The Offered-Load in Fork-Join Networks Applications to Staffing of Emergency Departments

Itamar Zaied
Jointly with H.Kaspi and A.Mandelbaum

July 18, 2012

Introduction - The Offered Load

The Offered Load: The Stationary Case

hours of work (= service) that arrive per hour.

Example:

 $\lambda = 20$ patients/hour; E[S] = 0.5 hours. Offered-Load $R = 20 \cdot 0.5 = 10$ hour of work per hour.

The Offered Load of an $M_t/GI/N_t$ queue

For the $M_t/GI/N_t$ queue, the offered load $R = \{R(t), t \geq 0\}$ is given by the function R(t) = E[L(t)], where L(t) is the number of customers/patients (=number of busy servers) at time t, in the corresponding $M_t/GI/\infty$ queue.

Introduction - The Offered Load

The Offered Load: The Stationary Case

hours of work (= service) that arrive per hour.

Example:

 $\lambda = 20$ patients/hour; E[S] = 0.5 hours. Offered-Load $R = 20 \cdot 0.5 = 10$ hour of work per hour.

The Offered Load of an $M_t/GI/N_t$ queue

For the $M_t/GI/N_t$ queue, the offered load $R = \{R(t), t \geq 0\}$ is given by the function R(t) = E[L(t)], where L(t) is the number of customers/patients (=number of busy servers) at time t, in the corresponding $M_t/GI/\infty$ queue.

 Offered-Load has been proved to be the skeleton for staffing of time-varying systems.

Offered Load Calculations

The Offered Load in $M_t/GI/\infty$ queue - Representations (S.G. Eick, W.A. Massey, and W. Whitt)

For each t, L(t) has a Poisson distribution with mean

$$R(t) = E[L(t)] =$$

$$E[\lambda(t-S_e)] \cdot E[S] = E\left[\int_{t-S}^t \lambda(u)du\right] = \int_{-\infty}^t [1-G(t-u)]\lambda(u)du,$$

where

S is a generic service time with cdf G;

 S_e is a generic "excess service time", having the following cdf:

$$P(S_e \le t) = \frac{1}{E(S)} \int_0^t [1 - G(u)] du, \qquad t \ge 0.$$

Offered Load in Tandem Queues

The Offered Load at time t of the second station is given by

$$R_2(t) = E(\lambda(t - S_1 - S_{2e})) \cdot E(S_2), \quad t \ge 0.$$

Where S_{2e} is the excess service time.

The Offered Load of station number k $(k \le n)$ is:

$$R_k(t) = E(\lambda(t - (S_1 + ... + S_{k-1}) - S_{ke})) \cdot E(S_k).$$

Example: a tandem of two queues with Arrival rate

$$\lambda(t) = 4 \cdot \sin(1.5t) + 5$$
 $t > -\infty$ and service times $S_i \sim \exp(1)$, $i = 1, 2$.

Example: a tandem of two queues with Arrival rate

$$\lambda(t) = 4 \cdot sin(1.5t) + 5$$
 $t > -\infty$ and service times $S_i \sim exp(1)$, $i = 1, 2$.

• Define $\psi_S(\theta) = E(e^{-i\theta S})$

Example: a tandem of two queues with Arrival rate

$$\lambda(t) = 4 \cdot \sin(1.5t) + 5$$
 $t > -\infty$ and service times $S_i \sim \exp(1)$, $i = 1, 2$.

- Define $\psi_S(\theta) = E(e^{-i\theta S})$
- $R_1(t) = E(\lambda(t S_{1e})) \cdot E(S_1) = E(4 \cdot sin(1.5(t S_{1e})) + 5) \cdot E(S_1) = E(4 \cdot \frac{e^{1.5i(t S_{1e})} e^{-1.5i(t S_{1e})}}{2i} + 5) \cdot E(S_1) = \frac{4}{2i} \cdot E(e^{1.5i(t S_{1e})}) \cdot E(S_1) \frac{4}{2i} \cdot E(e^{-i1.5(t S_{1e})}) \cdot E(S_1) + 5 = \frac{4}{2i} \cdot e^{1.5it} \cdot \psi_{S1e}(1.5) \cdot E(S_1) \frac{4}{2i} \cdot e^{-1.5it} \cdot \psi_{S1e}(-1.5) \cdot E(S_1) = \frac{4}{2i} \cdot \left[\frac{e^{1.5it}}{1 + 1.5i}\right] \frac{4}{2i} \cdot \left[\frac{e^{-1.5it}}{1 1.5i}\right] + 5 = 1.25 sin(1.5t) 1.875 \cdot cos(1.5t) + 5$

