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Motivated by call centers, we study large-scale service systems with homogeneous impatient customers and heterogeneous
servers; the servers differ with respect to their speed of service. For this model, we propose staffing and routing rules that
are jointly asymptotically optimal in the heavy-traffic many-server QED, ED, and ED +QED regimes, respectively. For
the QED regime, our proposed routing rule is FSF, that assigns customers to the fastest server available first. In the ED
and ED+QED regimes, all work-conserving policies perform (asymptotically) equally well. In all these regimes, the form
of the asymptotically optimal staffing is consistent with the asymptotically optimal staffing in the same regimes in the
single-pool case, respectively. In particular, the total service capacity is (asymptotically) equal to a term that is proportional
to the arrival rate plus, possibly, a term that is proportional to the square-root of the arrival rate, with both terms being
regime dependent. Our specific proposed approximation for the optimal staffing vector is obtained via a straightforward
solution to a deterministic optimization problem subject to a linear feasible region.
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1. Introduction
In this paper we consider large-scale service systems,
such as customer contact centers (Aksin et al. 2007, Gans
et al. 2003) or hospitals (Tseytlin 2007), with a homoge-
neous population of impatient customers and heterogeneous
servers that belong to multiple pools. The servers in each
pool are statistically identical, and all servers are mutu-
ally independent. The model is depicted in Figure 1. For
such systems, our goal is to solve the joint problem of
staffing and control. Staffing is concerned with determin-
ing the number of servers at each pool, while the control
(routing) determines the assignment of customers to those
servers. The objective is to minimize staffing costs, subject
to an upper bound on the steady-state fraction of customers
who abandon.
The joint problem of staffing and control is difficult;

hence the two are typically solved separately in the liter-
ature and in practice. In particular, authors have assumed
away the routing question to address the staffing problem
(e.g., Borst et al. 2003, Mandelbaum and Zeltyn 2009) or
have assumed a particular staffing rule to solve the rout-
ing problem (e.g., Armony 2005, Tezcan and Dai 2010,
Dai and Tezcan 2008). In contrast, we address this joint
problem by rigorously justifying a “divide and conquer”

approach; that is, we first find a routing scheme that is
(asymptotically) optimal given any “reasonable” staffing
vector. Subsequently, we identify an (asymptotically) opti-
mal staffing rule, assuming that the above-mentioned rout-
ing rule is used, thereby solving the joint problem.
Our approach in addressing the joint staffing-routing

problem is asymptotic. Specifically, we identify rules that
are asymptotically optimal as both the arrival rate and num-
ber of servers of each pool grow to infinity within the
QED, ED, and ED+QED regimes, respectively. The QED
regime was first formalized by Halfin and Whitt (1981)
and was later adapted to queues with abandonment by Gar-
nett et al. (2002). In this regime, the delay probability has
a limit that is strictly between 0 and 1, and the fraction
of abandonment approaches 0 at a rate that is inversely
proportional to the square-root of the arrival rate. In the
ED regime (Whitt 2004, Mandelbaum and Zeltyn 2009),
the fraction of abandonment approaches a limit that is
strictly between 0 and 1, while the delay probability con-
verges to 1. Finally, in the ED+QED regime (Baron and
Milner 2009, Mandelbaum and Zeltyn 2009), the probabil-
ity that the waiting time will exceed a prespecified (pos-
itive) upper bound also approaches a limit that is strictly
between 0 and 1.
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Figure 1. The inverted-V model.
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An analogous model was studied in Armony (2005) in
the QED regime, under the assumption that customers are
infinitely patient. The routing scheme, FSF, was proposed
in Armony (2005). This policy was shown to be asymp-
totically optimal with respect to minimizing the steady-
state delay probability. The main differentiators between
the present paper and Armony (2005) are that here (a) cus-
tomers are impatient, (b) the ED and ED+QED regimes
are considered in addition to the QED regime, and (c) rout-
ing is studied in conjunction with staffing.
One might naturally question the need to dedicate an

entire paper to the model with impatient customers. Can
it not simply be obtained as a straightforward extension
of the model with no abandonment? It turns out that the
answer to this question is negative. Customer abandonment
introduces some subtle challenges that require and deserve
special attention and that we resolve here. To elaborate,
the model with abandonment differs from the one without
abandonment on at least three fronts:
1. Asymptotic Regimes. Without abandonment, a natu-

ral approach with respect to quality of service is to min-
imize the delay probability (which is indeed the approach
taken in Armony 2005). In that scenario, one is natu-
rally led to work with the QED asymptotic regime. With
abandonment, other performance measures become rele-
vant, such as the fraction of abandonment, and the waiting
time distribution. While the QED regime is still relevant
here, the ED and ED+QED regimes are also realistic and
relevant in practice.
2. Asymptotic Optimality. Without abandonment, there

is a natural reference point, which provides a lower bound
on the staffing cost. Specifically, due to stability consid-
erations, the arrival rate is a lower bound on the overall
service capacity, which translates into a lower bound on the
staffing cost. With abandonment, such a lower bound does
not exist because the system is always stable. This calls for
an alternative approach in defining asymptotic optimality.

We resolve this issue by introducing an auxiliary optimiza-
tion problem, which can be thought of as the fluid-scale
staffing problem. The optimal staffing cost associated with
this fluid problem becomes a centering factor in our defi-
nition of asymptotic optimality (see §5.2).
3. Assumptions. Without abandonment, the preemptive

version of the FSF policy is optimal with respect to stochas-
tically minimizing the overall number of customers in the
system at any time point. With abandonment, the same
is true only if customers’ patience is stochastically longer
than their service time, or otherwise, if one is restricted to
working with work-conserving policies only. In contrast, if
one wishes to stochastically minimize the cumulative num-
ber of abandonment at any point in time, these additional
assumptions are not required.

1.1. Summary of the Results

The approach we take in the paper is as follows. For
each of the three asymptotic regimes, we first assume that
the staffing vector is of a form that is consistent with
that regime. Under this assumption, we identify a rout-
ing rule that asymptotically minimizes the relevant perfor-
mance measure. We then establish that the assumed form of
the staffing vector is necessary and sufficient for asymptotic
feasibility of the joint staffing and routing problem. Finally,
we propose a staffing vector that minimizes the staffing cost
within the asymptotically feasible region and establish the
asymptotic optimality of our proposed solution.
Consider a sequence of systems indexed by the arrival

rate �, where � ↑ �.1 For any fixed value of � (the system
indexed by � will be referred to as the �-system), let N �

k

represent the number of servers of type k, k = 1� � � � �K.
Also, let �N � = �N �

1 �N �
2 � � � � �N �

K� be the staffing vector, and
N � = N �

1 + N �
2 + · · · + N �

K be the total number of servers.
Suppose that the service rates �1� � � � ��K and the aban-
donment rate � are fixed independently of �. Let W 	=
W��� be the steady-state waiting time, and let P�ab� be
the steady-state abandonment probability. The joint staffing
and routing problem can be described as minimizing the
staffing cost, subject to a quality-of-service constraint. The
first row in Table 1 specifies the constraint associated with
each regime. To be consistent with the various asymptotic
regimes, we first assume that the total service capacity,
�1N

�
1 + �2N

�
2 + · · · + �KN �

K , is of the form described in
the second row of Table 1.2 In words, in the QED regime,
the total service capacity is equal to the demand (�) plus
(or minus) a safety capacity that is in the order of square-
root of the demand. In the ED regime, the service capac-
ity is linearly proportional to, and slightly less than, the
demand. In particular, the traffic intensity is strictly greater
than 1. Finally, in the QED + ED regime, the basic ED
capacity is supplemented by a term that is of the order of
square-root of the demand. The purpose of this additional
term is to fine-tune the target waiting-time tail probability.
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Table 1. Summary of the results.

QED QED ED ED+QED

Constraint
√

�P�ab��
 P�W > T /
√

��� � P�ab��
 P�W > T �� �
T � 0 T > 0


 ∈ �0��� � ∈ �0�1� 
 ∈ �0�1� � ∈ �0� e−�T �

K∑
k=1

�kN
�
k = � + �

√
�, � + �0

√
�, ��1− 
� ��1− 
1� + �1

√
�,

� = ��
����1� �0 = �0������1� 
1 = 
1�T �,

lim�→�
N �

1

N �
> 0 lim�→�

N �
1

N �
> 0 �1 = �1�T ���

Assumptions FCFS FCFS
� ��1 or W.C. � ��1 or W.C.

Routing FSF FSF W.C. W.C.

