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A System Dynamics and Fluid Model

In this section we describe the dynamics of the system in terms of its flow balance equations. We also

describe the fluid model associated with the QED regime, and state and prove a fluid-related proposition

which is needed for the asymptotic analysis in this regime.

Let A(t) be the total number of arrivals into the system up to time t (that is, A(t), t ≥ 0, is a

Poisson process with rate λ). Also, for k = 1, ..., K, and for a policy π ∈ Π, let Ak(t; π) be the total

number of external arrivals joining pool k upon arrival up to time t, and let Bk(t; π) be the total number of

customers joining server pool k, up to time t, after being delayed in the queue. The number of arrivals into

the queue (excluding direct arrivals to one of the servers) up to time t is denoted by Aq(t;π). In addition, let

Tk(t; π) denote the total time spent serving customers by all Nk servers of pool k up to time t. In particular,

0 ≤ Tk(t; π) ≤ Nkt. Respectively, let Ik(t; π) be the total idle time experienced by servers of pool k up to

time t. Also, let Dk(t), t ≥ 0, be a Poisson process with rate µk. Then the number of service completions

out of server pool k may be written as Dk(Tk(t;π)). In addition, let E(t; π) represent the total time spent by

customers in the queue up to time t, and let L(t), t ≥ 0, be a Poisson process with rate θ. Then the number

of customers who have abandoned up to time t can be written as L(E(t; π)). The above definitions allow us

to write the following flow balance equations:

Q(t; π) = Q(0;π) + Aq(t; π)−
K∑

k=1

Bk(t; π)− L(E(t; π)), (A.1)

E(t; π) =
∫ t

0
Q(s; π)ds, (A.2)
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Zk(t; π) = Zk(0; π) + Ak(t; π) + Bk(t; π)−Dk(Tk(t; π)), k = 1, ..., K, (A.3)

Tk(t; π) =
∫ t

0
Zk(s; π)ds (A.4)

Y (t;π) = Y (0;π) + A(t)−
K∑

k=1

Dk(Tk(t; π))− L(E(t; π)), (A.5)

A(t) = Aq(t;π) +
K∑

k=1

Ak(t; π), (A.6)

Tk(t;π) + Ik(t; π) = Nkt. (A.7)

Finally, for any work conserving policy π we have the additional three equations:

Q(t; π) ·
(

K∑

k=1

(Nk − Zk(t; π))

)
= 0, ∀t ≥ 0, (A.8)

∫ ∞

0

K∑

k=1

(Nk − Zk(t; π))dAq(t; π) = 0, (A.9)

and
K∑

k=1

∫ ∞

0
Q(t; π)dIk(t; π) = 0. (A.10)

All of the above apply almost surely. In words, (A.8) means that there are customers in queue only when

all servers are busy. The verbal interpretation of (A.9) is that new arrivals wait in the queue only when all

servers are busy. Finally, (A.10) states that servers can only be idle when the queue is empty.

Fluid Scaling: For each λ > 0, k = 1, ..., K, and a fixed sequence of routing policies πλ ∈ Π(λ,Nλ)

let Q̄λ(t) = Qλ(t)
Nλ , and Z̄λ

k (t) = Zλ
k (t)

Nλ . Similarly, let Ȳ λ(t) = Y λ(t)
Nλ , Āλ(t) = Aλ(t)

Nλ , Āλ
k(t) = Aλ

k(t)

Nλ ,

Āλ
q (t) = Aλ

q (t)

Nλ , B̄λ
k (t) = Bλ

k (t)

Nλ , T̄ λ
k (t) = T λ

k (t)

Nλ , Īλ
k (t) = Iλ

k (t)

Nλ , and Ēλ(t) = Eλ(t)
Nλ . Finally, let D̄λ

k (t) =

Dλ
k (t) = Dk(t) and L̄λ(t) = Lλ(t) = L(t). That is, as equalities between processes,

(Q̄λ, Z̄λ
k , Ȳ λ, Āλ, Āλ

k , Āλ
q , B̄λ

k , T̄ λ
k , Īλ

k , Ēλ) = (Qλ, Zλ
k , Y λ, Aλ, Aλ

k , Aλ
q , Bλ

k , T λ
k , Iλ

k , Eλ)/Nλ,

and (D̄λ
k , L̄λ) = (Dk, L). Note that Dλ

k and Lλ need not be divided by Nλ, due to their definitions as

Poisson processes with rates µk and θ, respectively, which are independent of λ.

