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Abstract

Continuing research by Jennings, Mandelbaum, Massey and Whitt (1996), we investigate methods to perform

time-dependent staffing for many-server queues. Our aim is to achieve time-stable performance in face of gen-

eral time-varying arrival rates. As before, we target a stable probability of delay. Motivated by telephone call

centers, we focus on many-server models with customer abandonment, especially the MarkovianMt/M/st+M

model, having an exponential time-to-abandon distribution (the+M ), an exponential service-time distribution

and a nonhomogeneous Poisson arrival process. We develop three different methods for staffing, with de-

creasing generality and decreasing complexity: (i) a simulation-based iterative-staffing algorithm (ISA), (ii) the

square-root-staffing rule with service grade determined by the modified-offered-load approximation, and (iii)

simply staffing at the offered load itself.

Keywords: Contact centers; call centers; staffing; non-stationary queues; queues with time-dependent arrival

rates; capacity planning; queues with abandonment; time-varying Erlang models.



1 Introduction

Service systems such as banks, insurance companies and hospitals play an important role in our society. Ser-

vices employ about 60–80% of the work force in western economies, and their importance is sharply on the

rise, both within service and manufacturing companies. In our service-driven economy, it is estimated that over

70% of the business transactions are carried out over the phone. Most of these transactions are processed by

telephone call centers, which have become the preferred and prevalent means for companies to communicate

with their customers. Indeed, it is estimated that more than 3% of the U.S. work force is employed in call

centers—more than in agriculture! For an overview of call centers and models of them, readers are referred to

the recent review by Gans, Koole and Mandelbaum (2003).

The modern call center is a highly complex operation that fuses advanced technology and human beings. But

the economic and managerial significance of the latter clearly outweighs the former. More specifically, labor

costs (agents’ salaries, training, etc.) typically run as high as 70% of the total operating costs of a call center,

and attrition rates in call centers reach anywhere from 30% per year (considered low) to over 200% at times.

In such circumstances, perhaps the most important operational decision to be made is staffing: what is the

appropriate number of telephone agents that are to be accessible for serving calls. Overstaffing is wasteful,

while understaffing leads to low service levels and overworked agents.

The staffing problem typically takes the following form: Under an existing operational reality, and given a

desired quality of service, we seek the least number of agents at each time that is required to meet a given

service-level constraint. This problem, which has received much attention over the years (see Section 4 in

Gans et. al.), is challenging both theoretically and practically. The challenges are easy to understand, because

the natural model for the staffing problem is a many-server queue with a time-varying arrival rate, which is

notoriously difficult to analyze. The practical importance of staffing is highlighted by considering a bank em-

ploying 10,000 telephone agents and catering to millions of customers per day; even small gains in operational

efficiency or service quality clearly can provide great benefit.

Figure 1 depicts a typical arrival-rate function to a telephone call center. Call volumes are low around midnight

(hour 0), starting to increase in the early hours of the morning, peaking at late morning, then dropping somewhat

around midday (12, lunch break), rising again afterwards, and then dropping thereafter to midnight levels. The

displayed arrival-rate function is an average of several similar days; the actual number of arrivals, in a given
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hour on a given day, fluctuates randomly around this average. (The functional form in Figure1 is typical; the

particular values for the arrival rates were adapted from Green, Kolesar and Soares (2001).)

Staffing planners are thus faced with two sources of variability:predictable variability – time-variations of

the expected load – andstochastic variability – random fluctuations around this time-dependent average. Most

available staffing algorithms are designed to cope only with stochastic variability; they avoid the predictable

variability in various ways. For example, when the service times are relatively short (a few minutes), as in many

call centers when service is provided by a telephone call, it is usually reasonable to use apointwise stationary

approximation(PSA), i.e., to act as if the system at timet were in steady-state with the arrival rate occurring

at that instant (or during that half hour). With PSA, one performs a stationary or steady-state analysis with a

stationary model having parameters that vary by the time of day; see Green and Kolesar (1991), Whitt (1991),

Massey and Whitt (1998) and references therein.

Figure 1:Hourly call volumes to a medium-size call center
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However, service times are not always short, even in call centers. If relatively lengthy interactions are not

uncommon, then PSA tends to be inappropriate. When service times are not so short, significant predictable

variability can cause PSA to produce poor performance. As a consequence, some parts of the day may be

overstaffed, while others are understaffed; see Green et al. (2005) for additional discussion.

In this paper we address the staffing problem withboth predictable and stochastic variability. Here is the

problem we aim to solve:Given a daily performance goal, and faced with both predictable and stochastic

variability, we seek to find the minimal staffing levels that meet this performance goal stablyover the
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day.

In particular, we aim to find an appropriate time-dependent staffing function forany arrival-rate function, where

“appropriate” means that we achieve time-stable performance. For given service-time distribution, we allow

arbitrary arrival-rate functions, i.e., arbitrary predictable variability. We aim to agree with PSA when it is

appropriate and do significantly better when it is not appropriate. We emphasize the importance of achieving

stable performance. Stable performance is good both for managers (easier to manage) and customers (know

what to expect). With stable performance, the nearly-constant quality of service is easily adjusted up or down,

as desired.

Here is how the rest of this paper is organized:We start in§2 by briefly reviewing the previous contributions

by Jennings et al. (1996). We then overview our main contributions in§3. In §4 we specify our iterative-

staffing algorithm in detail. In§5 we illustrate the performance of our algorithm by considering a time-varying

Erlang-A-model example (with abandonment). In§6, for comparison, we consider a similar time-varying

Erlang-C-model example (without abandonment). In§7 we present some supporting theory. Finally, in§8, we

discuss the dynamics of the iterative algorithm, establishing monotonicity and convergence results.

We present additional material in a longer unabridged version available on line as an Internet Supplement.

There we revisit the “challenging example” in Jennings et al. (1996). We expand the analysis of the time-

varying Erlang-A example from§5 by considering different patience parameters. We also analyze a realistic

example - the one presented in Figure1. In contrast to Green et. al. (2001), we incorporate abandonment,

which significantly impacts staffing results.

