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Abstract

Motivated by modern call centers, we consider large-scale service systems with multiple
server pools and a single customer class. For such systems, we propose simple staffing rules
which asymptotically minimize staffing costs. The minimization is subject to constraints on
the waiting probability, as demand grows large. The proposed staffing rules add a square-root
safety service capacity to the nominal capacity required for system stability. For large values
of system demand, the resulting asymptotic regime is what we call the Quality and Efficiency
Driven (QED) regime: it achieves high levels of both service quality and system efficiency by
carefully balancing between the two. Finally, we propose an asymptotically optimal routing
scheme, FSF, which assigns customers to the Fastest Servers First.
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1 Introduction

In modern service systems it is common to have multiple classes of customers and multiple server
types (skills). The customer classes are differentiated according to their service needs. The server
types are characterized by the subset of customer classes that they can adequately serve and the
quality of service that they can devote to each such class. An important example of such large
scale service system are multi-skill call/contact-centers. Such centers are often characterized by
multiple classes of calls (classified according to type or level of service requested, langauge spoken,
perceived value of customers, etc.). To match the various service needs of those customers, call
centers often consist of hundreds of even thousands of customer service representatives (CSRs).
These CSRs have different skills, depending on the call classes that they can handle, and the speed
in which they do it.

There are three main issues to address when dealing with the operations management of
large-scale service systems. Given a forecast of the customers’ arrival rates and their service re-
quirements, these issues are:

• Design: The long-term problem of determining the class partitioning of customers, and the
types of servers; this typically includes overlapping skills (i.e. servers that can handle more
than one class of customers, and classes that can be served by several server types).

• Staffing: The short-term problem of determining how many servers are needed of each type,
in order to deal with the given demand. These server types may be of overlapping skills. (In
addition, there is a scheduling problem which determines the shift structure for the system,
as well as determining who are the actual servers that would work in these shifts. The last
two issues will not be discussed in this paper.)
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Figure 1.1: The Inverted-V model - single customer class and multiple server types.

• Control: The on-line problem of customer routing and server scheduling that involves the
assignment of customers to the appropriate server upon service completion or a customer’s
arrival.

These three problems are all interrelated and should, therefore, be discussed in conjunction with
one another. Yet, because of the complexity involved in addressing all these three combined, they
are typically addressed hierarchically and unilaterally in the literature.

Even when one addresses the three issues separately, a general solution for all possible sys-
tem configurations is yet to be achieved. Instead, we approach the problem by studying a relatively
simple model in order to gain insight to the more general model. The model we focus on in this
work is the

∧
-design (or the inverted-V design). This is a system design in which customers are

homogeneous, withK server types (organized inK pools) that have full overlap of their skills,
but differ in the speed in which they serve the customers. Alternatively, one could look at the
V−design (studied in [7, 29, 57] and elsewhere), which corresponds to a system with a single
server pool and multiple customer classes). The

∧
-design is depicted in figure 1.1.

With respect to the
∧

-design we ask the following two questions:

1. Given a fixed number of servers of each pool, how to route the customers into the different
server pools so as to optimize system performance, and

2. How many servers of each pool are required in order to minimize staffing costs while main-
taining pre-specified performance goals.

We address these questions by first characterizing a simple routing scheme which is asymp-
totically optimal as the arrival rate and the number of servers in each pool increase to infinity. The
asymptotic optimality is in the sense that the policy (asymptotically and stochastically) minimizes
the steady-state queue length and waiting time (both appropriately scaled). We then identify a
simple form for an asymptotic feasible region. This region is the set of all staffing vectors that can
obtain a pre-specified waiting probability in steady-state, asymptotically as the arrival rate grows
large. Finally, the asymptotic optimality of the staffing vector that minimizes the staffing costs
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within the asymptotically feasible region is established for a wide range of cost functions. We
conclude by studying the effects of our results on design related issues such as: How many server
pools should one have? and, Does having fewer but faster servers affect performance?

The asymptotic framework considered in this paper is the many-server heavy-traffic regime,
first appearing in Erlang [18], and formally introduced by Halfin and Whitt [30]. We refer to this
regime as the QED (Quality and Efficiency Driven) regime. Systems that operate in the QED
regime enjoy a rare combination of high efficiencies together with high quality of service. More
formally, consider a sequence of systems of a fixed design and an increasing arrival rateλ. Suppose
that the total service capacity of each system in the sequence exceedsλ by a safety capacity of order√

λ. In particular, the traffic intensity (or server efficiency) goes to 1 asλ→∞ (ie. the system goes
to heavy traffic). On the other hand, the high quality aspect of the QED regime may be seen
through the following alternative characterization: Suppose that asλ→∞, the limiting waiting
probability is non-trivial (ie. it is in the open interval(0, 1)). This high performance, which is
typically impossible to achieve for systems in heavy traffic, is obtained here due to the economies
of scale associated with the large number of servers. The two characterizations of the QED regime
are shown to be equivalent in various settings (first established in[30]. See the literature review,
section 1.2, for more details), including the one considered in this paper (see Section 4).

1.1 Summary of the results

The asymptotically optimal routing policy we propose is the policy Faster Server First (FSF) that
simply assigns newly arriving or waiting customers to the fastest server available. FSF is shown to
be asymptotically optimal among all the non-anticipating non-preemptive policies. The asymptotic
optimality is in terms of the steady-state queue length and waiting time distributions in the QED
regime. More specifically, consider a sequence of systems indexed by the arrival rateλ, where
λ ↑ ∞. For any fixed value ofλ, let Nλ

k represent the number of servers of typek, k = 1, ..., K.
Also, let ~Nλ = (Nλ

1 , Nλ
2 , ..., Nλ

K) be the staffing vector, andNλ = Nλ
1 +Nλ

2 + ...+Nλ
K be the total

number of servers. Suppose that the service rates:µ1, ..., µK are fixed independently ofλ. To be
consistent with the QED regime assume that the total service capacity,µ1N

λ
1 +µ2N

λ
2 +...+µKNλ

K ,
is equal to the arrival rate plus a square root safety capacity. Formally, suppose that

K∑

k=1

Nλ
k µk = λ + δ

√
λ + o(

√
λ), (1.1)

for some positive numberδ. Let Qλ andW λ be the queue length and the virtual waiting time
processes, respectively. For asymptotic purposes letQ̃λ = Qλ/

√
Nλ andW̃ λ =

√
NλW λ be

thescaledqueue length and waiting time processes, respectively, and letQ̃λ(∞) andW̃ λ(∞) be
the corresponding steady-state distributions. The asymptotic optimality of the FSF policy is in
terms of stochastic minimization of the limiting distributions ofQ̃λ(∞) andW̃ λ(∞) asλ→∞
(see Theorem 3.1 for further details).
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To establish the asymptotic optimality of FSF we first introduce a relatedpreemptivepolicy,
FSFP . This policy keeps the faster servers busy whenever possible, even at the cost of handing-off
customers from slower servers to faster ones. The policy FSFP is shown to stochastically minimize
the steady-state queue length and waiting time, for any fixed system in the sequence (associated
with a fixed value ofλ). Consequently, we show that, in the limit asλ→∞, both policies give
rise to the same performance measures. That is, in the limit, they both have the same distributions
for Q̃λ(∞) and W̃ λ(∞). In particular, the limitingwaiting probability in steady-state is also
minimized.

Fix a customer arrival rate,λ. The associated feasible region for this system is defined as
the set of all staffing vectors for which there exists a routing policy under which the steady-state
waiting probability does not exceed a pre-specified level. We show that, as the arrival rate grows to
infinity, the feasible region is asymptotically linear (see Figure 4.2). Specifically, the total service
capacityµ1N1 + µ2N2 + ... + µKNK associated with any staffing vector~N in the asymptotically
feasible set is greater than or equal to the arrival rate plus a square-root safety capacity; that is, the
safety capacity is of the form of a constant times a square-root of the arrival rate (the total capacity
is equal toλ + δ

√
λ, for some positive constantδ). As mentioned earlier, this, in particular, means

that the system operates in the QED regime; namely, the QED regime is obtained as an outcome
rather than an assumption.

Finally, due to the simple structure of the feasible region, identifying an asymptotically
optimal staffing rule may be done by simply finding the lowest cost staffing vector(s) within
the linear (asymptotically) feasible region. We show that, by following this procedure, one in-
deed obtains staffing rules which are asymptotically optimal for various staffing cost functions.
For example, we consider staffing costs which are polynomial and homogeneous of the form
C( ~N) = c1N

p
1 + c2N

p
2 + ... + cKNp

K , for somep > 1. In this case, the staffing vector~N
which is proportional to the vector(µ1/c1, µ2/c2, ..., µK/cK), and satisfies (1.1) is shown to be
asymptotically optimal.

The remainder of the paper is organized as follows: We conclude the introduction by review-
ing the relevant literature. In section 2, we detail the single-customer-class multiple-server-types
model, and the asymptotic framework used in our analysis. In section 3, we present our proposed
routing policy and prove its asymptotic optimality. Section 4 then outlines the form of the asymp-
totic feasible region, and proves the associated asymptotic feasibility. In section 5, this asymptotic
feasibility is finally used to propose an asymptotically optimal staffing rule. The claimed asymp-
totic optimality is established in this section as well.

1.2 Literature Review

The QED regime: asymptotic theory of many-server queues
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The QED regime has been given much attention in the last few years, especially in the “Ik”-
model, which corresponds to multiple independent queues, each with its own devoted server pool
(no overlap in skills). For a formal description, consider a sequence of multiple server queues,
indexed by the arrival rateλ, with the number of serversNλ growing to∞ asλ ↑ ∞. Define the
offered loadby Rλ = λ

µ
, whereµ is the service-rate. The QED regime is achieved at by letting√

Nλ(1 − ρλ) → β, asλ ↑ ∞, for some finiteβ. Hereρλ = Rλ/Nλ is the servers’ long-run
utilization. Equivalently, the staffing level is approximately given by

Nλ ≈ Rλ + β
√

Rλ, −∞ < β < ∞ . (1.2)

Yet another equivalent characterization is a non-trivial limit (within(0, 1)) of the fraction ofde-
layedcustomers. The latter equivalence was established for GI/M/N [30], GI/D/N [35] and M/M/N
with exponential patience [26].

Due to the desirable features of the QED regime, it has enjoyed recently considerable at-
tention in the literature. Yet the regime was explicitly recognized already in Erlang’s 1923 paper
(that appeared in [18]) which addresses both Erlang-B (M/M/N/N) and Erlang-C (M/M/N) mod-
els. Later on, extensive related work took place in various telecom companies but little has been
openly documented, as in Sze [51] (who was actually motivated by AT&T call centers operating
in the QED regime). A precise characterization of the asymptotic expansion of the blocking prob-
ability, for Erlang-B in the QED regime, was given in Jagerman [34]; see also [53], and then [42]
for the analysis of finite buffers. But the operational significance of the QED regime, in particular
its balancing of “service and economy” via a non-trivial delay probability, was first discovered
and formalized by Halfin and Whitt [30]: Within the GI/M/N framework, they analyzed the scaled
number of customers, both in steady state and as a stochastic process. Recent generalizations
are [55, 56]. Convergence of the scaled queueing process, in the more general GI/PH/N setting,
was established in [45]. Application of QED queues to modelling and staffing of telephone call
centers and communication networks, taking into account customers’ impatience, can be found
in [26] and [21], respectively. The optimality of the QED regime, under revenue maximization or
constraint satisfaction, is discussed in [10, 40, 3, 4]. Readers are referred to Sections 4 and 5.1.4
of [22] for a survey of the QED regime, both practically and academically.

It is important to note that the QED regime differs in significant ways from the conventional
(or “classical”) heavy traffic regime. Indeed, QED combines light and heavy traffic characteristics.
For example, in conventional heavy traffic, the theory of which has been well established [15],
essentially all customers are delayed prior to service. In the QED regime, on the other hand, a
non-trivial fraction is served immediately upon arrival. Also, conventional heavy traffic can be
achieved by settingN ≈ R+β, for some constantβ, rather than the square-root form in (1.2). For
more details, readers are referred to [22].

Skill-based routing

Of the three issues related to the management of large-scale service system, the control problem
has received the most attention in the literature. Specifically, for a given design, and staffing levels,
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researchers have proposed routing and / or scheduling schemes that are either optimal or near-
optimal. Alternatively, researchers have considered commonly used routing schemes (such as fixed
priority rules, or dedicated servers per customer class) and computed the relevant performance
measures. Examples for both criteria include:Exact analysis(Kella and Yechiali [37], Federgruen
and Groenvelt [20], Brandt and Brandt [13], Gans and Zhou [25], Armony and Bambos [2], Rykov
[47], Luh and Viniotis [39], and de V́ericourt and Zhou [17] ([47] and [39] are concerned with the
∧−model, and will be expanded on in section 3.1)),Asymptotic analysis - “conventional” heavy
traffic (Harrison [31], Bell and Williams [9], Glazebrook and Niño-Mora [27], Teh and Ward [52],
Mandelbaum and Stolyar [41] and Stolyar [50]) andAsymptotic analysis - QED regime(Armony
and Maglaras [3, 4], Harrison and Zeevi [32], Atar et. al. [7], and Atar [5, 6]).

Staffing Rules

The staffing problem in the single-class, single-type case has also gained a lot of attention in the
literature. With multi-type, however, things are quite different. The problem of determining how
many servers of each type are required is very difficult. This is especially true if skills overlap. In
the latter case, one wants to take advantage of the flexibility of the servers who have multiple skills,
but these servers are typically more costly. The most common approaches taken by researchers to
tackle the staffing problem are:Heuristical bounds: Using heuristics to achieve performance
bounds by analyzing simpler (but related) systems (Examples include Borst and Seri [11], Whitt
[54], and Jennings et al. [36]),Stability Staffing: Staffing levels that guarantee system stability
(Examples include Bambos and Walrand [8], Gans and van Ryzin [23], Armony and Bambos [2]),
andCost minimizing staffing: For a given routing scheme, find the staffing level that minimizes
personnel costs while guaranteeing certain performance bounds, or alternatively, such staffing lev-
els that minimize personnel costs plus operating costs (Examples include Borst et al. [10] (QED
regime), Perry and Nilsson [43], Stanford and Grassmann [49], Shumsky [48] and Harrison and
Zeevi [33]).

Design

On the design front, even less has been done. Ganz and Zhou [24] develop a dynamic programming
(DP) model of long term server hiring that admits a general class of controls. There, the lower level
routing problem is explicitly modelled as the core of the DP’s one-period cost function, and the
optimal hiring policies are characterized as analogues to “order-up-to” policies in the inventory
literature. Other studies we are aware of focus on design for flexibility that results from the cross-
training of service reps (see Aksin and Karaesmen [1] and references therein).

2 Model Formulation

Consider a service system with a single customer class andK server types (each type in its own
server pool), all are capable of fully handling customers’ service requirements. Service times are
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assumed to be exponential, where the service rate depends on the pool (type) of the particular
server. Specifically, the average service time of a customers that is served by a server of typek

(k = 1, 2, ..., K) is 1/µk. We assume that the service rates are ordered as follows:µ1 < µ2 < ... <

µK . Customers arrive to the system according to a Poisson process with rateλ. Delayed customers
wait in an infinite buffer, and are served according to a FCFS discipline. All interarrival times and
service times are assumed to be statistically independent.

We seek to determine the numberNk of servers required of each typek, k = 1, 2, .., K. In
choosing the staffing levelsNk we require that, at the very least,Nk are sufficiently large to ensure
stability. Specifically, we require the following necessary condition for stability:

N1µ1 + N2µ2 + ... + NKµK > λ, (2.1)

that is, the total service capacity is larger than the arrival rate. The cost of staffing the system with
Nk servers of typek is denoted byCk(Nk). The total staffing cost is, hence,C(N1, N2, ..., NK) =

C1(N1)+C2(N2)+ ...+CK(NK). By determining the number of servers required of each type, we
wish to minimize the staffing cost while maintaining a target service level constraint. The service
performance measure that we study is the steady-state probability that a customer waits before
starting service. Equivalently, we focus on the long-term proportion of customers who are delayed
before their service starts. Denote this steady-state probability byP (wait > 0), and let0 < α < 1

be the target waiting probability. The staffing problem is then stated as:

minimize C1(N1) + C2(N2) + ... + CK(NK)

subject to P (wait > 0) ≤ α

N1, N2, ..., NK ∈ Z+.

(2.2)

In order to solve (2.2), one needs to be able to evaluateP (wait > 0) given any server staffing
vector ~N = (N1, N2, ..., NK) (here and elsewhere,~x is used to denote a vector whose elements are
x1, x2, ...). This requires knowing the actual routing policy that is used to determine which type
of server will handle each customer. In particular, different routing policies can result in different
waiting probabilities. LetΠ be the set of all non-preemptive non-anticipative routing policies.
Denote byπ := π(λ, ~N) ∈ Π, a policy that operates in a system with arrival rateλ and staffing
vector ~N (at times we will omit the argumentsλ and ~N when it is clear from the context which
arguments should be used). Given a policyπ ∈ Π, letPπ(wait > 0) be the steady state probability
that a customer is delayed before his service starts.3 Then a more precise definition of the staffing
problem (2.2) is as follows:

minimize C1(N1) + C2(N2) + ... + CK(NK)

subject to Pπ(wait > 0) ≤ α, for someπ = π(λ, ~N) ∈ Π,

N1, N2, ..., NK ∈ Z+.

(2.3)

3If steady-state does not exist, considerPπ(wait > 0) as the random variable corresponding to the essential limsup
of the long term proportion of customers who are delayed before receiving service.
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As mentioned in the introduction, solving the staffing and control problems concurrently is
usually too difficult. Hence, researchers commonly end up solving one while assuming the solution
to the other is fixed. A distinguishing feature of our solution to (2.3) is that we identify a policy
which is near-optimal givenanystaffing level, and therefore, are able to solve the staffing and the
control problems concurrently.

Suppose that the routing policyπ ∈ Π is used, and lett ≥ 0 be an arbitrary time point. We
denote byZk(t; π) the number of busy servers of poolk (k = 1, 2, ..., K) at timet, andQ(t; π) the
queue length at this time. Finally, letY (t; π) be the total number of customers in the system. That
is, Y (t; π) = Z1(t; π) + Z2(t; π) + ...ZK(t; π) + Q(t; π). We uset = ∞ whenever we refer to the
steady-state. At times, we will omitπ if it is clear from the context which routing policy is used.

Definition: A policy π ∈ Π is calledwork conservingif there are no idle servers whenever there
are some delayed customers in the queue. In other words,π is work conserving ifQ(t; π) > 0

implies thatZ1(t; π) + Z2(t; π) + ... + ZK(t; π) = N , where

N = N1 + N2 + ... + NK

is the total number of servers.

