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Abstract

Continuing research by Jennings, Mandelbaum, Massey and Whitt (1996), we investigate methods to perform
time-dependent staffing for many-server queues. Our aim is to achieve time-stable performance in face of gen-
eral time-varying arrival rates. As before, we target a stable probability of delay. Motivated by telephone call
centers, we focus on many-server models with customer abandonment, especially the Makgwigts, + M

model, having an exponential time-to-abandon distribution{thé), an exponential service-time distribution

and a nonhomogeneous Poisson arrival process. We develop three different methods for staffing, with de-
creasing generality and decreasing complexity: (i) a simulation-based iterative-staffing algorithm (ISA), (i) the
square-root-staffing rule with service grade determined by the modified-offered-load approximation, and (iii)

simply staffing at the offered load itself.

Keywords: Contact centers; call centers; staffing; non-stationary queues; queues with time-dependent arrival

rates; capacity planning; queues with abandonment; time-varying Erlang models.



1 Introduction

Service systems such as banks, insurance companies and hospitals play an important role in our society. Ser-
vices employ about 60-80% of the work force in western economies, and their importance is sharply on the
rise, both within service and manufacturing companies. In our service-driven economy, it is estimated that over
70% of the business transactions are carried out over the phone. Most of these transactions are processed by
telephone call centers, which have become the preferred and prevalent means for companies to communicate
with their customers. Indeed, it is estimated that more than 3% of the U.S. work force is employed in call
centers—more than in agriculture! For an overview of call centers and models of them, readers are referred to

the recent review by Gans, Koole and Mandelbaum (2003).

The modern call center is a highly complex operation that fuses advanced technology and human beings. But
the economic and managerial significance of the latter clearly outweighs the former. More specifically, labor

costs (agents’ salaries, training, etc.) typically run as high as 70% of the total operating costs of a call center,
and attrition rates in call centers reach anywhere from 30% per year (considered low) to over 200% at times.
In such circumstances, perhaps the most important operational decision to be made is staffing: what is the
appropriate number of telephone agents that are to be accessible for serving calls. Overstaffing is wasteful,

while understaffing leads to low service levels and overworked agents.

The staffing problem typically takes the following form: Under an existing operational reality, and given a
desired quality of service, we seek the least number of agents at each time that is required to meet a given
service-level constraint. This problem, which has received much attention over the years (see Section 4 in
Gans et. al.), is challenging both theoretically and practically. The challenges are easy to understand, because
the natural model for the staffing problem is a many-server queue with a time-varying arrival rate, which is
notoriously difficult to analyze. The practical importance of staffing is highlighted by considering a bank em-
ploying 10,000 telephone agents and catering to millions of customers per day; even small gains in operational

efficiency or service quality clearly can provide great benefit.

Figure 1 depicts a typical arrival-rate function to a telephone call center. Call volumes are low around midnight
(hour 0), starting to increase in the early hours of the morning, peaking at late morning, then dropping somewhat
around midday (12, lunch break), rising again afterwards, and then dropping thereafter to midnight levels. The

displayed arrival-rate function is an average of several similar days; the actual number of arrivals, in a given
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hour on a given day, fluctuates randomly around this average. (The functional form in Eiigusgical; the

particular values for the arrival rates were adapted from Green, Kolesar and Soares (2001).)

Staffing planners are thus faced with two sources of variabiptgdictable variability — time-variations of

the expected load — arstiochastic variability — random fluctuations around this time-dependent average. Most
available staffing algorithms are designed to cope only with stochastic variability; they avoid the predictable
variability in various ways. For example, when the service times are relatively short (a few minutes), as in many
call centers when service is provided by a telephone call, it is usually reasonable tpaisbrase stationary
approximation(PSA), i.e., to act as if the system at timevere in steady-state with the arrival rate occurring

at that instant (or during that half hour). With PSA, one performs a stationary or steady-state analysis with a
stationary model having parameters that vary by the time of day; see Green and Kolesar (1991), Whitt (1991),

Massey and Whitt (1998) and references therein.

Figure 1:Hourly call volumes to a medium-size call center
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However, service times are not always short, even in call centers. If relatively lengthy interactions are not
uncommon, then PSA tends to be inappropriate. When service times are not so short, significant predictable
variability can cause PSA to produce poor performance. As a consequence, some parts of the day may be

overstaffed, while others are understaffed; see Green et al. (2005) for additional discussion.

In this paper we address the staffing problem wiitth predictable and stochastic variability. Here is the
problem we aim to solveGiven a daily performance goal, and faced with both predictable and stochastic

variability, we seek to find the minimal staffing levels that meet this performance goal stablpver the
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day.

In particular, we aim to find an appropriate time-dependent staffing functi@njoarrival-rate function, where
“appropriate” means that we achieve time-stable performance. For given service-time distribution, we allow
arbitrary arrival-rate functions, i.e., arbitrary predictable variability. We aim to agree with PSA when it is
appropriate and do significantly better when it is not appropriate. We emphasize the importance of achieving
stable performance. Stable performance is good both for managers (easier to manage) and customers (know
what to expect). With stable performance, the nearly-constant quality of service is easily adjusted up or down,

as desired.

Here is how the rest of this paper is organizedWe start in§2 by briefly reviewing the previous contributions
by Jennings et al. (1996). We then overview our main contributior§8.inin §4 we specify our iterative-
staffing algorithm in detail. 185 we illustrate the performance of our algorithm by considering a time-varying
Erlang-A-model example (with abandonment). 46, for comparison, we consider a similar time-varying
Erlang<-model example (without abandonment).§lhiwe present some supporting theory. Finallyg@&we

discuss the dynamics of the iterative algorithm, establishing monotonicity and convergence results.

We present additional material in a longer unabridged version available on line as an Internet Supplement.
There we revisit the “challenging example” in Jennings et al. (1996). We expand the analysis of the time-
varying Erlang-A example from§5 by considering different patience parameters. We also analyze a realistic
example - the one presented in Figdreln contrast to Green et. al. (2001), we incorporate abandonment,

which significantly impacts staffing results.