2 Our Point of Departure

Our point of departure is our (with Otis B. Jennings) previous paper: Jennings, Mandelbaum, Massey and Whitt

(1996). There we considered theMt/G/st model (without customer abandonment), having a nonhomogeneous

Poisson arrival process with arrival-rate functionλ(t) andindependent and identically distributed(IID) service

times{Sn : n ≥ 1}. The service times are distributed as a random variableS with a generalcumulative

distribution function(cdf) G having meanE[S] = 1/µ.
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Let Lt be the number of customers in theMt/G/st system, either waiting or being served, at timet. We

focused on the probability of delay, aiming to choose the time-dependent staffing levelst such that

P (Lt ≥ st) ≤ α < P (Lt ≥ st − 1) for all t , (2.1)

whereα is the target delay probability. That problem is challenging because the time-dependent delay proba-

bility P (Lt ≥ st) depends on the staffing function before timet as well as at timet.

We proposed aninfinite-server approximation. In particular, we proposed approximating the random variable

Lt by the numberL∞t of busy servers in the associatedMt/G/∞ model, having the same arrival process and

service times. We thus choose the desired staffing functionst so that the inequalities in (2.1) hold whenL∞t is

substituted forLt. That approximation provides great simplification because (i) the tail probabilityP (L∞t ≥ st)

at timet depends on the staffing function{st : t ≥ 0} only through its value at the single timet and (ii) the

exact time-dependent distribution ofL∞t is known.

In particular, as reviewed in Eick et al. (1993a), for eacht, L∞t has aPoisson distribution whenever the

number in the system at timet = 0 has a Poisson distribution. (Being empty is a degenerate case of a Poisson

distribution.) That Poisson distribution is fully characterized by its meanmt, which depends ont. We next

apply a normal approximation for the Poisson distribution, using the fact that the variance equals the mean for

a Poisson distribution. We obtain thenormal approximation

P (Lt ≥ st) ≈ P (L∞t ≥ st)

≈ P (N(mt,mt) ≥ st) = P

(
N(0, 1) ≥ st −mt√

mt

)
= 1− Φ

(
st −mt√

mt

)
, (2.2)

whereN(m, σ2) denotes a normally distributed random variable with meanm and varianceσ2, andΦ(x) ≡

P (N(0, 1) ≤ x).

An immediate consequence of the normal approximation (2.2) is the square-root-staffing formula for the

Mt/G/st model:

st = mt + β
√

mt, 0 ≤ t ≤ T, (2.3)

where the constantβ is a measure of thequality of service and the deterministic functionmt is the mean

number of busy servers in the associatedMt/G/∞ infinite-server model. (We would letst be the least integer

greater than the righthand side.) Combining the target in (2.1) and the normal approximation in (2.2), we see
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that the quality of serviceβ in (2.3) should be chosen so that

1− Φ(β) = α . (2.4)

It is also significant that, for theMt/G/∞ model, the time-dependent mean number of busy servers,mt, has a

tractable expression: The explicit formula formt is

mt ≡ E [L∞t ] =
∫ t

−∞
Gc(t− u)λ(u) du = E

[∫ t

t−S
λ(u) du

]
= E [λ(t− Se)]E[S] , (2.5)

whereSe is a random variable with the associatedstationary-excess cdf(or equilibrium-residual-lifetime cdf)

Ge associated with the service-time cdfG, defined by

Ge(t) ≡ P (Se ≤ t) ≡ 1
E[S]

∫ t

0
[1−G(u)] du, t ≥ 0 ; (2.6)

with kth moment

E[Sk
e ] =

E[Sk+1]
(k + 1)E[S]

; (2.7)

see Theorem 1 of Eick et al. (1993a) and references therein. For more on the stationary-excess cdfGe, see pp.

424 and 431 of Ross (2003);G = Ge if and only if G is exponential. Moreover, the time-dependent mean has

a convenient approximation, based on a second-order Taylor-series approximation forλ aboutt. In particular,

the time-dependent mean can be approximated in terms of the first two moments ofSe, the mean ofS and the

second derivative of the arrival-rate function att, λ(2)(t) via

mt ≈ λ(t− E[Se])E[S] +
λ(2)(t)

2
V ar(Se)E[S] ; (2.8)

see Theorem 9 of Eick et al. (1993a).

In Section 4 of Jennings et al. we also introduced a refined approximation for the time-dependent delay proba-

bilities that is tantamount to amodified-offered-load(MOL) approximation, as in Jagerman (1975) and Massey

and Whitt (1994, 1997). The modified-offered-load approximation forLt in theMt/G/st model at timet is the

stationary number in systemL∞ in the corresponding stationaryM/G/s model (with the same service-time

distribution and the same number of serversst), but using the infinite-server meanmt ≡ E[L∞t ] in (2.5) as the

offered load operating at timet. Equivalently, that means letting the homogeneous Poisson arrival process in

the stationaryM/G/s model have rate

λ̂t ≡
mt

E[S]
= mtµ at time t , (2.9)
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wheremt is the infinite-server mean in (2.5).

However, the refined modified-offered-load approximation in Jennings et al. did not involve directly applying

the steady-state distribution of theM/M/s model. Instead, it applied an approximation for that steady-state

distribution based on a many-server heavy-traffic limit from Halfin and Whitt (1981), which produces a simple

closed-from formula, namely formula (6.17) in Section6 here, which we will discuss in more detail later.

The important insight in the modified-offered-load approximation is that the“right” time-dependent offered

load should be the time-dependent mean number of busy servers in the associated infinite-server model -mt.

For the stationary model, the right offered load is known to beλE[S]. The “obvious” direct time-dependent

generalization isλ(t)E[S], which is the PSA offered load. However,λE[S] is also the mean number of busy

servers in the associated stationary infinite-server model. It turns out that the mean number of busy servers in

the time-dependent infinite-server model,mt, is a better generalization of “offered load” than the PSA offered

load for most time-varying many-server models. (Indeed, it may be considered exactly the right definition for

the infinite-server model itself.)

From (a special case of) Theorem 10 in Eick et al. (1993a), we canquantify the difference between the

infinite-server offered loadmt and the PSA offered loadλ(t) · E[S]. Letting (Se)e be a random variable with

the twofold stationary-excess cdf(Ge)e, we have the formula

mt − λ(t) · E[S] = E
[
λ′ (t− (Se)e)

]
· E[Se] · E[S] =

1
2
· E

[
λ′ (t− (Se)e)

]
· E[S2]. (2.10)

From (2.10), it follows that the PSA offered load willnot be a good approximation of the infinite-server of-

fered load when the arrival rate varies rapidly in time (large derivativeλ′). For a given mean service time,

they may also be far apart when the second moment of the service time,E[S2], (or variance) is large. The

second condition has implications for non-exponential distributions that are heavy tailed; see Whitt (2000) for

background.

