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We revisit many-server approximations for the well-studied Erlang-A queue. This is a system with a single pool of i.i.d.
servers that serve one class of impatient i.i.d. customers. Arrivals follow a Poisson process and service times are exponentially
distributed as are the customers’ patience times. We propose a diffusion approximation that applies simultaneously to all
existing many-server heavy-traffic regimes: quality and efficiency driven, efficiency driven, quality driven, and nondegenerate
slowdown. We prove that the approximation provides accurate estimates for a broad family of steady-state metrics. Our
approach is “metric-free” in that we do not use the specific formulas for the steady-state distribution of the Erlang-A queue.
Rather, we study excursions of the underlying birth-and-death process and couple these to properly defined excursions of the
corresponding diffusion process. Regenerative process and martingale arguments, together with derivative bounds for solutions
to certain ordinary differential equations, allow us to control the accuracy of the approximation. We demonstrate the appeal
of universal approximation by studying two staffing optimization problems of practical interest.
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1. Introduction. Heavy-traffic limits provide tractable means to approximate and optimize the performance
of various queueing systems. Often, the limit is characterized by a diffusion process. When the diffusion process
admits a steady-state distribution, that distribution can serve (under appropriate conditions) as an approximation
for the steady-state distribution of the pre-limit queueing system.

The diffusion-limit approach to the study of queueing systems has been successfully applied to study large-
scale service systems as part of what came to be known as “many-server heavy-traffic approximations.” Our
focus here is on approximations to the M/M/n+M (also known as the Erlang-A) queue—this is a queue with
Poisson arrivals, i.i.d. exponential service times, n servers, and i.i.d. exponential patience times. The Erlang-A
queue is a central building block in the study of service systems, most notably call centers, where abandonment
plays a nonnegligible role; see Mandelbaum and Zeltyn [27, §2].

In the many-server-approximations framework, one considers a sequence of queues with individual service
rate � and abandonment rate �, indexed by the arrival rate �. Letting n� be the number of servers in the �th
queue, define

��
=

�

�n�

to be the offered utilization. Let X�4t5 be the number of customers in the system (in service or in queue) at
time t. The process X� = 4X�4t51 t ≥ 05 is then a birth-and-death (B&D) process on the nonnegative integers,
with birth rate �4x5≡ � and death rate �4x5=�4x∧ n�5+ �4x− n�5+ in state x.

The specific value of � = lim�→� �� (assuming it exists) induces a useful categorization into operational
regimes, which relates � to the fundamental metric of the probability of delay; see Garnett et al. [15]. If �< 1,
we say that the system operates in the quality-driven (QD) regime. Here, capacity is significantly greater than
the load and the fraction of customers experiencing any delay before entering service converges to 0 as �→ �.
Further, the number of abandoning customers decreases to 0 exponentially fast as � grows indefinitely; see
Iglehart [18] and Whitt [39]. This is in contrast to the efficiency-driven (ED) regime in which � > 1, where
essentially all customers are delayed before being served and a nonnegligible fraction of customers abandons;
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see, e.g., Whitt [40]. Finally, the case in which � = 1 and
√
�41 − ��5 → � ∈ 4−�1�5 is referred to as the

quality-and-efficiency-driven (QED) regime because it offers a combination of high efficiency and quality of
service. The deepest characteristic of the QED regime, introduced by Halfin and Whitt [17] for Erlang-C, is in
terms of the limiting probability of delay, which is to be strictly between 0 and 1. For Erlang-A, an additional
characterization is in terms of the fraction of abandoning customers, which approaches 0 at a rate of 1/

√
�;

see, e.g., Garnett et al. [15]. A QED refinement of the ED regime (ED + QED) was introduced in Mandelbaum
and Zeltyn [28], in order to generate staffing that accommodates constraints on the probability that waiting time
exceeds a fixed target T .

More recently, an additional many-server regime was studied by Atar [5], who entitled it the nondegenerate-
slowdown (NDS) regime. As in the QED regime, one sets

√
�41 − ��5 → � ∈ 4−�1�5 but, in contrast to the

QED regime, the individual service rate scales here with � proportionally to
√
�. In this regime, in particular,

n� is proportional to
√
�. The NDS regime offers a hybrid of the QED and ED regimes—as in the former, the

fraction of abandoning customers approaches 0 at the rate of 1/
√
� whereas in the latter, the probability of delay

approaches 1 as � approaches �. We consider the NDS regime in §C.
We refer the reader to Garnett et al. [15], Mandelbaum and Zeltyn [28], Zeltyn and Mandelbaum [41], and

Atar [5] for more detailed discussions of operational regimes. Toward constructing a universal approximation, it
is useful to identify

ã�
=

�

�
−

(

�

�
− n�

)+(

1 −
�

�

)

(1)

as the “balancing” point in the state-space of X� at which the inflow rate equals the outflow rate; i.e., � =

�4n� ∧ã�5+ �4ã� − n�5+. This state serves as a first-order proxy for the number of customers in steady-state.
When n� <�/�, we have that ã� = n� + 4�−n��5/� so that the balancing point is where the queue is strictly
positive. If n� >�/�, then ã� = �/� so that the queue is, in first order, empty. Using the known diffusion-limit
results (see Ward [38]), one can verify that under any of the multi-server regimes ED, QD, QED, or NDS, the
process convergence

X� −ã�

√
�

=⇒ X̂ (2)

holds, where X̂ is an Ornstein-Uhlenbeck (OU) type process whose specific structure depends on the specific
regime.

Given this process convergence, one further expects the steady-state of the diffusion process X̂ to provide an
approximation for the steady-state of the pre-limit queues; that is,

X̂�4�5 2=
X�4�5−ã�

√
�

=⇒ X̂4�51

where X̂4�5 has the steady-state distribution of the corresponding OU type process. Making such approximation
rigorous requires a limit interchange result; see the discussion in Ward [38, p. 6]. This has been proved for the
QED regime in Garnett et al. [15], for the ED regime in Whitt [40], and for the QD regime in Whitt [39] (whose
arguments for Erlang-C apply also to the Erlang-A queue). It has not been proved yet for the NDS regime. A
byproduct of our analysis is that the limit interchange holds universally; see Remark 4.1.

That the process limit is regime dependent motivates the universal approximation for the Erlang-A queue that
is proposed in Ward [38]. The author introduces a Brownian approximation, Y̌ � for each �, that covers the QED,
NDS, and conventional (or single server) heavy-traffic regimes. The proposed approximation is universal in the
sense of process convergence in the QED and NDS regimes: if one assumes QED scaling, then 4Y̌ � − n�5/

√
�

converges weakly to the OU process characteristic of the QED regime. If, in contrast, one assumes the NDS
regime (or the single-server conventional heavy-traffic one), 4Y̌ � − n�5/

√
� converges weakly to the reflected

OU process, which is characteristic of this regime; see Ward [38, Theorem 4.1].
Such process convergence is not the subject of this paper. Our approach to universality is different. We are

primarily interested in pre-limit approximations (rather than limits) for steady-state metrics and their associated
error bounds. We do not use weak convergence or diffusion limits per se. Instead, for each �, we offer a diffusion
process, Y �, where the parameters �1 �1 � and n� appear explicitly in its characterization (see (3) below).
We prove that regardless of the underlying regime, X�4�5 and Y �4�5 are “close” to each other in terms of
their expected performance metrics; see §1.2. Accordingly, we refer to our proposed process Y � as a universal
diffusion.

The universality of the approximation and, more specifically, the performance bounds that we provide build
on a novel analysis approach. To elaborate, a possible approach toward steady-state approximations is to use
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the explicit expressions for the distribution of X�4�5. One computes, for each integer k, the corresponding
steady-state probability �8X�4�5= k9 and uses it to obtain various performance metrics; see, e.g., Mandelbaum
and Zeltyn [27, Appendix A]. To compare the B&D process to the diffusion process, one can analytically bound,
for example, the gap between �8X�4�5 ≥ k9 and �8Y �4�5 ≥ k9. This is the nature of the approach in Zhang
et al. [42] and Bassamboo and Randhawa [6].

In contrast, we do not use the specific expressions for the steady-state distribution of X�4�5. Rather, we
introduce an excursion-based approach that circumvents the exact expressions. Our contribution has, then, four
interrelated elements: (a) universal approximation: We have a family of diffusion processes such that, for each �,
the diffusion process explicitly depends on the system parameters and applies to all regimes. (b) Refined bounds:
We provide order-of-magnitude bounds for the accuracy of the proposed approximation for a large family of
performance metrics. (c) Universal optimization: We demonstrate this via two (asymptotically) optimal staffing
problems. (d) Excursion-based analysis: Our analysis relies on the regenerative and martingale structure of
both the diffusion and the B&D processes and on properties of smooth solutions to certain ordinary differential
equations.

We next expand on each of the above.

1.1. A “universal” approximation. For each �, we propose Y � to be the diffusion process given by the
unique solution to the stochastic differential equation (SDE)

Y �4t5= Y �405+�t −�
∫ t

0
4Y �4s5∧ n�5ds − �

∫ t

0
4Y �4s5− n�5+ ds +

√
2�B4t50 (3)

There is an intimate relation between the diffusion process Y � and the limit process that arises in the QED
regime. Assuming that �� 2= 4n��−�5/

√
�≡ �, the process Ŷ � = 4Y � − n�5/

√
� would satisfy the SDE

Ŷ �4t5= Ŷ �405−�t +�
∫ t

0
4Ŷ �4s55− ds −

∫ t

0
�4Ŷ �4s55+ ds +

√
2B4t51

which is the OU type process obtained as a limit in the QED regime; see Ward [38, Theorem 2.2]. In a sense,
then, we “universalize” the QED diffusion by allowing its drift and diffusion coefficient to depend explicitly
on the parameters, �, �, and n�; see further discussion in our Remark 2.1. The process Y � could also play the
role of a “strong approximation” for X� (see Remark 2.2). This implies that for any of the multi-server regimes
(QED, ED, QD, NDS),

Y � −ã�

√
�

=⇒ X̂3

here, X̂ is any of the four OU type processes, obtained from the scaled and centered queueing processes in (2),
each corresponding to an underlying regime. Although establishing process limits is not the subject of this paper,
the fact that 4Y � −ã�5/

√
� has the “correct” limits serves as a strong indication of it being a natural choice for

a universal approximation.
We prove that our universal approximation provides accurate steady-state metrics regardless of the underlying

regime. Such universality is useful for purposes of performance analysis, data inference, and optimization.
The value for performance analysis is clear, as demonstrated in §1.2. Indeed, considering a fixed queueing
system, it is useful to have performance metrics that are relatively precise yet offer the tractability of diffusion
approximations. Such approximations of queues have been recently used also for the purpose of structural
inference (see, e.g., Allon et al. [2]). In this context, a universal approximation allows one to avoid a priori
assumptions about the operational regime that underlies the data. Finally, in §1.3, we describe the application
of our approximation to universal optimization.

1.2. Error bounds: Performance analysis. Our main result, Theorem 1, states that Y �4�5 provides an
accurate universal approximation for the original B&D process. By this we mean that for each nonnegative
integer m, universally

Ɛ64X�4�5−ã�5m7− Ɛ64Y �4�5−ã�5m7= O4
√
�

m−1
5 (4)

as well as
sup
x≥0

∣

∣�8X�4�5≥ x9−�8Y �4�5≥ x9
∣

∣= O4
√
�

−1
53

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

12
9.

10
5.

19
9.

99
] 

on
 2

6 
A

ug
us

t 2
01

4,
 a

t 1
5:

57
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



Gurvich, Huang, and Mandelbaum: Universal Approximations for the Erlang-A Queue
328 Mathematics of Operations Research 39(2), pp. 325–373, © 2014 INFORMS

here we use the convention that for two sequences 8x�9 and 8y�9, x� = O4y�5 if lim sup�→�4�x
��/�y��5 < �.

Letting Q̃�4�5 2= 4Y �4�5− n�5+, we obtain as a consequence of (4) that

Ɛ6Q�4�57− Ɛ6Q̃�4�57= O415 (5)

or, in other words, that the queue length is approximated, up to a constant, by the “queue” of the Brownian
approximation. We cover a rather broad family of functions, of which the power functions in (4) are special cases.

The universality of the approximation comes at some cost. If, for example, one restricts attention to the QED
regime, the errors in (5) exceed those of Zhang et al. [42]: the guaranteed precision is o415; namely, the error
vanishes in absolute terms as � grows. There is also a “complexity cost” when specializing to the ED regime. In
Bassamboo and Randhawa [6] it is shown that in the ED regime and for the special metric of the expected queue
length (see (5)), the simple fluid model is as precise as our more complicated universal approximation. The
returns for these “costs” are the universality of our proposed approximation, the generality of our performance
metrics, and the expression-free nature of our proofs.

1.3. Universal optimization. Typical optimization problems seek to minimize capacity costs subject to
service level constraints (see Mandelbaum and Zeltyn [28]) or, alternatively, minimize a weighted cost of capacity
and service level (e.g., Bassamboo et al. [7], Bassamboo and Randhawa [6], and the references therein). In
this context, a caveat with heavy-traffic limits is that these require imposing assumptions on the scaling of the
constraints or of the cost coefficients.

1.3.1. Constraint satisfaction. As a case in point, consider the problem of minimizing the number of servers
while maintaining a pre-specified bound, �, on the fraction of abandonments. Limit-based solutions depend on
the way in which � scales with �. If it is not scaled, as in �4�5 ≡ �, then the system operates optimally in
the ED regime and it is asymptotically optimal to use n� = 4�/�541 −�5+ o4�5 servers; see Mandelbaum and
Zeltyn [28, §4.3]. If, on the other hand, �4�5= c/

√
� for some c > 0, a rather different solution emerges. Here,

the system operates optimally in the QED regime and the recommended staffing has the so-called square-root
staffing solution n� = �/� + �

√

�/� + o4
√
�5, where � is a function of c, �, and �; see Mandelbaum and

Zeltyn [28, §4.3]. From a practical point of view, then, using heavy-traffic limits requires an interpretation step.
If, for example, � = 100, � = 1, and � = 3, a 5% abandonment target may be interpreted as corresponding to
�4�5≡ �= 0005 or alternatively as �41005= 005/

√
100 = 0005. The real optimal solution obtained by using an

Erlang calculator (4 call centers [1]) is 101 servers. Our universal approximation provides the same solution;
see §5. If one assumes that � does not scale with �, the ED-based recommendation is 4�/�541−�5= 95 servers.
When applied to the queueing system, this results in an 801% abandonment rate instead of the targeted 5%. If, on
the other hand, one interprets the constraint as �4�5 = 005/

√
�, the QED-based solution is 101 servers, which

recovers the precise solution in this case. This in particular supports the robustness of the QED regime (which is
mathematically supported by our results and by the connection, discussed above, between the QED diffusion and
our universal approximation). The ED staffing level does produce reasonably good solutions when � is larger.
With � = 11000, for example, the ED staffing level amounts to using 950 agents (the precise optimal solution
is 954, as also identified by the universal approximation). Using 950 servers will result in 5.3% abandonment,
which is only a minor violation of the target.

1.3.2. Cost minimization. The need for an interpretation step arises also in the context of cost minimization,
where one seeks to minimize weighted costs of staffing, waiting, and abandonment. Such optimization problems
were studied for the Erlang-C queue (i.e., with no abandonment) in Borst et al. [8] via limit arguments, and we
revisit this problem for the Erlang-A queue in §5. Specifically, assume that � and � are fixed and let Ɛ6Q4�1n57
be the expected queue length when the arrival rate is � and there are n servers. Similarly, let Ab4�1n5 be the
fraction of abandoning customers. Let C�

s , C�
q , and C�

ab be, respectively, the cost per server per unit of time,
the cost incurred by a customer waiting one unit of time, and the cost per customer abandonment. Consider the
optimization problem

min
n∈�

{

C�
s n+C�

q Ɛ6Q4�1n57+C�
ab�Ab4�1n5

}

0

A single example suffices as a case in point for the introduction (additional numerical experiments appear in §5).
For the case � = � = 1, � = 100, C�

s ≡ 2, and C�
q = C�

ab ≡ 10, the optimal solution (identified through direct
enumeration and an Erlang calculator) is 113 servers. This is also the solution recommended by our universal
approximation. If one interprets C�

s 1C
�
q 1C

�
ab as being constants (that do not scale with �), the system operates

optimally in the QED regime and an asymptotically optimal solution is given by a square-root staffing rule;
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see Bassamboo et al. [7, Proposition 1]. Asymptotic optimality in the context of cost minimization has not
been yet studied at the generality of the Erlang-C queue (Borst et al. [8]). For example, it is not known what
asymptotically optimal recommendation emerges should one interpret the cost coefficients as corresponding to
C�

s ≡ 2 but C�
q = C�

ab =
√
�0 For our purposes, the important fact is that the universal approximation, being

explicitly dependent on the parameters, can be directly applied without the need to interpret the parameters
and results, in this case, in an accurate recommendation. We return to both the constraint satisfaction and cost
minimization problems in §5.

1.4. The excursion-based argument. For stable B&D processes, steady-state metrics are given by averages
over finite (albeit random) horizons. Specifically, the positive recurrence of X̃� = X� −ã� guarantees that for
every function f that is integrable with respect to its steady-state distribution,

Ɛ6f 4X̃�4�557=
Ɛ16
∫ ��

0 f 4X̃�4s55ds7

Ɛ16�
�7

1

where �� is the first hitting time of X̃� at 1 after hitting 0, X̃�4�5 is a random variable having the steady-state
distribution of X̃�, and Ɛy is the expectation conditional on X̃�405 = y. (There are other ways to choose the
regenerative cycle but this specific choice will be useful in what follows.) For the diffusion process Ỹ � = Y �−ã�,
it similarly holds that

Ɛ6f 4Ỹ �4�557=
Ɛ16
∫ �̃�

0 f 4Ỹ �4s55ds7

Ɛ16�̃
�7

1

for appropriate functions f , where �̃� is the first hitting time of Ỹ � at 1 after hitting 0 and, with abuse of
notation, Ɛy also denotes expectation conditional on Ỹ �405 = y. Thus, toward obtaining a universal Brownian
approximation, it suffices to approximate X̃� on the (random) finite horizon 601 ��5 by Ỹ � on the time interval
601 �̃�5; and because the duration of the excursion becomes small (O41/

√
�5), it guarantees that Ỹ � and X̃� do

not “drift apart” and enables an accurate approximation.
Brownian approximations over finite horizons (rather than limits for scaled processes) are well studied through

strong approximations. These can be used for various queueing systems; see, e.g., Mandelbaum et al. [29] (which
covers, in particular, the Erlang-A queue) as well as Chen [10], Chen and Shen [11], and the references therein.
We observe that the process Y � in (3) is simpler than a direct strong approximation of the Erlang-A queue.
Indeed, a strong approximation of X� would be given by a standard Brownian motion B and the unique strong
solution Y̆ � of

Y̆ �4t5=X�405+�t −�
∫ t

0
4Y̆ �4s5∧ n�5ds − �

∫ t

0
4Y̆ �4s5− n�5+ ds +

∫ t

0
��4Y̆ �4s55dB4s51 (6)

where, for each x ≥ 0,
4��4x552

= �+�4x∧ n�5+ �4x− n�5+0 (7)

The simplicity of Y �, relative to Y̆ �, is facilitated by the relationship between the steady-state metrics and
excursions of (short) random length; see Remark 2.2. Although strong approximations turn out to be inappro-
priate for the purpose of getting the error bounds that we seek to prove, the idea of treating the approximation
of steady-state metrics as that of performance-comparison over finite horizons, albeit random, is valid and lies
at the core of our analysis, as we explain next.