2 Our Point of Departure

Our point of departure is our (with Otis B. Jennings) previous paper: Jennings, Mandelbaum, Massey and Whitt
(1996). There we considered thé /G /s; model (without customer abandonment), having a nonhomogeneous
Poisson arrival process with arrival-rate functigft) andindependent and identically distributédD) service
times{S, : n > 1}. The service times are distributed as a random varidbleth a generakumulative

distribution function(cdf) G having mear®[S] = 1/p.



Let L; be the number of customers in tidé; /G /s; system, either waiting or being served, at timeWe

focused on the probability of delay, aiming to choose the time-dependent staffing;/eueh that

P(LtZSt)§CM<P(LtZSt—1) for all t, (21)

whereq is the target delay probability. That problem is challenging because the time-dependent delay proba-

bility P(L; > s;) depends on the staffing function before titraes well as at time.

We proposed aimfinite-server approximation. In particular, we proposed approximating the random variable
L; by the numbel{° of busy servers in the associatéf] /G /oo model, having the same arrival process and
service times. We thus choose the desired staffing funetiso that the inequalities ir2(1) hold whenLy* is
substituted fo;. That approximation provides great simplification because (i) the tail probaBility°® > s;)
at timet depends on the staffing functigs; : ¢ > 0} only through its value at the single timeand (ii) the

exact time-dependent distribution bf° is known.

In particular, as reviewed in Eick et al. (1993a), for eactl;* has aPoisson distribution whenever the
number in the system at tinte= 0 has a Poisson distribution. (Being empty is a degenerate case of a Poisson
distribution.) That Poisson distribution is fully characterized by its meanwhich depends on. We next

apply a normal approximation for the Poisson distribution, using the fact that the variance equals the mean for

a Poisson distribution. We obtain thermal approximation

P(Ly > s1) =~ P(L{® > s)

~ P(N(my,mg) > s) =P (N(O, 1) > St\/_#t) —1-0 <8t\/_£t> . (2.2)

whereN (m, 0?) denotes a normally distributed random variable with meaand variancer?, and®(z) =

P(N(0,1) < 2).

An immediate consequence of the normal approximatibf) (is the square-root-staffing formula for the
M, /G /s model:

st =m¢+ Bymy, 0<t<T, (2.3)

where the constant is a measure of thquality of service and the deterministic functiom; is the mean
number of busy servers in the associatléd G/ oo infinite-server model. (We would let be the least integer

greater than the righthand side.) Combining the targe?.ifj @nd the normal approximation i2.Q), we see
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that the quality of servicg in (2.3) should be chosen so that

1-®(3) =a. (2.4)

It is also significant that, for th&/, /G /oo model, the time-dependent mean number of busy servgrdias a

tractable expression The explicit formula form; is
t

my = E L] = /_too Gt — W\ (u) du = E [/t

) du} _ENt-SJEIS],  (25)

whereS, is a random variable with the associastdtionary-excess cdfor equilibrium-residual-lifetime cdf)

G, associated with the service-time adf defined by

1 t
Ge(t) = P(S. <t) = E[S]/O [1—G(u)du, t>0; (2.6)
with £ moment
_ E[SkJrl] .
E[Sf]_ (k+1)E[S] 9 (27)

see Theorem 1 of Eick et al. (1993a) and references therein. For more on the stationary-exGessespp.
424 and 431 of Ross (2003); = G, if and only if G is exponential. Moreover, the time-dependent mean has
a convenient approximation, based on a second-order Taylor-series approximaticabfmutt. In particular,
the time-dependent mean can be approximated in terms of the first two moméhistad mean of5 and the

second derivative of the arrival-rate functiontad(? (¢) via

)\(2)(15)

my ~ At = B[S E[S] + —

Var(Se)E[S] ; (2.8)
see Theorem 9 of Eick et al. (1993a).

In Section 4 of Jennings et al. we also introduced a refined approximation for the time-dependent delay proba-
bilities that is tantamount toraodified-offered-load(MOL) approximation, as in Jagerman (1975) and Massey

and Whitt (1994, 1997). The modified-offered-load approximatiorifdan the M, /G /s; model at time is the
stationary number in systei,, in the corresponding stationaf /G /s model (with the same service-time
distribution and the same number of servejs but using the infinite-server meam, = E[L;°] in (2.5) as the

offered load operating at time Equivalently, that means letting the homogeneous Poisson arrival process in

the stationaryl/ /G /s model have rate

my

= g

=mu attime ¢, (2.9)



wherem; is the infinite-server mean ir2 (5).

However, the refined modified-offered-load approximation in Jennings et al. did not involve directly applying
the steady-state distribution of the /M /s model. Instead, it applied an approximation for that steady-state
distribution based on a many-server heavy-traffic limit from Halfin and Whitt (1981), which produces a simple

closed-from formula, namely formul& (L7) in Section6 here, which we will discuss in more detail later.

The important insight in the modified-offered-load approximation is thatrigat” time-dependent offered

load should be the time-dependent mean number of busy servers in the associated infinite-servemmodel -

For the stationary model, the right offered load is known to\3&S]. The “obvious” direct time-dependent
generalization is\(¢) E[S], which is the PSA offered load. HowevexE[S] is also the mean number of busy
servers in the associated stationary infinite-server model. It turns out that the mean number of busy servers in
the time-dependent infinite-server model, is a better generalization of “offered load” than the PSA offered

load for most time-varying many-server models. (Indeed, it may be considered exactly the right definition for

the infinite-server model itself.)

From (a special case of) Theorem 10 in Eick et al. (1993a), weqcantify the difference between the
infinite-server offered loadh; and the PSA offered loadl(¢) - E[S]. Letting (S.). be a random variable with

the twofold stationary-excess cgf.)., we have the formula

my — A(t) - E[S] = E [N (t — (Se)e)] - E[Se] - E[S] = = - E [N (t — (Se)e)] - E[S?]. (2.10)

N =

From 2.10), it follows that the PSA offered load wiliot be a good approximation of the infinite-server of-
fered load when the arrival rate varies rapidly in time (large derivatiye For a given mean service time,

they may also be far apart when the second moment of the serviceHiffié], (or variance) is large. The
second condition has implications for non-exponential distributions that are heavy tailed; see Whitt (2000) for

background.