Using standard tools of fluid models (see for example [3], Theorem A.1) one can show that if

(Q̄λ(0), Z̄λ
k (0), k = 1, ..., K) are bounded, then the process X̄ := (Q̄λ, Z̄λ

k , Ȳ λ, Āλ, Āλ
k , Āλ

q , B̄λ
k , T̄ λ

k , Īλ
k ,

Ēλ, D̄λ
k , L̄λ) is pre-compact, as λ→∞, and hence any sequence has a converging subsequence (where the

convergence is almost surely, uniformly on compact intervals). Denote any such fluid limit with a “bar” over
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the appropriate letters but with no superscript (for example, let Q̄(t) be a fluid limit of Q̄λ(t), as λ→∞).

Note that, by Theorem A.1 of [3], equations (A.1)-(A.7) imply that the following flow balance equations

hold for any fluid limit:

Q̄(t) = Q̄(0) + Āq(t)−
K∑

k=1

B̄k(t)− θĒ(t), (A.11)

Ē(t) =
∫ t

0
Q̄(s)ds, (A.12)

Z̄k(t) = Z̄k(0) + Āk(t) + B̄k(t)− µkT̄k(t), k = 1, ..., K, (A.13)

T̄k(t) =
∫ t

0
Z̄k(s)ds (A.14)

Ȳ (t) = Ȳ (0) + µt−
K∑

k=1

µkT̄k(t)− θĒ(t), (A.15)

µt = Āq(t) +
K∑

k=1

Āk(t), (A.16)

T̄k(t) + Īk(t) = qkt. (A.17)

Finally, for work conserving policies, conditions (A.8)-(A.10) imply:

Q̄(t) ·
(

K∑

k=1

(qk − Z̄k(t))

)
= 0, (A.18)

∫ ∞

0

K∑

k=1

(qk − Z̄k(t))dĀq(t) = 0, (A.19)

and
K∑

k=1

∫ ∞

0
Q̄(t)dĪk(t) = 0. (A.20)

The following proposition shows that for every sequence of work-conserving routing policies and for

every fluid limit, the quantities Q̄(t) and Z̄k(t), k = 1, ...,K, remain constant if starting at time 0 from

some appropriate initial conditions.

Proposition A.1 (fluid limits) For λ > 0, let πλ ∈ Π(λ,Nλ) be a sequence of work-conserving policies

(omitted from the following notation), and let X̄ be some fluid limit of the processes associated with the

system, as λ→∞. Recall that qk = limλ→∞
Nλ

k

Nλ = ak
µk

µ, k = 1, ..., K, and suppose that Q̄(0) = 0 and

Z̄k(0) = qk, k = 1, ...,K. Then, Q̄(t) ≡ 0 and Z̄k(t) ≡ qk, k = 1, ..., K, for all t ≥ 0.
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Proof of Proposition A.1: Let f(t) =
∣∣Ȳ (t)− 1

∣∣ =
∣∣∣∑K

k=1(Z̄k(t)− qk) + Q̄(t)
∣∣∣, then f(t) ≥ 0 and

f(t) = 0 if and only if Q̄(t) = 0 and Z̄k(t) = qk for all k = 1, ...,K. By Lemma C.1 of [6], and from

the fact that f(·) is absolutely continuous, it is sufficient to show that whenever t ≥ 0 is such that f is

differentiable at t, we have ḟ(t) ≤ 0. Suppose that t is such that Ȳ (t) ≥ 1. Then, by (A.18) Z̄k(t) = qk, for

all k. In particular, if f is differentiable at t, then

ḟ(t) = ˙̄Y (t) = µ−
K∑

k=1

µkZ̄k(t)− θQ̄(t) ≤ µ−
K∑

k=1

µkqk = 0.