Let �̃�
u be the first time that the diffusion process Ỹ � = Y � −ã� hits 0. Let A� be the generator of Ỹ �. Then

it is a matter of standard arguments that

V�4y5= Ɛy

[

∫ �̃�u

0
f 4Ỹ �4s55ds

]

solves the ordinary differential equation (ODE)

A�V�
= −f 1 V�405= 03

see Equation (32). Similarly, let ��
u be the first hitting time of X̃� = X� − ã� to the state 0. Let B� be the

generator of the B&D process X̃�. Applying Dynkin’s formula (heuristically at this stage) one obtains that for
each y > 0,

Ɛy6V
�4X̃�4��

u 557=V�4y5+ Ɛy

[

∫ ��u

0
B�V�4X̃�4s55ds

]

3
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see Equation (40). Recalling that X̃�4��
u 5= 0, V�405= 0, and A�V� = −f , we then have that

V�4y5− Ɛy

[

∫ ��u

0
f 4X̃�4s55ds

]

= Ɛy

[

∫ ��u

0
4A�V�4X̃�4s55−B�V�4X̃�4s555ds

]

0 (8)

In particular, to bound the gap

Ɛy

[

∫ ��u

0
f 4X̃�4s55ds

]

− Ɛy

[

∫ �̃�u

0
f 4Ỹ �4s55ds

]

1

it is enough to bound the right-hand side of (8). It is here where much of the challenge lies. We use preliminary
order bounds on the hitting times, gradient bounds for V� (see Lemma 4.7), and martingale arguments to bound
this error term. We can then approximate the integrals over excursions of the B&D process by those of the
diffusion process. Finally, the cycle 601 ��5—starting at 1 until returning to 1 after hitting 0—can be decomposed
into two parts—an upper excursion (starting at 1 until hitting 0) and a lower excursion (starting at 0 until
hitting 1). The above arguments are applied separately to each of these excursions and then combined to bound
the gap between Ɛ6f 4X̃�4�557 and Ɛ6f 4Ỹ �4�557.

The idea of considering a sequence of Brownian queues and using gradient bounds, together with a martin-
gale argument, to show that a Brownian approximation is “close” to the real queue is adopted from Ata and
Gurvich [4]. There, it is used toward the study of an optimal control problem in a multi-class queue. Specifi-
cally, our function V� serves as the analogue of the value function of the diffusion control problem in Ata and
Gurvich [4]. To the best of our knowledge, we are the first to use such process-based analysis to obtain error
bounds on the steady-state distributions.

To summarize, the three key elements in our analysis are (i) regenerative structure of the queueing and
diffusion process, (ii) derivative bounds for the “value” function of the diffusion process, and (iii) martingale
properties of the queueing and diffusion processes. In §6 we discuss the potential application of these ideas to
other queueing systems.

Notation. Our main results concern bounds that are uniform in the arrival rate �. Following standard terminol-
ogy, we write a� = O4b�5 for two sequences 8a�9 and 8b�9 such that lim sup�→�4�a

��/�b��5 < �. The queueing
processes that we consider are assumed to be right-continuous with left limits and we let D601�5 be the space
of such functions on 601�5. For x ∈D we denote ãx4t5= x4t5−x4t−5. The B&D process X� and the diffusion
process Y � that we will construct are real-valued Markov processes. For a Markov process Z on a complete
and separable metric space, we write �x8Z4t5 ∈ ·9 for the conditional probability �8Z4t5 ∈ ·�Z405 = x9. The
operator Ɛx6 · 7 is then the expectation with respect to the probability distribution �x8 · 9. In the analysis below,
the probability and the corresponding expectation are applied interchangeably to the B&D process and the diffu-
sion process; the correct interpretation will be clear from the context. A distribution � is said to be a stationary
distribution if for any bounded continuous functions f , Ɛ�6f 4Z40557 = Ɛ�6f 4Z4t557 for all t ≥ 0. It is said to
be the steady-state distribution if for every such function and all x ∈X, Ɛx6f 4Z4t557→ Ɛ�6f 4Z40557 as t → �.

When considering a Markov process, Z, that admits a unique steady-state distribution, we use Z4�5 to denote
a random variable with this steady-state distribution. We use the conventions �+ = 601�5 and �= 8011121 : : : 9.
For an l-times differentiable function f 2 �→�, we write f 4l54 · 5 for its lth derivative. Finally, we use the term
absolute constant when referring to a strictly positive constant that does not depend on �.

2. Martingale representation and the universal diffusion. We consider a family of M/M/n+M queues
indexed by the arrival rate, � ∈�+. The service rate �> 0 and the patience parameter � > 0 are fixed throughout
the sequence. The number of servers in the �th system is n�.

Let Z�4t5 be the number of busy servers in the �th system at time t and Q�4t5 the queue length at that time.
The process X�4t5 = Z�4t5 + Q�4t5 captures the headcount—the total number of customers in the system at
time t—is then a B&D process on the nonnegative integers. With � > 0, it is known that X� always admits a
steady-state distribution. We denote by X�4�5 a random variable that has this distribution.

It is standard to construct the sample paths of X�, through time changes of unit-rate Poisson processes, in the
following way:

X�4t5=X�405+E4�t5− S

(

�
∫ t

0
Z�4s5ds

)

−N

(

�
∫ t

0
Q�4s5ds

)

1 t ≥ 01 (9)

where E4 · 51 S4 · 51 N 4 · 5 are independent unit-rate Poisson processes. Since there can be no idle servers simul-
taneously with a positive queue, we have

Q�4t5= 4X�4t5− n�5+ and Z�4t5=X�4t5∧ n�0 (10)
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As a result, (9) is equivalently written as

X�4t5=X�405+E4�t5− S

(

�
∫ t

0
4X�4s5∧ n�5ds

)

−N

(

�
∫ t

0
4X�4s5− n�5+ ds

)

0

Let

M�
a 4t5=E4�t5−�t1

M�
s 4t5= S

(

�
∫ t

0
4X�4s5∧ n�5ds

)

−�
∫ t

0
4X�4s5∧ n�5ds1

M�
r 4t5=N

(

�
∫ t

0
4X�4s5− n�5+ ds

)

− �
∫ t

0
4X�4s5− n�5+ ds0

Each of these processes is a square-integrable martingale with respect to the filtration �� = 4F�
t 1 t ≥ 05, given by

F�
t = �

{

E4�s51 S

(

�
∫ s

0
4X�4u5∧ n�5du

)

1N

(

�
∫ s

0
4X�4u5− n�5+ du

)

3 s ≤ t

}

3

see Pang et al. [31, §2]. In turn,
M�4t5=M�

a 4t5−M�
s 4t5−M�

r 4t5 (11)

is itself a square-integrable martingale with respect to ��. We write

X�4t5=X�405+�t −�
∫ t

0
4X�4s5∧ n�5ds − �

∫ t

0
4X�4s5− n�5+ ds +M�4t50 (12)

Letting
b�4x5= �−�4x∧ n�5− �4x− n�5+1 (13)

we arrive at the representation

X�4t5=X�405+

∫ t

0
b�4X�4s55ds +M�4t51 t ≥ 00

A sequence of “Brownian queues.” For each �, introduce a standard Brownian motion B = 4B4t51 t ≥ 05
and, given an initial condition Y �405, consider the diffusion process Y � defined through the following stochastic
differential equation (SDE):

Y �4t5= Y �405+

∫ t

0
b�4Y �4s55ds +

√
2�B4t50 (14)

The Lipschitz continuity of the drift guarantees that (given B and Y �405) there is a unique solution Y � to (14).
Furthermore, the process Y � is a semi-martingale with respect to the self-filtration of the Brownian motion B.

Remark 2.1 (On the Universality of the Diffusion Coefficient). The diffusion process Y � and the
B&D process X� share the drift function b�4 · 5. The predictable quadratic variation of the martingale M� is
given by

�M�
�4t5= �t +�

∫ t

0
Z�4s5ds + �

∫ t

0
Q�4s5ds0

Note that, in steady-state, one has �=�Ɛ6Z�4t57+� Ɛ6Q�4t57 for all 0 ≤ t ≤ �; thus, Ɛ6�M��4t57= 2�t, and it
is intuitively reasonable to construct our universal approximation Y � with the diffusion coefficient

√
2�.

Diffusion coefficients that do not depend on the state are prevalent when considering diffusion limits of
queueing systems. Indeed, the state independence of the diffusion coefficient extends beyond Markovian queues;
see, e.g., the recent work of Kaspi and Ramanan [21] and, specifically, Corollary 5.13 there. Interestingly, a
key outcome of our results is that even without scaling, one can ignore the state dependence of the diffusion
coefficients for approximations of steady-state metrics. This is further discussed in the next remark.

Remark 2.2 (On the Connection to Strong Approximations). A strong approximation to the B&D
process X� is the diffusion process Y̆ � defined in (6). Formally, from strong approximation theorems
Mandelbaum et al. [29], one can choose the Brownian motion (and in turn Y̆ �) such that a.s. for each t ≥ 0,

sup
s≤t

∣

∣X�4s5− Y̆ �4s5
∣

∣= O4ln�50

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

12
9.

10
5.

19
9.

99
] 

on
 2

6 
A

ug
us

t 2
01

4,
 a

t 1
5:

57
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



Gurvich, Huang, and Mandelbaum: Universal Approximations for the Erlang-A Queue
332 Mathematics of Operations Research 39(2), pp. 325–373, © 2014 INFORMS

(The O4 · 5 does depend on t.) Given that Y̆ � preserves the state dependence in its diffusion coefficient (see (7)),
one expects that replacing our universal diffusion process (14) with Y̆ � results in better sample-path bounds.
Indeed, an analysis similar to the one in Chen and Yao [12] yields, a.s. for each t ≥ 0,

sup
s≤t

�X�4s5− Y �4s5� = O44� ln ln�51/44ln�51/250

It follows that Y̆ � provides more accurate sample path approximations than does Y �. However, in steady state
this is not the case: Y � is as accurate as Y̆ �, which is appealing from a practical point of view, given the former’s
relative simplicity.

The steady state of the “Brownian queue.” The diffusion process Y � has a piecewise-linear drift b�4 · 5 (13),
which “pushes” Y � towards the “center” ã� (see (1) and the discussion below it). From this and Browne and
Whitt [9], it follows that

Lemma 2.1. For each � ∈ �+, the diffusion process Y � has a unique stationary distribution that is also its
steady-state distribution. Moreover, Ɛ64Y �4�55m7 <� for each m ∈�.

Henceforth we denote by Y �4�5 a random variable having the steady-state distribution of Y �. Letting �� =

4n��−�5/
√
�, the density of Y �4�5− n� is given by (see, e.g., Browne and Whitt [9])

��4x5=























√
�

√
�

�4
√
�4x/

√
�+��/�55

ê4��/
√
�5

p4��1�1�51 if x ≤ 01

√
�

√
�

�4
√
�4x/

√
�+��/�55

1 −ê4��/
√
�5

41 −p4��1�1�551 if x > 01

(15)

where

p4��1�1�5=

[

1 +

√

�

�

�4��/
√
�5

ê4��/
√
�5

1 −ê4��/
√
�5

�4��/
√
�5

]−1

1

and � and ê are, respectively, the standard normal density and cumulative distribution functions.
Significantly, the specific expression of �� is not needed for the theory that we are developing (our excursion-

based framework). It plays a role only in concrete calculations, for example when solving optimization problems
associated with Erlang-A; see §5. Indeed, in such calculations, one takes advantage of the form of ��, which is
more amenable to analysis than the steady-state of X�.

The remainder of the paper. We state the main result and important corollaries in §3. Section 4 is dedicated
to the proof of the main result. Section 5 then studies implications of the universal approximation to two well-
studied optimization problems. Finally, §6 provides concluding remarks and discusses possible extensions of our
framework. Throughout the remainder of the paper, we state and prove the key results while relegating proofs
of auxiliary lemmas to the appendix.

3. Main results. Recall (1) where

ã�
=

�

�
−

(

�

�
− n�

)+(

1 −
�

�

)

0

To simplify notation, we assume without loss of generality that ã� ∈�; see Remark 4.2. Define

X̃�4t5=X�4t5−ã� and Ỹ �4t5= Y �4t5−ã�0

Definition 3.1 (Subpolynomial Functions). A sequence of differentiable functions f �2 �→� is said to
be uniformly subpolynomial of order m ∈ 81121 : : : 9 if there exist absolute constants a11 a2 such that, for all �,

�f �4x5� ≤ a1

√
�
m

+ a2�x�
m and �4f �54154x5� ≤ a1

√
�
m−1

+ a2�x�
m−10

It is said to be uniformly subpolynomial of order m= 0 if there exists an absolute constant a3 and a sequence
8a�9 such that, for all �,

�f �4x5� ∨ �4f �54154x5� ≤ a3 ∀x ∈� and 4f �54154x5= 0 ∀x y 4a�1 a�
+ 150

We let Sm denote the family of uniformly subpolynomial function-sequences of order m.
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The following is the main result of our paper. It is proved in §4.

Theorem 1. Fix m ∈� and 8f �9 ∈Sm. Then,

Ɛ6f �4X̃�4�557− Ɛ6f �4Ỹ �4�557= O4
√
�

m−1
50

We next state three corollaries that draw implications of practical interest from Theorem 1. All three corollaries
are proved in the appendix. The performance metrics that we consider—queue length, probability of delay, and
variance—are themselves not subpolynomial functions of X̃� but implications of Theorem 1 can be drawn for
these via relatively straightforward manipulations.

The first corollary is concerned with the expected steady-state queue length and is instrumental in our explo-
ration of optimization problems in §5. Recall (10) that Q�4�5= 4X�4�5−n�5+ and, for the proposed approxi-
mation, define Q̃�4�5= 4Y �4�5− n�5+, which, using (15), satisfies

Ɛ6Q̃�4�57=

√
�

√
�
61 −p4��1�1�57

[

h4��/
√
�5−��/

√
�
]

1 (16)

with h being the hazard rate of the standard normal distribution; i.e., h4x5=�4x5/41 −ê4x55.

Corollary 1.
Ɛ6Q�4�57− Ɛ6Q̃�4�57= O4150

Example 3.1 (Queue Length). (i) Fixed �, varying n: Consider the Erlang-A queue with �= 500, �= 1,
� = 005. The top graph in Figure 1 displays Ɛ6Q�4�57 versus the universal approximation Ɛ6Q̃�4�57 as a
function of the number of servers n. The bottom graph displays the errors Ɛ6Q̃�4�57− Ɛ6Q�4�57, again as a
function of n.

(ii) Fixed �, varying �: Here we consider various values of the offered utilization �� = �/4n��5. For each
fixed value of the utilization, we vary � between 20 and 2,000 and increase n� as needed to keep �� fixed.
We then plot the absolute errors �Ɛ6Q̃�4�57− Ɛ6Q�4�57� as well as the function 1/

√
�. The result is displayed

in Figure 2 where the solid line corresponds to the absolute error and the dashed line to 1/
√
�. This numerical

experiment suggests that the error may be, in fact, O41/
√
�5 and, in particular, smaller than the O415 predicted

by Corollary 1. The next case, shows, however, that the bound O415 is tight.
(iii) Varying �� with � (QED): We vary � between 20 and 2,000 and set the capacity to a square-root staffing

n� = ��/�+�
√

�/�� with �= 1. The result is displayed in Figure 3 where the upper graph displays the queues
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0

200

400

600
Queues

Number of servers n

Q
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ue
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Exact

Universal
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0
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Error = Univ Q length – Real Q length
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E
rr

or

Error

Figure 1. Expected queue approximation: fixed �, varying n (250 ≤ n≤ 750).
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Figure 2. Expected queue approximation: fixed �, varying � (20 ≤ �≤ 21000).

in the Erlang-A queue and in the universal approximation and the bottom graph displays the absolute error.
Here, the error approaches a constant as � grows large.

Remark 3.1 (On Parameters in Numerical Experiments). In the above and subsequent examples, we
are using � > �: in words, average patience exceeds average service times. Based on our practical experience
(SEELab [34]), such a relation is prevalent, with �/� = 2 being not uncommon. We should add that, based on
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Figure 3. Expected queue approximation: varying �� with � (QED) (20 ≤ �≤ 21000).
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Figure 4. Probability of delay: fixed �, varying n (250 ≤ n≤ 750).

extensive numerical experiments that we performed, the numerical outcomes reported here are representative of
the full range of � values above and below � (with the exception of an overloaded system with � <<�, which
approximates an unstable Erlang-C queue).

Corollary 2.
sup
x≥0

∣

∣�8X�4�5≥ x9−�8Y �4�5≥ x9
∣

∣= O4
√
�

−1
51 (17)

or equivalently, for any sequence 8a�9,

�8X�4�5≥ a�9−�8Y �4�5≥ a�9= O4
√
�

−1
50 (18)

Example 3.2 (Probability of Delay). An important application of Corollary 2 is the probability of delay,
corresponding to a� = n� in (18) for each �. In this example we compare �8X�4�5≥ n�9 to �8Y �4�5≥ n�9.

(i) Fixed �, varying n: We fix the parameters as in Example 3.1(i). The top graph in Figure 4 displays
�8X�4�5 ≥ n�9 versus its universal approximation �8Y �4�5 ≥ n�9. The bottom graph displays the absolute
error ��8X�4�5≥ n�9−�8Y �4�5≥ n�9�.

(ii) Fixed �, varying �: We fix the parameters as in Example 3.1(ii) but replace the queue length with the
delay probability. The result is displayed in Figure 5.

(iii) Varying �� with � (QED): We repeat the setting of Example 3.1(iii). In Figure 6 it is seen that the bound
O41/

√
�5 is tight.

Our last corollary compares the variance of Q�4�5 to that of Q̃�4�5.