Itamar Zaied Jointly with H.Kaspi and A.Mar The Offered-Load in Fork-Join Networks

Example: a tandem of two queues with Arrival rate

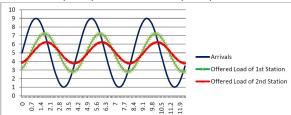
$$\lambda(t) = 4 \cdot \sin(1.5t) + 5$$
 $t > -\infty$ and service times $S_i \sim \exp(1)$, $i = 1, 2$.

- Define $\psi_S(\theta) = E(e^{-i\theta S})$
- $R_1(t) = E(\lambda(t S_{1e})) \cdot E(S_1) = E(4 \cdot sin(1.5(t S_{1e})) + 5) \cdot E(S_1) = E(4 \cdot \frac{e^{1.5i(t S_{1e})} e^{-1.5i(t S_{1e})}}{2i} + 5) \cdot E(S_1) = \frac{4}{2i} \cdot E(e^{1.5i(t S_{1e})}) \cdot E(S_1) \frac{4}{2i} \cdot E(e^{-i1.5(t S_{1e})}) \cdot E(S_1) + 5 = \frac{4}{2i} \cdot e^{1.5ti} \cdot \psi_{S1e}(1.5) \cdot E(S_1) \frac{4}{2i} \cdot e^{-1.5ti} \cdot \psi_{S1e}(-1.5) \cdot E(S_1) = \frac{4}{2i} \cdot \left[\frac{e^{1.5it}}{1+1.5i}\right] \frac{4}{2i} \cdot \left[\frac{e^{-1.5it}}{1-1.5i}\right] + 5 = 1.25sin(1.5t) 1.875 \cdot cos(1.5t) + 5$
- $R_2(t) = -0.472 \cdot \sin(1.5t) 1.136 \cdot \cos(1.5t) + 5$

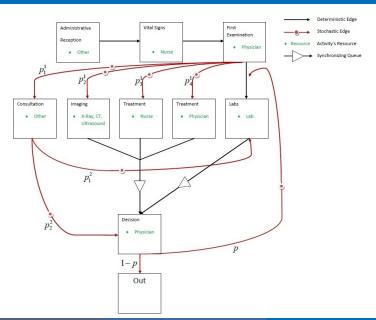
Example: a tandem of two queues with Arrival rate

$$\lambda(t) = 4 \cdot \sin(1.5t) + 5$$
 $t > -\infty$ and service times $S_i \sim \exp(1)$, $i = 1, 2$.

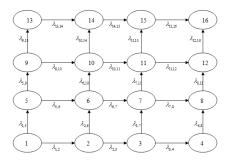
- Define $\psi_S(\theta) = E(e^{-i\theta S})$
- $R_1(t) = E(\lambda(t S_{1e})) \cdot E(S_1) = E(4 \cdot sin(1.5(t S_{1e})) + 5) \cdot E(S_1) =$ $E(4 \cdot \frac{e^{1.5i(t-S_{1e})}-e^{-1.5i(t-S_{1e})}}{2i} + 5) \cdot E(S_1) =$ $\frac{\frac{4}{2i} \cdot E(e^{1.5i(t-S_{1e}^{-i})}) \cdot E(S_1) - \frac{4}{2i} \cdot E(e^{-i1.5(t-S_{1e})}) \cdot E(S_1) + 5 = \frac{4}{2i} \cdot e^{1.5ti} \cdot \psi_{S1e}(1.5) \cdot E(S_1) - \frac{4}{2i} \cdot e^{-1.5ti} \cdot \psi_{S1e}(-1.5) \cdot E(S_1) = \frac{4}{2i} \cdot e^{-1.5ti} \cdot \psi_{S1e}(-1.$ $\frac{4}{2i} \cdot \left[\frac{e^{1.5it}}{1+1.5i} \right] - \frac{4}{2i} \cdot \left[\frac{e^{-1.5it}}{1-1.5i} \right] + 5$ $= 1.25 sin(1.5t) - 1.875 \cdot cos(1.5t) + 5$
- $R_2(t) = -0.472 \cdot \sin(1.5t) 1.136 \cdot \cos(1.5t) + 5$



