Sergey Zeltyn

Call Centers with Impatient Customers: Exact Analysis and Many-Server Asymptotics of the M/M/n+G Queue

Ph.D. seminar

Supervisor: Professor Avishai Mandelbaum

Based on:

- The Impact of Customers' Patience on Delay and Abandonment: Some Empirically-Driven Experiments with the M/M/n+GQueue, OR Spectrum (2004) 26:377-411.
- Call Centers with Impatient Customers: Many-Server Asymptotics of the M/M/n+G Queue. To be submitted to *Management Science*.
- Lecture notes for the course Service Engineering.

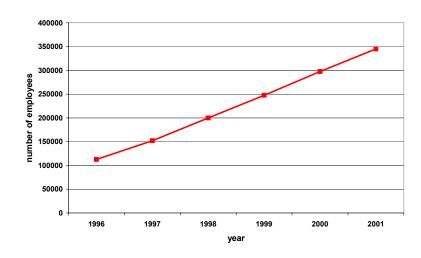
The World of Call Centers

Israel: 500 call centers, not including tourism, medical care, emergency.

11,000 agents: 50% – service, 25% – information, 25% – tele-marketing. (Rafaeli, 2004)

U.S. 3% workforce (several millions); 1000's agents in a "single" call center. Growing extensively:

Germany: number of call center employees



Quality of Service

- Accessibility of agents;
- Effectiveness of service;
- Customer-agent interactions.

Efficiency of Service

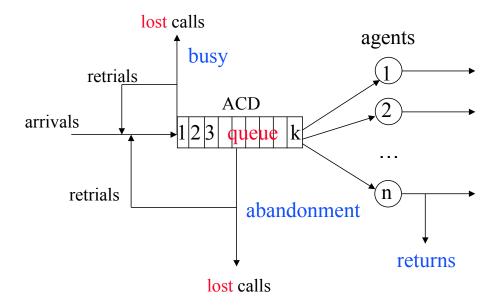
- Yearly & monthly level: hiring and training;
- Weekly & daily level: **queueing** and scheduling.

Quality/Efficiency Tradeoff:

having the right number of agents in place at the right times.

Modelling a Call Center.

Schematic representation of a basic telephone call center



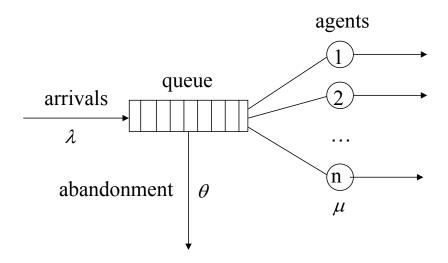
M/M/n (Erlang-C) – prevalent model (still):

- Homogeneous Poisson arrivals, rate λ ;
- Exponential service, rate μ , mean E[S];
- \bullet *n* service agents.

Patience in Invisible Queues

Why ignoring abandonment is bad?

- One of a few customer-subjective performance measures;
- Distorted Service Level definitions $P\{W < T | Served\}$, ASA;
- Wrong staffing calculations.

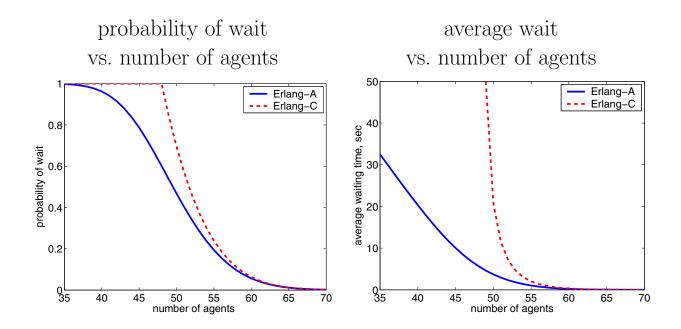


M/M/n+M (Erlang-A, Palm) – simplest model with abandonment, used by well-run call centers.

- Patience time $\tau \sim \exp(\theta)$: time a customer is willing to wait for service;
- Offered wait V: waiting time of a customer with infinite patience;
- If $\tau \leq V$, customer abandons; otherwise, gets service;
- Actual wait $W = \min(\tau, V)$.

Erlang-A vs. Erlang-C

48 calls per min, 1 min average service time, 2 min average patience

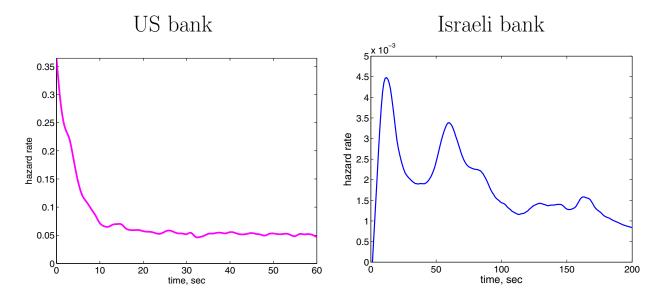


If 50 agents:

	M/M/n	M/M/n+M	$M/M/n$, $\lambda \downarrow 3.1\%$
Fraction abandoning	_	3.1%	-
Average waiting time	$20.8 \sec$	$3.7 \mathrm{sec}$	8.8 sec
Waiting time's 90-th percentile	58.1 sec	12.5 sec	28.2 sec
Average queue length	17	3	7
Agents' utilization	96%	93%	93%

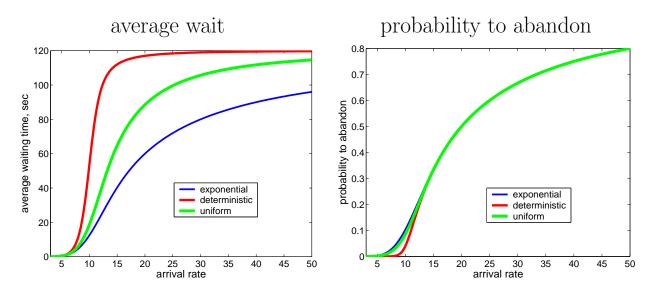
Effect of Patience Distribution

Are patience times really exponential? **Negative** examples:



Does distribution of patience times affect system performance?

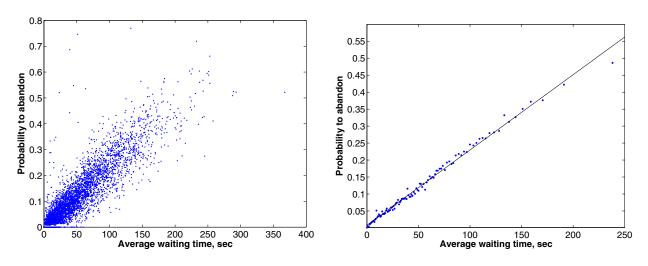
1 min average service time, 2 min average patience, 10 agents, arrival rate varies from 3 to 50 per minute



Conclusion: study models with general patience.

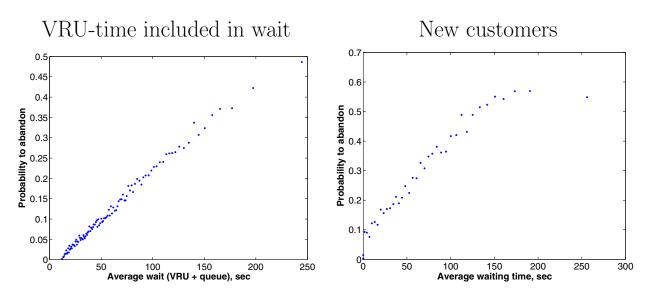
On the Relation between $P{Ab}$ and E[W]

Yearly Call Center data: linear pattern



The graphs are based on 4158 hour intervals.

Linear patterns with non-zero intercepts



If Patience is $\exp(\theta)$, then

$$P\{Ab\} = \theta \cdot E[W].$$

(Proof: based on Little's Law + conservation $\lambda \cdot P\{Ab\} = \theta \cdot E[Q]$.)

Operational Performance Measures

The most popular performance measure is $P\{W \leq T; Sr\}$ or even $P\{W \leq T \mid Sr\}$.

We recommend either:

- $P\{W \le T; Sr\}$ fraction of well-served;
- $P{Ab}$ fraction of poorly-served.

or four-dimensional refinement:

- $P\{W \le T; Sr\}$ fraction of well-served;
- $P\{W > T; Sr\}$ fraction of served, with a potential for improvement (say, a higher priority on next visit);
- $P\{W > \epsilon; Ab\}$ fraction of poorly-served;
- $P\{W \le \epsilon; Ab\}$ fraction of those whose service-level is undetermined.

M/M/n+G Queue

- λ Poisson arrival rate.
- μ Exponential service rate.
- \bullet *n* service agents.
- \bullet G Patience distribution.

Exact results:

- Baccelli and Hebuterne (1981) probability to abandon, distribution of offered wait:
- Brandt and Brandt (1999, 2002) number-in-system and waiting time distributions.
- Mandelbaum, Zeltyn (2004) extensive list of performance measures.

Research goals:

M/M/n+G research:

- Quality/efficiency tradeoff;
- Asymptotic analysis of moderate-to-large call centers;
- Impact of patience distribution on $P\{Ab\}/E[W]$ relation and performance measures.