Corollary 3.
Var4Q�4�55− Var4Q̃�4�55= O4

√
�50

Example 3.3 (Variance of Queue Length). In this example we compare Var4Q�4�55 to Var4Q̃�4�55.
(i) Fixed �, varying n: We fix the parameters to be as in Example 3.1(i). The top graph in Figure 7

displays Var4Q�4�55 versus its universal approximation Var4Q̃�4�55. The bottom graph displays the error
Var4Q̃�4�55− Var4Q�4�55.

(ii) Fixed �, varying �: We fix the parameters as in Example 3.1(ii) but replace the expectation of the queue
length with its variance. The result is displayed in Figure 8.
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Figure 5. Probability of delay: fixed �, varying � (20 ≤ �≤ 21000).

(iii) Varying �� with � (QED): We fix the parameters as in Example 3.1(iii). As before, it is seen in Figure 9
that the bound O4

√
�5 is tight.

4. Proof of the main result. This section contains the proof of Theorem 1. It is divided into three sub-
sections. In §4.1 we define regeneration times for X̃� and Ỹ �—in both cases, these are based on return times
to ã�. We then distinguish between cycles that are above ã� (upper excursions) and those that are below (lower
excursions). Sections 4.2 and 4.3 are then devoted, respectively, to the study of the upper and lower excursions.
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Figure 6. Probability of delay: varying �� with � (QED) (20 ≤ �≤ 21000).
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Figure 7. Variance of queue length: fixed �, varying n (250 ≤ n≤ 750).

4.1. The regenerative structure. A starting point for our analysis is the intimate relationship between
regenerative structure and steady-state distributions. Recall that X̃� =X� −ã�, Ỹ � = Y � −ã�, and ã� is assumed
to be integer. This assumption is made without loss of generality; see Remark 4.2.

Whereas consecutive visits to a point y ∈ � constitute a renewal process for the process X̃� on the basis
of which a regenerative process can be constructed, this is not so for the diffusion process Ỹ �; see, e.g.,
Asmussen [3, p. 174]. Because we wish to compare the B&D process and the diffusion process, we use a
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Figure 8. Variance of queue length: fixed �, varying � (20 ≤ �≤ 21000).
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Figure 9. Variance of queue length: varying �� with � (QED) (20 ≤ �≤ 21000).

common definition for the underlying renewal process. We define (for both) a regeneration as the first visit to
state 1 after visiting state 0. Formally, let

��
u 4s5 2= inf8t ≥ s2 X̃�4t5= 091 ��

l 4s5 2= inf8t ≥ s2 X̃�4t5= 191

and
��4s5= ��

l 4�
�
u 4s550

Define similarly
�̃�
u 4s5 2= inf8t ≥ s2 Ỹ �4t5= 091 �̃�

l 4s5= inf8t ≥ s2 Ỹ �4t5= 191

and
�̃�

= �̃�
l 4�̃

�
u 4s550

For obvious reasons we refer henceforth to the interval 601 ��
u 5 (respectively, 601 �̃�

u 5) as the upper excursion
for X̃� (respectively, Ỹ �) and to the interval 6��

u 1 �
�5 (respectively, 6�̃�

u 1 �̃
�5) as the lower excursion for X̃�

(respectively, Ỹ �).
The composition of stopping times is well defined. Both Ỹ � and X̃� are strong Markov processes (e.g.,

Asmussen [3, Theorem 1.1], Karatzas and Shreve [19, Theorem 4.20]) and have a regenerative structure with
�̃� and �� being the regeneration times for Ỹ � and X̃�, respectively. Define T �

0 = 0 and recursively define
T �
i+1 = ��4T �

i 5 (if T �
i = �, one sets T �

i+1 = �). With X̃�405 = 1, the sequence T �
0 < T �

1 < · · · constitutes an
(undelayed) renewal process. A renewal process for Ỹ � is constructed similarly.

To simplify notation, let

��
u = ��

u 4051 ��
l = ��

l 4051 ��
= ��405 and �̃�

u = �̃�
u 4051 �̃�

l = �̃�
l 4051 �̃�

= �̃�4050

Both X̃� and Ỹ � have a positive drift “pushing” them up when sufficiently smaller than 0, and since � > 0,
they have a negative drift pushing them down when sufficiently greater than 0, so that one expects �� and �̃� to
be “well-behaved.” This is formally justified by the following lemma.

Lemma 4.1. Fix � ∈ �+. Then, there exists a constant �0 > 0 (possibly depending on �) such that
Ɛy6e

�0�
�
7 < � for all y ∈ � and Ɛy6e

�0 �̃
�
7 < � for all y ∈ �. In turn, Ɛ164�

�5m7 < � and Ɛ164�̃
�5m7 < �, for

each m ∈�.
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Provided that f is integrable under the steady-state distributions of X̃� and Ỹ �, we have

Ɛ6f 4X̃�4�557=
Ɛ16
∫ ��

0 f 4X̃�4s55ds7

Ɛ16�
�7

and Ɛ6f 4Ỹ �4�557=
Ɛ16
∫ �̃�

0 f 4Ỹ �4s55ds7

Ɛ16�̃
�7

0

From the strong Markov property it follows that for any such function f ,

Ɛ1

[

∫ ��

��u

f 4X̃�4s55ds

]

= Ɛ0

[

∫ ��l

0
f 4X̃�4s55ds

]

and, particularly, Ɛ16�
� − ��

u 7 = Ɛ06�
�
l 70 Similar observations apply to Ỹ � with ��1 ��

u 1 �
�
l replaced by �̃�1 �̃�

u ,
and �̃�

l . For y ≥ 0, define

V �
u 4f 1 y5= Ɛy

[

∫ ��u

0
f 4X̃�4s55ds

]

and V�
u4f 1 y5= Ɛy

[

∫ �̃�u

0
f 4Ỹ �4s55ds

]

1

and for y ≤ 0,

V �
l 4f 1 y5= Ɛy

[

∫ ��l

0
f 4X̃�4s55ds

]

and V�
l 4f 1 y5= Ɛy

[

∫ �̃�l

0
f 4Ỹ �4s55ds

]

0

Thus,

Ɛ6f 4X̃�4�557 =
Ɛ16
∫ ��u

0 f 4X̃�4s55ds +
∫ ��

��u
f 4X̃�4s55ds7

Ɛ16�
�7

=
V �
u 4f 115+V �

l 4f 105
Ɛ16�

�7
1

and

Ɛ6f 4Ỹ �4�557=
V�

u4f 115+V�
l 4f 105

Ɛ16�̃
�7

0

Consequently

Ɛ6f 4X̃�4�557− Ɛ6f 4Ỹ �4�557 =
V �
u 4f 115−V�

u4f 115
Ɛ16�̃

�7
+

V �
l 4f 105−V�

l 4f 105
Ɛ16�̃

�7

+
V �
u 4f 115+V �

l 4f 105
Ɛ16�

�7
−

V �
u 4f 115+V �

l 4f 105
Ɛ16�̃

�7
1

and

�Ɛ6f 4X̃�4�557− Ɛ6f 4Ỹ �4�557� ≤
�V�

u4f 115−V �
u 4f 115�

Ɛ16�̃
�7

+
�V�

l 4f 105−V �
l 4f 105�

Ɛ16�̃
�7

+
�V �

u 4f 115+V �
l 4f 105�

Ɛ16�
�7Ɛ16�̃

�7
�Ɛ16�

�7− Ɛ16�̃
�7�0 (19)

Theorem 1 is a direct corollary of the above together with the bounds provided in Theorem 2 below.

Theorem 2. Fix m ∈� and 8f �9 ∈Sm. Then,

V �
u 4f

�115= O4
√
�

m−1
51 4Ɛ16�

�
u 75

−1
= O4

√
�51 (20)

V �
u 4f

�115−Vu4f
�115= O4

√
�

m−2
51 (21)

V �
l 4f

�105= O4
√
�

m−1
51 4Ɛ06�

�
l 75

−1
= O4

√
�51 (22)

V �
l 4f

�105−V�
l 4f

�105= O4
√
�

m−2
50 (23)
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Setting f � ≡ 1 in (20) and (22) gives

Ɛ16�
�
u 7= O4

√
�

−1
5 and Ɛ06�

�
l 7= O4

√
�

−1
50

A further immediate corollary of Theorem 2 is that

Vu4f
�115= O4

√
�

m−1
51 Vl4f

�105= O4
√
�

m−1
51

so that setting again f � ≡ 1,

Ɛ16�̃
�
u 7= O4

√
�

−1
5 and Ɛ06�̃

�
l 7= O4

√
�

−1
50

Finally, noting that Ɛ16�
�7≥ Ɛ16�

�
u 7 and Ɛ16�̃

�7≥ Ɛ16�̃
�
u 7, (20) guarantees that

4Ɛ16�
�75−1

= O4
√
�5 and 4Ɛ16�̃

�75−1
= O4

√
�50

The decomposition in (19) allows us to conduct a separate analysis for the upper excursion and the lower
excursion. Section 4.2 is dedicated to the former, and §4.3 is dedicated to the latter. We conclude this subsection
with a remark about limit interchange.

Remark 4.1 (Implications to Limit Interchange). Given the process-convergence X̂� 2= X̃�/
√
� ⇒ X̂

(see §1), one expects that X̂�4�5 2= X̃�4�5/
√
� ⇒ X̂4�5. This conclusion is proved via an interchange-of-

limits argument that, as pointed out in Ward [38], has been proved in the QED and ED regimes but not yet in
the NDS regime. The key step in establishing limit interchange is proving that the family of random variables
8X̂�4�51�≥ 09 is tight as a sequence of random variables in �.

Such tightness is a byproduct of our results. Indeed, by Theorem 2, there exists a constant c such that
for all �, Ɛ64X̃�4�5527 ≤ c�. In particular, lim sup�→� Ɛ64X̂�4�5527 < �1 implying that the scaled sequence
8X̂�4�51�≥ 09 is not only tight but in fact uniformly integrable. In both the NDS and QED regimes ã� =

n� +O4
√
�5 so that the uniform integrability of X̂�4�5 implies that of 84X�4�5−n�5/

√
�1�≥ 09, which is the

centering used in the literature; see Ward [38]. For the ED regime, we center around ã� = n� + 4�− n��5/�,
which is O4

√
�5 away from that of Whitt [40].

4.2. Upper excursion. Propositions 3 and 4 prove, respectively, Equations (20) and (21) in Theorem 2.
They are proved in §§4.2.1 and 4.2.2, respectively.

Proposition 3 (Order Bounds). Fix m ∈� and 8f �9 ∈Sm. Then,

4Ɛ16�
�
u 75

−1
= O4

√
�5 and V �

u 4f
�115= O4

√
�

m−1
50

Proposition 4 (Gap Bounds). Fix m ∈� and 8f �9 ∈Sm. Then,

V �
u 4f

�115−V�
u4f

�115= O4
√
�

m−2
50

Let
`�4x5= −�+�44x+ã�5∧ n�5+ �4x+ã�

− n�5+0 (24)

Starting at x ≥ 0 and using (12) we have, for t ≤ ��
u , that

X̃�4t5= X̃�405−

∫ t

0
`�4X̃�4s55ds +M�4t51 (25)

where M� is as in (11). For Ỹ � and t ≤ �̃�
u , we have

Ỹ �4t5= Ỹ �405−

∫ t

0
`�4Ỹ �4s55ds +

√
2�B4t50

Recalling that `�405 = 0, it follows that there exist absolute constants �i > 01 i = 11213 such that �1x ≤

`�4x5≤�2x. In fact, it will suffice for our proofs that

−�3

√
�+�1x ≤ `�4x5≤�3

√
�+�2x1 x ≥ 00 (26)

Having the proofs rely only on this weaker bound will facilitate the extension of our proofs to the NDS regime.
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The following two simple lemmas will be useful in the proofs of Propositions 3 and 4. Here, recall that E4�t5
is the number of arrivals by time t in the �th system.

Lemma 4.2. Fix �1 t ∈�+, y ∈�, and a nonnegative nondecreasing function g4 · 5 such that Ɛ6g4y+E4�t557
<�. Then,

Ɛy

[

∫ t∧��u

0
g4X̃�4s55ds

]

<�0

Lemma 4.3. Fix �1 t ∈�+, y ∈�, and a function g4 · 5. If

Ɛy

[

∫ t∧��u

0
42�+ `�4X̃�4s5554g24X̃�4s5552 ds

]

<�1 (27)

then

Ɛy

[

∫ t∧��u

0
g4X̃�4s−55dM�4s5

]

= 01

and

Ɛy

[

∑

s≤t∧��u 2 �ãX̃
�4s5�>0

g4X̃�4s−554ãX̃�4s−552

]

= Ɛy

[

∫ t∧��u

0
42�+ `�4X̃�4s555g4X̃�4s55ds

]

0 (28)

Condition (27) holds, in particular, if g4 · 5 is nonnegative, nondecreasing, and such that Ɛ64g4y +E4�t5552 ·

4y+E4�t557 <�.

Note that since E4�t5 has finite moments of all orders, both Lemmas 4.2 and 4.3 hold with g polyno-
mial. Moreover, the function g can be replaced by any (not necessarily nondecreasing) function f such that
�f 4x5� ≤ h4x5, for all x ≥ 0, where h satisfies the conditions of Lemmas 4.2 and 4.3.

4.2.1. Proof of Proposition 3. Starting at x ≥ 0, X̃� has, on 601 ��
u 5, the law of a B&D process on the positive

integers, with birth rate � in all states and death rate �+ `�4x5 when in state x > 0. Let U � = 4U �4t51 t ≥ 05 be
a B&D process with these birth and death rates and observe that �< �+ `�4x5 for all x > 0 so that U � admits
a steady-state distribution. We have the following simple lemmas:

Lemma 4.4. For any nondecreasing function f 2 �→�,

Ɛ6f 4U �4�557≤
Ɛ16
∫ ��u

0 f 4X̃�4s55ds7

Ɛ16�
�
u 7

≤ Ɛ6f 4U �4�5+ 1570

Lemma 4.5. Fix � ∈�+. Then,

Ɛ1

[

∫ ��u

0
`�4X̃�4s55ds

]

= 10

Recalling that `� is nondecreasing, taking f = `� in Lemma 4.4, and using Lemma 4.5, we conclude that

Ɛ6`�4U �4�557≤
1

Ɛ16�
�
u 7

≤ Ɛ6`�4U �4�5+ 1571

which, in turn, proves that
(

Ɛ6`�4U �4�5+ 157
)−1

≤ Ɛ16�
�
u 7≤

(

Ɛ6`�4U �4�557
)−1

0 (29)

The following then provides bounds for the left- and right-hand sides.

Lemma 4.6. There exist absolute constants �l1 �u such that for all � ∈�+,

�l

√
�≤ Ɛ6`�4U �4�557≤ Ɛ6`�4U �4�5+ 157≤�u41 +

√
�50 (30)

Also, there exist absolute constants 8�u1m1 m ∈�9 such that for all � ∈�+,

Ɛ64U �4�5+ 15m7≤�u1m41 +
√
�5m0 (31)

Combining Lemma 4.6 and (29) it follows that there exist absolute constants �l and �u such that

�−1
u 41 +

√
�5−1

≤ Ɛ16�
�
u 7≤�−1

l 4
√
�5−10

This proves that 4Ɛ16�
�
u 75

−1 = O4
√
�5. Finally, from Lemmas 4.4 and 4.6 and using f 4x5= xm there, we have

Ɛ1

[

∫ ��u

0
4X̃�4s55m ds

]

≤�21m41 +
√
�5m−11 m ∈�0

The statement of the proposition now follows recalling that 8f �9 ∈Sm.
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4.2.2. Proof of Proposition 4. Given m ∈� and 8f �9 ∈Sm consider, for each �, the ODE on 601�5:

−`�4x54u54154x5+�4u54254x5= −f �4x51

u405= 00
(32)

We first identify some properties of solutions to this equation.

Lemma 4.7. Fix m ∈ � and 8f �9 ∈ Sm. Then there exist absolute constants Ai1m1 i = 11213 such that for
each �, there is an infinitely differentiable solution u�

f � to (32) such that, for all x ≥ 0,

�4u�
f �5

4154x5� ≤A11m

(

xm−1
+ 4

√
�5m−1

)

1 (33)

�4u�
f �5

4254x5� ≤A21m

(

xm

�
+

√
�

m−2
)

1 (34)

�4u�
f �5

4354x5� ≤A31m

(

xm+1

�2
+ 4

√
�5m−3

)

(35)

if m≥ 1 and

�4u�
f �5

4154x5� ≤A11m

1
√
�
1 (36)

�4u�
f �5

4254x5� ≤A21m

1
�
1 (37)

�4u�
f �5

4354x5� ≤A31m

(

x

�2
+

1
√
�3

+
�4f �54154x5�

�

)

(38)

if m= 0. This solution satisfies the identity

u�
f �4y5=V�

u4f
�1 y5

(

=2 Ɛy

[

∫ �̃�u

0
f �4Ỹ �4s55ds

])

0 (39)

Lemma 4.7 guarantees that for each �, V�
u4f

�1 y5 is the unique solution to (32) satisfying (33)–(35) (for m≥ 1)
or (36)–(38) (for m = 0). For the remainder of this proof, we use the simplified notation V�4y5 = V�

u4f
�1 y5.

