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Abstract

Motivated by modern call centers, we consider large-scale service systems with multiple
server pools and a single customer class. For such systems, we propose simple staffing rules
which asymptotically minimize staffing costs. The minimization is subject to constraints on
the waiting probability, as demand grows large. The proposed staffing rules add a square-root
safety service capacity to the nominal capacity required for system stability. For large values
of system demand, the resulting asymptotic regime is what we call the Quality and Efficiency
Driven (QED) regime: it achieves high levels of both service quality and system efficiency by
carefully balancing between the two. Finally, we propose an asymptotically optimal routing
scheme, FSF, which assigns customers to the Fastest Servers First.
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1 Introduction

In modern service systems it is common to have multiple classes of customers and multiple server
types (skills). The customer classes are differentiated according to their service needs. The server
types are characterized by the subset of customer classes that they can adequately serve and the
guality of service that they can devote to each such class. An important example of such large
scale service system are multi-skill call/contact-centers. Such centers are often characterized by
multiple classes of calls (classified according to type or level of service requested, langauge spoken,
perceived value of customers, etc.). To match the various service needs of those customers, call
centers often consist of hundreds of even thousands of customer service representatives (CSRS).
These CSRs have different skills, depending on the call classes that they can handle, and the speed
in which they do it.

There are three main issues to address when dealing with the operations management of
large-scale service systems. Given a forecast of the customers’ arrival rates and their service re-
guirements, these issues are:

e Design: The long-term problem of determining the class partitioning of customers, and the
types of servers; this typically includes overlapping skills (i.e. servers that can handle more
than one class of customers, and classes that can be served by several server types).

e Staffing: The short-term problem of determining how many servers are needed of each type,
in order to deal with the given demand. These server types may be of overlapping skills. (In
addition, there is a scheduling problem which determines the shift structure for the system,
as well as determining who are the actual servers that would work in these shifts. The last
two issues will not be discussed in this paper.)
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Figure 1.1: The Inverted-V model - single customer class and multiple server types.

e Control: The on-line problem of customer routing and server scheduling that involves the

assignment of customers to the appropriate server upon service completion or a customer’s
arrival.

These three problems are all interrelated and should, therefore, be discussed in conjunction with
one another. Yet, because of the complexity involved in addressing all these three combined, they
are typically addressed hierarchically and unilaterally in the literature.

Even when one addresses the three issues separately, a general solution for all possible sys-
tem configurations is yet to be achieved. Instead, we approach the problem by studying a relatively
simple model in order to gain insight to the more general model. The model we focus on in this
work is the /\-design (or the inverted-V design). This is a system design in which customers are
homogeneous, witli server types (organized iR pools) that have full overlap of their skills,
but differ in the speed in which they serve the customers. Alternatively, one could look at the
V —design (studied in [7, 29, 57] and elsewhere), which corresponds to a system with a single
server pool and multiple customer classes). \adesign is depicted in figure 1.1.

With respect to th¢)\-design we ask the following two questions:

1. Given a fixed number of servers of each pool, how to route the customers into the different
server pools so as to optimize system performance, and

2. How many servers of each pool are required in order to minimize staffing costs while main-
taining pre-specified performance goals.

We address these questions by first characterizing a simple routing scheme which is asymp-
totically optimal as the arrival rate and the number of servers in each pool increase to infinity. The
asymptotic optimality is in the sense that the policy (asymptotically and stochastically) minimizes
the steady-state queue length and waiting time (both appropriately scaled). We then identify a
simple form for an asymptotic feasible region. This region is the set of all staffing vectors that can
obtain a pre-specified waiting probability in steady-state, asymptotically as the arrival rate grows
large. Finally, the asymptotic optimality of the staffing vector that minimizes the staffing costs
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within the asymptotically feasible region is established for a wide range of cost functions. We
conclude by studying the effects of our results on design related issues such as: How many server
pools should one have? and, Does having fewer but faster servers affect performance?

The asymptotic framework considered in this paper is the many-server heavy-traffic regime,
first appearing in Erlang [18], and formally introduced by Halfin and Whitt [30]. We refer to this
regime as the QED (Quality and Efficiency Driven) regime. Systems that operate in the QED
regime enjoy a rare combination of high efficiencies together with high quality of service. More
formally, consider a sequence of systems of a fixed design and an increasing arrivxaSappose
that the total service capacity of each system in the sequence exdegdsafety capacity of order
Vv/A. In particular, the traffic intensity (or server efficiency) goes to 2-asx (ie. the system goes
to heavy traffic). On the other hand, the high quality aspect of the QED regime may be seen
through the following alternative characterization: Suppose that-aso, the limiting waiting
probability is non-trivial (ie. it is in the open interv@d, 1)). This high performance, which is
typically impossible to achieve for systems in heavy traffic, is obtained here due to the economies
of scale associated with the large number of servers. The two characterizations of the QED regime
are shown to be equivalent in various settings (first establishé&Djn See the literature review,
section 1.2, for more details), including the one considered in this paper (see Section 4).

1.1 Summary of the results

The asymptotically optimal routing policy we propose is the policy Faster Server First (FSF) that
simply assigns newly arriving or waiting customers to the fastest server available. FSF is shown to
be asymptotically optimal among all the non-anticipating non-preemptive policies. The asymptotic
optimality is in terms of the steady-state queue length and waiting time distributions in the QED
regime. More specifically, consider a sequence of systems indexed by the arriva) veltere

A T oco. For any fixed value of\, let N} represent the number of servers of type: = 1, ..., K.

Also, let N* = (N}, N2, ..., N}) be the staffing vector, anii* = N} 4+ N} + ...+ N, be the total
number of servers. Suppose that the service ratgs:., ux are fixed independently of. To be
consistent with the QED regime assume that the total service capadity,+ 1o N3 + ...+ g Njy,

is equal to the arrival rate plus a square root safety capacity. Formally, suppose that

K
D N{k =X+ VA + o(VN), (1.1)
k=1

for some positive numbef. Let Q* andW* be the queue length and the virtual waiting time
processes, respectively. For asymptotic purpose§tet= Q*/v/ N> andW» = VN W be

the scaledqueue length and waiting time processes, respectively, argllet) and1W*(cc) be

the corresponding steady-state distributions. The asymptotic optimality of the FSF policy is in
terms of stochastic minimization of the limiting distributions @} (co) and W*(c0) as A—oo

(see Theorem 3.1 for further details).



To establish the asymptotic optimality of FSF we first introduce a relaiteemptivepolicy,
FSF-. This policy keeps the faster servers busy whenever possible, even at the cost of handing-off
customers from slower servers to faster ones. The policy-FS$hown to stochastically minimize
the steady-state queue length and waiting time, for any fixed system in the sequence (associated
with a fixed value of\). Consequently, we show that, in the limit as-oco, both policies give
rise to the same performance measures. That is, in the limit, they both have the same distributions
for Q*(oo) and W*(oco). In particular, the limitingwaiting probability in steady-state is also
minimized.

Fix a customer arrival ratey. The associated feasible region for this system is defined as
the set of all staffing vectors for which there exists a routing policy under which the steady-state
waiting probability does not exceed a pre-specified level. We show that, as the arrival rate grows to
infinity, the feasible region is asymptotically linear (see Figure 4.2). Specifically, the total service
capacityu, N1 + us Ny + ... + ux N associated with any staffing vectdrin the asymptotically
feasible set is greater than or equal to the arrival rate plus a square-root safety capacity; that is, the
safety capacity is of the form of a constant times a square-root of the arrival rate (the total capacity
is equal to\ + /), for some positive constadj. As mentioned earlier, this, in particular, means
that the system operates in the QED regime; namely, the QED regime is obtained as an outcome
rather than an assumption.

Finally, due to the simple structure of the feasible region, identifying an asymptotically
optimal staffing rule may be done by simply finding the lowest cost staffing vector(s) within
the linear (asymptotically) feasible region. We show that, by following this procedure, one in-
deed obtains staffing rules which are asymptotically optimal for various staffing cost functions.
For example, we consider staffing costs which are polynomial and homogeneous of the form
C(N) = ;NP + ¢,NP + ... + cxN%, for somep > 1. In this case, the staffing vecto¥
which is proportional to the vectdi; /¢, p2/co, ..., i /cx ), and satisfies (1.1) is shown to be
asymptotically optimal.

The remainder of the paper is organized as follows: We conclude the introduction by review-
ing the relevant literature. In section 2, we detail the single-customer-class multiple-server-types
model, and the asymptotic framework used in our analysis. In section 3, we present our proposed
routing policy and prove its asymptotic optimality. Section 4 then outlines the form of the asymp-
totic feasible region, and proves the associated asymptotic feasibility. In section 5, this asymptotic
feasibility is finally used to propose an asymptotically optimal staffing rule. The claimed asymp-
totic optimality is established in this section as well.

1.2 Literature Review

The QED regime: asymptotic theory of many-server queues



The QED regime has been given much attention in the last few years, especially ifthe *
model, which corresponds to multiple independent queues, each with its own devoted server pool
(no overlap in skills). For a formal description, consider a sequence of multiple server queues,
indexed by the arrival rat&, with the number of server®* growing tooo as\ T co. Define the
offered loadby R* = 3 wherey is the service-rate. The QED regime is achieved at by letting
VN1 — p*) — B, asA T oo, for some finite3. Herep* = R*/N* is the servers’ long-run
utilization. Equivalently, the staffing level is approximately given by

N ~ R*+ VR —oc0o<f<o0. (1.2)

Yet another equivalent characterization is a non-trivial limit (witffin1)) of the fraction ofde-
layedcustomers. The latter equivalence was established for GI/M/N [30], GI/D/N [35] and M/M/N
with exponential patience [26].

Due to the desirable features of the QED regime, it has enjoyed recently considerable at-
tention in the literature. Yet the regime was explicitly recognized already in Erlang’s 1923 paper
(that appeared in [18]) which addresses both Erlang-B (M/M/N/N) and Erlang-C (M/M/N) mod-
els. Later on, extensive related work took place in various telecom companies but little has been
openly documented, as in Sze [51] (who was actually motivated by AT&T call centers operating
in the QED regime). A precise characterization of the asymptotic expansion of the blocking prob-
ability, for Erlang-B in the QED regime, was given in Jagerman [34]; see also [53], and then [42]
for the analysis of finite buffers. But the operational significance of the QED regime, in particular
its balancing of “service and economy” via a non-trivial delay probability, was first discovered
and formalized by Halfin and Whitt [30]: Within the GI/M/N framework, they analyzed the scaled
number of customers, both in steady state and as a stochastic process. Recent generalizations
are [55, 56]. Convergence of the scaled queueing process, in the more general GI/PH/N setting,
was established in [45]. Application of QED queues to modelling and staffing of telephone call
centers and communication networks, taking into account customers’ impatience, can be found
in [26] and [21], respectively. The optimality of the QED regime, under revenue maximization or
constraint satisfaction, is discussed in [10, 40, 3, 4]. Readers are referred to Sections 4 and 5.1.4
of [22] for a survey of the QED regime, both practically and academically.

It is important to note that the QED regime differs in significant ways from the conventional
(or “classical”) heavy traffic regime. Indeed, QED combines light and heavy traffic characteristics.
For example, in conventional heavy traffic, the theory of which has been well established [15],
essentially all customers are delayed prior to service. In the QED regime, on the other hand, a
non-trivial fraction is served immediately upon arrival. Also, conventional heavy traffic can be
achieved by settingy ~ R+ 3, for some constant, rather than the square-root formin (1.2). For
more details, readers are referred to [22].

Skill-based routing

Of the three issues related to the management of large-scale service system, the control problem
has received the most attention in the literature. Specifically, for a given design, and staffing levels,
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researchers have proposed routing and / or scheduling schemes that are either optimal or near-
optimal. Alternatively, researchers have considered commonly used routing schemes (such as fixed
priority rules, or dedicated servers per customer class) and computed the relevant performance
measures. Examples for both criteria incluBi&act analysis(Kella and Yechiali [37], Federgruen

and Groenvelt [20], Brandt and Brandt [13], Gans and Zhou [25], Armony and Bambos [2], Rykov
[47], Luh and Viniotis [39], and de ®fricourt and Zhou [17] ([47] and [39] are concerned with the
A—model, and will be expanded on in section 3. Agymptotic analysis - “conventional” heavy

traffic (Harrison [31], Bell and Williams [9], Glazebrook andiidi-Mora [27], Teh and Ward [52],
Mandelbaum and Stolyar [41] and Stolyar [50]) ak&lymptotic analysis - QED regime(Armony

and Maglaras [3, 4], Harrison and Zeevi [32], Atar et. al. [7], and Atar [5, 6]).

Staffing Rules

The staffing problem in the single-class, single-type case has also gained a lot of attention in the
literature. With multi-type, however, things are quite different. The problem of determining how
many servers of each type are required is very difficult. This is especially true if skills overlap. In
the latter case, one wants to take advantage of the flexibility of the servers who have multiple skills,
but these servers are typically more costly. The most common approaches taken by researchers to
tackle the staffing problem arddeuristical bounds: Using heuristics to achieve performance
bounds by analyzing simpler (but related) systems (Examples include Borst and Seri [11], Whitt
[54], and Jennings et al. [36]gtability Staffing: Staffing levels that guarantee system stability
(Examples include Bambos and Walrand [8], Gans and van Ryzin [23], Armony and Bambos [2]),
andCost minimizing staffing: For a given routing scheme, find the staffing level that minimizes
personnel costs while guaranteeing certain performance bounds, or alternatively, such staffing lev-
els that minimize personnel costs plus operating costs (Examples include Borst et al. [10] (QED
regime), Perry and Nilsson [43], Stanford and Grassmann [49], Shumsky [48] and Harrison and
Zeevi [33]).

Design

On the design front, even less has been done. Ganz and Zhou [24] develop a dynamic programming
(DP) model of long term server hiring that admits a general class of controls. There, the lower level
routing problem is explicitly modelled as the core of the DP’s one-period cost function, and the
optimal hiring policies are characterized as analogues to “order-up-to” policies in the inventory
literature. Other studies we are aware of focus on design for flexibility that results from the cross-
training of service reps (see Aksin and Karaesmen [1] and references therein).

2 Model Formulation

Consider a service system with a single customer clasgsasdrver types (each type in its own
server pool), all are capable of fully handling customers’ service requirements. Service times are
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assumed to be exponential, where the service rate depends on the pool (type) of the particular
server. Specifically, the average service time of a customers that is served by a serverkof type
(k=1,2,...,K)is1/u. We assume that the service rates are ordered as foljows: s < ... <

1. Customers arrive to the system according to a Poisson process with Ea¢ayed customers

wait in an infinite buffer, and are served according to a FCFS discipline. All interarrival times and
service times are assumed to be statistically independent.