C� �N ∗�� − C� 
N �� = o��p−1/2� o��p−1/2� o��p� o��p−1/2�

� �N ∗� − 
N �� = o��� � � � �

lim
�→�

C� �N ∗�� − C��1−
�

C� 
N �� − C��1−
�
= 1 ��� �= 0� ���0 �= 0� ���1 �= 0�


 = 0 
 = 0 
 > 0

Note. FCFS= first-come-first-served; W.C.=work conservation.

These proposed staffing forms are later shown to be neces-
sary and sufficient for asymptotic feasibility of the original
problem.
Assuming that the staffing vector is indeed consistent

with the specified asymptotic form, we identify routing
rules that asymptotically minimize the relevant perfor-
mance measure, under (possibly) some additional assump-
tions. Specifically, the policy FSF is asymptotically optimal
in the QED regime, and all work-conserving policies are
asymptotically optimal in the ED and ED+QED regimes.

The asymptotic optimality of our proposed routing rules,
given any regime-consistent staffing vectors, facilitates the
solution of the joint staffing and routing problem. Specifi-
cally, when focusing on an asymptotically optimal staffing,
one can simply assume that those rules are used as the
routing rule. This allows us to identify the relevant region
to be the asymptotically feasible region for the corre-
sponding problem. Moreover, we explicitly provide a one-
to-one correspondence between the staffing parameters
and the parameters associated with the quality-of-service
constraint.
Finally, we show that to find an asymptotically optimal

staffing rule, it is sufficient to identify the staffing vector
that minimizes the staffing cost over a region that approx-
imates the asymptotically feasible region. We explicitly
provide the solution under homogeneous, polynomial, and
additive cost functions of the form C� �N� = c1N

p
1 + c2N

p
2

+ · · · + cKN
p
K , with p > 1 and ck > 0, for all k, and estab-

lish its asymptotic optimality with respect to the criteria
specified in the last three rows of Table 1.
The paper is organized as follows: We conclude the intro-

duction by reviewing the relevant literature. Section 2 gives
the model formulation as well as the formulation of the

joint staffing and routing problem, focusing on quality-of-
service constraints that are associated with the fraction of
abandonment. We then proceed to §3, in which the pre-
emptive version of FSF is introduced and its optimality
is established. Next, §4 introduces the asymptotic frame-
work associated with the QED and ED regimes and verifies
asymptotic optimality of our proposed routing rules. Sec-
tion 5 then establishes asymptotic feasibility and optimal-
ity of our proposed solutions in those regimes. Finally, §6
extends our results to the problem that focuses on the prob-
ability that the waiting time exceeds a certain threshold.
This is where the ED+QED regime is discussed. Section 7
concludes the paper. An electronic companion to this paper
is available as part of the online version that can be found
at http://or.journal.informs.org/. All the proofs are given in
the electronic companion to allow for a fluent reading of
the paper.

1.2. Literature Review

Service systems with heterogeneous servers arise naturally
due to training and learning effects (Gans et al. 2010) and
also due to heterogeneity in the workforce. In particular,
such heterogeneity arises in a co-sourcing environment.
(Co-sourcing in call centers is a common arrangement in
which the firm outsources part of its call center opera-
tions and keeps the rest in-house.) In such an environment,
it is likely that the in-house customer service representa-
tives (CSRs) are different in their service skills from the
outsourcer’s CSRs. Many researchers have addressed the
dynamic routing problem of how to assign customers to
servers under various assumptions and optimization goals.
Only a few papers have tackled this dynamic routing prob-
lem in conjunction with the staffing problem of determining

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.



Armony and Mandelbaum: Routing and Staffing in Large-Scale Service Systems
Operations Research 59(1), pp. 50–65, © 2011 INFORMS 53

the number of servers required of each pool. We begin our
review by briefly describing the relevant asymptotic staffing
literature. Next we detail the relevant literature in the con-
trol of the inverted-V system. In passing, we comment on
those papers that have combined the staffing and routing
components.

Staffing. Staffing of large-scale service systems via
asymptotic analysis was first formalized by Halfin and
Whitt (1981) for the Erlang-C (M/M/N) model. The paper
(Halfin and Whitt 1981) showed that a square-root safety-
staffing is necessary and sufficient for the delay probability
to approach a limit that is strictly between 0 and 1, as the
system load grows large. This regime has been coined the
Halfin-Whitt (or QED) regime. The same regime was later
shown to be cost effective (Borst et al. 2003) and profit
maximizing (Maglaras and Zeevi 2003) in various settings
(the control component of the latter work is elaborated
upon in Maglaras and Zeevi 2004, 2005). For the Erlang-A
model (M/M/N + M) Garnett et al. (2002) showed that a
similar square-root safety-staffing rule guarantees that the
abandonment probability is of the order of 1/

√
N . The

efficiency-driven (ED) regime was studied extensively by
Whitt (2004, 2005, 2006a, b, c) via both fluid and diffusion
models. In this regime, the traffic intensity is strictly greater
than 1, customers are delayed with probability 1, and the
probability of abandonment is strictly between 0 and 1.
Recently, Baron and Milner (2009) and Mandelbaum and
Zeltyn (2009) have identified the so-called ED + QED
regime, in which the basic ED staffing is supplemented by
a square-root term. This regime was shown to be necessary
and sufficient in guaranteeing that the probability that the
waiting time will exceed a prespecified positive threshold
is strictly between 0 and 1. In the present paper, we estab-
lish asymptotic optimality of these three staffing regimes,
under appropriate form and scaling of the desired quality
of service, for the inverted-V model.

The Slow Server Problem. Heterogeneity among ser-
vers has brought researchers to ask the following two ques-
tions: (a) When is it optimal to remove the slowest server
from a queueing system to minimize the mean sojourn time
in the system (e.g., Rubinovich 1983, Cabral 2005)? (b)
Given a set of heterogeneous servers, how should customers
be routed dynamically to servers in order to minimize the
mean sojourn time (e.g., Larsen and Agrawala 1983, Lin
and Kumar 1984, Stockbridge 1991, and de Véricourt and
Zhou 2005)? Both of these problems have been coined “the
slow server problem.” For awhile, only results for the two-
server system had been published (e.g., Rubinovich 1983,
Lin and Kumar 1984), but recently results for the general
heterogeneous multiserver system have appeared (Cabral
2005, de Véricourt and Zhou 2005). Note, though, that the
problem (b) for the general multiserver case is still open
(de Véricourt and Zhou 2006). We tackle a problem related
to problem (b) with the objective of minimizing the aban-
donment probability. A more detailed summary of the slow

server problem is given in Tseytlin (2007), who is applying
these concepts to patients flows in hospitals.

Inverted-V and Asymptotic Analysis. The difficulty
in identifying optimal controls for the general heteroge-
nous server problem has prompted researchers to examine
this question in various asymptotic regimes. For example,
in the conventional heavy traffic regime, for a two-server
system with two queues in which routing decisions must
be made at the time of each arrival, Foschini (1977) shows
that shortest-expected-delay-first routing is asymptotically
optimal, and Teh and Ward (2002) identify necessary and
sufficient conditions for a threshold priority policy to be
asymptotically optimal.
Several papers have examined the question of dynamic

control for the inverted-V system in the QED regime. These
include Armony (2005), Tezcan (2007), Atar (2008), Atar
and Shwartz (2008), Atar et al. (2011), and Armony and
Ward (2010). Armony (2005) shows that FSF is asymptot-
ically optimal in the sense that it asymptotically minimizes
the expected steady-state waiting time and delay probabil-
ity. These results are extended in the present paper to the
inverted-V system with abandonment. Tezcan (2007) exam-
ines a similar routing question with service times that are
hyper-exponential. The author shows that while a priority
type policy is still asymptotically optimal, the actual priori-
ties depend on other factors beyond the mean service time.
Recently, Atar (2008) has established that both the FSF

and the longest-idle-server-first (LISF) policies exhibit a
state-space reduction in the QED regime, even in settings
where the service rates are random. The policy that routes
to the server pool with the longest cumulative idle time
has been studied in Atar et al. (2011), where fairness in
idle time is shown to be obtained in the QED regime. With
respect to fairness, Armony and Ward (2010) establish that
if the system parameters are known, then it is asymptoti-
cally optimal to use a threshold-based routing rule, where
the faster servers are kept busy when the system is most
congested and are idle otherwise. Finally, Atar and Shwartz
(2008) have shown that in an environment where service
rates are heterogeneous and unknown, it is sufficient to
sample a relatively small number of service times to come
up with a routing policy that is asymptotically optimal. To
our knowledge, our paper is the first to investigate asymp-
totically optimal routing for the inverted-V model in the
ED and ED+QED regimes.