In Jennings et al. we did not apply the modified-offered-load approximation directly. Instead of calculating
the steady-state delay probability for the stationary Erl@hgiodel, we exploited an approximation for the
delay probability based on a many-server heavy-traffic limit in Halfin and Whitt (1981). That produces a
simple formula relating the delay probability and the QoS parametgr Moreover, the heavy-traffic limit
provides an alternative derivation of the square-root staffing formula.#8), (without relying on an infinite-

server approximation or a normal approximation.



Jennings et al. showed that the method for setting staffing requirementsif fli¢/ s; model outlined above

is remarkably effective. The performance was evaluated by doing numerical comparisons féy/the s,

special case. For any given staffing function, the time-dependent distributibniofthat Markovian model

can be derived by solving a system of time-dependent ordinary differential equations. The most important
conclusion from those previous experiments is that it is indeed possible to achieve time-stable performance for
the M, /M /s, model by an appropriate choice of a staffing functipneven in the face of a strongly time-

varying arrival-rate function.

3 Our Contributions Here

In this paper we develop staffing algorithms for more complicated time-varying many-server models, such as
many-server queues with abandonment. For example, we treat the much more r&gligtics + G model

with non-exponential service times (the fi€s} and non-exponential abandonments (&).

For call centers, our ultimate goal is to treat realistic multi-server systems with multiple call types and skill-
based routing (SBR), but we do not pursue that here. In that setting, it is natural to apply SBR methods for
stationary models after using the modified-offered-load approximatio@.#) for each call type at time.

Approaches based on that idea remain to be investigated.

Ouir first contribution here is simulation-based Iterative-Staffing Algorithm (ISA) for many-server queues

with time-varying arrival rate. By being based on simulation, ISA has two important advantages: First, by using
simulation, we achievgenerality. We can apply the approach to a large class of models; we are not restricted
to a model that is analytically tractable. We are able to include realistic features, not ordinarily considered in
analytical models. For example, we can carefully consider what happens to agents who are in the middle of a
call when their scheduled shift ends. Second, by using simulation, we achiesmatic validation: In the

process of performing the algorithm, we directly confirm that ISA achieves its goal; we directly observe the

performance of the system under the final staffing funcfion 0 < ¢ < T'}.

Following Jennings et. al. (1996), we assume that, in principle, any number of servers can be assigned at any
time. In our implementation, however, time is divided into short intervals (we take 0.1 service times), and we

keep the number of servers fixed over each of these small intervals. The service discipline is FCFS, and servers
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follow an exhaustive service discipline: a server that finishes a shift in the middle of a service will complete
the service and sign out only when finished. (Our results prevail also for preemptive service disciplines under

which servers leave at end-of-shifts and their customers, if any, are moved to the front of the queue.)

In practice, staffing is required to be fixed over longer staffing intervals - typically ranging ffsominutes

to an hour. Here we ignore that constraint. An initial staffing function with such constraints is obtained from
our results by using in each staffing interval the maximum required staffing level at any time point within that
staffing interval. That will yield an upper bound on the required staffing. Simulation can then be used, in the
manner of the ISA, to see if these initial staffing levels can be decreased, while still meeting the performance

target.

Continuing to follow Jennings et al. (1996), we use the delay probability as our target performance measure.
Specifically, given a target probability of delay, we identify time-varying staffing levels under which the actual

probability of delay remains approximately equal to the given target at all times. Other performance measures,
such as the average waiting time and queue-length tail delay-probabilities, turn out to be relatively constant

over time as well.

For the main model we study, the Markoviafy /M /s, + M model, we not only implement and evaluate ISA,

but we also provide a proof of convergence. To do so, we must set aside the (important) issue of estimating the
time-dependent delay probability for any given staffing function by computer simulation, which is subject to
statistical sampling error. That statistical sampling error decreases as we increase the number of independent
replications, so it can be made arbitrarily small at the expense of computational effort, but for any given amount
of computational effort it is always present. However, if we assume that we actually know the true delay
probabilities associated with each staffing function, then we obtain monotone convergence to a limiting staffing

function. That is accomplished by applying sample-path stochastic-order notions, as in Whitt (1981).

While working with ISA, we discovered thadhe simulation-based solutions have astonishing regularity

In particular, we found that global performance measures coincide with the performance measures of the as-
sociated stationary model. In particular, when we used ISA to staff the time-vakying//s; + M model,

we found that the resulting staffing could be related to the steady-state behavior of the associated stationary
M/M/s + M model. That implies that the modified-offered-load approximation will also work well for the
M;/M /s + M model. (We also obtained similar results fof,/G/s; + M models with non-exponential

service-time distributions.)



That leads us to our second contribution: We extendsth&re-root staffing formula based on the modified-
offered-load approximation to thef; /M /s, + M model. In particular, we suggest staffing according to the
square-root-staffing formula ir2 (3), where the QoS parametér= ((«) is derived from a theoretical one-to-
one relation between and/ for the corresponding stationary model. However, just as in Jennings et al., we do
not actually work directly with the steady-state distribution. Instead, foMhe\/ /s, + M model, we again

use explicit formulas relating to 3 obtained from a many-server heavy-traffic limit - here the corresponding
limit for the M, /M /s + M model in Garnett, Mandelbaum and Reiman (2002). We justify this simple analytic
staffing formula by conducting experiments for thg /M /s, + M model, but we propose the approximation

more generally. The effectiveness in any other context can be verified by applying the simulation-based ISA.

Finally, we make yet one more contribution. To describe it, we remind readers of the three heavy-traffic
regimes for many-server queudguality-Driven(QD, lightly loaded) Efficiency-Driven(ED, heavily loaded)
andQuality-and-Efficiency-DrivefQED, normally loaded); see Garnett et al. (2002). In our experiments for

the many-server queue with abandonments we foundsthmtly staffing according to the offered load itself

is remarkably effective in the QED regime, i.e., staffing by letiing- m, for the M; /M /s, + M model works

very well in the QED regime. Needless to say, abandonments play a crucial role in this property. This is another
example of the importance of including abandonments in the model, when customers actually do abandon; see

Garnett et al. (2002) for more discussion.