We seek to determine the numb¥y, of servers required of each typek = 1,2,.., K. In
choosing the staffing levelS,. we require that, at the very lea#\; are sufficiently large to ensure
stability. Specifically, we require the following necessary condition for stability:

Nipg 4 Nopro 4 ... + Ngpig > A, (2.1)

that is, the total service capacity is larger than the arrival rate. The cost of staffing the system with
Ny, servers of type: is denoted by (Vy). The total staffing cost is, henc&( Ny, Ns, ..., Nk ) =
C1(N7)+Cy(Ny)+...+Ck(Nk). By determining the number of servers required of each type, we
wish to minimize the staffing cost while maintaining a target service level constraint. The service
performance measure that we study is the steady-state probability that a customer waits before
starting service. Equivalently, we focus on the long-term proportion of customers who are delayed
before their service starts. Denote this steady-state probabiliiy(by.it > 0), and let) < o < 1

be the target waiting probability. The staffing problem is then stated as:

minimize Cl(Nl) + CQ(NQ) + ...+ CK(NK)
subjectto P(wait > 0) < « (2.2)
N, Ny, ..., N € Z,.

In order to solve (2.2), one needs to be able to evalkéte:it > 0) given any server staffing
vectorN = (N1, Na, ..., Nk ) (here and elsewherg,is used to denote a vector whose elements are
x1,%2,...). This requires knowing the actual routing policy that is used to determine which type
of server will handle each customer. In particular, different routing policies can result in different
waiting probabilities. Letll be the set of all non-preemptive non-anticipative routing policies.
Denote byr := m(\, J\7) € 11, a policy that operates in a system with arrival ratand staffing
vector N (at times we will omit the arguments and N when it is clear from the context which
arguments should be used). Given a poficy 11, let P, (wait > 0) be the steady state probability
that a customer is delayed before his service stafisen a more precise definition of the staffing
problem (2.2) is as follows:

minimize C1(Ny) + Co(N2) + ... + Cx(Nk)
subjectto P, (wait > 0) < «, forsomer = (A, N) € II, (2.3)
Ni,Ny,...,Nxg € Z..

%If steady-state does not exist, consid(wait > 0) as the random variable corresponding to the essential limsup
of the long term proportion of customers who are delayed before receiving service.
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As mentioned in the introduction, solving the staffing and control problems concurrently is
usually too difficult. Hence, researchers commonly end up solving one while assuming the solution
to the other is fixed. A distinguishing feature of our solution to (2.3) is that we identify a policy
which is near-optimal giveany staffing level, and therefore, are able to solve the staffing and the
control problems concurrently.

Suppose that the routing poliey € 11 is used, and let > 0 be an arbitrary time point. We
denote byZ,(¢; m) the number of busy servers of pdo(k = 1,2, ..., K) attimet, andQ(¢; ) the
queue length at this time. Finally, IBl(¢; 7) be the total number of customers in the system. That
is,Y(t;m) = Zi(t;m) + Zo(t;m) + ... Zk (t; ) + Q(t; ). We uset = oo whenever we refer to the
steady-state. At times, we will omitif it is clear from the context which routing policy is used.

Definition: A policy = € II is calledwork conservingdf there are no idle servers whenever there
are some delayed customers in the queue. In other werdsyork conserving ifQ(¢; 7) > 0
implies that?, (¢; ) + Zy(t; ) + ... + Zk(t; m) = N, where

N=N;+Ny+ ..+ Ng
is the total number of servers.

Note that in general & + 1 dimensional vector is required to specify the state of the system,
namely,Q(t; 7) andZy(¢; ), ..., Zk (t; 7). However, for work conserving policies, the state space
can be described by th€ —dimensional vectofZ, (t; ) + Q(t; 7)), Za(t; ), ..., Zx (t;7)). In fact,
the queue length can be added to the number of busy servers ok pfwolany &k, because ifr
is work conserving the®)(t; ) = [Q(t;7) + Zi(t;7) — Ni|™ (where[z]t := max{z,0}) and
Z(t;m) = [Q(t; ) + Zk(t; m) — Ni|~ (where[z]~ := —min{z,0}). Work conserving policies
also have the appealing property that the waiting probability can be stated in terms of the total
number of busy servers. In particularzife T1 is work conserving, and there exists a steady-state
for its underlying processes, then

P (wait > 0) = P(Z1(o0; ) + Zy(oo;m) + ... + Zg(00;7) = N) = P(Y(o0;7) > N), (2.4)

where the first equality is due to the PASTA property, and the second follows from work-conservation.
Note that if the policy is not work conserving then (2.4) does not hold, because one may have cus-
tomers waiting in queue, even if some of the servers are idle.

Let A(t) be the total number of arrivals into the system up to tindat is, A(¢), ¢ > 0 is
a Poisson process with rak@. Also, fork = 1, ..., K and for a policyr € II, let A;(¢; ) be the
total number of external arrivals joining poblupon arrival up to time, and letBy.(¢; ) be the
total number of customer joining server p@glup to timet, after being delayed in the queue. The
number of arrivals into the queue (and not directly to one of the servers) up ta isreenoted
A,(t; 7). In addition, letT)(¢; 7) denote the total time spent serving customers byalkervers
of pool £ up to timet. In particular,0 < Ty (¢; 7) < Nit. Respectively, lef,(¢; 7) be the total idle
time experienced by servers of pagolip to timet. Finally, let D, (¢) be a Poisson process with rate
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wx. Then the number of service completions out of server paohy be written ay (75 (¢; 7)).
The above definitions allow us to write the followifigw balance equations

K
Q(t;m) = Q(05m) + Ag(t;m) — Y Br(t; ), (2.5)
k=1
Zi(t;m) = Z(0;m) + Ag(t; ) + Bi(t;7) — De(Ti(t; ), k=1,..., K, (2.6)
Ti(t;m) = / Zy(s;m)ds (2.7)
K
Y(t;7) = Y(0;7) + A(t) = Y Di(Ti(t; 7)), (2.8)
k=1
A(t) = Ag(tsm) + > Ar(t ), (2.9)
k=1
Ti(t;m) + Ix(t; m) = Nit. (2.10)

Finally, for work conserving policies we have the additional equations:

K
Qi) - (Z(zvk - Zk<t;7r>)) ~0, (2.12)
k=1
o K
| Y- zsmaaem ~o 2.12)
0 k=1
and
K 00
Z/ Q(t;m)dl(t; ) = 0. (2.13)
k=10

In words, (2.11) means that there are customers in queue only atheervers are busy. The
verbal interpretation of (2.12) is that new arrivals wait in the queue only when all servers are busy.
Finally, (2.13) states that servers can only be idle when the queue is empty.

2.1 Asymptotic Framework

Although the staffing problem (2.3) is well defined, it is difficult to be solved exactly. Specifically,
given fixed values ofiy, ji, ..., i, A @anda, one would need to find thfeasible regiorof all those
vectors(Ny, Na, ..., Ni) for which there exists a policy that satisfi&(wait > 0) < «, and

then find the vector(s) that minimizes the staffing costs within this feasible region. Instead, we
take an asymptotic approach, which finds asymptotically optimal staffing rules for systems with
high demand (i.e. large values ®f. To this end, we consider a sequence of systems and routing
policies indexed by\ (to appear as a superscript) with increasing arrival ratésoo, but with

fixed service rateg, us, ..., ux and a fixed target waiting probability.
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The appropriate staffing levels will be determined according to the staffing costs and the
desired service level. For the time being we assume (this assumption will, in fact, be established
later as a result under some general conditions) that ther& arembersa, > 0, £k = 1,..., K,
with a; > 0 andeK:1 aj, = 1, such that the number of servers of each pupl k£ = 1,2,..., K,
grows with A as follows:

A NP
N} = a2 +0()), ash—oo, or, lim 2k — g (2.14)
ji3” A—00 A
Condition (2.14) guarantees that the total traffic intensity,
A
A R — (2.15)

K )
> ke NkNlc/\

converges to 1, as—oo, and hence, for largg, the system is imeavy traffic Also, in view of
(2.14), the quantity,;, A /1, can be considered as the offered load of server pobet

K -1
= [Z ak/uk] , (2.16)
k=1

then A/ is the total offered load of the whole system. Given this definitiop,0f2.14) implies
that

A A
A_ 2 1 p—
N* = . +o(\), asA—oo, o, /\11_{20 = (2.17)
whereN* = 2% N Also,
A
A

N —— 2.18
P N (2.18)

in the sense thaim, .., p*/(\/N*u) = 1. Finally,

N)‘ ag

lim —£ = 2,2¢.>0, k=1,...K 2.19
/\E{olo NA Mku qr = Y, g eeey Xy ( )

whereg, is the limiting fraction of pook servers out of the total number of servers. The condition
a; > 0 guarantees that, > 0, and hence server pool 1 is asymptotically non-negligible in size.

Clearly,zle a =1 andezl Qrfble = M-

Fluid Scaling: In view of the above discussion, one observes that assumption (2.14) implies that
guantities involved in the process such as the arrival rate, the offered load, and the size of the
different server pools are all of ordé(N*). Therefore, one expects to get finite limits of these
quantities when dividing all of them by*. As it turns out, due the functional strong law of
large numbers (FSLLN), this scaling leads to the fluid dynamics of the system, in the limit as
A—o0. To see this, for\ T oo, & = 1,..., K and a fixed sequence of routing policie$ <

IT (omitted from the following notation) le©*(¢t) = Q]?,(f), and Z) (t) = Z]'%(f). Similarly, let

PA(r) = L AN = A0 A0 = B2 A0 = B B0 = F R0 = B

andl}(t) = va(f). Finally, let D)(t) = D)(t) = Dy(t). Thatis, as equalities between processes,
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(@ Z), YA AN Ay, A B TR D) = (QY, 20, YA AN AN, A), By, T, 1)) /N, and D)) = Dy
Note thatD; need not be divided by, due to its definition as a Poisson process with fate
which is independent of.

Using standard tools of fluid models (see for example [16], Theorem 2.3.1) one can show that
if (Q*(0),22(0), k =1,..., K) are bounded, then the procee&s', Z;;, Y, A* Ay, A), BY, T, Iy, Dy)
is pre-compact as—oo, and hence any sequence has a converging subsequence. Denote any such
fluid limit with a “bar” over the appropriate letters but with no superscript (for examplé) (et
be a fluid limit of Q*(¢)). Note that equations (2.5)-(2.10) imply that the following flow balance
equations hold foanyfluid limit:

Q) = Q(0) + Ay(t) = > Bi(t), (2.20)
k=1
Z1(t) = Zx(0) + Ax(t) + Bi(t) — i T(t), k=1,.., K, (2.21)
Y(t) =Y(0) +pt — Y mTi(t), (2.23)
k=1
pt = A () + > A(t), (2.24)
k=1

Finally, for work conserving policies, conditions (2.11)-(2.13) imply:

Q(t) - (Z(Qk - Zk:(t))> =0, (2.26)
/oo > gk — Zi(t))dA,(t) =0, 2.27)
0 1=
and .
> / Q(t)dI(t) = 0. (2.28)
k=10

The following proposition shows that for every sequence of work-conserving routing policies
and for every fluid limit, the quantitieQ(¢) and Z,.(t), k = 1, ..., K, remain constant if starting
at time 0 from some appropriate initial conditions.

Proposition 2.1 (fluid limits) For A > 0, let 7* € II be a sequence of work-conserving policies
(omitted from the following notation), and 16D, 7., Y, A, Ay, A,, By, Ty, Iy, Dy,) be a fluid limit
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Zvt)=q., k=1,..,K,forall t > 0.

Proof: Let f(t) = |V (t) — 1| = ’Zle(fk(t) —qr) + Q(t)|, thenf(t) > 0 and f(t) = 0 if and
only if Q(t) = 0 andZ,(t) = ¢, forall k = 1,..., K. By an argument similar to lemma 2.4.5
of [16], and from the fact thaf(-) is absolutely continuous, it is sufficient to show that whenever
t > 0is such thatf is differentiable at, we havef(t) < 0. Suppose thatis such that’(t) > 1.
Then, by (2.26)7,(t) = qx, for all k. In particular, if f is differentiable at, then

FO) =Y = =" i) = 1= > e = 0.

If ¢is suchthal’(¢t) < 1, thenZ,(t) < g, for at least oné:, and hence, by (2.26§)(t) = 0. If f
is differentiable at then,

ft) = —Y/(ﬂ = ZMka(t) —p < Zuqu —pu=0.

k=1
|

In addition to the fluid scaling, we introduce a more refined diffusion scaling defined as
follows:

Diffusion Scaling: For A > 0 and any fixed sequence of work conserving pofic¢yc II (omitted
from the notation), define the centered and scaled proEess = (X(-), ..., X (-)) as follows:

QMt) + Z7(t) — N

X t) = NI : (2.29)
and, fork =2, ..., K, let
ZMt) — N}
Xp(t) == —k(\/)ﬁ k. (2.30)

Note that fork = 2,..., K, X}(¢t) < 0 for all ¢, and that for allc = 1,2, ..., K, [X}(t)] corre-
sponds to the number of idle servers, scaled by N*. In addition, [Xf(t)}+ corresponds to the
total queue length, again, scaled bis/N>. Finally, let

Ny = S g = @O Z) N YA N o
X(t)_;Xk(t)_ NG B = VNN (YA(#) —1).
(2.31)
Note thatX*(-) captures the fluctuations of ord@1/v/N*) of Y(-) about its fluid limit. Also,
[X*(t)] " is the total number of idle servers, ahi*(t)] " = [X(t)] " is the total queue length,
both scaled byt /+/N>. Finally, note that, from work conservation, i} (t) < 0 for somek, then

XMt) <.
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Finally, for all A > 0, let W*(¢) be the virtual waiting time of an arbitrary customer who
arrives to the system indexed Ryat timet. The scaled waiting time fox > 0 is then defined as:

WA) = VN WA(1). (2.32)

As will be shown later, in order for the diffusion scaling to have well defined limit;-asoc,
we add the following assumption, in addition to (2.14):

K ZK e Ng = A
> N =X+ 0VA+o(V)), asA—oo, or, lim k=1 7 k =, (2.33)
k=1 o

for somed, 0 < § < oo.