In Jennings et al. we did not apply the modified-offered-load approximation directly. Instead of calculating

the steady-state delay probability for the stationary Erlang-C model, we exploited an approximation for the

delay probability based on a many-server heavy-traffic limit in Halfin and Whitt (1981). That produces a

simple formula relating the delay probabilityα and the QoS parameterβ. Moreover, the heavy-traffic limit

provides an alternative derivation of the square-root staffing formula in (2.3), without relying on an infinite-

server approximation or a normal approximation.
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Jennings et al. showed that the method for setting staffing requirements in theMt/G/st model outlined above

is remarkably effective. The performance was evaluated by doing numerical comparisons for theMt/M/st

special case. For any given staffing function, the time-dependent distribution ofLt in that Markovian model

can be derived by solving a system of time-dependent ordinary differential equations. The most important

conclusion from those previous experiments is that it is indeed possible to achieve time-stable performance for

the Mt/M/st model by an appropriate choice of a staffing functionst, even in the face of a strongly time-

varying arrival-rate function.

3 Our Contributions Here

In this paper we develop staffing algorithms for more complicated time-varying many-server models, such as

many-server queues with abandonment. For example, we treat the much more realisticMt/G/s + G model

with non-exponential service times (the firstG) and non-exponential abandonments (the+G).

For call centers, our ultimate goal is to treat realistic multi-server systems with multiple call types and skill-

based routing (SBR), but we do not pursue that here. In that setting, it is natural to apply SBR methods for

stationary models after using the modified-offered-load approximation in (2.9) for each call type at timet.

Approaches based on that idea remain to be investigated.

Our first contribution here is asimulation-based Iterative-Staffing Algorithm (ISA) for many-server queues

with time-varying arrival rate. By being based on simulation, ISA has two important advantages: First, by using

simulation, we achievegenerality: We can apply the approach to a large class of models; we are not restricted

to a model that is analytically tractable. We are able to include realistic features, not ordinarily considered in

analytical models. For example, we can carefully consider what happens to agents who are in the middle of a

call when their scheduled shift ends. Second, by using simulation, we achieveautomatic validation: In the

process of performing the algorithm, we directly confirm that ISA achieves its goal; we directly observe the

performance of the system under the final staffing function{st : 0 ≤ t ≤ T}.

Following Jennings et. al. (1996), we assume that, in principle, any number of servers can be assigned at any

time. In our implementation, however, time is divided into short intervals (we take 0.1 service times), and we

keep the number of servers fixed over each of these small intervals. The service discipline is FCFS, and servers
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follow an exhaustive service discipline: a server that finishes a shift in the middle of a service will complete

the service and sign out only when finished. (Our results prevail also for preemptive service disciplines under

which servers leave at end-of-shifts and their customers, if any, are moved to the front of the queue.)

In practice, staffing is required to be fixed over longer staffing intervals - typically ranging from15 minutes

to an hour. Here we ignore that constraint. An initial staffing function with such constraints is obtained from

our results by using in each staffing interval the maximum required staffing level at any time point within that

staffing interval. That will yield an upper bound on the required staffing. Simulation can then be used, in the

manner of the ISA, to see if these initial staffing levels can be decreased, while still meeting the performance

target.

Continuing to follow Jennings et al. (1996), we use the delay probability as our target performance measure.

Specifically, given a target probability of delay, we identify time-varying staffing levels under which the actual

probability of delay remains approximately equal to the given target at all times. Other performance measures,

such as the average waiting time and queue-length tail delay-probabilities, turn out to be relatively constant

over time as well.

For the main model we study, the MarkovianMt/M/st + M model, we not only implement and evaluate ISA,

but we also provide a proof of convergence. To do so, we must set aside the (important) issue of estimating the

time-dependent delay probability for any given staffing function by computer simulation, which is subject to

statistical sampling error. That statistical sampling error decreases as we increase the number of independent

replications, so it can be made arbitrarily small at the expense of computational effort, but for any given amount

of computational effort it is always present. However, if we assume that we actually know the true delay

probabilities associated with each staffing function, then we obtain monotone convergence to a limiting staffing

function. That is accomplished by applying sample-path stochastic-order notions, as in Whitt (1981).

While working with ISA, we discovered thatthe simulation-based solutions have astonishing regularity.

In particular, we found that global performance measures coincide with the performance measures of the as-

sociated stationary model. In particular, when we used ISA to staff the time-varyingMt/M/st + M model,

we found that the resulting staffing could be related to the steady-state behavior of the associated stationary

M/M/s + M model. That implies that the modified-offered-load approximation will also work well for the

Mt/M/st + M model. (We also obtained similar results forMt/G/st + M models with non-exponential

service-time distributions.)
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That leads us to our second contribution: We extend thesquare-root staffing formula based on the modified-

offered-load approximation to theMt/M/st + M model. In particular, we suggest staffing according to the

square-root-staffing formula in (2.3), where the QoS parameterβ ≡ β(α) is derived from a theoretical one-to-

one relation betweenα andβ for the corresponding stationary model. However, just as in Jennings et al., we do

not actually work directly with the steady-state distribution. Instead, for theMt/M/st + M model, we again

use explicit formulas relatingα to β obtained from a many-server heavy-traffic limit - here the corresponding

limit for the Mt/M/s+M model in Garnett, Mandelbaum and Reiman (2002). We justify this simple analytic

staffing formula by conducting experiments for theMt/M/st + M model, but we propose the approximation

more generally. The effectiveness in any other context can be verified by applying the simulation-based ISA.

Finally, we make yet one more contribution. To describe it, we remind readers of the three heavy-traffic

regimes for many-server queues:Quality-Driven(QD, lightly loaded),Efficiency-Driven(ED, heavily loaded)

andQuality-and-Efficiency-Driven(QED, normally loaded); see Garnett et al. (2002). In our experiments for

the many-server queue with abandonments we found thatsimply staffing according to the offered load itself

is remarkably effective in the QED regime, i.e., staffing by lettingst = mt for theMt/M/st +M model works

very well in the QED regime. Needless to say, abandonments play a crucial role in this property. This is another

example of the importance of including abandonments in the model, when customers actually do abandon; see

Garnett et al. (2002) for more discussion.