Beyond the control problem for the inverted-V system,
there is a growing body of literature that deals with dynamic
control of multiclass parallel server systems with hetero-
geneous servers. This problem is often referred to as skill-
based routing. Recently, it has been shown by Gurvich
and Whitt (2007b, 2010) that if a general multiskill sys-
tem has service rates that are server dependent (i.e., they
are independent of the customer class), then the system
can be reduced to an inverted-V system. They then rely
on the results of Armony (2005) to establish asymptotic
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optimality of their general fixed-idleness-ratio (FIR) policy
and of square-root safety-staffing rule. Both of these papers
assume that customers are infinitely patient and therefore
do not abandon. The results of this paper can be used to
extend their results to models with customers abandonment,
if abandonment rates were appropriately ordered. A more
general skill-based routing model is covered in Atar et al.
(2009). There, the authors establish that if service rates
are pool-dependent, then the control problem is asymptoti-
cally reducible to a one-dimensional control problem, which
is based on the implicit solution of an Hamilton-Jacobi-
Bellman (HJB) equation. Their result is structural in nature,
and as such does not reveal special structure like we do in
this paper. In Gurvich and Whitt (2007a), the authors estab-
lish reduction in dimensionality of the FIR policy as well
as weak convergence of the total number in the system into
an appropriate diffusion limit (convergence is for both the
transient process and in steady state). Our FSF policy is a
special case of the FIR policy and as such, state-space col-
lapse and weak convergence follow (see Propositions 4.1,
and Remark 4.1).
Another line of research represented by Harrison and

Zeevi (2005) and Bassamboo et al. (2006a, b) considers
joint staffing and routing in a general skill-based routing
framework, under the assumption that the arrival rate is
random and using stochastic fluid models.

2. Model Formulation
Consider a service system with a single customer class and
K server skills (each skill in its own server pool), all capa-
ble of fully handling customers’ service requirements. Ser-
vice times are assumed to be exponential, with a service
rate that depends on the pool (skill) of the particular server.
Specifically, the average service time of a customer who is
served by a server of skill k is 1/�k, k = 1�2� � � � �K. We
assume that the service rates are ordered as follows: �1 <
�2 < · · · < �K . Customers arrive to the system according
to a Poisson process with rate �. Delayed customers wait
in a buffer with infinite capacity. Customers are impatient.
In particular, if a customer’s service does not start within a
time that is exponentially distributed with rate �, this cus-
tomer abandons (reneges) and does not return to the system.
It is assumed that customers do not abandon once their ser-
vice starts. All interarrival times, service times, and time to
abandonment are assumed to be independent.
Let Nk be the number of servers in pool k. Also, let

�N = �N1�N2� � � � �NK� be the staffing vector. (Here and
elsewhere, �x is used to denote a vector whose elements
are x1� x2� � � � �) Let 
 	= 
��� �N� be the set of all non-
preemptive nonanticipating routing policies. Denote by � ∈

��� �N�, a policy that operates in a system with arrival
rate � and staffing vector �N . (At times we will omit the
arguments � and �N when it is clear or immaterial from the
context which arguments should be used.) Given a policy
� ∈ 
��� �N�, let V �t� be the offered (virtual) waiting time

of an arbitrary, infinitely patient customer who arrives to
the system at time t. That is, V �t� is the waiting time that
a customer who arrives at time t would experience, if this
customer never abandons. Let V ��� be the offered wait-
ing time in steady-state. Denote by W 	= W��� the actual
waiting time in steady-state, defined as W��� 	= V ���∧� ,
where � ∼ exp��� (that is, � has the same distribution of
the time to abandonment) and is independent of V ����.
Accordingly, let P��W > T � be the steady-state probabil-
ity that a customer is delayed more than T time units
(before starting service or abandoning), and let P��ab� be
the steady-state probability that a customer abandons.3 Our
first goal in this paper is to find a policy in 
 that mini-
mizes the latter probability.
A more ambitious goal is to jointly identify staffing lev-

els N1� � � � �NK and a routing policy to minimize staffing
costs subject to a constraint on system performance (such
as the probability of waiting more than T and/or the frac-
tion of customers who abandon). Generally, solving the
staffing and control problems concurrently has been infea-
sible. Hence, researchers commonly end up solving one
while assuming the solution to the other is given. A dis-
tinguishing feature of our “divide and conquer” approach
is that we identify a control policy which is near-optimal
given any relevant staffing level, and therefore we are able
to solve the staffing and the control problems concurrently.
The joint staffing and routing problem can be formulated

as follows. Suppose the cost of staffing the system with Nk

servers of skill k is Ck�Nk�. The total staffing cost is hence
C�N1�N2� � � � �NK� = C1�N1�+C2�N2�+· · ·+CK�NK�. We
wish to determine the number of servers required of each
skill in order to minimize the staffing cost while main-
taining a target service level constraint. The service per-
formance measure that we study first is the steady-state
probability that a customer abandons the system. Equiva-
lently, we focus on the long-term proportion of customers
who abandon. Let 0 < 
 < 1 be the target upper bound on
the fraction of abandonment. The joint staffing and routing
problem is now stated as

minimize C1�N1� + C2�N2� + · · · + CK�NK��

subject to P��ab��
� for some � ∈ 
��� �N��

N1�N2� � � � �NK ∈�+�

(1)

It is implied from (1) that the decision variables are
N1� � � � �NK . (We use the convention that the bottom line
in an optimization problem corresponds to the decision
variables.) However, given the optimal staffing vector, one
must also specify the routing policy � that would obtain
the desired abandonment probability. For the rest of the
paper we consider homogeneous cost functions of the form
C� �N� = c1N

p
1 + c2N

p
2 + · · ·+ cKN

p
K , with p > 1 and ck > 0

for all k.
Suppose that the routing policy � ∈ 
 is used, and let

t � 0 be an arbitrary time point. We denote by Zk�t���
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the number of busy servers of pool k (k = 1�2� � � � �K) at
time t, and Q�t��� the queue length at this time. Finally,
let Y �t��� be the total number of customers in the sys-
tem (sometimes referred to as the head-count). That is,
Y �t��� = Z1�t���+Z2�t���+· · ·ZK�t���+Q�t���. We
use t = � whenever we refer to steady-state. At times, we
omit � if it is clear from the context which routing policy
is used. Work-conserving policies will play an important
role in our paper.

Definition. A control policy � ∈ 
 is called work con-
serving if there are no idle servers whenever there are
some delayed customers in the queue. In other words, �
is work conserving if Q�t��� > 0 implies that Z1�t��� +
Z2�t��� + · · · + ZK�t��� = N , where

N 	= N1 + N2 + · · · + NK

is the total number of servers.

For a given staffing vector the routing (dynamic control)
problem is defined as follows:

minimize P��ab��

� ∈ 
��� �N��
(2)

In the following section we address a simpler version of
this routing problem by considering policies that allow for
preemption. Specifically, at any time, it is allowed to hand
off a customer from one server to another.

3. Optimal Preemptive Routing
In this section we describe a simple preemptive policy,
FSFp ((preemptive) faster server available first (the sub-
script p is for preemptive)), which is optimal within the
set of all nonanticipating, but possibly preemptive, poli-
cies with respect to minimizing the fraction of customers
who abandon. Section 4.3 will describe our proposed non-
preemptive policy, FSF, which is also simple but is not
necessarily optimal for any fixed size system. However,
it is asymptotically optimal as the system grows large
according to the QED regime, in terms of the fraction of
abandonment.
Consider a fixed system with fixed arrival rate and

staffing vector. Furthermore, consider the more general
family of policies 
p ⊇ 
, which is the family of all nonan-
ticipating, possibly preemptive policies. What is meant by
preemptive in the context of this paper is that a customer
who is served by a particular server may be handed off to
another server, who will resume the service from the point
it has been discontinued. We first show that one can restrict
attention to first-come-first-served (FCFS) policies.

Proposition 3.1 (FCFS Is Optimal). Consider the set 
all
of all nonanticipating, possibly preemptive policies that are
not necessarily FCFS. Then to minimize P��ab� within

all, it is sufficient to consider FCFS policies.

Let FSFp ∈ 
p be the policy in 
p that is FCFS and
is characterized by the following two properties: At any
time point t � 0: (1) Faster servers are used first: If
Zk�t�FSFp� < Nk, then Zj�t�FSFp� = 0, for all j < k.
(2) Work conservation: If Z1�t�FSFp�+Z2�t�FSFp�+· · ·+
ZK�t�FSFp� < N , then Q�t�FSFp� = 0. The next proposi-
tion establishes the optimality of FSFp within 
p.