Note that in general aK +1 dimensional vector is required to specify the state of the system,
namely,Q(t; π) andZ1(t; π), ..., ZK(t; π). However, for work conserving policies, the state space
can be described by theK−dimensional vector(Z1(t; π)+Q(t; π), Z2(t; π), ..., ZK(t; π)). In fact,
the queue length can be added to the number of busy servers of poolk, for anyk, because ifπ
is work conserving thenQ(t; π) = [Q(t; π) + Zk(t; π) − Nk]

+ (where[x]+ := max{x, 0}) and
Zk(t; π) = [Q(t; π) + Zk(t; π) − Nk]

− (where[x]− := −min{x, 0}). Work conserving policies
also have the appealing property that the waiting probability can be stated in terms of the total
number of busy servers. In particular, ifπ ∈ Π is work conserving, and there exists a steady-state
for its underlying processes, then

Pπ(wait > 0) = P (Z1(∞; π) + Z2(∞; π) + ... + ZK(∞; π) = N) = P (Y (∞; π) ≥ N), (2.4)

where the first equality is due to the PASTA property, and the second follows from work-conservation.
Note that if the policy is not work conserving then (2.4) does not hold, because one may have cus-
tomers waiting in queue, even if some of the servers are idle.

Let A(t) be the total number of arrivals into the system up to timet (that is,A(t), t ≥ 0 is
a Poisson process with rateλ). Also, for k = 1, ..., K and for a policyπ ∈ Π, let Ak(t; π) be the
total number of external arrivals joining poolk upon arrival up to timet, and letBk(t; π) be the
total number of customer joining server poolk, up to timet, after being delayed in the queue. The
number of arrivals into the queue (and not directly to one of the servers) up to timet is denoted
Aq(t; π). In addition, letTk(t; π) denote the total time spent serving customers by allNk servers
of poolk up to timet. In particular,0 ≤ Tk(t; π) ≤ Nkt. Respectively, letIk(t; π) be the total idle
time experienced by servers of poolk up to timet. Finally, letDk(t) be a Poisson process with rate
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µk. Then the number of service completions out of server poolk may be written asDk(Tk(t; π)).
The above definitions allow us to write the followingflow balance equations:

Q(t; π) = Q(0; π) + Aq(t; π)−
K∑

k=1

Bk(t; π), (2.5)

Zk(t; π) = Zk(0; π) + Ak(t; π) + Bk(t; π)−Dk(Tk(t; π)), k = 1, ..., K, (2.6)

Tk(t; π) =

∫ t

0

Zk(s; π)ds (2.7)

Y (t; π) = Y (0; π) + A(t)−
K∑

k=1

Dk(Tk(t; π)), (2.8)

A(t) = Aq(t; π) +
K∑

k=1

Ak(t; π), (2.9)

Tk(t; π) + Ik(t; π) = Nkt. (2.10)

Finally, for work conserving policies we have the additional equations:

Q(t; π) ·
(

K∑

k=1

(Nk − Zk(t; π))

)
= 0, (2.11)

∫ ∞

0

K∑

k=1

(Nk − Zk(t; π))dAq(t; π) = 0, (2.12)

and
K∑

k=1

∫ ∞

0

Q(t; π)dIk(t; π) = 0. (2.13)

In words, (2.11) means that there are customers in queue only whenall servers are busy. The
verbal interpretation of (2.12) is that new arrivals wait in the queue only when all servers are busy.
Finally, (2.13) states that servers can only be idle when the queue is empty.

2.1 Asymptotic Framework

Although the staffing problem (2.3) is well defined, it is difficult to be solved exactly. Specifically,
given fixed values ofµ1, µ2, ..., µK , λ andα, one would need to find thefeasible regionof all those
vectors(N1, N2, ..., NK) for which there exists a policy that satisfiesPπ(wait > 0) ≤ α, and
then find the vector(s) that minimizes the staffing costs within this feasible region. Instead, we
take an asymptotic approach, which finds asymptotically optimal staffing rules for systems with
high demand (i.e. large values ofλ). To this end, we consider a sequence of systems and routing
policies indexed byλ (to appear as a superscript) with increasing arrival ratesλ ↑ ∞, but with
fixed service ratesµ1, µ2, ..., µK and a fixed target waiting probabilityα.
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The appropriate staffing levels will be determined according to the staffing costs and the
desired service level. For the time being we assume (this assumption will, in fact, be established
later as a result under some general conditions) that there areK numbersak ≥ 0, k = 1, ..., K,
with a1 > 0 and

∑K
k=1 ak = 1, such that the number of servers of each poolNλ

k , k = 1, 2, ..., K,
grows withλ as follows:

Nλ
k = ak

λ

µk

+ o(λ), asλ→∞, or, lim
λ→∞

µkN
λ
k

λ
= ak. (2.14)

Condition (2.14) guarantees that the total traffic intensity,

ρλ , λ∑K
k=1 µkNλ

k

, (2.15)

converges to 1, asλ→∞, and hence, for largeλ, the system is inheavy traffic. Also, in view of
(2.14), the quantityakλ/µk can be considered as the offered load of server poolk. Let

µ =

[
K∑

k=1

ak/µk

]−1

, (2.16)

thenλ/µ is the total offered load of the whole system. Given this definition ofµ, (2.14) implies
that

Nλ =
λ

µ
+ o(λ), asλ→∞, or, lim

λ→∞
λ

Nλ
= µ, (2.17)

whereNλ =
∑K

k=1 Nλ
k . Also,

ρλ ≈ λ

Nλµ
, (2.18)

in the sense thatlimλ→∞ ρλ/(λ/Nλµ) = 1. Finally,

lim
λ→∞

Nλ
k

Nλ
=

ak

µk

µ , qk ≥ 0, k = 1, ..., K, (2.19)

whereqk is the limiting fraction of poolk servers out of the total number of servers. The condition
a1 > 0 guarantees thatq1 > 0, and hence server pool 1 is asymptotically non-negligible in size.
Clearly,

∑K
k=1 qk = 1 and

∑K
k=1 qkµk = µ.

Fluid Scaling: In view of the above discussion, one observes that assumption (2.14) implies that
quantities involved in the process such as the arrival rate, the offered load, and the size of the
different server pools are all of orderΘ(Nλ). Therefore, one expects to get finite limits of these
quantities when dividing all of them byNλ. As it turns out, due the functional strong law of
large numbers (FSLLN), this scaling leads to the fluid dynamics of the system, in the limit as
λ→∞. To see this, forλ ↑ ∞, k = 1, ..., K and a fixed sequence of routing policiesπλ ∈
Π (omitted from the following notation) let̄Qλ(t) = Qλ(t)

Nλ , and Z̄λ
k (t) =

Zλ
k (t)

Nλ . Similarly, let

Ȳ λ(t) = Y λ(t)
Nλ , Āλ(t) = Aλ(t)

Nλ , Āλ
k(t) =

Aλ
k(t)

Nλ , Āλ
q (t) =

Aλ
q (t)

Nλ , B̄λ
k (t) =

Bλ
k (t)

Nλ , T̄ λ
k (t) =

T λ
k (t)

Nλ ,

andĪλ
k (t) =

Iλ
k (t)

Nλ . Finally, letD̄λ
k(t) = Dλ

k(t) = Dk(t). That is, as equalities between processes,
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(Q̄λ, Z̄λ
k , Ȳ λ, Āλ, Āλ

k , Ā
λ
q , B̄

λ
k , T̄ λ

k , Īλ
k ) = (Qλ, Zλ

k , Y λ, Aλ, Aλ
k , A

λ
q , B

λ
k , T λ

k , Iλ
k )/Nλ, andD̄λ

k = Dk.
Note thatDλ

k need not be divided byNλ, due to its definition as a Poisson process with rateµk,
which is independent ofλ.

Using standard tools of fluid models (see for example [16], Theorem 2.3.1) one can show that
if (Q̄λ(0), Z̄λ

k (0), k = 1, ..., K) are bounded, then the process(Q̄λ, Z̄λ
k , Ȳ λ, Āλ, Āλ

k , Ā
λ
q , B̄

λ
k , T̄ λ

k , Īλ
k , D̄λ

k)

is pre-compact asλ→∞, and hence any sequence has a converging subsequence. Denote any such
fluid limit with a “bar” over the appropriate letters but with no superscript (for example, letQ̄(t)

be a fluid limit of Q̄λ(t)). Note that equations (2.5)-(2.10) imply that the following flow balance
equations hold foranyfluid limit:

Q̄(t) = Q̄(0) + Āq(t)−
K∑

k=1

B̄k(t), (2.20)

Z̄k(t) = Z̄k(0) + Āk(t) + B̄k(t)− µkT̄k(t), k = 1, ..., K, (2.21)

T̄k(t) =

∫ t

0

Z̄k(s)ds (2.22)

Ȳ (t) = Ȳ (0) + µt−
K∑

k=1

µkT̄k(t), (2.23)

µt = Āq(t) +
K∑

k=1

Āk(t), (2.24)

T̄k(t) + Īk(t) = qkt. (2.25)

Finally, for work conserving policies, conditions (2.11)-(2.13) imply:

Q̄(t) ·
(

K∑

k=1

(qk − Z̄k(t))

)
= 0, (2.26)

∫ ∞

0

K∑

k=1

(qk − Z̄k(t))dĀq(t) = 0, (2.27)

and
K∑

k=1

∫ ∞

0

Q̄(t)dĪk(t) = 0. (2.28)

The following proposition shows that for every sequence of work-conserving routing policies
and for every fluid limit, the quantities̄Q(t) andZ̄k(t), k = 1, ..., K, remain constant if starting
at time 0 from some appropriate initial conditions.

Proposition 2.1 (fluid limits) For λ > 0, let πλ ∈ Π be a sequence of work-conserving policies
(omitted from the following notation), and let(Q̄, Z̄k, Ȳ , Ā, Āk, Āq, B̄k, T̄k, Īk, D̄k) be a fluid limit
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of the processes associated with the system, asλ→∞. Recall thatqk = limλ→∞
Nλ

k

Nλ = ak

µk
µ, k =

1, ..., K, and suppose that̄Q(0) = 0 and Z̄k(0) = qk, k = 1, ..., K. Then,Q̄(t) = 0 and
Z̄k(t) = qk, k = 1, ..., K, for all t ≥ 0.

Proof: Let f(t) =
∣∣Ȳ (t)− 1

∣∣ =
∣∣∣∑K

k=1(Z̄k(t)− qk) + Q̄(t)
∣∣∣, thenf(t) ≥ 0 andf(t) = 0 if and

only if Q̄(t) = 0 and Z̄k(t) = qk for all k = 1, ..., K. By an argument similar to lemma 2.4.5
of [16], and from the fact thatf(·) is absolutely continuous, it is sufficient to show that whenever
t ≥ 0 is such thatf is differentiable att, we haveḟ(t) ≤ 0. Suppose thatt is such that̄Y (t) ≥ 1.
Then, by (2.26)Z̄k(t) = qk, for all k. In particular, iff is differentiable att, then

ḟ(t) = ˙̄Y (t) = µ−
K∑

k=1

µkZ̄k(t) = µ−
K∑

k=1

µkqk = 0.

If t is such that̄Y (t) < 1, thenZ̄k(t) < qk for at least onek, and hence, by (2.26),̄Q(t) = 0. If f

is differentiable att then,

ḟ(t) = − ˙̄Y (t) =
K∑

k=1

µkZ̄k(t)− µ <

K∑

k=1

µkqk − µ = 0.

In addition to the fluid scaling, we introduce a more refined diffusion scaling defined as
follows:

Diffusion Scaling: Forλ > 0 and any fixed sequence of work conserving policyπλ ∈ Π (omitted
from the notation), define the centered and scaled process~Xλ(·) = (Xλ

1 (·), ..., Xλ
K(·)) as follows:

Xλ
1 (t) :=

Qλ(t) + Zλ
1 (t)−Nλ

1√
Nλ

, (2.29)

and, fork = 2, ..., K, let

Xλ
k (t) :=

Zλ
k (t)−Nλ

k√
Nλ

. (2.30)

Note that fork = 2, ..., K, Xλ
k (t) ≤ 0 for all t, and that for allk = 1, 2, ..., K,

[
Xλ

k (t)
]−

corre-

sponds to the number of idle servers, scaled by1/
√

Nλ. In addition,
[
Xλ

1 (t)
]+

corresponds to the
total queue length, again, scaled by1/

√
Nλ. Finally, let

Xλ(t) =
K∑

k=1

Xλ
k (t) =

Qλ(t) +
∑K

k=1 Zλ
k (t)−Nλ

√
Nλ

=
Y λ(t)−Nλ

√
Nλ

=
√

Nλ
(
Ȳ λ(t)− 1

)
.

(2.31)
Note thatXλ(·) captures the fluctuations of orderΘ(1/

√
Nλ) of Ȳ λ(·) about its fluid limit. Also,[

Xλ(t)
]−

is the total number of idle servers, and
[
Xλ(t)

]+
=

[
Xλ

1 (t)
]+

is the total queue length,
both scaled by1/

√
Nλ. Finally, note that, from work conservation, ifXλ

k (t) < 0 for somek, then
Xλ

1 (t) ≤ 0.
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Finally, for all λ > 0, let W λ(t) be the virtual waiting time of an arbitrary customer who
arrives to the system indexed byλ at timet. The scaled waiting time forλ > 0 is then defined as:

Ŵ λ(t) =
√

NλW λ(t). (2.32)

As will be shown later, in order for the diffusion scaling to have well defined limits, asλ→∞,
we add the following assumption, in addition to (2.14):

K∑

k=1

µkN
λ
k = λ + δ

√
λ + o(

√
λ), asλ→∞, or, lim

λ→∞

∑K
k=1 µkN

λ
k − λ√

λ
= δ, (2.33)

for someδ, 0 < δ < ∞.

Condition (2.33) is a square-root safety staffing rule (similar to [30] and [10]). In particular,
the conditionδ > 0 guarantees that the system is stable (or can be stable, under reasonable routing)
for all λ large enough. Note that (2.33) does not specify how the added safety staffing is divided
among server pools. In particular, it is possible that one server pool will have fewer servers than
the nominal allocation ofqkN

λ, while another will compensate for this deficit by having more than
the nominal staffing. Fork = 1, ..., K, andλ > 0, let−∞ < δλ

k < ∞ satisfy:

δλ
k :=

µkN
λ
k − akλ√

λ
. (2.34)

Thenδλ
k

√
λ is the safety capacity associated with server poolk, beyond the nominal allocation of

akλ. In particular, one can easily verify thatδλ
k ≥ 0 if ak = 0,

δλ
k = o(

√
λ), asλ→∞, ∀k = 1, ..., K, (2.35)

and

δλ :=
K∑

k=1

δλ
k → δ, asλ→∞. (2.36)

Note that we do not require the individual sequences{δλ
k}λ>0 to have a limit, for any value of

k = 1, ..., K. All that is assumed is that their sum converges toδ. The one exception to this rule is
Proposition 3.4, in which the following additional condition is assumed to hold:

θ := lim
λ→∞

K∑

k=1

δλ
k

µk

, exits for some finite numberθ. (2.37)

3 Routing Policies

In this section we describe three routing policies. The first one,π∗ ∈ Π, is an optimal policy that
minimizes the long-term average of the total number of customers in the system and the average
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sojourn time, given any fixed values of system parameters. This policy is simple to describe but
its implementation requires the computation of certain threshold values which are a function of the
model parameters and system state. The second one, FSFP , is a simplepreemptivepolicy which
is optimal within the set of all non-anticipative, but possibly preemptive policies, with respect to
the steady-state distribution of the total number of customers in the system. Finally, we describe
a third policy, FSF, which is also simple, but is not necessarily optimal for any fixed size system.
However, it isasymptoticallyoptimal as the system grows large (that is, asλ→∞), in terms of the
steady-state queue length and waiting time distributions.

3.1 Background: Optimal Non-Preemptive Routing

In this section we describe an optimal policyπ∗ within the setΠ, and some of its properties.
The policy is based on two recent papers [47] and [39]. Both these papers study systems with
heterogenous servers, which may each have his/her own service rate. We describe their policy as
adapted to our case ofK server pools, withµ1 < µ2 < ... < µK . Both papers show that for
the optimality criterion of minimizing the average steady-state number of customers in the system,
there exists an optimal policy of athresholdtype. According to this policy, one should assign a
customer to an idle server of poolk if:

1. It is the fastest idle server, and

2. the number of customers in queue is equal to or exceeds a thresholdmk, mk ≥ 0.

The thresholds have the following properties:

• mk may depend on the state of the other servers (current poolk and slower ones in pools
1, ..., k − 1),

• they are non-increasing in the service rates; that is,m1 ≥ m2 ≥ ... ≥ mK .

Note thatπ∗ minimizes the average total number of customers in the system in steady-state.
However, this does not imply that it minimizes the average steady-state queue length or waiting
time. The reason is that this policy isnot work conserving, and hence the queue length is not a
well defined function of the total number of customers in the system. Also note that this policy
should actually be denoted asπ∗λ, because the threshold values may, conceivably, depend on the
actual values ofλ and ~N = (N1, N2, ...NK).
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3.2 Optimal Preemptive Routing

In this section we describe a policy which is optimal within a greater family of policiesΠP ⊇ Π,
namely the family of all non-anticipative policies which are preemptive resume (the subscriptP

is for preemptive). What is meant by preemptive resume in our context is that a customer who
is served by a particular server may be handed-off to another server, who will resume the service
from the point it has been discontinued. In addition, we add the following restriction on each
policy belonging to this family: It only performs actions at a finite number of time points in any
finite time interval, where an action includes an assignment of a customer to a certain server, or a
hand-off of a customer from one server to another.

Let Π̃P ⊆ ΠP be the family of policies inΠP which also satisfy the following two properties:
For anyπ ∈ Π̃P we have

1. Faster servers are used first:If Zk(t; π) < Nk thenZj(t; π) = 0, for all j < k.

2. Work conservation: If Z1(t; π) + Z2(t; π) + ... + ZK(t; π) < N thenQ(t; π) = 0.

One example of a policy iñΠP is the policy FSFP , which, like other policies iñΠP uses faster
servers first, and is work conserving; however, it only assigns a customer to a server upon customer
arrivals and service completions. Note the non-uniqueness of FSFP due to the unspecified order of
assignments of customer to servers in case more than one option exists. The following proposition
establishes the optimality of FSFP within ΠP .

Proposition 3.1 (Optimal Preemptive Routing)Consider the preemptive routing policy, FSFP ,
that keeps the faster servers busy whenever possible. Then it is optimal in the sense that it stochas-
tically minimizes the total number of customers in the system in steady-state (t = ∞) within ΠP . In
other words, for allπ ∈ ΠP and every weak limitY (∞; π) of Y (t; π), ast→∞ (or a subsequence
thereof), we haveP {Y (∞; π) > y)} ≥ P {Y (∞; FSFP ) > y)}, for all y ≥ 0.

