs: Operational-history of individual transactions.
- ► Interface: At varying resolutions (seconds, minutes, hours, days, months), graphically, in real-time.
- ► **Tools**: Classic Stat, and beyond (Survival Analysis, Distribution Fitting, Mixtures, Smoothing, . . .)

SEEServer: Free for academic use

Register, then access (presently) U.S. Bank and Small Israeli Bank.

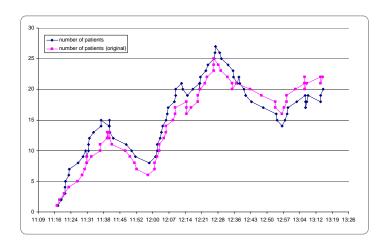
MCE with RFID Support: Rambam Hospital, May 2010

Drill: Chemical Mass Casualty Event (MCE), Rambam Hospital


Focus on the **red** casualties - severely wounded (50+ in the drill) **Note**: 20 observers taking real-time measurements (validation)

MCE with RFID Support: Data Cleaning

Data-base				Company report		comment
Asset id	order	Entry date	Exit date	Entry date	Exit date	
4	1	1:14:07 PM		1:14:00 PM		
6	1	12:02:02 PM	12:33:10 PM	12:02:00 PM	12:33:00 PM	
8	1	11:37:15 AM	12:40:17 PM	11:37:00 AM		exit is missing
10	1	12:23:32 PM	12:38:23 PM	12:23:00 PM		
12	1	12:12:47 PM	12:35:33 PM		12:35:00 PM	entry is missing
15	1	1:07:15 PM		1:07:00 PM		
16	1	11:18:19 AM	11:31:04 AM	11:18:00 AM	11:31:00 AM	
17	1	1:03:31 PM		1:03:00 PM		
18	1	1:07:54 PM		1:07:00 PM		
19	1	12:01:58 PM		12:01:00 PM		
20	1	11:37:21 AM	12:57:02 PM	11:37:00 AM	12:57:00 PM	
21	1	12:01:16 PM	12:37:16 PM	12:01:00 PM		
22	1	12:04:31 PM	12:20:40 PM			first customer is missing
22	2	12:27:37 PM		12:27:00 PM		
25	1	12:27:35 PM	1:07:28 PM	12:27:00 PM	1:07:00 PM	
27	1	12:06:53 PM		12:06:00 PM		
28	1	11:21:34 AM	11:41:06 AM	11:41:00 AM	11:53:00 AM	exit time instead of entry time
29	1	12:21:06 PM	12:54:29 PM	12:21:00 PM	12:54:00 PM	
31	1	11:40:54 AM	12:30:16 PM	11:40:00 AM	12:30:00 PM	
31	2	12:37:57 PM	12:54:51 PM	12:37:00 PM	12:54:00 PM	
32	1	11:27:11 AM	12:15:17 PM	11:27:00 AM	12:15:00 PM	
33	1	12:05:50 PM	12:13:12 PM	12:05:00 PM	12:15:00 PM	wrong exit time
35	1	11:31:48 AM	11:40:50 AM	11:31:00 AM	11:40:00 AM	
36	1	12:06:23 PM	12:29:30 PM	12:06:00 PM	12:29:00 PM	
37	1	11:31:50 AM	11:48:18 AM	11:31:00 AM	11:48:00 AM	
37	2	12:59:21 PM		12:59:00 PM		


Think "Cleaning" 60,000+ customers/day (call centers)?

MCE with RFID Support: Arrivals, Departures

Operational Question: Predict completion time (rolling horizon)

MCE with RFID Support: # Severely Wounded Patients

- Paths of doctors, nurses, patients (100+, 1 sec. resolution)?
- What if **150+ casualties** severely wounded (feasible) ?

The Case for Service Science / Engineering

Service Science / Engineering (vs. Management) are emerging Academic Disciplines. For example, universities (world-wide), IBM (SSME, a là Computer-Science), USA NSF (SEE), Germany IAO (ServEng), ...