If t is such that Ȳ (t) < 1, then Z̄k(t) < qk for at least one k, and hence, by (A.18), Q̄(t) = 0. If f is

differentiable at t then,

ḟ(t) = − ˙̄Y (t) =
K∑

k=1

µkZ̄k(t) + θQ̄(t)− µ <

K∑

k=1

µkqk − µ = 0.

B Proofs

Proof of Proposition 3.1: Due to (A.4) below which relates between the abandonment probability and

the expected queue length, minimizing Pπ(ab) is equivalent to minimizing EQ(∞; π). We show that

EQ(∞;π) under any policy π which is not necessarily FCFS is equal to EQ(∞; π′), where π′ is a cor-

responding FCFS policy. We prove this using a construction of the policy π′ and a sample path coupling.

Consider the system under a particular sample path ω and the policy π. Construct a policy π′ with a sample

path ω′ as follows: The arrival times under both ω and ω′ are the same. Every time the policy π serves a

tagged customer which is not at the head of the line, the policy π′ leaves this customer in line, and instead

serves the head-of-line (HOL) customer. The service time of this HOL customer under ω′ is set equal to

the service time of the tagged customer under ω. Similarly, the time to abandon from that moment on of

the tagged customer under ω′ is set equal to the time to abandon of the HOL customer under ω. Since the

time to abandon distribution is exponential one can couple those two systems and get the same steady-state

expected queue length. Also, by construction, π′ is a FCFS policy.

Proof of Proposition 3.2: We prove the Proposition using sample-path coupling arguments. Consider two

coupled systems both with the same initial conditions, and the same sequence of arrivals. System 1 operates

under an arbitrary policy π ∈ Πp while System 2 operates under FSFp. For all t ≥ 0 and i = 1, 2, let

Qi(t), Y i(t), and Abi(t) be the queue length at time t, the head-count at this time, and the total number of
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abandonment up to this time in System i, respectively. We claim that the two systems can be coupled such

that the following three properties hold almost surely for all t ≥ 0:

Ab1(t) ≥ Ab2(t), (A.1)

Q2(t)−Q1(t) ≤ Ab1(t)−Ab2(t), (A.2)

and

Y 2(t)− Y 1(t) ≤ Ab1(t)−Ab2(t). (A.3)

Establishing property (A.1) will complete the proof of the proposition. Let t0 = 0. We define the set of

path-dependent time points 0 < t1 < t2 < ... and corresponding state transitions, inductively. For n ≥ 1,

suppose that 0 < t1 < t2 < ... < tn have been determined. Let tn+1 be the time of the first transition in

either system, after time tn, and let i = 1 if the transition is in system 1 and i = 2, otherwise.

• If Ab1(tn) = Ab2(tn) and the transition at time tn+1 corresponds to an abandonment in system 2,

then we impose an abandonment in system 1 at the same time.

• Otherwise, if Q2(tn)−Q1(tn) = Ab1(tn)−Ab2(tn) or Y 2(tn)− Y 1(tn) = Ab1(tn)−Ab2(tn) and

the transition at time tn+1 corresponds to a service completion in system 1, then we impose a service

completion in system 2 at the same time.

• Otherwise, the relevant transitions occur as follows: arrivals occur into both systems simultaneously,

while departures and abandonment occur in system i only.

We prove (A.1)-(A.3) by induction on tn, n = 0, 1, 2, .... At time t0 = 0 both systems are assumed to have

the same state and therefore properties (A.1)-(A.3) are trivially satisfied. Suppose that these properties are

satisfied for all t ≤ tn. We need to establish that they are also satisfied at tn < t ≤ tn+1. Clearly, it suffices

to prove that they are satisfied at t = tn+1. We verify the three properties as follows:

• Verification of (A.1): This property might be violated only if Ab1(tn) = Ab2(tn) and at time tn+1,

there is an abandonment from system 2 and not in system 1. But, by the construction of out coupling,

any such transition in system 2 will be accompanied by a transition in system 1. This coupling is valid

only if Q2(tn) ≤ Q1(tn), which holds due to (A.2) and the equality in (A.1).