The function sequence 8f �9 ∈Sm will be fixed.
Fix y ∈�. By Ito’s lemma

V�4X̃�4t ∧ ��
u 55 = V�4y5+

∑

s≤t∧��u 2 �ãX̃
�4s5�>0

4ãV�4X̃�4s55− 4V�54154X̃�4s−55ãX̃�4s55

−

∫ t∧��u

0
4V�54154X̃�4s−55`�4X̃�4s55ds −

∫ t∧��u

0
4V�54154X̃�4s−55dM�4s50 (40)

By Lemma 4.2 with g4x5= 4V�54154x5`�4x5, the first integral has a finite expectation. Subsequently, Lemma 4.3
with g4x5 = 42�+ `�4x5544V�54154x552 guarantees that the stochastic integral has expectation 0. Finally, since
X̃� is nonexplosive, it has a finite number of jumps on each finite interval so that X̃�4s−5 can be replaced with
X̃�4s5 in all integrals that follow. Taking expectations on both sides of (40) we then obtain,

Ɛy6V
�4X̃�4t ∧ ��

u 557 = V�4y5+ Ɛy

[

∑

s≤t∧��u 2 �ãX̃
�4s5�>0

4ãV�4X̃�4s55− 4V�54154X̃�4s−55ãX̃�4s55

]

− Ɛy

[

∫ t∧��u

0
4V�54154X̃�4s55`�4X̃�4s55ds

]

0

Subtracting and adding terms, and recalling that V� solves (32), yields

Ɛy6V
�4X̃�4t ∧ ��

u 557

=V�4y5+ Ɛy

[

∑

s≤t∧��u 2 �ãX̃
�4s5�>0

(

ãV�4X̃�4s55− 4V�54154X̃�4s−55ãX̃�4s5−
1
2 4V

�54254X̃�4s−554ãX̃�4s552
)

]
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+
1
2

(

Ɛy

[

∑

s≤t∧��u 2 �ãX̃
�4s5�>0

4V�54254X̃�4s−554ãX̃�4s552

]

− Ɛy

[

∫ t∧��u

0
42�+ `�4X̃�4s5554V�54254X̃�4s55ds

])

+
1
2 Ɛy

[

∫ t∧��u

0
`�4X̃�4s554V�54254X̃�4s55ds

]

− Ɛy

[

∫ t∧��u

0
f �4X̃�4s55ds

]

0

Thus,

∣

∣

∣

∣

V�4y5− Ɛy

[

∫ t∧��u

0
f �4X̃�4s55ds

]

∣

∣

∣

∣

≤
∣

∣Ɛy6V
�4X̃�4t ∧ ��

u 557
∣

∣

+
1
2

∣

∣

∣

∣

Ɛy

[

∑

s≤t∧��u 2 �ãX̃
�4s5�>0

4V�54254X̃�4s−554ãX̃�4s552

]

− Ɛy

[

∫ t∧��u

0
42�+ `�4X̃�4s5554V�54254X̃�4s55ds

]

∣

∣

∣

∣

+

∣

∣

∣

∣

Ɛy

[

∑

s≤t∧��u 2 �ãX̃
�4s5�>0

(

ãV�4X̃�4s55− 4V�54154X̃�4s−55ãX̃�4s5−
1
2 4V

�54254X̃�4s−554ãX̃�4s552
)

]

∣

∣

∣

∣

+
1
2

∣

∣

∣

∣

Ɛy

[

∫ t∧��u

0
`�4X̃�4s554V�54254X̃�4s55ds

]

∣

∣

∣

∣

0

Using Lemma 4.3 with g = 4V�5425 there we have

Ɛy

[

∑

s≤t∧��u 2 �ãX̃
�4s5�>0

4V�54254X̃�4s−554ãX̃�4s552

]

= Ɛy

[

∫ t∧��u

0
42�+ `�4X̃�4s5554V�54254X̃�4s55ds

]

1

so that the terms in the third line cancel each other. Also, since the jump size of X̃� is ±1 we have, by Taylor’s
expansion, that

Ɛy

[

∑

s≤t∧��u 2 �ãX̃
�4s5�>0

(

ãV�4X̃�4s55− 4V�54154X̃�4s−55ãX̃�4s5−
1
2 4V

�54254X̃�4s−554ãX̃�4s552
)

]

≤ Ɛy

[

∑

s≤t∧��u 2�ãX̃
�4s5�>0

1
2

∣

∣4V�54354X̃�4s−5+��
X̃�4s−5

5
∣

∣

]

1

for some ��
X̃�4s−5

∈ 4−1115. Thus,

∣

∣

∣

∣

V�4y5− Ɛy

[

∫ t∧��u

0
f �4X̃�4s55ds

]

∣

∣

∣

∣

≤
∣

∣Ɛy6V
�4X̃�4t ∧ ��

u 557
∣

∣

+

∣

∣

∣

∣

Ɛy

[

∑

s≤t∧��u 2 �ãX̃
�4s5�>0

(

ãV�4X̃�4s55− 4V�54154X̃�4s−55ãX̃�4s5−
1
2 4V

�54254X̃�4s−554ãX̃�4s552
)

]

∣

∣

∣

∣

+
1
2

∣

∣

∣

∣

Ɛy

[

∫ t∧��u

0
`�4X̃�4s554V�54254X̃�4s55ds

]

∣

∣

∣

∣

≤
∣

∣Ɛy6V
�4X̃�4t ∧ ��

u 557
∣

∣+ Ɛy

[

∑

s≤t∧��u 2 �ãX̃
�4s5�>0

1
2

∣

∣4V�54354X̃�4s−5+��
X̃�4s−5

5
∣

∣

]

+
1
2 Ɛy

[

∫ t∧��u

0
`�4X̃�4s55�4V�54254X̃�4s55�ds

]

(41)
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Note that X̃� ≥ 1 for all t < ��
u so that, in particular, 4X̃�4s−5 + ��

X̃�4s−5
5m ≤ 4X̃�4s−5 + 15m. Recalling that

`�4x5≤�4
√
�+ x5 (with � =�2 ∨�3 in (26)), for m≥ 1, the bounds (34)–(35) then yield
∣

∣

∣

∣

V�4y5− Ɛy

[

∫ t∧��u

0
f �4X̃�4s55ds

]

∣

∣

∣

∣

≤
∣

∣Ɛy6V
�4X̃�4t ∧ ��

u 557
∣

∣+ Ɛy

[

∑

s≤t∧��u 2 �ãX̃
�4s5�>0

A31m

2

(

4X̃�4s−55m+1

�2
+ 4

√
�5m−3

)]

+
1
2 Ɛy

[

∫ t∧��u

0
A21m�

(√
�+ X̃�4s5

)

(

4X̃�4s55m

�
+

√
�

m−2
)

ds

]

0 (42)

We will here need the following lemma.

Lemma 4.8. (i) Fix m ∈�, 8f �9 ∈Sm and � ∈�+. Let V� be the solution to (32) as in Lemma 4.7. Then,
for any y ∈�,

lim
t→�

Ɛy6V
�
(

X̃�4t ∧ ��
u 5
)

7= 03 (43)

(ii) For any l ≥ 0 and y ∈�,

lim
t→�

Ɛy

[

∑

s≤t∧��u 2 �ãX̃
�4s5�>0

4X̃�4s−55l
]

= Ɛy

[

∫ ��u

0
42�+ `�4X̃�4s5554X̃�4s55l ds

]

0 (44)

Letting t → � in (42) we have by Lemma 4.8 that
∣

∣

∣

∣

V�4y5− Ɛy

[

∫ ��u

0
f �4X̃�4s55ds

]

∣

∣

∣

∣

≤
A31m

2

√
�

m−3
Ɛy

[

∫ ��u

0
42�+ `�4X̃�4s55ds

]

+
A31m

2�2
Ɛy

[

∫ ��u

0
42�+ `�4X̃�4s5554X̃�4s55m+1 ds

]

+
A21m�

2�
Ɛy

[

∫ ��u

0
4X̃�4s55m+1 ds +

√
�
∫ ��u

0
4X̃�4s55m ds + 4

√
�5m

∫ ��u

0
X̃�4s5ds + 4

√
�5m+1��

u

]

0

Using Proposition 3 and the bound (26) we have (recall m ∈�)

Ɛy

[

∫ ��u

0
42�+ `�4X̃�4s555ds

]

= O4
√
�51

Ɛy

[

∫ ��u

0
42�+ `�4X̃�4s5554X̃�4s55m+1 ds

]

= O4
√
�

m+2
51

and

Ɛy

[

∫ ��u

0
4X̃�4s55l ds

]

= O4
√
�

l−1
51 for l = 0111 m1 m+ 10

In turn, there exist absolute constants A41m1A51m, and A61m for which

∣

∣

∣

∣

V�4y5− Ɛy

[

∫ ��u

0
f �4X̃�4s55ds

]

∣

∣

∣

∣

≤A41m

√
�

m−2
+

A51m

�2
4
√
�5m+2

+
A61m

�
4
√
�5m = O4

√
�

m−2
50

Using the definition of V �
u 4f

�1 y5, we conclude that

V �
u 4f

�1 y5−V�4y5= O4
√
�

m−2
50

For m= 0, we must take care of the extra term on the right-hand side of (38) (compared to (35)). In particular,
in the transition from (41) to (42) we have the extra term:

Ɛy

[

∑

s≤t∧��u 2 �ãX̃
�4s5�>0

∣

∣4f �54154X̃�4s−5+��
X̃�4s−5

5
∣

∣

]

≤ a3 Ɛy

[

∑

s≤t∧��u 2 �ãX̃
�4s5�>0

�8X�4s−5∈4a�−11a�+259

]

0
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By Lemma 4.3 we have

1
�
Ɛy

[

∑

s≤t∧��u 2 �ãX̃
�4s5�>0

�8X̃�4s−5∈4a�−11a�+259

]

=
1
�
Ɛy

[

∫ t∧��u

0
42�+ `�4X̃�4s555�8X̃�4s5∈4a�−11 a�+259 ds

]

≤ 2Ɛy

[

∫ t∧��u

0
�8X̃�4s5∈4a�−11 a�+259 ds

]

+
1
�
Ɛy

[

∫ t∧��u

0
`�4X̃�4s555ds

]

0 (45)

For the first element on the right-hand side (for y = 1),

Ɛ1

[

∫ t∧��u

0
�8X̃�4s5∈4a�−11a�+259 ds

]

≤ Ɛ1

[

∫ ��

0
�8X̃�4s5∈4a�−11a�+259 ds

]

= Ɛ16�
�7�

{

X̃�4�5 ∈ 4a�
− 11 a�

+ 25
}

0

In Proposition 5 below, we will show that Ɛ16�
�
l 7 = O41/

√
�5, which, together with Proposition 3, shows that

Ɛ16�
�7= O41/

√
�5. By Lemma A.1, �8X̃�4�5 ∈ 4a�−11 a�+259= O41/

√
�5 so that Ɛ16�

�7�8X̃�4�5 ∈ 4a� − 1,
a� + 259 = O41/�5. Using �`�4x5� ≤ �4

√
�+ x5 (see (26)) and Proposition 3, the second element on the right-

hand side of (45) is itself O41/�5, which concludes the proof of the proposition.

4.3. Lower excursion. In this section we consider the lower excursion—these are the time intervals 6��
u 1 �

�5
and 6�̃�

u 1 �̃
�5 for X̃� and Ỹ �, respectively. Define

X̌�4t5= −4X�4t5−ã�5= −X̃�4t5 and Y̌ �4t5= −4Y �4t5−ã�5= −Ỹ �4t50

Then X̌� ≥ 0 on 6��
u 1 �

�
l 5 and Y̌ � > −1 on 6�̃�

u 1 �̃
�
l 5, respectively. At time ��

u , X̌� = 0 and �� is its hitting time
of −1 (similarly for Y̌ �1 �̃�

u , and �̃�).
Define

ˇ̀�4x5= �−�44−x+ã�5∧ n�5− �4−x+ã�
− n�5+0 (46)

With X̌�405= y ≥ 0, the process X̌� satisfies the following on 601 ��
l 5

X̌�4t5= X̌�405−

∫ t

0

ˇ̀�4X̌�4s55ds −M�4t50

Similarly, Y̌ � satisfies on 601 �̃�
l 5

Y̌ �4t5= Y̌ �405−

∫ t

0

ˇ̀�4Y̌ �4s55ds −
√

2�B�4t50

The function ˇ̀�4x5 is nondecreasing with ˇ̀�405= 0. There is a clear symmetry between the upper excursion
and the lower excursion and the following are exact analogues of Propositions 3 and 4.

Proposition 5 (Order Bounds). Fix m ∈� and 8f �9 ∈Sm. Then,

4Ɛ06�
�
l 75

−1
= O4

√
�5 and V �

l 4f
�105= O4

√
�

m−1
50

Proposition 6 (Gap Bounds). Fix m ∈� and 8f �9 ∈Sm. Then,

V �
l 4f

�105−V�
l 4f

�105= O4
√
�

m−2
50

The proof of Proposition 5 is very similar to that of Proposition 3 for the upper excursion and is based on
analogues of Lemmas 4.4 and 4.6 that are proved identically. The proof of Proposition 6 is, as well, similar to
that of Proposition 4 for the upper excursion. The key step is writing the appropriate ODE and identifying the
gradient bounds. Specifically, fixing � ∈ �+, m ∈ �, define f̌ � by f̌ �4x5 = f �4−x5 and consider the following
ODE on 601�5:

− ˇ̀�4x54ǔ54154x5+�4ǔ54254x5= −f̌ �4x51

ǔ4−15= 00
(47)
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Lemma 4.9. Fix m ∈� and 8f̌ �9 ∈Sm. Then, for each �, there exists an infinitely differentiable solution u�

f̌ �

for (32) that satisfies the derivative bounds in Lemma 4.7. Furthermore,

ǔ�

f̌ �4y5=V�
l 4f̌

�1 y5

(

=2 Ɛy

[

∫ �̃�l

0
f̌ �4Y̌ �4s55ds

])

0

Lemma 4.9 is proved identically to Lemma 4.7. From here, the lower excursion has exact analogues of
Lemmas 4.2, 4.3, and 4.8 that are proved identically (in fact, the boundedness of the state space of X̌� further
simplifies the proofs). The proof of Proposition 6 is, in turn, identical to that of Proposition 4. We omit the
detailed argument here but point the reader to Appendix C, where we provide a complete proof for the lower
excursion in the case of the NDS regime.

We conclude this section with a remark about the case ã� y�.

Remark 4.2 (Noninteger ã�). Thus far we have assumed that ã� ∈ �. To explain why that assumption
is made without loss of generality, assume that ã� 6∈ �. We then use a slightly different centering for X�.
Specifically, define Ỹ � together with its underlying regenerative structure as before. We redefine X̃� =X� −�ã��

and redefine its regenerative structure with respect to �ã�� in an obvious way.
All the order-bound arguments in §4.2.1 remain unchanged, and only a minor change is required in the proof

of the gap bounds in Proposition 3. First, in the dynamics of X̃� (see (25)), we must replace `�4x5 with

¯̀�4x5 = −�+�44x+ �ã�
�5∧ n�5+ �4x+ �ã�

� − n�5+

= `�4x5+
(

�44x+ �ã�
�5∧ n�5−�44x+ã�5∧ n�5

)

+
(

�4x+ �ã�
� − n�5+ − �4x+ã�

− n�5+
)

0

Note that
� ¯̀

�4x5− `�4x5� ≤�+ �0 (48)

Then, in the proof of Proposition 4 (specifically in Equation (40)), there will be an extra term
∫ t∧��u

0 4V�54154X̃�4s554`�4X̃�4s55− ¯̀�4X̃�4s555ds0 Given (48), we then have that
∣

∣

∣

∣

Ɛy

[

∫ t∧��u

0
4V�54154X̃�4s554`�4X̃�4s55− ¯̀�4X̃�4s555ds

]

∣

∣

∣

∣

≤ 4�+ �5Ɛy

[

∫ t∧��u

0
�4V�54154X̃�4s55�ds

]

0

Proceeding as in the text after Equation (42), we conclude that this term is O4
√
�
m−2

5 so that the gap bound is
not compromised. Exactly the same change would apply to the proofs of the lower excursion.

For the analysis in the next section (specifically, toward Lemma 5.2), it is useful to note that the same
argument applies, in fact, to any perturbation of the drift of the diffusion by a constant. Specifically, assume that
we replace Y � with Ȳ � that is defined by

Ȳ �4t5= Ȳ �405+

∫ t

0
b̃�4Ȳ �4s55ds +

√
2�B4t51 t ≥ 01

where b̃� differs from b� only with respect to the constant n�; i.e., b̃�4x5 = �−�4x ∧ ñ�5− �4x − ñ�5+. Let
ã̃� be defined from ã� by replacing n� with ñ�. Then, ã� − ã̃� = O415 provided that n� − ñ� = O415. Redefine
Ỹ � = Y � − ã̃�. Let

˜̀�4x5= −�+�44x+ ã̃�5∧ ñ�5+ �4x+ ã̃�
− ñ�5+0

Then, with n� − ñ� = O415, we have that � ˜̀�4x5− `�4x5� ≤ � for an absolute constant � whose value depends
on n� − ñ� = O415. The arguments above apply here as well; in particular, the gap bounds persist after an O415
perturbation of n�.

5. Universal optimization of the Erlang-A queue. We revisit two staffing problems that have been ana-
lyzed in the literature using asymptotic analysis and limits; recall the discussion in §1. In §5.1 we consider the
problem of minimizing the number of servers subject to a constraint on the fraction of abandoning customers.
In §5.2 we consider a cost minimization problem where one seeks to minimize a combined cost of staffing,
abandonment, and holding.

To make explicit the dependence of the steady-state distribution on the number of servers, we let X�
n be the

headcount process in the Erlang-A queue with n servers and similarly define Y �
n for the universal diffusion. The

service rate � and the patience rate � are fixed and do not appear in the notation. We define

Q�
n4�5= 4X�

n 4�5− n5+ and Q̃�
n4�5= 4Y �

n 4�5− n5+

to be the steady-state queue and its proposed universal approximation.
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5.1. Constraint satisfaction. Denote by Ab4n1�5 the fraction of abandonments when the arrival rate is �
and the number of servers is n. Consider the constraint satisfaction problem

N ∗4�5= min8n ∈�2 Ab4n1�5≤ �4�590 (49)

That is, N ∗4�5 is the least number of servers required to meet a target abandonment fraction �4�5 when the
arrival rate is �. The instances �4�5≡ � and �4�5= �/

√
�, discussed in the introduction, are covered here as

special cases.
It is known that

�Ab4n1�5= � Ɛ6Q�
n4�573 (50)

see, e.g., Mandelbaum and Zeltyn [27, §4.4]. As a result, (49) is equivalently written as

N ∗4�5= min
{

n ∈�2 Ɛ6Q�
n4�57≤

�

�
�4�5

}

0

As an approximation to N ∗4�5, we propose to solve the problem

Ñ ∗4�5= inf
{

n ∈�2 Ɛ6Q̃�
n4�57≤

�

�
�4�5

}

0 (51)

The following provides a characterization of Ñ ∗4�5.

Lemma 5.1. Suppose that lim sup�→� �4�5 < 1; then, for all sufficiently large �, there exists a unique solu-
tion n∗4�5 ∈� to the equation

Ɛ6Q̃�
n4�57=

��4�5

�
0 (52)

By the monotonicity of Ɛ6Q̃�
n4�57 in n (see Mandelbaum and Zeltyn [28]) we have that Ñ ∗4�5 = �n∗4�5�

with the latter as in Lemma 5.1. Using the explicit expressions for Ɛ6Q̃�
n4�57 (see (16)) and (52), we have that

n∗4�5=
�

�
41 −�4�55+

√
�

�

(

�4�1�4�55+
√
��4�5

)

1 (53)

where �4�1�4�55 is the unique solution � to

61 −p4�1�1�57h4�/
√
�5+p4�1�1�5

�
√
�

=
1

√
�

(

�+
√
��4�5

)

0

The following is the main result of this section.