Even though staffing according to the offered load is a remarkably simple method, there remains substantial

sophistication, because we have to know that we should use the deterministic offered-load functionmt. When

the service times are relatively short (compared to the fluctuations in the arrival-rate function), we can use a

truly naive deterministic approximation: We can then simply staff according to the PSA offered load: we can

setst = λ(t)/µ (which will be close to the offered load,mt, in that scenario). When we staff according to the

PSA offered loadλ(t)/µ, we are truly ignoring all stochastic variability; we are using only deterministic data

about the model: the deterministic arrival-rate functionλ(t) and the deterministic mean service time1/µ. Even

though the infinite-server offered loadmt is a deterministic function, it depends on the service-time distribution

beyond its mean, as is apparent from (2.5).

We conclude by mentioning that the naive deterministic approximation is remarkably effective in the setting of

the realistic large example in Figure1, when there is customer abandonment in the QED regime. With short

service times - a mean of six minutes - as occur in practice, the naive deterministic approximationλ(t)/µ,
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the time-dependent offered loadmt and the ISA staffing levelst all fall on top of each other whenα = 0.5,

producing three curves looking just like the one in Figure1; see the Internet Supplement. Then50% of the

customers are served without delay, stably over the day.

4 The Simulation-Based Iterative-Staffing Algorithm (ISA)

In this section we describe the simulation-based interactive-staffing algorithm (ISA). As indicated before, we

determine time-dependent staffing levels aiming to achieve a given constant probability of delay at all times. In

the process of applying the ISA, we directly confirm that our goal is being met. Indeed, the goal will necessarily

be met, to a specified tolerance, if the algorithm converges. We then can confirm that other performance

measures remain relatively stable as well.

For our implementation of the algorithm, we assume that we have anMt/G/st + G model with independent

sequences of IID service times and IID times to abandon, which are independent of the arrival process, having

general distributions, and a nonhomogeneous Poisson arrival process, which is fully specified by its arrival-rate

function{λ(t); 0 ≤ t ≤ T}. (It will be evident that our approach extends to more general models.)

To start, we fix an arrival-rate function, a service-time distribution, a time-to-abandon (patience) distribution

(when relevant) and a time-horizon[0, T ]. For any random quantity of interest, letXn
t denote the value at time

t in thenth iteration, fort ∈ [0, T ] (the given time horizon). Although our algorithm is time-continuous, we

make staffing changes only at discrete times. That is achieved by dividing the time-horizon into small intervals

of length∆. In all experiments presented in this paper, we use∆ = 0.1/µ, where1/µ is the mean service

time. We then let the number of servers be constant within each of these intervals. For any specified staffing

function, the system simulation can be performed in a conventional manner.

In this section, lets(n)
t be the staffing level at timet in iterationn for 0 ≤ t ≤ T . Let L(n)

t denote the random

total number of customers in the system at timet, under this staffing function. We estimate the distribution of

L
(n)
t for eachn andt by performing multiple (5000) independent replications. We think of starting off with

infinitely many servers. Since this is a simulation, we choose a large finite number, ensuring that the probability

of delay (i.e., of having all servers busy upon arrival) is negligible for allt. For the examples in§5 and§6, it

suffices to lets(0)
t = 200 for all t.
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The algorithm iteratively performs the following steps, until convergence is obtained. (Here, convergence

means that the staffing levels do not change much after an iteration. Practically, they are allowed to change by

some thresholdτ , which we take to be1.)

1. Given theith staffing function{s(i)
t : 0 ≤ t ≤ T}, evaluate the distribution ofL(i)

t , for all t, using simulation.

2. For eacht, 0 ≤ t ≤ T , let s(i+1)
t be the least number of servers such that the delay-probability constraint is

met at timet; i.e., let

s
(i+1)
t = arg min {c ∈ N : P

(
L

(i)
t ≥ c

)
≤ α} . (4.11)

3. If there is negligible change in the staffing from iterationi to iterationi + 1, then stop; i.e., if

‖s(i+1) − s(i)‖∞ ≡ max {|s(i+1)
t − s

(i)
t | : 0 ≤ t ≤ T} ≤ τ , (4.12)

then stop and lets(i+1) be the proposed staffing function. Otherwise, advance to the next iteration, i.e., replace

i by i + 1 and go back to step 1. (We letτ = 1.)

For further discussion, let∞ denote the index of the last iteration of ISA, so thats
(∞)
t denotes the final staffing

level at timet andL
(∞)
t denotes the number in system at timet with that staffing functions(∞). Then, if the

algorithm converges, it converges to a staffing functions(∞) for whichP
(
L

(∞)
t ≥ s

(∞)
t

)
≈ α, 0 ≤ t ≤ T .

Our implementation of ISA was written in C++. For the special case of the MarkovianMt/M/st + M model,

we can rigorously establish convergence of the algorithm, as we explain in§8. Experience indicates that the

algorithm consistently converges and does so relatively rapidly. The number of iterations required depends on

the parameters, especially the ratior ≡ θ/µ, whereθ is the individual abandonment rate. Ifr = 1, correspond-

ing to an infinite-server queue (§7), then no more than two iterations are needed, since the distribution of the

number in system does not depend upon the number of servers. Asr departs from1, the number of required

iterations typically increases. For example, whenr = 10, the number of iterations can get as high as6 − 12.

Whenr is very small and the traffic intensity is very high, so that we are at the edge of stability, the number of

iterations can be very large. For more discussion, see§8.

5 An Example with the Time-Varying Erlang-A Model

We demonstrate the performance of ISA by considering a time-varying Erlang-A model (Mt/M/st + M ) with

a sinusoidal arrival-rate function. Let the queueing system be faced with a non-homogeneous Poisson arrival
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process with asinusoidal arrival-rate function

λ(t) = a + b · sin(ct), 0 ≤ t ≤ T , (5.13)

wherea = 100, b = 20 andc = 1. Let the service times and the customer times to abandon (if they have not yet

started service) come from independent sequences of independent and identically distributed (IID) exponential

random variables, both having mean 1. As can be seen from PSA, the arrival rate is sufficiently large, that

about100 servers are required, so this example captures the many-server spirit of a call center. However,

the sinusoidal form of the arrival-rate function is clearly a mathematical abstraction, which has the essential

property of producing significant fluctuations over time, i.e., significant predictable variability. This particular

arrival-rate function is by no means critical for our analysis; our methods apply to arbitrary arrival-rate functions

such as Figure1.

An important issue, however, is the rate of fluctuation in the arrival-rate function compared to the expected

service-time distribution. To be concrete, we will measure time in hours, and focus on a24-hour day, so that

T = 24. A cycle of the sinusoidal arrival-rate function in (5.13) is 2π/c; since we have setc = 1, a cycle is

2π ≈ 6.3 hours. Thus there will be about4 cycles during the day. That roughly matches the daily cycle in

Figure1 for the six-hour period around 12:00 noon.