Condition (2.33) is a square-root safety staffing rule (similar to [30] and [10]). In particular,
the conditiory > 0 guarantees that the system is stable (or can be stable, under reasonable routing)
for all A large enough. Note that (2.33) does not specify how the added safety staffing is divided
among server pools. In particular, it is possible that one server pool will have fewer servers than
the nominal allocation of, N*, while another will compensate for this deficit by having more than
the nominal staffing. Fok = 1, ..., K, and\ > 0, let —oo < §; < oo satisfy:

6)\ L MkN];\ - ak)\

Thenég\/i Is the safety capacity associated with server goddeyond the nominal allocation of
aiA. In particular, one can easily verify th&t > 0 if a;, = 0,

(2.34)

5 =o(VX), ash—oo, Vk=1,.. K, (2.35)
and
K
0= 6 — 4, asA—oo. (2.36)
k=1

Note that we do not require the individual sequent€sty-, to have a limit, for any value of
k=1,.., K. All that is assumed is that their sum converge§.tdhe one exception to this rule is
Proposition 3.4, in which the following additional condition is assumed to hold:

K
5 . -
0:= lim —& exits for some finite numbet. (2.37)
—00 Mk
k=1

3 Routing Policies

In this section we describe three routing policies. The first afies 11, is an optimal policy that
minimizes the long-term average of the total number of customers in the system and the average
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sojourn time, given any fixed values of system parameters. This policy is simple to describe but
its implementation requires the computation of certain threshold values which are a function of the
model parameters and system state. The second one, KS& simplepreemptivepolicy which

is optimal within the set of all non-anticipative, but possibly preemptive policies, with respect to
the steady-state distribution of the total number of customers in the system. Finally, we describe
a third policy, FSF, which is also simple, but is not necessarily optimal for any fixed size system.
However, it isasymptoticallyoptimal as the system grows large (that ispascc), in terms of the
steady-state queue length and waiting time distributions.

3.1 Background: Optimal Non-Preemptive Routing

In this section we describe an optimal poligy within the setll, and some of its properties.

The policy is based on two recent papers [47] and [39]. Both these papers study systems with
heterogenous servers, which may each have his/her own service rate. We describe their policy as
adapted to our case df server pools, withu; < ps < ... < ug. Both papers show that for

the optimality criterion of minimizing the average steady-state number of customers in the system,
there exists an optimal policy ofthresholdtype. According to this policy, one should assign a
customer to an idle server of poblif:

1. Itis the fastest idle server, and

2. the number of customers in queue is equal to or exceeds a threspotd, > 0.
The thresholds have the following properties:

e m; may depend on the state of the other servers (current/paald slower ones in pools
1. k—1),

e they are non-increasing in the service rates; thatis> my > ... > mg.

Note thatr* minimizes the average total number of customers in the system in steady-state.
However, this does not imply that it minimizes the average steady-state queue length or waiting
time. The reason is that this policy m®t work conserving, and hence the queue length is not a
well defined function of the total number of customers in the system. Also note that this policy
should actually be denoted a$*, because the threshold values may, conceivably, depend on the
actual values of andN = (N;, Ns, ... Ng).
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3.2 Optimal Preemptive Routing

In this section we describe a policy which is optimal within a greater family of polidies 11,

namely the family of all non-anticipative policies which are preemptive resume (the subBcript

is for preemptive). What is meant by preemptive resume in our context is that a customer who
is served by a particular server may be handed-off to another server, who will resume the service
from the point it has been discontinued. In addition, we add the following restriction on each
policy belonging to this family: It only performs actions at a finite number of time points in any
finite time interval, where an action includes an assignment of a customer to a certain server, or a
hand-off of a customer from one server to another.

LetII» C IIp be the family of policies ifil » which also satisfy the following two properties:
For anyr € I1p we have

1. Faster servers are used firstif Z,(¢;7) < Ny thenZ;(¢t;7) =0, for all j < k.

2. Work conservation: If Z,(t;7) + Zs(t;7) + ... + Zi(t;7) < N thenQ(t; ) = 0.

One example of a policy ifil > is the policy FSE, which, like other policies il uses faster
servers first, and is work conserving; however, it only assigns a customer to a server upon customer
arrivals and service completions. Note the non-uniqueness of B8&to the unspecified order of
assignments of customer to servers in case more than one option exists. The following proposition
establishes the optimality of FgRvithin I1p.

Proposition 3.1 (Optimal Preemptive RoutinglConsider the preemptive routing policy, FSF

that keeps the faster servers busy whenever possible. Then it is optimal in the sense that it stochas-
tically minimizes the total number of customers in the system in steady+states] within I1p. In

other words, for allr € I1p and every weak limiY"(co; 7) of Y (¢; ), ast—oo (or a subsequence
thereof), we havé’ {Y (oo; ) > y)} > P {Y (0c0; FSFp) > y)}, forall y > 0.

Proof: We prove the Proposition in two steps. The first step will establish that all the policies in
I1» share the same steady-state distribution of the total number of customers in the system. The
second step will show that any policy Ifi is path-wise dominated by a policy iy in terms

of the total number of customers in the system at any point of time (See Lemma 3.1). Both steps
together establish that the steady state of distribution of the total number of customers in the system
under FSE stochastically dominates the steady-state distribution of the total number of customers
in the system associated with any other policylip.

Let 7 be an arbitrary policy ifil, and recall that” (t;m) corresponds to the total number
of customers in the system at timeindern. The special properties of the family» make the
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process’ (-; w) a birth and death (B&D) Markov process with constant birth rates:
My) = A, Yy >0,
and a concave piecewise-linear death rate function:

( yuk if y<Ng
(y — Ng)pg—1 + Ng ik if Nk <y < Ng_1+ Ng

L N1/L1+N2/L2+—|—NK/LK if y>N

(3.1)
In particular, the steady-state B -; 7) exists (recall the stability assumption) and is unique under
all policies inII». The next lemma (step two of the proof of the proposition) establishes the path-
wise dominance of policies il » within the larger familylI .

Lemma 3.1 For any policyr € IIp, the procesd(-; ) which denotes the total number of cus-
tomers in the system, is path-wise dominated by the total number of customers in the system process
Y (-, ) for some appropriately chosen poligyc I1p.

Proof: For simplicity, we prove the Lemma for the special caSe- 2. The general case follows
similarly. The proof is based on sample-path coupling arguments. Suppose th#t castomer

to arrive into the system arrives at timeand has a service requirementgf The interpretation

of n; is that if this customer is served exclusively by a server of goot = 1,2, her service
time isn;/u,. Note that the sequendgt;, nj)}j?";l is random. In fact, given the routing policy,
this sequence is the only random element in the system. Consider an arbitrarypalidyp,
and focus only the customeis= 1, 2, ..., n, for some finite number (the lemma will follow by
induction onn). Fix a sample-path o{(tj,nj)};";l. Suppose that on this sample-path, for some
1 <i < n, the customerg = i + 1, ..., n, satisfy the following two properties which agree with
the familyIIp:

1. Use fast servers first:During the sojourn time of customgiin the systemj{=1i+1,...,n)
it is never served by a slow server if there is a fast server available.

2. Work conservation: During the sojourn time of customérin the system{ =i+ 1,...,n)
it is never held in the queue if there is any idle server.

Letd;(7) be the departure time of customgirom the system according to the poligy Also let
D, (m) be the time by which all the customefs= 1, ...,n have departed. Let = {0 < 51 <
S < ... < Sy = D,(m)} be the set of all event time points for the poligy In particular this
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setincludes all arrival times, departure times and action times such as assignment of customers to
servers or hand-offs of customers from one server to another. According to the definifign of
M has to be finite.

We will construct a new policyr’ € IIp which will satisfy properties 1 and 2 foi =
i,1+1,...,n, which will have at most as many total number of customers in the system at any time
t > 0 asw. By backwards induction of this will complete the proof of the lemma. Ligtbe such
thats;, = t;. Now perform the procedure X (i, ) defined as follows:

Procedure F'1X (j,1): For customey and time intervals;, s;;1) do the following:

e If property 1 is violated for customerduring the intervals;, s;11), that is, the customer is
served by a slow server and there is a fast server available, assign this customer to this fast
server for the duration of this interval.

e If property 2 is violated with respect to customgduring the intervals;, s;,4), that is,
customer; is held in the queue and there are idle servers, assign this customer to a fast
server if available. Otherwise, assign this customer to a slow server.

¢ If none of these properties is violated do nothing.

o If, after performing the previous steps of this procedure, custgrhas departed during the
interval [s;, s,11), add its new departure timé to .S, and renumber the other points $h
(including the value of\/) accordingly.

Repeat this process for customemd! = [, + 1, ..., M — 1. Note that the set may only change

by adding the new departure time of customef;(7’) in the appropriate place in the sequence.
Therefore the sequenceremains finite. Also, note that after performing the procedure the total
number of customers in the system at any point in time is at most the number it was before, because
only customet is handled differently, and his service time may only get shorter. Finally, note that
after performing the procedut€/ X (i, (), for I = Iy, ..., M — 1, customer; satisfies properties 1

and 2 for allt > 0.

In order to complete the improvement of the policyone needs to examine the effect of
the procedure performed on customever the customers+ 1, ..., n. In this respect, note that
the procedure”/ X (i,l) may not induce a violation of either properties 1 and 2 with respect to
customers + 1, ...,n as long as customeéris in the system. However, if customenow departs
earlier than before, it may free up some servers, and hence some of these customers may violate one
or both of these properties. To take care of these violations, first perform the proc¢etkisg, /)
forj =i+ 1andl = [y,...,M — 1 with [; satisfyings;, = d;(7"). Note that customer is not
affected at all, because the procedure starts with her departure. Proceed with the same procedure
for j =i+ 2,...,nin increasing order of the indejk always starting with the interval that begins
with the new departure time of customer 1. One can easily verify that at the end of the process
we have a new policy’ that:
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a. Satisfies properties 1. and 2. for customgtsi,i + 1,..., N.
b. Y(t;7") <Y(t;m) forall t > 0.

c. The number of action points is finite in any finite interval.

Corollary 3.1 Recall thatQ(t) is the queue length at timeg and letIV (¢) be the virtual waiting

time at timet. The preemptive routing policy, FgFthat always assigns customers to the faster
servers first is also optimal in the sense that it stochastically minimizes the queue length and the
waiting time in steady-state & oo) withinIIp. In other words, for allr € 11 and all weak limits

Q(oo; ) andW (oo; ) of Q(t; m) and W (¢; ), respectively, as—oo (or a subsequence thereof),

we haveP {Q(oco; ) > q)} > P{Q(o0; FSFp) > ¢)}, forall ¢ > 0, and P {W (oo;m) > w)} >

P {W(co; FSFp) > w)}, forall w > 0.

Proof: The proof follows from Proposition 3.1 and the work conservation property op-FEbr
the queue length, the proof directly follows from the relationships:

Q(t;FSk) = [Y(t;FSR>) — N|*, ass.
and
Q(t;m) > [Y(t;m) — N]*, as.

forallt > 0 andr € Ilp (the latter inequality is due to the fact thaimay not be work-conserving).

For the virtual waiting time, consider a polieyc 11y, and suppose that there exists a steady
state distribution} (oco; ) for the total number of customers in the system. By conditioning on
the state oft” := Y (oo; 7) one can easily verify that if is work conserving then the steady state
of W := W (oo; ) exists and it satisfies

[Y-N+1]*

w2 S o, (3.2)
=1

whereZ denotes equality in distribution, arid are iid exponential random variables with rate
Zszl ux Ny, which are independent df. If 7 is not work conserving, then if the steady state
distribution of W (-; 7) exists it satisfies

o [Y-N+1]*
W(oim) = > T (3.3)
i=1

Hence, a stochastic dominance of ESkithin I1, with respect to the steady-state of the process
Y implies that FSE also stochastically minimizes both the queue length and the waiting time in
steady-state. [}
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Remark 3.1 (Steady-state distributions for the queue length and the waiting tinfdle proof

of Corollary 3.1 suggests a way of computing the steady-state distributions of both the queue
length and waiting time for any work-conserving policye II (to be omitted for brevity). This
computation is possible provided that there exists a steady state distribtfionthe total number

of customers in the system. Observe that conditioned on the Bvenlv, Y — NV has transition

rates which are like and//M /1 system with arrival rate\ and service rat«{:,’f:l e N Hence,
sinceQ(o0) = [Y — N]* its distribution satisfies:

P(Q(o0) =n) =ap™(1—=p), n=1 (3.4)
wherea = P(Y > N). Similarly, due to the relationship (3.2), we have

P(W(oo)>w) =2 P(XMH! T >w)P(Y =N +n)

1

=0 P () T > w) ap™(1 = p) (3.5)
— ae—(l—P)(Zsz1 Mka)w’ Y > 0.

In particular, (W (co) | W (00) > 0) ~ exp((1 — p) S0 jxNi,) = exp(3re, i Ni — \).

Remark 3.2 (State-space collapse for FSF Note the state-space collapse associated with the
policy FSK> (and all other policies inllp). For a work conserving policy, the state-space is
generally K dimensional. However, under this policy it is sufficient to know the total number of
customers in the system in order to know exactly how they are distributed between the server pools
and the queue, as is demonstrated by the death rates (3.1). Hence, the state-space reduces to one
dimension.

3.3 Asymptotically Optimal Non-preemptive Routing

In this section we describe a simple non-preemptive policy FSF which is also work-conserving.
This policy is identical to the non-preemptive policy described in section 3.1, except that all the
thresholdsn, are equal to zero (and hence the policy is work-conserving). It may be described
simply as follows: Upon a customer arrival or a service completion, assign the first customer in the
gueue (or the one that has just arrived, if the queue is empty) to the fastest available server (which
is the server with the largest indé¥. Since the thresholds, are not chosen optimally here, this
policy is not likely to be optimal. However, as we show in this section,asigmptoticallyoptimal

as the arrival rate. grows toco and the number of servers per pool grow according to (2.14) and
(2.33); the asymptotic optimality is in terms of the steady-state distribution of the queue length
and the waiting time. The main premise of this section is the asymptotic optimality of FSF within
the family of non-preemptive non-anticipating policies. This is summarized in Theorem 3.1 and
proved at the end of this section via Propositions 3.1-3.7.
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Theorem 3.1 Consider a sequence of systems indexed by the arrivahrdbat satisfy conditions

(2.14) and (2.33). Then the non-preemptive policy FSF that assigns customers to the fastest server
available whenever a customer arrives, or upon service completion, is asymptotically optimal
within the sefll of all non-preemptive, non-anticipating policies. The asymptotic optimality is in
terms of stochastic minimization of the steady-state distributions of the (centered and scaled) total
number of customers in the systekit\(c0)), the scaled queue lengti{ (co) := Q*(c0) /V/N?),

and the waiting timel{’*(oc)), as A—co.