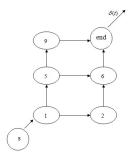
ED JFJ Network



Consider a fork join network with V its set of nodes and A its set of arcs. To calculate the Offered Load of station i, one can define a new fork join network i^- , as follows:

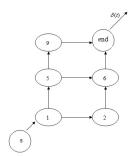


ullet Let V^- be all the nodes of V which have a directed path to station i.



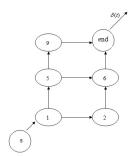
Example: the network 10⁻

- Let V^- be all the nodes of V which have a directed path to station i.
- Let A^- be all the arcs in A which connect a node from V^- to a node from $V^- \cup i$.



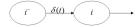
Example: the network 10⁻

- Let V^- be all the nodes of V which have a directed path to station i.
- Let A^- be all the arcs in A which connect a node from V^- to a node from $V^- \cup i$.
- Let i^- be the fork-join network with V^- its set of nodes and A^- its set of arcs.



Example: the network 10⁻

We now have a Tandem of 2 service stations, where queue i is the second queue.



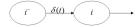
The Offered-Load at station i

The offered load at station i, is given by

$$R_i(t) = E(\lambda(t - T_i - S_i^e)) \cdot E(S_i), \quad t \ge 0,$$

where T_i is the total sojourn time of network i^- and S_i^e is the residual service time at station i.

We now have a Tandem of 2 service stations, where queue i is the second queue.



The Offered-Load at station i

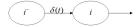
The offered load at station i, is given by

$$R_i(t) = E(\lambda(t - T_i - S_i^e)) \cdot E(S_i), \quad t \ge 0,$$

where T_i is the total sojourn time of network i^- and S_i^e is the residual service time at station i.

• Thus, finding the distribution of T_i is required for calculating the Offered-load of station i.

We now have a Tandem of 2 service stations, where queue i is the second queue.



The Offered-Load at station i

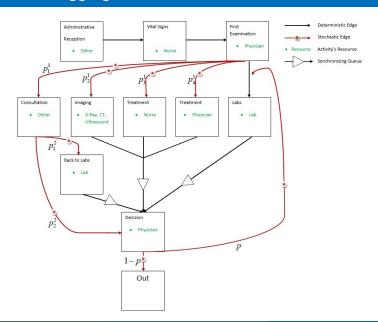
The offered load at station i, is given by

$$R_i(t) = E(\lambda(t - T_i - S_i^e)) \cdot E(S_i), \quad t \ge 0,$$

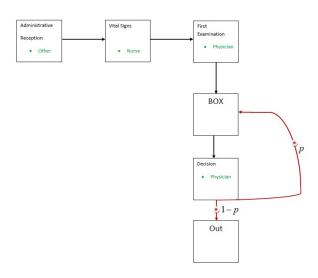
where T_i is the total sojourn time of network i^- and S_i^e is the residual service time at station i.

- Thus, finding the distribution of T_i is required for calculating the Offered-load of station i.
- S_i^e 's density function is $f_{S_i^e}(x) = \frac{1 F_{S_i(x)}}{E(S_i)}$.