• Verification of (A.2): This property might be violated if Q2(tn) − Q1(tn) = Ab1(tn) − Ab2(tn),

and one or more of the following occurs: a) Q1(tn) > 0 and Q2(tn) = 0, b) Q1(tn) > 0, and there
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is a service completion in system 1 and not in system 2, or c) there is an arrival into both systems

that enters service in system 1 and joins the queue in system 2. Case a) cannot occur, because, by

(A.1), Q2(tn) ≥ Q1(tn) > 0. Case b) may be contradicted by our construction of the coupling. This

coupling is valid only if
∑K

k=1 µkZ
1
k(tn) ≤ ∑K

k=1 µkZ
2
k(tn). But, since Q2(tn) ≥ Q1(tn) > 0,

we have that, by the work-conservation properties of FSFp, all servers are busy in system 2 at time

tn, which implies that
∑K

k=1 µkZ
2
k(tn) =

∑K
k=1 µkNk. Finally, c) implies that, at time tn, all the

servers are busy in system 2 and some servers are idle in system 1. Th! erefore, Y 2(tn)− Y 1(tn) >

Q2(tn) + N − (Q1(tn) + N) = Q2(tn)−Q1(tn) = Ab1(tn)−Ab2(tn) which violates (A.3).

• Verification of (A.3): The latter might be violated if Y 2(tn) − Y 1(tn) = Ab1(tn) − Ab2(tn) and a

service completion occurs in system 1 only. But, this cannot occur due to our coupling construction.

This coupling is valid only if
∑K

k=1 µkZ
1
k(tn) ≤ ∑K

k=1 µkZ
2
k(tn). But, due to (A.1), Y 2(tn) ≥

Y 1(tn). In particular, due to the work-conserving nature of FSFp, there are more busy servers in

system 2 than in system 1. Now, due to the fast server first property of FSFp this also implies that
∑K

k=1 Z2
k(tn)µk ≥

∑K
k=1 Z1

k(tn)µk.

Proof of Corollary 3.1: Notice that, in steady-state, the following balance equation holds for any policy

π ∈ Πp (see also equation (2) in [4]):

θ · E[Q(∞;π)] = λ · Pπ(ab). (A.4)

The left-hand-side corresponds to the rate of abandonment from the system, and the right-hand-side de-

scribes the rate of arrival of customers who will eventually abandon. From Little’s law and (A.4) we also

obtain a relationship between the expected waiting time and probability of abandonment in steady-state:

θ · E[W (∞; π)] = Pπ(ab). (A.5)

Proposition 3.2 together with the relationships (A.4) and (A.5) completes the proof.

Proof of Proposition 3.3: The proof is shown for K = 2. The general case follows similarly. We first

show that QA ≤ QB and that ZA − (N1 + N2) ≤ ZB −NB , almost surely. Consider two coupled systems,

A and B, both with the same initial conditions (all servers are busy and no customers in queue) and the

same sequence of arrivals. We will show that the two systems can be coupled such that the following two

properties hold, almost surely, for all t ≥ 0:
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1. QA(t) ≤ QB(t), and

2. ZA(t)− (N1 + N2) ≤ ZB(t)−NB ,

Let t0 = 0. We define the set of path-dependent time points 0 < t1 < t2 < ... and corresponding

state transitions, inductively. For n ≥ 1, suppose that 0 < t1 < t2 < ... < tn have been determined. Let

tn+1 be the time of the first transition in either system, after time tn, and let i = A if the transition is in

system A and i = B, otherwise.

• If QA(tn) = QB(tn) > 0 and the transition at time tn+1 corresponds to a service completion or an

abandonment in system B, then we impose a service completion or an abandonment in system A, at

the same time, respectively.

• Otherwise, if ZA(tn) − (N1 + N2) = ZB(tn) − NB , QB(tn) = 0, and the transition at time tn+1

corresponds to a service completion in system B, then we impose a service completion in system A,

at the same time.

• Otherwise, the relevant transitions occur as follows: arrivals occur into both systems simultaneously,

while departures and abandonment occur in system i only.

We prove 1. and 2. by induction on tn, n = 0, 1, 2, .... At time t0 = 0 both systems are assumed to have

all servers busy and no queue. Therefore properties 1. and 2. are trivially satisfied. Suppose that these

properties are satisfied for all t ≤ tn. We need to establish that they are also satisfied at tn < t ≤ tn+1.