Remark 3.3 Note that we focus our attention on optimality criteria which relate to delayed cus-
tomers (namely, queue length and waiting time), rather than the total number of customers in the
system, or the total sojourn time. If one is interested in the latter two as optimality criteria, then,
within the asymptotic framework considered here, any work conserving policy would be asymptoti-
cally optimal. This is apparent from Proposition 2.1, where it was shown that any work conserving
policy will result in the same fluid limit for the total number of customers in the system. The opti-
mality criteria we consider are more refined, and hence, require more careful policy selection and
analysis.

Remark 3.4 The asymptotic optimality of FSF within the familyunderlines an important dif-
ference between the QED regime, and the so-called conventional heavy-traffic. Teh and Ward [52]
study a routing problem in a model similar to ours, with a single customer class, and two servers
only, one of each type. Each server has its own queue, and the decision as to which queue a cus-
tomer should be routed to is made upon the customer’s arrival. For their model they show that a
threshold policy similar tar* is also asymptotically optimal as the traffic intensity goes to 1, in
terms of the total number of customers in the system. Moreover, they show that the asymptotically
optimal threshold must grow logarithmically to infinity as the traffic intensity approaches 1. This

is different in our case. Here, we show that one needs no thresholds (or can use thresholds of size
0) in order to achieve asymptotic optimality. Of course, in order to get a fair comparison between
the two asymptotic regimes, one needs to look at comparable models (single queue vs. multiple
gueues - one per each server pool, and a growing number of servers vs. a fixed number of servers).
This will not be broached further here.

To prove the asymptotic optimality of FSF, as-oco, we will show that as\ grows, the
procesg X3\ (+), X5(+), ..., X (+)) (recall the diffusion scaling in Section 2.1) under FSF becomes
close to the same process under the preemptive policy F8f in the limit as\— oo the two pro-
cesses coincide. Taking the limitsas oo we will also show that the corresponding steady-state
processes become close, and hence, the optimality of k&steady-state (see Corollary 3.1) will
imply the asymptotic optimality of FSF. The crucial step in the proof of the equivalence between
the two processes is the state-space collapse of the pra¥ess, X2'(-), ..., X3 (-)) under FSF,
into a one dimensional process.as:oo. Recall, that such state-space collapse holds for every
under FSk (Remark 3.2). When FSF is used, this is no longer true, but the state-space collapse is
attained whem—oo, as will be shown in Proposition 3.2 below.
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3.3.1 State-Space Collapse

In this section we establish the state-state collapse result with respect to the policy FSF and the
processX*(-) = (X(-), ..., X2(-)). Since the policy here is fixed we omit FSF from all notation.
Essentially, the state-space collapse result indicates thatgamsvs, the one-dimensional process
XA(+) (see (2.31)) becomes sufficient in describing the whigledimensional proces&“(-).
Specifically, we show that as— oo, all the faster servers (from podls= 2, ..., K) are constantly

busy (or, more accurately, the number of idle servers in these pools is of cm“d@)), and

the only possible idleness is within the slowest servers (pool 1). Hencdegiasvs, the processes
X3(+), ..., X2 (+) become identically zero, while the process€Y-) andX;(-) become close. This

result is presented in Proposition 3.2.

Proposition 3.2 (State-Space Collaps&uppose that conditions (2.14) and (2.33) hold\asc,
and that the work-conserving non-preemptive policy FSF is used. In addition, suppog'e\(h;it—>
X(0) = & = (x1,..., xg), in probability, as\—oo. Then for allt > 0 we have,

X (t)20, uniformly on compact intervalsas \—oo, Yk > 2.

Proof: Our goal is to establish that under the conditions of the proposition, ferald and7" > 0,
as\—oo,

K
P | sup
( 2

k=2

Xp(t)

K
— 1 A — —
> e) 0, or P <0£§kaz_;Xk (t) < e> 0. (3.6)

We prove the Proposition fok = 2. The general case follows similarly. F&¢f = 2, (3.6)
translates into

P ( sup |X2(t)] > e) —0, or P ( inf X2(t) < —e) —0. (3.7)

0<t<T 0<t<T

We claim that in order to establish (3.7) it is sufficient to show the existence of a sedfience
with b*—0 asA— oo, such that

lim P < inf X2t +0bY) < —(—:> =0. (3.8)

A—00 0<t<T

The sufficiency of (3.8) has been established in [3], and it essentially follows from a random time
change argument (see [28, Prop. 5]). Recall thds the weak limit ofX3(0) asA\—oc. Then, as
in [45, Lemma 3.3] and [3, (29)], we have, for all > 0,

P( inf X5 (t+b") < —e) <P ( sup | X3(t)] > C) + P( inf X;(b") < —e) . (3.9

0<t<T 0<t<T |z |<C

Hence, it is sufficient to show that both the summands on the right hand side of (3.9) converge
to 0 asC'—oo and A—oo. This will be shown in two steps: The first step (Lemma 3.2) will
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establish thatime_. limsup,_ ., P (supy<;<r |X3(t)| > C) = 0. The second step (Lemma
3.3) will identify the sequencéb’} (as a function the boun@) with b*—0 asA\—oo, for which
P (inf|4,<c X3 (b*) < —€) —0, asA—oo.

Lemma 3.2 Suppose thak*(0)— X (0) = (z1, ..., zx), in probability, as\—oco. Then, under the
conditions of Proposition 3.2,

K

> X

k=2

lim limsup P | sup
C—o0 Aooo 0<t<T

> (J) =0, forall T > 0. (3.10)

Proof: The proof is provided for = 2. The general case is similar. We introduce the following
notation (adapted from [45]). Consider the Poisson processes:

Sl =SL(t),t >0 withratey,, k=1,2, 1=1,2, ..

The interpretation of these processes is as follows: the pratiessrresponds to the number of
service completions of th&" server of pool that is currently busy. When there are fewer than

[ customers being served in pdolat the moment of a jump 8%, the jump has no affect on the
system state. The total number of customers in the system process admits the following dynamics:

YA(t) = Q1) + Z1 () + Z3(t)

2 3.11
= QN0) + Z}0) + Z3(0) + AN¢) ZZ/ Lz sy Sk (9)- (31D

k=1 =1

Define F(t) to be the followingr—algebra:
(t) = o {QN0), Z2(0), ANs), Si(s); k=1,2, 1> 1,0< s <t} VN,

where N denotes the family of?—null sets, and introduce the filtratid™® = (F*(¢),t > 0).
Clearly, the processeg* and 7}, k = 1,2, areF* adapted.

We claim thaty'*(¢) admits the following decomposition:

YA(t) = +)\t—zuk/ (s)ds 4+ M (t), (3.12)

where M* = (M*(t),t > 0) is anF*—locally square-integrable martingale, that satisfi¢s =
-3 Mg, , where My and M3 , k = 1,2, are three independeiit'—locally square-
integrable martingales with respective predictable quadratic variations:

(M) (t) = M, (3.13)

(M3 ) (t) = /t Z)(s)ds, k=1,2. (3.14)
0
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To show the validity of the decomposition (3.12), note that the Poisson procéssesl S,
admit the representations [45, (3.8)-(3.11)]:

AMt) = M+ MA(1), (3.15)
Sit) = it + My(t), k=1,2, 1>1, (3.16)
where M} and M} are independent locally square-integrable martingales relative to the associated
natural filtrations (as well as relative F3') with respective predictable quadratic variations (3.13)

and
(M) (t) = pt. (3.17)

With respect to the decomposition (3.12), we also claim that there exists a canstant
such that for alk > 0 and all\ large enough,

(M*) (t) < BN (3.18)

To show the validity of (3.18) we use the fact that given two locally square-integrable martingales
M, = (My(t),t > 0) and My = (My(t),t > 0), their predictable covariatiof/,, M,) satisfies

the inequality2 (M, Ms) < (M;) + (M) (see [38, Problem 1.8.9]). Consequently, and since
M* = M} — Mg, — Mg, , we have,

(M*) (1) <3 ((M3) (1) + (M3,) (1) + (Mg,) (1))
_3(/\)‘t—|—u1 fo ZM(s ds—l—,ugfo Z3 (s ds)
<3 ((uN* 4 o(N))t + pa N M+ po N ) < bEN?,

forb = 3(u+ 1+ pu1 + p2) and all) large enough such that< (u + 1) N* (exists due to (2.17)).

Now, from (3.15), (3.16), (3.13), (3.17), we get that (3.11) may be represented as (3.12). The
latter implies that:

2 A \/ 2_ L N
XA(t):XA(O)qLZ’f:l“’“N’“t—é 2oict P “

VN VNA
A A
+Zﬂk/ M) ds — Zk\/lﬂN t+]\jﬁ + o(1) (3.19)

= X*0) —5\/_t+ZNk/ 2] dSJFAjNL?JrO(l)'

Fork = 1,2, let X)(t) := (Z)t) — N))/VN?, and letX)(t) := Q*t)/vV/N>. Then,
the following relationships holdX} = [X}]*, X} = —[X}] andX} = X}. In addition, due

to work conservation, we haje(*| = S22, |X?|. Putting all these observations together with
(3.19) implies that,
2 2
bl ED b (+5\n+ +A/Z‘XA )| ds+o(1),
k=0 k=0 0
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for some large enough > 0. Gronwall’s inequality then yields

2 A
) e oy SWozeer [MAO] ) P
021%}:( ‘ (}koj‘ k(o)‘+5\/ﬁ + s e ) e (3.20)

Since X*(0)— (21, 25) in probability, as\— oo, we have

2
lim limsup P ‘XA 0 ‘ >C | =
C—oo )\—>oop (kzzo k( ) )

It is left to show thalim¢ . limsup,_, ., P (supOStST ‘Mk(t)\ VN > C) = 0. To show this,

note that sincé//* is a locally square-integrable martingale, by the Lenglart-Rebolledo inequality
(see [38]) for anyB > 0,

|MA(t))| _B (M) (T)
P > C P|—~—+*>B]. 3.21
(@% VR R W @20
Thus, from (3.18) we have,
hm lim sup P ( sup ’M)‘ ‘/\/ > C) (3.22)
C—oo Ao 0<t<T

Lemma 3.3 Suppose thak*(0) — X (0) = # = (1, ..., xx), in probability, asA—oco. Then,
under the conditions of Proposition 3.2,|if;| < C, k > 2, there exists a sequen({ék}A>0
(which is a function of) with b*—0 as \— oo, such that

(X5 (0), ..., X (W) 250, asA—oo. (3.23)

Proof: The lemma is proved fol\ = 2. The proof for the general case is similar. To prove

the lemma we define a new fluid-scale process (different frfoabove), which is identical to the
diffusion-scale process, except that time is scaled by N*. We will show that the fluid limit
reaches the goal af, = 0 in finite time, and hence, the diffusion limit will get there instanta-
neously. This argument mimics the one proposed by Bramson in [12], although does not make a
direct use of his results.

Let

XA (1) = KAV = (X2(0), X)(8) =

QMt/VNY) + Z}(t/VNY) — N} ZA(t/\/_)
VN VN ’

and note thatX’A( ) = X*0). Hence, ifX*(0) — X(0) = & = (21, x2) asA—oo, then, we also
haveX*(0) — X (0) = Z = (1, z,) asA—oo. We show that ifz, < 0 andz, > —C then there
existss* = s*(C') such that

X3(s%)20, asA—oo. (3.24)
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Settingh* = s*/v/ N will then complete the proof.

The proof follows three steps:

1. Establishing thaf (t) = x; + x, for all t > 0, for all fluid limits X of X*.
2. Establishing the existence of a fluid limi, of X?).

3. Findings* such thatX,(s*) = 0.

1. To prove (3.24) consider the sequence of initial conditlé(rkéo = x; andX3(0) = x5 <

0. Recall the definitions of Section 2.1, and &t(t) = (t/r‘ﬁ k = 1,2. Note that

for k = 1,2 the procesg})(-) is uniformly Lipschitz with constantV}, and thusZ}(-)

is Lipschitz with constantV;)/N* < 1. Hence, there exists an increasing subsequence
); for which 77 (-)—T}(-) as j—oc, whereT}, is a limiting allocation process, and the
convergence is almost surely (a.s.), uniformly on compact intervals (u.o.c). Without loss of
generality assume that the whole sequence converges. Using the functional strong law of
large numbers, (2.17) and the key renewal theorem we have thatas,

M%A\ZAN_A)_)“‘S and Dk(T]g\(/j\/f—Am))ﬁuka(s), a.s., U.0.C.

Now, note that
XMs) = X{(s) + X3(s )
A s >‘ (s VNX
—us — i Ti(s) — Msz( )-

To find Ty (s) andTy(s), note thatT}(s) < ¢s andTy(s) < gus, with an equality in both
simultaneously, if and and if, (s) + T5(s) = s. But, notice also that,

- - SIVNEZMr) = s+ 2 1 [
TNs) + Ty(s) = / 1(7) = s + Z(7) dr + / X(7)dr—s, asA—oo.
0 VN VN Jo

Therefore, we have

X(8) =x1 + X2+ ps — @18 — Hagas = 1 + T. (3.25)

2. Note thatifz, < 0, thenz; < 0 (work conservation), and hence (3.25) implies thigt) < 0
for all s, which implies thatQ*(s/v/N*) = 0 for all \ large enough. Specifically3; (s) +
B3 (s) = 0, for all s and all\ large enough (no queue implies only external arrivals to the
servers). Note that sincéy (s) < A*(s) for all s, there is also an increasing subsequexce

such that
Ay(s/VNY)

—A s), asj—oo,
= 2(5), asj
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(WLOG, assume that; is the whole sequence). Hence, we have,

e MVNY | BMs/VNY)  Dy(T(s/VNY)
X}o) = Xal0) + =E e 4 S - (3.26)

_>X2<S) = Tg + 1212(3) — H2(28, ASA—00.

3. Lets*(z;) = inf{s > 0| X5(s) = 0} (Where,s*(z,) = oo if X5(s) < 0for all s). Then for
all 0 < s < s*(z2), we haveX,(s) < 0, and in particular, according to FSB,(s) = A(s)
(all arrivals join the fast server pool, as long as such servers are available). Hence, for all
0 < s < s*(zq), (3.26) implies that, ad— o0,

X2(8)=Xa(s) = @9 + Ag(8) — pagas = w9 + A(8) — p1agas = o9 + (1 — pago)s.

Solving for X5 (s*(22)) = 0 we get thats* () = % In particular, the case of (z;) =

oo Is ruled out, becausg < 1 (recall our assumption thag > 0, henceg; > 0 as well).

It is still left to show that there exists' = s*(C) (independent of:,) for which X, (s*) = 0.
In view of the latter argument, if we show thab(s) = 0 for all s > s*(z,), then setting

s* = ;ﬁ will conclude the proof. Suppose, by contradiction, that there existss* ()

such that¥s(7) < 0. Let7, = sup {s*(xg) <t <1 Xa(t) > Xa(r) /2}. Note that along
the interval(ry, 7], X»(t) < 0, and hence, along this interva (t) — Ay (79) = A(t)— Ay (70).
In particular,

XQ(T) = % + (= paq2)(T — 70) >

which contradicts the assumption thé(7) < 0.