The Case for Service Science / Engineering

- Service Science / Engineering (vs. Management) are emerging Academic Disciplines. For example, universities (world-wide), IBM (SSME, a là Computer-Science), USA NSF (SEE), Germany IAO (ServEng), ...
- ► Simple models that explain fundamental phenomena, which are **common** across applications:
 - Call Centers
 - Hospitals
 - Justice
 - Transportation
 - . . .

The Case for Service Science / Engineering

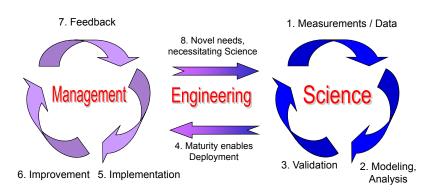
- Service Science / Engineering (vs. Management) are emerging Academic Disciplines. For example, universities (world-wide), IBM (SSME, a là Computer-Science), USA NSF (SEE), Germany IAO (ServEng), ...
- Simple models that explain fundamental phenomena, which are **common** across applications:
 - Call Centers
 - Hospitals
 - Justice
 - Transportation
 - ...
- ▶ What Can Be Done vs. How To

Stop for a Commercial

Tomorrow: 2 **Service Engineering Sessions**, Sponsored by **SEE**.

- 1. **8:30 10:00**, Tuesday, June 29, 2010, Session TA, Room B-151
 - On the Accuracy of Delay-History-Based Delay Announcements in Large Call Centers; Armony, Bassamboo, Ibrahim, AM.
 - Emergency Departments: The Case for Service Engineering; Marmor, Armony, AM, Tseytlin, Yom-Tov.
 - Uncertainty in the Demand for Service: The Case of Emergency Departments and Call Centers; Maman, Mandelbaum, Zeltyn.
- 2. 14:30 16:00, Tuesday, June 29, 2010, Session TC, Rom B-151
 - Skill Based Routing (Part II): Data-Based Review and Research Prospects, with a Focus on Staffing and Routing; Gurvich, Liberman, AM.
 - Queueing Systems with Heterogeneous Servers: On Fair Routing from Emergency Departments to Internal Wards; Tseytlin, Momcilovic, AM.
 - Design and Inference of a Call Center with an Answering Machine (IVR); Khudyakov, Feigin, Gorfine, AM.

11


Expanding the Scientific Paradigm

Service Engineering vs. Industrial Engineering Human Complexity

Expanding the Scientific Paradigm

Service Engineering vs. Industrial Engineering

Human Complexity ⇒ **Scientific Paradigm** (Physics ... Economics) and beyond (with IBM Research):

Started with Call Centers, Expanded to Hospitals

Call Centers - U.S. (Israel) Stat.

- ▶ \$200 \$300 billion annual expenditures (0.5)
- ► 100,000 200,000 call centers (500)
- "Window" into the company, for better or worse
- ► Over 3 million agents = 2% 4% workforce (11K)

Started with Call Centers, Expanded to Hospitals

Call Centers - U.S. (Israel) Stat.

- ▶ \$200 \$300 billion annual expenditures (0.5)
- ▶ 100,000 200,000 call centers (500)
- "Window" into the company, for better or worse
- ► Over 3 million agents = 2% 4% workforce (11K)

Healthcare - similar and unique challenges:

- Cost-figures far more staggering
- Risks much higher
- ED (initial focus) = hospital-window
- Over 3 million nurses

Call-Center Environment: Service Network

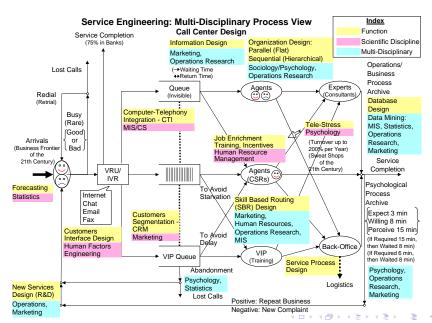
Call-Centers: "Sweat-Shops of the 21st Century"