Proof: We prove the Proposition in two steps. The first step will establish that all the policies in
Π̃P share the same steady-state distribution of the total number of customers in the system. The
second step will show that any policy inΠP is path-wise dominated by a policy iñΠP in terms
of the total number of customers in the system at any point of time (See Lemma 3.1). Both steps
together establish that the steady state of distribution of the total number of customers in the system
under FSFP stochastically dominates the steady-state distribution of the total number of customers
in the system associated with any other policy inΠP .

Let π be an arbitrary policy iñΠP , and recall thatY (t; π) corresponds to the total number
of customers in the system at timet underπ. The special properties of the familỹΠP make the
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processY (·; π) a birth and death (B&D) Markov process with constant birth rates:

λ(y) ≡ λ, ∀y ≥ 0,

and a concave piecewise-linear death rate function:

µ(y) =





yµK if y ≤ NK

(y −NK)µK−1 + NKµK if NK < y ≤ NK−1 + NK

.

.

(y − (N2 + ... + NK))µ1 + N2µ2 + ... + NKµK if N2 + ... + NK < y ≤ N

N1µ1 + N2µ2 + ... + NKµK if y > N.
(3.1)

In particular, the steady-state ofY (·; π) exists (recall the stability assumption) and is unique under
all policies inΠ̃P . The next lemma (step two of the proof of the proposition) establishes the path-
wise dominance of policies iñΠP within the larger familyΠP .

Lemma 3.1 For any policyπ ∈ ΠP , the processY (·; π) which denotes the total number of cus-
tomers in the system, is path-wise dominated by the total number of customers in the system process
Y (·, π̃) for some appropriately chosen policyπ̃ ∈ Π̃P .

Proof: For simplicity, we prove the Lemma for the special caseK = 2. The general case follows
similarly. The proof is based on sample-path coupling arguments. Suppose that thejth customer
to arrive into the system arrives at timetj and has a service requirement ofηj. The interpretation
of ηj is that if this customer is served exclusively by a server of poolk, k = 1, 2, her service
time is ηj/µk. Note that the sequence{(tj, ηj)}∞j=1 is random. In fact, given the routing policy,
this sequence is the only random element in the system. Consider an arbitrary policyπ ∈ ΠP ,
and focus only the customersi = 1, 2, ..., n, for some finite numbern (the lemma will follow by
induction onn). Fix a sample-path of{(tj, ηj)}∞j=1. Suppose that on this sample-path, for some
1 ≤ i ≤ n, the customersj = i + 1, ..., n, satisfy the following two properties which agree with
the familyΠ̃P :

1. Use fast servers first:During the sojourn time of customerj in the system (j = i+1, ..., n)
it is never served by a slow server if there is a fast server available.

2. Work conservation: During the sojourn time of customerj in the system (j = i + 1, ..., n)
it is never held in the queue if there is any idle server.

Let dj(π) be the departure time of customerj from the system according to the policyπ. Also let
Dn(π) be the time by which all the customersj = 1, ..., n have departed. LetS = {0 ≤ s1 <

s2 < ... < SM = Dn(π)} be the set of all event time points for the policyπ. In particular this

17



set includes all arrival times, departure times and action times such as assignment of customers to
servers or hand-offs of customers from one server to another. According to the definition ofΠP ,
M has to be finite.

We will construct a new policyπ′ ∈ ΠP which will satisfy properties 1 and 2 forj =

i, i+1, ..., n, which will have at most as many total number of customers in the system at any time
t ≥ 0 asπ. By backwards induction oni, this will complete the proof of the lemma. Letl0 be such
thatsl0 = ti. Now perform the procedureFIX(i, l0) defined as follows:

ProcedureFIX(j, l): For customerj and time interval[sl, sl+1) do the following:

• If property 1 is violated for customerj during the interval[sl, sl+1), that is, the customer is
served by a slow server and there is a fast server available, assign this customer to this fast
server for the duration of this interval.

• If property 2 is violated with respect to customerj during the interval[sl, sl+1), that is,
customerj is held in the queue and there are idle servers, assign this customer to a fast
server if available. Otherwise, assign this customer to a slow server.

• If none of these properties is violated do nothing.

• If, after performing the previous steps of this procedure, customerj has departed during the
interval [sl, sl+1), add its new departure timedj to S, and renumber the other points inS
(including the value ofM ) accordingly.

Repeat this process for customeri andl = l0 + 1, ..., M − 1. Note that the setS may only change
by adding the new departure time of customeri, di(π

′) in the appropriate place in the sequence.
Therefore the sequenceS remains finite. Also, note that after performing the procedure the total
number of customers in the system at any point in time is at most the number it was before, because
only customeri is handled differently, and his service time may only get shorter. Finally, note that
after performing the procedureFIX(i, l), for l = l0, ..., M − 1, customeri satisfies properties 1
and 2 for allt ≥ 0.

In order to complete the improvement of the policyπ, one needs to examine the effect of
the procedure performed on customeri over the customersi + 1, ..., n. In this respect, note that
the procedureFIX(i, l) may not induce a violation of either properties 1 and 2 with respect to
customersi + 1, ..., n as long as customeri is in the system. However, if customeri now departs
earlier than before, it may free up some servers, and hence some of these customers may violate one
or both of these properties. To take care of these violations, first perform the procedureFIX(j, l)

for j = i + 1 and l = l1, ..., M − 1 with l1 satisfyingsl1 = di(π
′). Note that customeri is not

affected at all, because the procedure starts with her departure. Proceed with the same procedure
for j = i + 2, ..., n in increasing order of the indexj, always starting with the interval that begins
with the new departure time of customerj − 1. One can easily verify that at the end of the process
we have a new policyπ′ that:
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a. Satisfies properties 1. and 2. for customersj = i, i + 1, ..., N .

b. Y (t; π′) ≤ Y (t; π) for all t ≥ 0.

c. The number of action points is finite in any finite interval.

Corollary 3.1 Recall thatQ(t) is the queue length at timet, and letW (t) be the virtual waiting
time at timet. The preemptive routing policy, FSFP , that always assigns customers to the faster
servers first is also optimal in the sense that it stochastically minimizes the queue length and the
waiting time in steady-state (t = ∞) within ΠP . In other words, for allπ ∈ ΠP and all weak limits
Q(∞; π) andW (∞; π) of Q(t; π) andW (t; π), respectively, ast→∞ (or a subsequence thereof),
we haveP {Q(∞; π) > q)} ≥ P {Q(∞; FSFP ) > q)}, for all q ≥ 0, andP {W (∞; π) > w)} ≥
P {W (∞; FSFP ) > w)}, for all w ≥ 0.

Proof: The proof follows from Proposition 3.1 and the work conservation property of FSFP . For
the queue length, the proof directly follows from the relationships:

Q(t; FSFP ) = [Y (t; FSFP )−N ]+ , a.s.

and
Q(t; π) ≥ [Y (t; π)−N ]+ , a.s.

for all t ≥ 0 andπ ∈ ΠP (the latter inequality is due to the fact thatπ may not be work-conserving).

For the virtual waiting time, consider a policyπ ∈ ΠP , and suppose that there exists a steady
state distribution,Y (∞; π) for the total number of customers in the system. By conditioning on
the state ofY := Y (∞; π) one can easily verify that ifπ is work conserving then the steady state
of W := W (∞; π) exists and it satisfies

W
D
=

[Y−N+1]+∑
i=1

Ti, (3.2)

where
D
= denotes equality in distribution, andTi are iid exponential random variables with rate∑K

k=1 µkNk, which are independent ofY . If π is not work conserving, then if the steady state
distribution ofW (·; π) exists it satisfies

W (∞; π)
st≥

[Y−N+1]+∑
i=1

Ti. (3.3)

Hence, a stochastic dominance of FSFP within ΠP with respect to the steady-state of the process
Y implies that FSFP also stochastically minimizes both the queue length and the waiting time in
steady-state.
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Remark 3.1 (Steady-state distributions for the queue length and the waiting time)The proof
of Corollary 3.1 suggests a way of computing the steady-state distributions of both the queue
length and waiting time for any work-conserving policyπ ∈ Π (to be omitted for brevity). This
computation is possible provided that there exists a steady state distributionY for the total number
of customers in the system. Observe that conditioned on the eventY ≥ N , Y − N has transition
rates which are like andM/M/1 system with arrival rateλ and service rate

∑K
k=1 µkNk. Hence,

sinceQ(∞) = [Y −N ]+ its distribution satisfies:

P (Q(∞) = n) = αρn(1− ρ), n ≥ 1 (3.4)

whereα = P (Y ≥ N). Similarly, due to the relationship (3.2), we have

P (W (∞) > w) =
∑∞

n=0 P
(∑n+1

i=1 Ti > w
)
P (Y = N + n)

=
∑∞

n=0 P
(∑n+1

i=1 Ti > w
)
αρn(1− ρ)

= αe−(1−ρ)(
PK

k=1 µkNk)w, ∀w ≥ 0.

(3.5)

In particular, (W (∞) |W (∞) > 0) ∼ exp((1− ρ)
∑K

k=1 µkNk) = exp(
∑K

k=1 µkNk − λ).

Remark 3.2 (State-space collapse for FSFP ) Note the state-space collapse associated with the
policy FSFP (and all other policies inΠ̃P ). For a work conserving policy, the state-space is
generallyK dimensional. However, under this policy it is sufficient to know the total number of
customers in the system in order to know exactly how they are distributed between the server pools
and the queue, as is demonstrated by the death rates (3.1). Hence, the state-space reduces to one
dimension.

3.3 Asymptotically Optimal Non-preemptive Routing

In this section we describe a simple non-preemptive policy FSF which is also work-conserving.
This policy is identical to the non-preemptive policyπ∗ described in section 3.1, except that all the
thresholdsmk are equal to zero (and hence the policy is work-conserving). It may be described
simply as follows: Upon a customer arrival or a service completion, assign the first customer in the
queue (or the one that has just arrived, if the queue is empty) to the fastest available server (which
is the server with the largest indexk). Since the thresholdsmk are not chosen optimally here, this
policy is not likely to be optimal. However, as we show in this section, it isasymptoticallyoptimal
as the arrival rateλ grows to∞ and the number of servers per pool grow according to (2.14) and
(2.33); the asymptotic optimality is in terms of the steady-state distribution of the queue length
and the waiting time. The main premise of this section is the asymptotic optimality of FSF within
the family of non-preemptive non-anticipating policies. This is summarized in Theorem 3.1 and
proved at the end of this section via Propositions 3.1-3.7.
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Theorem 3.1 Consider a sequence of systems indexed by the arrival rateλ, that satisfy conditions
(2.14) and (2.33). Then the non-preemptive policy FSF that assigns customers to the fastest server
available whenever a customer arrives, or upon service completion, is asymptotically optimal
within the setΠ of all non-preemptive, non-anticipating policies. The asymptotic optimality is in
terms of stochastic minimization of the steady-state distributions of the (centered and scaled) total
number of customers in the system (Xλ(∞)), the scaled queue length (X̂λ

0 (∞) := Qλ(∞)/
√

Nλ),
and the waiting time (̂W λ(∞)), asλ→∞.

Remark 3.3 Note that we focus our attention on optimality criteria which relate to delayed cus-
tomers (namely, queue length and waiting time), rather than the total number of customers in the
system, or the total sojourn time. If one is interested in the latter two as optimality criteria, then,
within the asymptotic framework considered here, any work conserving policy would be asymptoti-
cally optimal. This is apparent from Proposition 2.1, where it was shown that any work conserving
policy will result in the same fluid limit for the total number of customers in the system. The opti-
mality criteria we consider are more refined, and hence, require more careful policy selection and
analysis.

Remark 3.4 The asymptotic optimality of FSF within the familyΠ underlines an important dif-
ference between the QED regime, and the so-called conventional heavy-traffic. Teh and Ward [52]
study a routing problem in a model similar to ours, with a single customer class, and two servers
only, one of each type. Each server has its own queue, and the decision as to which queue a cus-
tomer should be routed to is made upon the customer’s arrival. For their model they show that a
threshold policy similar toπ∗ is also asymptotically optimal as the traffic intensity goes to 1, in
terms of the total number of customers in the system. Moreover, they show that the asymptotically
optimal threshold must grow logarithmically to infinity as the traffic intensity approaches 1. This
is different in our case. Here, we show that one needs no thresholds (or can use thresholds of size
0) in order to achieve asymptotic optimality. Of course, in order to get a fair comparison between
the two asymptotic regimes, one needs to look at comparable models (single queue vs. multiple
queues - one per each server pool, and a growing number of servers vs. a fixed number of servers).
This will not be broached further here.

To prove the asymptotic optimality of FSF, asλ→∞, we will show that asλ grows, the
process(Xλ

1 (·), Xλ
2 (·), ..., Xλ

K(·)) (recall the diffusion scaling in Section 2.1) under FSF becomes
close to the same process under the preemptive policy FSFP , and in the limit asλ→∞ the two pro-
cesses coincide. Taking the limits ast→∞ we will also show that the corresponding steady-state
processes become close, and hence, the optimality of FSFP in steady-state (see Corollary 3.1) will
imply the asymptotic optimality of FSF. The crucial step in the proof of the equivalence between
the two processes is the state-space collapse of the process(Xλ

1 (·), Xλ
2 (·), ..., Xλ

K(·)) under FSF,
into a one dimensional process asλ→∞. Recall, that such state-space collapse holds for everyλ

under FSFP (Remark 3.2). When FSF is used, this is no longer true, but the state-space collapse is
attained whenλ→∞, as will be shown in Proposition 3.2 below.
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3.3.1 State-Space Collapse

In this section we establish the state-state collapse result with respect to the policy FSF and the
process~Xλ(·) = (Xλ

1 (·), ..., Xλ
2 (·)). Since the policy here is fixed we omit FSF from all notation.

Essentially, the state-space collapse result indicates that, asλ grows, the one-dimensional process
Xλ(·) (see (2.31)) becomes sufficient in describing the wholeK−dimensional process~Xλ(·).
Specifically, we show that asλ→∞, all the faster servers (from poolsk = 2, ..., K) are constantly
busy (or, more accurately, the number of idle servers in these pools is of ordero(

√
Nλ)), and

the only possible idleness is within the slowest servers (pool 1). Hence, asλ grows, the processes
Xλ

2 (·), ..., Xλ
K(·) become identically zero, while the processesXλ(·) andXλ

1 (·) become close. This
result is presented in Proposition 3.2.

Proposition 3.2 (State-Space Collapse)Suppose that conditions (2.14) and (2.33) hold asλ→∞,
and that the work-conserving non-preemptive policy FSF is used. In addition, suppose that~Xλ(0) →
~X(0) = ~x = (x1, ..., xK), in probability, asλ→∞. Then for allt > 0 we have,

Xλ
k (t)

p→0, uniformly on compact intervals, asλ→∞, ∀k ≥ 2.

Proof: Our goal is to establish that under the conditions of the proposition, for allε > 0 andT > 0,
asλ→∞,

P

(
sup

0<t≤T

∣∣∣∣∣
K∑

k=2

Xλ
k (t)

∣∣∣∣∣ > ε

)
→0, or P

(
inf

0<t≤T

K∑

k=2

Xλ
k (t) < −ε

)
→0. (3.6)

We prove the Proposition forK = 2. The general case follows similarly. ForK = 2, (3.6)
translates into

P

(
sup

0<t≤T

∣∣Xλ
2 (t)

∣∣ > ε

)
→0, or P

(
inf

0<t≤T
Xλ

2 (t) < −ε

)
→0. (3.7)

We claim that in order to establish (3.7) it is sufficient to show the existence of a sequence{bλ},
with bλ→0 asλ→∞, such that

lim
λ→∞

P

(
inf

0<t≤T
Xλ

2 (t + bλ) < −ε

)
= 0. (3.8)

The sufficiency of (3.8) has been established in [3], and it essentially follows from a random time
change argument (see [28, Prop. 5]). Recall thatx2 is the weak limit ofXλ

2 (0) asλ→∞. Then, as
in [45, Lemma 3.3] and [3, (29)], we have, for allC > 0,

P

(
inf

0<t≤T
Xλ

2 (t + bλ) < −ε

)
≤ P

(
sup

0≤t≤T

∣∣Xλ
2 (t)

∣∣ > C

)
+ P

(
inf

|x2|≤C
Xλ

2 (bλ) < −ε

)
. (3.9)

Hence, it is sufficient to show that both the summands on the right hand side of (3.9) converge
to 0 asC→∞ and λ→∞. This will be shown in two steps: The first step (Lemma 3.2) will
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establish thatlimC→∞ lim supλ→∞ P
(
sup0≤t≤T

∣∣Xλ
2 (t)

∣∣ > C
)

= 0. The second step (Lemma
3.3) will identify the sequence{bλ} (as a function the boundC) with bλ→0 asλ→∞, for which
P

(
inf |x2|≤C Xλ

2 (bλ) < −ε
)→0, asλ→∞.

Lemma 3.2 Suppose that~Xλ(0)→ ~X(0) = (x1, ..., xK), in probability, asλ→∞. Then, under the
conditions of Proposition 3.2,

lim
C→∞

lim sup
λ→∞

P

(
sup

0≤t≤T

∣∣∣∣∣
K∑

k=2

Xλ
k (t)

∣∣∣∣∣ > C

)
= 0, for all T > 0. (3.10)

Proof: The proof is provided forK = 2. The general case is similar. We introduce the following
notation (adapted from [45]). Consider the Poisson processes:

Sl
k = Sl

k(t), t ≥ 0 with rateµk, k = 1, 2, l = 1, 2, ...

The interpretation of these processes is as follows: the processSl
k corresponds to the number of

service completions of thelth server of poolk that is currently busy. When there are fewer than
l customers being served in poolk at the moment of a jump inSl

k, the jump has no affect on the
system state. The total number of customers in the system process admits the following dynamics:

Y λ(t) := Qλ(t) + Zλ
1 (t) + Zλ

2 (t)

= Qλ(0) + Zλ
1 (0) + Zλ

2 (0) + Aλ(t)−
2∑

k=1

Nk∑

l=1

∫ t

0

1{Zλ
k (s−)≥l}dSl

k(s).
(3.11)

DefineFλ(t) to be the followingσ−algebra:

Fλ(t) = σ
{
Qλ(0), Zλ

k (0), Aλ(s), Sl
k(s); k = 1, 2, l ≥ 1, 0 ≤ s ≤ t

} ∨N ,

whereN denotes the family ofP−null sets, and introduce the filtrationFλ = (Fλ(t), t ≥ 0).
Clearly, the processesQλ andZλ

k , k = 1, 2, areFλ adapted.