M/M/n+G Queue: Calculation of Performance Measures

Building blocks:

$$H(x) \stackrel{\Delta}{=} \int_0^x \bar{G}(u) du$$

where $\bar{G}(\cdot)$ is survival function of patience time.

$$J \triangleq \int_0^\infty \exp\left\{\lambda H(x) - n\mu x\right\} dx ,$$

$$J_1 \triangleq \int_0^\infty x \cdot \exp\left\{\lambda H(x) - n\mu x\right\} dx ,$$

$$J_H \triangleq \int_0^\infty H(x) \cdot \exp\left\{\lambda H(x) - n\mu x\right\} dx ,$$

$$J(t) \triangleq \int_t^\infty \exp\left\{\lambda H(x) - n\mu x\right\} dx .$$

$$J_1(t) \triangleq \int_t^\infty x \cdot \exp\left\{\lambda H(x) - n\mu x\right\} dx ,$$

$$J_H(t) \triangleq \int_t^\infty H(x) \cdot \exp\left\{\lambda H(x) - n\mu x\right\} dx .$$

Finally,

$$\mathcal{E} \triangleq \frac{\sum_{j=0}^{n-1} \frac{1}{j!} \left(\frac{\lambda}{\mu}\right)^j}{\frac{1}{(n-1)!} \left(\frac{\lambda}{\mu}\right)^{n-1}}.$$

Performance measures calculated via building blocks:

P{Ab} – probability to a bandon, P{Sr} – probability to be served, W – waiting time, V – offered wait, Q – queue length.

$$P\{V > 0\} = \frac{\lambda J}{\mathcal{E} + \lambda J},$$

$$P\{W > 0\} = \frac{\lambda J}{\mathcal{E} + \lambda J} \cdot \bar{G}(0),$$

$$P\{Ab\} = \frac{1 + (\lambda - n\mu)J}{\mathcal{E} + \lambda J},$$

$$P\{Sr\} = \frac{\mathcal{E} + n\mu J - 1}{\mathcal{E} + \lambda J},$$

$$E[V] = \frac{\lambda J_1}{\mathcal{E} + \lambda J},$$

$$E[W] = \frac{\lambda^2 J_H}{\mathcal{E} + \lambda J},$$

$$E[Q] = \frac{\lambda^2 J_H}{\mathcal{E} + \lambda J},$$

$$E[W \mid Ab] = \frac{J + \lambda J_H - n\mu J_1}{(\lambda - n\mu)J + 1},$$

$$E[W \mid Sr] = \frac{n\mu J_1 - J}{\mathcal{E} + n\mu J - 1},$$

$$P\{W > t\} = \frac{\lambda \bar{G}(t)J(t)}{\mathcal{E} + \lambda J},$$

$$E[W \mid W > t] = \frac{J_H(t) - (H(t) - t\bar{G}(t)) \cdot J(t)}{\bar{G}(t)J(t)},$$

$$P\{Ab \mid W > t\} = \frac{\lambda - n\mu - G(t)}{\lambda \bar{G}(t)} + \frac{\exp\{\lambda H(t) - n\mu t\}}{\lambda \bar{G}(t)J(t)}.$$

Asymptotic Operational Regimes

Example of Half-Hour ACD Report

Time	Calls	Answered	Abandoned%	ASA	AHT	Occ%	# of agents
Total	20,577	19,860	3.5%	30	307	95.1%	
8:00	332	308	7.2%	27	302	87.1%	59.3
8:30	653	615	5.8%	58	293	96.1%	104.1
9:00	866	796	8.1%	63	308	97.1%	140.4
9:30	1,152	1,138	1.2%	28	303	90.8%	211.1
10:00	1,330	1,286	3.3%	22	307	98.4%	223.1
10:30	1,364	1,338	1.9%	33	296	99.0%	222.5
11:00	1,380	1,280	7.2%	34	306	98.2%	222.0
11:30	1,272	1,247	2.0%	44	298	94.6%	218.0
12:00	1,179	1,177	0.2%	1	306	91.6%	218.3
12:30	1,174	1,160	1.2%	10	302	95.5%	203.8
13:00	1,018	999	1.9%	9	314	95.4%	182.9
13:30	1,061	961	9.4%	67	306	100.0%	163.4
14:00	1,173	1,082	7.8%	78	313	99.5%	188.9
14:30	1,212	1,179	2.7%	23	304	96.6%	206.1
15:00	1,137	1,122	1.3%	15	320	96.9%	205.8
15:30	1,169	1,137	2.7%	17	311	97.1%	202.2
16:00	1,107	1,059	4.3%	46	315	99.2%	187.1
16:30	914	892	2.4%	22	307	95.2%	160.0
17:00	615	615	0.0%	2	328	83.0%	135.0
17:30	420	420	0.0%	0	328	73.8%	103.5
18:00	49	49	0.0%	14	180	84.2%	5.8

Asymptotic Operational Regimes

Efficiency-Driven (ED) regime

Time	Calls	Answered	Abandoned%	ASA	AHT	Occ%	# of agents
13:30	1,061	961	9.4%	67	306	100.0%	163.4

- 100% occupancy;
- high P{Ab};
- considerable ASA;
- $P\{W > 0\} \approx 1$.