X,
27

Remark 3.5 Note the similarities and the differences between our state-space collapse result and
the ones established in [45, 3, 4], for a multi-class, single server type systervi{dlesign) with
service priority. The state-space collapse established in [45, 3, 4] essentially shows that whenever
one customer class has priority in receiving service over the other classes, its respective queue
length and waiting time are zero (both with the appropriate scaling). This is provided that the
arrival rate into the lower priority classes is non-negligible. In such cases, the higher priority class
“sees” a system which is ilight traffic. Hence, the total queue length includes customers of lower
priority classes only. In our system, faster servers get priority over slower servers. Hence, the
number of idle fast servers and the amount of time such a fast server waits between two consecutive
customers is zero (again, with the appropriate scalings). Here, the required condition for this to
happen is that the number of slow servers is non-negligible. What the latter implies is that the
faster servers experience a system whicbvier-loaded and hence are continuously busy. This
results in a set of idle servers which includes slow servers only.
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Remark 3.6 Proposition 3.2 is also true if the preemptive policy FSE used. Here the proof

is even simpler. Lemma 3.2 remains unchanged, while the argument for lemma 3.3 is trivially the
following: suppose that fok = 1,2, X}}(0)—x;, in probability, asA—oo. We show thai, = 0,

and then the lemma is true with = 0. By contradiction, suppose that < 0, then for\ large
enough, and with probability close to 1, we ha¥g(0) < 0. In particular, Z3(0) < N3. But from

the “faster servers used first” and the work conservation properties~ of the p;li(():y: Riﬁg:tr]lv?n
have,Z;(0)+Q*(0) = 0, which is a contradiction to the assumption théa (0) = %
converges, in probability, to a finite limit.

3.3.2 Transient Diffusion limit

In this section we establish the form of the diffusion limit of the scaled prod&ssThe main
purpose of presenting this transient limit here, is that it will be used later to establish the steady-
state equivalence between the policies F@d FSF. However, the form of diffusion process
obtained in the limit is also interesting in its right. Especially, when compared with the diffusion
limit obtained by Halfin and Whitt [30] for the M/M/N system.

We note that the state-space collapse result of Proposition 3.2 essentially shows that it is
sufficient to find the diffusion limit of the total count of customers (centered and scaléd)
Denoting this limit byX', we have that the limit o, for &£ > 2, is identically zero, and the limit
of X} is hence equal t&.

Proposition 3.3 (Transient diffusion limit) Suppose thaf}}(0) = X(0), as A—oo, for k =

1,.., K, and letX(0) = Z,If:l Xx(0). Assume further that (2.14) and (2.33) hold, and that the
-1

policy FSF is used. Recall that, < us < ... < g, andy = [Zszl ak/,uk} . Then X* = X,

as \—oo, whereX is a diffusion process with an infinitesimal drift

—0\/1t x>0,
— 27
miw) = { VR T2 (3.27)
and infinitesimal variance

o?(z) = 2p. (3.28)

Remark 3.7 (The infinitesimal drift) The drift term (3.27) has two components:é, /i and

—u1x. The first component is due to the difference between the overall available service capacity
Zszl 1N and the arrival rate. This difference is of ordé(v/\) = ©(v/N). The second com-
ponent is a drift that is due to idle servers. The state-space collapse result implies that, in the limit,
only the slowest servers can be idle, and hence, this term is only affected by their servigg rate:

Remark 3.8 (Drift in the single server type systen@jonsider, in comparison to our system, a
sequence of systems with a single customer class and a single server pool, insiédgpes.
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Suppose that all these servers have servicegata addition, suppose that the sequence of arrival
rates,{\}, is identical for both models, and that the number of servers in the single pool model,
N*, satisfiesN* . = A 4+ dv/A + o(v/)\), asA\—oo. That is, in both models the excess capacity
is approximately equal t6+/). For this model, lef*(¢) be the total number of customers in the
system at time, and X*(t) = (Y*(t) — N*)/v/NX. Then, by [30], ifX*(0) = X(0), asA—o0,
thenX* = X, as\—oo, whereX is a diffusion process with an infinitesimal drift

| =0/ x>0,
m(z) = { -z x <, (3.29)

and infinitesimal variance
o?(z) = 2p. (3.30)

In particular, the diffusion limits of both processes are of the same form, with the exception that
—ux replaces—puz in the drift component that applies when there are idle servers. This is to be
expected, because, clearly, in the single server type model all servers are identical, and hence all
can be idle at times. The comparison between the two diffusion processes reveals that the limiting
process associated with th —design stochastically dominates the process associated with the
I—design. Hence, if one is interested in determining staffing levels badeaisenperformance
measures, less overall capacity is required when there are multiple server types. Remark 4.2 will
describe the implications of this difference on staffing which is based on steady-state performance
measures.

Proof: We prove the proposition for the caseé = 2. The general case will follow similarly. We
use the notation presented in the proof of Lemma 3.2.

Note that (3.19) implies that:

X (t) = X0) —5\/ﬁt+zuk/ (X3 (s)] ds+ Ajﬁ +0(1)
k=1 0 (3.31)

t
0 VvV NA
wheresup,; [*(t)| % 0, and the second equality follows from Proposition 3.2. Now note that
from (3.13), (3.14) and Proposition 2.1 we have

1 1
<mM2>(t)i>ut, and <mM§k>(t)i>qkukt,

and by Theorem 8.3.1 in [38] the proces{é\ﬂ/m, M} VN, k=1, 2} converge jointly
in distribution to{ /b, \/Guirbe, k=1,2}, whereby, by, k = 1,2, are independent standard
Brownian motions. Therefore, by the continuous mapping theorem the pro¢&gs/N con-
verges td = /uba — \/qiuiby — \/Gafi2bs. Itis easy to verify thab is a Brownian motion with
zero drift and variancgy.. Applying the continuous mapping theorem to the procéssompletes
the proof of the Proposition. [}

= X*(0) — 5/t + ,Ul/ [XMs)] ds+eMt) + M)
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Remark 3.9 Proposition 3.3 remains true if the preemptive policy -SE used instead. The
proof remains unchanged due to Remark 3.6 and the fact that the dynamics of the total number of
customers in the system is the same under both policies.

We conclude this section by establishing the transient diffusion limit of the scaled waiting
time process, which turns out to have simple linear form of the corresponding limit of the queue
length process.

Proposition 3.4 Suppose thaf{}(0) = X(0) as \—oo, for k = 1,..., K, and let X(0) =

Zle X;(0). Assume further that (2.14), (2.33) and (2.37) hold, and that the policy FSF is used.
Then,W* := VN W* = W, asA—o0, whereW = [X]*/u, and X is the diffusion limit ofX*

as A\—o0, given in Proposition 3.3.

Proof: The proof is a result of a corollary by Puhalskii [44] which deals with limits of the first
passage time. The result in [44] was first adapted to the QED regime by Garnett et. al. [26]. This
proof further adapts the one in [26] to our setting.

Let
YA ={YAt),t >0}, A ={ANt),t >0}, D*={D*t),t >0},

be the total number of customers in the system, arrival and departure processes, respectively. Since
FSF is work conserving and service is FIFO; () can be written as:

WA(t) =inf{s >0 : DMs+1t) > Y*0)+ A t) — (N* — 1)}

We define the re-scaled processes

YA(t) = %YA(t), AMNt) = L
and an additional proced§*(t) characterized vi&V/*(t) = [K*(t) — t]*, or, equivalently,
KMt) = inf{s > 0 : D*(s) > Y(0) + A t) — (1 — 1/NY)}.
Now introduce
and a first passage time ) )
K(t) = inf{s >0 : D(s) > A()},

. . . A
noting thatk (¢) = ¢. Finally, letd = lim,_ Z,f:l i—’; and
V(t) = X(0) — (u)*/0t + /ub(1),
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and
U(t) = X(0) — ()0t + \/ub(t) — X (2),

whereb(t) is a standard Brownian motion. Then one can verify that
VNX ((YM0) + A — (1—1/NY) — (Y(0)+ A 1)) =V,

and that
VNX (D= D) = V.
Hence, by the corollary in [44], we have

VN (K* - K) = K,

whereK (t) = % = 2. In particular, due to the continuous mapping theorem, we have

(X (O]
.

W) = VIRWA(0) = VRNEA (1) - ] =

3.3.3 Stationary diffusion limit

In this section we establish that the stationary distributions of the prdﬁésander both FSF

and FSF, converge to the stationary distribution’¥afas A\—oo. In particular, this implies the
asymptotic optimality of FSF withifl in terms of the steady-state queue length and waiting time,
due to the optimality of FSFin I1p.

First we spell out the stationary distribution &f, the limiting diffusion process, given in
Proposition 3.3. Next we show that the stationary distributiockdfunder FSE converges to
this stationary distribution. Finally, we use the transient convergence results (Proposition 3.3 and
Remark 3.9), and the sample path optimalitylbf to establish the convergence of the stationary
distribution of X* under FSF. In all processes we usein place of the time argument to denote
steady-state.

Proposition 3.5 (Stationary distribution of the diffusion procesd)et X (-) be the diffusion pro-
cess described in Proposition 3.3, with infinitesimal drift and variance as in (3.27) and (3.28).
Then the steady-state distribution.Bfhas a density (-) given by:

\/Lﬁ exp{—dx/\/It}o, if >0,
f@) =9 /Zo(\/Prat A . (3.32)
ifi ﬁ)(l—a), if x<0,

-1
wherea £ o(§/ /i) = [1 + %ﬁ%)\/’m} = P{X(c0) > 0}.
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Proof: The proof follows from [14]. Note that the process-), restricted to[0, ), is a re-
flected Brownian motion with infinitesimal driftd,/z and variance.. Hence, according to [14,
(18.33)], its steady-state density conditional®¥ico) > 0 is exponential with raté/, /.. Simi-

larly, the process () restricted to the negative half-line is an O-U process with infinitesimal drift
-4/ — pxv and varianceu. Therefore, its stationary density conditional &ifco) < 0 is the
density of a normal random variable with mea#, /j:/ 11, and variance:/ ., conditioned on hav-

ing negative values only (see [14, (18.28)]). Putting these two densities together, establishes that
f(z) isindeed the steady-state density\dfwith « = P(X (co) > 0). To find the value of, note

that f(-) is continuous because the infinitesimal variance is continuous on the whole real line (see
[14, p. 471]). Henceq may be solved for by smooth fit, namely, by equating the limitg ©f at

0 from both left and right. [}

We now turn to showing that under the preemptive policy FSRe stationary distribution
of X*(-) weakly converges to the stationary distribution¥{3.32). Recall that the process’(-)
under FSEk admits a state-space collapse. In particular, it is sufficient to know the total number
of customers in the syster#r;}(¢), in order to know the wholé + 1 dimensional state space. In
addition, the procesg*(-) is a B&D process with birth rates*(y) = X and death rates*(y) as
given in (3.1). Under conditions (2.14) and (2.33) the system is stable far afid the stationary
distribution is given byp) := P(Y*(c0) = n) = pjm), n = 0,1,..., wherer) = —2

n? JJEION
n=0,1,..andp) = [> 7, wg}‘l. Clearly, the stationary distribution df* = Y}%’A, can be

easily obtained from the stationary distributionyof.

Proposition 3.6 (Convergence of the preemptive process in steady-staippose that conditions
(2.14) and (2.33) hold, and that the preemptive policy F&-used. Then the stationary distribu-
tion of X* weakly converges to the stationary distribution®fiven in (3.32), as\—oo.

Proof: We prove the Proposition fak = 2. The general proof follows similarly. We need to show
that for all—oo < 2 < 0o, we have

P(X*o00) < 1)—P(X(00) < ), as A—oo. (3.33)

The proof of (3.33) is tedious, hence, for clarity, we first describe its three main steps:

1. Leta* = P(X*(o0) > 0) which is (due to work conservation and the PASTA property) the
steady-state probability that an arbitrary customer will have to wait before starting service.
Then,a*—a, asA\—oo. To prove this, we explicitly write down the steady-state waiting
probability for every fixed\ > 0, and show, that a8— o0, this expression converges o
The main result used in establishing this convergence is the Central limit theorem (CLT).

2. For allx < 0, we show that (3.33) holds at This is done by first establishing that, due to
1., it is sufficient to show that for alt < 0, P(X*(00) < | X*(00) < 0)—=P(X(00) <
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x| X(00) < 0), asA—oo. Second, we explicitly spell out the steady-state probabilities:
P(X*oo) < 2| X*oo) < 0) for A > 1. Finally, by an extensive use of the CLT we
establish the desired convergencejasco.

3. For allz > 0, we show thatP?(X*(cc) > z)—P(X (<) > z), as A—oo. This is the
simplest step of all three. First, we note that, due to 1., it is sufficient to establish that, for all
x>0, P(X*o0) < 2| X*(00) > 0)—P(X(00) < x| X(o0) > 0), asA\—oo. Second,
we note that for all\ > 0 the processX*(-), restricted to non-negative values, is a Birth
and Death process with constant birth and death rates, and hence, the resulting steady-state
distribution is geometric. The resulting convergence-asx is then straightforward.