Even though staffing according to the offered load is a remarkably simple method, there remains substantial
sophistication, because we have to know that we should use the deterministic offered-load fupciighen

the service times are relatively short (compared to the fluctuations in the arrival-rate function), we can use a
truly naive deterministic approximation: We can then simply staff according to the PSA offered load: we can
sets; = A(t)/u (which will be close to the offered loady;, in that scenario). When we staff according to the
PSA offered load\(¢)/u, we are truly ignoring all stochastic variability; we are using only deterministic data
about the model: the deterministic arrival-rate functhgn) and the deterministic mean service titryg:.. Even

though the infinite-server offered load, is a deterministic function, it depends on the service-time distribution

beyond its mean, as is apparent frazrgj.

We conclude by mentioning that the naive deterministic approximation is remarkably effective in the setting of
the realistic large example in Figuiie when there is customer abandonment in the QED regime. With short

service times - a mean of six minutes - as occur in practice, the naive deterministic approxik{a}jon
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the time-dependent offered load, and the ISA staffing leved, all fall on top of each other when = 0.5,
producing three curves looking just like the one in Figliresee the Internet Supplement. Th&i?; of the

customers are served without delay, stably over the day.

4 The Simulation-Based Iterative-Staffing Algorithm (ISA)

In this section we describe the simulation-based interactive-staffing algorithm (ISA). As indicated before, we
determine time-dependent staffing levels aiming to achieve a given constant probability of delay at all times. In
the process of applying the ISA, we directly confirm that our goal is being met. Indeed, the goal will necessarily
be met, to a specified tolerance, if the algorithm converges. We then can confirm that other performance

measures remain relatively stable as well.

For our implementation of the algorithm, we assume that we have/ai67/s; + G model with independent
sequences of 1ID service times and IID times to abandon, which are independent of the arrival process, having
general distributions, and a nonhomogeneous Poisson arrival process, which is fully specified by its arrival-rate

function{\(¢); 0 < t < T'}. (It will be evident that our approach extends to more general models.)

To start, we fix an arrival-rate function, a service-time distribution, a time-to-abandon (patience) distribution
(when relevant) and a time-horiz¢t 7']. For any random quantity of interest, L&{* denote the value at time

t in the n*® iteration, fort € [0, 77] (the given time horizon). Although our algorithm is time-continuous, we
make staffing changes only at discrete times. That is achieved by dividing the time-horizon into small intervals
of length A. In all experiments presented in this paper, we Ase- 0.1/u, wherel/p is the mean service

time. We then let the number of servers be constant within each of these intervals. For any specified staffing

function, the system simulation can be performed in a conventional manner.

In this section, Iebi") be the staffing level at timein iterationn for 0 < ¢ < T'. Let L§"> denote the random

total number of customers in the system at timender this staffing function. We estimate the distribution of
LE") for eachn andt by performing multiple (5000) independent replications. We think of starting off with
infinitely many servers. Since this is a simulation, we choose a large finite number, ensuring that the probability
of delay (i.e., of having all servers busy upon arrival) is negligible fot.akor the examples if5 and g6, it

suffices to Ietsgo) = 200 for all ¢.
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The algorithm iteratively performs the following steps, until convergence is obtained(Here, convergence
means that the staffing levels do not change much after an iteration. Practically, they are allowed to change by

some threshole, which we take to bé.)
1. Given the* staffing function{sf) : 0 <t < T}, evaluate the distribution df(i), for all £, using simulation.

2. Foreach,0 <t <T,let sgi“) be the least number of servers such that the delay-probability constraint is
met at timet; i.e., let

sgiﬂ) =argmin{c e N: P (Lgi) > c) <a}. (4.11)
3. If there is negligible change in the staffing from iteratidn iteration: + 1, then stop; i.e., if
50D — 5D = max {|s{"T) — sV 0<t< T < 7, (4.12)
then stop and let(“+1) be the proposed staffing function. Otherwise, advance to the next iteration, i.e., replace
ibyi+ 1and go backtostepl. (Welet=1.) =

For further discussion, leb denote the index of the last iteration of ISA, so th}if) denotes the final staffing

)

level at timet andLgOO denotes the number in system at timeith that staffing functions(>>). Then, if the

algorithm converges, it converges to a staffing functio®) for which P (Lgo") > s§°°>) ~a,0<t<T.

Our implementation of ISA was written in C++. For the special case of the Markdwigid/ /s, + M model,

we can rigorously establish convergence of the algorithm, as we explgih iExperience indicates that the
algorithm consistently converges and does so relatively rapidly. The number of iterations required depends on
the parameters, especially the raties 6/, wheref is the individual abandonment raterl= 1, correspond-

ing to an infinite-server queu&), then no more than two iterations are needed, since the distribution of the
number in system does not depend upon the number of servensdé&garts froml, the number of required
iterations typically increases. For example, wires 10, the number of iterations can get as hightas 12.

Whenr is very small and the traffic intensity is very high, so that we are at the edge of stability, the number of

iterations can be very large. For more discussiong8ee

5 An Example with the Time-Varying Erlang-A Model

We demonstrate the performance of ISA by considering a time-varying Edamgdel (M, /M /s, + M) with

a sinusoidal arrival-rate function. Let the queueing system be faced with a non-homogeneous Poisson arrival
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process with ainusoidal arrival-rate function
At) =a+b-sin(ct), 0<t<T, (5.13)

wherea = 100, b = 20 andc = 1. Let the service times and the customer times to abandon (if they have not yet
started service) come from independent sequences of independent and identically distributed (IID) exponential
random variables, both having mean 1. As can be seen from PSA, the arrival rate is sufficiently large, that
about100 servers are required, so this example captures the many-server spirit of a call center. However,
the sinusoidal form of the arrival-rate function is clearly a mathematical abstraction, which has the essential
property of producing significant fluctuations over time, i.e., significant predictable variability. This particular
arrival-rate function is by no means critical for our analysis; our methods apply to arbitrary arrival-rate functions

such as Figuré.