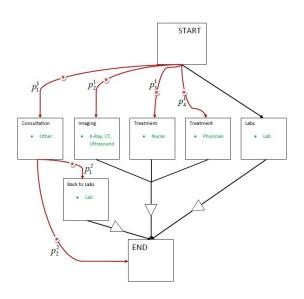
ED's JFJ Disaggregation



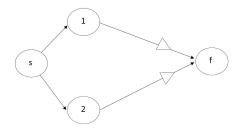
ED's JFJ Disaggregation



ED's JFJ Disaggregation

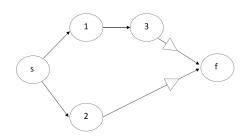


M1 Network



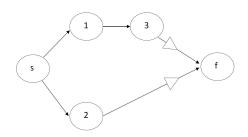
$$\begin{split} \psi_{M1}(\theta) &= \psi_{\mathcal{S}_{1,2}}(\theta) \cdot (\tfrac{\mu_1}{\mu_1 + \mu_2} \cdot \psi_{\mathcal{S}_2}(\theta) + \tfrac{\mu_2}{\mu_1 + \mu_2} \cdot \psi_{\mathcal{S}_1}(\theta)), \\ \text{where } S_{1,2} &\sim \exp(\mu_1 + \mu_2). \end{split}$$

M2 Network



$$\psi_{M2}(\theta) = \psi_{S_{1,2}}(\theta) \cdot \left(\frac{\mu_1}{\mu_1 + \mu_2} \cdot \psi_{S_{2,3}}(\theta) \cdot \left\{\frac{\mu_2}{\mu_2 + \mu_3} \cdot \psi_{S_3}(\theta) + \frac{\mu_3}{\mu_2 + \mu_3} \cdot \psi_{S_2}(\theta)\right\} + \frac{\mu_2}{\mu_1 + \mu_2} \cdot \psi_{S_1}(\theta) \cdot \psi_{S_3}(\theta)\right),$$
where $S_{1,2} \sim exp(\mu_1 + \mu_2)$, $S_{2,3} \sim exp(\mu_2 + \mu_3)$

M2 Network



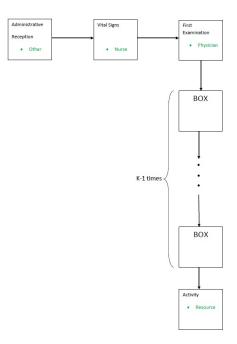
$$\psi_{M2}(\theta) = \psi_{S_{1,2}}(\theta) \cdot \left(\frac{\mu_1}{\mu_1 + \mu_2} \cdot \psi_{S_{2,3}}(\theta) \cdot \left\{\frac{\mu_2}{\mu_2 + \mu_3} \cdot \psi_{S_3}(\theta) + \frac{\mu_3}{\mu_2 + \mu_3} \cdot \psi_{S_2}(\theta)\right\} + \frac{\mu_2}{\mu_1 + \mu_2} \cdot \psi_{S_1}(\theta) \cdot \psi_{S_3}(\theta)\right),$$
 where $S_{1,2} \sim exp(\mu_1 + \mu_2), S_{2,3} \sim exp(\mu_2 + \mu_3)$

• $\psi_{S_{BOX}}(\theta)$ is composed of all the possible routes that a patient can take in the ED

Example: The Characteristic Function of an Activity from "BOX"

The computation of $\psi_a(\theta)$ (a could be treatment, imaging etc.):

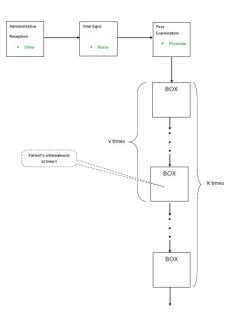
• compute $\psi_{a,k}(\theta)$, the characteristic function of patients that visit "BOX" exactly k times



Example: The Characteristic Function of an Activity from "BOX"

The computation of $\psi_a(\theta)$ (a could be treatment, imaging etc.):

- Compute $\psi_{a,k}(\theta)$, the characteristic function of patients that visit "BOX" exactly k times
- A patient that visits "BOX" exactly k times will visit a in its v visit in "BOX" $(1 \le v \le k)$ with probability p_a



Example: The Characteristic Function of an Activity from "BOX"

The computation of $\psi_a(\theta)$ (a could be treatment, imaging etc.):