Theorem 7. The staffing Ñ ∗4�5 is asymptotically feasible for (49); namely,

Ab4Ñ ∗4�51�5−�4�5= O4�−150 (54)

If, in addition, �4�5 ≥ �
√
�

−1
for some absolute constant � , then Ñ ∗4�5 is asymptotically optimal for (49);

namely,
N ∗4�5− Ñ ∗4�5= O4150 (55)

By definition � Ɛ6Q̃�
n∗4�57= ��4�50 Using (50) we have

∣

∣Ab4Ñ ∗4�51�5−�4�5
∣

∣≤
�

�

∣

∣Ɛ6Q�
Ñ ∗4�5

4�57− Ɛ6Q̃�
Ñ ∗4�5

4�57
∣

∣+
�

�

∣

∣Ɛ6Q̃�
Ñ ∗4�5

4�57− Ɛ6Q̃�
n∗4�54�57

∣

∣0

The first term on the right-hand side is O41/�5 by Corollary 1. For the second term we have the following
lemma.

Lemma 5.2. Fix two sequences 8n�
19 and 8n�

29 of nonnegative numbers such that n�
2 − n�

1 = O415. Then
Ɛ6Q̃�

n�1
4�57− Ɛ6Q̃�

n�2
4�57= O415.
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Let n�
2 = Ñ ∗4�5 and n�

1 = n∗4�5. Then, �n�
2 − n�

1 � ≤ 1 by construction and recalling (50) and (52), we can
apply Lemma 5.2 to conclude that �Ab4Ñ ∗4�51�5−�4�5� = O4�−15 as required.

For (55), we make the simple observation that if lim inf�→�

√
��4�5 > 0, then lim sup�→�4�4�1�4�55 +

√
��4�55 <�, which then implies (see (53)) that

lim sup
�→�

4n∗4�5�−�5/
√
�<�0 (56)

Assume, toward contradiction, that there is a sequence �→ � such that

�N ∗4�5− Ñ ∗4�5� → �0

Then either N ∗4�5− Ñ ∗4�5→ � or N ∗4�5− Ñ ∗4�5→ −�0 Recall that Ñ ∗4�5= �n∗4�5� with the latter being
the solution to (52). Thus, it holds in particular that either N ∗4�5− n∗4�5→ �, or N ∗4�5− n∗4�5→ −�0

The following lemma will be useful in what follows.

Lemma 5.3. Fix two sequences 8n�
19 and 8n�

29 of nonnegative numbers such that limsup�→�4�n
�
2−�5/

√
�<�0

Then, Ɛ6Q̃�
n�1
4�57− Ɛ6Q̃�

n�2
4�57→ −� if n�

2 − n�
1 → −�, and Ɛ6Q̃�

n�1
4�57− Ɛ6Q̃�

n�2
4�57→ � if n�

2 − n�
1 → �0

Assume first that N ∗4�5− n∗4�5 → �. Fix a positive sequence K� → � such that n∗4�5+K� <N ∗4�5 for
all � and let n̄� = n∗4�5+K�. Let n�

1 = n̄� and n�
2 = n∗4�5. Then since n∗4�5 (and, in turn, n�

2 ) satisfies (56), we
can apply Lemma 5.3 to have Ɛ6Q̃�

n∗4�54�57− Ɛ6Q̃�
n̄�
4�57 → �0 In particular, since (see (52)) Ɛ6Q̃�

n∗4�54�57 =

��4�5/�, we have

lim
�→�

(

Ɛ6Q̃�
n̄�4�57−

��4�5

�

)

= −�0 (57)

By Corollary 1, Ɛ6Q̃�
n̄�
4�57− Ɛ6Q�

n̄�
4�57= O415 so that (57) implies

lim sup
�→�

(

Ɛ6Q�
n̄�4�57−

��4�5

�

)

= −�1

and, in turn, that n̄� is feasible for (49) for all sufficiently large �. Since N ∗4�5 > n̄� by construction, this is a
contradiction to the optimality of N ∗4�5 and we may conclude that lim sup�→� N ∗4�5− n∗4�5 <�0 The proof
that lim inf�→� N ∗4�5− n∗4�5 >−� is similar and uses the second part of Lemma 5.3. The detailed argument
is omitted. �

Example 5.1 (Constrained Staffing). (i) Unscaled targets: We fix � = 1 and � = 1/3 and consider the
case �4�5 ≡ � ∈ 8000510029; i.e., the target fraction of abandonment does not scale with �. The figure pairs
(10, 11) and (12, 13) correspond to �= 0005 and �= 002, respectively. For each value of � (in jumps of 20), we
solve (49) and (51) to obtain N ∗4�5 and Ñ ∗4�5. The plots on the left-hand side of Figures 10 and 12 support
(54) in showing that Ab4Ñ ∗4�51�5 never violates the target �4�5. The plots on the right-hand side compare
Ñ ∗4�5 to the true optimal solution to (49) and support that the constraint is satisfied with little or no compromise
to staffing costs. The plots in Figures 11 and 13 display the respective error ratios 4�4�5−Ab4Ñ ∗4�51�55/�4�5
and 4Ñ ∗4�5− N ∗4�55/N ∗4�5. It is notable that the staffing error is 0 (that is, Ñ ∗4�5 = N ∗4�5) for almost all
values of � except for a small set of values (see Figure 13) where the staffing error is a single server.
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Figure 10. Constrained staffing, unscaled targets �� = �= 0005.
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Figure 11. Constrained staffing, unscaled targets �� = �= 0005 (error ratio).
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Figure 12. Constrained staffing �� = �= 002.
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Figure 13. Constrained staffing �� = �= 002 (error ratio).

(ii) Scaled targets: We set � = 1 and � = 1/3 and repeat the experiment above but, this time, with scaled
targets of the form �4�5= �/

√
� with � ∈ 8005129. Figures 14 and 15 correspond to 005/

√
�. Figures 16 and 17

correspond to the case �4�5= 2/
√
�.

5.2. Cost minimization. Given cost parameters C�
s 1C

�
ab, and C�

q , consider the cost

CX4�1n5=C�
s n+C�

ab�Ab4n1�5+C�
q Ɛ6Q

�
n4�570

Recalling (50), CX4�1n5 is equivalently written by

CX4�1n5=C�
s n+ 4C�

ab�+C�
q 5Ɛ6Q

�
n4�570
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Figure 14. Constrained staffing �� = 005/
√
�.
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Figure 15. Constrained staffing �� = 005/
√
� (error ratio).
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Figure 16. Constrained staffing �� = �= 2/
√
�.
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Figure 17. Constrained staffing �� = �= 2/
√
� (error ratio).
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Define
N ∗4�5= arg min

n∈�
CX4�1n50 (58)

Similarly recall that Q̃�
n = 4Y �4�5− n5+, define

CY 4�1n5=C�
s n+ 4C�

ab�+C�
q 5Ɛ6Q̃

�
n4�571

and redefine
Ñ ∗4�5= arg min

n∈�
CY 4�1n50 (59)

In both (58) and (59) if there are multiple minimizers we choose the minimal among them. Recall that Ɛ6Q̃�
n4�57

is given by (16), with �� = ��
n = 4n�−�5/

√
�.

Theorem 8. The staffing level Ñ ∗4�5 is asymptotically optimal for (58) in the sense of

CX4�1 Ñ
∗4�55−CX4�1N

∗4�55= O4max4C�
ab1C

�
q 550

Remark 5.1. Note that if C�
ab ≡ Cab and C�

q ≡ Cq , then Theorem 8 states that the cost gap is O415. Also,
whereas Theorem 8 imposes no restriction on the cost parameters, the interesting cases (and the ones we
consider in our numerical experiments below) are those where Ñ ∗4�5 > 0 which, in turn, holds only if C�

s /�<
C�

ab +C�
q /�. This inequality is assumed, for example, in Bassamboo and Randhawa [6].

Recent work (Randhawa [32]) suggests that it may be possible to improve on our approximation gap. Inter-
preted to our context, this work suggests that since Ɛ6Q�

n4�57 − Ɛ6Q̃�
n4�57 = O415, the optimality gap is

o4max4C�
ab1C

�
q 55. However, it is not clear that the conditions required in Randhawa [32, §1] are satisfied for the

universal diffusion and the Erlang-A queue.

Remark 5.2. The total cost is a natural criterion of optimality in this context of the cost minimization
problem. Nevertheless, one may be interested also in how “close” the recommended staffing is to the optimal
staffing. Because the subject of this paper is the universal approximation rather than the specific optimization
problem, we do not pursue the proof of this result here. Interestingly, in our numerical examples below not only
is the cost under Ñ ∗4�5, CX4�1 Ñ

∗4�55, very close to the true optimal cost but also Ñ ∗4�5 is identical to N ∗4�5
for most values of �.

Proof. By the definition of N ∗4�5 and Ñ ∗4�5,

CX4�1N
∗4�55≤CX4�1 Ñ

∗4�55 and CY 4�1 Ñ
∗4�55≤CY 4�1N

∗4�550

Hence

0 ≤ CX4�1 Ñ
∗4�55−CX4�1N

∗4�55

= CX4�1 Ñ
∗4�55−CY 4�1 Ñ

∗4�55+CY 4�1 Ñ
∗4�55−CY 4�1N

∗4�55+CY 4�1N
∗4�55−CX4�1N

∗4�550

Since CY 4�1 Ñ
∗4�55−CY 4�1N

∗4�55≤ 0 we have that

0 ≤ CX4�1 Ñ
∗4�55−CX4�1N

∗4�55

≤ 4C�
ab�+C�

q 5�Ɛ6Q̃N ∗4�54�57− Ɛ6Q�
N ∗4�54�57� + 4C�

ab�+C�
q 5�Ɛ6Q̃

�
Ñ ∗4�5

4�57− Ɛ6Q�
Ñ ∗4�5

4�57�0

The result now follows from Corollary 1. �

Example 5.2 (Cost Minimization). (i) Unscaled parameters: Let � = 1, � = 1/2, C�
ab = C�

q = 2, C�
s = 1.

For values of � from 20 to 21000 (in jumps of 20), we solve for N ∗4�5 in (58) and Ñ ∗4�5 in (59). The graph on
the left-hand side of Figure 18 displays CX4Ñ

∗4�51�5 and CX4N
∗4�51�5 as a function of � supports Theorem 8.

The graph on the right-hand side displays N ∗4�5 and Ñ ∗4�5, suggesting that the corresponding staffing levels
are also close. The plots in Figure 19 display the error ratios �CX4Ñ

∗4�51�5− CX4N
∗4�51�5�/CX4N

∗4�51�55
and �Ñ ∗4�5−N ∗4�5�/N ∗4�5, respectively. The staffing error is, in absolute values, 0 servers except for a single
point around �= 11600 in which the error is a single server.

(ii) Scaled parameters: We reconsider the setting above (in particular, �= 1 and � = 1/2) but now with scaled
cost parameters. Specifically, we set C�

s = 1 but C�
ab = C�

q = 2
√
�. Figure 20 displays the costs and staffing

levels and Figure 21 displays the error ratios.
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Figure 18. Cost minimization: �= 1, � = 1/2, C�
ab =C�

q = 2, and C�
s = 1.
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Figure 19. Cost minimization: �= 1, � = 1/2, C�
ab =C�

q = 2, and C�
s = 1 (error ratio).
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Figure 20. Cost minimization, scaled parameters: �= 1, � = 1/2, C�
ab =C�

q = 2
√
�, and C�

s = 1.
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Figure 21. Cost minimization, scaled parameters: �= 1, � = 1/2, C�
ab =C�

q = 2
√
�, and C�

s = 1 (error ratio).
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6. Concluding remarks.

6.1. Virtual waiting-time distribution. Our analysis relies on the Markovian structure of the headcount
process X� and, in turn, covers only performance metrics that can be represented as functionals of this pro-
cess. The virtual waiting time at time t, V �4t5, is defined as the time-to-service of a customer equipped with
infinite patience who arrives at time t. Mathematically, V �4t5 is a first passage time that depends, in particular,
on the dynamics of X� after time t (e.g., service completions and abandonment); see Talreja and Whitt [35,
Equation (1.1)]. Thus, a “universal” approximation for the virtual waiting time does not follow directly from
our results.

Existing results on heavy-traffic limits for V �, particularly Whitt [40] and Talreja and Whitt [35], suggest that
in great generality,

�4V �4�5−w�5
d

≈Q�4�5− q�1

where

w�
=

1
�

ln
(

�

n��
∨ 1
)

and q�
=

4�− n��5+

�
0

Heuristically, given the analysis in this paper, the following sequence of approximations should hold for any
sequence t�:

�8V �4�5−w� > t�9≈�8Q�4�5 > q�
+�t�9≈�8Q̃�4�5 > q�

+�t�90

Our Corollary 2 guarantees that �8Q�4�5 > q� + �t�9 − �8Q̃�4�5 > q� + �t�9 = O41/
√
�50 Hence, to show

that
�8V �4�5−w� > t�9−�8Q̃�4�5 > q�

+�t�9= O41/
√
�51

it suffices to prove that

�8V �4�5−w� > t�9−�8Q�4�5 > q�
+�t�9= O41/

√
�50 (60)

We conjecture that the heuristic above is, in fact, valid and that the excursion-based analysis can help in
establishing (60). We leave this as an important problem for future research and conclude this discussion with a
numerical experiment that supports our conjecture: set �= 1 and � = 005 and fix t� = −2/�. The performance
metric in question is then �8V �4�5≥w� −2/�9. We then repeat Example 3.2 replacing the probability of delay
with the metric �8V �4�5 ≥ w� − 2/�9. The results are displayed in Figures 22–24 and suggest that indeed
�8Q̃�4�5 > q� +�t�9 provides an accurate approximation for �8V �4�5≥w� − 2/�9.
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Figure 22. Approximating �8V �4�5≥w� − 2/�9: fixed �, varying n (250 ≤ n≤ 750).
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Figure 23. Approximating �8V �4�5≥w� − 2/�9 fixed �, varying � (20 ≤ �≤ 21000).

0.20

0

0.25

0.30

0.35
Exact P (V > w + t /� ) vs. Univ P (Q > q + t )

Exact V

Universal Q

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000
0

0.1

0.2

0.3

0.4
Absolute gap = |Universal – Exact|

�

�

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000

Error

1/sqrt(�)

Figure 24. Approximating �8V �4�5≥w� − 2/�9: varying �� with � (20 ≤ �≤ 21000).

6.2. Toward a framework. It may be possible to extend our excursion-based approach to other queueing
systems such as networks of queues or queues with nonexponential distributions. We could perhaps also cover
time-varying models, after stabilizing their performance via appropriate staffing (Feldman et al. [13], Liu and
Whitt [25]). Regardless of the setting, the following elements seem to be prerequisites for our framework
to apply.

Markov structure and regeneration. We require models with dynamics that can be characterized by a Markov
chain that has an appropriate regeneration point. Birth-and-death processes, of which the Erlang-A queue is
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a special case, are to some extent the simplest cases that adhere to this structure. More generally, it is often
possible to define a sufficiently rich state descriptor that renders the dynamics Markovian. A regenerative set then
often replaces the regeneration point; see, e.g., Kaspi and Mandelbaum [20]. Because the intimate connection
between stationary measures and cycle averages are known to hold also for Markov processes with more general
regenerative sets (see, e.g., Asmussen [3, Chapter VII.3]), it may be possible to extend our analysis to these
more general settings. This seems a challenging direction.

Martingale properties. To be able to apply Ito’s lemma, as in our proof of Proposition 4, the dynamics must
be represented as a semi-martingale. This, however, would not be enough. In order to obtain refined bounds,
these martingales must be relatively “tractable.” To illustrate the underlying complexity, we consider, for exam-
ple, a general renewal arrival process. Provided that the interarrival times have finite second moments, it is then
known (see Konstantopoulos et al. [24]) that A4t5 −

∫ t

0 h4a4s55ds is a martingale with respect to a properly
defined filtration, where h4 · 5 is the hazard rate of the interarrival time and a4 · 5 is the age process. This mar-
tingale has the predictable quadratic variation process �2�2

∫ t

0 h4a4s55ds, where �2 is the standard deviation of
the interarrival time and 1/� is the mean interarrival time. That

∫ t

0 h4a4s55ds ≈ �t, as t → �, guarantees that
the quadratic variation of the above martingale approaches �2�3t, and it is used in Konstantopoulos et al. [24]
to establish a functional central limit theorem. Whereas such convergence suffices for purposes of weak conver-
gence, we expect that some estimates on the “distance”

∫ t

0 h4a4s55ds −�t are needed for refined bounds. The
results in Konstantopoulos and Last [23] may be helpful in that regard.

Order bounds. Preliminary order bounds on steady-state metrics and on the expectation of underlying hitting
times played a crucial role in our analysis. For the special case of the Erlang-A queue, we establish such bounds
directly using Lyapunov function arguments; see Lemma 4.6. In exploring extensions to other queueing systems,
it is useful that existing research already provides such bounds. For the case of generalized Jackson networks,
as an example, order bounds for the steady-state queue length are given by Gamarnik and Zeevi [14].

Gradient bounds. This, in a sense, is the simplest of the required preliminaries. Given a differential equation
that characterizes excursion-performance of the approximating diffusion process, one must establish gradient
bounds for its solutions. For the diffusion in the current paper, we have explicit solutions for the corresponding
ODE that allow one to directly derive the gradient bounds. In more general settings, the ODE may be replaced
by a more complex Partial Differential Equation (PDE) for which closed-form solutions are not available. Yet it
is plausible that, in those cases, gradient bounds can be established indirectly by relying on the rich theory of
gradient bounds for solutions to PDEs.
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Appendix A. Proofs of corollaries.

Proof of Corollary 1. We can, without loss of generality, assume that either n� ≥ ã� for all � or that
n� < ã� for all �. Otherwise, the argument below applies to each subsequence. We first consider the case
n� ≥ã�. For each �, let f �4x5= 4x+ã� − n�5+. Then,

Ɛ6Q�4�57= Ɛ6f �4X̃�4�557 and Ɛ6Q̃�4�57= Ɛ6f �4Ỹ �4�5570

Fixing 0 < � < 1, define g�� 2�→� as follows:

g�� 4x5 2=



























01 x ≤ −6ã� − n�7− �1

1
4�

4x+ã�
− n�

+ �521 −6ã� − n�7− � ≤ x <−6ã� − n�7+ �1

x+ã� − n�1 x ≥ −6ã� − n�7+ �0
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Then, �g�� 4x5� ≤ 1 + �x� and 4g�� 5
4154x5 ≤ 1, for all x. The sequence 8g�� 9 is, in turn, subpolynomial of order 1.