We claim thatY λ(t) admits the following decomposition:

Y λ(t) = Y λ(0) + λt−
2∑

k=1

µk

∫ t

0

Zλ
k (s)ds + Mλ(t), (3.12)

whereMλ = (Mλ(t), t ≥ 0) is anFλ−locally square-integrable martingale, that satisfiesMλ =

Mλ
A −

∑2
k=1 Mλ

Sk
, whereMλ

A and Mλ
Sk

, k = 1, 2, are three independentFλ−locally square-
integrable martingales with respective predictable quadratic variations:

〈
Mλ

A

〉
(t) = λt, (3.13)

〈
Mλ

Sk

〉
(t) = µk

∫ t

0

Zλ
k (s)ds, k = 1, 2. (3.14)
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To show the validity of the decomposition (3.12), note that the Poisson processesAλ andSl
k

admit the representations [45, (3.8)-(3.11)]:

Aλ(t) = λt + Mλ
A(t), (3.15)

Sl
k(t) = µkt + M l

k(t), k = 1, 2, l ≥ 1, (3.16)

whereMλ
A andM l

k are independent locally square-integrable martingales relative to the associated
natural filtrations (as well as relative toFλ) with respective predictable quadratic variations (3.13)
and 〈

M l
k

〉
(t) = µkt. (3.17)

With respect to the decomposition (3.12), we also claim that there exists a constantb > 0

such that for allt ≥ 0 and allλ large enough,
〈
Mλ

〉
(t) ≤ bNλt. (3.18)

To show the validity of (3.18) we use the fact that given two locally square-integrable martingales
M1 = (M1(t), t ≥ 0) andM2 = (M2(t), t ≥ 0), their predictable covariation〈M1,M2〉 satisfies
the inequality2 〈M1,M2〉 ≤ 〈M1〉 + 〈M2〉 (see [38, Problem 1.8.9]). Consequently, and since
Mλ = Mλ

A −Mλ
S1
−Mλ

S2
, we have,

〈
Mλ

〉
(t) ≤ 3

(〈
Mλ

A

〉
(t) +

〈
Mλ

S1

〉
(t) +

〈
Mλ

S2

〉
(t)

)

= 3
(
λλt + µ1

∫ t

0
Zλ

1 (s)ds + µ2

∫ t

0
Zλ

2 (s)ds
)

≤ 3
(
(µNλ + o(Nλ))t + µ1N

λt + µ2N
λt

) ≤ btNλ,

for b = 3(µ + 1 + µ1 + µ2) and allλ large enough such thatλ ≤ (µ + 1)Nλ (exists due to (2.17)).

Now, from (3.15), (3.16), (3.13), (3.17), we get that (3.11) may be represented as (3.12). The
latter implies that:

Xλ(t) = Xλ(0) +

∑2
k=1 µkN

λ
k√

Nλ
t− δ

√∑2
k=1 µkNλ

k√
Nλ

t

+
2∑

k=1

µk

∫ t

0

[
Xλ

k (s)
]−

ds−
∑2

k=1 µkN
λ
k√

Nλ
t +

Mλ(t)√
Nλ

+ o(1)

= Xλ(0)− δ
√

µt +
2∑

k=1

µk

∫ t

0

[
Xλ

k (s)
]−

ds +
Mλ(t)√

Nλ
+ o(1).

(3.19)

For k = 1, 2, let X̂λ
k (t) := (Zλ

k (t) − Nλ
k )/

√
Nλ, and letX̂λ

0 (t) := Qλ(t)/
√

Nλ. Then,
the following relationships hold:̂Xλ

0 = [Xλ
1 ]+, X̂λ

1 = −[Xλ
1 ]− andX̂λ

2 = Xλ
2 . In addition, due

to work conservation, we have
∣∣Xλ

∣∣ =
∑2

k=0

∣∣∣X̂λ
k

∣∣∣. Putting all these observations together with

(3.19) implies that,

2∑

k=0

∣∣∣X̂λ
k (t)

∣∣∣ ≤
2∑

k=0

∣∣∣X̂λ
k (0)

∣∣∣ + δ
√

µt +

∣∣Mλ(t)
∣∣

√
Nλ

+ A

∫ t

0

2∑

k=0

∣∣∣X̂λ
k (s)

∣∣∣ ds + o(1),
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for some large enoughA > 0. Gronwall’s inequality then yields

sup
0≤t≤T

2∑

k=0

∣∣∣X̂λ
k (t)

∣∣∣ ≤
(

2∑

k=0

∣∣∣X̂λ
k (0)

∣∣∣ + δ
√

µT +
sup0≤t≤T

∣∣Mλ(t)
∣∣

√
Nλ

+ o(1)

)
· eAT . (3.20)

Since ~Xλ(0)→(x1, x2) in probability, asλ→∞, we have

lim
C→∞

lim sup
λ→∞

P

(
2∑

k=0

∣∣∣X̂λ
k (0)

∣∣∣ > C

)
= 0.

It is left to show thatlimC→∞ lim supλ→∞ P
(
sup0≤t≤T

∣∣Mλ(t)
∣∣ /
√

Nλ > C
)

= 0. To show this,

note that sinceMλ is a locally square-integrable martingale, by the Lenglart-Rebolledo inequality
(see [38]) for anyB > 0,

P

(
sup

0≤t≤T

∣∣Mλ(t)
∣∣

√
Nλ

> C

)
≤ B

C2
+ P

(〈
Mλ

〉
(T )

Nλ
> B

)
. (3.21)

Thus, from (3.18) we have,

lim
C→∞

lim sup
λ→∞

P

(
sup

0≤t≤T

∣∣Mλ(t)
∣∣ /
√

Nλ > C

)
= 0. (3.22)

Lemma 3.3 Suppose that~Xλ(0) → ~X(0) = ~x = (x1, ..., xK), in probability, asλ→∞. Then,
under the conditions of Proposition 3.2, if|xk| < C, k ≥ 2, there exists a sequence

{
bλ

}
λ>0

(which is a function ofC) with bλ→0 asλ→∞, such that

(Xλ
2 (bλ), ..., Xλ

K(bλ))
p→0, asλ→∞. (3.23)

Proof: The lemma is proved forK = 2. The proof for the general case is similar. To prove
the lemma we define a new fluid-scale process (different fromZ̄ above), which is identical to the
diffusion-scale process, except that time is scaled by1/

√
Nλ. We will show that the fluid limit

reaches the goal ofx2 = 0 in finite time, and hence, the diffusion limit will get there instanta-
neously. This argument mimics the one proposed by Bramson in [12], although does not make a
direct use of his results.

Let

~̃Xλ(t) = ~Xλ(t/
√

Nλ) = (X̃λ
1 (t), X̃λ

2 (t)) =

(
Qλ(t/

√
Nλ) + Zλ

1 (t/
√

Nλ)−Nλ
1√

Nλ
,
Zλ

2 (t/
√

Nλ)−Nλ
2√

Nλ

)
,

and note that~̃Xλ(0) = ~Xλ(0). Hence, if ~Xλ(0) → ~X(0) = ~x = (x1, x2) asλ→∞, then, we also

have ~̃Xλ(0) → ~X(0) = ~x = (x1, x2) asλ→∞. We show that ifx2 < 0 andx2 ≥ −C then there
existss∗ = s∗(C) such that

X̃λ
2 (s∗)

p→0, asλ→∞. (3.24)
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Settingbλ = s∗/
√

Nλ will then complete the proof.

The proof follows three steps:

1. Establishing that̃X(t) = x1 + x2 for all t ≥ 0, for all fluid limits X̃ of X̃λ.

2. Establishing the existence of a fluid limit̃X2 of X̃λ
2 .

3. Findings∗ such thatX̃2(s
∗) = 0.

1. To prove (3.24) consider the sequence of initial conditionsXλ
1 (0) = x1 andXλ

2 (0) = x2 <

0. Recall the definitions of Section 2.1, and letT̃ λ
k (t) =

T λ
k (t/

√
Nλ)√

Nλ
, k = 1, 2. Note that

for k = 1, 2 the processT λ
k (·) is uniformly Lipschitz with constantNλ

k , and thusT̃ λ
k (·)

is Lipschitz with constantNλ
k /Nλ ≤ 1. Hence, there exists an increasing subsequence

λj for which T̃
λj

k (·)→T̃k(·) as j→∞, whereT̃k is a limiting allocation process, and the
convergence is almost surely (a.s.), uniformly on compact intervals (u.o.c). Without loss of
generality assume that the whole sequence converges. Using the functional strong law of
large numbers, (2.17) and the key renewal theorem we have that asλ→∞,

Aλ(s/
√

Nλ)√
Nλ

→µs and
Dk(T

λ
k (s/

√
Nλ))√

Nλ
→µkT̃k(s), a.s., u.o.c.

Now, note that

X̃λ(s) = X̃λ
1 (s) + X̃λ

2 (s)

= x1 + x2 + Aλ(s/
√

Nλ)√
Nλ

−∑2
k=1

Dk(T λ
k (s/

√
Nλ))√

Nλ

→µs− µ1T̃1(s)− µ2T̃2(s).

To find T̃1(s) and T̃2(s), note thatT̃1(s) ≤ q1s and T̃2(s) ≤ q2s, with an equality in both
simultaneously, if and and if̃T1(s) + T̃2(s) = s. But, notice also that,

T̃ λ
1 (s) + T̃ λ

2 (s) =

∫ s/
√

Nλ

0

Zλ
1 (τ) = s + Zλ

2 (τ)√
Nλ

dτ +
1√
Nλ

∫ s

0

X̃λ(τ)dτ→s, asλ→∞.

Therefore, we have

X̃(s) = x1 + x2 + µs− µ1q1s− µ2q2s = x1 + x2. (3.25)

2. Note that ifx2 < 0, thenx1 ≤ 0 (work conservation), and hence (3.25) implies thatX̃(s) < 0

for all s, which implies thatQλ(s/
√

Nλ) = 0 for all λ large enough. Specifically,Bλ
1 (s) +

Bλ
2 (s) = 0, for all s and allλ large enough (no queue implies only external arrivals to the

servers). Note that sinceAλ
2(s) ≤ Aλ(s) for all s, there is also an increasing subsequenceλj

such that
Aλ

2(s/
√

Nλj)√
Nλj

→Ã2(s), asj→∞,
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(WLOG, assume thatλj is the whole sequence). Hence, we have,

X̃λ
2 (s) = X̃2(0) +

Aλ
2(s/

√
Nλ)√

Nλ
+

Bλ
2 (s/

√
Nλ)√

Nλ
− D2(T

λ
2 (s/

√
Nλ)√

Nλ

→X̃2(s) = x2 + Ã2(s)− µ2q2s, asλ→∞.

(3.26)

3. Let s∗(x2) = inf{s ≥ 0 | X̃2(s) = 0} (where,s∗(x2) = ∞ if X̃2(s) < 0 for all s). Then for
all 0 ≤ s ≤ s∗(x2), we haveX̃2(s) < 0, and in particular, according to FSF,̃A2(s) = Ã(s)

(all arrivals join the fast server pool, as long as such servers are available). Hence, for all
0 ≤ s ≤ s∗(x2), (3.26) implies that, asλ→∞,

X̃λ
2 (s)→X̃2(s) = x2 + Ã2(s)− µ2q2s = x2 + Ã(s)− µ2q2s = x2 + (µ− µ2q2)s.

Solving forX̃2(s
∗(x2)) = 0 we get thats∗(x2) = [x2]−

µ−µ2q2
. In particular, the case ofs∗(x2) =

∞ is ruled out, becauseq2 < 1 (recall our assumption thata1 > 0, hence,q1 > 0 as well).

It is still left to show that there existss∗ = s∗(C) (independent ofx2) for which X̃2(s
∗) = 0.

In view of the latter argument, if we show that̃X2(s) = 0 for all s > s∗(x2), then setting
s∗ = C

µ−µ2q2
will conclude the proof. Suppose, by contradiction, that there existsτ > s∗(x2)

such thatX̃2(τ) < 0. Let τ0 = sup
{

s∗(x2) ≤ t ≤ τ | X̃2(t) ≥ X̃2(τ)/2
}

. Note that along

the interval(τ0, τ ], X̃2(t) < 0, and hence, along this intervalÃ2(t)−Ã2(τ0) = Ã(t)−Ã2(τ0).
In particular,

X̃2(τ) =
X̃2

2
+ (µ− µ2q2)(τ − τ0) ≥ X̃2

2
,

which contradicts the assumption thatX̃2(τ) < 0.

Remark 3.5 Note the similarities and the differences between our state-space collapse result and
the ones established in [45, 3, 4], for a multi-class, single server type system (theV -design) with
service priority. The state-space collapse established in [45, 3, 4] essentially shows that whenever
one customer class has priority in receiving service over the other classes, its respective queue
length and waiting time are zero (both with the appropriate scaling). This is provided that the
arrival rate into the lower priority classes is non-negligible. In such cases, the higher priority class
“sees” a system which is inlight traffic. Hence, the total queue length includes customers of lower
priority classes only. In our system, faster servers get priority over slower servers. Hence, the
number of idle fast servers and the amount of time such a fast server waits between two consecutive
customers is zero (again, with the appropriate scalings). Here, the required condition for this to
happen is that the number of slow servers is non-negligible. What the latter implies is that the
faster servers experience a system which isover-loaded, and hence are continuously busy. This
results in a set of idle servers which includes slow servers only.
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Remark 3.6 Proposition 3.2 is also true if the preemptive policy FSFP is used. Here the proof
is even simpler. Lemma 3.2 remains unchanged, while the argument for lemma 3.3 is trivially the
following: suppose that fork = 1, 2, X̃λ

k (0)→xk in probability, asλ→∞. We show thatx2 = 0,
and then the lemma is true withbλ ≡ 0. By contradiction, suppose thatx2 < 0, then forλ large
enough, and with probability close to 1, we haveX̃λ

2 (0) < 0. In particular,Zλ
2 (0) < Nλ

2 . But from
the “faster servers used first” and the work conservation properties of the policy FSFP we then
have,Zλ

1 (0)+Qλ(0) = 0, which is a contradiction to the assumption thatX̃λ
1 (0) =

Zλ
1 (0)+Qλ(0)−Nλ

1√
Nλ

converges, in probability, to a finite limit.

3.3.2 Transient Diffusion limit

In this section we establish the form of the diffusion limit of the scaled process~Xλ. The main
purpose of presenting this transient limit here, is that it will be used later to establish the steady-
state equivalence between the policies FSFP and FSF. However, the form of diffusion process
obtained in the limit is also interesting in its right. Especially, when compared with the diffusion
limit obtained by Halfin and Whitt [30] for the M/M/N system.

We note that the state-space collapse result of Proposition 3.2 essentially shows that it is
sufficient to find the diffusion limit of the total count of customers (centered and scaled)Xλ.
Denoting this limit byX, we have that the limit ofXλ

k , for k ≥ 2, is identically zero, and the limit
of Xλ

1 is hence equal toX.

Proposition 3.3 (Transient diffusion limit) Suppose thatXλ
k (0) ⇒ Xk(0), as λ→∞, for k =

1, ..., K, and letX(0) =
∑K

k=1 Xk(0). Assume further that (2.14) and (2.33) hold, and that the

policy FSF is used. Recall thatµ1 < µ2 < ... < µK , andµ =
[∑K

k=1 ak/µk

]−1

. Then,Xλ ⇒ X,

asλ→∞, whereX is a diffusion process with an infinitesimal drift

m(x) =

{ −δ
√

µ x ≥ 0,

−δ
√

µ− µ1x x < 0,
(3.27)

and infinitesimal variance
σ2(x) = 2µ. (3.28)

Remark 3.7 (The infinitesimal drift) The drift term (3.27) has two components:−δ
√

µ and
−µ1x. The first component is due to the difference between the overall available service capacity∑K

k=1 µkNk and the arrival rate. This difference is of orderΘ(
√

λ) = Θ(
√

N). The second com-
ponent is a drift that is due to idle servers. The state-space collapse result implies that, in the limit,
only the slowest servers can be idle, and hence, this term is only affected by their service rate:µ1.

Remark 3.8 (Drift in the single server type system)Consider, in comparison to our system, a
sequence of systems with a single customer class and a single server pool, instead ofK types.
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Suppose that all these servers have service rateµ. In addition, suppose that the sequence of arrival
rates,{λ}, is identical for both models, and that the number of servers in the single pool model,
Nλ, satisfiesNλµ = λ + δ

√
λ + o(

√
λ), asλ→∞. That is, in both models the excess capacity

is approximately equal toδ
√

λ. For this model, letY λ(t) be the total number of customers in the
system at timet, andXλ(t) = (Y λ(t) −Nλ)/

√
Nλ. Then, by [30], ifXλ(0) ⇒ X(0), asλ→∞,

thenXλ ⇒ X, asλ→∞, whereX is a diffusion process with an infinitesimal drift

m(x) =

{ −δ
√

µ x ≥ 0,

−δ
√

µ− µx x < 0,
(3.29)

and infinitesimal variance
σ2(x) = 2µ. (3.30)

In particular, the diffusion limits of both processes are of the same form, with the exception that
−µx replaces−µ1x in the drift component that applies when there are idle servers. This is to be
expected, because, clearly, in the single server type model all servers are identical, and hence all
can be idle at times. The comparison between the two diffusion processes reveals that the limiting
process associated with the

∧−design stochastically dominates the process associated with the
I−design. Hence, if one is interested in determining staffing levels based ontransientperformance
measures, less overall capacity is required when there are multiple server types. Remark 4.2 will
describe the implications of this difference on staffing which is based on steady-state performance
measures.

Proof: We prove the proposition for the caseK = 2. The general case will follow similarly. We
use the notation presented in the proof of Lemma 3.2.

Note that (3.19) implies that:

Xλ(t) = Xλ(0)− δ
√

µt +
2∑

k=1

µk

∫ t

0

[
Xλ

k (s)
]−

ds +
Mλ(t)√

Nλ
+ o(1)

= Xλ(0)− δ
√

µt + µ1

∫ t

0

[
Xλ(s)

]−
ds + ελ(t) +

Mλ(t)√
Nλ

+ o(1),

(3.31)

wheresupt≤T

∣∣ελ(t)
∣∣ p→ 0, and the second equality follows from Proposition 3.2. Now note that

from (3.13), (3.14) and Proposition 2.1 we have
〈

1√
Nλ

Mλ
A

〉
(t)

p→ µt, and

〈
1√
Nλ

Mλ
Sk

〉
(t)

p→ qkµkt,

and by Theorem 8.3.1 in [38] the processes
{

Mλ
A/
√

Nλ, Mλ
Sk

/
√

Nλ, k = 1, 2
}

converge jointly

in distribution to
{√

µbA,
√

qkµkbk, k = 1, 2
}

, wherebA, bk, k = 1, 2, are independent standard
Brownian motions. Therefore, by the continuous mapping theorem the processMN/

√
N con-

verges tob =
√

µbA − √q1µ1b1 − √q2µ2b2. It is easy to verify thatb is a Brownian motion with
zero drift and variance2µ. Applying the continuous mapping theorem to the processXλ completes
the proof of the Proposition.
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Remark 3.9 Proposition 3.3 remains true if the preemptive policy FSFP is used instead. The
proof remains unchanged due to Remark 3.6 and the fact that the dynamics of the total number of
customers in the system is the same under both policies.