- Compute $\psi_{a,k}(\theta)$, the characteristic function of patients that visit "BOX" exactly k times
- A patient that visits "BOX" exactly k times will visit a in its v visit in "BOX" $(1 \le v \le k)$ with probability p_a :

$$\psi_{\mathsf{a},k}(\theta) = \psi_{\mathsf{S}_{\mathsf{AR}}} \cdot \psi_{\mathsf{S}_{\mathsf{VS}}} \cdot \psi_{\mathsf{S}_{\mathsf{FE}}} \cdot \sum_{v=0}^{k-1} p_{\mathsf{a}}(\psi_{\mathsf{S}_{\mathsf{BOX}}}(\theta))^{v} \psi_{\mathsf{S}_{\mathsf{a},e}}(\theta) = \psi_{\mathsf{S}_{\mathsf{AR}}} \cdot \psi_{\mathsf{S}_{\mathsf{VS}}} \cdot \psi_{\mathsf{S}_{\mathsf{FE}}} \cdot \psi_{\mathsf{S}_{\mathsf{a},e}}(\theta) \psi_{\mathsf{S}_{\mathsf{I}}}(\theta) p_{\mathsf{a}} \frac{1 - \psi_{\mathsf{S}_{\mathsf{BOX}}}^{\mathsf{k}}(\theta)}{1 - \psi_{\mathsf{S}_{\mathsf{BOX}}}(\theta)}$$

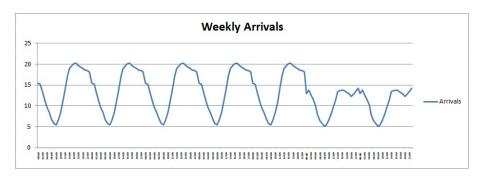
Example: The Characteristic Function of an Activity from "BOX"

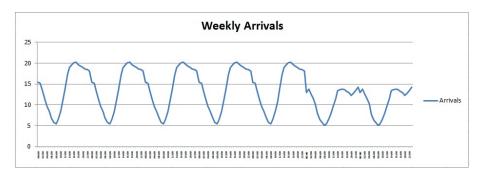
The computation of $\psi_a(\theta)$ (a could be treatment, imaging etc.):

- Compute $\psi_{a,k}(\theta)$, the characteristic function of patients that visit "BOX" exactly k times
- A patient that visits "BOX" exactly k times will visit a in its v visit in "BOX" $(1 \le v \le k)$ with probability p_a : $\psi_{a,k}(\theta) = \psi_{S_{AR}} \cdot \psi_{S_{VS}} \cdot \psi_{S_{FE}} \cdot \sum_{v=0}^{k-1} p_a (\psi_{S_{ROX}}(\theta))^v \psi_{S_{a,e}}(\theta) =$

$$\psi_{\mathsf{A},\mathsf{k}}(\theta) = \psi_{\mathsf{S}_{\mathsf{AR}}} \cdot \psi_{\mathsf{S}_{\mathsf{VS}}} \cdot \psi_{\mathsf{S}_{\mathsf{FE}}} \cdot \sum_{v=0}^{\mathsf{v}} \rho_{\mathsf{a}}(\psi_{\mathsf{S}_{\mathsf{BOX}}}(\theta))^{\mathsf{v}} \psi_{\mathsf{S}_{\mathsf{a},\mathsf{e}}}$$
$$\psi_{\mathsf{S}_{\mathsf{AR}}} \cdot \psi_{\mathsf{S}_{\mathsf{VS}}} \cdot \psi_{\mathsf{S}_{\mathsf{FE}}} \cdot \psi_{\mathsf{S}_{\mathsf{a},\mathsf{e}}}(\theta) \psi_{\mathsf{S}_{\mathsf{I}}}(\theta) \rho_{\mathsf{a}} \frac{1 - \psi_{\mathsf{S}_{\mathsf{BOX}}}^{\mathsf{k}}(\theta)}{1 - \psi_{\mathsf{S}_{\mathsf{POY}}}(\theta)}$$

•
$$\psi_{\mathsf{a}}(\theta) = \sum_{k=1}^{\infty} \psi_{\mathsf{a},k}(\theta) = p_{\mathsf{a}} \cdot \psi_{\mathcal{S}_{\mathsf{AR}}} \cdot \psi_{\mathcal{S}_{\mathsf{VS}}} \cdot \psi_{\mathcal{S}_{\mathsf{FE}}} \cdot \psi_{\mathcal{S}_{\mathsf{a}}}(\theta) \cdot \frac{1}{1 - p\psi_{\mathcal{S}_{\mathsf{BOX}}}(\theta)}$$





• The periodic nature of arrivals allows one to calculate the Offered-Load in an easier way: **Discrete Fourier transform.**

Example: The Offered-Load of Internal Drs:

• We look at the activities that are executed by Internal Dr's: "First Examination", "Treatment" and "Decision".