An important issue, however, is the rate of fluctuation in the arrival-rate function compared to the expected
service-time distribution. To be concrete, we will measure time in hours, and focug@4haur day, so that

T = 24. A cycle of the sinusoidal arrival-rate function if.(3) is 27 /c; since we have set= 1, a cycle is

21 ~ 6.3 hours. Thus there will be abodtcycles during the day. That roughly matches the daily cycle in

Figurel for the six-hour period around 12:00 noon.

Since we let the mean service time band have chosen to measure time in hours, the mean service time in this
example isl hour. That clearly is relatively long for most call centers, where the interactions are short telephone
calls. If we were to change the time units in order to rectify that, making the expected servidé tinieutes,

then a cycle of the arrival-rate function would become aldidubur, making for more rapid fluctuations in the
arrival rate than are normally encountered in call centers. Thus our example is more challenging than usually
encountered in call centers, but may be approached in evolving contact centers if many interactions do indeed
take an hour or more. (We consider a practical example directly related to Higutiee Internet Supplement.)

From this preliminary analysis, we should anticipate that the service times are sufficiently long in our example
that the traditional PSA method is likely to perform poorly here, just as in Jennings et al. (1996), and it does.

As before, we are deliberately choosing a difficult case.

The arrival rate coincides with the PSA offered load, because the mean service time hefidés (infinite-
server) offered load is given ir2(5). Since we have a sinusoidal arrival-rate function, we can apply Eick et

al. (1993b) to give an explicit formula for the offered-load, i.e., the mean number of busy servers in the
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associated infinite-server system. Since the service-time distribution is exponential, we can apply formula (15)

of Eick et al. (1993b). For the sinusoidal arrival-rate functionari®, the offered load is

my=a+ [sin(ct) — ¢ - cos(ct)] = 100 4 10[sin(t) — cos(t)] . (5.14)

1+ c2

The second formula irb(14) is based on the specific parameters: 100, b = 20 andc = 1.

In order to put our model into perspective, in Fig@reve plot the offered loaeh; in (5.14) for the sinusoidal
arrival-rate function in%.13 for the parameterg = 100 andb = 20, as in our example, but with four different
values of the time-scaling parameter 0.5, 1, 2 and20. Note that the offered loadh, is also a periodic
function with the same perio2lr /c as the arrival-rate functioi(t), but the size of the fluctuations decrease.
As cincreases, the modified offered load approaches the averageavalu@0. It is important to understand

the offered load, because it is a primary determinant of the required staffing, as we will see.

Our simulation-based iterated-staffing algorithm ISA generates staffing functions, for any given target delay
probability .. In Figure3 we present three graphs, showing the generated staffing functions for three regimes
of operation:Quality-Driven(QD) - targeta = 0.1, Efficiency-DrivenED) - targeta = 0.9, andQuality-and-
Efficiency-Driven(QED) - targeta = 0.5. In each graph, we plot three curves: the arrival retg (dotted),

the offered loadn; (dashed) and the staffing functien(solid).

Note that we start our system empty. This allows us to observe the behavior of the transient stage. In particular,
there is a rampup at the left side of the plot. Our methods respond appropriately to that rampup. That is

consistent with Section 7 of Jennings et al. (1996).

Also note that, in the QED regimex(= 0.5), the staffing function dictated by ISA falls right on top of the
offered load: In that QED case, it would have sufficed to simplyJet m;. Staffing to the offered load proved

effective in all our experiments. That itself is quite stunning.

We now show that ISA achieves time-stable performanceln Figure4 we show the actual probability of
delay obtained by applying our algorithm with targefor o = 0.1,0.2,...,0.9. These delay probabilities are
estimated by performing multipl&(00) independent replications with the final staffing function determined
by our algorithm. Under the staffing levels produced by our algorithm, the delay probabilities are remarkably

accurate and stable; the observed delay probabilities fluctuate around the target in each case.
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Figure 2: The offered load m; for the sinusoidal arrival-rate function in (5.13 with parameters = 100

b = 20 and four possible values of 0.5, 1, 2 and20. The offered load is the mean number of busy servers in

the M, /M /oo model. The plotting is done at granulariiyl, so the plot fore = 20 looks a bit strange.
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In addition to stabilizing the delay probability, other performance measures (e.g. utilization, tail probabilities
average waiting time and average queue length) are found to be quite stable as well; see the Internet Supplement
However, as the target delay probability increases toward heavy loading, the abandonment probability becomes
much less time-stable, as shown in FigéréWe discuss this phenomenon furtheihbelow. But even the

abandonment probability is quite stable with a lower delay-probability target (in the QD and QED regimes).

We now validate the square-root-staffing rule. For that purpose, we define anplied empirical service

quality: A function{3; : 0 < ¢t < T'} is defined by setting

g=2t""  g<i<T

) <t<1, 5.15
N (5.15)
wherem; is again the offered load ir2(5) and 6.14). ands; is the staffing function obtained by the ISA algo-

rithm. Sinces; is obtained from the ISA algorithm, the functigh is itself obtained from the ISA algorithm.
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Figure 3:Staffing function for: (1) Target a = 0.1 (2) Target« = 0.9 (3) Targeta = 0.5
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It thus becomes interesting to see if the implied service quality is approximately constant as a function of time.
(That would empirically justify the square-root-staffing formuladr3j.) And, indeed, it is, as shown in Figure
6. Again we considep values ofa ranging from0.1 to 0.9 in steps of0.1. As « increases, the quality of

service reflected by, decreases. But the main point is that the empirical service qu&lég a function ot is
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Figure 4:Delay probability summary for various a’'s.

1

0.9 [/\/ A vavEan Y

0.8 f A

07 AN A A IWNANEVYOTN NAA s ISV AVIVSY
0.6 e A i e S e T R RPL
0.5
0.3 1

0.1 A

0

0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Figure 5:Abandon probability summary for the Erlang-A example
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approximately constant as a functiontdbr eacha over the full range fronf.1 to 0.9.

Figure6 is extremely important because it validates the square-root-staffing formula for this example. First,
Figure4 shows that ISA is able to produce the target delay probakhilitgr a wide range ofv. Then Figure
6 shows that, when this is done, the square-root-staffing formula holds empirically. In other words, we have

shown that we could have staffed directly by the square-root-staffing formula instead of by the ISA. Moreover,
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Figure 6: Summary of Implied Service Quality 8. (The implied service quality decreasesaa@creases

through the value8.1, 0.2, ...,0.9.)
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Figure6 not only validates the square-root-staffing formula, but it also is the first step in validating the modified-

offered-load approximation.