We conclude this section by establishing the transient diffusion limit of the scaled waiting
time process, which turns out to have simple linear form of the corresponding limit of the queue
length process.

Proposition 3.4 Suppose thatXλ
k (0) ⇒ Xk(0) as λ→∞, for k = 1, ..., K, and letX(0) =∑K

k=1 Xk(0). Assume further that (2.14), (2.33) and (2.37) hold, and that the policy FSF is used.
Then,Ŵ λ :=

√
NλW λ ⇒ Ŵ , asλ→∞, whereŴ = [X]+/µ, andX is the diffusion limit ofXλ

asλ→∞, given in Proposition 3.3.

Proof: The proof is a result of a corollary by Puhalskii [44] which deals with limits of the first
passage time. The result in [44] was first adapted to the QED regime by Garnett et. al. [26]. This
proof further adapts the one in [26] to our setting.

Let

Y λ = {Y λ(t), t ≥ 0}, Aλ = {Aλ(t), t ≥ 0}, Dλ = {Dλ(t), t ≥ 0},

be the total number of customers in the system, arrival and departure processes, respectively. Since
FSF is work conserving and service is FIFO,W λ(t) can be written as:

W λ(t) = inf{s ≥ 0 : Dλ(s + t) ≥ Y λ(0) + Aλ(t)− (Nλ − 1)}.

We define the re-scaled processes

Ȳ λ(t) =
1

Nλ
Y λ(t), Āλ(t) =

1

Nλ
Aλ(t), D̄λ(t) =

1

Nλ
Dλ(t),

and an additional processKλ(t) characterized viaW λ(t) = [Kλ(t)− t]+, or, equivalently,

Kλ(t) = inf{s ≥ 0 : D̄λ(s) ≥ Ȳ λ(0) + Āλ(t)− (1− 1/Nλ)}.

Now introduce
D̄(t) = µt, Ȳ (0) = 1, Ā = µt,

and a first passage time
K(t) = inf{s ≥ 0 : D̄(s) ≥ Ā(t)},

noting thatK(t) ≡ t. Finally, letθ = limλ→∞
∑K

k=1
δλ
k

µk
, and

V (t) = X(0)− (µ)3/2θt +
√

µb(t),
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and
U(t) = X(0)− (µ)3/2θt +

√
µb(t)−X(t),

whereb(t) is a standard Brownian motion. Then one can verify that
√

Nλ
(
(Ȳ λ(0) + Āλ − (1− 1/Nλ))− (Ȳ (0) + Ā− 1)

) ⇒ V,

and that √
Nλ

(
D̄λ − D̄

) ⇒ V.

Hence, by the corollary in [44], we have
√

Nλ
(
Kλ −K

) ⇒ K̂,

whereK̂(t) = V (t)−U(K(t))

D̄′(K(t))
= X(t)

µ
. In particular, due to the continuous mapping theorem, we have

Ŵ λ(t) =
√

NλW λ(t) =
√

Nλ[Kλ(t)− t]+ ⇒ [X(t)]+

µ
.

3.3.3 Stationary diffusion limit

In this section we establish that the stationary distributions of the process~Xλ, under both FSFP
and FSF, converge to the stationary distribution of~X, asλ→∞. In particular, this implies the
asymptotic optimality of FSF withinΠ in terms of the steady-state queue length and waiting time,
due to the optimality of FSFP in ΠP .

First we spell out the stationary distribution ofX, the limiting diffusion process, given in
Proposition 3.3. Next we show that the stationary distribution ofXλ under FSFP converges to
this stationary distribution. Finally, we use the transient convergence results (Proposition 3.3 and
Remark 3.9), and the sample path optimality ofΠ̃P to establish the convergence of the stationary
distribution ofXλ under FSF. In all processes we use∞ in place of the time argument to denote
steady-state.

Proposition 3.5 (Stationary distribution of the diffusion process)Let X(·) be the diffusion pro-
cess described in Proposition 3.3, with infinitesimal drift and variance as in (3.27) and (3.28).
Then the steady-state distribution ofX has a densityf(·) given by:

f(x) =





δ√
µ

exp{−δx/
√

µ}α, if x ≥ 0,q
µ1
µ

φ
�q

µ1
µ

x+ δ√
µ1

�
Φ
�

δ√
µ1

� (1− α), if x < 0,
(3.32)

whereα , α(δ/
√

µ1) =
[
1 +

δ/
√

µ1Φ(δ/
√

µ1)

φ(δ/
√

µ1)

]−1

= P{X(∞) ≥ 0}.
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Proof: The proof follows from [14]. Note that the processX(·), restricted to[0,∞), is a re-
flected Brownian motion with infinitesimal drift−δ

√
µ and variance2µ. Hence, according to [14,

(18.33)], its steady-state density conditional onX(∞) ≥ 0 is exponential with rateδ/
√

µ. Simi-
larly, the processX(·) restricted to the negative half-line is an O-U process with infinitesimal drift
−δ
√

µ − µ1x and variance2µ. Therefore, its stationary density conditional onX(∞) < 0 is the
density of a normal random variable with mean−δ

√
µ/µ1, and varianceµ/µ1 conditioned on hav-

ing negative values only (see [14, (18.28)]). Putting these two densities together, establishes that
f(x) is indeed the steady-state density ofX, with α = P (X(∞) ≥ 0). To find the value ofα, note
thatf(·) is continuous because the infinitesimal variance is continuous on the whole real line (see
[14, p. 471]). Hence,α may be solved for by smooth fit, namely, by equating the limits off(·) at
0 from both left and right.

We now turn to showing that under the preemptive policy FSFP , the stationary distribution
of Xλ(·) weakly converges to the stationary distribution ofX (3.32). Recall that the processXλ(·)
under FSFP admits a state-space collapse. In particular, it is sufficient to know the total number
of customers in the system,Y λ(t), in order to know the wholeK + 1 dimensional state space. In
addition, the processY λ(·) is a B&D process with birth ratesλλ(y) = λ and death ratesµλ(y) as
given in (3.1). Under conditions (2.14) and (2.33) the system is stable for allλ, and the stationary
distribution is given bypλ

n := P (Y λ(∞) = n) = pλ
0π

λ
n, n = 0, 1, ..., whereπλ

n = λnQn
i=1 µλ(i)

,

n = 0, 1, ..., andpλ
0 =

[∑∞
n=0 πλ

n

]−1
. Clearly, the stationary distribution ofXλ = Y λ−Nλ√

Nλ
, can be

easily obtained from the stationary distribution ofY λ.

Proposition 3.6 (Convergence of the preemptive process in steady-state)Suppose that conditions
(2.14) and (2.33) hold, and that the preemptive policy FSFP is used. Then the stationary distribu-
tion ofXλ weakly converges to the stationary distribution ofX given in (3.32), asλ→∞.

Proof: We prove the Proposition forK = 2. The general proof follows similarly. We need to show
that for all−∞ < x < ∞, we have

P (Xλ(∞) ≤ x)→P (X(∞) ≤ x), as λ→∞. (3.33)

The proof of (3.33) is tedious, hence, for clarity, we first describe its three main steps:

1. Let αλ = P (Xλ(∞) ≥ 0) which is (due to work conservation and the PASTA property) the
steady-state probability that an arbitrary customer will have to wait before starting service.
Then,αλ→α, asλ→∞. To prove this, we explicitly write down the steady-state waiting
probability for every fixedλ > 0, and show, that asλ→∞, this expression converges toα.
The main result used in establishing this convergence is the Central limit theorem (CLT).

2. For all x < 0, we show that (3.33) holds atx. This is done by first establishing that, due to
1., it is sufficient to show that for allx < 0, P (Xλ(∞) ≤ x | Xλ(∞) < 0)→P (X(∞) ≤
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x | X(∞) < 0), asλ→∞. Second, we explicitly spell out the steady-state probabilities:
P (Xλ(∞) ≤ x | Xλ(∞) < 0) for λ ≥ 1. Finally, by an extensive use of the CLT we
establish the desired convergence, asλ→∞.

3. For all x ≥ 0, we show thatP (Xλ(∞) > x)→P (X(∞) > x), as λ→∞. This is the
simplest step of all three. First, we note that, due to 1., it is sufficient to establish that, for all
x ≥ 0, P (Xλ(∞) ≤ x | Xλ(∞) ≥ 0)→P (X(∞) ≤ x | X(∞) ≥ 0), asλ→∞. Second,
we note that for allλ > 0 the processXλ(·), restricted to non-negative values, is a Birth
and Death process with constant birth and death rates, and hence, the resulting steady-state
distribution is geometric. The resulting convergence asλ→∞ is then straightforward.

Note that for allx, P (Xλ(∞) ≤ x) = P (Y λ(∞) ≤ Nλ +
√

Nλx) =
∑

n≤Nλ+
√

Nλx

pλ
n. Recall

that forn = 0, 1, ..., pλ
n = pλ

0π
λ
n. ForK = 2, πλ

n satisfies:

πλ
n =





λn

µn
2 n!

, if 0 ≤ n ≤ Nλ
2 ,

λn

µ
Nλ

2
2 Nλ

2 !
nQ

i=Nλ
2 +1

(µ2Nλ
2 +(i−Nλ

2 )µ1)
, if Nλ

2 < n ≤ Nλ − 1,

λn

µ
Nλ

2
2 Nλ

2 !(Nλ
1 µ1+Nλ

2 µ2)
(n−Nλ+1) Nλ−1Q

i=Nλ
2 +1

(µ2Nλ
2 +(i−Nλ

2 )µ1)
, if Nλ ≤ n.

(3.34)

1. Forλ > 0, let αλ = P (Xλ(∞) ≥ 0) = P (Y λ(∞) ≥ Nλ) =
∑

n≥Nλ pλ
n. It is then easy to see

that

αλ =

∞∑
n=Nλ

πλ
n

∞∑
n=0

πλ
n

=




1 +

Nλ
2∑

n=0

πλ
n +

Nλ−1∑
n=Nλ

2 +1

πλ
n

∞∑
n=Nλ

πλ
n




−1

.

Let

Aλ :=

Nλ
2∑

n=0

πλ
n,

Bλ :=
Nλ−1∑

n=Nλ
2 +1

πλ
n,

and

Cλ :=
∞∑

n=Nλ

πλ
n,

then we need to show that
[
1 + Aλ+Bλ

Cλ

]−1

→α asλ→∞, or, equivalently, thatA
λ+Bλ

Cλ → δ/
√

µ1Φ(δ/
√

µ1)

φ(δ/
√

µ1)
,

asλ→∞. We look atCλ first. LetMλ =
[
µ2N

λ
2 /µ1

]
, ρλ = λ

µ1Nλ
1 +µ2Nλ

2
, and let ‘≈’ denote two
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quantities whose ratio goes to 1 in the limit, then,

Cλ =
∞∑

n=Nλ

πλ
n

=
∞∑

n=Nλ

λn

µ
Nλ

2
2 Nλ

2 !(Nλ
1 µ1+N2µλ

2)
(n−Nλ+1) Nλ−1Q

i=Nλ
2 +1

(µ2Nλ
2 +(i−Nλ

2 )µ1)

≈ λ(Nλ−1)

µ
Nλ

2
2 Nλ

2 !µ
(Nλ

1 −1)

1 (Mλ+Nλ
1 −1)!/Mλ!

·
∞∑

n=Nλ

λ(n−Nλ+1)

(µ1Nλ
1 +µ2Nλ

2 )
(n−Nλ+1)

= λ(Nλ−1)Mλ!ρλ

µ
Nλ

2
2 Nλ

2 !µ
(Nλ

1 −1)

1 (Mλ+Nλ
1 −1)!(1−ρλ)

≈ λ(Nλ−1)
√

2π(µ2Nλ
2 /µ1)(µ2Nλ

2 /µ1)
(µ2Nλ

2 /µ1)
e−(µ2Nλ

2 /µ1)ρ

µ
Nλ

2
2

√
2πNλ

2 (Nλ
2 )Nλ

2 e−Nλ
2 µ

(Nλ
1 −1)

1

√
2π(Mλ+Nλ

1 −1)(Mλ+Nλ
1 −1)

(Mλ+Nλ
1 −1)

e−(Mλ+Nλ
1 −1)(1−ρλ)

≈
√

µ2λNλ
e(Nλ−1)(µ2Nλ

2 )
Nλ

2 (µ2/µ1−1)

√
2π(µ1Nλ

1 +µ2Nλ
2 −µ1)(

µ2Nλ
2 /µ1+Nλ

1 )√
µ1Nλ

1 +µ2Nλ
2 (1−ρλ)

.

The fifth line follows from Stirling’s approximation. The rest is algebra. Note that,√
µ1Nλ

1 + µ2Nλ
2 (1− ρλ)→δ asλ→∞, and hence

Cλ ≈
√

µ2(λ)Nλ
eNλ−1

(
µ2N

λ
2

)Nλ
2 (µ2/µ1−1)

√
2π

(
µ1Nλ

1 + µ2Nλ
2 − µ1

)(µ2Nλ
2 /µ1+Nλ

1 )
δ
.

We now proceed with developing approximation forBλ.

Bλ =
Nλ−1∑

n=Nλ
2 +1

πλ
n

=
Nλ−1∑

n=Nλ
2 +1

λn

µ
Nλ

2
2 Nλ

2 !
nQ

i=Nλ
2 +1

(µ2Nλ
2 +(i−Nλ

2 )µ1)

≈ λNλ
2 Mλ!

µ
Nλ

2
2 Nλ

2 !

Nλ−1∑
n=Nλ

2 +1

λn−Nλ
2

µ
n−Nλ

2
1 (Mλ+n−Nλ

2 )!

=
λNλ

2 Mλ!µMλ

1 eλ/µ1

µ
Nλ

2
2 Nλ

2 !λMλ

Mλ+Nλ
1 −1∑

j=Mλ+1

λje−λ/µ1

µj
1j!

.
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Consider a Poisson random variable with rateλ/µ1, then due to the central limit theorem, we have,

Mλ+Nλ
1 −1∑

j=Mλ+1

λje−λ/µ1

µj
1j!

≈ Φ

(
Mλ+Nλ

1 −1−λ/µ1√
λ/µ1

)
− Φ

(
Mλ+1−λ/µ1√

λ/µ1

)

→Φ(δ/
√

µ1)− Φ(−∞) = Φ(δ/
√

µ1).

Hence,

Bλ ≈ Mλ!µMλ

1 eλ/µ1

µ
Nλ

2
2 Nλ

2 !λ(Mλ−Nλ
2 )

Φ(δ/
√

µ1)

≈
√

2πµ2Nλ
2 /µ1(µ2Nλ

2 /µ1)
µ2Nλ

2 /µ1e−µ2Nλ
2 /µ1µ

µ2Nλ
2 /µ1

1 eλ/µ1

µ
Nλ

2
2

√
2πNλ

2 (Nλ
2 )

Nλ
2 e−Nλ

2 λNλ
2 (µ2/µ1−1)

Φ(δ/
√

µ1)

=
√

µ2(µ2Nλ
2 )

Nλ
2 (µ2/µ1−1)

eλ/µ1

√
µ1λNλ

2 (µ2/µ1−1)eNλ
2 (µ2/µ1−1)

Φ(δ/
√

µ1).

Finally, we turn to the approximation ofAλ:

Aλ =
Nλ

2∑
n=0

πλ
n =

Nλ
2∑

n=0

λn

µn
2 n!

= eλ/µ2

Nλ
2∑

n=0

λn

µn
2 n!

e−λ/µ2

≈ eλ/µ2Φ

(
Nλ

2 −λ/µ2√
λ/µ2

)
.

Now we examine the ratioA
λ

Cλ .

Aλ

Cλ ≈
eλ/µ2 Φ

(
Nλ

2 −λ/µ2√
λ/µ2

)

√
µ2(λ)Nλ

eNλ−1(µ2Nλ
2 )

Nλ
2 (µ2/µ1−1)

√
2π(µ1Nλ

1 +µ2Nλ
2 −µ1)

µ2Nλ
2 /µ1+Nλ

1 ·δ

≈
√

2π · δ√
µ2

eλ/µ2

(
λ + δ

√
λ
) 1

µ1
(λ+δ

√
λ)

Φ
(
−a1

√
λ√

µ2

)

(λ)
λ
µ

+
√

λ

�
δλ
1

µ1
+

δλ
2

µ2

�
e

λ
µ

+
√

λ

�
δλ
1

µ1
+

δλ
2

µ2

�
−1

(
a2λ + δλ

2

√
λ
)a2λ+δλ

2

√
λ

µ2

�
µ2
µ1
−1
�

=

√
2π · δ√
µ2

(
1 + δ√

λ

) 1
µ1

(λ+δ
√

λ)
Φ

(
−a1

√
λ√

µ2

)

e
λ
µ
− λ

µ2
−1+

√
λ

�
δλ
1

µ1
+

δλ
2

µ2

� (
a2 + δλ

2/
√

λ
)a2λ+δλ

2

√
λ

µ2

�
µ2
µ1
−1
� .
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If a2 > 0 then

Aλ

Cλ
≈
√

2πδ√
µ2

e
−λ
�

1
µ1
− 1

µ2

�
(a1+a2 log a2) · Φ

(
−a1

√
λ√

µ2

)
→ 0, asλ→∞,

where the convergence to zero follows from the fact thata1 + a2 log a2 > 0 and−a1

√
λ√

µ2
→ −∞ as

λ →∞. If a2 = 0 then, by (2.35),

Aλ

Cλ
≈
√

2πδ√
µ2

e
−λ
�

1
µ1
− 1

µ2

��
1− δλ

2√
λ
+

δλ
2√
λ

log

�
δλ
2√
λ

��
· Φ

(
−a1

√
λ√

µ2

)
→0, asλ→∞.