ER / ED Environment: Service Network

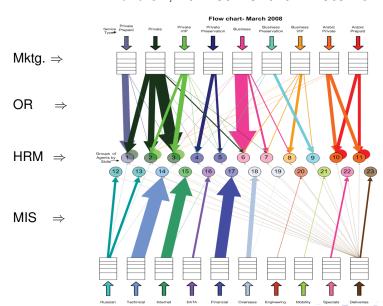
Acute (Internal, Trauma)

Walking

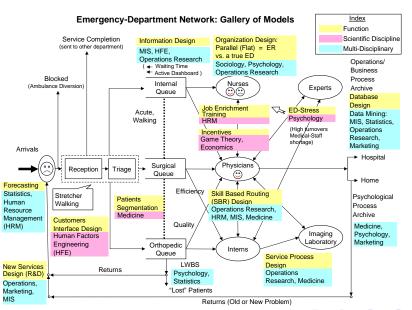
Multi-Trauma


ED-Environment in Israel

ED-Queue in a "Good" Beijing Hospital

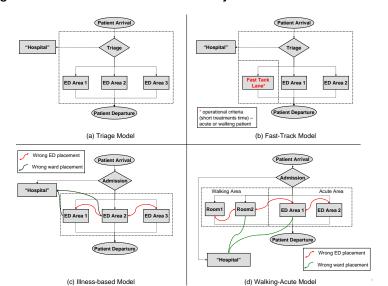


Call-Center: Multi-Disciplinary ServEng View



Skills-Based Routing in Call Centers EDA and OR, with I. Gurvich and P. Lieberman

20



Emergency-Dept.: Multi-Disciplinary ServEng View

ED Design, with B. Golany and Y. Marmor (PhD)

Routing: Triage (Clinical), Fast-Track (Operational), ... (via DEA) e.g. Fast Track most suitable when elderly dominate

Prerequisite I: Data

Averages Prevalent (and could be useful / interesting).

But I need data at the level of the **Individual Transaction**: For each service transaction (during a phone-service in a call center, or a patient's visit in a hospital, or browsing in a website, or ...), its **operational history** = time-stamps of events.

Prerequisite I: Data

Averages Prevalent (and could be useful / interesting).

But I need data at the level of the **Individual Transaction**: For each service transaction (during a phone-service in a call center, or a patient's visit in a hospital, or browsing in a website, or ...), its **operational history** = time-stamps of events.

Sources: "Service-floor" (vs. Industry-level, Surveys, ...)

- Administrative (Court, via "paper analysis")
- ► Face-to-Face (Bank, via bar-code readers)
- ► Telephone (Call Centers, via ACD / CTI, IVR/VRU)
- ► Hospitals (Emergency Departments, ...)

Prerequisite I: Data

Averages Prevalent (and could be useful / interesting).

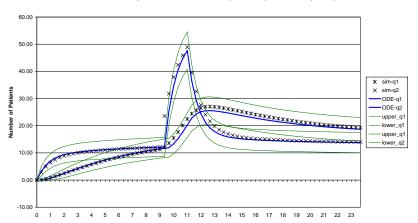
But I need data at the level of the **Individual Transaction**: For each service transaction (during a phone-service in a call center, or a patient's visit in a hospital, or browsing in a website, or ...), its **operational history** = time-stamps of events.

Sources: "Service-floor" (vs. Industry-level, Surveys, ...)

- Administrative (Court, via "paper analysis")
- ► Face-to-Face (Bank, via bar-code readers)
- ► Telephone (Call Centers, via ACD / CTI, IVR/VRU)
- ► Hospitals (Emergency Departments, ...)
- Expanding:
 - Hospitals, via RFID, with B. Carmeli, S. Israelit, Y. Marmor
 - Operational + Financial + Contents (Marketing, Clinical)
 - Internet, chat (multi-media)

Prerequisite II: Models (The Fluid View)

Stochastic Individualism Averaged out by the LLNs (Scale)


Labor-day Queueing at Niagara Falls

Fluid Models: Preparing for Mass-Casualty Events

e.g. Erlang-R = ReEntrant Patients, with **G. Yom-Tov** (PhD). **5-fold Rise** in Inflow-Rate, between 9am -11am:

Delta = 0.2; Mu = 1; p = 0.25; s = 50; Lambda=10 (t<9 or t>11), Lambda=50 (9<t<11)

Prerequisite II: Models (Stochastic)

Traditional Queueing Theory predicts that **Service-Quality** and **Servers' Efficiency must** be traded off against each other.

e.g. **Single-server** queue (M/M/1) in **Heavy-Traffic**: **91%** server's utilization goes with

Congestion Index =
$$\frac{E[Wait]}{E[Service]}$$
 = 10,

and only 9% of the customers are served immediately upon arrival.