Note that for allz, P(X*(c0) < z) = P(Y*(0o) < N*+VN*z)= > p). Recall
n<N X4V N> g
that forn =0, 1,..., p) = pjm). For K = 2, 7 satisfies:

( ;%’ if 0<n<Ny,
onl
— - (’\ 3 if No <n<N*—1,

2N T N3 +(i—N3)
A Ho 2 K215 2 K1
T, = i=NQ+1 (334)
)\7L - A <
N3 A VA A \(nmNA1) MR Mo (i NA TN <m.
Mo “ N3 !(N1 p1+N3 /‘2) 11 (/JZNQ +(i—Ns )Nl)
\ i=N2+1

1. Forx > 0, leta* = P(X*(c0) > 0) = P(Y*(00) > N*) = 3_ . s 1a- Itis then easy to see

that
—1

00 N> —1
S o Zw + >
= " n= Nk 1
ot == 1+ :
> Z )
n=0 n=N>X
Let
N3
-3
n=0
N*—1
>
n=N3+1
and N
S
n=N>*
-1
then we needtoshowth%\IJrA**B} —a as\—oo, of, equivalently, th +BA é/w?fér/\)ﬁ)’
asA—oo. We look atC* first. Let M* = [puoN3/p], p* = —mN%iuzNg’ and Iet &' denote two
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guantities whose ratio goes to 1 in the limit, then,

cCr= S

n=N*

00
= > -
N2 n—NAt1) NA-1 .
n=N?X fho 2 NQ)\!(Nf\MlJ’_NQM%\)( ) H <MQN2)‘+(Z—N2)‘)M1)
i=N)+1

o0

A(NA 1) A(n—N41)

)(an%H)

Q

NN NA_1) )
w2 M) T (e Np 1y M S (N N

A
AN —1)M)\!p)\

N2 (NX—1)
fo 2 Nalpy b (MANDP=1)!(1-p*)

A
ANA-1) s 271'(:“2N2>\//J'1)(.“2N2)\//"‘1)(H2N2 /) o= (ka3 /i)

N A _pnN) (NA—1) (MA+NP 1) _ (AL N —
fin 2 \/2nNJ (NP2 e No 2m(MANP —1) (M2 N} 1) 7 em(MAENT =D (1 pA)

Q

A (N N -1
\//TQ)\N e(N 71)(,11‘2]\/'2)‘) 5 (n2/p1—1)

\/ﬂ(mN%ﬂnN%fm)(“QNQA/“ﬁNlA)\/u1N%+u2N2*(1*PA)'
The fifth line follows from Stirling’s approximation. The rest is algebra. Note that,
gsapp
VN + N3 (1 — p*)—6 asA—o0, and hence
\/M—Q<)\)N*6N>‘—1 (N2N2>\)N2’\(#2/u1—1)
A A :
VIR (1D 3 = ) )

~
~

C* ~

We now proceed with developing approximation fet.

N> -1
B = Y 7

n
n:N2>‘+1

N> -1

)\n
- Z N T N (i NA
n=N3+1H2 Nzt 1 (#2N2+(Z*N2)M1)
i=NA+1
2

A

AW N AN

N2
2 (MX4n—N3)!

Q

N e
2 AT
Ho NQ!n=N2A+1p‘1

A M N>} -1
o AN2 Mx!u{‘/[)‘ek/“l Zl Me—>Mm

Na A 751
1o 2 N2)‘!)\M J=MA+1 H1J
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Consider a Poisson random variable with rate;, then due to the central limit theorem, we have,
A A_
M %1 1,\;'67}/#1 ~ O MAMNP=1=Xp1 | P M 41X/
j=M>+1 ' VA VA

(5 \/fi7) — B(—00) = B(5//ir).

Hence,

A M eN K1
B =~ Jy'# = 0/ /1)

N,
Ho 2 N2

NA A A
~ vzwusz/ul(uzNA/m)” B g ua NGy 22V M
~ N X NA
Ko /27.‘.N/\(NA> 2 —N )\N (ng/pm1—1)

®(0//im)

A
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Finally, we turn to the approximation of*:
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Now we examine the rati@%.
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If a; > 0then

A
¢ vV H2 v H2
where the convergence to zero follows from the fact that a; loga, > 0 and—% — —00 as

A — oo. If ay = 0 then, by (2.35),

A Vo () (R Eee(R)) g (L) g asaoee
Cr Vi N |

Putting it all together, we have
)y —1
\//TQ(MQNQA)NQ(;Q/M Y™
AN+ B AN /im0 Ny (/i =) O 5y (s Vi)
O e ) 06 )

\/ﬂ(ulNl)‘J,-uzNQ)‘)(#QNQ)‘/#lJer)\)(;

as\—oo.

2. Letz < 0. ThenP(X*(0) < z) = P(X*00) < x| X*(o0) < 0)P(X*(o0) < 0) =
P(X*o0) < | X*(o0) < 0)(1 — o). Based on this observation and 1., in order to establish
weak convergence for negative valuescpive need to show that

P (5/\//Tl+ \/mgc)

PIX(o0) < | XP(o0) < 0= P(X(o0) < X(o0) < 0) = ——pr

Lety*(z) = [NA + q:\/NA} , then for allz, we have
Y*(o0) — N*
X)\ o) frEs —mFMm

(o) < VNA

Also, note that for all: < 0, we havey*(z) > N for all X large enough. Hence, for sushwe
can write:

<z &Yoo) < yMa).

)\l‘
PO (00) < 2| Xo0) < 0) = 0 TR
o) <zx 00 = Ty
zn:() 7TTL
N -1
2on=yr(@)+1 T

= |1+
N3 Nz
Satomy + X, ™
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Let

We have already shown that

A = AN Mz (M) '

Vv A iz
ConsiderB* next.
Bi = o

N*—1 A"

et 1t NI Ty (12N 4 (i = N2) )

()M ML Vo M”Wle? M e

N>‘ A MA ‘7 1l
fip* N3t A j=M @) -Np1 H1T

~

9

whereM?* = [“i‘—lj?] . From the CLT we have
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Therefore,
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We thus have,

eA/,ug(I) N3 =2
AX N VA 12

A
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(122)" 70 (@ (5 /i) = @ (8/ /i + i/ ) )
@ (—axv/X/ iz + 62/ /12
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— 0, as\ — .

e~ Aartazlog(azto(1))]+o(A)}(1/p1—1/p2)

We now turn to approximating.
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—NA
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From the CLT we have,
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In particular,
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Finally,

-1

B 1 @ (38/ ) — @ (8/ i + Vi n )
[“‘chkl -t

P <5/\/u_1+ \/M$>
o (5/\/m+ \/Mm>
© (8/\/im) |

3. We now turn to approximating(X*(oo) < x) for x > 0. Clearly,
P(X*o0) <x) = P(X*oo) <z | X*o0)>0)P(X*c0)>0)
= P(X*o0) <z | X*o0) > 0)a.
Based on 1., it is hence sufficient to show that

P(X*(00) < | X*(00) 2 0) — P(X(00) < | X(c0) >0)

_ b,

= 1l—e v#", asA — oo forall x > 0.
As before, ify*(z) = [NA + x\/NA} , then

P(X*(00) < 2) = P(Y*(00) < y*(x)).-

Note that the Markov process;}, restricted to values abové* has a stationary distribution:
n— N>
P (YMoo) =n|Y*oo) > N*) = (1-p") (pA)( N), n > N*.

Specifically, forz > 0,

P(XMoo) <2 [ XN(o0) 20) = 3 (1=p) ()"
- 1_ (pA)[ Malv B ash o oo

Remark 3.10 Note that Proposition 3.6 also implies the weak convergence of the stationary dis-
tribution of X* to X, which are bothK dimensional processes. This is due to the state-space
collapse that holds, in fact, for al > 1 (see Remark 3.2), as well as in the limit)as cc.

In order to establish the asymptotic optimality of FSF with respect to the queue length dis-
tribution in steady state, we need to show the convergence of the steady-state distribuibn of
under FSF to the steady-state distributionXaf We have already shown in Proposition 3.3 that if
X}0) = Xi(0)forallk =1,..., K, thenX?(:) = X(:) for 0 < ¢ < co. Our goal is to show
that this convergence also prevailg at co. This result is stated in the next proposition.
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Proposition 3.7 (Convergence of the non-preemptive process in steady-stigpose that con-
ditions (2.14) and (2.33) hold, and that the non-preemptive policy FSF is used. Then the stationary
distribution of X* exists for all\, and it weakly converges to the stationary distributiotkogiven

in (3.32), as\ — oc.

Proof: The proof is based on Ethier and Kurtz [19, Theorem 9.10 and Remark 9.11, p. 244].
According to [19] and based on our Propositions 3.2 and 3.3, it suffices to show that:

1. There exists a stationary distribution &(-) for all \.

2. The sequence of stationary distributions%ﬁf(-) is tight.

We establish 1. and 2. fdK = 2. The general case follows similarly.

1. Fix A > 0. To show the existence of a stationary distribution’0¥, it is sufficient to
establish that the stat@, 0) is positive recurrent, due to the irreducibility of the process (
is omitted from the following notation for brevity). Equivalently, &}, be the time of
first returning to the staté, 0), given that the process starts there. Then it is sufficient to
show thatE'T o) < co. We will establish the finiteness of this expectation by showing that
ETo) < ETf,), whereT(g, is the equivalent off (o) under FSE. The finiteness of
ET(’&O) is known due to the existence of the stationary distributioX afnder FSE (which
can be obtained from (3.34)). In particular,

1
ET(JS’O) — = .
P(X (00; FSFp) = (0,0))

Recall the definition ofl, (given in Section 3.2) as the family of all work conserving pre-
emptive policies which always use the faster servers first. According to Lemma 3.1, there
exists a policyr € I1p such thatX (t; FSP > X (t; 7) for all ¢, with probability 1. In addi-

tion, from the second part of the proof of Proposition 3.1, we havertlaaid FSE share the
same steady-state distribution. ParticularlyT i) is the returning time to the stat®, 0)

under the policyr, thenET (o) = ETS ) < oo. We will show thatET{o0) < ET{o). The

latter is true due to the following observations:

a) The processeX (-; 7) and X (-; FSP both have state spaces which are subsefs of
R? U (R4 x {0}) 2 S_ U S. (due to work conservation).

b) Under both policies, in order to have a transition frémto S, or back, the process
has to visit the staté, 0) first.
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c) Let T, T be the time of the first transition out of the st&te0) under FSF andr,
respectively. Then, according to a) and b), we have

ETo =FET + P(X(T;FSBe€S_) E(Tpe —T | X(T;FSPH € 5_)
+ P(X(T;FSP € S;) E(Tpe — T | X(T;FSPH € 8,)
=ET + P(X(T;7)€5S.) E[Tpe T | X(T;FSP € S_]
+ P(X(T;7) € 84) E[Tpo) — T | X(T;FSP € 5.,

where the second equality follows from the fact that the transition rates out of the state
(0,0) are the same under both policies.

d) Note that the transition rates of both processes restrict8d &re the same. Hence,
E[To—T | X(T;FSPH € S,] = E[Too — T | X(T;7) € S,].
e) Due to the pathwise dominance®bver FSF with respect t& (-), we have
X(t;FSP | X(T;FSP € S_ > X(t;7) | X(T;7) € S_
for all ¢t > 0, with probability 1. In particular,
X(Ty0);FSP | X(T;FSP € S_ > X (Ti00);7) | X(T;7) € §_ =
Specifically, at imeT{ ), X (T{0.0); FSP € S, . From observation b), it follows that
To | X(T;FSP € S_ < Tog) | X(T;7) € S_,
which implies that
E[To —T | X(T;FSP € S_] < E[To0) — T | X(T;7) € S_].

f) From c), d) and e), it follows thaE[ 0] < E[T( y]. This establishes the existence
of a stationary distribution ak*(-) for all \.

2. Now that the existence of a stationary distribution #6t has been established for allwe
need to show that the resulting sequence of stationary distributions is tight. For any measur-
able setik C S, letv*(K) := P(X*(c0;FSP € K) and letp*(K) := P(X*(co0; FSR) €
K). By Proposition 3.6p*(-) is tight. Hence, givem > 0, there is a compact séf, such
thatn*(Ky) > 1 —¢ 21— 56 forall A anda = «(d/,/1). Our goal is to find another
compact setik” such that(K) > 1 — ¢, for all A large enough.

Let Kt := {(z1,22) € S| I(y1,v2) € KoWith y; +y2 < 21 +22}. Thatis, K is the set of

all points in the state space, whose total sum of their elements weakly dominates the sum of
the elements of at least one point frdin(see Figure 3.1 for illustration). From Proposition

3.1, we haver(K+) > n(Kt) > n*(Ky) > 1 — €. This is almost what we need, except

for the fact thatk'* is not compact, because it is not bounded from above.
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Figure 3.1: lllustration of the tightness proof.

Let KT = {(21,0) € S | 21 > 0, (#1,0) & Ko, andI(y1,42) € Ko With y; + 32 < 21}

Then, K+ C K*,andK+\ K+ is compactK ™ is the part ofk + we wish to remove in order

to obtain compactness. Before it is removed, we need to make sure that its’ measure is small
enough not to spoil tightness. Recall that the transition rateé ofestricted tolR., x {0}

are the same for both FgFand FSF. Hence,* (K | Ry x {0}) = n*(K | Ry x {0}) for

all A and any measurable skt Specifically,

VMET) =M KT | Ry x {0 Ry x {0}) = n*(E* [ Ry x {0})rA (R4 x {0})

AN K+ _ o

= ey (R x {0}) =) (KF) - 5
¢ e <
ap

for all \ large enough, independently of

1
/2
Here,a anday) are the steady-state probabilities of waiting for theystem, under FSF
and FSk, respectively. The first inequality follows from the fact that N K, = ¢. The

second inequality is due to Proposition 3.6, and particularly, the factfhat o as\ — oo.
Finally, let K = K+ \ K, thenk is compact and

. _ 1 2
u*(K)zyA(K+\K+)21—5,—@—:1—6( +O‘) =1—c¢.
(0%

Proof of Theorem 3.1: Let {7*},~o C II be a sequence of policies, and suppose that the
steady-state distributions of*(-; ), Q*(-;m*) and W*(-; =) exist for all A > 0. In addi-
tion, suppose that the weak limit&;(co; {7*}), X,(co; {m*}) and W (co; {m*}) of X*(co; 1),

X (o0 {m}) := Q*(o0; {7*}) /v N* and W (00; 1), respectively, exist as— oo.

We prove the theorem in four steps:

1. First we show asymptotic optimality of FSF in termsXf (oo), asA—oo.
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2. The asymptotic optimality of FSF with respectXd' is used to show its asymptotic optimal-
ity with respect to the queue length.

3. The asymptotic optimality with respect t§* is trivially shown to imply the asymptotic
optimality with respect to the probability of having at lea&t customers in the system. For
work conserving policies the latter is equal to the probability that all servers are busy, or the
waiting probability.

4. The asymptotic optimality of FSF with respect to the waiting probability is shown to imply
its asymptotic optimality with respect to the waiting time distribution.

1. We need to show that
P(X(00;FSP > 1) < P(X(00; {7*}) > z) forallz, — oo <z < oo.

This includes establishing the existence of the (i) the steady-state'6f FSP for all ),

and (ii) the existence ok (co; FSP), the limit of X*(co; FSP asA—oo. Recall that both

() and (ii) were established in Proposition 3.7. The latter together with Proposition 3.6
also established that (co; FSP = X (oo; FSFp) = limy ., X*(co; FSFp). Finally, the
optimality of FSF> with respect taX*(co) for all \ (see Proposition 3.1) implies that indeed
FSF is asymptotically optimal with respectto), asA—oo.

2. We wish to show that for alf > 0,
P (Xo(00:FSR > q) < P (Xoloci {m}) > q) (3.35)

The proof follows directly from 1. and from the facts th&g (co; FSP) = [X*(o0; FSP]T,
a.s. (work conservation) and th& (co; 1) > [X*(oo; 7)]*, a.s. for all\ > 0.