Since we let the mean service time be1 and have chosen to measure time in hours, the mean service time in this

example is1 hour. That clearly is relatively long for most call centers, where the interactions are short telephone

calls. If we were to change the time units in order to rectify that, making the expected service time10 minutes,

then a cycle of the arrival-rate function would become about1 hour, making for more rapid fluctuations in the

arrival rate than are normally encountered in call centers. Thus our example is more challenging than usually

encountered in call centers, but may be approached in evolving contact centers if many interactions do indeed

take an hour or more. (We consider a practical example directly related to Figure1 in the Internet Supplement.)

From this preliminary analysis, we should anticipate that the service times are sufficiently long in our example

that the traditional PSA method is likely to perform poorly here, just as in Jennings et al. (1996), and it does.

As before, we are deliberately choosing a difficult case.

The arrival rate coincides with the PSA offered load, because the mean service time here is1. The (infinite-

server) offered load is given in (2.5). Since we have a sinusoidal arrival-rate function, we can apply Eick et

al. (1993b) to give an explicit formula for the offered-loadmt, i.e., the mean number of busy servers in the
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associated infinite-server system. Since the service-time distribution is exponential, we can apply formula (15)

of Eick et al. (1993b). For the sinusoidal arrival-rate function in (5.13), the offered load is

mt = a +
b

1 + c2
[sin(ct)− c · cos(ct)] = 100 + 10[sin(t)− cos(t)] . (5.14)

The second formula in (5.14) is based on the specific parameters:a = 100, b = 20 andc = 1.

In order to put our model into perspective, in Figure2 we plot the offered loadmt in (5.14) for the sinusoidal

arrival-rate function in (5.13) for the parametersa = 100 andb = 20, as in our example, but with four different

values of the time-scaling parameterc: 0.5, 1, 2 and20. Note that the offered loadmt is also a periodic

function with the same period2π/c as the arrival-rate functionλ(t), but the size of the fluctuations decrease.

As c increases, the modified offered load approaches the average valuea = 100. It is important to understand

the offered load, because it is a primary determinant of the required staffing, as we will see.

Our simulation-based iterated-staffing algorithm ISA generates staffing functions, for any given target delay

probabilityα. In Figure3 we present three graphs, showing the generated staffing functions for three regimes

of operation:Quality-Driven(QD) - targetα = 0.1, Efficiency-Driven(ED) - targetα = 0.9, andQuality-and-

Efficiency-Driven(QED) - targetα = 0.5. In each graph, we plot three curves: the arrival rateλ(t) (dotted),

the offered loadmt (dashed) and the staffing functionst (solid).

Note that we start our system empty. This allows us to observe the behavior of the transient stage. In particular,

there is a rampup at the left side of the plot. Our methods respond appropriately to that rampup. That is

consistent with Section 7 of Jennings et al. (1996).

Also note that, in the QED regime (α = 0.5), the staffing function dictated by ISA falls right on top of the

offered load: In that QED case, it would have sufficed to simply letst = mt. Staffing to the offered load proved

effective in all our experiments. That itself is quite stunning.

We now show that ISA achieves time-stable performance. In Figure4 we show the actual probability of

delay obtained by applying our algorithm with targetα for α = 0.1, 0.2, . . . , 0.9. These delay probabilities are

estimated by performing multiple (5000) independent replications with the final staffing function determined

by our algorithm. Under the staffing levels produced by our algorithm, the delay probabilities are remarkably

accurate and stable; the observed delay probabilities fluctuate around the target in each case.
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Figure 2:The offered loadmt for the sinusoidal arrival-rate function in (5.13) with parametersa = 100,

b = 20 and four possible values ofc: 0.5, 1, 2 and20. The offered load is the mean number of busy servers in

theMt/M/∞ model. The plotting is done at granularity0.1, so the plot forc = 20 looks a bit strange.

In addition to stabilizing the delay probability, other performance measures (e.g. utilization, tail probabilities,

average waiting time and average queue length) are found to be quite stable as well; see the Internet Supplement.

However, as the target delay probability increases toward heavy loading, the abandonment probability becomes

much less time-stable, as shown in Figure5. We discuss this phenomenon further in§7 below. But even the

abandonment probability is quite stable with a lower delay-probability target (in the QD and QED regimes).

We now validate the square-root-staffing rule. For that purpose, we define animplied empirical service

quality : A function{βt : 0 ≤ t ≤ T} is defined by setting

βt ≡
st −mt√

mt
, 0 ≤ t ≤ T , (5.15)

wheremt is again the offered load in (2.5) and (5.14). andst is the staffing function obtained by the ISA algo-

rithm. Sincest is obtained from the ISA algorithm, the functionβt is itself obtained from the ISA algorithm.
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Figure 3:Staffing function for: (1) Target α = 0.1 (2) Target α = 0.9 (3) Target α = 0.5
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It thus becomes interesting to see if the implied service quality is approximately constant as a function of time.

(That would empirically justify the square-root-staffing formula in (2.3).) And, indeed, it is, as shown in Figure

6. Again we consider9 values ofα ranging from0.1 to 0.9 in steps of0.1. As α increases, the quality of

service reflected byβt decreases. But the main point is that the empirical service qualityβt as a function oft is
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Figure 4:Delay probability summary for various α’s.
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Figure 5:Abandon probability summary for the Erlang-A example
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approximately constant as a function oft for eachα over the full range from0.1 to 0.9.

Figure6 is extremely important because it validates the square-root-staffing formula for this example. First,

Figure4 shows that ISA is able to produce the target delay probabilityα for a wide range ofα. Then Figure

6 shows that, when this is done, the square-root-staffing formula holds empirically. In other words, we have

shown that we could have staffed directly by the square-root-staffing formula instead of by the ISA. Moreover,
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Figure 6: Summary of Implied Service Quality β. (The implied service quality decreases asα increases

through the values0.1, 0.2, . . . ,0.9.)
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Figure6 not only validates the square-root-staffing formula, but it also is the first step in validating the modified-

offered-load approximation.