From Theorem 1 it then follows that

Ɛ6g�� 4X̃
�4�557− Ɛ6g�� 4Ỹ

�4�557= O4150

By construction, �g�� 4x5− f �4x5� ≤ �/4, for all x ∈�, which proves the result for the case n� ≥ã�. For the case
n� <ã�, it suffices to prove

Ɛ64X�4�5− n�5−7− Ɛ64Y �4�5− n�5−7= Ɛ64n�
−X�4�55+7− Ɛ64n�

− Y �4�55+7= O4150 (A1)

Indeed,

Ɛ6Q�4�57− Ɛ6Q̃�4�57 = Ɛ6X�4�57− Ɛ6Y �4�57

+ Ɛ64X�4�5− n�5−7− Ɛ64Y �4�5− n�5−71

and by Theorem 1 we have that Ɛ6X�4�57 − Ɛ6Y �4�57 = Ɛ6X̃�4�57 − Ɛ6Ỹ �4�57 = O4150 To prove (A1), let
f̃ �4x5= 4n� −ã� − x5+. Then,

Ɛ64X�4�5− n�5−7= Ɛ6f̃ �4X̃�4�557

and similarly for Y �. Fixing 0 < � < 1, define g̃�� 2�→� as follows:

g̃�� 4x5 2=



























n� −ã� − x1 x ≤ −6ã� − n�7− �1

1
4�

4x+ã�
− n�

− �521 −6ã� − n�7− � ≤ x <−6ã� − n�7+ �1

01 x ≥ −6ã� − n�7+ �0

Then, �g̃�� 4x5� ≤ 1 + �x� and 4g̃�� 5
4154x5 ≤ 1, for all x. The sequence 8g̃�� 9 is, in turn, subpolynomial of order 1,

and it follows from Theorem 1 that

Ɛ6g̃�� 4X̃
�4�557− Ɛ6g̃�� 4Ỹ

�4�557= O4150

By construction, �g̃�� 4x5− f̃ �4x5� ≤ �/4, for all x ∈�, and the result of the corollary follows. �
For Corollary 2 we require a lemma that guarantees that X�4�5 has no significant mass concentrated on any

fixed point. (A similar result holds also for the density of Y �, but it is not needed for any of our derivations.)

Lemma A.1. There exists an absolute constant � such that for any k ∈�,

�8X�4�5= k9≤�
√
�

−1
0

Proof. The result can be equivalently proved for X̃�4�5 = X�4�5−ã�. For x ∈ 8−ã�1 : : : 1011121 : : : 9,
let ��4x5=�8X̃�4�5= x9. We claim that 0 is a maximizer of ��. Indeed, using the balance equation ���4x5=

4�44x + ã�5 ∧ n�5 + �4x + ã� − n�5+5��4x + 15, it is evident that ��4 · 5 is nondecreasing for x ≤ 0 and
nonincreasing for x ≥ 0. In turn, it suffices to prove that ��405 = O4

√
�

−1
5. Let ��

0 be the hitting time of X̃�

to 0. Since any point x ∈� (in particular 0) is a regeneration point for the B&D process X̃�, we have

��405=
Ɛ06
∫ ��0

0 �8X̃�4s5= 09ds7

Ɛ06�
�
0 7

0

During such a regenerative cycle, the process X̃� visits 0 only once so that Ɛ06
∫ ��0

0 �8X̃�4s5 = 09ds7 = 1/4�+

�4ã� ∧ n�5+ �4ã� − n�5+5= 1/42�5 and, in particular,

��405=
1

2�Ɛ06�
�
0 7
0

Next note that Ɛ06�
�
0 7≥ p�

1 Ɛ16�
�
u 71 where ��

u is as defined in §4.1 and p�
1 = �/4�+�4ã� ∧n�5+�4ã� −n�5+5=

1/2 is the transition probability from 0 to 1. By Proposition 3, 4Ɛ16�
�
u 75

−1 = O4
√
�5, and, in turn,

��405≤
1

�Ɛ16�
�
u 7

= O4
√
�

−1
50

This completes the proof. �
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Proof of Corollary 2. Equation (17) directly implies (18). The converse holds noting that if (17) is not
true, there must exist a sequence 8a�9 such that (18) does not hold. We focus on proving (18). Let ã� = a� −ã�.
Using the centered process X̃� and Ỹ �, it is equivalent to prove

�8X̃�4�5≥ ã�9−�8Ỹ �4�5≥ ã�9= O4
√
�

−1
50

We can construct two sequences of increasing continuously differentiable functions 8f �9 ∈ S0 and 8g�9 ∈ S0

such that for all x and �, the following properties hold:

f �4x5= �8x≥ã�91 x ∈ 4−�1 ã�
− 17∪ 6ã�1�5

and
�f �4x5− �8x≥ã�9� ≤ g�4x5≤ �8x∈6ã�−21 ã�+1790

Then,

�8X̃�4�5≥ ã�9−�8Ỹ �4�5≥ ã�9

= Ɛ6f �4X̃�4�557− Ɛ6f �4Ỹ �4�557+
(

Ɛ6�8X̃�4�5≥ã�97− Ɛ6f �4X̃�4�557
)

+
(

Ɛ6�8Ỹ �4�5≥ã�97− Ɛ6f �4Ỹ �4�557
)

1

and we have
∣

∣�8X̃�4�5≥ ã�9−�8Ỹ �4�5≥ ã�9
∣

∣

≤
∣

∣Ɛ6f �4X̃�4�557− Ɛ6f �4Ỹ �4�557
∣

∣+
∣

∣Ɛ6g�4X̃�4�557� + �Ɛ6g�4Ỹ �4�557
∣

∣

≤
∣

∣Ɛ6f �4X̃�4�557− Ɛ6f �4Ỹ �4�557
∣

∣+
∣

∣Ɛ6g�4X̃�4�557− Ɛ6g�4Ỹ �4�557
∣

∣+ 2Ɛ6g�4X̃�4�5570

The first two terms in the last line above are bounded by Theorem 1. Finally, by Lemma A.1,

Ɛ6g�4X̃�4�557=�8X̃�4�5 ∈ 4ã�
− 21 ã�

+ 159= O4
√
�

−1
51

which concludes the proof of the corollary. �
Proof of Corollary 3. Define q� = 4ã� − n�5+. Then

Ɛ64Q�4�5− Ɛ6Q�4�57527− Ɛ64Q̃�4�5− Ɛ6Q̃�4�57527

= Ɛ64Q�4�5− q�
+ q�

− Ɛ6Q�4�57527− Ɛ64Q̃�4�5− q�
+ q�

− Ɛ6Q̃�4�57527

= Ɛ64Q�4�5− q�527− Ɛ64Q̃�4�5− q�527− 44Ɛ6Q�4�57− q�52
− 4Ɛ6Q̃�4�57− q�5250 (A2)

For the last term in the above,

4Ɛ6Q�4�57− q�52
− 4Ɛ6Q̃�4�57− q�52

= 24Ɛ6Q�4�57− q�54Ɛ6Q�4�57− Ɛ6Q̃�4�575− 4Ɛ6Q�4�57− Ɛ6Q̃�4�57520

For all x1 y ∈�, it holds that −4x− y5− ≤ 4x5+ − 4y5+ ≤ 4x− y5+ so that

−4x−ã�5− ≤ 4x− n�5+ − 4ã�
− n�5+ ≤ 4x−ã�5+0

Recalling that q� = 4ã� − n�5+ and that Q�4�5= 4X�4�5− n�5+, we have that

�Ɛ6Q�4�57− q�
� = �Ɛ64X�4�5− n�5+7− 4ã�

− n�5+� ≤ Ɛ6�X�4�5−ã�
�7≤

√

Ɛ64X�4�5−ã�527= O4
√
�51

where the last inequality follows from Jensen’s inequality and the last equality follows from Theorem 2; see
Remark 4.1. By Corollary 1, we have that Ɛ6Q�4�57− Ɛ6Q̃�4�57= 1, and we conclude that

4Ɛ6Q�4�57− q�52
− 4Ɛ6Q̃�4�57− q�52

= O4
√
�50 (A3)

Revisiting (A2), it is clear that, to complete the proof, it remains to prove that

Ɛ64Q�4�5− q�527− Ɛ64Q̃�4�5− q�527= O4
√
�50

Defining the function f �4x5= 64x+ã� − n�5+ − 4ã� − n�5+72, we rewrite

Ɛ64Q�4�5− q�527− Ɛ64Q̃�4�5− q�527= Ɛ6f �4X̃�4�557− Ɛ6f �4Ỹ �4�5570

The sequence 8f �9 is not subpolynomial since f � is not differentiable at −4ã� − n�5 when ã� > n�. Instead,
given �� ≤ q�/2 ∧ 1, define g�� as follows:

(i) If ã� ≤ n�, g�� 4x5= f �4x5 for all x ∈�;
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(ii) If ã� >n�, g�� 4x5= f �4x5 for x ≥ −ã� + n�, and for x <−ã� + n�,

g�� 4x5= 4ã�
− n�52

+ �� −
4ã� − n�52

��

((

x+
��

ã� − n�
+ã�

− n�

)+)2

0

Then 8g�� 9 ∈S2 and supx∈� �f �4x5− g�4x5� ≤ 4��52. As in the proof of Corollary 1, we then have that

Ɛ64Q�4�5− q�527− Ɛ64Q̃�4�5− q�527

= Ɛ6f �4X̃�4�557− Ɛ6f �4Ỹ �4�557

= Ɛ6f �4X̃�4�557− Ɛ6g�� 4X̃
�4�557+ Ɛ6g�� 4X̃

�4�557

− Ɛ6g�� 4Ỹ
�4�557+ Ɛ6g�� 4Ỹ

�4�557− Ɛ6f �4Ỹ �4�557

= O4
√
�50 (A4)

The corollary now follows by plugging (A3) and (A4) into the last line in (A2). �

Appendix B. Proofs of auxiliary lemmas.

Proof of Lemma 4.1. We start with the B&D process X̃�. Let A� be its generator and let g4x5= e�x. Then,
g4x5≥ 1 for all x ≥ 0 and

A�g4x5 = �4e�4x+15
− e�x5+ 4�+ `�4x554e�4x−15

− e�x5

= e�x4�4e� − 15+ 4�+ `�4x554e−�
− 1551

where `�4x5 is as in (24). Since e−� = 1 − �+ o4�5 and e� = 1 + �+ o4�5 we have

A�g4x5= e�x4��− �4�+ `�4x555+ 4�+ `�4x55o4�5e�x = −e�x�`�4x5+ 4�+ `�4x55o4�5e�x0

Since `�4x5 is strictly increasing, we can choose K1 (which may depend on �) sufficiently large so that `�4x5≥ �
for all x ≥ K1. We can subsequently choose � sufficiently small so that o4�5 ≤ �/4 and find c2 and c3 (which
may depend on �) such that

A�g4x5≤ −c3g4x5+ c2�8x ≤K291

for all x ∈�. Since g4x5≥ 1, we can conclude the existence of �0 such that for all y >K1, Ɛy6e
�0�

�
K1 7≤ e�y <�,

where ��
K1

is the hitting time of K1 (see, e.g., Roberts and Rosenthal [33, Corollary 2]). A similar argument
is applied to ��

−K2
(for some −K2 ≥ −ã�) to show the existence of �0 (possibly re-chosen) such that for

all y < −K2, Ɛy6e
�0�

�
−K2 7 < �. Letting K = 8−K21 : : : 10111 : : : K19, we have established that for all y 6= K,

Ɛy6e
�0�

�
K 7 <� where ��

K is the hitting time of the set K.
Finally, the existence of an exponential moment for the return time of a continuous-time Markov chain to a

finite set implies that Ɛy6e
�0�

�
y 7 < � for any y (where ��

y is the hitting time of y); see Meyn and Tweedie [30,
Chapter 15]. This concludes the proof for X̃�.

For the diffusion process Ỹ � it follows from Loukianova et al. [26, Theorem 1.1] that there exists �0 (possibly
depending on � and different from the above �0) such that both Ɛ06e

�0 �̃
�
u 7 < � and Ɛ06e

�0 �̃
�
l 7 < �. Indeed, to

apply the result in Loukianova et al. [26], one must verify certain conditions on the speed density and scale
density (see Browne and Whitt [9, p. 471]) of the diffusion and these conditions can be verified directly. Finally,
by the strong Markov property, Ɛy6e

�0 �̃
�
7= Ɛy6e

�0 �̃
�
u 7Ɛ06e

�0 �̃
�
l 7 <� for some constant �0. �

Proof of Lemma 4.2. Since g4 · 5 is nondecreasing and X̃�4t5 ≤ X̃�405+E4�t5 for all t ≥ 0, we have for
all such t that

Ɛy

[

∫ t∧��u

0
�g4X̃�4s55�ds

]

≤ t Ɛy6g4y+E4�t557 <�0 �

Proof of Lemma 4.3. Recall that the predictable quadratic variation of the martingale M� is given by

�M�
�4t5= �t +�

∫ t

0
Z�4s5ds + �

∫ t

0
Q�4s5ds1
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which satisfies �M��4s5=
∫ s

0 42�+`�4X̃�4u555du for each t and all s ≤ t∧��
u . By the optional sampling theorem,

the stopped martingale M�4· ∧ ��
u 5 is itself a martingale and, furthermore, the stochastic integral

∫ t∧��u

0
g4X̃�4s−55dM�4s5

is then itself a zero-mean martingale provided that (27) holds; see, e.g., Van der Vaart [37, Theorem 5.25].
We turn to the second part of the lemma. Since the jumps of X̃� are of size 1, we have for t ≤ ��

u that

∑

s≤t

4ãX̃�4s552
=
∑

s≤t

�ãX̃�4s5� =E4�t5+ S

(

�
∫ t

0
Z�4s5ds

)

+N

(

�
∫ t

0
Q�4s5ds

)

0

Recalling the square-integrable martingales M�
a , M�

s , and M�
r defined in §2 and the definition of `�4 · 5 in (24)

we have
M�4t5 2=

∑

s≤t

4ãX̃�4s552
−

∫ t

0
42�+ `�4X̃�4s555ds

is a square-integrable martingale. The stochastic integral

N�4t5 2=
∫ t

0
g4X̃�4s−55dM�4s5

is itself a square-integrable martingale provided that (27) holds; see, e.g., Van der Vaart [37, Theorem 5.25]. Note
that (28) is equivalently written as Ɛy6N

�4t ∧ ��
u 57 = 0, which now holds by optional stopping. This concludes

the proof. �
Proof of Lemma 4.4. Let X̃�

J (J here stands for “jump”) be a process that has the transition law of X̃� on
the states 81121 : : : 9 but jumps instantaneously back to 1 when hitting 0. By Lemma 4.1, the process X̃�

J is a
positive recurrent Markov process, and consecutive visits to 0 are regeneration points. Thus,

Ɛ16
∫ ��u

0 f 4X̃�4s55ds7

Ɛ16�
�
u 7

=
Ɛ16
∫ �̂�J

0 f 4X̃�
J 4s55ds7

Ɛ16�̂
�
J 7

1 (B1)

where �̂�
J is the first hitting time of X̃�

J to 0. We also have (see, e.g., Asmussen [3, Theorem 3.1])

Ɛ6f 4X̃�
J 4�557=

Ɛ16
∫ �̂�J

0 f 4X̃�
J 4s55ds7

Ɛ16�̂
�
J 7

= lim
t→�

1
t

∫ t

0
f 4X̃�

J 4s55ds0

The processes U � and X̃�
J share the same transition law for all states except for 0 (in which X̃�

J jumps
instantaneously to 1). Initializing both U � and X̃�

J at time t = 0 in state 1 and using that `�4x5 is nondecreasing,
it is straightforward to construct U � and X̃�

J on a common sample space so that on each sample path,

U �4t5≤ X̃�
J 4t5≤U �4t5+ 10

In particular, since f is nondecreasing,

1
t

∫ t

0
f 4U �4s55ds ≤

1
t

∫ t

0
f 4X̃�

J 4s55ds ≤
1
t

∫ t

0
f 4U �4s5+ 15ds

for each t > 0. Taking the limit t → �, we then have that Ɛ6f 4U �4�557 ≤ Ɛ6f 4X̃�
J 4�557 ≤ Ɛ6f 4U �4�5+ 157,

which, by (B1), implies the result of the lemma. �
Proof of Lemma 4.5. Taking expectations in (25) and using the optional stopping theorem, we have that

Ɛ16X̃
�4t ∧ ��

u 57= 1 − Ɛ1

[

∫ t∧��u

0
`�4X̃�4s55ds

]

0 (B2)

Lemma 4.2 with g = `� there guarantees that the expectation of the integral is finite. The process 4E4�t5−�t1
t ≥ 05 is a martingale with respect to ��. By the optional stopping theorem,

Ɛ16E4�4t ∧ ��
u 557= �Ɛ16t ∧ ��

u 7≤ �Ɛ16�
�
u 71

for all t ≥ 0. By the monotone convergence theorem and Lemma 4.1, we have that Ɛ16E4�4�
�
u 557 <�. Because

0 ≤ X̃�4t ∧ ��
u 5≤ 1 +E4�4t ∧ ��

u 55≤ 1 +E4���
u 5

for all t ≥ 0, thus X̃�4t ∧ ��
u 5 is uniformly integrable in t, and taking t → � in (B2) we obtain the result of

the lemma. �
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Proof of Lemma 4.6. We first prove the upper bounds in (30) and (31). Specifically, we prove that there
exist absolute constants 8�u1m1m ∈�9 such that, for any m> 1, Ɛ64U �4�55m7≤ �u1m

√
�
m

. Equation (31) then
follows trivially for m > 1 and it follows for m = 1 by the fact that Ɛ6U �4�57 ≤

√

Ɛ64U �4�5527. Finally, the
upper bound in (30) is because �`�4x5� ≤ 4�2 +�354

√
�+ x5 for all x ≥ 0; see (26).

Let U� be the generator of the B&D process 4U �4t51 t ≥ 05. Let g4x5= xm. Then, for all x ∈�,

U�g4x5= �4g4x+ 15− g4x55+ 4�+ `�4x554g4x− 15− g4x550

Since g4x+ 15− g4x5=
∑

k≤m1k 6=0

(

m

k

)

xm−k and g4x− 15− g4x5=
∑

k≤m1k 6=0

(

m

k

)

xm−k4−15k,

U�g4x5 =
∑

k≤m1k 6=0

`�4x5

(

m

k

)

xm−k4−15k +
∑

k even1 k 6=0

42�5
(

m

k

)

xm−k

=
∑

2≤k≤m

`�4x5

(

m

k

)

xm−k4−15k +
∑

k even1 k 6=0

42�5
(

m

k

)

xm−k
−mxm−1`�4x50

By the structure of `�4x5, we can choose absolute constants c11 c2 such that U�g4x5 ≤ −c2x
m for x ≥ c1

√
�.

There then exists another absolute constant c3 such that U�g4x5 ≤ c3

√
�
m

, for x ≤ c1

√
�. Overall, we can find

absolute constants c41 c5 (possibly depending on m) such that

U�g4x5≤ −c4x
m

+ c5

√
�
m
1

for all x ≥ 0. Applying expectations we conclude (see, e.g., Glynn and Zeevi [16, Corollary 1]) that

Ɛ64U �4�55m7≤
c5

c4

√
�
m
0

Letting �u1m = c5/c4 concludes the argument.
We use a Lyapunov function argument also to prove that Ɛ6`�4U �4�557≥�l

√
� for some absolute constant �l.