Offered load

$$R_{ED} \triangleq \frac{\lambda}{\mu} = 1061 : \frac{1800}{306} = 180.37.$$

Definition:

$$n = R_{ED} \cdot (1 - \gamma) \qquad \gamma > 0.$$

In our case, service grade

$$\gamma = 1 - \frac{n}{R_{ED}} = 1 - \frac{163.4}{180.37} = 0.094 \approx P{Ab}.$$

- This case is similar to traditional queues in heavy traffic;
- See recent papers of Whitt (2004).

Quality-Driven (QD) regime

Time	Calls	Answered	Abandoned%	ASA	AHT	Occ%	# of agents
17:00	615	615	0.0%	2	328	83.0%	135.0

- Occupancy far below 100%;
- negligible P{Ab};
- very small ASA;
- $P\{W > 0\} \approx 0$.

Offered load

$$R_{QD} = \frac{\lambda}{\mu} = 615 : \frac{1800}{328} = 112.07.$$

Definition:

$$n = R_{QD} \cdot (1 + \gamma) \qquad \gamma > 0.$$

Service grade

$$\gamma = \frac{n}{R_{QD}} - 1 = \frac{135}{112.07} - 1 = 0.205.$$

Quality and Efficiency-Driven (QED) regime

Time	Calls	Answered	Abandoned%	ASA	AHT	Occ%	# of agents
14:30	1,212	1,179	2.7%	23	304	96.6%	206.1

- High occupancy, but not 100%;
- small P{Ab} and ASA;
- $P\{W > 0\} \approx \alpha$, $0 < \alpha < 1$.

$$R_{QED} = \frac{\lambda}{\mu} = 1212 : \frac{1800}{304} = 204.69.$$

Definition:

$$n = R_{QED} + \beta \sqrt{R_{QED}}, \quad -\infty < \beta < \infty.$$

Service grade

$$\beta = \frac{n - R_{QED}}{\sqrt{R_{QED}}} = \frac{206.1 - 204.69}{\sqrt{204.69}} = 0.10.$$

Square-Rule Safety Staffing: Described by Erlang in 1924! Formal analysis:

- Erlang-C: Halfin & Whitt (1981), $\beta > 0$;
- Erlang-B (M/M/n/n): Jagerman (1974);
- Erlang-A: Garnett, Mandelbaum, Reiman (2002);
- M/M/n+G: Present thesis.

M/M/n+G: QED Operational Regime.

Main case: positive density of patience at the origin.

Density of patience time: $g = \{g(x), x \ge 0\}$, where $g(0) \triangleq g_0 > 0$. Fix service rate μ .

Let arrival rate $\lambda \to \infty$ and

$$n \ = \ \frac{\lambda}{\mu} + \beta \sqrt{\frac{\lambda}{\mu}} + o(\sqrt{\lambda}), \qquad -\infty < \beta < \infty.$$

Building blocks:

$$J = \frac{1}{\sqrt{n}} \cdot \frac{1}{\sqrt{\mu g_0}} \cdot \frac{1}{h(\hat{\beta})} + o\left(\frac{1}{\sqrt{n}}\right),$$

$$\mathcal{E} = \frac{\sqrt{n}}{h(-\beta)} + o(\sqrt{n}),$$

$$J_1 = \frac{1}{n\mu g_0} \left[1 - \frac{\hat{\beta}}{h(\hat{\beta})}\right] + o\left(\frac{1}{n}\right),$$

$$\hat{\beta} \triangleq \beta \sqrt{\frac{\mu}{g_0}},$$

where

 $h(\cdot)$ – hazard rate of standard normal distribution.

Proofs: Combine M/M/n+G formulae above and the Laplace method for asymptotic calculation of integrals.

Main case: performance measures

• Probability of wait converges to constant:

$$P\{W > 0\} \sim \left[1 + \sqrt{\frac{g_0}{\mu}} \cdot \frac{h(\hat{\beta})}{h(-\beta)}\right]^{-1}.$$

• Probability to abandon decreases at rate $\frac{1}{\sqrt{n}}$:

$$P\{Ab|W>0\} = \frac{1}{\sqrt{n}} \cdot \sqrt{\frac{g_0}{\mu}} \cdot \left[h(\hat{\beta}) - \hat{\beta}\right] + o\left(\frac{1}{\sqrt{n}}\right).$$

• Average wait decreases at rate $\frac{1}{\sqrt{n}}$:

$$\mathrm{E}[W|W>0] = \frac{1}{\sqrt{n}} \cdot \frac{1}{\sqrt{g_0 \mu}} \cdot \left[h(\hat{\beta}) - \hat{\beta}\right] + o\left(\frac{1}{\sqrt{n}}\right).$$

• Ratio between $P\{Ab\}$ and E[W] converges to patience density at the origin:

$$\frac{P\{Ab\}}{E[W]} \sim g_0$$

• Asymptotic distribution of wait:

$$P\left\{\frac{W}{\mathrm{E}[S]} > \frac{t}{\sqrt{n}} \middle| W > 0\right\} \sim \frac{\bar{\Phi}\left(\hat{\beta} + \sqrt{\frac{g_0}{\mu}} \cdot t\right)}{\bar{\Phi}(\hat{\beta})}, \qquad t \ge 0.$$