However, one issues remains: In order to staff directly by the square-root staffing foweulaed to be able

to relate the quality of service3 to the target delay probability . Indeed, we want a function mappinag

into 5. We propose a simple answer: For the time-varying Erldngodel, we use the associated stationary
Erlang-A model, i.e., the\/ /M /s+ M model. As we observed before, that is tantamount to using the modified-
offered-load approximation. Moreover, paralleling what Jennings et al. did for the Erlang-C model, we suggest
using simple formulas obtained from the many-server heavy-traffic limit for the Edangpdel in Garnett

et al. (2002). Thesarnett-Mandelbaum-Reiman function, for brevity here referred to as the Garnett

function, mappingg into « is

“ —1
_ () . .
o= [1+\/; h(—ﬁ)] , < B < o0 (5.16)

where = 8+/0/u, with p the individual service rate ariithe individual abandonment rate (both here set
equal tol now) andh(z) = ¢(x)/(1 — ®(x)) is thehazard rateof the standard normal distribution, with
being theprobability density functiorfpdf) and® the cdf. Of course, we want a function mappimgnto 3.

Thus, we use thmverse of the Garnett function, which is well defined.
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We also looked at additional simulation output, aimed at establishing the validity of this stationary-model
approach of relatinge and 3. First, we compared the empirical distribution of the customer waiting times to
the theoretical distribution of those waiting times in the stationary Erldngedel. Specifically, we plotted

the empirical conditional waiting time pdfiven walit, i.e. the distribution of the waiting time for those who
were in fact delayed, during the entire time-horizon. In doing so, we are looking at all the waiting times
experienced across the day. As before, we obtain statistically precise estimates by averaging over a large number
of independent replications (here agaiin0). In this case, the empirical conditional distribution is based on
statistics gathered from the time of reaching steady until the end of the horizon. We compared the empirical
conditional waiting-time distribution to many-server heavy-traffic approximations for the conditional waiting-
time distribution in thestationary M /M /s + M queue drawing on Garnett et al. (2002). We found that the
approximation for the conditional waiting-time distribution in the stationary queues matches the performance

of our time-varying model remarkably well; see the Internet Supplement.

We next related the empiricédv, 3) pairs to the Garnett function irb(16). We define the empirical values
and/3 as simply the time-averages of the observed (time-stable) values displayed in the plots in Fapnles
6. In Figure7, we plot the pairs ofa;, 3;) alongside the Garnett function. Needless to say, the agreement is

phenomenal!

We close this section by observing that, just as in Jennings et al., other common approximations, such as the
PSA or the SSA (the simple stationary approximation, using the overall time-average arrival rate) perform

poorly for this example; see the Internet Supplement.

6 The Time-Varying Erlang-C Model

For comparison, we now show the performance of ISA for the same system descriffearfy without
abandonment (with infinite patience) - the time-varying Erl@éhgrodel (M, /M /s,). As expected, the required
staffing levels are higher than with abandonment, for all target delay probabilities. For example=for5,

the maximum staffing level becomes about 120 instead of 115.

As before, we achieve accurate time-stable delay probabilities when we apply the ISA; see8Fidure

empirical service quality; is stabilizing as well, as can be seen from Figairelowever, the empirical service
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Figure 7:Algorithm-Generated Performance vs. the Garnett Function
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quality 5; stabilizes at a much slower rate, especially for lower valugs (tdirger values ofy). (The approach

to steady-state is known to be slower in Erlang-C than for Erlang-A in heavy traffic.) Without abandonment
the system is more congested, but still congestion measures remain relatively stable. That is just as we would
expect, since the time-dependent Erlarignodel is precisely the system analyzed in Jennings et al. (1996);

see the Internet Supplement for more details.

Just as for the time-varying Erlangimodel, we want to validate the square-root-staffing formul&ig)( We
thus repeat the various experiments we dig5nRecall that, for thestationaryM /M /s queue, the conditional
waiting-time (W | W > 0) is (exactly) exponentially distributed. The empirical conditional waiting-time
distribution given wait, in outime-varyingqueue and oveall customers, also fits the exponential distribution

very well (see the Internet Supplement). The mean of the plotted exponential distribution was taken to be the
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Figure 8:Delay probability summary for the Erlang-C example
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Figure 9: Implied service quality 3 summary for the Erlang-C example (The implied service quality de-

creases aa increases through the valued, 0.2, ...,0.9.)
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overall average waiting time of those who were actually delayed d{oirig.

Here, the relation betweenand is compared with thélalfin-Whitt function from Halfin and Whitt (1981),
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namely,

eLa == ~ (I)(/B):|1 (0. ¢]
P(delay) = a = a(f) [1+5 25| ¢ V<A< (6.17)

where¢ is again the pdf associated with the standard normakicdiThe Halfin-Whitt function in §.17) is

obtained from the Garnett function if.(L6 by lettingd — 0.

Just as we use the Garnett function to relate the target delay probabilityhe quality of services in the
square-root-staffing formula i (3) for the M, /M /s, + M model, so we use the Halfin-Whitt function to relate
a to 8 in the square-root-staffing formula i@.Q) for the M, /M /s, model. And that essentially corresponds to

the refinement performed in Section 4 of Jennings et al. (1996). The results in Eijame again remarkable.

Figure 10:Comparison of empirical results with the Halfin-Whitt approximation
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7 Theoretical Support in the Cased = p

In one special case, we can analyze the time-dependent Edlangeel (i.e., theM; /M /s, + M model) in
considerable detail. That is the case we considered in Segtionvhich the individual service rate equals
the individual abandonment rafle In this section, leé andu be fixed withd = p, but here we do not set these

equal tol.