Prerequisite II: Models (Stochastic)

Traditional Queueing Theory predicts that **Service-Quality** and **Servers**' **Efficiency must** be traded off against each other.

e.g. **Single-server** queue (M/M/1) in **Heavy-Traffic**: **91%** server's utilization goes with

Congestion Index =
$$\frac{E[Wait]}{E[Service]}$$
 = 10,

and only 9% of the customers are served immediately upon arrival.

Yet, heavily-loaded queueing systems with **Congestion Index = 0.1** (Waiting one order of magnitude less than Service) are prevalent:

- ► Call Centers: Wait "seconds" for minutes service;
- ► Transportation: Search "minutes" for hours parking;
- Hospitals: Wait "hours" in ED for days hospitalization in IW's;

Prerequisite II: Models (Stochastic)

Traditional Queueing Theory predicts that **Service-Quality** and **Servers**' **Efficiency must** be traded off against each other.

e.g. **Single-server** queue (M/M/1) in **Heavy-Traffic**: **91%** server's utilization goes with

Congestion Index =
$$\frac{E[Wait]}{E[Service]}$$
 = 10,

and only 9% of the customers are served immediately upon arrival.

Yet, heavily-loaded queueing systems with **Congestion Index = 0.1** (Waiting one order of magnitude less than Service) are prevalent:

- ► Call Centers: Wait "seconds" for minutes service;
- Transportation: Search "minutes" for hours parking;
- Hospitals: Wait "hours" in ED for days hospitalization in IW's;

and, moreover, a significant fraction are not delayed in queue. (For example, in well-run call-centers, 50% served "immediately", along with over 90% agents' utilization, is not uncommon.) QED

Operational Regimes: Conceptual Framework

R: Offered Load not too small.

def. \mathbf{R} = Arrival-rate \times Average-Service-Time

e.g. R = 25 calls/min. \times 4 min./call = 100

N = #Agents?

Operational Regimes: Rules-of-Thumb, with S. Zeltyn

Constraint	P{Ab}		$\mathrm{E}[W]$		$P\{W > T\}$	
	Tight	Loose	Tight	Loose	Tight	Loose
	1-10%	$\geq 10\%$	$\leq 10\% \mathrm{E}[\tau]$	$\geq 10\% \mathrm{E}[\tau]$	$0 \le T \le 10\% \mathrm{E}[\tau]$	$T \ge 10\% \mathrm{E}[\tau]$
Offered Load					$5\% \le \alpha \le 50\%$	$5\% \le \alpha \le 50\%$
Small (10's)	QED	QED	QED	QED	QED	QED
Moderate-to-Large	QED	ED,	QED	ED,	QED	ED+QED
(100's-1000's)		QED		QED if $\tau \stackrel{d}{=} \exp$		

ED: $N \approx R - \gamma R$ (0.1 $\leq \gamma \leq$ 0.25).

QD: $N \approx R + \delta R$ (0.1 $\leq \delta \leq$ 0.25).

QED: $N \approx R + \beta \sqrt{R}$ $(-1 \le \beta \le 1)$.

ED+QED: $N \approx (1 - \gamma)R + \beta \sqrt{R}$ (γ, β as above).