• Probability to abandon given delay in queue

$$P\left\{Ab \left| \frac{W}{E[S]} > \frac{t}{\sqrt{n}} \right\} = \frac{1}{\sqrt{n}} \cdot \sqrt{\frac{g_0}{\mu}} \cdot \left[h\left(\hat{\beta} + t\sqrt{\frac{g_0}{\mu}}\right) - \hat{\beta} \right] + o\left(\frac{1}{\sqrt{n}}\right).$$

QED Operational Regime: Discussion

Points of view.

- Customers: $P\{W > 0\} \approx \alpha$, $P\{Ab\} \approx \frac{\gamma}{\sqrt{n}}$;
- **Agents:** Offered load per Server $= \frac{R}{n} \approx 1 \frac{\beta}{\sqrt{n}}$;
- Managers: $n \approx R + \beta \sqrt{R}$.

$\beta = 0$: right answer for wrong reasons.

(Common in stochastic-ignorant operations.)

If $\beta = 0$, QED staffing level:

$$n = \frac{\lambda}{\mu} = R.$$

Equivalent to deterministic rule: assign number of agents equal to offered load.

Erlang-C: queue "explodes".

 $\mathbf{M/M/n+G}$: assume $\mu = \theta$. Then $P\{W = 0\} \approx 50\%$.

If n = 100, $P\{Ab\} \approx 4\%$, and $E[W] \approx 0.04 \cdot E[S]$.

Overall, good service level.

QED Operational Regime: Special Cases

According to patience distribution.

• Patience density vanishing near the origin.

(k-1) derivatives at the origin are zero, the k-th derivative is positive.

Examples: Erlang, Phase-type.

- If $\beta > 0$, wait similar to Erlang-C. P{Ab} decreases at $n^{-(k+1)/2}$ rate.
- If $\beta < 0$, almost all customers delayed, $E[W] \to 0$ slowly. $P\{Ab\} \approx -\beta/\sqrt{n}$.
- If $\beta = 0$, intermediate behavior.

• Delayed distribution of patience.

Customers do not abandon till c > 0.

Examples: Delayed exponential, deterministic.

Similar to the previous case. For $\beta < 0$, wait converges to c.

• Balking.

Customer, not served immediately, balks with probability P{Blk}.

Example. M/M/n/n (Erlang-B).

- $P\{W > 0\}$ decreases at rate $1/\sqrt{n}$;
- $P{Ab|V > 0} \approx P{Blk};$
- P{Ab} $\approx h(-\beta)/\sqrt{n}$, asymptotic loss probability for Erlang-B.

• Scaled balking.

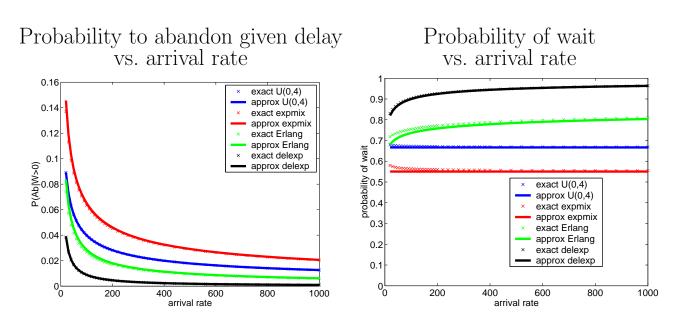
Customer, not served immediately, balks with probability p_b/\sqrt{n} . Results are similar to the main case.

QED Regime: Numerical Experiments-1

Patience distributions:

- *Uniform* on [0,4], $g_0 = 0.25$;
- Hyperexponential, 50-50% mixture of exp(mean=1) and exp(mean=1/3), $g_0 = 2/3$;
- Erlang, two exp(mean=1) phases, $g_0 = 0$;
- Delayed exponential, $1 + \exp(\text{mean}=1)$, $g_0 = 0$.

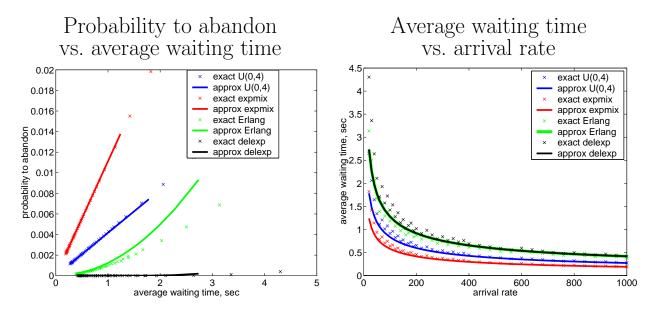
Service grade $\beta = 0$.