With that condition, it is easy to relate thié, /M /s, + M model to the corresponding time-dependent infinite-
server model (thé/, /M /oo model with the same arrival-rate function and service rate) and a corresponding
family of stationary Erlangd models indexed by (the M/ /M /s + M model with the same service and aban-
donment rates, but with special arrival rate and number of servers). We can thus do some theoretical analysis

for the model considered in Sectién

Let {s; : ¢ > 0} be an arbitrary staffing function. For simplicity, assume that all systems start empty in the
distant past (at time-oc). By having\(t) = 0 for ¢t < ¢y, we can start arrivals at any timg. The first
elementary (important) observation is that, for any arrival-rate fundtign) : ¢ > 0} and any staffing function

{s¢ : t > 0}, the stochastic proceqd; : ¢ > 0} in the M;/M/s; + M model withd = p has the same
distribution (finite-dimensional distributions) as the corresponding progkgs: ¢ > 0} in the M;/M /oo

model with the same arrival-rate functioit) and the same individual service ratgei.e.,
(Lyit>0y 2 {L°:¢t>0}. (7.18)

If we appropriately define the two models on the same sample space, giving both processes the same arrivals,

we can make the two equal with probability 1 as well.

The second elementary (important) observation is that, for both these models, the individual random variables
L; andLg® have the same distribution as the steady-state number in systeimthe corresponding stationary

model with appropriate arrival rate and number of servers (which are appropriate functipns of
Letting the service-time random varialfichave an exponential distribution with megfy., for eacht, we have
Lirrlr,. (7.19)

where the second random variable 19, LY is the steady-state number of busy servers in the stationary

M /M /oo with arrival rate\; in (2.9), with m; again the expected number in system in the time-dependent
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infinite-server model in4.5), and the third random variable ii.(L9), L., is the steady-state number in system
inthe M /M /s + M model with the constant number of servers equal tand the arrival rate again beirﬁg

in (2.9.

7.1 The Delay Probability

Let W, be thevirtual waiting time at timet (until service or abandonment, whichever occurs first, i.e., the wait-
ing time in queue that would be spent by an arrival at tijpéet P2° be thevirtual abandonment probability
at timet (i.e., the probability of abandonment for an arrival that would occur at tinvethe M, /M /s, + M

model. These quantities are considerably more complicated.

Even though it is difficult to evaluate the full distribution @f;, we can immediately evaluate the virtual delay
probability, because it clearly depends only on what the customer encounters upon arrivatatténee, we

have

PWy>0) = P(Lt> s) = P(L{° > s;) = P(Poisson(my) > st)

~ St — Mg
~ P(N(0,1)> Yoo > , (7.20)

wherem, is the offered load in4.5), just as in £.2), only here the infinite-server approximation is exact.

7.2 Approximations for the Waiting-Time Distribution

However, the virtual abandonment probabilit§® and the expected virtual waiting tinie{17;] fluctuate much

more than the delay probability; e.g., see Figoir&Ve will explain that greater fluctuation.

We actually can mathematically analyze the time-dependent virtual waitingliiinend the time-dependent
virtual abandonment probabilitiy?®. Here is an important initial observation: Conditional on the event that
W; > 0, whose probability we have analyzed abol#, is distributed (exactly) as the first passage time of
the (Markovian) stochastic proce§g,, : v > t} from the initial valueL; encountered at timedown to the
staffing function{s,, : v > t}, provided that we ignore all future arrivals after tiheln other wordsW; is
distributed as the first passage time of the pure-death stochastic process with state-dependent géath rate

for w > t down from the initial valuel, to the curve{s, : v > t}. (Of course W, = 0if L; < s;.) As a
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consequence, the distribution Bf; and the value oP?* depend on only.; and the future staffing levels, i.e.,
{sy : u > t}. The time-dependent arrival-rate function contributes nothing further. It is easy to see that we can

establish stochastic bounds on the distributiomigfif the staffing level is monotone after time

We can go further if we make approximations. Even though exact relations are difficult to obtain, it is not
difficult to generate very good approximations for the case in which the number of servers tends to be large,
e.g., as in the specific example in the previous subsection. Wigtends to be very small, so that it is often
reasonable to assume that the staffing level remains constarindahe time shortly aftet. In other words, to
studyWW; and P2*, we make the approximation, ~ s; for all u > t. We make this approximation, not because

the staffing level should be nearly constant foradiftert, but because we think we only need to consider times

u slightly greater tha. We are thinking of applications in which the time-dependent arrival-rate function is

continuous, and the staffing changes relatively slowly.

If the future-staffing-level approximation held as an equality, then we would obtain the following approxima-
tions as equalities:

Wi~ Wy and P¥ =~ P%, (7.21)

where the constant staffing level in the station&fy\//s + M model on the righthand sides is chosen to be

s, and the constant arrival rate is chosen to\pn (2.9). Hence, we proposé (21) as approximations.

Given approximations/(21), we can use established results for the statioddyy//s + M model, e.g., asin
Garnett et al. (2002) and Whitt (2005). For example, algorithms to compute the (exact) distribUfion afe
given there, including the corresponding conditional distributions obtained when we condition on whether or

not the customer eventually is served.

8 Algorithm Dynamics

In this section we discuss the dynamics of the iterative-staffing algorithm farAtés /s, + M model. We
first relate an empirical observation about the way the algorithm converges to the limiting staffing fuff€tion

and then afterwards we give a theoretical explanation.

In particular, we observed that the way the staffing functions converge to the limit depends on the=réip.

Whenever the (im)patience rafles less than the service rate(r < 1), we encounteoscillating dynamics
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of the staffing level during the algorithm; whenever the (im)patienceéagegreater than the service raie

(r > 1), we encountemonotone dynamicsof the staffing level during the algorithm.

With monotone dynami¢csvhen starting Withsffn = o0, si”) is monotone decreasing wfor all ¢, i.e. the
following prevails:

s™ <™ forall m<mn. (8.22)

An example of the monotone dynamics is shown in Fidiukevhere staffing levels are shown for the first three
iterations of the algorithm for the case of arrival functidft) = 100 + 20 - sin(t), service times exponential

having mean 1, and impatience times that are exponential having mean=9.10§.