Proposition 3.2 (Optimal Preemptive Routing). Con-
sider the preemptive routing policy, FSFp, that keeps the
faster servers busy whenever possible. Then it is optimal
in the sense that it stochastically minimizes the cumula-
tive number of customers who have abandoned the system
by any time t � 0, within the family of nonanticipating,
possibly preemptive, possibly non-FCFS, and possibly not
work-conserving policies. In particular, FSFp minimizes the
abandonment probability P�ab�. (By ergodicity, P�ab� is
also equal to the long-time fraction of abandonment.)

Corollary 3.1. Recall that Q��� and W��� are the
steady-state queue length and waiting time, respectively.
The preemptive routing policy, FSFp, that always assigns
customers to the faster servers first is also optimal in the
sense that it minimizes the steady-state expected queue
length E�Q���� and the steady-state expected waiting time
E�W����.

Remark 3.1 (State-Space Collapse Under FSFp). Note
the state-space collapse associated with the policy FSFp.
For a work-conserving policy, the state-space is generally
K-dimensional. However, under FSFp it is sufficient to
know the total number of customers in the system in order
to specify exactly how they are distributed among the server
pools and the queue. In particular, the total number of jobs
in the system Y may be described as a birth-and-death pro-
cess with constant birth rates ��y� ≡ �� ∀y � 0� and a
piecewise-linear death rate function:

��y�=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y�K if y�NK

�y−NK��K−1+NK�K if NK <y�NK−1+NK

���
���

�y−�N2+···+NK���1+N2�2+···+NK�K

if N2+···+NK <y�N

�y−N��+N1�1+N2�2+···+NK�K

if y >N �

(3)

The following proposition stipulates that the queue length
and the total number of idle servers in the inverted-V
system, working under any work-conserving policy, may
be bounded from above and from below by the queue
length and number of idle servers in two corresponding
M/M/N + M systems, respectively. We refer back to it
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in our asymptotic analysis to establish tightness (proof of
Proposition 4.3) and express limiting distributions (proof of
Proposition 6.2) of some of the relevant scaled processes.

Proposition 3.3. Consider three systems:
(A) System A is the inverted-V system of this paper, with

K pools of servers, service rates �1 < �2 < · · · < �K and
pool sizes N1�N2� � � � �NK , respectively. Suppose that system
A works under an arbitrary work-conserving policy.
(B) System B is an M/M/N B + M system with N B

servers, all working with rate �K , and N1�1 +N2�2 +· · ·+
NK�K �N B�K .
(C) System C is an M/M/N C + M system with N C

servers, all working with rate �1 and N1�1 +N2�2 +· · ·+
NK�K �N C�1.
All systems have the same arrival rate � and the same
individual abandonment rate �. Then there are versions of
the queue length processes QA, QB, and QC and the total
number of busy servers ZA, ZB, and ZC associated with
systems A, B, and C, respectively, such that QC �QA �QB

and N B − ZB � �N1 + N2 + · · · + NK� − ZA � N C − ZC , at
all times, almost surely.

4. Asymptotically Optimal Control
The joint staffing and routing problem (1) is difficult to
solve in a closed form. Specifically, given fixed values
of �1 < �2 < · · · < �K�� and �N = �N1�N2� � � � �NK�, one
needs to find a policy � ∈ 
��� �N� that minimizes the
probability of abandonment in order to determine if the
staffing vector �N is feasible for Problem (1). This is hard
to do. In addition, one would need to develop an effi-
cient search technique to find the optimal staffing vector
among all the feasible ones. Instead, we take an asymp-
totic approach, which leads to asymptotically optimal rout-
ing rules for systems with many servers and high demand
(i.e., large values of � and �N ). To this end, we con-
sider a sequence of systems indexed by � (to appear as
a superscript) with increasing arrival rates � ↑ �, and
increasing total number of servers N � but with fixed ser-
vice rates �1��2� � � � ��K , and a fixed abandonment rate
�. We first solve the control problem asymptotically. We
then use this solution in identifying asymptotically optimal
staffing in §5.
We analyze this problem in both the ED and the QED

regimes. As is often the case for this type of analysis, the
ED regime is much simpler to study than its QED coun-
terpart. Consistently, the analysis for the QED regime is
much more detailed. The analysis of the ED+QED regime
is deferred to §6.

4.1. ED Regime: Asymptotic Framework
and Results

In the ED regime the number of servers of each pool N �
k ,

k = 1�2� � � � �K, grows with � with traffic intensity �� that
satisfies

�� 	= �∑K
k=1 �kN

�
k

→ � > 1� as �→�� (4)

In particular, the system is overloaded. Under these cir-
cumstances, flow conservation considerations, as in Whitt
(2004), establish that under any work-conserving policy
(including the policy FSFP )

P��ab� = 1−
∑K

k=1 �kN
�
k

�
→ � − 1

�
� as �→�� (5)

Let �N � be the staffing vector of the �-system. Then, we
define the ED scaled version of the routing problem (2) to be

minimize lim sup
�→�

P�
���ab��

�� ∈ 
��� �N ���

(6)

In light of the optimality of FSFP and the fact that
P��ab� is asymptotically the same for all work-conserving
policies (5), we conclude that all work-conserving policies
are asymptotically optimal with respect to (6) in the ED
regime.

4.2. QED Regime: Asymptotic Framework

In contrast to the ED regime in the QED regime the traffic
intensity is assumed to converge to 1 (see (7) below). In
addition, in this regime one needs to carefully define the
limiting proportions of the size of the various server pools.
Assume that there are K numbers ak � 0, k = 1� � � � �K,
with a1 > 0 and

∑K
k=1 ak = 1, such that the number of

servers of each pool N �
k , k = 1�2� � � � �K, grows with � as

follows:

N �
k = ak

�

�k

+ o���� as �→�� or�

lim
�→�

�kN
�
k

�
= ak� (A1)

Condition (A1) guarantees that the total traffic intensity,

�� 	= �∑K
k=1 �kN

�
k

� (7)

converges to 1, as �→�, and hence, for large �, the sys-
tem is in heavy traffic. Also, in view of (A1), the quantity
ak�/�k can be considered as the offered load for server
pool k. Now introduce

� 	=
[ K∑

k=1

ak/�k

]−1

� (8)

then �/� can be interpreted as the total offered load for
the whole system. Given this definition of �, (A1) implies
that the total number of servers N � 	=∑K

k=1 N �
k satisfies

N � = �

�
+ o���� as �→�� or� lim

�→�
�

N �
= �� (9)
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Also,

�� ≈ �

N ��
� (10)

in the sense that lim�→� ��/��/N ��� = 1. Finally,

qk 	= lim
�→�

N �
k

N �
= ak

�k

�� 0� k = 1� � � � �K� (11)

where qk is the limiting fraction of pool k servers out of
the total number of servers. The condition a1 > 0 guaran-
tees that q1 > 0, and hence the slowest server pool 1 is
asymptotically nonnegligible in size. Clearly,

∑K
k=1 qk = 1

and
∑K

k=1 qk�k = �.
In view of the above discussion, one observes that

Assumption (A1) implies that quantities involved in the
process such as the arrival rate, the offered load, and the
size of the different server pools are all of the order of N �.
Therefore, one expects to get finite limits of these quanti-
ties when dividing all of them by N �. As it turns out, due to
the functional strong law of large numbers (FSLLN), this
scaling leads to the fluid dynamics of the system, in the
limit as �→�. The details are provided in §A of the online
companion. In addition to the fluid scaling, we introduce a
more refined diffusion scaling.
Diffusion Scaling: For � > 0 and any fixed sequence of

work-conserving policies �� ∈ 
���N �� (omitted from the
notation), define the centered and scaled process �X�� · � =
�X�

1 � · �� � � � �X�
K� · �� as follows:

X�
1 �t� 	= Q��t� + Z�

1 �t� − N �
1√

N �
� (12)

and, for k = 2� � � � �K, let

X�
k �t� 	= Z�

k �t� − N �
k√

N �
� (13)

Note that for k = 2� � � � �K, X�
k �t� � 0 for all t, and

that for all k = 1�2� � � � �K, �X�
k �t��− 	= −min�X�

k �t��0�
corresponds to the number of idle servers, scaled
by 1/

√
N �. Similarly, �X�

1 �t��+ corresponds to the
queue length, again scaled by 1/

√
N �. Finally, let

X��t� 	=
K∑

k=1

X�
k �t� = Q��t� +∑K

k=1 Z�
k �t� − N �

√
N �

= Y ��t� − N �

√
N �

� (14)

From work conservation it follows that �X��t��− is the total
number of idle servers, and �X��t��+ = �X�

1 �t��+ is the
queue length, both scaled by 1/

√
N �. Finally, note that if

X�
k �t� < 0 for some k, then X�

1 �t�� 0.
For all � > 0, the scaled offered waiting time pro-

cess is defined as �V ��t� = √
N �V ��t�� t � 0�� > 0� and

its scaled steady-state is �V ���� = √
N �V ������ > 0�

Finally, the scaled steady-state actual waiting time is
�W ���� = √

N �W ������ > 0�
As will be shown later, in order for the diffusion scal-

ing to have well-defined limits, as �→�, the following
assumption must be introduced, in conjunction with (A1):

K∑
k=1

�kN
�
k = � + �

√
� + o�

√
��� as �→�� or

lim
�→�

∑K
k=1 �kN

�
k − �√

�
= � (A2)

for some � ∈ �−����.
Condition (A2) is a square-root staffing rule (similar to

Halfin and Whitt 1981 and Borst et al. 2003). As shown
later (Corollary 4.2), it guarantees that under the appro-
priate routing, the fraction of abandonment is of the order
of 1/

√
�. For k = 1� � � � �K, and � > 0, let −� < ��

k < �
be defined as: ��

k 	= ��kN
�
k − ak��/

√
�. Then ��

k

√
� is the

“safety” capacity associated with server pool k, “beyond”
the nominal allocation of ak�. In particular, clearly ��

k � 0
if ak = 0, ��

k = o�
√

��� as �→�� ∀k = 1� � � � �K� and
�� 	=∑K

k=1 ��
k→�� as �→�� Note that we do not require

the individual sequences ���
k��>0 to have a limit for any

value of k = 1� � � � �K. All that is assumed is that their sum
converges to �, and the following additional condition is
also assumed to hold:

� 	= lim
�→�

K∑
k=1

��
k

�k

= lim
�→�

√
�

(
N �

�
− 1

�

)

exists for some finite number �� (A3)

Let �N � be the staffing vector of the �-system. Then, we
define the QED scaled version of the routing problem (2)
to be

minimize lim sup�→�
√

� P�
���ab��

�� ∈ 
��� �N ���
(15)

Corollary 4.2 justifies the above as the sensible scaling of
P��ab� under Conditions (A1) and (A2).

4.3. QED Regime: Faster Server First (FSF) is
Asymptotically Optimal

The preemptive policy FSF can be described as follows.
Upon a customer arrival or a service completion, assign the
first customer in the queue (or the one that has just arrived,
if the queue is empty) to the fastest available server. Judg-
ing by the literature on the slow server problem (e.g., Lin
and Kumar 1984), this policy is not likely to be optimal.
However, as we show in this section, it is asymptotically
optimal as the arrival rate � grows to � and the number
of servers per pool grow according to (A1) and (A2); the
asymptotic optimality is in terms of the steady-state proba-
bility of abandonment within the family of non-preemptive
nonanticipating policies.
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Theorem 4.1 (Asymptotic Optimality of FSF). Con-
sider a sequence of systems indexed by the arrival rate �,
that satisfy conditions (A1) and (A2). Then the non-
preemptive policy FSF is asymptotically optimal with
respect to (15) within the family 
p of all possibly preemp-
tive, nonanticipating policies. In particular, it is asymptot-
ically optimal with respect to (15) within the family 
 of
non-preemptive, nonanticipating policies.

Corollary 4.1. Consider a sequence of systems indexed
by the arrival rate � that satisfy Conditions (A1)
and (A2). Then the non-preemptive policy FSF is asymp-
totically optimal with respect to the minimization of
lim sup�→� E �Q������� and lim sup�→� E �W �������.

To prove the asymptotic optimality of FSF as
�→�, we will show that as � grows, the process
�X�

1 � · ��X�
2 � · �� � � � �X�

K� · �� (recall the diffusion scaling in
§4.2) under FSF becomes close to the same process under
the preemptive policy FSFp; and in the limit, as �→�,
the two processes coincide. Taking the limits as t→�, we
will also show that the corresponding steady-state processes
become close, and hence the optimality of FSFp in steady-
state (see Corollary 3.1) will imply the asymptotic optimal-
ity of FSF. The key step in the proof of the equivalence
between the two processes is the state-space collapse of the
process �X�

1 � · ��X�
2 � · �� � � � �X�

K� · �� under FSF, into a one-
dimensional process, as �→�. Recall that such state-space
collapse holds for every � under FSFp (by Proposition 3.2
and Remark 3.1). When FSF is used, however, this is no
longer true, but the state-space collapse is attained when
�→�, as will be shown in Proposition 4.1 below.

4.3.1. State-Space Collapse. In this section we estab-
lish the state-space collapse result with respect to the pol-
icy FSF and the process �X�� · � = �X�

1 � · �� � � � �X�
K� · ��.

Because the policy here is fixed, we omit FSF from
all notation. Essentially, the state-space collapse result
indicates that as � grows, the one-dimensional process
X�� · � (see (14)) becomes sufficient in describing the
whole K-dimensional process �X�� · �. Specifically, we
show that as �→�, all the faster servers (from pools
k = 2� � � � �K) are constantly busy (or, more accurately,
the number of idle servers in these pools is of order
o�

√
N ��), and the only possible idleness is within the slow-

est servers (pool 1). Hence, as � grows, the processes
X�

2 � · �� � � � �X�
K� · � become negligible, while the processes

X�� · � and X�
1 � · � are close. This result is presented in the

following proposition.

Proposition 4.1 (State-Space Collapse). Suppose that
conditions (A1) and (A2) hold and that the work-
conserving non-preemptive policy FSF is used. In addition,
suppose that �X��0� → �X�0� = �x = �x1� � � � � xK�, in prob-
ability, as �→�. Then, X�

k � · � p→0, uniformly on compact
intervals, as �→�� ∀k � 2�

Remark 4.1 (State-Space Collapse for FSFp in the

QED Regime). Proposition 4.1 is also true if the preemptive
policy FSFp is used. Here the proof is much simpler.

We note that the state-space collapse result of Propo-
sition 4.1 essentially shows that to describe the limiting
behavior of the scaled process �X� it is sufficient to find the
diffusion limit of the total customer count (centered and
scaled) X�. Denoting this limit by X, we have that the limit
of X�

k , for k � 2, is identically zero, and the limit of X�
1 is

hence equal to X.

4.3.2. Stationary Diffusion Limit. In this section we
prove that the stationary distributions of the process �X�,
under both FSFp and FSF, converge to the stationary dis-
tribution of its diffusion limit �X, as �→�. Specifically, we
first spell out the stationary distribution of X = ∑K

k=1 Xk.
Next we show that the stationary distribution of X� under
both FSFp and FSF converges to this stationary distribu-
tion of X. In all processes we use � in place of the time
argument to denote steady-state.

Proposition 4.2 (Stationary Distribution of the Dif-

fusion Process). Let X� · � be a diffusion process, with
infinitesimal drift

m�x� =
⎧⎨
⎩

−�
√

� − �x x � 0�

−�
√

� − �1x x < 0�
(16)

and infinitesimal variance

�2�x� = 2�� (17)

Then the steady-state distribution of X has the density f � · �
given by

f �x�=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

√
�/���

√
�/�x+�/

√
��

1−���/
√

��
�� if x�0�

√
�1/���

√
�1/�x+�/

√
�1�

���/
√

�1�
�1−��� if x<0�

(18)

where � 	= �����1� �� = �1 + √
�h��/

√
��/√

�1h�−�/
√

�1��
−1 = P�X��� � 0�� and h� · � = �� · �/

�1− �� · �� is the hazard rate of the standard normal dis-
tribution. This steady-state distribution has the following
means:

EX+��� = �

[−�
√

�

�
+
√

�

�
h

(
�√
�

)]
� (19)

and

EX−��� = �1− ��

[
�
√

�

�1

+
√

�

�1

h

(
− �√

�1

)]
� (20)
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Proposition 4.3 (Convergence of the Steady-State

Distributions). Suppose that Conditions (A1) and (A2)
hold and that either FSF or FSFp is used. Then the sta-
tionary distribution of �X� weakly converges, as �→�, to
the stationary distribution of �X = �X�0� � � � �0�, where the
stationary distribution of the first coordinate, X, is given
in (18). Moreover, the stationary distribution of the scaled
virtual waiting time, �V �, weakly converges to the stationary
distribution of �X�+/�.

Corollary 4.2. Suppose that Conditions (A1) and (A2)
hold and that either FSF or FSFp is used. Then

lim
�→�

E �Q���� 	= lim
�→�

E
Q����√

N �
= EX+���� (21)

lim
�→�

E �W ���� 	= lim
�→�

E
√

N � �W��� = EX+���/�� (22)

lim
�→�

P̂ ��ab� 	= lim
�→�

√
N �P��ab� = �EX+���/�� (23)

and

lim
�→�

√
�P��ab� = �√

�
EX+���

= √
�� ·

[
h

(
�√
�

)
− �√

�

]
� (24)

where EX+��� is given in (19).