Clearly, it suffices to prove that they are satisfied at t = tn+1. We verify the two properties as follows:

• Verification of 1.: This property might be violated only if QA(tn) = QB(tn) > 0 and at time

tn+1, there is a service completion or an abandonment in system B and not in system A. But, by

the construction of out coupling, any such transition in system B will be accompanied by a similar

transition in system A. The coupling with respect to service completions is valid because, due to

work-conservation, the total service rate in system B at time tn is NBµ2 which is less than or equal to

N1µ1 + N2µ2, the total service rate in system A. The coupling with respect to abandonment is valid

because both queue lengths are equal at time tn.

• Verification of 2.: This property might be violated if ZA(tn)−(N1+N2) = ZB(tn)−NB , QB(tn) =

0, and there is a service completion in system B, but not in system A. This cannot occur due to the

construction of our coupling. This coupling is valid only if the total service rate in system B is less
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than or equal to the total service rate in system A. The latter is true because if ZB = NB −m where

m ≤ NB , then ZA = N1 + N2−m. Also, the total service rate in system A is minimal when the idle

servers are the faster ones. In other words, the total service rate in system A is greater than or equal to

x :=





N1µ1 + (N2 −m)µ2, if m ≤ N2,

(N1 − (m−N2))µ1, if m > N2.

In either case, x ≥ (NB −m)µ2.

The comparison between systems A and C is analogous. The details are omitted.

Proof of Proposition 4.1: The proof follows directly from Theorem 3.1 of [5] (our model satisfies assump-

tions C-1 (pool dependent service rate) and C-3 (the graph that connects server pools to customer classes is

a tree) of that theorem).

Proof of Remark 4.1: The proof follows directly from Theorem 3.1 of [5] (our model satisfies assumptions

C-1 and C-3 of that theorem).

Proof of Proposition 4.2: The proof follows from [2]. Note that the process X(·), restricted to [0,∞), is

a an O-U process with infinitesimal drift −δ
√

µ − θx and variance 2µ. Hence, according to [2, (18.33)],

its steady-state density, conditional on X(∞) ≥ 0, is normal with mean −δ/
√

µ/θ and variance µ/θ,

conditioned on having non-negative values only (see [2, (18.28)]). Similarly, the process X(·) restricted to

the negative half-line is an O-U process with infinitesimal drift −δ
√

µ − µ1x and variance 2µ. Therefore,

its stationary density, conditional on X(∞) < 0, is the density of a normal random variable with mean

−δ
√

µ/µ1, and variance µ/µ1, conditioned on having negative values only. Putting these two densities

together, establishes that f(x) is indeed the steady-state density of X , with α = P (X(∞) ≥ 0). To find the

value of α, note that f(·) is continuous because the infinitesimal variance is continuous on the whole real

line (see [2, p. 471]). Hence, α may be solved for by a smooth fit, namely, by equating the limits of f(·) at

0 from both left and right.

Proof of Proposition 4.3: By Corollary 4.2 of [5] it suffices to show that:

1. There exists a stationary distribution of ~Xλ(·) for all λ.

2. The sequence of stationary distributions of ~Xλ(·) is tight.

We establish 1. and 2. for K = 2. The general case follows similarly.
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1. Fix λ > 0. First note that under FSFp the total number in the system Y λ is a Birth and Death

process with birth rates λ(y) = λ and death rates µλ(y) as given in (3.1). Due to abandonment, the

system is stable for all λ, and the stationary distribution is given by pλ
n := P (Y λ(∞) = n) = pλ

0πλ
n,

n = 0, 1, ..., where πλ
n = λn∏n

i=1 µλ(i)
, n = 0, 1, ..., and pλ

0 =
[∑∞

n=0 πλ
n

]−1. Clearly, the stationary

distribution of Xλ = Y λ−Nλ√
Nλ

, can be easily obtained from the stationary distribution of Y λ. Finally,

since ~Xλ is easily obtained as a one-to-one function of its sum Xλ, the existence of a steady-state

distribution for ~Xλ has been established.