Putting it all together, we have

Aλ + Bλ

Cλ
≈

√
µ2(µ2Nλ

2 )
Nλ

2 (µ2/µ1−1)
eλ/µ1

√
µ1λNλ

2 (µ2/µ1−1)eNλ
2 (µ2/µ1−1)

Φ(δ/
√

µ1)

√
µ2λNλ

eNλ−1(µ2Nλ
2 )

Nλ
2 (µ2/µ1−1)

√
2π(µ1Nλ

1 +µ2Nλ
2 )(

µ2Nλ
2 /µ1+Nλ

1 )
δ

→ δ/
√

µ1Φ(δ/
√

µ1)

φ(δ/
√

µ1)
,

asλ→∞.

2. Let x < 0. ThenP (Xλ(∞) ≤ x) = P (Xλ(∞) ≤ x | Xλ(∞) < 0)P (Xλ(∞) < 0) =

P (Xλ(∞) ≤ x | Xλ(∞) < 0)(1 − αλ). Based on this observation and 1., in order to establish
weak convergence for negative values ofx, we need to show that

P (Xλ(∞) ≤ x | Xλ(∞) < 0)→P (X(∞) ≤ x | X(∞) < 0) =
Φ

(
δ/
√

µ1 +
√

µ1/µx
)

Φ
(
δ/
√

µ1

) .

Let yλ(x) =
[
Nλ + x

√
Nλ

]
, then for allx, we have

Xλ(∞) ≤ x ⇔ Y λ(∞)−Nλ

√
Nλ

≤ x ⇔ Y λ(∞) ≤ yλ(x) .

Also, note that for allx < 0, we haveyλ(x) ≥ Nλ
2 for all λ large enough. Hence, for suchλ, we

can write:

P (Xλ(∞) ≤ x | Xλ(∞) < 0) =

∑yλ(x)
n=0 πλ

n∑Nλ−1
n=0 πλ

n

=


1 +

∑Nλ−1
n=yλ(x)+1 πλ

n

∑Nλ
2

n=0 πλ
n +

∑yλ(x)

n=Nλ
2 +1

πλ
n



−1

.
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Let

Aλ
− =

Nλ
2∑

n=0

πλ
n

Bλ
− =

Nλ−1∑

n=yλ(x)+1

πλ
n

Cλ
− =

yλ(x)∑

n=Nλ
2 +1

πλ
n.

We have already shown that

Aλ
− = Aλ ≈ eλ/µ2 Φ

(
Nλ

2 − λ/µ2√
λ/µ2

)
.

ConsiderBλ
− next.

Bλ
− =

Nλ−1∑

n=yλ(x)+1

πλ
n

=
Nλ−1∑

n=yλ(x)+1

λn

µ
Nλ

2
2 Nλ

2 !
∏n

i=Nλ
2 +1

(
µ2Nλ

2 +
(
i−Nλ

2

)
µ1

)

≈ (λ)Nλ
2 Mλ! µMλ

1 eλ/µ1

µ
Nλ

2
2 Nλ

2 ! λMλ

Mλ+Nλ−1−Nλ
2∑

j=Mλ+yλ(x)−Nλ
2 +1

λj e−λ/µ1

µj
1 j!

,

whereMλ =
[

µ2Nλ
2

µ1

]
. From the CLT we have

Mλ+Nλ−1−Nλ
2∑

j=Mλ+yλ(x)−Nλ
2 +1

λj e−λ/µ1

µj
1 j!

≈ Φ

(
Mλ + Nλ − 1−Nλ

2 − λ/µ1√
λ/µ1

)

− Φ

(
Mλ + yλ(x)−Nλ

2 + 1− λ/µ1√
λ/µ1

)

→ Φ (δ/
√

µ1)− Φ
(
δ/
√

µ1 +
√

µ1/µ x
)

.

Therefore,

Bλ
− ≈

λNλ
2 Mλ! µMλ

1 eλ/µ1

µ
Nλ

2
2 Nλ

2 ! λMλ

(
Φ (δ/

√
µ1)− Φ

(
δ/
√

µ1 +
√

µ1/µ x
))

.
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We thus have,

Aλ
−

Bλ−
≈

eλ/µ2 Φ

(
Nλ

2 −λ/µ2√
λ/µ2

)

(λ)Nλ
2 Mλ! µMλ

1 eλ/µ1

µ
Nλ

2
2 Nλ

2 ! (λ)Mλ

(
Φ

(
δ/
√

µ1

)− Φ
(
δ/
√

µ1 +
√

µ1/µx
))

≈
(λ)Nλ

2 (µ2/µ1−1) eNλ
2 (µ2/µ1−1)−λ(1/µ1−1/µ2) Φ

(
−a1

√
λ/
√

µ2 + δ2/
√

µ2

)

(
µ2Nλ

2

)Nλ
2 (µ2/µ1−1)

(
Φ

(
δ/
√

µ1

)− Φ
(
δ/
√

µ1 +
√

µ1/µx
))

=
Φ

(
−a1

√
λ/
√

µ2 + δ2/
√

µ2

)

Φ
(
δ/
√

µ1

)− Φ
(
δ/
√

µ1 +
√

µ1/µx
) e−{λ[a1+a2 log(a2+o(1))]+o(λ)}(1/µ1−1/µ2)

→ 0, asλ →∞.

We now turn to approximatingCλ
−.

Cλ
− =

yλ(x)∑

n=Nλ
2 +1

πλ
n

≈ λNλ
2 Mλ! µMλ

1 eλ/µ1

µ
Nλ

2
2 Nλ

2 ! λMλ

Mλ+yλ(x)−Nλ
2∑

j=Mλ+1

λj e−λ/µ1

µj
1 j!

.

From the CLT we have,

Mλ+yλ(x)−Nλ
2∑

j=Mλ+1

λj e−λ/µ1

µj
1 j!

≈ Φ

(
Mλ + yλ(x)−Nλ

2 − λ/µ1√
λ/µ1

)

− Φ

(
Mλ + 1− λ/µ1√

λ/µ1

)

→ Φ
(
δ/
√

µ1 +
√

µ1/µ x
)

.

In particular,

Cλ
− ≈

λNλ
2 Mλ! µMλ

1 eλ/µ1

µ
Nλ

2
2 Nλ

2 ! λMλ
· Φ

(
δ/
√

µ1 +
√

µ1/µ x
)

.
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Finally,

[
1 +

Bλ
−

Aλ− + Cλ−

]−1

→

1 +

Φ
(
δ/
√

µ
)− Φ

(
δ/
√

µ1 +
√

µ1/µ x
)

Φ
(
δ/
√

µ1 +
√

µ1/µ x
)



−1

=
Φ

(
δ/
√

µ1 +
√

µ1/µ x
)

Φ
(
δ/
√

µ1

) .

3. We now turn to approximatingP (Xλ(∞) ≤ x) for x ≥ 0. Clearly,

P (Xλ(∞) ≤ x) = P (Xλ(∞) ≤ x | Xλ(∞) ≥ 0) P (Xλ(∞) ≥ 0)

= P (Xλ(∞) ≤ x | Xλ(∞) ≥ 0)αλ.

Based on 1., it is hence sufficient to show that

P (Xλ(∞) ≤ x | Xλ(∞) ≥ 0) → P (X(∞) ≤ x | X(∞) ≥ 0)

= 1− e
− δ√

µ
x
, asλ →∞ for all x ≥ 0.

As before, ifyλ(x) =
[
Nλ + x

√
Nλ

]
, then

P (Xλ(∞) ≤ x) = P (Y λ(∞) ≤ yλ(x)) .

Note that the Markov process,Y λ, restricted to values aboveNλ has a stationary distribution:

P
(
Y λ(∞) = n | Y λ(∞) ≥ Nλ

)
=

(
1− ρλ

) (
ρλ

)(n−Nλ)
, n ≥ Nλ.

Specifically, forx ≥ 0,

P (Xλ(∞) ≤ x | Xλ(∞) ≥ 0) =

yλ(x)∑

n=Nλ

(
1− ρλ

) (
ρλ

)(n−Nλ)

= 1− (
ρλ

)[√Nλx]+1 → 1− e
− δx√

µ , asλ →∞.

Remark 3.10 Note that Proposition 3.6 also implies the weak convergence of the stationary dis-
tribution of ~Xλ to ~X, which are bothK dimensional processes. This is due to the state-space
collapse that holds, in fact, for allλ ≥ 1 (see Remark 3.2), as well as in the limit asλ→∞.

In order to establish the asymptotic optimality of FSF with respect to the queue length dis-
tribution in steady state, we need to show the convergence of the steady-state distribution ofXλ

under FSF to the steady-state distribution ofX. We have already shown in Proposition 3.3 that if
Xλ

k (0) ⇒ Xk(0) for all k = 1, . . . , K, thenXλ(·) ⇒ X(·) for 0 ≤ t < ∞. Our goal is to show
that this convergence also prevails att = ∞. This result is stated in the next proposition.
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Proposition 3.7 (Convergence of the non-preemptive process in steady-state)Suppose that con-
ditions (2.14) and (2.33) hold, and that the non-preemptive policy FSF is used. Then the stationary
distribution ofXλ exists for allλ, and it weakly converges to the stationary distribution ofX given
in (3.32), asλ →∞.

Proof: The proof is based on Ethier and Kurtz [19, Theorem 9.10 and Remark 9.11, p. 244].
According to [19] and based on our Propositions 3.2 and 3.3, it suffices to show that:

1. There exists a stationary distribution of~Xλ(·) for all λ.

2. The sequence of stationary distributions of~Xλ(·) is tight.

We establish 1. and 2. forK = 2. The general case follows similarly.

1. Fix λ > 0. To show the existence of a stationary distribution of~Xλ, it is sufficient to
establish that the state(0, 0) is positive recurrent, due to the irreducibility of the process (λ

is omitted from the following notation for brevity). Equivalently, letT(0,0) be the time of
first returning to the state(0, 0), given that the process starts there. Then it is sufficient to
show thatET(0,0) < ∞. We will establish the finiteness of this expectation by showing that
ET(0,0) ≤ ET P

(0,0), whereT P
(0,0) is the equivalent ofT(0,0) under FSFP . The finiteness of

ET P
(0,0) is known due to the existence of the stationary distribution of~X under FSFP (which

can be obtained from (3.34)). In particular,

ET P
(0,0) =

1

P ( ~X(∞; FSFP ) = (0, 0))
.

Recall the definition of̃ΠP (given in Section 3.2) as the family of all work conserving pre-
emptive policies which always use the faster servers first. According to Lemma 3.1, there
exists a policỹπ ∈ Π̃P such thatX(t; FSF) ≥ X(t; π̃) for all t, with probability 1. In addi-
tion, from the second part of the proof of Proposition 3.1, we have thatπ̃ and FSFP share the
same steady-state distribution. Particularly, ifT̃(0,0) is the returning time to the state(0, 0)

under the policỹπ, thenET̃(0,0) = ET P
(0,0) < ∞. We will show thatET(0,0) ≤ ET̃(0,0). The

latter is true due to the following observations:

a) The processes~X(·; π̃) and ~X(·; FSF) both have state spaces which are subsets ofS =

IR2
− ∪ (IR+ × {0}) ∆

= S− ∪ S+ (due to work conservation).

b) Under both policies, in order to have a transition fromS− to S+ or back, the process
has to visit the state(0, 0) first.
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c) Let T, T̃ be the time of the first transition out of the state(0, 0) under FSF and̃π,
respectively. Then, according to a) and b), we have

ET(0,0) = ET + P ( ~X(T ; FSF) ∈ S−) E(T(0,0) − T | ~X(T ; FSF) ∈ S−)

+ P ( ~X(T ; FSF) ∈ S+) E(T(0,0) − T | ~X(T ; FSF) ∈ S+)

= ET̃ + P ( ~X(T̃ ; π̃) ∈ S−) E[T(0,0) − T | ~X(T ; FSF) ∈ S−]

+ P ( ~X(T̃ ; π̃) ∈ S+) E[T(0,0) − T | ~X(T ; FSF) ∈ S+] ,

where the second equality follows from the fact that the transition rates out of the state
(0, 0) are the same under both policies.

d) Note that the transition rates of both processes restricted toS+ are the same. Hence,

E[T00 − T | ~X(T ; FSF) ∈ S+] = E[T̃00 − T̃ | ~X(T̃ ; π̃) ∈ S+] .

e) Due to the pathwise dominance ofπ̃ over FSF with respect toX(·), we have

X(t; FSF) | ~X(T ; FSF) ∈ S− ≥ X(t; π̃) | ~X(T̃ ; π̃) ∈ S−

for all t ≥ 0, with probability 1. In particular,

X(T̃(0,0); FSF) | ~X(T ; FSF) ∈ S− ≥ X(T̃(0,0); π̃) | ~X(T̃ ; π̃) ∈ S− = 0 .

Specifically, at timẽT(0,0), ~X(T̃(0,0); FSF) ∈ S+. From observation b), it follows that

T(0,0) | ~X(T ; FSF) ∈ S− ≤ T̃(0,0) | ~X(T̃ ; π̃) ∈ S−,

which implies that

E[T(0,0) − T | ~X(T ; FSF) ∈ S−] ≤ E[T̃(0,0) − T̃ | ~X(T̃ ; π̃) ∈ S−] .

f) From c), d) and e), it follows thatE[T(0,0)] ≤ E[T̃(0,0)]. This establishes the existence
of a stationary distribution of~Xλ(·) for all λ.

2. Now that the existence of a stationary distribution for~Xλ has been established for allλ, we
need to show that the resulting sequence of stationary distributions is tight. For any measur-
able setK ⊆ S, let νλ(K) := P ( ~Xλ(∞; FSF) ∈ K) and letηλ(K) := P ( ~Xλ(∞; FSFP ) ∈
K). By Proposition 3.6,ηλ(·) is tight. Hence, givenε > 0, there is a compact setK0 such

thatηλ(K0) ≥ 1 − ε̃
∆
= 1 − α

2+α
ε, for all λ andα = α(δ/

√
µ1). Our goal is to find another

compact set,̃K such thatνλ(K̃) ≥ 1− ε, for all λ large enough.

Let K+ := {(x1, x2) ∈ S | ∃(y1, y2) ∈ K0 with y1 +y2 ≤ x1 +x2}. That is,K+ is the set of
all points in the state space, whose total sum of their elements weakly dominates the sum of
the elements of at least one point fromK (see Figure 3.1 for illustration). From Proposition
3.1, we haveνλ(K+) ≥ ηλ(K+) ≥ ηλ(K0) ≥ 1 − ε̃. This is almost what we need, except
for the fact thatK+ is not compact, because it is not bounded from above.
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Figure 3.1: Illustration of the tightness proof.

Let K̄+ = {(x1, 0) ∈ S | x1 ≥ 0, (x1, 0) 6∈ K0, and∃(y1, y2) ∈ K0 with y1 + y2 ≤ x1}.
Then,K̄+ ⊆ K+, andK+\K̄+ is compact.K̄+ is the part ofK+ we wish to remove in order
to obtain compactness. Before it is removed, we need to make sure that its’ measure is small
enough not to spoil tightness. Recall that the transition rates of~Xλ restricted toIR+ × {0}
are the same for both FSFP and FSF. Hence,νλ(K | IR+ × {0}) = ηλ(K | IR+ × {0}) for
all λ and any measurable setK. Specifically,

νλ(K̄+) = νλ(K̄+ | IR+ × {0})νλ(IR+ × {0}) = ηλ(K̄+ | IR+ × {0})νλ(IR+ × {0})
= ηλ(K̄+)

ηλ(IR+×{0})ν
λ(IR+ × {0}) = ηλ(K̄+) · αλ

NP

αλ
P

≤ ε̃ · αλ
NP

αλ
P
≤ ε̃ 1

α/2
, for all λ large enough, independently ofε̃.

Here,αλ
NP andαλ

P are the steady-state probabilities of waiting for theλ system, under FSF
and FSFP , respectively. The first inequality follows from the fact thatK̄+ ∩ K0 = φ. The
second inequality is due to Proposition 3.6, and particularly, the fact thatαλ

P → α asλ →∞.
Finally, letK̃ = K+ \ K̄+, thenK̃ is compact and

νλ(K̃) = νλ(K+ \ K̄+) ≥ 1− ε̃− ε̃
1

α/2
= 1− ε̃

(
2 + α

α

)
= 1− ε .

Proof of Theorem 3.1: Let {πλ}λ>0 ⊆ Π be a sequence of policies, and suppose that the
steady-state distributions ofXλ(·; πλ), Qλ(·; πλ) and Ŵ λ(·; πλ) exist for all λ > 0. In addi-
tion, suppose that the weak limits,X(∞; {πλ}), X̂0(∞; {πλ}) andŴ (∞; {πλ}) of Xλ(∞; πλ),
X̂λ

0 (∞; {πλ}) := Qλ(∞; {πλ})/
√

Nλ andŴ λ(∞; πλ), respectively, exist asλ→∞.

We prove the theorem in four steps:

1. First we show asymptotic optimality of FSF in terms ofXλ(∞), asλ→∞.
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2. The asymptotic optimality of FSF with respect toXλ is used to show its asymptotic optimal-
ity with respect to the queue length.

3. The asymptotic optimality with respect toXλ is trivially shown to imply the asymptotic
optimality with respect to the probability of having at leastNλ customers in the system. For
work conserving policies the latter is equal to the probability that all servers are busy, or the
waiting probability.

4. The asymptotic optimality of FSF with respect to the waiting probability is shown to imply
its asymptotic optimality with respect to the waiting time distribution.

1. We need to show that

P (X(∞; FSF) > x) ≤ P (X(∞; {πλ}) > x) for all x, −∞ < x < ∞.

This includes establishing the existence of the (i) the steady-state ofXλ(·; FSF) for all λ,
and (ii) the existence ofX(∞; FSF), the limit of Xλ(∞; FSF) asλ→∞. Recall that both
(i) and (ii) were established in Proposition 3.7. The latter together with Proposition 3.6
also established thatX(∞; FSF) = X(∞; FSFP ) = limλ→∞ Xλ(∞; FSFP ). Finally, the
optimality of FSFP with respect toXλ(∞) for all λ (see Proposition 3.1) implies that indeed
FSF is asymptotically optimal with respect toXλ, asλ→∞.

2. We wish to show that for allq ≥ 0,

P
(
X̂0(∞; FSF) > q

)
≤ P

(
X̂0(∞; {πλ}) > q

)
, (3.35)

The proof follows directly from 1. and from the facts thatX̂λ
0 (∞; FSF) = [Xλ(∞; FSF)]+,

a.s. (work conservation) and thatX̂λ
0 (∞; πλ) ≥ [Xλ(∞; πλ)]+, a.s. for allλ > 0.