From Corollary 4.2 it follows that under Conditions
(A1) and (A2),

√
�P��ab� converges to a well-defined

limit, as �→�, under the FSF policy. In particular,
lim�→� P��ab� = 0, which implies that the constraint in (1)
is satisfied trivially in the limit. Therefore, under the QED
asymptotic framework, the sensible optimization problem
to focus on is (15).

5. Asymptotically Optimal Staffing

5.1. Asymptotic Feasibility

In this section, we wish to characterize the feasible region
for the staffing problem (1). As noted before, characteriz-
ing this region exactly for fixed ���1� � � � ��K , �, and 
 is
difficult. Instead, we characterize this region asymptotically
for large values of � (i.e., as � → �).
It is interesting to note that in both the ED and the QED

regimes, the asymptotically feasible region is characterized
by a simple linear asymptotic inequality that is a function
of the staffing vectors through the corresponding total ser-
vice capacity. The linearity of the feasible region is not
surprising in view of the fact that under FSF, the limiting
scaled abandonment probability depends on the individual
capacities of the various servers pools through the overall
service capacity. Moreover, the latter is a linear function of
the number of servers in each pool.

5.1.1. ED Regime: Asymptotic Feasibility. For given
values of the parameters �1 < �2 < · · · < �K , and � and
a given value of 0 < 
 < 1, a sequence � �N �� of staffing
vectors, for a sequence of systems indexed by their arrival
rate �, is called asymptotically feasible if there exists a
sequence of routing policies �� ∈ 
��� �N �� such that

lim sup
�→�

P�
���ab��
� (25)

Proposition 5.1 characterizes the asymptotically feasible
region for the ED regime.

Proposition 5.1 (Asymptotically Feasible Region:

the ED Regime). Let 0 � 
 � 1, and let 0 < �1 < �2 <
· · · < �K and � be fixed. Consider a sequence of systems
indexed by the arrival rate � > 0, with � growing to infinity
and N �

k servers in pool k, k = 1� � � � �K. Let N � =∑K
k=1 N �

k

be the total number of servers in system �. Then there
exists a sequence ����, with �lm ∈ 
��� �N ���, of non-
preemptive policies, under which

lim sup
�→�

P�
���ab� = 
 (26)

if and only if

�1N
�
1 +···+�KN �

K ���1−
�+o���� as �→�� (27)

5.1.2. QED Regime: Asymptotic Feasibility. For
given values of the parameters �1 < �2 < · · · < �K , and
� and a given value of 0 < 
 < �, a sequence � �N �� of
staffing vectors, for a sequence of systems indexed by their
arrival rate �, is called asymptotically feasible if there exists
a sequence of routing policies �� ∈ 
��� �N �� such that

lim sup
�→�

√
�P�

���ab��
�4 (28)

Proposition 5.2 characterizes the asymptotically feasible
region, which is illustrated in Figure 2.5

Figure 2. The asymptotically feasible region for K = 2
in the QED regime.

N2

N1
N1�1+N2�2≥�+�√�
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Proposition 5.2 (Asymptotically Feasible Region-

Square-Root “Safety” Capacity). Let 0 < 
 < �, and
let 0 < �1 < �2 < · · · < �K and � be fixed. Consider a
sequence of systems indexed by the arrival rate � > 0,
with � growing to infinity and N �

k servers in pool k, k =
1� � � � �K. Let N � =∑K

k=1 N �
k be the total number of servers

in system �, and assume that

lim inf
�→�

N �
1

N �
> 0� (29)

Then there exists a sequence ����, with �� ∈ 
��� �N ���,
of non-preemptive policies, under which

lim sup
�→�

√
�P���ab� = 
 (30)

if and only if

�1N
�
1 +···+�KN �

K ��+�
√

�+o�
√

��� as �→�� (31)

where −� < � < � satisfies


	=
����1� �� = √
� � ·

[
h

(
�√
�

)
− �√

�

]
� (32)

with � 	= �����1� �� = �1+ √
�h��/

√
��/�

√
�1h�−�/

√
�1���

−1 =
P�X���� 0�.
In addition, � = −� (i.e., (31) is violated for all � > −�)
if and only if 
 = �, and � = � (i.e., (31) holds for
any � > 0) if and only if (30) holds for any arbitrary
� > 
 > 0, with the appropriate choice of ��.

5.2. Asymptotically Optimal Staffing

In this section, we study the staffing problem (1). Recall
that exact optimality is difficult to obtain, and hence we
present asymptotically optimal solutions. Our results so
far have identified an asymptotically optimal routing pol-
icy and the asymptotically feasible regions given in (27)
and (31) for the ED and QED regimes, respectively. We
now turn to finding an asymptotically optimal staffing rule
within the asymptotically feasible region.

5.2.1. Asymptotic Optimality Definition. Before stat-
ing our proposed solution for the asymptotic staffing prob-
lem, the notion of asymptotic optimality needs to be
defined. Consider a homogeneous staffing cost function of
the form C� �N� = C1N

p
1 +· · ·+CKN

p
K , where p > 1. In view

of the characterization of the feasible region given in (27)
and (31), it is expected that the optimal staffing cost will
be of the order of �p. In particular, defining asymptotically
optimality in terms of the cost ratio between two asymptot-
ically feasible staffing vectors is too crude a criterion, in the
sense that many plausible staffing vectors would satisfy it.
Hence, to establish a meaningful form of asymptotic opti-
mality, one is led to comparing normalized staffing costs
that measure the difference between the actual staffing costs

and a basic cost of order �p. One may refer to this criterion
as second-order asymptotic optimality.
To obtain this basic cost, consider the following auxiliary

staffing problem. For a positive constant x, let

minimize C1�N1� + C2�N2� + · · · + CK�NK��

subject to �1N1 + �2N2 + · · · + �KNK � x (SP)

N1�N2� � � � �NK � 0�

We will use the notation SP�x� to underline the dependence
of the problem (SP) on the parameter x.
In the QED regime, in light of Proposition 5.2, and

particularly the relationship (31), the problem SP��� can
be thought of as the fluid scale staffing problem, whose
solution is, therefore, a natural centering factor for the
asymptotic optimality criterion that we present below. This
problem, if accompanied by integral constraints, is a special
case of the set covering problem. Without the integral con-
straints, its optimal solution, �N ∗, is uniquely determined by

C ′
k�N

∗
k �

�k

= C ′
j �N

∗
j �

�j

� j� k = 1�2� � � � �K� (33)

and

�1N1 + �2N2 + · · · + �KNK = �� (34)

Let C� be the optimal cost obtained by solving SP���.
Then, C� will serve as the normalizing factor in this
regime.

Definition (Asymptotically Optimal Staffing in the

QED Regime). Suppose that � �N ∗���>0 is a sequence
of optimal solutions of the sequence of scaled staffing
problems:

minimize C1�N
�
1 � + C2�N

�
2 � + · · · + CK�N �

K��

subject to P�
���ab��
/

√
�� 0< 
 < �

for some �� ∈ 
��� �N ���

N �
1 �N �

2 � � � � �N �
K ∈�+�

(35)

with respect to sequences of arrival rates ��� and staffing
cost functions �C1� · �� � � � �CK� · ��. Let � 
N ���>0 be another
sequence of staffing vectors. Then, � 
N ���>0 is an asymptot-
ically optimal staffing sequence in the QED regime if, when
it is used to staff the system, then
(a) there exists a sequence of policies ����, with �� ∈


��� 
N �� such that lim sup�→�
√

�P���ab��
, and
(b) lim�→��C� �N ∗�� − C��/�C� 
N �� − C�� = 1.

Condition (b) requires that the proposed staffing does
not only match the optimal solution at the fluid scale
but also at the more refined normalized scale defined by
�C� �N ∗�� − C��.

For the ED regime, the fluid scale problem is given by
SP���1−
��. The solution of this problem coincides with
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our proposed solution in this regime. Hence, normalizing
the cost by the optimal cost of the fluid scale problem is
not meaningful in this case. Instead, for the ED regime we
establish a form of asymptotic optimality that is expressed
in terms of the distance of the proposed solution from the
true optimal solution.