3. For any sequence of policigsr*}, for which the steady state of*(-; ) exists for all
A, leta* = P(X*(oco;m) > N?), be the probability of having at least* customers
in the system. For work conserving policiés = o* = P wait > 0). Suppose that
X (00;{m}) = limy_o, X*(00; ) exists. Then 1. implies that

o(FSP) = lim a*(FSP < Jim ar({r}) = a({r}).
4. We wish to show that for albb > 0 we have
P (W(oo; FSH > w) <P (W(oo; () > w> . (3.36)

To prove (3.36) it suffices to show that

(i) The steady-state distribution &f *(co; FSF exists for all\ > 0.
(i) The weak limitlV (co; FSP of W (co0; FSH asA—oc exists.
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(i) V(00 FSP < 1W(00; {*}).

(i) The existence of a steady-state distributiori/%f(oo; FSH for all A > 0 follows from
Corollary 3.1.

(ii) To show the existence of a weak linit’ (co; FSP) of T (00; FSF asA— oo, recall that
by (3.5),
P(W*(00; FSP > w) = a*(FSPe (Xl mNe 2w vy, >

wherea*(FSP = P(X*(oco; FSP > 0). In particular,

P (W’\(oo; FSH > w)) —p (\/NAWA(OO; FSP > w))
_ (SIS Ve )
= a*(FSPe VA
— a(FSPe™VEv Yy > 0, asA—oo.

The convergence af*(FSH as\—oo was established in 3.

~ st .
(i) To show thatTW (co; FSP < W(oo; {m*}), note that since the sequen{e’} may
contain some policies which are not work-conserving, (3.5) may not hold any more, but
instead, (3.3) implies that

(Z?:l l‘lcN/;\—A)

P (W(oo; {}) > w) > aMn)e Vi Y S a({r e VR Y > 0, ash—oo.

Now, sincea({7*}) > a(FSP (by 3.), the asymptotic optimality of the steady-state waiting
time then immediately follows.

Remark 3.11 Note that the latter proof essentially shows that in order to establish asymptotic
optimality of the waiting time for our model in the QED regime, it suffices to show asymptotic
optimality with respect teé;, the probability that there are at leasf* customers in the system. For
work conserving policies this implies that asymptotic optimality with respect to the waiting time
is equivalentto the asymptotic optimality with respect to the waiting probability (both in steady-
state). Figure 3.2 shows a diagram of the asymptotic optimality relationships between the four
entities included in the proof of Theorem 3.1.

The next lemma establishes a simple relationship between the steady-state queue length and
waiting time distributions for work conserving policies. This relationship is of the same form as
the one shown in Proposition 3.4 for the transient limits of the queue length and waiting time
processes.
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Figure 3.2: Asymptotic optimality relationships for work conserving policies (left) and in general
(right).

Lemma 3.4 Suppose that conditions (2.14) and (2.33) hold, and consider a sequence of policies
{m*} C II, A > 0. LetX, X,, and TV, be the weak limits as—oo for the steady state of the
processesX*(-; ), Q*(-; ) /V N, andv NAXW?(-; ), respectively. Then,

A st [X]+

W= (3.37)

and if 7 is work conserving for al\ large enough, then

o X1 X
WE_[ ) _ 20
% %

(3.38)

Proof: We prove (3.38). The relationship (3.37) follows similarly. Supposethas work con-
serving for allA > 0. We omit the policy and time arguments from all notation for brevity. Recall
thatY* is the steady-state total number of customers in the system. From (3.2) we have

[YA—N 1]t
T A>0, (3.39)

7
=1

|iS]

W)\

whereT? are iid random variables distributedp(>"r | 1, N}), and are independent &P, It is
easy to see theﬁ%# = [X]T. LetY*, and X be versions of the original random variables
such that the latter convergence is almost surely. For samples paths sugh thav* + 1—oo
we have:

[YA-NA 1]+ [YA-NA1]+

YA — N, +1]* 1 [X]*
N> 2/ Nx T = [ r NATA, |
v I s YRR

almost surely, asa—oco. The convergence follows from the strong law of large numbers applied to
. . . A_NA .
N*TX. If Y does not diverge too then, in particular)im,_... % = [X]* = 0. In this

case, for any subsequengk; } for which {[Y* — N% + 1]*} is bounded, we havi@* — N*% +
1]* < log(N*) for all j large enough. Hence, for glllarge enough

[ij_NAj+1]+ log(NAj)

~_log(N? 1 .
VNN B VN > TN < V) ) 2 NNTYM 0, asj—oo.
=1 =1

YT VNN log(NXN
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Figure 4.1: The Stability Region fdk = 2.

4 Asymptotic Feasibility

In this section, we wish to characterize the feasible region for the staffing problem (2.3). As
was noted before, characterizing this region exactly for fixed, . . ., 1 x, anda seems difficult.
Instead, we characterize this region asymptotically, for large valuggiaf. as\ — o).

We begin by recalling that a necessary and sufficient condition for stabi@{j:sl e N, >
A (See Figure 4.1). This observation gives us a superset of the feasible region, as it is impossible to
have a steady state waiting probability which is less than 1, if the system is unstable. Proposition
4.1 characterizes the asymptotic feasible region as a subset of the stability region. Although in
principle, this region could be very complicated, it turns out to have a sitim@ar form. The
linearity of the feasible region is not surprising in view of the fact that, under FSF the limiting
waiting probability depends on the overall service capacity (as long as the slowest server pool is
non-negligible). In particular, the limiting waiting probability does not depend on the individual
capacities of the different server pools. Note that the overall service capacity is a linear function of
the number of servers in each pool. Hence the linearity of the asymptotically feasible region. The
asymptotically feasible region is illustrated in Figure 4.2.

Proposition 4.1 (Asymptotic Feasible Region - Square-Root Safety Capacitfet) < o < 1

andu, < e < --- < ug be fixed, and consider a sequence of systems indexed by the arrival rate
A > 0, which is growing to infinity, andV}} servers in pook, k = 1,..., K. LetN* = % N

be the total number of servers in systepand suppose that

A

N
lim inf N—IA > 0. (4.1)

Then, there exists a sequenfee' = (A, N*)} of non-preemptive policies, under which

lim sup P (wait > 0) < « (4.2)

A—00
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N, +,N, = A+ 8 +o((A )

Figure 4.2: The Asymptotically Feasible Region for= 2

if and only if
N 4o e NY > A+5ﬁ+o<ﬁ), (4.3)
where0 < § < oo satisfies
(o/yin) @ (/i) |
= afd = . 4.4
a(d/yim) = |1+ == (4.4)

In addition,§ = 0 if and only ifa = 1, andd = oo (i.e. (4.3) holds for albh < o0) if and only if
a=0.

Remark 4.1 Notice that if one is interested in determining the total capacity needed for the system
in order to obtain a target waiting probability, then by (4.3) a safety capacity &\ is needed
beyond the minimal capacity of (hence, the term “square-root safety capacity”). According to
(4.4 the value of is determined from the model parameters solely based @md .;, which is the
service rate of the slowest servers. The other, faster, service rates do not play a role at this stage.
As will be shown later (Proposition 5.1) those faster service rates are needed in order to determine
how to distribute this total capacity among the server pools in order to minimize staffing costs.

Proof: We prove the proposition fak” = 2. The general case follows similarly. Fix< ¢ < oo,
and suppose that (4.3) holds for All Let a; = liminfy_.., “’“N  k =1,2. Clearly,a; +as > 1
anda; > 0. Suppose first that, +a, > 1. In this case, we can obtaln (4.2) with= a(0//111) by

choosing to use only a subset of each server pool of §jze- “’c/(“*“ﬁ)”(é/z WA |~ 1,2, and
apply the policy FSF. Proposition 3.7 then confirms that (4 2) is satisfied. Now, suppose-that

a; = 1, and without loss of generality, lef, = limy ., 2 £ Letd = liminfy .. Mﬁ?%”

(again, without loss of generality, assume that lirm_,oo %) Clearly, > 4, and

possibly,d = co. If 6 > ¢, then one is able to obtain (4.2) by using FSF with respect to a subset of
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pNEZ(ATDVA \yhere AN = NIHRNIZX 5 Einally, if § = 6,

each server pool of siz&, = b

/,L .
then (4.2) holds if FSF is used fromkProposition 3.7.

To complete the proof, we need to examine the cases where( andy = oo. Sup-
pose first thaty = 0, and assume, by contradiction, that there exists a sequence of policies
{m = (X, N*)}, such thatim sup, . P, (wait > 0) = a < 1. Let0 < &, < oo be such that
a(do/+/1t1) = a; suchd, exists due to the continuity ef(-) and the fact thalim;s_... a(6//1t1) =
0 andlim;s_, «(6/,/p11) = 1. Consider another sequence of systems with server pools a¥gize
N} + (80/4)V N/ ur, k = 1,2. Clearly, (4.3) holds for the new sequence, witk: y/2. Now, ac-
cording to Proposition 3.7, if FSF is used with the new sequence of sydieimgs,.. PIQSF(wait >
0) = «(do/2y/p1) > . However,{m*} is assumed to obtain a waiting probability @fasymp-
totically, over a subsequence) by using only a subset of the servers. This is a contradiction to the
asymptotic optimality of FSF. Finally, i, N 4+ o N3 > X 4+ 6v/A + o(v/A) for all § < oo, then
by using FSF on a subset of the servers, one can obtaitithatp, . P*(wait > 0) < «, for all
0 < a < 1. Lettinga — 0 establishes the desired result. [}

Corollary4.1 Let0 < a < landu; < ps < --- < ug be fixed, and consider a sequence
of systems indexed by the arrival raxe which is growing to infinity, andV;® servers in pook,
k=1,...,K. LetN* = 3% N} be the total number of servers in systgmand suppose that
(4.1) holds. Then, there exists a sequefiet} of non-preemptive policies, under which

/\lim P (wait > 0) =« (4.5)
if and only if
N + o+ g Ny = /\+5\/X+0<\/X>, (4.6)

where0 < 0 < oo satisfiesy = a(d/,/ji1) is givenin (4.4).

In addition,s = 0 if and only ifa = 1, andd = oo (i.e. (4.3) holds for alb < o) if and only if
a=0.

Proof: The proof follows immediately from Proposition 4.1. [}

Remark 4.2 (Feasibility in the single server type systei@pnsider, in comparison to our system,

the sequence of systems described in Remark 3.8, with a single customer class and a single server
pool, instead of{ types. Suppose that all these servers have servic<,=~;Lrétt§jf:1 Vi, fOr some
arbitrary weightsy, ..., v € [0, 1], with Zszl v = 1. In addition, suppose that the sequence of
arrival rates,{\} is identical for both models. For this single server type model, Halfin and Whitt

[30] showed that if the number of servers in theystem isV*, then fora € (0, 1),

lim P*(wait > 0) = a,

A—00
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if and only if
NY =M+ BV M+ o(VN),

-1
where( < < oo satisfiesn = [1 + ﬁd‘iéﬂ))] = a(p), (recall (4.4)). The condition oN* can
be equivalently written as

LN = X4 BV A+ 0(VA) = A + 0/ 11/ VA + o(VN),

whered satisfiesy = a(d/,/jt1). Comparing this with (4.6), we conclude that the multiple server-
type system requires less total service capacity than the one required by the single server-type
with mean service rate, if both aim at achieving the same limiting steady-state waiting probability.
Specifically, suppose that the single server-type system is compared Witeaver-types system

with N} = qu(N} + ... + Np), with ¢, = v = (ar/ur)p, for k = 1,..., K. Then, assuming

thatq; > 0 (hence, condition (4.1) of Proposition 4.1 is satisfied), one can see that the multi-type
systems requires overall fewer servers than the single-type system to achieve the same limiting
steady-state waiting probability.

5 Asymptotically Optimal Staffing

In this section, we study the staffing problem (2.3). Recall that exact optimality is difficult to ob-
tain, and hence, we present asymptotically optimal solutions. Our previous results already identify,
under certain conditions, an asymptotically optimal poliE{sF and the asymptotic feasible re-
gion given in (4.3). Itis now left to find the asymptotically optimal staffing rule that minimizes the
staffing costs among all the vectaks = (N1, ..., Ng), which belong to the feasible region. For

the remainder of this section, consider a fixed target waiting probabiktyy < 1.

Consider a cost functio@(ﬁ) = C1(Ny) + - - - + Cx(Ng) which is increasing and strictly
convex in all its arguments, and such tAgtV) — oo, as|N| — cc. Because of the character-
ization of the feasible region given in (4.3), it is expected that the staffing cost will be at least of
the order ofC(\ - €), wheree'is a vector of 1's of dimensiofx. In addition, it is expected that
differences between staffing costs of two different staffing vectors which are close to the efficient
frontier of the feasible region, will be of the order 6f+/) - ). Hence, in order to establish a
meaningful form of asymptotic optimality, one needs to comparenalizedstaffing costs that
measure the difference between the actual staffing costs and a basic cost @f @rdé}, which
is a lower bound on the staffing cost.

To get such a lower bound, consider the following related problem:

minimize Cl(Nl) -+ CQ(NQ) + CK(NK)
subjectto 1Ny + paNo + -+ - 4+ ug Ng > A
Ny, Ny, ... N >0, (5.1)
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that is, we seek to minimize the staffing cost within the closure of the stability region. This prob-
lem, if accompanied by integral constraints, is a special case of a set covering problem. Without
the integral constraints, its optimal solutios; satisfies

CL(ND) _ CH(N;)
e Hj

g k=1,2,... K, (5.2)

and
piNy + po Ny + -+ + pg Ng = A (5.3)

Let C be the optimal cost obtained by solving (5.1). Then clearlyis a lower bound on the
solution of (2.3) because the stability region is a superset with respect to the feasible region. In
addition,C is of orderC'(\ - €), and hence, it naturally serves as the right normalizing factor.

Definition: Consider a sequence of staffing vectors* . Then, {NA} is anasymptot-

ically optimal staffingsequence if (i) it is asymptotically%oasible, and (ii)Aiig, associated limiting
staffing cost is minimal among all asymptotically feasible staffing vectors. More precisely, if
{NA}AN) is another asymptotically feasible sequence of staffing vectors (that is, there exists a

sequence of routing policigsr* = 7*(\, N*)} C II, such thatim sup, . P (wait > 0) < a),

thenlimy_, SAE—;gi < 1.

