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The World of Call Centers

Israel: 500 call centers, not including tourism, medical care,
emergency.

11,000 agents: 50% — service, 25% — information,

25% — tele-marketing. (Rafaeli, 2004)

U.S. 3% workforce (several millions);
1000’s agents in a “single” call center.
Growing extensively:

Germany: number of call center employees
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Quality of Service

e Accessibility of agents:
e Effectiveness of service;

e Customer-agent interactions.

Efficiency of Service

e Yearly & monthly level: hiring and training;
o Weekly & daily level: queueing and scheduling.

Quality /Efficiency Tradeoff:

having the right number of agents in place at the right times.



Modelling a Call Center.

Schematic representation of a basic telephone
call center
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M/M/n (Erlang-C) — prevalent model (still):
e Homogeneous Poisson arrivals, rate A;
e Exponential service, rate y, mean E[S];

® 1 service agents.



Patience in Invisible Queues

Why ignoring abandonment is bad?

e One of a few customer-subjective performance measures;

e Distorted Service Level definitions — P{W < T'|Served}, ASA;

e Wrong staffing calculations.
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M/M/n+M (Erlang-A, Palm) - simplest model with

abandonment, used by well-run call centers.

e Patience time 7 ~ exp(6):
time a customer is willing to wait for service;

e Offered wait V:

waiting time of a customer with infinite patience;
o [f 7 <V, customer abandons; otherwise, gets service;

e Actual wait W = min(7, V).



Erlang-A vs. Erlang-C

48 calls per min, 1 min average service time,

2 min average patience

probability of wait
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If 50 agents:
M/M/n | M/M/n+M | M/M/n, A | 3.1%
Fraction abandoning — 3.1% -
Average waiting time 20.8 sec 3.7 sec 8.8 sec
Waiting time’s 90-th percentile | 58.1 sec | 12.5 sec 28.2 sec
Average queue length 17 3 7
Agents’ utilization 96% 93% 93%




hazard rate

average waiting time, sec

Effect of Patience Distribution

Are patience times really exponential? Negative examples:

US bank [sraeli bank
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Does distribution of patience times affect system performance?

1 min average service time, 2 min average patience, 10 agents,

arrival rate varies from 3 to 50 per minute
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Conclusion: study models with general patience.
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Probability to abandon

Probability to abandon

On the Relation between P{Ab} and E[W]

Yearly Call Center data: linear pattern
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The graphs are based on 4158 hour intervals.

Linear patterns with non-zero intercepts
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If Patience is exp(0), then
P{Ab} = 0 E[W].
(Proof: based on Little’s Law + conservation A\-P{Ab} = 0-E[Q].)



Operational Performance Measures

The most popular performance measure is P{W < T';Sr} or even
P{W < T|Sr}.

We recommend either:

o P{W < T;Sr} - fraction of well-served;

e P{Ab} - fraction of poorly-served.

or four-dimensional refinement:
e P{W < T;Sr} - fraction of well-served;

o P{W > T;Sr} - fraction of served, with a potential for
improvement (say, a higher priority on next visit);

e P{W > €; Ab} - fraction of poorly-served;

o P{W < €; Ab} - fraction of those whose service-level is

undetermined.



M/M/n+G Queue
e )\ — Poisson arrival rate.
e /. — Exponential service rate.
® 1 service agents.

e (7 — Patience distribution.

Exact results:

e Baccelli and Hebuterne (1981) — probability to abandon,
distribution of offered wait:

e Brandt and Brandt (1999, 2002) — number-in-system and
waiting time distributions.

e Mandelbaum, Zeltyn (2004) — extensive list of performance
measures.

Research goals:

M/M/n+G research:
e Quality/efficiency tradeoft;
e Asymptotic analysis of moderate-to-large call centers;

e Impact of patience distribution on P{Ab}/E[W] relation and
performance measures.
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M/M/n+G Queue:
Calculation of Performance Measures

Building blocks:
H(z) £ ["G(u)du,
where G(+) is survival function of patience time.

/OOO exp {\H (z) — nux} dx,

|7 @ exp{AH (z) — npa} da,

/OOO H(z)-exp{\H(z) — nuz}dx,

/too exp{AH(z) — nux} dx.
/too T - exp {)\H(gj) — nlugg} dzr ,

/too H(:Ij) - exp {AH(Q:) — TL,LL:L’} dr .

S~
>l e

el e
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Performance measures calculated via building blocks:

P{Ab} — probability to abandon, P{Sr} — probability to be served,
W — waiting time, V' — offered wait,
() — queue length.