Definition (Asymptotically Optimal Staffing in the

ED Regime). Suppose that � �N ∗���>0 is a sequence of opti-
mal solutions of the sequence of staffing problems:

minimize C1�N
�
1 � + C2�N

�
2 � + · · · + CK�N �

K��

subject to P�
���ab��
� 0< 
 < 1�

for some �� ∈ 
��� �N ���

N �
1 �N �

2 � · · · �N �
K ∈�+�

(36)

with respect to sequences of arrival rates ��� and staffing
cost functions �C1� · �� � � � �CK� · ��. Let � 
N ���>0 be another
sequence of staffing vectors. Then, � 
N ���>0 is an asymptot-
ically optimal staffing sequence in the ED regime if, when
it is used to staff the system, then
(a) there exists a sequence of policies ����, with �� ∈


��� 
N �� such that lim sup�→� P���ab��
, and
(b) � �N ∗� − 
N �� = o���.

Note that this definition is consistent with the asymp-
totically optimal definition used for this regime in
Mandelbaum and Zeltyn (2009).

Remark 5.1. One would expect that for the QED regime
a similar distance-based definition for asymptotically opti-
mal staffing would work with (b) above replaced by
� �N ∗� − 
N �� = o�

√
��. However, we were unable to iden-

tify a simple staffing rule that would satisfy this criterion in
that regime. Nevertheless, the criterion � �N ∗� − 
N �� = o���
can be shown to be satisfied in the QED regime, as well as
the ED+QED regime studied in §6.

5.2.2. ED Regime: Asymptotically Optimal Staffing.
Fix p > 1, ck > 0, k = 1� � � � �K and 0 < 
 < 1 and con-
sider the problem (36) with respect to the cost function
C� �N �� = c1�N

�
1 �p + · · ·+ cK�N �

K�p. Let �M∗� be an optimal
solution of the problem SP���1−
��. Note that the vector
�M∗� is not necessarily all integers, and let 
N � = � �M∗�� 	=

��M∗�
1 �� � � � � �M∗�

K ��; that is, 
N � is obtained from �M∗� by
rounding its elements to the closest integers from above.
We claim that 
N � is an asymptotically optimal staffing vec-
tor in the ED regime. Solving for �M∗� is illustrated in
Figure 3.
Before stating the asymptotic optimality of our proposed

solution, we state a result that shows that the difference in
cost between the optimal solution and our proposed solu-
tion cannot be too large.

Proposition 5.3. Consider a fixed target scaled aban-
donment probability of 
 ∈ �0�1�. Suppose that C� �N� =
c1N

p
1 + · · · + cKN

p
K , p > 0 and for � > 0 consider the

Figure 3. Asymptotic cost optimization for K = 2.

N2

N1

staffing vector 
N � = � �M∗��, where �M∗� = �M∗�
1 � � � � �M∗�

K �
is an optimal solution to SP���1− 
��. Then

�M∗� =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

���1−
��
���1/c1�

1/�p−1����2/c2�
1/�p−1��������K/cK�1/�p−1��∑K

k=1��
p
k/ck�

1/�p−1�
�

p > 1�

��1−
�

�k

ek� k=min�argmaxk=1�����K�ck/��k�
p���

0< p � 1�

(37)

where ek is a K-dimensional vector with the number 1 is
the kth position and 0 otherwise. Let �N ∗� be a sequence of
optimal solutions to (35). Then

lim
�→�

�C� �N ∗�� − C� �M∗���
�p

= 0� (38)

which also implies that

lim
�→�

�C� �N ∗�� − C� 
N ���
�p

= 0� (39)

Note that in the above proposition we consider all values of
p > 0. For the asymptotic optimality proposition below, we
need to restrict our attention to strictly convex cost func-
tions, i.e., p > 1.

Proposition 5.4 (Asymptotically Optimal Staffing in

the ED Regime). Consider a fixed target abandonment
probability of 
 ∈ �0�1�. Suppose that C� �N� = c1N

p
1 +

· · ·+ cKN
p
K , p > 1, and for � > 0 consider the staffing vec-

tor 
N � = � �M∗��, where �M∗� = �M∗�
1 � � � � �M∗�

K � is an opti-
mal solution to SP���1−
�� given in (37). Then � 
N ���>0

is an asymptotically optimal staffing sequence in the ED
regime with respect to (36).

5.2.3. QED Regime: Asymptotically Optimal Staffing.
Fix p > 1, ck > 0, k = 1� � � � �K and 0 < 
 < � and
consider the problem (35) with respect to the cost func-
tions Ck�N

�
k � = ck�N

�
k �p. Let −� < � < � be such
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that 
 = 
����1� ��, and let �M∗� be an optimal solu-
tion of the problem SP�� + �

√
��. Let 
N � = � �M∗�� 	=

��M∗�
1 �� � � � � �M∗�

K ��. We show that 
N � is asymptotically
optimal in the QED regime.
The following proposition is analogous to Proposi-

tion 5.3 with respect to the QED regime. It shows that
the difference in cost between the optimal solution and our
proposed solution cannot be too large. In fact, the distance
between these two vectors is even smaller than the distance
between the corresponding vectors in the ED regime. This
is to be expected because of the more refined scaling in
this regime.

Proposition 5.5. Consider a fixed target scaled abandon-
ment probability of 
 ∈ �0���. Suppose that C� �N� =
c1N

p
1 + · · · + cKN

p
K , and for � > 0 consider the staffing

vector 
N � = � �M∗��, where �M∗� = �M∗�
1 � � � � �M∗�

K � is an
optimal solution to SP�� + �

√
��. Here � satisfies 
 =


����1� �� (see (32)), and

�M∗� =��+�
√

��
���1/c1�

1/�p−1����2/c2�
1/�p−1��������K/cK�1/�p−1��∑K

k=1��
p
k/ck�

1/�p−1�

� > 0� (40)

Let �N ∗� be a sequence of optimal solutions to (35). Then

lim
�→�

�C� �N ∗�� − C� �M∗���
�p−1/2

= 0� (41)

which also implies that

lim
�→�

�C� �N ∗�� − C� 
N ���
�p−1/2

= 0� (42)

Proposition 5.6 (Asymptotically Optimal Staffing in

the QED Regime). Consider a fixed target scaled aban-
donment probability of 
 ∈ �0���. Suppose that C� �N� =
c1N

p
1 + · · · + cKN

p
K , and for � > 0 consider the staffing

vector 
N � = � �M∗��, where �M∗� = �M∗�
1 � � � � �M∗�

K � is an
optimal solution to SP�� + �

√
��. Here � satisfies 
 =


����1� �� (see (32)), and �M∗� is as given in (40). Then,
if � �= 0, � 
N ���>0 is an asymptotically optimal staffing
sequence in the QED regime with respect to (35).

Remark 5.2. Proposition 5.6 excludes the case � = 0.
When � = 0 the difference between C� �N ∗�� and C� might
be too small, so asymptotic optimality according to the
original definition might not hold. Alternatively, if one
defines asymptotic optimality in terms of Proposition 5.5,
then asymptotic optimality extends to the case � = 0.

6. Constraints on the Waiting
Time Distribution

Our discussion thus far was focused on solving the prob-
lem of minimizing staffing costs subject to an upper bound
on the fraction of abandonment. Another commonly used
constraint is an upper bound on the tail probability of the

waiting time distribution. Specifically, call centers are often
interested in the following problem version:

minimize C1�N1� + C2�N2� + · · · + CK�NK��

subject to P��W > T �� ��

for some � ∈ 
��� �N��

N1�N2� � � � �NK ∈�+�

(43)

for some fixed T � 0 and � ∈ �0�1�. In this section, we
solve (43) and explore its similarities and differences with
the model formulation (1).

Preemptive Routing. In §3 we established the opti-
mality of the policy FSFP with respect to the steady-state
fraction of abandonment among all nonanticipating, possi-
bly preemeptive routing policies. In particular, while FSFP

is FCFS and work conserving, no such restrictions were
imposed on the set of admissible policies. In contrast, if
one wishes to establish that FSFP stochastically minimizes
the steady-state waiting time distribution, some restrictions
are needed. Otherwise, one might be led to favor policies
that do not make sense service-wise.
To elaborate, the FCFS assumption is necessary for the

optimality of FSFP . If this assumption is removed, it is opti-
mal to give priority to customers who have already waited
T time units or more. Similarly, if the abandonment rate is
large, work-conservation becomes necessary for the opti-
mality of FSFP . In its absence, it makes sense to, at times,
idle servers while customers are in queue so that those
customers would abandon quickly, instead of being served
slowly. It turns out that if � �min��k� k = 1� � � � �K� = �1,
then such intentional idling is not beneficial. In words, the
assumption � � min��k� k = 1� � � � �K� = �1 implies that
average patience exceeds all average service times, which is
indeed what has been observed in practice; see, for exam-
ple, Tables 36 and 49 in Mandelbaum et al. (2000).
To conclude this discussion, we state the following

proposition, which is an analog of Proposition 3.2.