3. For any sequence of policies{πλ}, for which the steady state ofXλ(·; πλ) exists for all
λ, let α̃λ = P (Xλ(∞; πλ) ≥ Nλ), be the probability of having at leastNλ customers
in the system. For work conserving policiesα̃λ = αλ = P λ(wait > 0). Suppose that
X(∞; {πλ}) = limλ→∞ Xλ(∞; πλ) exists. Then 1. implies that

α(FSF) = lim
λ→∞

αλ(FSF) ≤ lim
λ→∞

α̃λ({πλ}) = α̃({πλ}).

4. We wish to show that for allw ≥ 0 we have

P
(
Ŵ (∞; FSF) > w

)
≤ P

(
Ŵ (∞; {πλ}) > w

)
. (3.36)

To prove (3.36) it suffices to show that

(i) The steady-state distribution of̂W λ(∞; FSF) exists for allλ > 0.

(ii) The weak limitŴ (∞; FSF) of Ŵ λ(∞; FSF) asλ→∞ exists.
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(iii) Ŵ (∞; FSF)
st≤ Ŵ (∞; {πλ}).

(i) The existence of a steady-state distribution ofŴ λ(∞; FSF) for all λ > 0 follows from
Corollary 3.1.

(ii) To show the existence of a weak limit̂W (∞; FSF) of Ŵ λ(∞; FSF) asλ→∞, recall that
by (3.5),

P (W λ(∞; FSF) > w) = αλ(FSF)e−(
PK

k=1 µkNλ
k−λ)w, ∀w ≥ 0,

whereαλ(FSF) = P (Xλ(∞; FSF) ≥ 0). In particular,

P
(
Ŵ λ(∞; FSF) > w)

)
= P

(√
NλW λ(∞; FSF) > w)

)

= αλ(FSF)e
−(PK

k=1 µkNλ
k−λ)√

Nλ
w

→ α(FSF)e−δ
√

µw, ∀w ≥ 0, asλ→∞.

The convergence ofαλ(FSF) asλ→∞ was established in 3.

(iii) To show thatŴ (∞; FSF)
st≤ Ŵ (∞; {πλ}), note that since the sequence{πλ} may

contain some policies which are not work-conserving, (3.5) may not hold any more, but
instead, (3.3) implies that

P
(
W λ(∞; {πλ}) > w

) ≥ α̃λ(πλ)e
−(PK

k=1 µkNλ
k−λ)√

Nλ
w → α̃({πλ})e−δ

√
µw, ∀w ≥ 0, asλ→∞.

Now, sinceα̃({πλ}) ≥ α(FSF) (by 3.), the asymptotic optimality of the steady-state waiting
time then immediately follows.

Remark 3.11 Note that the latter proof essentially shows that in order to establish asymptotic
optimality of the waiting time for our model in the QED regime, it suffices to show asymptotic
optimality with respect tõα, the probability that there are at leastNλ customers in the system. For
work conserving policies this implies that asymptotic optimality with respect to the waiting time
is equivalentto the asymptotic optimality with respect to the waiting probability (both in steady-
state). Figure 3.2 shows a diagram of the asymptotic optimality relationships between the four
entities included in the proof of Theorem 3.1.

The next lemma establishes a simple relationship between the steady-state queue length and
waiting time distributions for work conserving policies. This relationship is of the same form as
the one shown in Proposition 3.4 for the transient limits of the queue length and waiting time
processes.
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Figure 3.2: Asymptotic optimality relationships for work conserving policies (left) and in general
(right).

Lemma 3.4 Suppose that conditions (2.14) and (2.33) hold, and consider a sequence of policies
{πλ} ⊆ Π, λ > 0. Let X, X̂0, andŴ , be the weak limits asλ→∞ for the steady state of the
processesXλ(·; πλ), Qλ(·; πλ)/

√
Nλ, and

√
NλW λ(·; πλ), respectively. Then,

Ŵ
st≥ [X]+

µ
, (3.37)

and ifπλ is work conserving for allλ large enough, then

Ŵ
D
=

[X]+

µ
=

X̂0

µ
. (3.38)

Proof: We prove (3.38). The relationship (3.37) follows similarly. Suppose thatπλ is work con-
serving for allλ > 0. We omit the policy and time arguments from all notation for brevity. Recall
thatY λ is the steady-state total number of customers in the system. From (3.2) we have

W λ D
=

[Y λ−Nλ+1]+∑
i=1

T λ
i , λ > 0, (3.39)

whereT λ
i are iid random variables distributedexp(

∑K
k=1 µkN

λ
k ), and are independent ofY λ. It is

easy to see that[Y
λ−Nλ+1]+√

Nλ
⇒ [X]+. Let Y λ, andX be versions of the original random variables

such that the latter convergence is almost surely. For samples paths such thatY λ − Nλ + 1→∞
we have:

√
NλW λ D

=
√

Nλ

[Y λ−Nλ+1]+∑
i=1

T λ
i =

[Y λ −Nr + 1]+√
Nλ

1

[Y λ −Nλ + 1]+

[Y λ−Nλ+1]+∑
i=1

NλT λ
i →

[X]+

µ
,

almost surely, asλ→∞. The convergence follows from the strong law of large numbers applied to
NλT λ

i . If Y λ does not diverge to∞ then, in particular,limλ→∞
[Y λ−Nλ+1]+√

Nλ
= [X]+ = 0. In this

case, for any subsequence{λj} for which{[Y λj −Nλj + 1]+} is bounded, we have[Y λj −Nλj +

1]+ ≤ log(Nλj) for all j large enough. Hence, for allj large enough

√
NλjW λj D

=
√

Nλj

[Y λj−Nλj +1]+∑
i=1

T
λj

i ≤ log(Nλj)√
Nλj

1

log(Nλj)

log(Nλj )∑
i=1

NλjT
λj

i →0, asj→∞.
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Figure 4.1: The Stability Region forK = 2.

4 Asymptotic Feasibility

In this section, we wish to characterize the feasible region for the staffing problem (2.3). As
was noted before, characterizing this region exactly for fixedλ, µ1, . . . , µK , andα seems difficult.
Instead, we characterize this region asymptotically, for large values ofλ (i.e. asλ →∞).

We begin by recalling that a necessary and sufficient condition for stability is
∑K

k=1 µkNk >

λ (See Figure 4.1). This observation gives us a superset of the feasible region, as it is impossible to
have a steady state waiting probability which is less than 1, if the system is unstable. Proposition
4.1 characterizes the asymptotic feasible region as a subset of the stability region. Although in
principle, this region could be very complicated, it turns out to have a simplelinear form. The
linearity of the feasible region is not surprising in view of the fact that, under FSF the limiting
waiting probability depends on the overall service capacity (as long as the slowest server pool is
non-negligible). In particular, the limiting waiting probability does not depend on the individual
capacities of the different server pools. Note that the overall service capacity is a linear function of
the number of servers in each pool. Hence the linearity of the asymptotically feasible region. The
asymptotically feasible region is illustrated in Figure 4.2.

Proposition 4.1 (Asymptotic Feasible Region - Square-Root Safety Capacity)Let 0 < α < 1

andµ1 < µ2 < · · · < µK be fixed, and consider a sequence of systems indexed by the arrival rate
λ > 0, which is growing to infinity, andNλ

k servers in poolk, k = 1, . . . , K. LetNλ =
∑K

k=1 Nλ
k

be the total number of servers in systemλ, and suppose that

lim inf
λ→∞

Nλ
1

Nλ
> 0. (4.1)

Then, there exists a sequence{πλ = πλ(λ, ~Nλ)} of non-preemptive policies, under which

lim sup
λ→∞

Pπλ(wait > 0) ≤ α (4.2)
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Figure 4.2: The Asymptotically Feasible Region forK = 2.

if and only if

µ1N
λ
1 + ... + µKNλ

K ≥ λ + δ
√

λ + o
(√

λ
)

, (4.3)

where0 < δ < ∞ satisfies

α
∆
= α(δ/

√
µ1) =

[
1 +

(
δ/
√

µ1

)
Φ

(
δ/
√

µ1

)

φ
(
δ/
√

µ1

)
]−1

. (4.4)

In addition,δ = 0 if and only ifα = 1, andδ = ∞ (i.e. (4.3) holds for allδ < ∞) if and only if
α = 0.

Remark 4.1 Notice that if one is interested in determining the total capacity needed for the system
in order to obtain a target waiting probabilityα, then by (4.3) a safety capacity ofδ

√
λ is needed

beyond the minimal capacity ofλ (hence, the term “square-root safety capacity”). According to
(4.4 the value ofδ is determined from the model parameters solely based onα andµ1, which is the
service rate of the slowest servers. The other, faster, service rates do not play a role at this stage.
As will be shown later (Proposition 5.1) those faster service rates are needed in order to determine
how to distribute this total capacity among the server pools in order to minimize staffing costs.

Proof: We prove the proposition forK = 2. The general case follows similarly. Fix0 < δ < ∞,

and suppose that (4.3) holds for allλ. Let ak = lim infλ→∞
µkNλ

k

λ
, k = 1, 2. Clearly,a1 + a2 ≥ 1

anda1 > 0. Suppose first thata1+a2 > 1. In this case, we can obtain (4.2) withα = α(δ/
√

µ1) by

choosing to use only a subset of each server pool of sizeÑλ
k = (ak/(a1+a2))λ+(δ/2)

√
λ

µk
, k = 1, 2, and

apply the policy FSF. Proposition 3.7 then confirms that (4.2) is satisfied. Now, suppose thata1 +

a2 = 1, and without loss of generality, letak = limλ→∞
µkNλ

k

λ
. Let δ̃ = lim infλ→∞

µ1Nλ
1 +µ2Nλ

2 −λ√
λ

(again, without loss of generality, assume thatδ̃ = limλ→∞
µ1Nλ

1 +µ2Nλ
2 −λ√

λ
). Clearly, δ̃ ≥ δ, and

possibly,δ̃ = ∞. If δ̃ > δ, then one is able to obtain (4.2) by using FSF with respect to a subset of
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each server pool of sizẽNλ
k =

µkNλ
k−(∆λ/2)

√
λ

µk
, where∆λ :=

µ1Nλ
1 +µ2Nλ

2 −λ√
λ

− δ. Finally, if δ̃ = δ,
then (4.2) holds if FSF is used from Proposition 3.7.

To complete the proof, we need to examine the cases whereδ = 0 and δ = ∞. Sup-
pose first thatδ = 0, and assume, by contradiction, that there exists a sequence of policies
{πλ = πλ(λ, ~Nλ)}, such thatlim supλ→∞ Pπλ(wait > 0) = α < 1. Let 0 < δ0 < ∞ be such that
α(δ0/

√
µ1) = α; suchδ0 exists due to the continuity ofα(·) and the fact thatlimδ→∞ α(δ/

√
µ1) =

0 andlimδ→0 α(δ/
√

µ1) = 1. Consider another sequence of systems with server pools of sizeÑλ
k =

Nλ
k + (δ0/4)

√
λ/µk, k = 1, 2. Clearly, (4.3) holds for the new sequence, withδ = δ0/2. Now, ac-

cording to Proposition 3.7, if FSF is used with the new sequence of systems,limλ→∞ P λ

FSF(wait>
0) = α(δ0/2

√
µ1) > α. However,{πλ} is assumed to obtain a waiting probability ofα (asymp-

totically, over a subsequence) by using only a subset of the servers. This is a contradiction to the
asymptotic optimality of FSF. Finally, ifµ1N

λ
1 + µ2N

λ
2 ≥ λ + δ

√
λ + o(

√
λ) for all δ < ∞, then

by using FSF on a subset of the servers, one can obtain thatlim supλ→∞ P λ(wait > 0) ≤ α, for all
0 < α < 1. Lettingα → 0 establishes the desired result.

Corollary 4.1 Let 0 < α < 1 and µ1 < µ2 < · · · < µK be fixed, and consider a sequence
of systems indexed by the arrival rateλ, which is growing to infinity, andNλ

k servers in poolk,
k = 1, . . . , K. LetNλ =

∑K
k=1 Nλ

k be the total number of servers in systemλ, and suppose that
(4.1) holds. Then, there exists a sequence{πλ} of non-preemptive policies, under which

lim
λ→∞

Pπλ(wait > 0) = α (4.5)

if and only if

µ1N
λ
1 + ... + µKNλ

K = λ + δ
√

λ + o
(√

λ
)

, (4.6)

where0 < δ < ∞ satisfiesα = α(δ/
√

µ1) is given in (4.4).

In addition,δ = 0 if and only ifα = 1, andδ = ∞ (i.e. (4.3) holds for allδ < ∞) if and only if
α = 0.

Proof: The proof follows immediately from Proposition 4.1.

Remark 4.2 (Feasibility in the single server type system)Consider, in comparison to our system,
the sequence of systems described in Remark 3.8, with a single customer class and a single server
pool, instead ofK types. Suppose that all these servers have service rateµ =

∑K
k=1 γkµk, for some

arbitrary weightsγ1, ..., γK ∈ [0, 1], with
∑K

k=1 γk = 1. In addition, suppose that the sequence of
arrival rates,{λ} is identical for both models. For this single server type model, Halfin and Whitt
[30] showed that if the number of servers in theλ system isNλ, then forα ∈ (0, 1),

lim
λ→∞

P λ(wait > 0) = α,
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if and only if
Nλ = λ/µ + β

√
λ/µ + o(

√
λ),

where0 < β < ∞ satisfiesα =
[
1 + βΦ(β)

φ(β)

]−1

= α(β), (recall (4.4)). The condition onNλ can

be equivalently written as

µNλ = λ + β
√

µ
√

λ + o(
√

λ) = λ + δ
√

µ/µ1

√
λ + o(

√
λ),

whereδ satisfiesα = α(δ/
√

µ1). Comparing this with (4.6), we conclude that the multiple server-
type system requires less total service capacity than the one required by the single server-type
with mean service rate, if both aim at achieving the same limiting steady-state waiting probability.
Specifically, suppose that the single server-type system is compared with aK server-types system
with Nλ

k = qk(N
λ
1 + ... + Nλ

K), with qk = γk = (ak/µk)µ, for k = 1, ..., K. Then, assuming
that q1 > 0 (hence, condition (4.1) of Proposition 4.1 is satisfied), one can see that the multi-type
systems requires overall fewer servers than the single-type system to achieve the same limiting
steady-state waiting probability.

5 Asymptotically Optimal Staffing

In this section, we study the staffing problem (2.3). Recall that exact optimality is difficult to ob-
tain, and hence, we present asymptotically optimal solutions. Our previous results already identify,
under certain conditions, an asymptotically optimal policy(FSF) and the asymptotic feasible re-
gion given in (4.3). It is now left to find the asymptotically optimal staffing rule that minimizes the
staffing costs among all the vectors~N = (N1, . . . , NK), which belong to the feasible region. For
the remainder of this section, consider a fixed target waiting probability0 < α < 1.

Consider a cost functionC( ~N) = C1(N1) + · · ·+ CK(NK) which is increasing and strictly
convex in all its arguments, and such thatC( ~N) → ∞, as‖ ~N‖ → ∞. Because of the character-
ization of the feasible region given in (4.3), it is expected that the staffing cost will be at least of
the order ofC(λ · ~e), where~e is a vector of 1’s of dimensionK. In addition, it is expected that
differences between staffing costs of two different staffing vectors which are close to the efficient
frontier of the feasible region, will be of the order ofC(

√
λ · ~e). Hence, in order to establish a

meaningful form of asymptotic optimality, one needs to comparenormalizedstaffing costs that
measure the difference between the actual staffing costs and a basic cost of orderC(λ · ~e), which
is a lower bound on the staffing cost.

To get such a lower bound, consider the following related problem:

minimize C1(N1) + C2(N2) + ...CK(NK)

subject to µ1N1 + µ2N2 + · · ·+ µKNK ≥ λ

N1, N2, . . . , NK ≥ 0, (5.1)
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that is, we seek to minimize the staffing cost within the closure of the stability region. This prob-
lem, if accompanied by integral constraints, is a special case of a set covering problem. Without
the integral constraints, its optimal solution,~N∗ satisfies

C ′
k(N

∗
k )

µk

=
C ′

j(N
∗
j )

µj

, j, k = 1, 2, ..., K, (5.2)

and
µ1N1 + µ2N2 + · · ·+ µKNK = λ. (5.3)

Let C be the optimal cost obtained by solving (5.1). Then clearly,C is a lower bound on the
solution of (2.3) because the stability region is a superset with respect to the feasible region. In
addition,C is of orderC(λ · ~e), and hence, it naturally serves as the right normalizing factor.

Definition: Consider a sequence of staffing vectors
{

Ñλ
}

λ>0
. Then,

{
Ñλ

}
λ>0

is anasymptot-

ically optimal staffingsequence if (i) it is asymptotically feasible, and (ii) its associated limiting
staffing cost is minimal among all asymptotically feasible staffing vectors. More precisely, if{

~Nλ
}

λ>0
is another asymptotically feasible sequence of staffing vectors (that is, there exists a

sequence of routing policies{πλ = πλ(λ, ~Nλ)} ⊆ Π, such thatlim supλ→∞ Pπλ(wait > 0) ≤ α),

thenlimλ→∞
Cλ(Ñλ)−Cλ

Cλ( ~Nλ)−Cλ ≤ 1.

Remark 5.1 (A “practical” definition of asymptotic optimal staffing) The following definition
is equivalent to the definition of asymptotic optimal staffing given above. In our proofs we use

this definition, as it is easier to verify its validity. Suppose that
{

~N∗λ
}

λ>0
is a sequence of op-

timal solutions of (2.3) with respect to sequences of arrival rates{λ} and staffing cost functions{
Cλ

1 (·), ..., Cλ
K(·)}. Let

{
Ñλ

}
λ>0

be another sequence of staffing vectors. Then,
{

Ñλ
}

λ>0
is an

asymptotically optimal staffing sequenceif when used to staff the system,

a. There exists a sequence of policies{πλ = πλ(λ, Ñλ)} ⊆ Π such thatlim supλ→∞ Pπλ(wait >

0) ≤ α, and

b. limλ→∞
Cλ(Ñλ)−Cλ

Cλ( ~N∗λ)−Cλ = 1.

We now investigate homogeneous cost functions of the formCλ( ~N) ≡ C( ~N) = c1N
p
1 +

· · · + cKNp
K , where1 < p < ∞, and ck > 0 for k = 1, . . . , K. Let δ > 0 be such that

α = α(δ/
√

µ1), and let ~M∗λ be an optimal solution of the problem (5.1) with the right hand
sideλ replaced byλ + δ

√
λ. Note that the vector~M∗λ is not necessarily all integers, and let

Ñλ = d ~M∗λe := (dM∗λ
1 e, . . . , dM∗λ

K e), that is Ñλ is obtained from ~M∗λ by rounding off its
elements to the closest integers above. We claim thatÑλ is an asymptotically optimal staffing
vector.
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Figure 5.1: Asymptotic Cost Optimization forK = 2.