P{Ab} convergence rates: $1/\sqrt{n}$, $1/\sqrt{n}$, $n^{-2/3}$, exp, respectively.

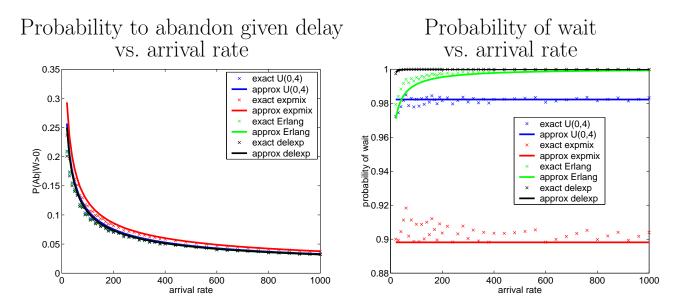
QED Regime: Numerical Experiments–2

Service grade $\beta = 1$.



Note linear patterns in the first plot.

Service grade $\beta = -1$.



Convergence to $-\beta/\sqrt{n}$ for probability to abandon.

M/M/n+G: QD Operational Regime.

Density of patience time at the origin $g_0 > 0$. Staffing level

$$n = \frac{\lambda}{\mu} \cdot (1 + \gamma) + o(\sqrt{\lambda}), \quad \gamma > 0.$$

Performance measures

- P $\{W > 0\}$ decreases exponentially on n.
- Probability to abandon of delayed customers:

$$P\{Ab|W>0\} = \frac{1}{n} \cdot \frac{1+\gamma}{\gamma} \cdot \frac{g_0}{\mu} + o\left(\frac{1}{n}\right).$$

• Average wait of delayed customers:

$$E[W \mid W > 0] = \frac{1}{n} \cdot \frac{1+\gamma}{\gamma} \cdot \frac{1}{\mu} + o\left(\frac{1}{n}\right).$$

• Linear relation between $P\{Ab\}$ and E[W].

$$\frac{ P\{Ab\} }{ E[W] } \sim g_0$$

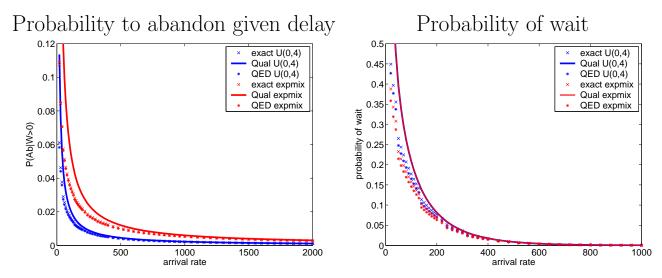
• Asymptotic distribution of wait:

$$P\left\{\frac{W}{E(S)} > \frac{t}{n} \mid W > 0\right\} \sim e^{-(1-\rho)t}, \qquad \rho = \frac{\lambda}{n\mu}.$$

QD Regime: Numerical Experiments

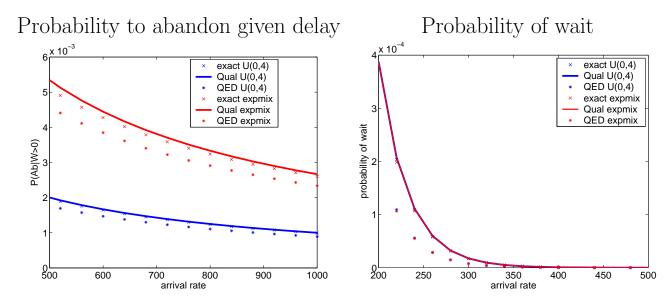
Patience distributions: Uniform, hyperexponential.

Service grade $\gamma = 1/9, \ \rho = 0.9$.



Overall, QED approximations are better than QD.

Service grade $\gamma = 0.25, \ \rho = 0.8$. Large arrival rate.



M/M/n+G: ED Operational Regime.

Assume $G(x) = \gamma$ has a unique solution x^* and $g(x^*) > 0$. Staffing level

$$n = \frac{\lambda}{\mu} \cdot (1 - \gamma) + o(\sqrt{\lambda}), \quad \gamma > 0.$$

Performance measures

- P $\{W=0\}$ decreases exponentially on n.
- Probability to abandon converges to:

$$P{Ab} \sim \gamma \approx 1 - \frac{1}{\rho}.$$

• Offered wait converges to x^* :