However, one issues remains: In order to staff directly by the square-root staffing formula,we need to be able

to relate the quality of serviceβ to the target delay probability α. Indeed, we want a function mappingα

into β. We propose a simple answer: For the time-varying Erlang-A model, we use the associated stationary

Erlang-A model, i.e., theM/M/s+M model. As we observed before, that is tantamount to using the modified-

offered-load approximation. Moreover, paralleling what Jennings et al. did for the Erlang-C model, we suggest

using simple formulas obtained from the many-server heavy-traffic limit for the Erlang-A model in Garnett

et al. (2002). TheGarnett-Mandelbaum-Reiman function, for brevity here referred to as the Garnett

function, mappingβ into α is

α =

[
1 +

√
θ

µ
· h(β̂)
h(−β)

]−1

, −∞ < β < ∞; (5.16)

whereβ̂ = β
√

θ/µ, with µ the individual service rate andθ the individual abandonment rate (both here set

equal to1 now) andh(x) = φ(x)/(1 − Φ(x)) is thehazard rateof the standard normal distribution, withφ

being theprobability density function(pdf) andΦ the cdf. Of course, we want a function mappingα into β.

Thus, we use theinverse of the Garnett function, which is well defined.
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We also looked at additional simulation output, aimed at establishing the validity of this stationary-model

approach of relatingα andβ. First, we compared the empirical distribution of the customer waiting times to

the theoretical distribution of those waiting times in the stationary Erlang-A model. Specifically, we plotted

the empirical conditional waiting time pdfgiven wait, i.e. the distribution of the waiting time for those who

were in fact delayed, during the entire time-horizon. In doing so, we are looking at all the waiting times

experienced across the day. As before, we obtain statistically precise estimates by averaging over a large number

of independent replications (here again5000). In this case, the empirical conditional distribution is based on

statistics gathered from the time of reaching steady until the end of the horizon. We compared the empirical

conditional waiting-time distribution to many-server heavy-traffic approximations for the conditional waiting-

time distribution in thestationary M/M/s + M queue, drawing on Garnett et al. (2002). We found that the

approximation for the conditional waiting-time distribution in the stationary queues matches the performance

of our time-varying model remarkably well; see the Internet Supplement.

We next related the empirical(α, β) pairs to the Garnett function in (5.16). We define the empirical values̄α

andβ̄ as simply the time-averages of the observed (time-stable) values displayed in the plots in Figures4 and

6. In Figure7, we plot the pairs of(ᾱi, β̄i) alongside the Garnett function. Needless to say, the agreement is

phenomenal!

We close this section by observing that, just as in Jennings et al., other common approximations, such as the

PSA or the SSA (the simple stationary approximation, using the overall time-average arrival rate) perform

poorly for this example; see the Internet Supplement.

6 The Time-Varying Erlang-C Model

For comparison, we now show the performance of ISA for the same system described in§5 only without

abandonment (with infinite patience) - the time-varying Erlang-C model (Mt/M/st). As expected, the required

staffing levels are higher than with abandonment, for all target delay probabilities. For example, forα = 0.5,

the maximum staffing level becomes about 120 instead of 115.

As before, we achieve accurate time-stable delay probabilities when we apply the ISA; see Figure8. The

empirical service qualityβt is stabilizing as well, as can be seen from Figure9. However, the empirical service
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Figure 7:Algorithm-Generated Performance vs. the Garnett Function
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qualityβt stabilizes at a much slower rate, especially for lower values ofβ (larger values ofα). (The approach

to steady-state is known to be slower in Erlang-C than for Erlang-A in heavy traffic.) Without abandonment

the system is more congested, but still congestion measures remain relatively stable. That is just as we would

expect, since the time-dependent Erlang-C model is precisely the system analyzed in Jennings et al. (1996);

see the Internet Supplement for more details.

Just as for the time-varying Erlang-A model, we want to validate the square-root-staffing formula in (2.3). We

thus repeat the various experiments we did in§5. Recall that, for thestationaryM/M/s queue, the conditional

waiting-time (W | W > 0) is (exactly) exponentially distributed. The empirical conditional waiting-time

distribution given wait, in ourtime-varyingqueue and overall customers, also fits the exponential distribution

very well (see the Internet Supplement). The mean of the plotted exponential distribution was taken to be the
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Figure 8:Delay probability summary for the Erlang-C example
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Figure 9: Implied service quality β summary for the Erlang-C example (The implied service quality de-

creases asα increases through the values0.1, 0.2, . . . ,0.9.)
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overall average waiting time of those who were actually delayed during[0, T ].

Here, the relation betweenα andβ is compared with theHalfin-Whitt function from Halfin and Whitt (1981),
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namely,

P (delay) ≡ α ≡ α(β) ≈
[
1 + β · Φ(β)

φ(β)

]−1

, 0 < β < ∞ , (6.17)

whereφ is again the pdf associated with the standard normal cdfΦ. The Halfin-Whitt function in (6.17) is

obtained from the Garnett function in (5.16) by lettingθ → 0.

Just as we use the Garnett function to relate the target delay probabilityα to the quality of serviceβ in the

square-root-staffing formula in (2.3) for theMt/M/st+M model, so we use the Halfin-Whitt function to relate

α to β in the square-root-staffing formula in (2.3) for theMt/M/st model. And that essentially corresponds to

the refinement performed in Section 4 of Jennings et al. (1996). The results in Figure10are again remarkable.

Figure 10:Comparison of empirical results with the Halfin-Whitt approximation
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7 Theoretical Support in the Caseθ = µ

In one special case, we can analyze the time-dependent Erlang-A model (i.e., theMt/M/st + M model) in

considerable detail. That is the case we considered in Section5, in which the individual service rateµ equals

the individual abandonment rateθ. In this section, letθ andµ be fixed withθ = µ, but here we do not set these

equal to1.

With that condition, it is easy to relate theMt/M/st + M model to the corresponding time-dependent infinite-

server model (theMt/M/∞ model with the same arrival-rate function and service rate) and a corresponding

family of stationary Erlang-A models indexed byt (theM/M/s + M model with the same service and aban-

donment rates, but with special arrival rate and number of servers). We can thus do some theoretical analysis

for the model considered in Section5.

Let {st : t ≥ 0} be an arbitrary staffing function. For simplicity, assume that all systems start empty in the

distant past (at time−∞). By havingλ(t) = 0 for t ≤ t0, we can start arrivals at any timet0. The first

elementary (important) observation is that, for any arrival-rate function{λ(t) : t ≥ 0} and any staffing function

{st : t ≥ 0}, the stochastic process{Lt : t ≥ 0} in the Mt/M/st + M model withθ = µ has the same

distribution (finite-dimensional distributions) as the corresponding process{L∞t : t ≥ 0} in the Mt/M/∞

model with the same arrival-rate functionλ(t) and the same individual service rateµ, i.e.,

{Lt : t ≥ 0} d= {L∞t : t ≥ 0} . (7.18)

If we appropriately define the two models on the same sample space, giving both processes the same arrivals,

we can make the two equal with probability 1 as well.