P{V >0} = gi‘]M
P> 0 = 51&J'G(O>’
P{Ab} — 1+éA+—A73u)J |
P = gtc:iﬂij_l’
Bl = M
B | ] = T
W 1) = gt
P{W >t} = W’
E[W [ W > 1] = ‘]H(t)‘(fg(tz);é?(t))uf(t)7
PIAL | W > ¢y = A= Gl ep{AH () = nut}

OO0
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Asymptotic Operational Regimes

Example of Half-Hour ACD Report

Time | Calls | Answered | Abandoned% | ASA | AHT | Occ% | # of agents
Total | 20,577 | 19,860 3.5% 30 | 307 | 95.1%

8:00 332 308 7.2% 27 | 302 | 87.1% 59.3
8:30 653 615 5.8% 58 | 293 | 96.1% 104.1
9:00 866 796 8.1% 63 | 308 | 97.1% 140.4
9:30 | 1,152 1,138 1.2% 28 | 303 | 90.8% 211.1
10:00 | 1.330 | 1,286 3.3% 2 | 307 | 984% | 2231
10:30 | 1,364 1,338 1.9% 33 | 296 | 99.0% 222.5
11:00 | 1,380 1,280 7.2% 34 | 306 | 98.2% 222.0
1130 | 1272 | 1247 2.0% 14| 298 | 946% | 2180
12:00 | 1,179 1,177 0.2% 1 306 | 91.6% 218.3
12:30 | 1,174 1,160 1.2% 10 | 302 | 95.5% 203.8
13:00 | 1,018 999 1.9% 9 314 | 95.4% 182.9
13:30| 1,061 961 9.4% 67 | 306 | 100.0% 163.4
14:00 | 1,173 1,082 7.8% 78 | 313 | 99.5% 188.9
14:30 | 1,212 | 1,179 2.7% | 23 | 304 | 96.6% | 206.1
15:00 | 1,137 1,122 1.3% 15 | 320 | 96.9% 205.8
15:30 | 1,169 1,137 2.7% 17 | 311 | 97.1% 202.2
16:00 | 1107 | 1,059 1.3% 16 | 315 | 992% | 1871
16:30 | 914 892 2.4% 22 | 307 | 95.2% 160.0
17:00| 615 615 0.0% 2 | 328 | 83.0% 135.0
17:30 | 420 420 0.0% 0 328 | 73.8% 103.5
18:00 49 49 0.0% 14 | 180 | 84.2% 5.8
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Asymptotic Operational Regimes

Efficiency-Driven (ED) regime

Time | Calls | Answered | Abandoned% | ASA | AHT | Occ% | # of agents

13:30 | 1,061 961 9.4% 67 | 306 | 100.0% 163.4

e 100% occupancy;
e high P{Ab};

e considerable ASA;
e P{W >0} =1

Offered load

A 1800
Rpp 2 2 = 1061:306 — 180.37.

=

Definition:
n = Rpgp-(1-7v) >0

In our case, service grade

n 163.4
M — 0.094 ~ P{AD}.
Y Ren 180.37 {Ab}

e This case is similar to traditional queues in heavy traffic;

e Sce recent papers of Whitt (2004).
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Quality-Driven (QD) regime

Time | Calls | Answered | Abandoned% | ASA | AHT | Occ% | # of agents

17:00 | 615 615 0.0% 2 | 328 | 83.0% 135.0

e Occupancy far below 100%;
e negligible P{Ab};

e very small ASA;

e P{W > 0} ~ 0.

Offered load

A 1800
RQD = — = 615 L
m 328

Definition:

Service grade
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Quality and Efficiency-Driven (QED) regime

Time | Calls | Answered | Abandoned% | ASA | AHT | Occ% | # of agents
14:30 (1,212 | 1,179 2.7% 23 | 304 | 96.6% 206.1
e High occupancy, but not 100%;
e small P{Ab} and ASA;
e P{W >0}xa O<a<l
A 1800
R = — = 1212 —— = 204.69.
OED 304
Definition:
n = RQED—Fﬁ\/RQED, —o0 < < 0.

Service grade

g "= Roep  206.1 — 204.69
 JRogp  /204.69

= 0.10.

Square-Rule Safety Staffing: Described by Erlang in 1924!
Formal analysis:

e Erlang-C: Halfin & Whitt (1981),

B> 0;

e Frlang-B (M/M/n/n): Jagerman (1974);

e Erlang-A: Garnett, Mandelbaum, Reiman (2002);
e M/M/n+G: Present thesis.
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M/M/n+G: QED Operational Regime.