Proposition 5.1 (Asymptotically optimal staffing)Consider a fixed target waiting probability of
α ∈ (0, 1). Suppose thatC( ~N) = c1N

p
1 + · · ·+ cKNp

K , and forλ > 0 consider the staffing vector
Ñλ = d ~M∗λe, where ~M∗λ = (M∗λ

1 , . . . ,M∗λ
K ) is an optimal solution to (5.1), with the right hand

sideλ replaced byλ + δ
√

λ. Hereδ satisfiesα = α(δ/
√

µ1) (see (4.4)), and

~M∗λ = (λ + δ
√

λ)

(
(µ1/c1)

1/(p−1), (µ2/c2)
1/(p−1), ..., (µK/cK)1/(p−1)

)
∑K

k=1 (µp
k/ck)

1/(p−1)
, λ > 0. (5.4)

Then
{

Ñλ
}

λ>0
is an asymptotically optimal staffing sequence.

Proof: We prove the proposition for the caseK = 2. The general case follows similarly. Let~M∗λ

be the non-negative vector on the half-plainµ1M1 + µ2M2 ≥ λ + δ
√

λ that minimizes the staffing
costC(M), λ > 0. Clearly,µ1M

∗λ
1 + µ2M

∗λ
2 = λ + δ

√
λ. Let Ñλ

k = dM∗λ
k e, k = 1, 2. We prove

that limλ→∞
C( ~M∗λ)−Cλ

C( ~N∗λ)−Cλ = 1. The asymptotic optimality of̃Nλ then easily follows. The outline of
the proof is as follows:

1. We solve forCλ, ~M∗λ, andC( ~M∗λ) for all λ > 0, and show thatd ~M∗λe satisfies the condi-
tions of Proposition 4.1. Solving for~M∗λ is illustrated in Figure 5.1.

2. Assuming first thatlim infλ→∞
C( ~M∗λ)−Cλ

C( ~N∗λ)−Cλ < 1, we show that there existλ0 > 0 and a vector

~Lλ0 such that if it is used to staff theλ0 system, then

a. there exists a policyπ = π(λ0, ~L
λ0) ∈ Π such thatPπ(wait > 0) < α, and

b. C(~Lλ0) < C( ~N∗λ0).

This, of course, contradicts the optimality of~N∗λ0.
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3. If lim supλ→∞
C( ~M∗λ)−Cλ

C( ~N∗λ)−Cλ > 1, then we establish (see Lemmas 5.1 and 5.2), with respect to

the sequence of vectors
{

~N∗λ
}∞

λ>0
=

{
(N∗λ

1 , N∗λ
2 )

}
λ>0

, thatµ1N
∗λ
1 +µ2N

∗λ
2 ≥ λ+ δ

√
λ+

o(
√

λ), for all λ, along the subsequence.

The caseµ1N
∗λ
1 +µ2N

∗λ
2 ≥ λ+δ

√
λ can be ruled out by the optimality of~M∗λ. In particular,

µ1N
∗λ
1 + µ2N

∗λ
2 = λ + δ

√
λ + o(

√
λ). In this case, we find another vector~Lλ, such that

a. µ1L
λ
1 + µ2L

λ
2 = λ + δ

√
λ, for all λ along the subsequence, and

b. limλ→∞
C(~Lλ)−Cλ

C( ~N∗λ)−Cλ = 1, for the same sequence that attains the limsup.

But this contradicts the optimality of~M∗λ.

We now turn to the details of the three steps of the proof.

1. To findCλ, one needs to solve the problem (5.1). Simple constrained optimization obtains:

Cλ =
λpc1c2

((µp
1c2)1/(p−1) + (µp

2c1)1/(p−1))
p−1

∆
= λpξ. (5.5)

Similarly, to find ~M∗λ andC( ~M∗λ) one needs to solve the problem:

minimize c1M
p
1 + c2M

p
2

subject to µ1M1 + µ2M2 ≥ λ + δ
√

λ

M1,M2 ≥ 0 .

(5.6)

The solution to (5.6) is given in (5.4), and forK = 2 it satisfies

(
M∗λ

1 ,M∗λ
2

)
= (λ + δ

√
λ) ·

(
(µ1c2)

1/(p−1), (µ2c1)
1/(p−1)

)

(µp
1c2)1/(p−1) + (µp

2c1)1/(p−1)
,

and
C( ~M∗λ) = (λ + δ

√
λ)pξ. (5.7)

In particular,d ~M∗λe satisfies condition (4.1) of Proposition 4.1, because

M∗λ
1

M∗λ
1 + M∗λ

2

≡ (µ1c2)
1/(p−1)

(µ1c2)1/(p−1) + (µ2c1)1/(p−1)
> 0.

2. Suppose thatlim infλ→∞
C( ~M∗λ)−Cλ

C( ~N∗λ)−Cλ < 1. Without loss of generality, assume that

limλ→∞
C( ~M∗λ)−Cλ

C( ~N∗λ)−Cλ < 1. This implies that there exists∆ > 0 such thatC( ~N∗λ)−Cλ

C( ~M∗λ)−Cλ ≥ 1 + ∆,

for all λ large enough, or,C( ~N∗λ)− C( ~M∗λ) ≥ ∆(C( ~M∗λ)− Cλ), for all λ large enough.
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Let ε = ∆δ
2

, and letM̃λ be the optimal solution of (5.6) withδ + ε replacingδ. Note that
C(M̃λ) ≥ C( ~M∗λ) and that

C(M̃λ)− C( ~M∗λ)

C( ~M∗λ)− Cλ
=

(λ + (δ + ε)
√

λ)p − (λ + δ
√

λ)p

(λ + δ
√

λ)p − λp

=
(1 + (δ + ε)/

√
λ)p − (1 + δ/

√
λ)p

(1 + δ/
√

λ)p − 1

=
1 + p(δ + ε)/

√
λ + o(1/

√
λ)− 1− pδ/

√
λ + o(1/

√
λ)

1 + pδ/
√

λ + o(1/
√

λ)− 1

=
pε + o(1)

pδ + o(1)
≤ 3∆

4
, for all λ large enough.

Specifically, for allλ large enough, we have,

C(M̃λ)− C( ~M∗λ) ≤ 3∆

4
(C( ~M∗λ)− Cλ)

< ∆(C( ~M∗λ)− Cλ)

≤ C( ~N∗λ)− C( ~M∗λ) .

Let ~Lλ = dM̃λe, then for allλ large enoughC(~Lλ) < C( ~N∗λ), and~Lλ satisfies the con-
ditions of Proposition 4.1, withδ + ε replacingδ. Hence, under staffing of~Lλ, P λ

FSF(wait

> 0) → α((δ + ε)/
√

µ1) < α. In particular, for allλ large enough, under staffing of~Lλ, we
haveP λ

FSF(wait > 0) < α. This is a contradiction to the optimality of~N∗λ.

Before we turn to step 3 of the proof, we state and prove two lemmas.

Lemma 5.1 Suppose that for allλ > 0, ~N∗λ is the optimal solution of (2.3) andlim infλ→∞
N∗λ

1

N∗λ
1 +N∗λ

2
>

0. Then,µ1N
∗λ
1 + µ2N

∗λ
2 = λ + δ

√
λ + o(

√
λ).

Proof: By contradiction, assume that either there exists a subsequence{λj} for which µ1N
∗λj

1 +

µ2N
∗λj

2 < λj + δ
√

λj + o(
√

λj), or there exists̃ε > 0 such thatµ1N
∗λj

1 + µ2N
∗λj

2 ≥ λj + (δ +

ε̃)
√

λj + o(
√

λj). In the first case, by Proposition 4.1,lim supj→∞ P
λj

πλj
(wait > 0) > α, for all

πλj ∈ Π, which is a contradiction to the feasibility of~N∗λj , for some large values ofj. In the
second case, let~Nλj = ~N∗λj − ~e (where~e is a vector of 1’s). ThenC( ~Nλj) < C( ~N∗λj), and
by Proposition 4.1, there exists a sequence of policies{πλj = πλj(λj, ~Nλj)} ⊆ Π under which
lim supj→∞ Pπλj (wait > 0) < α. This is a contradiction to the optimality of~N∗λj for all largej.

Lemma 5.2 Suppose that for a sequence~Nλ of staffing vectors, such that there exists a sequence
{πλ = πλ(λ, ~Nλ} ⊆ Π of policies under whichPπλ(wait > 0) ≤ α, for all λ > 0. Suppose,

in addition, thatlim infλ→∞
Nλ

1

Nλ
1 +Nλ

2
= 0. Then,µ1N

λ
1 + µ2N

λ
2 ≥ λ + δ

√
λ + o(

√
λ), where

α = α(δ/
√

µ1).
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Proof: Suppose that (without loss of generality),limλ→∞
Nλ

1

Nλ
1 +Nλ

2
= 0. First note that, from stabil-

ity, there exists0 ≤ δ̃ < ∞ such thatµ1N
λ
1 + µ2N

λ
2 ≥ λ + δ̃

√
λ + o(

√
λ), asλ→∞. In this case,

we can show that forδ2 = limλ→∞ δλ
2 , −∞ ≤ δ2 ≤ δ̃ (considerδ2 as a partial limit ofδλ

2 , if the
limit does not exist), then under FSFP ,

1

P λ(wait > 0)
− 1

→ 1

α(δ̃/
√

µ1)
− 1 +

√
2πδ̃e

1
2
δ̃2/µ1

(
1√
µ2

e
− 1

2
δ2
2

�
1

µ1
− 1

µ2

�
Φ (δ2/

√
µ2)− 1√

µ1

Φ (δ2/
√

µ1)

)
, asλ →∞,

≤ 1

α(δ̃/
√

µ1)
− 1.

In particular,limλ→∞ P λ(wait > 0) ≥ α(δ̃/
√

µ1). Therefore, from the optimality of FSFP in ΠP

(see Proposition 3.1), we also have,lim supλ→∞ Pπλ(wait > 0) ≥ α(δ̃/
√

µ1). But we assumed
thatPπλ(wait > 0) ≤ α(δ/

√
µ1) for all λ. Hence,α(δ/µ1) ≥ α(δ̃/µ1), or equivalently,δ ≤ δ̃.

Finally, the latter implies thatµ1N
λ
1 + µ2N

λ
2 ≥ λ + δ

√
λ + o(

√
λ).

We now return to the third step of the proof of Proposition 5.1.

3. Suppose thatlim supλ→∞
C( ~M∗λ)−Cλ

C( ~N∗λ)−Cλ > 1. Without loss of generality, suppose that

limλ→∞
C( ~M∗λ)−Cλ

C( ~N∗λ)−Cλ > 1. Due to the definition of~M∗λ it follows that µ1N
∗λ
1 + µ2N

∗λ
2 <

λ+δ
√

λ for all λ large enough. From Lemmas 5.1 and 5.2, we know thatµ1N
∗λ
1 +µ2N

∗λ
2 ≥

λ + δ
√

λ + o(
√

λ). Let fλ(λ) = λ + δ
√

λ− (µ1N
∗λ
1 + µ2N

∗λ
2 ). Then,fλ(λ) = o(

√
λ) ≥ 0.

Let cλ := λ+δ
√

λ
µ1N∗λ

1 +µ2N∗λ
2

=
(
1− fλ(λ)

λ+δ
√

λ

)−1

, and consider the vector~Lλ = cλ · ~N∗λ. Note that

µ1L
λ
1 + µ2L

λ
2 = λ + δ

√
λ, and thatC(~Lλ) ≥ C( ~N∗λ). Hence, we have

1 ≥ C( ~N∗λ)− Cλ

C(~Lλ)− Cλ
=

1
(cλ)p C(~Lλ)− Cλ

C(~Lλ)− Cλ
= 1−

(
1−

(
1− fλ(λ)/(λ + δ

√
λ)

)p)
C(~Lλ)

C(~Lλ)− Cλ

= 1−
(
pfλ(λ)/(λ + δλ) + o(1/λ)

)
Cλ(~L)

C(~Lλ)− Cλ
≈ 1− pfλ(λ)/(λ + δλ)

1− Cλ/C(~Lλ)

≥ 1− pfλ(λ)/(λ + δλ)

1− Cλ/C( ~M∗λ)
= 1− pfλ(λ)/(λ + δλ)

1−
(
1/(1 + δ/

√
λ)

)p

= 1− pfλ(λ)/(
√

λ + δ)
√

λ
(
1−

(
1/(1 + δ/

√
λ)

)p) ≥ 1− pfλ(λ)/(
√

λ + δ)

δ/2
, for all λ large enough

→ 1, asλ→∞.

But the latter implies that, in particular,C(~Lλ) < C( ~M∗λ) for all λ large enough, which is a
contradiction to the optimality of~M∗λ.
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Example 5.1 Quadratic Cost Functions:Consider the staffing problem:

minimize c1N
2
1 + c2N

2
2 + ... + cKN2

K

subject to Pπ(wait > 0) ≤ α, for someπ = π(λ, ~N) ∈ Π,

N1, N2, ..., NK ∈ Z+,

(5.8)

with a fixed target waiting probability0 < α < 1. To emphasize the dependence of the staffing
level on the arrival rateλ, we denote our proposed solution by~Nλ. To determine the total capacity
needed to satisfy the waiting probability constraint, Proposition 4.1 suggests that

µ1N
λ
1 + µ2N

λ
2 + ... + µKNλ

k ≥ λ + δ
√

λ + o(λ), asλ→∞,

whereδ satisfiesα = α(δ/
√

µ1). That is, the total capacity required to achieve the target waiting
probability depends asymptotically on the service rates through the service rateµ1 of the slow
servers only. To determine the actually staffing level, one needs to take into account the actual
individual service rates. By Proposition 5.1 the proposed staffing vector~Nλ which satisfies:

Nλ
k

Nλ
j

=
cj/µj

ck/µk

, k, j = 1, 2, ..., K, (5.9)

and
µ1N

λ
1 + µ2N

λ
2 + ... + µKNλ

k = λ + δ
√

λ,

is asymptotically optimal among all asymptotically feasible vectors. The verbal interpretation of
(5.9) is that when the staffing cost is quadratic, then staffing levels for individual server pools are
inversely proportional to the ratiock/µk. This rule is intuitive as it implies that when the cost per
unit of service rate is high, the staffing level should be low. Note that the ratioc/µ is not to be
confused with the quantitycµ often used (in different contexts) to determine routing rules when
holding costs is associated with waiting customers.

Extensions

Arrival Rate Dependent Homogeneous Cost Functions:Suppose that, instead of the fixed
staffing cost function considered in Proposition 5.1, a cost function which is dependent on the ar-
rival rate. We capture this dependence through the superscriptλ. Particularly, consider, forλ > 0,
the staffing cost function isCλ( ~N) = cλ

1N
pλ

1 + cλ
2N

pλ

2 + ... + cλ
KNpλ

K . Forλ > 0 andk = 1, ..., K,
assume thatcλ

k > 0, lim infλ→∞ cλ
k > 0, pλ > 1, lim infλ→∞ pλ > 1, andlim supλ→∞ pλ < ∞.

In this case, one can verify that the sequence of staffing vectorsd ~M∗λe proposed in (5.4) -
with superscriptsλ accompanyingck andp, is asymptotically optimal staffing. Specifically, let

~M∗λ = (λ + δ
√

λ)

(
(µ1/c

λ
1)

1/(pλ−1), (µ2/c
λ
2)

1/(pλ−1), ..., (µK/cλ
K)1/(pλ−1)

)

∑K
k=1

(
µpλ

k /cλ
k

)1/(pλ−1)
, λ ≥ 1, (5.10)

then one can show thatd ~M∗λe is asymptotically optimal.
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Linear Cost Functions with Constraints: In many practical situations one is interested in deter-
mining staffing levels to minimize linear staffing costs. This is the case where the staffing costs are
associated, for example, with salaries of the servers. However, the linear cost case has not been
included in our discussion so far. To illustrate why this case is problematic within our framework,
consider the following example: suppose that one is interested in solving the staffing problem

minimize c1N1 + c2N2 + ... + cKNK

subject to Pπ(wait > 0) ≤ α, for someπ = π(λ, ~N) ∈ Π,

N1, N2, ..., NK ∈ Z+,

(5.11)

for some fixed value of0 < α < 1. If one, instead, solved the deterministic problem:

minimize c1N1 + c2N2 + ... + cKNK

subject to µ1N1 + µ2N2 + ... + µKNK ≥ λ + δ
√

λ,

N1, N2, ..., NK ≥ 0,

(5.12)

then any optimal solution~Nλ will satisfy:

Nλ
k > 0 only if

ck

µk

= min
j=1,...,K

{
cj

µj

}
, k = 1, 2, ..., K.

In particular, if c1
µ1
6= minj

{
cj

µj

}
, thenNλ

1 = 0 for all λ. The problem in this case is that one is

no longer guaranteed that the proposed staffing vector is asymptoticallyfeasiblebecause condition
(4.1) of Proposition 4.1 is not satisfied. In fact, one can show that whenNλ

1 = 0 one needs higher
overall capacity level in order to get the same limiting waiting probability.

Note that if c1
µ1

= minj

{
cj

µj

}
, then one can chooseNλ

1 to be non-negligible relatively

to the other server pools, and then the proposed solution is indeed asymptotically optimal (the
proof follows through similarly to the proof of Proposition 5.1). However, even in the case that
c1
µ1
6= minj

{
cj

µj

}
, there are scenarios where are theory can provide useful solutions. Consider the

following staffing problem with linear staffing costs and additional linear constraints:

minimize c1N1 + c2N2 + ... + cKNK

subject to Pπ(wait > 0) ≤ α, for someπ = π(λ, ~N) ∈ Π,

A ~N ≥ b

, N1, N2, ..., NK ∈ Z+,

(5.13)

whereA is a i × K matrix, andb is an i− dimensional matrix for somei ≥ 1. Examples for
such additional constraints can includeN1/(N1 + ... + NK) ≥ p for some0 < p < 1, or lk ≤
Nk/(N1 + ... + NK) ≤ uk for some0 ≤ lk ≤ uk ≤ 1. The first example can result from a
case where servers of pool 1 are trainees, and one wants to make sure that they get the experience
the need. The second set of constraints can result out of given proportions of servers types in the
particular server population.
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For the problem (5.13) we claim that if the set of problems

minimize c1N1 + c2N2 + ... + cKNK

subject to µ1N1 + µ2N2 + ... + µKNK ≥ λ + δ
√

λ,

A ~N ≥ b

, N1, N2, ..., NK ∈ Z+,

(5.14)

has a sequence of solutions~Nλ which satisfylim infλ→∞ Nλ
1 /(Nλ

1 + ... + Nλ
K) then the proposed

sequence is an asymptotically optimal staffing. The proof follows similarly to the proof of Propo-
sition 5.1.
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