To show the existence of a stationary distribution of ~Xλ under the non-preemptive policy FSF one can

use the stationarity of the process with respect to FSFp and the dominance of FSFp over FSF which

was established in Proposition 6.1, noting that FSF is work-conserving. The details are omitted as the

proof is identical to the proof of part 1. of Proposition 4.6 in [1].

2. Tightness of ~Xλ(∞), 0 < λ < ∞, is established in two stages. First, we show that ~Xλ(∞) is tight

under FSFp. We then conclude that this sequence is also tight under FSF.

Tightness under FSFp: Suppose that the policy FSFp is used (to be omitted from the notation for

brevity). We start by establishing the tightness of Xλ(∞) =
∑K

k=1 Xλ
k (∞). Assume, without loss of

generality, that K = 2. Along the lines of Proposition 3.3 define two related sequences of systems.

One is sequence B which is a sequence of M/M/Nλ
B + M systems with Nλ

B servers all working

with rate µ2, where Nλ
B =

⌊
Nλ

1 µ1+Nλ
2 µ2

µ2

⌋
. Similarly, define the sequence C to be a sequence of

M/M/Nλ
C + M systems with Nλ

C servers all working with rate µ1, where Nλ
C =

⌈
Nλ

1 µ1+Nλ
2 µ2

µ1

⌉
.

The sequences B and C both have the same sequence of arrival rates λ as the original system, and

the same abandonment rate of θ. Then, according to Proposition 3.3, for every fixed λ, Xλ(∞) is

stochastically dominated from above by Qλ
B(∞)/

√
Nλ and is stochastically dominated from below

by Zλ
C(∞)−Nλ

C√
Nλ

. Tightness of Xλ(∞) now follows from [4, Theorem 2], and the facts that Nλ
B =

λ/µ2 + δ√
µ2

√
λ/µ2 + o(

√
λ), Nλ

C = λ/µ1 + δ√
µ1

√
λ/µ1 + o(

√
λ), and that both

√
Nλ

B/Nλ and√
Nλ

C/Nλ have finite limits.

Now that we have established that Xλ(∞) is tight, we proceed by showing that ~Xλ(∞) is tight

(again for K = 2, without loss of generality). Note that under FSFp, Qλ + Zλ
1 =

[
Y λ −Nλ

2

]+ and

Zλ
2 = min{Y λ, Nλ

2 }. Therefore, as long as Y λ(∞) ≥ Nλ
2 , Xλ

1 (∞) = Xλ(∞) and Xλ
2 (∞) = 0. But

Y λ(∞) ≥ Nλ
2 is equivalent to Xλ(∞) ≥ − Nλ

1√
Nλ

, whose probability goes to 1 as λ→∞ by tightness

of Xλ(∞). Therefore, the vector ~Xλ(∞) is tight.

Tightness under FSF: To establish the tightness of ~Xλ(∞) under FSF, we can use a proof which is

essentially identical the proof of part 2. in [1, Proposition 4.6]. All that is missing is to establish that
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the steady-state probability that all the servers are busy under FSFp goes to a non-zero limit as λ→∞.

Since we have already established that under FSFp, Xλ(∞) weakly converges to X(∞), it is left to

show that the probability that X(∞) is non-negative is non-zero. But this probability is equal to α (in

the statement of Proposition 4.2) which is clearly positive.

Proof of Corollary 4.2: The proof of the corollary follows from Corollary 4.2 in [5] and the proof of

Proposition 4.3.

We are now finally in a position to prove the asymptotic optimality of FSF as stated in Theorem 4.1.

Proof of Theorem 4.1: Let {πλ}λ>0 ⊆ Π be a sequence of policies, and suppose that the steady-state

distributions of Qλ(·; πλ), V λ(·; πλ) and P λ
πλ(ab, ·) exist for all λ > 0 (here P λ

πλ(ab, t) is defined as the

probability of abandonment for a virtual customer who arrives at time t.) In addition, for λ > 0, define

Q̂λ(∞; πλ) := Qλ(∞; πλ)/
√

Nλ, Ŵ λ(∞; πλ) :=
√

NλW λ(∞;πλ), and P̂ λ
{πλ}(ab) :=

√
NλP λ

πλ(ab).