The second elementary (important) observation is that, for both these models, the individual random variables

Lt andL∞t have the same distribution as the steady-state number in systemL∞ in the corresponding stationary

model with appropriate arrival rate and number of servers (which are appropriate functions oft).

Letting the service-time random variableS have an exponential distribution with mean1/µ, for eacht, we have

Lt
d= L∞∞

d= L∞ . (7.19)

where the second random variable in (7.19), L∞∞ is the steady-state number of busy servers in the stationary

M/M/∞ with arrival rateλ̂t in (2.9), with mt again the expected number in system in the time-dependent
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infinite-server model in (2.5), and the third random variable in (7.19), L∞, is the steady-state number in system

in theM/M/s + M model with the constant number of servers equal tost and the arrival rate again beinĝλt

in (2.9).

7.1 The Delay Probability

LetWt be thevirtual waiting time at timet (until service or abandonment, whichever occurs first, i.e., the wait-

ing time in queue that would be spent by an arrival at timet); let P ab
t be thevirtual abandonment probability

at timet (i.e., the probability of abandonment for an arrival that would occur at timet) in theMt/M/st + M

model. These quantities are considerably more complicated.

Even though it is difficult to evaluate the full distribution ofWt, we can immediately evaluate the virtual delay

probability, because it clearly depends only on what the customer encounters upon arrival at timet. Hence, we

have

P (Wt > 0) = P (Lt ≥ st) = P (L∞t ≥ st) = P (Poisson(mt) ≥ st)

≈ P

(
N(0, 1) >

st −mt√
mt

)
, (7.20)

wheremt is the offered load in (2.5), just as in (2.2), only here the infinite-server approximation is exact.

7.2 Approximations for the Waiting-Time Distribution

However, the virtual abandonment probabilityP ab
t and the expected virtual waiting timeE[Wt] fluctuate much

more than the delay probability; e.g., see Figure5. We will explain that greater fluctuation.

We actually can mathematically analyze the time-dependent virtual waiting timeWt and the time-dependent

virtual abandonment probabilityP ab
t . Here is an important initial observation: Conditional on the event that

Wt > 0, whose probability we have analyzed above,Wt is distributed (exactly) as the first passage time of

the (Markovian) stochastic process{Lu : u ≥ t} from the initial valueLt encountered at timet down to the

staffing function{su : u ≥ t}, provided that we ignore all future arrivals after timet. In other words,Wt is

distributed as the first passage time of the pure-death stochastic process with state-dependent death rateµLu

for u ≥ t down from the initial valueLt to the curve{su : u ≥ t}. (Of course,Wt = 0 if Lt < st.) As a
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consequence, the distribution ofWt and the value ofP ab
t depend on onlyLt and the future staffing levels, i.e.,

{su : u ≥ t}. The time-dependent arrival-rate function contributes nothing further. It is easy to see that we can

establish stochastic bounds on the distribution ofWt if the staffing level is monotone after timet.

We can go further if we make approximations. Even though exact relations are difficult to obtain, it is not

difficult to generate very good approximations for the case in which the number of servers tends to be large,

e.g., as in the specific example in the previous subsection. Then,Wt tends to be very small, so that it is often

reasonable to assume that the staffing level remains constant atst in the time shortly aftert. In other words, to

studyWt andP ab
t , we make the approximationsu ≈ st for all u > t. We make this approximation, not because

the staffing level should be nearly constant for allu aftert, but because we think we only need to consider times

u slightly greater thant. We are thinking of applications in which the time-dependent arrival-rate function is

continuous, and the staffing changes relatively slowly.

If the future-staffing-level approximation held as an equality, then we would obtain the following approxima-

tions as equalities:

Wt ≈ W∞ and P ab
t ≈ P ab

∞ , (7.21)

where the constant staffing level in the stationaryM/M/s + M model on the righthand sides is chosen to be

st and the constant arrival rate is chosen to beλ̂t in (2.9). Hence, we propose (7.21) as approximations.

Given approximations (7.21), we can use established results for the stationaryM/M/s + M model, e.g., as in

Garnett et al. (2002) and Whitt (2005). For example, algorithms to compute the (exact) distribution ofW∞ are

given there, including the corresponding conditional distributions obtained when we condition on whether or

not the customer eventually is served.

8 Algorithm Dynamics

In this section we discuss the dynamics of the iterative-staffing algorithm for theMt/M/st + M model. We

first relate an empirical observation about the way the algorithm converges to the limiting staffing functions(∞)

and then afterwards we give a theoretical explanation.

In particular, we observed that the way the staffing functions converge to the limit depends on the ratior ≡ θ/µ.

Whenever the (im)patience rateθ is less than the service rateµ (r < 1), we encounteroscillating dynamics
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of the staffing level during the algorithm; whenever the (im)patience rateθ is greater than the service rateµ

(r > 1), we encountermonotone dynamicsof the staffing level during the algorithm.

With monotone dynamics, when starting withs(0)
t ≡ ∞, s

(n)
t is monotone decreasing inn for all t, i.e. the

following prevails:

s
(n)
t ≤ s

(m)
t for all m < n . (8.22)

An example of the monotone dynamics is shown in Figure11, where staffing levels are shown for the first three

iterations of the algorithm for the case of arrival functionλ(t) = 100 + 20 · sin(t), service times exponential

having mean 1, and impatience times that are exponential having mean 0.1 (r = 10).

Figure 11:Staffing levels in the1st, 2nd and last iterations. µ=1,θ=10.
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In contrast, withoscillating dynamics, s
(n)
t is oscillating for allt; i.e. there exist 2 subsequences{s(k)

t }∞k=2n

and {s(l)
t }∞l=2n+1, such thats(2n)

t ↓ s
(∞)
t and s

(2n+1)
t ↑ s

(∞)
t . Within the oscillating framework, there is

monotonicity. An example of the oscillating dynamics can be viewed in Figure12, where staffing levels are

shown for the first three iterations for the same case except there is no abandonment (θ = 0 andr = 0).