Main case: positive density of patience at the origin.
Density of patience time: ¢ = {g(z),z > 0}, where g(0) £ gy > 0.
Fix service rate p.

Let arrival rate A — oo and

n—A+6F+0(\/X), —00 < 3 < o0.
po o\

Building blocks:

1 3 1
Jl = 1 — ﬁA —|—0() ,
nitgo h(B) n
where
FRENCA L=
90

h(-) — hazard rate of standard normal distribution.

Proofs: Combine M/M/n+G formulae above and the Laplace
method for asymptotic calculation of integrals.
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Main case: performance measures

e Probability of wait converges to constant:

A1
g0 h(B)
PIW>0} ~ |1+ |=—-
W0 ~ 1+ % h(—m]
. 1
e Probability to abandon decreases at rate —:
Jn
1 qo ~ A 1
P{Ab|W > 0 —--iw3—ﬁ+o(>
{Ab } R hB) =5 NG
e Average wait decreases at rate \/ﬁ:
1 1 - A 1
EWIW > 0] = : - |h(B) — +0(>.
WIW>0) = - Jga MO = A4\ 7

e Ratio between P{Ab} and E[W] converges to patience density
at the origin:

P{Ab}
EW]

90

e Asymptotic distribution of wait:
i) (B + F : t)
P{W>t W>O}~ _\ t>0
EIS] vn () | B

e Probability to abandon given delay in queue

EV[Ig]>\;ﬁ} _ \/1% i?{h(éﬂ ff)—@

P{ab

L)
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QED Operational Regime: Discussion

Points of view.

e Customers: P{IV >0} ~ a, P{Ab} ~ \Zﬁ ;
R B

o Agents: Offered load per Server = —~1— —;
n Vn

e Managers: n ~ R+ 3VR .

B = 0: right answer for wrong reasons.

(Common in stochastic-ignorant operations.)

If 3 =0, QED staffing level:

n=— = R.
L4

Equivalent to deterministic rule: assign number of agents equal to

offered load.
Erlang-C: queue “explodes”.

M /M /n+G: assume p = 6. Then P{W = 0} =~ 50%.
If n =100, P{Ab} ~ 4%, and E[W]|~ 0.04 - E[S].

Overall, good service level.
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QED Operational Regime: Special Cases
According to patience distribution.

e Patience density vanishing near the origin.
(k-1) derivatives at the origin are zero, the k-th derivative is
positive.
Examples: Erlang, Phase-type.

—If B > 0, wait similar to Erlang-C. P{Ab} decreases at

k+1)/2

n_( rate.

— If B < 0, almost all customers delayed, E[W] — 0 slowly.
P{Ab} ~ —3/\/n.

— If 8 =0, intermediate behavior.

e Delayed distribution of patience.
Customers do not abandon till ¢ > 0.
Examples: Delayed exponential, deterministic.
Similar to the previous case. For 8 < 0, wait converges to c.

e Balking.
Customer, not served immediately, balks with probability P{Blk}.
Example. M/M/n/n (Erlang-B).
— P{W > 0} decreases at rate 1/y/n;
— P{Ab|V > 0} ~ P{BIk};
— P{Ab} ~ h(—p)/+/n, asymptotic loss probability for
Erlang-B.

e Scaled balking.
Customer, not served immediately, balks with probability p,/+/n.
Results are similar to the main case.
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QED Regime: Numerical Experiments—1

Patience distributions:
e Uniform on [04], gy = 0.25;

e Hyperexponential, 50-50% mixture of exp(mean=1) and exp(mean=1/3),
go = 2/3;
e FErlang, two exp(mean=1) phases, gy = 0;

e Delayed exponential, 1 + exp(mean=1), gy = 0.

Service grade 3 = 0.

Probability to abandon given delay Probability of wait
vs. arrival rate vs. arrival rate

0.16 ; ‘ ‘ 1

x exact U(0,4)
014l — approx U(04) || 0-9’,)“”—
' x  exact expmix
= ApProx expmix [
0.12r exact Erlang
approx Erlang

0.1F x  exact delexp
= approx delexp

ucSESI

xexact U(0,4)
= approx U(0,4)
0.4r x  exact expmix
m— aPProx expmix

exact Erlang

0.041 il 0.2 approx Erlang
' x exact delexp
0.02r 0.1- — approx delexp

OO 200 400 600 800 1000 0O 200 400 600 800 1000
arrival rate arrival rate

P(Ab|W>0)
o
o
[e2)
probability of wait
o
2]

0.06r

P{Ab} convergence rates: 1/y/n, 1/y/n, n=2/3, exp,
respectively.
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QED Regime: Numerical Experiments—2

Probability to abandon
vs. average waiting time

= exact U(0,4)
— approx U(0,4)
x exact expmix
—— approx expmix

exact Erlang
approx Erlang

x  exact delexp
— approx delexp

1 2

3

average waiting time, sec

average waiting time, sec

Service grade 3 = 1.