$$E[V] \sim x^*, \qquad V \stackrel{p}{\to} x^*.$$

• Distribution G^* of $\min(x^*, \tau)$

$$G^*(x) = \begin{cases} G(x)/\gamma, & x \le x^* \\ 1, & x > x^* \end{cases}$$

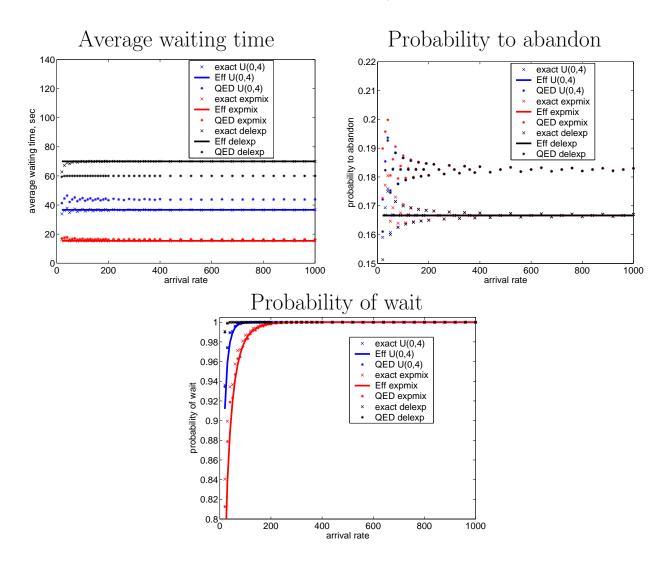
Asymptotic distribution of wait:

$$W \stackrel{w}{\to} G^*, \quad E[W] \to E[\min(x^*, \tau)].$$

ED Regime: Numerical Experiments

Patience distributions: Uniform, hyperexponential, delayed exponential.

Service grade
$$\gamma = 1/6, \ \rho = 1.2.$$



Fluid-limit ED approximations for $P\{Ab\}$ and E[W] are better than QED.

Impact of Customers' Patience: Theoretical Results

Lemma. Consider M/M/n+G; λ , μ , and n fixed. Assume that for two patience distributions G_1 and G_2 :

$$\int_0^x \bar{G}_1(\eta) d\eta \geq \int_0^x \bar{G}_2(\eta) d\eta, \qquad x > 0.$$

Then,

a.
$$P^1\{V>0\} \ge P^2\{V>0\}; P^1\{W>0\} \ge P^2\{W>0\}.$$

b.
$$P^{1}\{Ab\} \le P^{2}\{Ab\}; P^{1}\{Ab|V>0\} \le P^{2}\{Ab|V>0\}.$$

Proof. Follows from Baccelli and Hebuterne.

Theorem 1. In addition, fix average patience $\bar{\tau}$.

Let G_d be the deterministic patience distribution. Then, in steady state:

- **a.** G_d maximizes the probabilities of wait $P\{W > 0\}$ and $P\{V > 0\}$.
- **b.** G_d minimizes the probabilities to abandon $P\{Ab\}$ and $P\{Ab|V>0\}$.
- **c.** G_d maximizes the average wait E[W].
- **d.** G_d maximizes the average queue length E[Q].

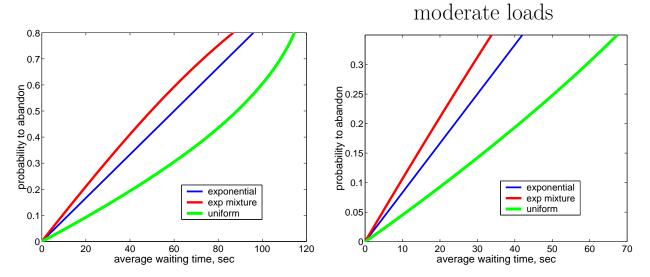
Proof. a+b. Follow from Lemma.

- **c.** Functional maximization. Variation calculus.
- d. Follows from Little's formula.

Theorem 2. For lightly-loaded M/M/n+G queue ($\lambda \to 0$), linear P{Ab}/E[W] relation established.

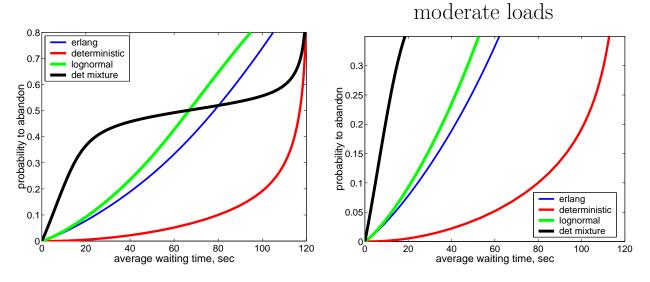
Impact of Customers' Patience: Numerical Results Examples of linear $P{Ab}/E[W]$ relations

Distributions: Exp(mean=2), Uniform(0,4), Hyperexponential.



Examples of non-linear relations

Distributions: Deterministic(2), Erlang, Lognormal(2,2), mixture of two constants (0.2,3.8).



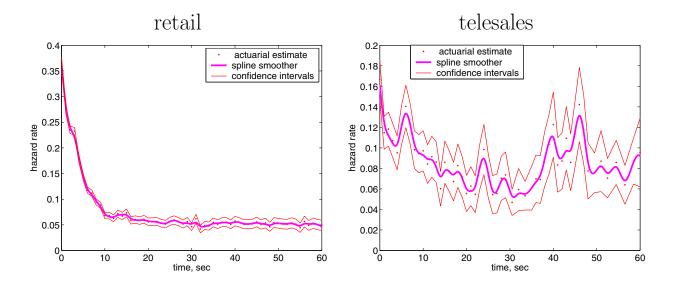
Some applications to call centers

Large US bank.