Example: The Offered-Load of Internal Drs:

- We look at the activities that are executed by Internal Dr's: "First Examination", "Treatment" and "Decision".
- 2 We then calculate the Offered-Load of each one of the activities.

Example: The Offered-Load of Internal Drs:

- We look at the activities that are executed by Internal Dr's: "First Examination", "Treatment" and "Decision".
- We then calculate the Offered-Load of each one of the activities.
- Summing up the Offered-Load of the activities will give us the Offered-Load of Internal Dr's.

Example: The Offered-Load of Internal Drs:

$$R(t) = \sum_{j=1}^{3} R_{a_{j}}(t) = \sum_{j=1}^{3} \frac{1}{N} \sum_{k=0}^{N-1} X_{k} e^{\frac{2\pi i}{N} k n} \psi_{S}(\frac{2\pi i}{N}) \cdot E(S_{a_{j}}),$$

where a_1 ="First Examination", a_2 ="Treatment" and a_3 ="Decision".

• Example: The Offered-Load of Internal Drs:

$$R(t) = \sum_{j=1}^{3} R_{a_{j}}(t) = \sum_{j=1}^{3} \frac{1}{N} \sum_{k=0}^{N-1} X_{k} e^{\frac{2\pi i}{N} k n} \psi_{S}(\frac{2\pi i}{N}) \cdot E(S_{a_{j}}),$$

where a_1 ="First Examination", a_2 ="Treatment" and a_3 ="Decision".

• $x_0, ..., x_{N-1}$ are the arrival rates at times $t_0 = 0, ..., t_{N-1} = N-1$.

Example: The Offered-Load of Internal Drs:

$$R(t) = \sum_{j=1}^{3} R_{a_j}(t) = \sum_{j=1}^{3} \frac{1}{N} \sum_{k=0}^{N-1} X_k e^{\frac{2\pi i}{N} k n} \psi_{S}(\frac{2\pi i}{N}) \cdot E(S_{a_j}),$$

where a_1 ="First Examination", a_2 ="Treatment" and a_3 ="Decision".

- $x_0, ..., x_{N-1}$ are the arrival rates at times $t_0 = 0, ... t_{N-1} = N-1$.
- X_k is the discrete Fourier transform of $x_0,...,x_{N-1}$ $(X_k = \sum_{n=0}^{N-1} x_n e^{-\frac{2\pi i}{N}kn} \quad k = 0,...,N-1),$ $n = \{k \mod(N) | k = \max\{m : m \le t\}\}.$

Example: The Offered-Load of Internal Drs:

$$R(t) = \sum_{j=1}^{3} R_{a_{j}}(t) = \sum_{j=1}^{3} \frac{1}{N} \sum_{k=0}^{N-1} X_{k} e^{\frac{2\pi i}{N} k n} \psi_{S}(\frac{2\pi i}{N}) \cdot E(S_{a_{j}}),$$

where a_1 ="First Examination", a_2 ="Treatment" and a_3 ="Decision".

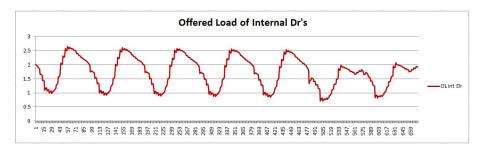
- $x_0, ..., x_{N-1}$ are the arrival rates at times $t_0 = 0, ... t_{N-1} = N-1$.
- X_k is the discrete Fourier transform of $x_0, ..., x_{N-1}$ $(X_k = \sum_{n=0}^{N-1} x_n e^{-\frac{2\pi i}{N}kn} \quad k = 0, ..., N-1),$ • $n = \{k \mod(N) | k = \max\{m : m < t\}\}.$
- S_a is the service time of activity a.