For theMt/M/st + M model, the algorithm dynamics can be explained by stochastic-order relations for the

time-varying birth-and-death process{Lt : t ≥ 0}. For all systems, the arrival process is the same. However,

the death rates depend systematically on the number of serversst. Whenr > 1 (r < 1), the death rates at time

t decrease (increase) asst increases. Hence, if we disregard statistical error, caused by having to estimate the
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Figure 12:Staffing levels in the1st, 2nd and last iterations. µ=1,θ=0
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delay probabilities associated with each staffing function, we can actually prove that the algorithm converges

for theMt/M/st +M model. To do so, we use sample-path stochastic order, as in Whitt (1981). We only need

ordinary stochastic-order for each timet, but in order to get that, we need to properly address what happens

before timet as well.

Here is thekey stochastic-order property for theMt/M/st + M model: If s(1)
t ≤ s

(2)
t for all t, 0 ≤ t ≤ T ,

andr > 1, then

{L(1)
t : 0 ≤ t ≤ T} ≤st {L(2)

t : 0 ≤ t ≤ T} , (8.23)

where≤st denotessample-path stochastic order, i.e.,

E
[
f

(
{L(1)

t : 0 ≤ t ≤ T}
)]

≤st E
[
f

(
{L(2)

t : 0 ≤ t ≤ T}
)]

(8.24)

for all nondecreasing real-valued functionsf on the space of sample paths. The ordering is reversed if instead

r < 1.

The ordering of the death rates in the two birth-and-death processes makes it possible to achieve the sample-

path ordering. Indeed, that can be accomplished (the relation (8.23) can be rigorously justified) by constructing

special versions of the two stochastic processes on the same underlying probability space so that the sample

paths are ordered with probability 1. As discussed in Whitt (1981), and proved by Kamae, Krengel and O’Brien

(1978), that special construction is actually equivalent to the sample-path stochastic ordering in (8.23).
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The sample-path ordering obtained ensures that a departure occurs in the lower process whenever it occurs in

the upper process and the two sample paths are equal. As indicated above, the two processes are given identical

arrival streams. Then we construct all departures (service completions or abandonments) from those of the

lower process at epochs when the two sample paths are equal. Suppose that at timet the sample paths are

equal:L(1)
t = L

(2)
t = k. Then, at thatt, the death rates in the two birth and death processes are necessarily

ordered byδ1(k) ≥ δ2(k). We only let departures occur in process2 when they occur in process1, so the two

sample paths can never cross over. When a departure occurs in process1 with both sample paths in statek, we

let a departure also occur in process2 with probabilityδ2(k)/δ1(k), with no departure occurring in process2

otherwise. This keeps the sample paths ordered w.p. 1 for allt. At the same time, the two stochastic processes

individually have the correct finite-dimensional distributions. The construction is just like the thinning of a

Poisson process used in the simulation of a nonhomogeneous Poisson process.

As a consequence of the sample-path stochastic order, we get ordinary stochastic order

L
(1)
t ≤st L

(2)
t for all t , (8.25)

where now≤st denotes conventional stochastic order for real-valued random variables, just as in Chapter 9

of Ross (1996); also see M̈uller and Stoyan (2002). We only need the more elementary stochastic order in

(8.25), but we use the more sophisticated sample-path stochastic order in (8.23) to get it. The stochastic order

is equivalent to the tail probabilities being ordered; i.e., (8.25) is equivalent toP (L(1)
t > x) ≤ P (L(2)

t > x) for

all x, which implies the ordering for the staffing functions at timet. In particular, suppose that

P
(
L

(2)
t ≥ s

(2)
t

)
≤ α < P

(
L

(2)
t ≥ s

(2)
t − 1

)
. (8.26)

Since

P
(
L

(1)
t ≥ s

(2)
t

)
≤ P

(
L

(2)
t ≥ s

(2)
t

)
≤ α , (8.27)

necessarilys(1)
t ≤ s

(2)
t .

Case 1:r > 1. Fors(0)
t = ∞, we necessarily start withs(0)

t > s
(1)
t for all t, which produces firstL(1)

t ≤st L
(0)
t

and thens(2)
t ≤ s

(1)
t for all t. Continuing, we getL(n)

t stochastically decreasing inn ands
(n)
t decreasing in

n, again for allt. Since the staffing levels are integers, if we use only finitely many values oft, as in our

implementation, then we necessarily get convergence in finitely many steps.

Case 2: r < 1. For s
(0)
t = ∞, we again necessarily start withs(0)

t > s
(1)
t for all t. That produces first

L
(1)
t ≥st L

(0)
t and thens(0)

t ≥ s
(2)
t ≥ s

(1)
t for all t. Afterwards, we getL(1)

t ≥st L
(2)
t ≥st L

(0)
t ands

(0)
t ≥
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s
(2)
t ≥ s

(3)
t ≥ s

(1)
t for all t. Continuing, we getL(2n)

t stochastically increasing inn, whileL
(2n+1)
t stochastically

decreases inn, for all t. Similarly, s(2n)
t decreases inn, while s

(2n+1)
t increases inn for all t. We thus have

convergence, to possibly oscillating limits. Since the staffing levels are integers, if we use only finitely many

values oft, as in our implementation, then we necessarily get convergence in finitely many steps.

We also observed that thetarget delay probability α strongly influenced the dynamics. In particular, higher

values ofα cause larger oscillations in the oscillating case, and slower convergence to the limit in all cases.

This phenomenon is illustrated in Figures13 and14. The staffing levels in the first two iterations, which form

the range of the oscillating dynamics, are plotted for both targetα = 0.1 (Figure13) andα = 0.5 (Figure14)

for the case of arrival functionλ(t) = 100 + 20 · sin(t), service times are exponential having mean 1, and no

abandonment.

Figure 13:Range of staffing level for targetα=0.1
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Finally, we also observed atime-dependent behavior in the convergenceof s
(n)
t . We observed a greater gap

as time increased. For example, let

It ≡ inf {j : s
(i)
t = s

(j)
t for all i ≥ j} . (8.28)

We observed thatIt2 ≥ It1 for all t2 > t1. An illustration can be viewed in Figure15. This time-dependent

behavior is understandable, because the gap between two different staffing levels persists across time, so that

there is a gap in the death rates at eacht. Hence, ast gets larger, the two processes can get further apart. Thus
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Figure 14:Range of staffing level for targetα=0.5

Target Alpha=0.5
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the gap can first decrease more at the left end of the time horizon. When it reaches the limit at the left, the gap

will still decrease more to the right.

Figure 15:Evolution of convergence during algorithm run-time
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