Daily volume 70,000 calls; 900-1200 agents positions on weekdays. Two service types analyzed for 5 months.

	Calls	E[S]	$P\{W > 0\}$	P{Ab}	E[W]
Retail	3,451,743	224.6 sec	30.6%	1.16%	6.33 sec
Telesales	349,371	$453.9 \; \text{sec}$	24.3%	1.76%	$9.66 \mathrm{sec}$

Estimates of hazard rate



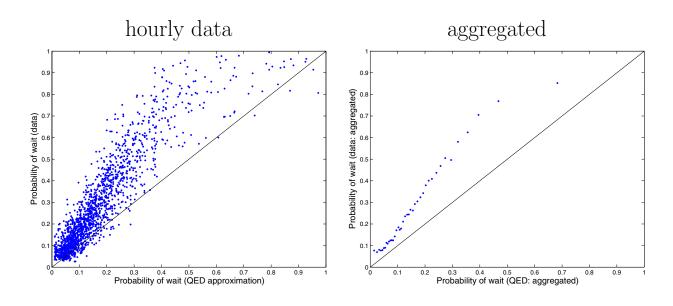
Problems/Challenges:

- \bullet Reliable data for number of agents n unavailable;
- Significant variability of hazard rate/density near the origin.

Approach: Estimate n via some performance measure (P{Ab}). Fit other performance measure(s).

Substitute g_0 := estimate of hazard (density) at the origin. We observe bad fit for the two examples below.

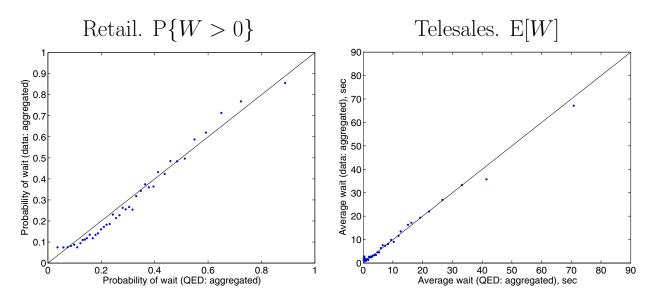
Retail: fitting probability of wait.



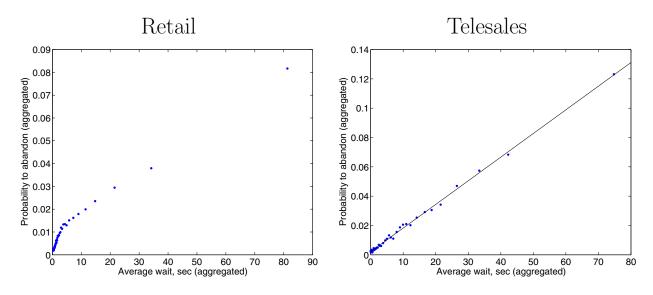
Telesales: fitting average wait.



Solution: Substitute $g_0 := \text{overall P}\{Ab\}/E[W]$ to QED formulae.



 $P{Ab}/E[W]$ relation



For telesales, hazard variability near the origin much smaller. Hence, pattern much closer to straight line.

Conclusions

QED approximation: Can be performed using any software that provides the standard normal distribution (e.g. Excel). Works well for

- Number of servers n from 10's to 1000's;
- Agents highly utilized but not overloaded ($\sim 90-98\%$);
- Probability of delay 10-90%;
- Probability to abandon: 3-7% for small n, 1-4% for large n.

ED approximation: Requires solving equation $G(x) = \gamma$, and integration (calculating $H(x^*)$). Works well for

- Number of servers $n \ge 100$.
- Agents very highly utilized (close to 100%);
- Probability of delay: more than 85%;
- Probability to abandon: more than 5%.

QD approximation: preferable only for very high-performance systems.

Linear $P{Ab}/E[W]$ relation: prevails in a broad context:

- QED and QD operational regime;
- Many non-exponential patience distributions (practically);
- Lightly loaded systems;
- Real data.

Possible Future Research

- **Dimensioning** M/M/n+G queue. Formal framework for *quality-efficiency tradeoff*. Minimize sum of staffing, waiting and abandonment costs. For Erlang-C, solved in Borst, Mandelbaum, Reiman (2004).
- Queues with random arrival rate.
- Queues with time-inhomogeneous arrival rate (ongoing work of Zohar Feldman).
- More data analysis.
- Generally distributed service times: M/G/n+G; (recent papers of Whitt (2004)).
- M/M/n+G: queue-length distribution;
- Process-limit results for M/M/n+G;