We prove the theorem in three steps:

1. First we show asymptotic optimality of FSFp in terms of minimizing lim supλ→∞EQ̂λ(∞), as

λ→∞.

2. The asymptotic optimality of FSF in terms of minimizing lim supλ→∞EQ̂λ(∞) as λ→∞ is shown

next.

3. We conclude by showing the asymptotic optimality of FSF with respect to both EŴ λ(∞), P̂ λ(ab),

and
√

λP λ(ab) as λ→∞.

Step 1. In Corollary 3.1 we have shown that FSFp minimizes E[Qλ(∞)] for every fixed λ. Therefore, we can

conclude that

lim sup
λ→∞

EQ̂λ(∞; FSFp) ≤ lim inf
λ→∞

EQ̂λ(∞; πλ) (A.6)

Step 2. In light of 1. it is sufficient to show that limλ→∞EQ̂λ(∞; FSF) = limλ→∞EQ̂λ(∞; FSFp), in order

to establish the asymptotic optimality of FSF with respect to EQ̂λ(∞) as λ→∞. From Proposition

4.3 and the continuous mapping theorem it follows that Q̂λ(∞) converges weakly to [X(∞)]+ under

both FSF and FSFp. In turn, corollary 4.2, shows that limλ→∞EQ̂λ(∞) = E[X(∞)]+ under both

these policies.
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Step 3. The asymptotic optimality of FSF with respect to EŴ λ(∞) and P̂ λ(ab) follows from Little’s law and

the relationship (A.4). Finally, the asymptotic optimality of FSF with respect to
√

λP λ(ab) follows

from (4.6).

Proof of Corollary 4.1: The proof of this corollary is included in the proof of Theorem 4.1.

Proof of Proposition 5.1: For 0 < ∆ < 1 the proof follows directly from the discussion of Section 4.1.

For ∆ = 1, suppose that
∑K

k=1 µkN
λ
k = o(λ), and that, by contradiction, there exists a sequence of

policies {πλ} such that lim supλ→∞ P λ
πλ(ab) = 1 − ε < 1. In particular, this implies that with a staffing

vector ~N ′ that satisfies
∑K

k=1 µkN
′λ
k = λε/2 + o(λ) one can obtain lim supλ→∞ P λ

πλ(ab) = 1− ε (by only

using the servers in the original staffing vector). This is a contradiction to the result of this proposition with

respect to ∆ = 1− ε/2.

Finally, for ∆ = 0 we wish to establish that if
∑K

k=1 µkN
λ
k ≥ λ + o(λ) then there exists a sequence

of policies {πλ} such that limλ→∞ P λ
πλ(ab) = 0. This can be done by using the first part of this proposition

(for 0 < ∆ < 1) to establish that there exists a sequence {∆λ} with limλ→∞∆λ = 0 and a sequence of

policies {πλ} such that P λ
πλ(ab) ≤ ∆λ for all λ large enough.

Lemma B.1 The function ∆µ1,θ(·) := ∆(δ, µ1, θ) defined in (5.8) is continuous and monotonically de-

creasing in δ. Moreover, limδ→∞∆(δ, µ1, θ) = 0 and limδ→−∞∆(δ, µ1, θ) = ∞.

The proof of Lemma B.1 follows, in a straightforward manner, from the proof of Theorem 4.1 in [32].

Proof of Proposition 5.2: We prove the proposition for K = 2. The general case follows similarly. Fix

−∞ < δ < ∞, and suppose that (5.7) holds. Let ak = lim infλ→∞
µkNλ

k
λ , k = 1, 2. Clearly, a1 + a2 ≥ 1

and a1 > 0. Suppose first that a1 + a2 > 1. In this case, we can obtain (5.6) with ∆:=∆(δ, µ1, θ) by

choosing to use only a subset of each server pool of size Ñλ
k = (ak/(a1+a2))λ+(δ/2)