Figure 11:Staffing levels in the1st, 274 and last iterations. u=1, §=10.
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In contrast, withoscillating dynamicssgn) is oscillating for allt; i.e. there exist 2 subsequend k)}zoz%
and {sgl)};ﬁ%ﬂ, such thats!”™” | s and s 1 s>, Within the oscillating framework, there is
monotonicity. An example of the oscillating dynamics can be viewed in FigBrevhere staffing levels are

shown for the first three iterations for the same case except there is no abandahménafdr = 0).

For theM; /M /s, + M model, the algorithm dynamics can be explained by stochastic-order relations for the
time-varying birth-and-death proce§s, : t > 0}. For all systems, the arrival process is the same. However,
the death rates depend systematically on the number of segvéenr > 1 (r < 1), the death rates at time

t decrease (increase) asincreases. Hence, if we disregard statistical error, caused by having to estimate the

25



Figure 12:Staffing levels in the1t, 2"¢ and last iterations. u=1, 6=0
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delay probabilities associated with each staffing function, we can actually prove that the algorithm converges
for the M, /M /s, + M model. To do so, we use sample-path stochastic order, as in Whitt (1981). We only need
ordinary stochastic-order for each timebut in order to get that, we need to properly address what happens

before timet as well.

Here is thekey stochastic-order propertyfor the M; /M /s, + M model: Ifsgl) < s§2) forallt,0 <t <T,
andr > 1, then

(LM0<t<Ty < (P :0<t<T), (8.23)

where<,; denotessample-path stochastic orderi.e.,
Elf({ o<t <)) <a B[f ({LP 0 <t <1} (8.24)

for all nondecreasing real-valued functiofien the space of sample paths. The ordering is reversed if instead

r<l.

The ordering of the death rates in the two birth-and-death processes makes it possible to achieve the sample-
path ordering. Indeed, that can be accomplished (the reldi@f) (can be rigorously justified) by constructing
special versions of the two stochastic processes on the same underlying probability space so that the sample
paths are ordered with probability 1. As discussed in Whitt (1981), and proved by Kamae, Krengel and O’Brien

(1978), that special construction is actually equivalent to the sample-path stochastic ordesid)in (
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The sample-path ordering obtained ensures that a departure occurs in the lower process whenever it occurs in
the upper process and the two sample paths are equal. As indicated above, the two processes are given identical
arrival streams. Then we construct all departures (service completions or abandonments) from those of the
lower process at epochs when the two sample paths are equal. Suppose thattahérsample paths are
equal:Lgl) = L§2) = k. Then, at that, the death rates in the two birth and death processes are necessarily
ordered by, (k) > d2(k). We only let departures occur in proc&shen they occur in proceds so the two

sample paths can never cross over. When a departure occurs in pregdsdoth sample paths in statg we

let a departure also occur in proc&with probability 62 (k) /41 (k), with no departure occurring in proce3s
otherwise. This keeps the sample paths ordered w.p. 1 for Atithe same time, the two stochastic processes
individually have the correct finite-dimensional distributions. The construction is just like the thinning of a

Poisson process used in the simulation of a nonhomogeneous Poisson process.
As a consequence of the sample-path stochastic order, we get ordinary stochastic order
V<, ¥ forall t, (8.25)

where now<,; denotes conventional stochastic order for real-valued random variables, just as in Chapter 9
of Ross (1996); also seeiMer and Stoyan (2002). We only need the more elementary stochastic order in
(8.29, but we use the more sophisticated sample-path stochastic orde2&to get it. The stochastic order

is equivalent to the tail probabilities being ordered; i.8.29 is equivalent tcP(Lftl) >zx) < P(L?) > z) for

all z, which implies the ordering for the staffing functions at titnén particular, suppose that
P (LP > s§2)) <a<P (L?) > s - 1) . (8.26)

Since

P (LS) > 5§2)) <P (L?) > s§2)) <a, (8.27)
necessarilyggl) < s§2>.

(0)

Case Lir > 1. Fors; * = oo, we necessarily start wiﬂ{o) > sS)

for all ¢, which produces firsLEl) <g Ll(to)
and thensff) < sS) for all ¢. Continuing, we geﬂﬁ") stochastically decreasing inand sﬁ”) decreasing in
n, again for allz. Since the staffing levels are integers, if we use only finitely many valuesas in our

implementation, then we necessarily get convergence in finitely many steps.

Case 2:r < 1. For s§0> = oo, We again necessarily start wiﬁﬁo) > s§1> for all t. That produces first

L,El) >t L§”> and thensgo) > s§2> > 5§1> for all t. Afterwards, we geﬂgl) >t L§2) >t LEO) andsgo) >
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59 > s§3> > s§1> forall t. Continuing, we geLEzn) stochastically increasing im, while LEZ”H) stochastically
decreases in, for all . Similarly, s?") decreases in, while s§2”+1) increases im for all t. We thus have

convergence, to possibly oscillating limits. Since the staffing levels are integers, if we use only finitely many

values oft, as in our implementation, then we necessarily get convergence in finitely many steps.

We also observed that tharget delay probability « strongly influenced the dynamics. In particular, higher
values ofa cause larger oscillations in the oscillating case, and slower convergence to the limit in all cases.
This phenomenon is illustrated in Figure3and14. The staffing levels in the first two iterations, which form

the range of the oscillating dynamics, are plotted for both takget0.1 (Figure13) anda = 0.5 (Figure14)

for the case of arrival function(t) = 100 + 20 - sin(¢), service times are exponential having mean 1, and no

abandonment.

Figure 13:Range of staffing level for targeta=0.1
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Finally, we also observedtane-dependent behavior in the convergencef si”). We observed a greater gap

as time increased. For example, let
= @) () L
ILi=inf{j:s, =s/ forall >j}. (8.28)

We observed thak;,, > I, for all t2 > ¢;. An illustration can be viewed in Figurks. This time-dependent
behavior is understandable, because the gap between two different staffing levels persists across time, so that

there is a gap in the death rates at eadHence, as gets larger, the two processes can get further apart. Thus
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Figure 14:Range of staffing level for targeta=0.5
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the gap can first decrease more at the left end of the time horizon. When it reaches the limit at the left, the gap

will still decrease more to the right.

Figure 15:Evolution of convergence during algorithm run-time
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