Remark 5.1 (A “practical” definition of asymptotic optimal staffing) The following definition

is equivalent to the definition of asymptotic optimal staffing given above. In our proofs we use
this definition, as it is easier to verify its validity. Suppose t{uat“} is a sequence of op-
timal solutions of (2.3) with respect to sequences of arrival r@e}saﬁd staffing cost functions
{CM), ., O ()} Let{NA}A>O be another sequence of staffing vectors. Tr{envi%} is an

A>0
asymptotically optimal staffing sequeni€evhen used to staff the system,

a. There exists a sequence of policles = 7*(\, N*)} C II such thatim sup,_,_ P, (wait >
0) <«,and

C/\(N)\)_Q)\ _ 1

b lim—o0 G530

We now investigate homogeneous cost functions of the fOriV) = C(N) = ¢, N? +
+cKN”, wherel < p < oo, ande, > 0 for k = K. Letd > 0 be such that
a(6/\/m), and letM** be an optimal solution of the problem (5.1) with the right hand
S|de)\ replaced by\ + 6v/\. Note that the vectof/* is not necessarily all integers, and let
VA = [M*] = ([MA],...,[M;2]), that is N is obtained fromA/** by rounding off its
elements to the closest integers above. We claim Aais an asymptotically optimal staffing
vector.
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Figure 5.1: Asymptotic Cost Optimization féf = 2.

Proposition 5.1 (Asymptotically optimal staffinglConsider a fixed target waiting probability of

€ (0,1). Suppose thaf/(N) = ¢;N* + - - - + ¢ N, and for A > 0 consider the staffing vector
N* = [M*], whereM** = (M, ..., M;») is an optimal solution to (5.1), with the right hand
side\ replaced by\ + 5v/\. Here¢ satisfiesy = a(6/ /1) (see (4.4)), and

((/Ll/cl)l/(pfl)’ (,LLQ/CQ)l/(pilx ey (,UJK/CK)]-/(pil))
Sk (/) 7Y

M*™ = (A4 6VN) . A> 0. (5.4)

Then{]@}A is an asymptotically optimal staffing sequence.
>0

Proof: We prove the proposition for the cage= 2. The general case follows similarly. L >
be the non-negative vector on the half-plain\/; + M, > X + §+/A that minimizes the staffing
costC (M), X > 0. Clearly,js M + ps Mz = X + 6v/A. Let N} = [M;*], k = 1,2. We prove
thatlim)_., % — 1. The asymptotic optimality oV then easily follows. The outline of
the proof is as foIEO\Tvs:

1. We solve forC*, M**, andC/(M**) for all A > 0, and show thafA/**] satisfies the condi-
tions of Proposition 4.1. Solving fav/** is illustrated in Figure 5.1.

C(M*A)_Q)\

B C(ﬁ*’\)fgk

L such that if it is used to staff thig, system, then

2. Assuming first thatim inf, .. < 1, we show that there exigt, > 0 and a vector

a. there exists a policy = (o, L) e 11 such thatP, (wait > 0) < «, and
b. C(L*») < C(N*%).

This, of course, contradicts the optimality 5.
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CM)—C
C(N*\)—C*

the sequence ofvecto{SN**} = {(N7}, N3N} thatuy Ny 4+ s N3t > A+ 6V A+
A>
o(v/)\), for all \, along the subsequence.

. Af lim sup, _, > 1, then we establish (see Lemmas 5.1 and 5.2), with respect to

The casgu; N+, N2 > A+6+/) can be ruled out by the optimality af**. In particular,
N+ N3 = X + 6v/A + o(v/A). In this case, we find another vectbt, such that

a. L} + puoL) = X+ 8+/), for all \ along the subsequence, and

C(IN)—C>

SR = 1, for the same sequence that attains the limsup.

b. limy_

But this contradicts the optimality ¥y .

We now turn to the details of the three steps of the proof.

. To find C*, one needs to solve the problem (5.1). Simple constrained optimization obtains:

/\P
= 3 (5.5)
(2 ex)V/ =D 4 (bey )/ =D)P

Similarly, to find //** andC/(M**) one needs to solve the problem:

minimize ¢, MY + co MY
subjectto g My + po My
M17 M2

(AVANAY]

A+ VA (5.6)
0

The solution to (5.6) is given in (5.4), and féf = 2 it satisfies

((MICQ)l/(pil)a (MQCl)l/(pil))
(1) T (e T

(M M5Y) = A+ 6V) -
and
C(M*™) = (A + dVA)PE. (5.7)

In particular, D\Z*W satisfies condition (4.1) of Proposition 4.1, because

M _ (pac)"/ 1) =0
M2+ M (pyco)Y®=D 4 (pgey) V-0 7

. Suppose thaim inf,_. #))gi

. C(M*»)—C* )
limy o0 R < 1. This implies that there exist§ > 0 such thatm > 14 A,

for all \ large enough, o(N**) — C(M**) > A(C(M**) — C*), for all X large enough.

< 1. Without loss of generality, assume that
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Lete = &%, and letM* be the optimal solution of (5.6) withi + ¢ replacings. Note that
C(M) > C(M*A) and that
C(M*) = C(M™) A+ (6 + VAP — (A + VAP
C(M*) — C? (A4 VAP — NP
(L4 (8 +€)/VNP — (1 45/
(1+8/VA)p—1
1+ p(8 +€)/VA+0(1/VA) =1 = pd/V A+ o(1/VN)
L+ pd/vVA+o(1/VA) -1
= % < %, for all \ large enough.
Specifically, for all\ large enough, we have,

L o0r) -

A(C(M™) =)
C(N*N) = C(M™).

IN

C(M*) — C(M™)

IN A

Let L* = [M*], then for allX large enoughC(L*) < C(N*), andL* satisfies the con-
ditions of Proposition 4.1, withh + € replacingd. Hence, under staffing of*, Pﬁsgwait

> 0) — a((0 +¢€)/\/m11) < a. In particular, for all\ large enough, under staffing of, we
havePléSF(Wmt > 0) < a. This is a contradiction to the optimality of**.

Before we turn to step 3 of the proof, we state and prove two lemmas.

Lemma 5.1 Suppose that for all > 0, N*isthe optimal solution of (2.3) arldn inf) ., #}M >

0. Thenu N + pa N = XA + 6V A + o(V/\).

Proof: By contradiction, assume that either there exists a subseqt@ep}:éor which MlN
MQN* < Aj+ 0/ + o(y/A)), or there existg > 0 such thaTmN + 1Ny N> N+ (5 +
€)\/Aj + o \/_ In the first case, by Proposition 4J31,nsupﬁooP ' (wait > 0) > q, for all
7% € II, which is a contradiction to the feasibility df*, for some large values gf. In the
second case, le¥% = N* — & (whereé is a vector of 1's). TherC(N%) < C(N*V), and
by Proposition 4.1, there exists a sequence of poli¢igs = 7 (), N%)} C 1I under which
limsup;_ ., P (wait > 0) < a. This is a contradiction to the optimality af i for all large;.
m

Lemma 5.2 Suppose that for a sequenEé\ of staffing vectors, such that there exists a sequence
{7* = 7*(\, N*} C II of policies under whichP,x(wait > 0) < «, for all A > 0. Suppose,

in addition, thatlim infy_,., Nf\rm = 0. Then,u N} + poN3 > X + 0V A + o(v/\), where

o = a6/ /iin)-
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Proof: Suppose that (without loss of generalitin, .. NA]\J’:NA = 0. First note that, from stabil-

ity, there exist$) < § < oo such thaiu; N + ;N > X + (5\/_ A+ o(v/\), asA—oo. In this case,
we can show that fof, = limy .., 63, —0o < §, < 4 (considers, as a partial limit o5y, if the
limit does not exist), then under FgF

1
PMwait> 0)
- ! - mde2%/m Lefég(u%*i) 2 9) — b 2 1 — 00
o5/ /i) 1+ /2 (\/E ® (d2//12) \/m®(6 /\/,u_)),as)\ ,
1
a(d/ /i)

In particular,limy .., P*(wait > 0) > a(5/\/m). Therefore, from the optimality of FSHn I1p
(see Proposition 3.1), we also haven sup,_, ., P (wait > 0) > oz(g/\/m). But we assumed
that P, (wait > 0) < a(§/\/mr) for all A. Hence,a(d/p) > a(d/pm), or equivalentlyy < o.
Finally, the latter implies thgt; N + 1o N3 > X + 0V + o(V/)). m

We now return to the third step of the proof of Proposition 5.1.

3. Suppose thdim sup, _, C(M )-C* - 1. Without loss of generality, suppose that

F)—C>

limy,_.o % > 1. Due to the definition of\/** it follows that u; Ni* + o N3 <

A+ v/ X for all X large enough. From Lemmas 5.1 and 5.2, we knowhat* + i, N;* >
A+ 0vVA+o(VA). Let fAN) = A+ N‘ (1IN + pa NY). Then, fA(N) = o(v/A) > 0.

A A6V _ ) S WY 5
Letc? ;= N e NEY <1 — A+6f) , and consider the vectdr* = ¢* - N**. Note that

L) + paL) = X + 6/, and thatC/(L*) > C(N*}). Hence, we have

C(N™) — ¢ Lo - ¢ (1 — (1 — AN /(A + 5\/X))p> C(L*)
c(L) — ¢ oL — ¢ c(L) — ¢
_P/O+ 3N +o1/N) CAE) PN/ (A + 8N
C(LN) — 1—CY/C(L)
PPN/ L e/ (A0

1 —C/C(M) 1— (1/(1+5/ﬁ))p
pf*N)/(VA+9) — pf*N)/(VA+6)
A (1= (1/a+6/v)") o

— 1, asA—oo.

QL
>

v

= 1- for all \ large enough

But the latter implies that, in particulaf,(L*) < C/(M**) for all X large enough, which is a
contradiction to the optimality af 7. [}
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Example 5.1 Quadratic Cost Functions:Consider the staffing problem:

minimize ¢, N2 + ;N3 + ... + cxk N&
subjectto P, (wait > 0) < a, for somer = 7(\, N) e II, (5.8)
Nl) NQa sy NK € Z+7

with a fixed target waiting probabilit) < a < 1. To emphasize the dependence of the staffing
level on the arrival rate\, we denote our proposed solution by'. To determine the total capacity
needed to satisfy the waiting probability constraint, Proposition 4.1 suggests that

PN 4 N + 4 pe N > A+ 6V + 0(A), asA—oo,

where) satisfiesy = a(d/,/jir). That is, the total capacity required to achieve the target waiting
probability depends asymptotically on the service rates through the service.yai€the slow
servers only. To determine the actually staffing level, one needs to take into account the actual
individual service rates. By Proposition 5.1 the proposed staffing veéétowhich satisfies:

N)\ ) ] = 1,4
j Ck/ Hk

K, (5.9)

and
[N + poN) + o+ e N = A+ 6V/A,

is asymptotically optimal among all asymptotically feasible vectors. The verbal interpretation of
(5.9) is that when the staffing cost is quadratic, then staffing levels for individual server pools are
inversely proportional to the ratioy /1. This rule is intuitive as it implies that when the cost per
unit of service rate is high, the staffing level should be low. Note that the ¢atids not to be
confused with the quantity often used (in different contexts) to determine routing rules when
holding costs is associated with waiting customers.

Extensions

Arrival Rate Dependent Homogeneous Cost Functions:Suppose that, instead of the fixed
staffing cost function considered in Proposition 5.1, a cost function which is dependent on the ar-
rival rate. We capture this dependence through the superacrijarticularly, consider, fok > 0,

the staffing cost function i€ (N) = AN?" + NP + ... + A NE . ForA > 0 andk = 1, ..., K,
assume tha(tz > 0, liminfy_, 02 > 0,p" > 1,liminf,_ p* > 1, andlim SUD )00 p < 0.

In this case, one can verify that the sequence of staffing ve[:lﬁ'r*é} proposed in (5.4) -
with superscripts\ accompanying; andp, is asymptotically optimal staffing. Specifically, let

<(M1/C%)1/(pk_1)’ (pa /) P=1 (NK/C?()I/(I)A_U>
K A 1/(p*-1)
S (/)

then one can show thaf/**] is asymptotically optimal.

M = (A +6VN) ., A>1,  (5.10)
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Linear Cost Functions with Constraints: In many practical situations one is interested in deter-
mining staffing levels to minimize linear staffing costs. This is the case where the staffing costs are
associated, for example, with salaries of the servers. However, the linear cost case has not been
included in our discussion so far. To illustrate why this case is problematic within our framework,
consider the following example: suppose that one is interested in solving the staffing problem

minimize c1N1 +coNg + ... + ¢ Nge
subjectto P, (wait > 0) < o, for somer = 7(\, N) € I, (5.11)
Nla N27 ] NK € Z-i—a

for some fixed value d < a < 1. If one, instead, solved the deterministic problem:

minimize N1+ caNy + ... + cx N
subject to juy Ny + paNy + ... + g Nig > A+ 6V, (5.12)
Nl,NQ, ,NK Z 0,

then any optimal solutiotV* will satisfy:

N)>0 onlyif &£ = min {—} k=12 .. K.
e G=LoK

In particular, |f <l 7é min; {u } then N} = 0 for all \. The problem in this case is that one is
no longer guaranteed that the proposed staffing vector is asymptofeadiplebecause condition
(4.1) of Proposition 4.1 is not satisfied. In fact, one can show that wiffes- 0 one needs higher
overall capacity level in order to get the same limiting waiting probability.

Note that |f €L = min, u , then one can choos¥; to be non-negligible relatively
to the other server pools, and then the proposed solution is indeed asymptotically optimal (the
proof follows through similarly to the proof of Proposition 5.1). However, even in the case that
7é min; {M } there are scenarios where are theory can provide useful solutions. Consider the
foIIowrng staffing problem with linear staffing costs and additional linear constraints:

minimize ¢ Ny + Ny + ... + cg N

subjectto P, (wait > 0) < «, for somer = x(\, N) € II,
AN >b

, NNy, ... N € Z.,,

(5.13)

where A is a7 x K matrix, andb is ani— dimensional matrix for somé > 1. Examples for

such additional constraints can includg/(N; + ... + Nx) > pforsome0 < p < 1, orl, <

Ni/(Ny + ... + Ng) < uy for some0 < [ < u < 1. The first example can result from a

case where servers of pool 1 are trainees, and one wants to make sure that they get the experience
the need. The second set of constraints can result out of given proportions of servers types in the
particular server population.
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For the problem (5.13) we claim that if the set of problems

minimize ¢, Ny + Ny + ... + cx Ni

subject to iy Ny + paNy + ... + g Nig > A+ 6V,
AN > b

: Ni,Ns,....Ng € Z.,

(5.14)

has a sequence of solutiofs which satisfylim inf ... N}*/(N}* + ... + N}) then the proposed
sequence is an asymptotically optimal staffing. The proof follows similarly to the proof of Propo-
sition 5.1.
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