Average waiting time
vs. arrival rate

Note linear patterns in the first plot.

Service grade 3 = —1.

Probability to abandon given delay
vs. arrival rate

P(Ab|W>0)

0.35 :
x exact U(0,4)
— approx U(0,4)
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exact Erlang
0.25¢ approx Erlang ||
x  exact delexp
0.2 — approx delexp ||
0.15f
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0.05f
0 . . . .
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4.5 :
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x exact Erlang
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—— approx delex
25l PP P ]
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1
0.98 /¢ sy x ™ %
x exact U(0,4)
=0.96f — approx U(0,4)
g x exact expmix
5 = approx expmix
20.94 exact Erlang
3 approx Erlang
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0.97XX « X x x X
0.88 - - - -
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Convergence to —3/+/n for probability to abandon.
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M/M/n+G: QD Operational Regime.

Density of patience time at the origin gy > 0.
Staffing level

(1+9)+o(VA), ~4>0.

n =

= | >

Performance measures

o P {WW > 0} decreases exponentially on n.

e Probability to abandon of delayed customers:

P{AD|IV > 0} = ;Hﬂ-gho(i).
[

e Average wait of delayed customers:

E[W | W > 0] = iﬁ”jﬁo(i)

e Linear relation between P{Ab} and E[W].

P{Ab}
EW]

90

e Asymptotic distribution of wait:

"o >

W>O} ~ e =n)t p=—".
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QD Regime: Numerical Experiments
Patience distributions: Uniform, hyperexponential.

Service grade v = 1/9, p = 0.9.

Probability to abandon given delay Probability of wait

0.12 : 0.5 :
xexact U(0,4) x exact U(0,4)
= Qual U(0,4) 0.45x — Qual U(0,4) H
0.1 * QEDU(04) | * + QED U(0,4)
x exact expmix 0.4r x *  exact expmix i
— Qual expmix * — Qual expmix
0.08ll +  QED expmix 0.35(" +  QED expmix ||

P(Ab|W>0)
o
°
(o2}

probability of wait
o
N
[$))

0.2
0.04
0.15r
0.1
0.02r
0.05r
0 . = 0 , !
0 1000 1500 2000 0 200 400 600 800 1000
arrival rate arrival rate

Overall, QED approximations are better than QD.

Service grade v = 0.25, p = 0.8. Large arrival rate.

Probability to abandon given delay Probability of wait

X 10 ¢ ‘ ‘ ‘ ‘ 4x10 ¢ | |
x exact U(0,4) x exact U(0,4)
— Qual U(0,4) — Qual U(0,4)
5t = QEDU(0,4) = QED U(0,4)
x exact expmix x exact expmix
— Qual expmix — Qual expmix |
4 *  QED expmix - *  QED expmix
~ g
2 5
>
= g
[S
o

0 . . . . 0 , .
500 600 700 800 900 1000 200 250 300 350 400 450 500
arrival rate arrival rate
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M/M/n+G: ED Operational Regime.

Assume G(x) =~ has a unique solution z* and g(z*) > 0.

Staffing level

(1= +o(VX), ~v>0.

N
|
= | >

Performance measures
o P {WW =0} decreases exponentially on n.

e Probability to abandon converges to:

1
P{Ab} ~ ~v =~ 1——.
p

e Offered wait converges to x*:
EV] ~ 2", V & 2
e Distribution G* of min(z*, 7)

G(z)/y, < a*
1, x>z

6'ta) - |
Asymptotic distribution of wait:
W = G, E[W] — Emin(z*,7)].
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average waiting time, sec

ED Regime: Numerical Experiments

Patience distributions: Uniform, hyperexponential, delayed

exponential.

Service grade v = 1/6, p = 1.2.

Average waiting time

Probability to abandon
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Fluid-limit ED approximations for P{Ab} and E[W] are better

than QED.

26



Impact of Customers’ Patience: Theoretical Results

Lemma. Consider M/M/n+G; A, p, and n fixed.
Assume that for two patience distributions G and G:

/Ox Gi(n)dn > /Om Gy(n)dn, x>0.
Then,
a. P{V >0} > P{V >0}; PY{W >0} > P*{W >0}

b. P'{Ab} < P?{Ab}; PYAb|V >0} < P?*{Ab|V > 0}.