Example: The Offered-Load of Internal Drs:

$$R(t) = \sum_{j=1}^{3} R_{a_{j}}(t) = \sum_{j=1}^{3} \frac{1}{N} \sum_{k=0}^{N-1} X_{k} e^{\frac{2\pi i}{N} k n} \psi_{S}(\frac{2\pi i}{N}) \cdot E(S_{a_{j}}),$$

where a_1 ="First Examination", a_2 ="Treatment" and a_3 ="Decision".

- $x_0, ..., x_{N-1}$ are the arrival rates at times $t_0 = 0, ... t_{N-1} = N-1$.
- X_k is the discrete Fourier transform of $x_0,...,x_{N-1}$ $(X_k = \sum_{n=0}^{N-1} x_n e^{-\frac{2\pi i}{N}kn} \quad k = 0,...,N-1),$ $n = \{k \mod(N) | k = \max\{m : m \le t\}\}.$
- S_a is the service time of activity a.
- *S* is the completion time of the network that starts at the ED entry and ends at activity *a*.



Using the square-root staffing rule:

$$N(t) = round(R(t) + \beta \cdot \sqrt{R(t)})$$
,

where:

Using the square-root staffing rule:

$$N(t) = round(R(t) + \beta \cdot \sqrt{R(t)})$$
,

where:

• N(t) are the number of agents at time t.

Using the square-root staffing rule:

$$N(t) = round(R(t) + \beta \cdot \sqrt{R(t)})$$
,

where:

- N(t) are the number of agents at time t.
- \bullet β is "safety staffing".

Using the square-root staffing rule:

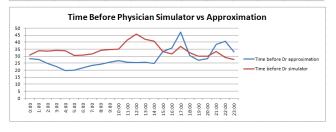
$$N(t) = round(R(t) + \beta \cdot \sqrt{R(t)})$$
,

where:

- N(t) are the number of agents at time t.
- ullet eta is "safety staffing".
- round(x) = $\begin{cases} \begin{bmatrix} x \end{bmatrix} & \text{if} & [x] x \ge 0.5 \\ \lfloor x \end{bmatrix} & \text{if} & [x] x < 0.5 \end{cases}$

Comparing results: Simulator vs Approximation

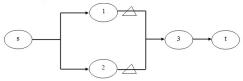
For example, results of internal Drs (staffing with $\beta = 0.7$):



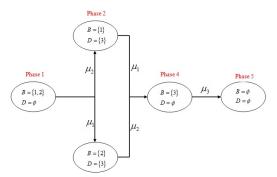
 We adopt a result by Adlakha and Kulkarni [1986], to represent a fork-join network as a continues time Markov chain (activities on arcs vs activities on nodes, in our case).

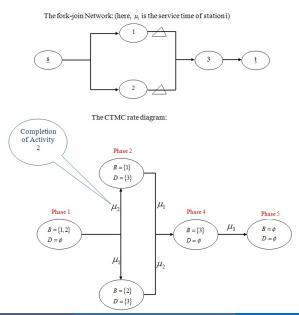
- We adopt a result by Adlakha and Kulkarni [1986], to represent a fork-join network as a continues time Markov chain (activities on arcs vs activities on nodes, in our case).
- The continues time Markov chain state space consists of all the pairs (B, D): B denote all the <u>active</u> nodes and D all the <u>dormant</u> nodes.

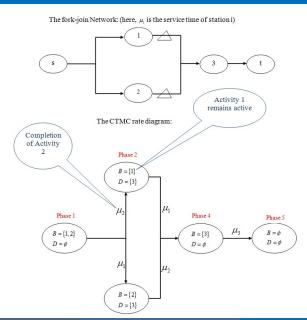
The fork-join Network: (here, μ_i is the service rate of station i)

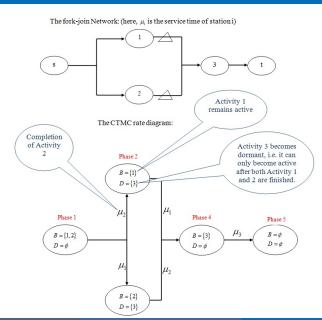


The CTMC rate diagram:









The project completion time can be calculated via the next algorithm:

The project completion time can be calculated via the next algorithm:

Backward Algorithm

• The cdf of the PERT network service time is $F(t) = p_0(t)$.