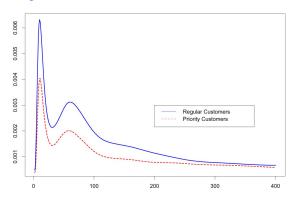
Operational Regimes: Rules-of-Thumb, with S. Zeltyn

Constraint	P{Ab}		$\mathrm{E}[W]$		$P\{W > T\}$	
	Tight	Loose	Tight	Loose	Tight	Loose
	1-10%	$\geq 10\%$	$\leq 10\% \mathrm{E}[\tau]$	$\geq 10\% \mathrm{E}[\tau]$	$0 \le T \le 10\% \mathrm{E}[\tau]$	$T \ge 10\% \mathrm{E}[\tau]$
Offered Load					$5\% \le \alpha \le 50\%$	$5\% \le \alpha \le 50\%$
Small (10's)	QED	QED	QED	QED	QED	QED
Moderate-to-Large	QED	ED,	QED	ED,	QED	ED+QED
(100's-1000's)		QED		QED if $\tau \stackrel{d}{=} \exp$		

ED: $N \approx R - \gamma R$ (0.1 $\leq \gamma \leq$ 0.25).

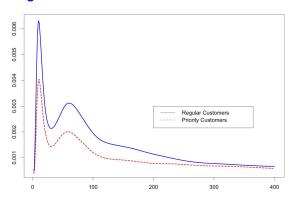
QD: $N \approx R + \delta R$ (0.1 $\leq \delta \leq$ 0.25).

QED: $N \approx R + \beta \sqrt{R}$ $(-1 \le \beta \le 1)$.


ED+QED: $N \approx (1 - \gamma)R + \beta\sqrt{R}$ (γ, β as above).

WFM: How to determine specific staffing level **N**? e.g. β .

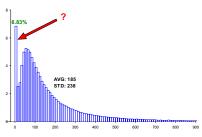
(Im)Patience while Waiting (Palm 1943-53)

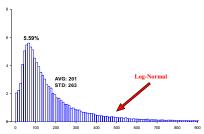

Irritation Hazard Rate of (Im)Patience Distribution Regular over VIP Customers − Israeli Bank

- ► Call-by-Call Data (SEELab) required (& Un-Censoring)
- Peaks of abandonment at times of Announcements

(Im)Patience while Waiting (Palm 1943-53)

Irritation Hazard Rate of (Im)Patience Distribution Regular over VIP Customers − Israeli Bank

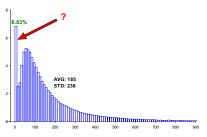

- Call-by-Call Data (SEELab) required (& Un-Censoring)
- Peaks of abandonment at times of Announcements
- VIP are more patient (Needy)


Beyond Averages: The Human Factor

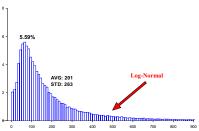
Histogram of Service-Time in a (Small Israeli) Bank

January-October

November-December

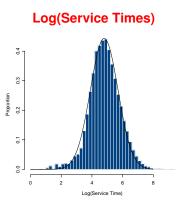


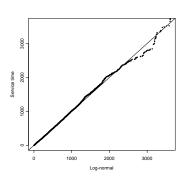
► 6.8% Short-Services:


Beyond Averages: The Human Factor

Histogram of Service-Time in a (Small Israeli) Bank

November-December

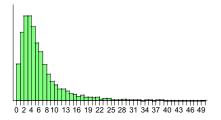

- ► 6.8% Short-Services: Agents' "Abandon" (improve bonus, rest), lead by incentives
- Distributions must be measured (in seconds)
- ▶ LogNormal service times common in call centers


31

Validating LogNormality of Service-Times

Israeli Call Center, Nov-Dec, 1999

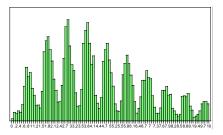
LogNormal QQPlot



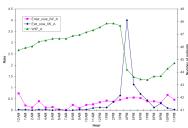
- Practically Important: (mean, std)(log) capture Service-Times
- ► Theoretically Challenging: Why LogNormal?
- ▶ Simple-model of a complex-reality? The Service Process:

Beyond Averages: Length-of-Stay in a Hospital

Israeli Hospital, in Days: LN

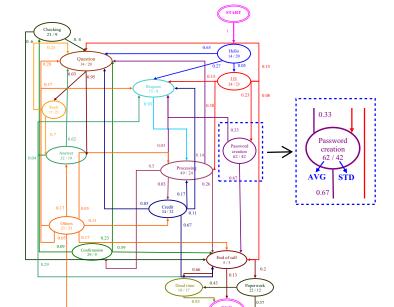


Beyond Averages: Length-of-Stay in a Hospital


Israeli Hospital, in Days: LN

0 2 4 6 8 10 13 16 19 22 25 28 31 34 37 40 43 46 49

Israeli Hospital, in Hours



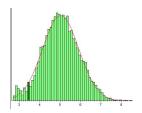
Explanation: Releases around 3pm

The (Telephone) Service Process: Phase-Type Model

Retail Service (Israeli Bank)

Work Design (Time Study)

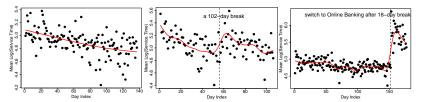
Individual Agents: Service-Time, Variability


Agent 14115

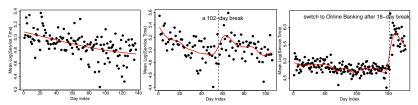
Service-Time Evolution: 6 month

start time

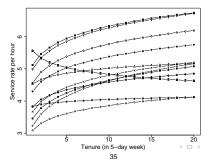
service time


Log(Service-Time)

- ▶ **Learning**: Noticeable decreasing-trend in service-time
- ▶ LogNormal Service-Time, individually and collectively


Individual Agents: Learning, Forgetting, Switching

Daily-Average Log(Service-Time), over 6 months Agents 14115, 14128, 14136



Individual Agents: Learning, Forgetting, Switching

Daily-Average Log(Service-Time), over 6 months Agents 14115, 14128, 14136

Weakly Learning-Curves for 12 Homogeneous(?) Agents

In large call centers:

+One Second to Service-Time implies +Millions in costs, annually

- +One Second to Service-Time implies +Millions in costs, annually
 - ▶ Classical IE with New-age Technology:
 - ► Work Design, Time and "Motion" Studies (w/ Khudiakov (PhD))
 - "Worker" Design, Learning, Forgetting, ... (w/ Gans & Shen)

- +One Second to Service-Time implies +Millions in costs, annually
 - Classical IE with New-age Technology:
 - Work Design, Time and "Motion" Studies (w/ Khudiakov (PhD))
 - "Worker" Design, Learning, Forgetting, ... (w/ Gans & Shen)
 - Service-Process Model helps the bank:
 - Technology Management Old MIS system has slow response & cumbersome protocols, which gives rise to phases with little or no added-value: Justify replacement value
 - Cross-Selling Potentially more money at the cost of longer services: Justify value, which is congestion-dependent

- +One Second to Service-Time implies +Millions in costs, annually
 - Classical IE with New-age Technology:
 - Work Design, Time and "Motion" Studies (w/ Khudiakov (PhD))
 - "Worker" Design, Learning, Forgetting, ... (w/ Gans & Shen)
 - Service-Process Model helps the bank:
 - Technology Management Old MIS system has slow response & cumbersome protocols, which gives rise to phases with little or no added-value: Justify replacement value
 - Cross-Selling Potentially more money at the cost of longer services: Justify value, which is congestion-dependent
 - Learning: Predict individual future performance, which is important in a high-turnover environment
 - Heterogeneity: Quantify operational consequences (WFM, SBR)

- +One Second to Service-Time implies +Millions in costs, annually
 - ▶ Classical IE with New-age Technology:
 - Work Design, Time and "Motion" Studies (w/ Khudiakov (PhD))
 - "Worker" Design, Learning, Forgetting, ... (w/ Gans & Shen)
 - Service-Process Model helps the bank:
 - Technology Management Old MIS system has slow response & cumbersome protocols, which gives rise to phases with little or no added-value: Justify replacement value
 - Cross-Selling Potentially more money at the cost of longer services: Justify value, which is congestion-dependent
 - Learning: Predict individual future performance, which is important in a high-turnover environment
 - Heterogeneity: Quantify operational consequences (WFM, SBR)
 - ► IVR Process Model: 75% services, same method, easier data

The Technion SEE Center / Laboratory **Data-Based Service Engineering**