Define a (sequence of) functions g� as follows (the absolute constant c6 will be determined below):

g�4x5=

{

x23 x ≤ �
√

c6��3

42�
√

c6�� + 15x− 4�
√

c6�� + 15�
√

c6��3 x > �
√

c6��0

Then

U�g�4x5=











�3 x = 03

2�− 42x− 15`�4x53 1 ≤ x ≤ �
√

c6��3

−42�
√

c6�� + 15`�4x53 x > �
√

c6��0

We claim that we can choose c6 in the definition of g� together with absolute constants c7, c8 such that

U�g�4x5≥ c7�− c8

√
�`�4x51

in which case, since Ɛ6U�g�4U �4�557 = 0, we conclude that Ɛ6`�4U �4�557 ≥ c7

√
�/c8 as required. To show

the existence of such constants, we pick c7 ≤ 1 and choose c61 c8 such that

�− 42�
√

c6�� − 15`�4�
√

c6��5≥ 01 (B3)

4c8

√
�− 42�

√

c6�� + 155`�4�
√

c6��5≥ c7�0 (B4)

Specifically, since `� satisfies `�4x5 ≥ 4�∧ �5x, we can choose c6 sufficiently small in (B3) and subsequently
choose c8 sufficiently large in (B4) so that both hold. �

Proof of Lemma 4.7. Fix d� =
∫ �

0 4f �4s5/�5e−
∫ s

0 `�4u5/�du ds and consider the first-order ODE

−`�4x5��4x5+�4��54154x5= −f �4x51

��405= d�0
(B5)

From the Lipschitz continuity of the coefficients and known results in ODE theory (see, e.g., Teschl [36,
Theorem 2.2 and Lemma 2.3]) it follows that the ODE (B5) has a unique solution that is infinitely differentiable.
In turn, u�

f �4x5=
∫ x

0 ��4u5du is a solution for (32).
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By direct differentiation it is verified that

4u�
f �5

4154x5= ��4x5=

∫ �

x

f �4s5

�
e−

∫ s
x 4`

�4x5/�5du ds

is the corresponding unique solution to (B5). Recall (see (24)) that

`�4x5 = −�+�44x+ã�5∧ n�5+ �4x+ã�
− n�5+

= −�+�4n�
∧ã�5+ �4ã�

− n�5+

+�44x+ã�5∧ n�
−ã�

∧ n�5+ �44x+ã�
− n�5+ − 4ã�

− n�5+5

≥ 4�∧ �5x−�
√
�1

where by the definition of ã�, −�+�4n� ∧ã�5+ �4ã� − n�5+ ≥ −�
√
� for some � > 0 and x ≥ 0. Thus, in

(26) one can take �1 =�∧ � and �3 = �. (In fact, the above holds with �= 0. We allow for �> 0 so that this
proof can be reused without change for the NDS regime in §C.)

Subsequently, we can choose C01m, C11m, and C21m such that

�4u�
f �5

4154x5� ≤

∫ �

x

a1

√
�

m
+ a2s

m

�
e−

∫ s
x 44�∧�5u−�

√
�5/�du ds

=
a1

√
�
m−1

�∧ �
e44�∧�5x−�

√
�52/424�∧�5�5

∫ �

44�∧�5x/
√
�5−�

e−4s2/424�∧�555 ds

+
a2

√
�

m−1

4�∧ �5m+1
e44�∧�5x−�

√
�52/424�∧�5�5

∫ �

44�∧�5x/
√
�5−�

4s +�5me−4s2/424�∧�555 ds

≤
a1

√
�

m−1

�∧ �
C01m +

a2

√
�

m−1

4�∧ �5m+1

(

C11m +C21m

(

�∧ �
√
�

x

)m−1)

=

(

a1C01m

�∧ �
+

a2C11m

4�∧ �5m+1

)

√
�

m−1
+C21m

a2

4�∧ �52
xm−10

For the second inequality, we use the fact that limz→�e
z2/2
∫ �

z
e−s2/2ds=0 and limx→�4e

z2/2/zm−15
∫ �

z
4s+

a5me−s2/2ds=1. Thus, in particular, there exists K such that when z≥K, ez
2/2
∫ �

z
4s+a5me−s2/2 ds ≤ 2zm−1. For

values z≤K, the function g4z5= ez
2/2
∫ �

z
4s+a5me−s2/2 ds (being continuous) is bounded by a constant. Finally,

set A11m = 44a1C01m5/�∧ �+ 4a2C11m5/4�∧ �5m+15∨ 4C21m4a2/4�∧ �5255 to obtain (33).
To prove (34) and (35) we plug the bound on 4u�

f �5
4154x5 back into the ODE (32). Using the subpolynomiality

of f �, we can choose an absolute constant A21m such that

�4u�
f �5

4254x5� ≤
1
�

(

a1

√
�
m

+ a2x
m

+ 41 + `�4x55�4u�
f �5

4154x5�
)

≤
1
�

(

a1

√
�
m

+ a2x
m

+A11m41 + `�4x554xm−1
+ 4

√
�5m−15

)

≤
1
�
A21m

(

xm
+ 4

√
�5m

)

0

Taking derivatives on both sides of (32), we get

�4u�
f �5

4354x5� ≤
1
�

(

�4f �54154x5� + �∨��4u�
f �5

4154x5� + �`�4x54u�
f �5

4254x5�
)

0

Plugging in the bounds for the first and second derivatives and using (26) concludes the proof, recalling (see
Definition 3.1) that for m≥ 1, �4f �54154x5� ≤ a1

√
�
m−1

+ a2�x�
m−1.

We next prove (39). We fix � for the remainder of the proof so that the constants in the various bounds may
depend on � and are not necessarily absolute constants. The following is a standard argument in relating SDEs
to PDEs/ODEs. We provide the detailed argument for completeness.
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The process Ỹ � satisfies trivially a piecewise-linear growth condition on the drift and the (constant) diffusion
coefficient. By the assumptions of the lemma u�

f � has first and second derivatives that grow at sub-exponential
rate so that u�

f � is in the domain of the generator of Ỹ � (see, e.g., Klebaner [22, Theorem 6.11]). In turn,

Ɛy6u
�
f �4Ỹ

�4t ∧ �̃�557 = u�
f �4y5− Ɛy

[

∫ t∧�̃�u

0
`�4Ỹ �4s554u�

f �5
4154Ỹ �4s55ds

]

+ Ɛy

[

∫ t∧�̃�u

0
�4u�

f �5
4254Ỹ �4s55ds

]

0

Since u�
f � solves (32) we have, for each t ≥ 0, that

Ɛy6u
�
f �4Ỹ

�4t ∧ �̃�
u 557= u�

f �4y5− Ɛy

[

∫ t∧�̃�u

0
f �4Ỹ �4s55ds

]

0 (B6)

Lemma 4.1 guarantees that �̃�
u is almost surely finite so that

lim
t→�

Ỹ �4t ∧ �̃�
u 5= 0 and lim

t→�
u�
f �4Ỹ

�4t ∧ �̃�
u 55= 0

almost surely. To conclude that
Ɛy6u

�
f �4Ỹ

�4t ∧ �̃�
u 557→ 0 as t → �1 (B7)

it remains to show that u�
f �4Ỹ

�4t ∧ �̃�
u 55 is uniformly integrable in t. To that end, by (33) we have

u�
f �4Ỹ

�4t ∧ �̃�
u 55≤A11m

(

1
m
4Ỹ �4t ∧ �̃�

u 55
m

+ 4
√
�5m−1Ỹ �4t ∧ �̃�

u 5

)

1

so it remains only to prove the uniform integrability of 84Ỹ �4t ∧ �̃�
u 55

m1 t ≥ 09. In fact, it suffices to prove the
uniform integrability of 84B4t ∧ �̃�

u 55
m1 t ≥ 09. Indeed, since Ỹ � ≥ 0 on 601 �̃�

u 5 and using (26), we have

Ỹ �4t5= y−

∫ t

0
`�4Ỹ �4s55ds +

√
2�B4t5≤ y+ c1

√
�t +

√
2�B4t5 (B8)

so that since Ɛ164�̃
�
l 5

k7 <� for any k ∈� (see Lemma 4.1), the uniform integrability of 84Ỹ �4t ∧ �̃�
u 55

m1 t ≥ 09
follows from that of 84B4t ∧ �̃�

u 55
m1 t ≥ 09, which we prove next.

The process B4t5 = exp4�B4t5 − 4�2/25t5 is a martingale for any � ∈ 4−�1�5 and so is the stopped
martingale B4t∧ �̃�

u 5; see, e.g., Klebaner [22, Theorems 3.7 and 7.14]. In turn, Ɛy6B4t∧ �̃�
u 57= 1 for all y1 t ≥ 0.

(Recall that here Ɛy6 · 7 is the expectation conditional on Ỹ �405= y and not on B405= y.) By Holder’s inequality

Ɛy

[

exp
(

�

2
B4t ∧ �̃�

u 5

)]

= Ɛy

[

√

B4t ∧ �̃�
u 5 exp

(

�2

2
4t ∧ �̃�

u 5

)]

≤

√

Ɛy6B4t ∧ �̃�
u 57

√

Ɛy

[

exp
(

�2

2
4t ∧ �̃�

u 5

)]

=

√

Ɛy

[

exp
(

�2

2
4t ∧ �̃�

u 5

)]

0

A similar argument is applied to the martingale B̃4t5 = exp4−�B4t5 − 4�2/25t50 By Lemma 4.1
Ɛy6exp44�2/25�̃�

u 57 < � for all sufficiently small �. By the dominated convergence theorem it then holds that
lim�→0 Ɛy6exp44�2/25�̃�

u 57= 1, and we can choose � small such that
√
Ɛy6exp44�2/254t ∧ �̃�

u 557≤ 2. Fixing such
�, we have

Ɛy

[

exp
(

�

2
�B4t ∧ �̃�

u 5�

)]

≤ Ɛy

[

exp
(

�

2
B4t ∧ �̃�

u 5

)]

+ Ɛy

[

exp
(

−
�

2
B4t ∧ �̃�

u 5

)]

≤ 40

In particular, Ɛy6exp4�/2�B4t∧ �̃�
u 5�57 is uniformly bounded in t. We conclude that the sequence 84B4t ∧ �̃�

u 55
m1

t ≥ 09 is uniformly integrable and so is, by (B8), the family 84Ỹ �4t∧ �̃�
u 55

m1 t ≥ 09, which proves (B7). It remains
to show that as t → �,

Ɛy

[

∫ t∧�̃�u

0
f �4Ỹ �4s55ds

]

→ Ɛy

[

∫ �̃�u

0
f �4Ỹ �4s55ds

]

0 (B9)
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By the almost sure finiteness of �̃�
u (and the finiteness of Ỹ � on finite intervals), we have that

∫ t∧�̃�u

0
f �4Ỹ �4s55ds →

∫ �̃�u

0
f �4Ỹ �4s55ds

almost surely. Since f � ∈Sm, it suffices to prove that

Ɛy

[

∫ �̃�u

0
4a1

√
�

m
+ a24Ỹ

�4s55m5ds

]

<�1 (B10)

which will allow us to apply the dominated convergence theorem to obtain (B9). Equation (B10) follows from
(B8) by the uniform integrability of 8�B4t ∧ �̃�

u 5�1 t ≥ 09, which, through Doob’s inequality, implies also that of
8sup0≤s≤t �B4s ∧ �̃�

u 5�1 t ≥ 09. We conclude that (B9) holds. Plugging (B9) and (B10) into (B6) completes the
proof of the lemma. �

Proof of Lemma 4.8. We first prove (43). Recall that given that X̃�405 = y ≥ 0, X̃�4t ∧ ��
u 5 ≤ y +

E4�4t ∧ ��
u 55. Using Lemma 4.7 we have that

V�4X̃�4t ∧ ��
u 55≤ a+ b4y+E4���

u 55
m1

for some (not necessarily absolute) constants a1b. As in the proof of Lemma 4.5, we then have that
V�4X̃�4t ∧ ��

u 55 is uniformly integrable in t. By Lemma 4.1, V�4X̃�4t ∧ ��
u 55 → 0 as t → � almost surely,

combined with the uniform integrability yields (43).
Next we prove (44). Taking g4x5= xl in Lemma 4.3 we have

Ɛy

[

∑

s≤t∧��u 2 �ãX̃
�4s5�>0

4X̃�4s−55l
]

= Ɛy

[

∫ t∧��u

0
42�+ `�4X̃�4s−5554X̃�4s55l ds

]

0

As X̃� ≥ 0 on 601 ��
u 5 and since 2� + `�4X̃�5 is nonnegative, the required convergence now follows from the

monotone convergence theorem. �

Proof of Lemma 5.1. For each �1n ∈�+, denote g4�1n5= Ɛ6Q̃�
n4�57. We must establish that for each �,

g4�1n5 is continuous and nonincreasing in n, and that

g4�1n5→ 01 as n→ �0 (B11)

In addition, we show g4�105/4�/�5 → 1 when � → �. These guarantee that for any �4�5 ≤ � ∈ 40115, there
then exists n4�5 such that � Ɛ6Q̃n4�57= ��4�5 for all large �.

Recall that

Ɛ6Q̃�
n4�57=

√
�

√
�
61 −p4�n1�1�576h4�n/

√
�5−�n/

√
�71 (B12)

where �n = 4n� − �5/
√
�. Continuity of g4�1n5 follows trivially from the continuity of p and h, which, in

turn, follows from the continuity of the normal density and distribution functions. To prove (B11), note that if
n → � then �n → �. It is known that as �n → �, 1 − p4�n1�1�5 → 0 (see the proof of Garnett et al. [15,
Theorem 4]) and 4h4�n/

√
�5 − �n/

√
�5 → 0 (see the proof of Mandelbaum and Zeltyn [28, Theorem 4.1]).

Thus, g4�1n5→ 0 as n→ �.
Next note that g4�105= 4

√
�/

√
�561 −p4−

√
�1�1�576h4−

√
�/

√
�5+

√
�/

√
�7, in which

lim
�→�

[

1 −p
(

−
√
�1�1�

)]

= 1 and lim
�→�

[

h
(

−
√
�/

√
�
)

+
√
�/

√
�
]

/4
√
�/�5= 10

Hence g4�105/4�/�5→ 1 when �→ �.
Finally, n4�5 is unique follows from the monotonicity of the right-hand side of (B12) in �n (see Mandelbaum

and Zeltyn [28, Remark 4.2]) and, in turn, that of g4�1n5 in n. �

Proof of Lemma 5.2. Fix two sequences 8n�
19 and 8n�

29 as in the statement of the lemma as well as a
Brownian motion B. Let the sequences of diffusion processes 8Y �

1 9 and 8Y �
2 9 be defined as solutions to the two

SDEs:
Y �

1 4t5= Y �
1 405+ 4�− n�

1�5t +�
∫ t

0
4Y �

1 4s55
− ds − �

∫ t

0
4Y �

1 4s55
+ ds +

√
2�B4t51
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and
Y �

2 4t5= Y �
2 405+ 4�− n�

2�5t +�
∫ t

0
4Y �

2 4s55
− ds − �

∫ t

0
4Y �

2 4s55
+ ds +

√
2�B4t50

We must prove that if n�
1 − n�

2 = O415, then Ɛ64Y �
1 4�55+7− Ɛ64Y �

2 4�55+7= O415.
Define Ŷ �

1 4t5= Y �
1 4t5+ n�

1 −ã�
1 and Ŷ �

2 4t5= Y �
2 4t5+ n�

2 −ã�
2 with

ã�
1 =

�

�
−

(

�

�
− n�

1

)+(

1 −
�

�

)

and ã�
2 =

�

�
−

(

�

�
− n�

2

)+(

1 −
�

�

)

0

We claim that
Ɛ64Ŷ �

1 4�5− n�
1 +ã�

15
+7− Ɛ64Ŷ �

2 4�5− n�
2 +ã�

25
+7= O4150 (B13)

Indeed, this follows from Remark 4.2 that guarantees that Theorem 1 and, in turn, Corollary 1 holds for both
Y �

1 +n�
1 and Y �

2 +n�
2 relative to X� where X� is the B&D process with �n�

1� as the number of servers. Namely,
we have that both Ɛ64Ŷ �

1 4�5 − n�
1 + ã�

15
+7 − Ɛ64X�4�5 − n�

1 + ã�
15

+7 = O415 and Ɛ64Ŷ �
2 4�5 − n�

2 + ã�
25

+7 −

Ɛ64X�4�5− n�
1 +ã�

15
+7= O4151 which proves (B13). �

Proof of Lemma 5.3. Fix two sequences 8n�
19 and 8n�

29 as in the statement of the lemma and let ��
i =

4n�
i �−�5/

√
� for i = 112. Using (16) we write

g�4��
i 5 2= � Ɛ6Q̃�

n�i
7=

√
�
√
�z14�

�
i 5z24�

�
i 51

where z24�
�
i 5 = 6h4��

i /
√
�5− ��

i /
√
�7 and z14�

�
i 5 = 1 − p4��

i 1�1�5. Note that z14 · 5 ∈ 60117 and is, in fact, a
decreasing function of its argument (see the proof of Garnett et al. [15, Theorem 4]). Also, if lim sup��

�
2 ≤ c1,

then there exists c2 such that lim inf�→�41 − p4��
2 1�

�1 �55 ≥ c2 > 0; see again Garnett et al. [15, Theorem 4].
Also, the function z24 · 5 is nonnegative and strictly decreasing in its argument (see the proof of Mandelbaum
and Zeltyn [28, Theorem 4.1]).

Assume first that n�
1 − n�

2 → �. Then

g�4��
15− g�4��

25 =

√
�

√
�
z24�

�
15z14�

�
15−

√
�

√
�
z24�

�
25z14�

�
25

≤

√
�

√
�
4z24�

�
15− z24�

�
255z14�

�
25

≤ c2

√
�

√
�
4z24�

�
15− z24�

�
2550

We claim that √
�

√
�
4z24�

�
15− z24�

�
255→ −�0 (B14)

Recall that, by assumption, lim sup��
�
2 <� so that since z24 · 5 is strictly decreasing and convex (see the online

appendix in Mandelbaum and Zeltyn [28]) there exists c3 such that lim inf�→� z
415
2 4��

25 ≤ −c3. There are two
cases to consider:

(i) ��
1 −��

2 → 0. In this case, by a Taylor expansion around ��
2 we have that

√
�

√
�
4z24�

�
15− z24�

�
255 ≤ −c3

√
�

√
�
4��

1 −��
2 + o4��

1 −��
255

= −c3

1
√
�
4n�

1 − n�
2 + o4n�

1 − n�
255→ −�1

where the divergence follows because n�
1 − n�

2 → �.
(ii) If lim inf�→�4�

�
1 −��

25≥ c4 for an absolute constant c4, then the result follows trivially because z24·5 is
strictly decreasing.