The project completion time can be calculated via the next algorithm:

- The cdf of the PERT network service time is $F(t) = p_0(t)$.
- Here $p_i(t) = P(X(t) = N | X(0) = i); \quad 0 \le i \le N$, where

The project completion time can be calculated via the next algorithm:

- The cdf of the PERT network service time is $F(t) = p_0(t)$.
- Here $p_i(t) = P(X(t) = N | X(0) = i); \quad 0 \le i \le N$, where
 - The continues time Markov chain state space is numbered as {1,2,..., N}.

The project completion time can be calculated via the next algorithm:

- The cdf of the PERT network service time is $F(t) = p_0(t)$.
- Here $p_i(t) = P(X(t) = N | X(0) = i); \quad 0 \le i \le N$, where
 - The continues time Markov chain state space is numbered as {1,2,..., N}.
 - ② X(t), $t \ge 0$, is the state of the project at time t.

The project completion time can be calculated via the next algorithm:

Backward Algorithm

- The cdf of the PERT network service time is $F(t) = p_0(t)$.
- Here $p_i(t) = P(X(t) = N | X(0) = i); \quad 0 \le i \le N$, where
 - The continues time Markov chain state space is numbered as {1,2,..., N}.
 - (2) $X(t), t \ge 0$, is the state of the project at time t.
 - $oldsymbol{0}$ $p_i(t)$ are given by

$$p_i'(t) = \sum_{j \leq i} q_{ij} p_j(t)$$

$$p_i(0) = \delta_{iN}, \quad 0 \leq i \leq N,$$

where $\delta_{ij} = 1$ if i=j, and 0 otherwise, and q_{ij} are taken from the infinitesimal generator matrix of the continues time Markov chain.

The project completion time can be calculated via the next algorithm:

Backward Algorithm

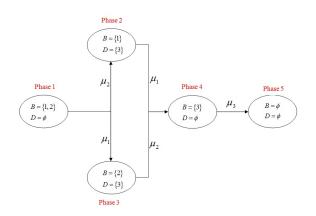
- The cdf of the PERT network service time is $F(t) = p_0(t)$.
- Here $p_i(t) = P(X(t) = N | X(0) = i); \quad 0 \le i \le N$, where
 - The continues time Markov chain state space is numbered as $\{1, 2, ..., N\}$.
 - (2) $X(t), t \ge 0$, is the state of the project at time t.

$$p_i'(t) = \sum_{j \le i} q_{ij} p_j(t)$$

$$p_i(0) = \delta_{iN}, \quad 0 < i < N,$$

where $\delta_{ij} = 1$ if i=j, and 0 otherwise, and q_{ij} are taken from the infinitesimal generator matrix of the continues time Markov chain.

• We start the algorithm with $p_N(t) \equiv 1$, for $t \geq 0$ and compute $p_{N-1}(t), ..., p_1(t), p_0(t)$ recursively backward.



- $P_5(t) = 1$,
- $P_3'(t) = \mu_2 \cdot P_4(t)$,
- $P_1'(t) = \mu_1 \cdot P_3(t) + \mu_2 \cdot P_2(t)$.
- $P_4'(t) = \mu_3 \cdot P_5(t)$,
- $P_2'(t) = \mu_1 \cdot P_4(t)$,

32 / 34

Summary

• Staffing according to the Offered Load (square root staffing) reduces patients length of stay at the ED.

Summary

- Staffing according to the Offered Load (square root staffing) reduces patients length of stay at the ED.
- Staffing according to the Offered Load stabilizes measures of performance of the emergency department over time.

Summary

- Staffing according to the Offered Load (square root staffing) reduces patients length of stay at the ED.
- Staffing according to the Offered Load stabilizes measures of performance of the emergency department over time.
- Tractable analysis of a complex network (fork-join) captures the full complexity of an emergency department.