Proposition 6.1 (Optimal Preemptive Routing). Con-
sider the preemptive routing policy, FSFp. Then it is opti-
mal in the sense that it stochastically minimizes the total
number of customers in the system at any time t (including
t = �, i.e., in steady state) within the family of nonantici-
pating, possibly preemptive policies, which are also FCFS
and work conserving. In other words, for all � ∈ 
p,
if � is also FCFS and work conserving, then assuming
both systems start in the same state at time 0, we have
P�Y �t��� > y� � P�Y �t�FSFp� > y� for all y � 0 and all
0� t ��. Alternatively, if

� �min��k� k = 1� � � � �K�� (44)

then the work conservation assumption can be removed.
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Corollary 6.1 (Optimality of FSFp with Respect to

the Tail Probability). The policy FSFp stochastically
minimizes both the queue length and the waiting time
in steady-state among all FCFS work conserving policies
in 
p. In particular, FSFp minimizes the tail probability
P�W > T � in steady-state within this set of policies. Alter-
natively, if (44) holds, then the work-conservation assump-
tion can be removed.

ED+QED Regime: Asymptotically Optimal Routing
and Staffing. For a constraint of the type P�W > T � �
�, T > 0, 0 < � < 1, the papers of Baron and Milner
(2009) and Mandelbaum and Zeltyn (2009) showed that the
appropriate asymptotic regime is the so-called ED+QED
regime. In this regime, the ED staffing is refined by an addi-
tional square-root capacity. In the context of the inverted-V
model, this translates into a staffing vector that satisfies
K∑

k=1

�kNK = ��1− 
1� + �1

√
� + o�

√
��� (45)

where 
1 = G�T �, G�T � = 1 − exp�−�T �, and
−� < �1 < �.

Proposition 6.2. Let T > 0, 0 < � < 1 − G�T �, and let
0< �1 < �2 < · · · < �K and � be fixed. Suppose that either
� � �1 or that only work-conserving policies are allowed.
Consider a sequence of systems indexed by the arrival rate
� > 0, with � growing to infinity, and N �

k servers in pool
k, k = 1� � � � �K. Let N � =∑K

k=1 N �
k be the total number of

servers in system �. Then there exists a sequence ����, with
�� ∈ 
��� �N ��, of FCFS non-preemptive policies, under
which

lim sup
�→�

P�
���W > T � = � (46)

if and only if

�1N
�
1 + · · · + �KN �

K � ��1− 
1� + �1

√
� + o�

√
���

as �→�� (47)

where 
1 = G�T �, � = ��1 − G�T �� · ����1/
√

g�T ���,
g�T � = � exp�−�T �, and ��� · � = 1 − �� · � is the sur-
vival function of the standard normal distribution. More-
over, under (45), all work-conserving policies satisfy (46).

Notice the upper bound � < 1 − G�T �. This follows
from the fact that if we end up serving no customers—
and as a consequence, all customers abandon—we have
P�W > T � = 1− G�T �.
In light of Proposition 6.2, our proposed solution for

the problem (43) is 
N � = � �M∗��, where �M∗� is an opti-
mal solution to SP���1 − 
1� + �1

√
��. (Recall the defi-

nition of SP� · � given in §5.2.1.) Suppose that �N ∗� is an
optimal solution for the problem (43) with arrival rate �.
Then, similarly to Proposition 5.5, we can establish that
lim�→� �C� �N ∗�� − C� 
N ���/�p−1/2 = 0. In turn, analogously
to Proposition 5.6, if �1 �= 0,

lim
�→�

�C� �N ∗�� − C��1−
1��/t�C� 
N �� − C��1−
1�� = 1�

where C��1−
1� is the staffing cost associated with the opti-
mal solution of SP���1− 
1��.

QED Regime: Asymptotically Optimal Routing and
Staffing. For systems where short delays are desired or
prevalent, it might be more appropriate to consider a con-
straint of the form P�W > T /

√
�� � �, where T � 0 and

0 < � < 1. This constraint is consistent with the QED
regime. Working with FCFS policies only and under the
assumption that either � � �1 or otherwise only work-
conserving policies may be considered, we end up with
results that are analogous to the QED regime analysis in
§§4 and 5 and hence will not be elaborated upon here. The
one detail that is noteworthy is how to determine the coef-
ficient of the square-root safety staffing as a function of T
and �.
Using observations from Propositions 4.2 and 4.3, we

establish that if lim�→� N �
1 /N � > 0, then under the FSF

policy
lim
�→�

P�W > T /
√

�� = �

if and only if

K∑
k=1

�kNk = � + �0

√
� + o�

√
���

where −� < �0 < � satisfies

� = 1− ��
√

�T + �0/
√

��

1− ���0/
√

��

·
(
1+

√
�h��0/

√
��√

�1h�−�0/
√

�1�

)−1

� (48)

In particular, like �, �0 is a function of the service rates
through �1 only.

7. Conclusions
We study the joint staffing and routing problem with respect
to the inverted-V system with abandonment. Recognizing
that abandonment introduces new challenges, we propose
with a robust problem formulation that seeks to minimize
staffing costs subject to an upper bound on the abandon-
ment probability or an upper bound on the tail probability
of the waiting time. With respect to the former type of con-
straint problem, we show that it is asymptotically optimal
to use work-conserving FCFS policies. With respect to the
second constraint, we assume that only FCFS policies may
be used. Additionally, supported by empirical evidence, we
assume that the customer patience is stochastically longer
than their service time. In the absence of this assumption,
the set of admissible policies needs to be further restricted
to work-conserving FCFS policies.
For both types of abandonment and waiting time con-

straints, we show that in the ED and the ED + QED
regimes any FCFS work-conserving policy is an asymptot-
ically optimal control. In the QED regime, we show that
the FSF policy is an asymptotically optimal control. We
then proceed to define the asymptotically feasible region,
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which consists of staffing vectors under which the rele-
vant constraint can be asymptotically satisfied. This region
is shown to have a simple linear lower boundary, which
is characterized by the total service capacity exceeding a
regime-dependent function of the arrival rate. Finally, we
show that minimizing the staffing costs over this asymptot-
ically feasible region results in an asymptotically optimal
staffing rule.
This research can be extended in several ways. First,

one might consider models with more general service time,
interarrival time, or time-to-abandon distributions, and/or
with more general staffing costs.
Second, due to the cruder optimization criteria involved

with the ED regime, the analysis in that regime is much
simpler than that of the QED regime. This suggests that
solutions to other relevant skill-based routing problems may
be achievable. Indeed, recently, Atar et al. (2010) have
shown that a c�/� index rule for the V-model is asymp-
totically optimal in the ED regime. Their analysis relies
on the relevant fluid model. Surprisingly, while the opti-
mization criteria in the ED+QED regime are just as strin-
gent as those used in the QED regime, the control-related
asymptotic analysis in the ED and ED+QED regimes is,
nevertheless, very similar.
Third, while we study three separate asymptotic regimes,

in reality, one may be dealing with one particular real-life
system with a finite arrival rate. In that case, it is of interest
to know which asymptotic regime provides the best approx-
imation. In a numerical study, Mandelbaum and Zeltyn
(2009, Table 1) find that for the single-pool case, the QED
regime consistently provides good approximations except,
possibly, for cases in which the constraints are loose and
the system is large. It would be interesting to see to what
extent their insights extend into the multiserver-pool case.
Finally, Armony and Ward (2010) consider the issue of

fairness among the servers in the inverted-V model without
abandonment. The present paper can be helpful for study-
ing fairness in the model with impatient customers.

8. Electronic Companion
An electronic companion to this paper is available as part
of the online version that can be found at http://or.journal
.informs.org/.

Endnotes
1. Because � is a continuous parameter, it is appropriate
to refer to a “family” of systems rather than a “sequence.”
Instead, we fix a specific increasing subsequence of the
family ��� and use the superscript � for simplicity.
2. The expert reader might notice that this is a slightly
different characterization of the various regimes in terms
of the total service capacity rather than the total number of
servers. This characterization is suitable for the ∧-design
studied in our paper.

3. If the steady-state distribution does not exist, consider
P��W > T � and P��ab� as the random variables corre-
sponding to the essential limsups of the long-term relevant
proportions.
4. Note that while in (1) the value of 
 is restricted to
the open interval �0�1�, here we allow for values of 
 in
�0���. This is because the probability of abandonment on
the left-hand side of (28) is inflated by

√
�.

5. The feasible region in the ED regime has a similar linear
form as in Figure 2 with a lower bound specified by (27).
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