Proof. Follows from Baccelli and Hebuterne.

Theorem 1. In addition, fix average patience 7.
Let G4 be the deterministic patience distribution. Then, in steady
state:

a. (G4 maximizes the probabilities of wait P{W > 0} and
P{V > 0}.

b. G, minimizes the probabilities to abandon P{Ab} and
P{Ab|V > 0}.

c. G4 maximizes the average wait E|[W].

d. G4 maximizes the average queue length E[Q)].

Proof. a-+b. Follow from Lemma.
c. Functional maximization. Variation calculus.
d. Follows from Little’s formula.

Theorem 2. For lightly-loaded M/M/n+G queue (A — 0),
linear P{Ab} /E[W] relation established.
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Impact of Customers’ Patience: Numerical Results
Examples of linear P{Ab}/E[W] relations

Distributions: Exp(mean=2), Uniform(0,4), Hyperexponential.
moderate loads

0.8 .
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3 §0.25
2 e
S c
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0 s s s s s 0 ‘ ‘ ‘ ‘ ‘ s
0 20 40 60 80 100 120 0 10 20 30 40 50 60 70
average waiting time, sec average waiting time, sec

Examples of non-linear relations

Distributions: Deterministic(2), Erlang, Lognormal(2,2),

mixture of two constants (0.2,3.8).
moderate loads

0.8 T T
- erlang
o7l — deterministic
' lognormal 0.3r
= det mixture
= 0.6f c
8 50.25
c o
805 @
S 8 02
=0.4F 2
2 >
= =0.15
% 0.3 %
Q Tel
S 2 01
20.2 a -
— erlang
01 0.05 = deterministic | |
. lognormal
= det mixture
0 ! . . . 0 . . 5 ;
0 20 40 60 80 100 120 0 20 40 60 80 100 120
average waiting time, sec average waiting time, sec
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Some applications to call centers

Large US bank.
Daily volume 70,000 calls; 900-1200 agents positions on weekdays.
Two service types analyzed for 5 months.

Calls E[S] | P{W >0} | P{Ab} | E[W]
Retail |3,451,743 1224.6 sec| 30.6% 1.16% |6.33 sec
Telesales | 349,371 |453.9 sec | 24.3% 1.76% | 9.66 sec
Estimates of hazard rate
retail telesales

0.3

025\
\

hazard rate
o
N

=]
- N
o

30 40 50 60
time, sec

Problems/Challenges:

hazard rate
o o
o © 4
[e5] — N

0 10 20

30
time, sec

e Reliable data for number of agents n unavailable;

40

50 60

e Significant variability of hazard rate/density near the origin.

Approach: Estimate n via some performance measure (P{Ab}).

Fit other performance measure(s).
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Substitute gg := estimate of hazard (density) at the origin.
We observe bad fit for the two examples below.

Probability of wait (data)

Average wait (data), sec

Retail: fitting probability of wait.
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Solution: Substitute gy := overall P{Ab}/E[W]
to QED formulae.

Retail. P{W > 0} Telesales. E[W]
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For telesales, hazard variability near the origin much smaller.
Hence, pattern much closer to straight line.
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Conclusions

QED approximation: Can be performed using any software
that provides the standard normal distribution (e.g. Excel). Works
well for

e Number of servers n from 10’s to 1000’s;

e Agents highly utilized but not overloaded (~90-98%);

e Probability of delay 10-90%:;

e Probability to abandon: 3-7% for small n, 1-4% for large n.

ED approximation: Requires solving equation G(x) =+, and
integration (calculating H(x*)). Works well for

e Number of servers n > 100.

e Agents very highly utilized (close to 100%);
e Probability of delay: more than 85%;

e Probability to abandon: more than 5%.

QD approximation: preferable only for very high-performance
systems.

Linear P{Ab}/E[W] relation: prevails in a broad context:
e QED and QD operational regime;

e Many non-exponential patience distributions (practically);
e Lightly loaded systems;
e Real data.
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Possible Future Research

e Dimensioning M/M/n+G queue.
Formal framework for quality-efficiency tradeoff.
Minimize sum of staffing, waiting and abandonment costs.

For Erlang-C, solved in Borst, Mandelbaum, Reiman (2004).
e Queues with random arrival rate.

e Queues with time-inhomogeneous arrival rate
(ongoing work of Zohar Feldman).

e More data analysis.

e Generally distributed service times: M/G/n+G;
(recent papers of Whitt (2004)).

e M/M/n+G: queue-length distribution;
e Process-limit results for M/M/n+G;
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