The case n�
1 − n�

2 → −� is treated similarly. Since ��
1 ≤ ��

2 for all sufficiently large �, we have that

g�4��
15− g�4��

25 =

√
�

√
�
z24�

�
15z14�

�
15−

√
�

√
�
z24�

�
25z14�

�
25

≥

√
�

√
�
4z24�

�
15− z24�

�
255z14�

�
25

≥ c2

√
�

√
�
4z24�

�
15− z24�

�
2551

for all such �. Similarly to the above, it is now verified that 4
√
�/

√
�54z24�

�
15− z24�

�
255→ � as required. �
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Appendix C. The NDS regime. Thus far we assumed that �� ≡ �, which covers, in particular, the QED,
ED, and QD regimes. In this section we focus on the NDS regime; namely, we assume that �� = �̄

√
� for some

�̄ > 0 and √
�41 −��5= O4150

It is, in turn, a property of the NDS regime that

ã�
− n�

= O415 and �−��n�
= O4

√
�50 (C1)

The arguments in this section prove that our universal approximation in (14) is indeed universal in that it
covers also this (somewhat newer) regime. From a practical viewpoint, the only change is that the service rate �
should be replaced with �� wherever it appears, particularly in the definition of the universal diffusion in (14)
and in ã�, which is now given by

ã�
=

�

��
−

(

�

��
− n�

)+(

1 −
��

�

)

0

With these obvious changes, all the results stated in §3 apply to the NDS regime without exception.
Many of our proofs do not at all depend on whether or not �� scales with �. Most of the remaining proofs

require only minor changes. Rather than repeating the proofs, we carefully point out the required adjustments.
We regenerate our numerical examples for this regime in §C.4.

C.1. Changes to §2. The single mathematical result here is Lemma 2.1, which is argued for fixed � and,
in particular, does not depend on how (and whether) �� scales with �.

C.2. Changes to §3.
• Theorem 1: Theorem 1 is a direct corollary of Theorem 2. The bound 4Ɛ16�

�
l 75

−1 = O4
√
�5 does not appear

in the NDS version of Theorem 2 because the lower excursion is, in fact, shorter here; see Proposition 9 below.
The remainder of Theorem 2 persists in this regime and the required changes to its proof are detailed in §C.3
below.

• Corollaries 1 and 2: Given Theorem 1 and Lemma A.1, the proofs of these corollaries can be repeated
without any change.

• Lemma A.1: The regenerative-structural based argument requires no change.

C.3. Changes to §4. The remainder of this appendix is dedicated to adjustments to the proof of Theorem 2
as it appears in §4. For the NDS regime we use n� (rather than ã�) as the “center” of our regenerative structure.
We redefine

X̃�4t5=X�4t5− n� and Ỹ �4t5= Y �4t5− n�0

Given a sequence 8f �9 ∈ Sm, define for each � and x, g�4x5 = f �4x + n� − ã�5. By (C1) it then holds that
8g�9 ∈ Sm so that the bound gaps for the redefined X̃� and Ỹ � imply directly the bounds for X� − ã� and
Y � − ã�. The regenerative process is redefined for X̃�, Ỹ � in an obvious way together with the hitting times
��
u 1 �

�
l and �� for X̃� and �̃�

u 1 �̃
�
l and �̃� for Ỹ �.

We note that though now X̃� and Ỹ � are defined slightly differently, the proof of Lemma 4.1 will not change
because we can use the same method to choose K there. We next consider separately each of the upper and
lower excursions.

C.3.1. The upper excursion. With the redefined centering we replace (24) with

`�4x5= −�+��44x+ n�5∧ n�5+ �x1 (C2)

for all x ≥ 0. Using (C1) we then have that

`�4x5≤�
√
�+ �x and `�4x5≥ �x−�

√
�1 (C3)

for all x ≥ 0 and an absolute constant � . Let, as before, U � be a B&D process on 8011: : : 1 9 with birth rate � and
death rate n��� + �x for all x > 0. Importantly, (C3) guarantees that (26) holds. Since having `� nondecreasing
and satisfying (26) are all that is required for Lemmas 4.4 and 4.7–4.8, these continue to hold without any
changes to their respective proofs. Some adjustment is required, however, in the proof of Lemma 4.6.
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Lemma 4.6: First we note that the proofs of the upper bounds in Lemma 4.6 (specifically, in (30) and (31))
only use (26). These bounds and their respective proof then require no changes.

We next argue the lower bound in (30), namely, that Ɛ6`�4U �4�557 ≥ k
√
� for some absolute constant k.

The proof of this fact in Lemma 4.6 relies on the nonnegativity of `� for x ≥ 0. This nonnegativity does not
necessarily hold for the redefined `� in (C2). Fortunately, however, the result does follow from our existing
results, as we outline next.

If ã� ≤ n�, then `� is indeed nonnegative for x ≥ 0 and the proof requires no changes. Consequently, we must
only consider the case ã� >n�. We rewrite (C2) as

`�4x5= −��
+ �x1

where �� = �−��n� ≥ 0. Let k� = ���/��. Define Û � to be a B&D process on the state space 80111 : : : 9 with
arrival rate � and death rate �+ �x in state x. All the conditions in the setting of §4.2 apply to Û � so that by
Lemma 4.6 we have that

Ɛ64Û �4�5527≤��0 (C4)

Note that
Ɛ6U �4�5m7≤ c144k

�52
+ Ɛ64U �4�5− k�52

�U �4�5 > k�75 (C5)

for an absolute constant c and that by basic properties of B&D processes, conditional on being greater than
k�, U �4�5 − k� has the law of Û �. By (C1) k� = O4

√
�5 so that (C4) and (C5) imply that the family

8U �4�5/
√
�1�≥ 09 is uniformly integrable.

The process U � has the law of the headcount process in the M/M/1+M queue with arrival rate �, service rate
��n� and patience rate �. Assuming that k�/

√
� → k ∈ �, it would then follow from Ward [38, Theorem 2.1]

that
U �4�5

√
�

=⇒U4�51 (C6)

where U4�5 has the density fROU in Ward [38, p. 6] (with � replacing � there and k replacing �). Since
the density fROU is that of a truncated normal random variable with mean k and standard deviation 1, there
exists � > 0 such that Ɛ6U 4�5 − k7 = � . By (C6) and the uniform integrability of 8U �4�5/

√
�1� ≥ 09, we

would conclude that Ɛ64U �4�5− k�57 ≥ �
√
�/2 for all sufficiently large �. We could consequently have that

Ɛ6`�4U �4�557≥ ��
√
�/2.

It only remains to consider the case that 8k�/
√
�1� ≥ 09 does not converge. In this case, however, since

k� = O4
√
�5 (see (C1)), we can find k̄� such that k� ≤ k̄� for all sufficiently large � and such that k̄�/

√
�→ k ∈

4−�1�5. Defining Ū � to be a B&D process with birth rate � and death rate �− k̄�� + �x, a simple coupling
argument shows that U �4�5− k� ≥st Ū

�4�5− k̄�. The arguments above apply directly to Ū �4�5− k̄� so that
the result follows.

C.3.2. The lower excursion. The lower excursion requires more elaborate adjustments. In the case �� ≡�
treated in the main body of the paper, we relied on a certain symmetry between the upper and lower excursions;
see §4.3. This symmetry is lost in the NDS regime. Informally, the lower excursion here is order-of-magnitude
shorter than the upper excursion. Additionally, because of the way in which �� scales with �, the derivative
bounds that we are able to establish for the ODE solution are somewhat weaker. Together, however, the correct
ultimate bounds are achieved. Propositions 9 and 10 are the required analogues of Proposition 5 and 6 for the
NDS regime. Because of the symmetry between the lower and upper excursion in the case �� ≡�, the proof of
Proposition 5 (respectively, 6) was identical to that of Proposition 3 (respectively, 4). Thus, we use the latter as
our reference proofs.

Proposition 9 (Order Bounds).

Ɛ06�
�
l 7= O4

√
�

−3/2
5 and Ɛ0

[

∫ ��l

0
4X̌�4s55m ds

]

= O4
√
�
4m−35/2

51 m ∈�0

Proof. The main step in adjusting the proof of Proposition 3 is in adapting the Lyapunov-function-argument
in Lemma 4.6. In fact, the proof is almost identical, with the exception of the power of � in various places
being 1/4 rather than 1/2. We provide the details for completeness.

Let U � be a B&D process on the nonnegative integers with birth rate �− ˇ̀�4x5 and death rate �, where we
redefine ˇ̀� (see (46)) as

ˇ̀�4x5= �− n���
+ x��0 (C7)
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Let U� be the generator of the B&D process 4U �4t51 t ≥ 05. Let f 4x5= xm. Then, for all x ∈�,

U�f 4x5= �4f 4x− 15− f 4x55+ 4�− ˇ̀�4x554f 4x+ 15− f 4x550

Since f 4x+ 15− f 4x5=
∑

k≤m1k 6=0

(

m

k

)

xm−k and f 4x− 15− f 4x5=
∑

k≤m1k 6=0

(

m

k

)

xm−k4−15k,

U�f 4x5=
∑

k≤m1k 6=0

− ˇ̀�4x5

(

m

k

)

xm−k
+

∑

k even1 k 6=0

42�5
(

m

k

)

xm−k0

Using (C1) we have that
ˇ̀�4x5≥ �̄

√
�x−�

√
� (C8)

for some absolute constant � and all x ≥ 0 and we can then choose absolute constants c11 c21 and c3 such that
U�f 4x5 ≤ −c2

√
�xm for all x ≥ c1�

1/4 and such that U�f 4x5 ≤ c3�
41/45m+1/2 for all x ≤ c1�

1/4. Subsequently,
there exist absolute constants c41 c5 such that

U�f 4x5≤ −c4

√
�xm

+ c5x
41/45m+1/20

Applying expectations we conclude that (see, e.g., Glynn and Zeevi [16, Corollary 1]),

Ɛ64U �4�55m7≤
c5

c4

�41/45m0

A Lyapunov function argument is also used to prove that Ɛ6 ˇ̀�4U �4�557≥��3/4 for an absolute constant � .
We consider in detail the case in which ˇ̀� is nonnegative (i.e., ã� ≥ n�). Since ã� − n� = O415 (see (C1)), the
other case follows immediately by redefining the 0 point to be ã� instead of n�.

Define (a sequence of) functions g� as follows (c6 is to be determined):

g�4x5=

{

x23 x ≤ �c6�
1/4�3

42�c6�
1/4� + 15x− 4�c6�

1/4� + 15�c6�
1/4�3 x > �c6�

1/4�0

Then

U�g�4x5=











�3 x = 01

2�− 42x+ 15 ˇ̀�4x53 1 ≤ x ≤ �c6�
1/4�1

−42�c6�
1/4� + 15 ˇ̀�4x53 x > �c6�

1/4�0

We claim that we can choose c6 in the definition of g� together with absolute constants c71 c8 such that

U�g�4x5≥ c7�− c8�
1/4 ˇ̀�4x51 (C9)

in which case, since Ɛ6U�g�4U �4�557= 0, we conclude that Ɛ6 ˇ̀�4U �4�557≥ c7�
3/4/c8 as required. Since ˇ̀� is

nonnegative and nondecreasing, to show the existence of such constants, it suffices to find c7 ≤ 1 and c61 c71 c8

such that

�− 42�c6�
1/4

� + 15 ˇ̀�4�c6�
1/4

�5≥ 01 (C10)

6c8�
1/4

− 42�c6�
1/4

� + 157 ˇ̀�4�c6�
1/4

�5≥ c7�0 (C11)

Specifically, we choose c6 sufficiently small so that (C10) holds. Since there exists an absolute constant c9

such that ˇ̀�4�c6�
1/4�5≥ c9�

3/4 we can subsequently choose c8 to satisfy (C11). Equation (C9) follows and we
conclude that Ɛ6`�4U �4�557≥ c7�

3/4/c8 as required.
With these bounds, the proof of Proposition 9 follows exactly as that of Proposition 3 because for any

nondecreasing function f ,

Ɛ6f 4U �4�557≤
Ɛ06
∫ ��l

0 f 4X̌�4s55ds7

Ɛ06�
�
l 7

≤ Ɛ6f 4U �4�5+ 1571

which is proved identically to Lemma 4.4, and the inequalities

1

Ɛ6 ˇ̀�4U �4�5+ 157
≤ Ɛ06�

�
l 7≤

1

Ɛ6 ˇ̀�4U �4�557
1

Ɛ0

[

∫ ��l

0
f 4X̌�4s55ds

]

≤
Ɛ6f 4U �4�5+ 157

Ɛ6 ˇ̀�4U �4�557
1

which are, in turn, proved identically to Proposition 3. �
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Proposition 10 (Gap Bounds). Fix m ∈� and 8f �9 ∈Sm,

V �
l 4f

�105−V�
l 4f

�105= O4
√
�

m−2
50

The main difference here, relative to the proof of Proposition 4, is in the derivative bounds stated in
Lemma C.1. These should be contrasted with those in Lemma 4.7. Given the derivative bounds and the order
bounds in Proposition 9, the proof of Proposition 10 is similar to that of Proposition 4; we provide the complete
details below. In what follows ˇ̀� is as in (C7). Also, when referring to (47), note that one should replace ˇ̀�

there with the one defined in (C7).

Lemma C.1. Fix m ∈� and 8f �9 ∈Sm. Then for each �, there exists an infinitely differentiable solution ǔ�

f̌ �

to (47) such that for x ≥ 0,

�4ǔ�

f̌ �5
4154x5� ≤A11m

(√
�
4 2m−35/2

+�4m−35/4xm
)

1

�4ǔ�

f̌ �5
4254x5� ≤A21m

(√
�

m−2
+�4m−55/4xm+1

)

1

�4ǔ�

f̌ �5
4354x5� ≤A31m

(√
�

42m−55/2
+�4m−75/4xm+2

+ 41/�5�4f̌ �54154x5�
)

1

where Ai1m1 i = 11213 are absolute constants. In addition, V�
l 4y5=2V�

l 4f
�1 y5 is the unique solution satisfying

the above inequalities.

Proof. Using (C8) and recalling that �� = �̄
√
�, we have the existence of absolute constants C01m1C11m

such that

�4ǔ�

f̌ �5
4154x5� =

∣

∣

∣

∣

∫ �

x

a1

√
�

m
+ a2s

m

�
e−

∫ s
x 44

ˇ̀�4u55/�5du ds

∣

∣

∣

∣

≤

∫ �

x

a1

√
�

m
+ a2s

m

�
e−

∫ s
x 44�̄u−c05/

√
�5du ds

= a1

√
�

m−2
�1/4e�̄4x−c0/�̄5

2/42
√
�5
∫ �

x−c0/�̄
e−4�̄s2/42

√
�55 d

1
�1/4

s

+
a2

�
�4m+15/4e�̄4x−c0/�̄5

2/42
√
�5
∫ �

x−c0/�̄
4s + c0/�̄5

me−44�̄s25/42
√
�55 d

1
�1/4

s

≤ C01m

√
�

m−2
�1/4

(

1 +
x

�1/4

)

+
C11m

�
�4m+15/4

(

1 +

(

x

�1/4

)m)

0

If x ≤ �1/4, then the above is less than 42C01m + 2C11m5�
42m−35/4, whereas if x ≥ �1/4, then the above is less

than 24C01m +C11m5�
4m−35/4xm. As a result, we can define absolute constant A11m appropriately for �4ǔ�

f̌ �
54154x5�.

Using directly the ODE (47), we then obtain the bounds for �4ǔ�

f̌ �
54254x5� and �4ǔ�

f̌ �
54354x5� similarly to the proof

of Lemma 4.7. Finally, the fact that V�
l 4y5 is the unique solution is proved identically to Lemma 4.7, noting

that its proof is for fixed � and, in particular, does not depend on whether or not �� scales with �. �
Proof of Proposition 10. The proof begins identically to that of Proposition 4 to obtain that
∣

∣

∣

∣
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1
2 4V

�
l 5
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)

]
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∣

(C12)

for some �
415

X̌�4s−5
∈ 4−1115.
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Using Proposition 9, we have that for all i ≥ 0,

Ɛy

[

∫ ��l

0
� ˇ̀

�4X̌�4s554X̌�4s55i�ds

]

= O4
√
�
i/2
50 (C13)

This, together with the bound for 4V�
l 5

425 in Lemma C.1, gives

Ɛy

[

∫ ��l

0
� ˇ̀

�4X̌�4s554V�
l 5

4254X̌�4s55�ds

]

= O4
√
�
m−2

50

Similarly, we can get the same order for the term involving 4V�
l 5

435 in (C12) if we can prove

∣

∣

∣

∣

Ɛy

[

∑

s≤t∧��l 2 �ãX̌
�4s5�>0

�4f̌ �54154X̌�4s−5+�
415

X̌�4s−5
5�

]

∣

∣

∣

∣

= O4
√
�
m
50 (C14)

Here, if m≥ 1, we can use (C13) to prove (C14). If m= 0, we have as in the proof for the upper excursion
that

Ɛy

[

∑

s≤t∧��l 2 �ãX̌
�4s5�>0

�4f̌ �54154X̌�4s−5+��
X̌�4s−5

5�

]

≤ a3 Ɛy

[

∑

s≤t∧��l 2 �ãX̌
�4s5�>0

�8X̌�4s−5∈4a�−11a�+259

]

1

which is (for y = 0), by Proposition 5 and Lemma A.1, of the order of �×Ɛ06�
�
l 7�8X̌

�4�5 ∈ 4a� −11 a� +259=

O415. Recall (Lemma 4.7) that V �
l 4f

�1 y5= Ɛy6
∫ ��l

0 f̌ �4X̌�4s55ds7. Thus, we conclude that

V �
l 4f

�105−V�
l 405= O4

√
�
m−2

51

as required. �

C.4. Numerical examples. In Figures C.1–C.3 we regenerate Example 3.1 where the single difference is
that we replace � = 1 in the examples with a service rate that scales with �, namely, with �� =

√
�. In

Figures C.4–C.6 we similarly regenerate Example 3.2.
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Figure C.1. Expected queue approximation: fixed �, varying n (11 ≤ n≤ 34).
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Figure C.2. Expected queue approximation: fixed �, varying � (20 ≤ �≤ 21000).
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Figure C.3. Expected queue approximation: varying �� with � (20 ≤ �≤ 21000).
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Figure C.4. Probability of delay: fixed �, varying n (11 ≤ n≤ 34).
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Figure C.5. Probability of delay: fixed �, varying � (20 ≤ �≤ 21000).
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