√
λ

µk
, k = 1, 2, and apply

the policy FSF. Corollary 4.2 then confirms that (5.6) is satisfied. Now, suppose that a1 + a2 = 1, and

without loss of generality, let ak = limλ→∞
µkNλ

k
λ . Let δ̃ = lim infλ→∞

µ1Nλ
1 +µ2Nλ

2 −λ√
λ

(again, without

loss of generality, assume that δ̃ = limλ→∞
µ1Nλ

1 +µ2Nλ
2 −λ√

λ
). Clearly, δ̃ ≥ δ, and possibly, δ̃ = ∞. If

δ̃ > δ, then one is able to obtain (5.6) by using FSF with respect to a subset of each server pool of size

Ñλ
k = µkNλ

k−(dλ/2)
√

λ
µk

, where dλ := µ1Nλ
1 +µ2Nλ

2 −λ√
λ

− δ. Finally, if δ̃ = δ, then (5.6) holds if FSF is used by

Corollary 4.2.
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Now suppose (5.6) holds for some 0 < ∆0 < ∞, and let −∞ < δ0 < ∞ be such that ∆(δ0, µ1, θ) =

∆0 (such δ exists due to Lemma B.1). Assume by contradiction that (5.7) is violated with respect to δ = δ0.

Then if (5.7) holds with respect δ = δ1 for some −∞ < δ1 < δ0, then by the monotonicity of ∆(δ)

and Corollary 4.2, FSF will satisfy limλ→∞
√

λP λ(ab) = ∆1 where ∆1 > ∆0, which contradicts the

asymptotic optimality of FSF (Theorem 4.1). Finally, if (5.7) is violated with respect to any δ > −∞ then

the case δ = −∞ applies. This case is dealt with next.

To complete the proof, we need to examine the cases where δ = −∞ and δ = ∞. Suppose

first that δ = −∞, and assume, by contradiction, that there exists a sequence of policies {πλ}, with

πλ ∈ Π(λ, ~Nλ), such that lim supλ→∞
√

λP λ
πλ(ab) = ∆ < ∞. Let −∞ < δ0 < ∞ be such that

∆(δ, µ1, θ) = ∆ (δ0 exists due to Lemma B.1). Consider another sequence of systems with server pools of

size Ñλ
k = Nλ

k + (δ0/4)
√

λ/µk, k = 1, 2. Clearly, (5.7) holds for the new sequence, with δ = δ0/2. Now,

according to Corollary 4.2, if FSF is used with the new sequence of systems, then limλ→∞
√

λP λ
FSF(ab) =

∆(δ0/2, µ1, θ) > ∆. However, {πλ} is assumed to obtain a scaled abandonment probability of ∆ (asymp-

totically, over a subsequence) by using only a subset of the servers (Ñλ
1 , Ñλ

2 ). This is a contradiction to the

asymptotic optimality of FSF (Theorem 4.1). Finally, if µ1N
λ
1 +µ2N

λ
2 ≥ λ+ δ

√
λ+ o(

√
λ) for all δ < ∞,

then by using FSF with a subset of the servers, one can obtain that lim supλ→∞
√

λP λ(ab) = ∆, for all

0 < ∆ < ∞.

Proof of Proposition 5.3: Let ~M∗λ be the non-negative vector on the half-plain µ1M1 + µ2M2 + ... +

µKMK ≥ λ(1 − ∆) that minimizes the staffing cost C(M), λ > 0. Clearly, µ1M
∗λ
1 + µ2M

∗λ
2 + ... +

µKM∗λ
K = λ(1 − ∆). Let Ñλ

k = dM∗λ
k e, k = 1, ...,K. We prove (5.14), which also implies the validity

of (5.15). The outline of the proof is as follows: We solve for ~M∗λ, and C( ~M∗λ) for all λ > 0, and then

assume by contradiction that lim supλ→∞
|C( ~N∗λ)−C( ~M∗λ)|

λp > 0, and without loss of generality assume that

lim
λ→∞

|C( ~N∗λ)− C( ~M∗λ)|
λp

= ε > 0. (A.7)

1. Assuming first that C( ~M∗λn) < C( ~N∗λn) on a subsequence {λn}, we show that (A.7) implies that

for all n large enough there exists a staffing vector ~Lλn which is feasible for the problem (5.12), but

C(~Lλn) < C( ~N∗λn), which is a contradiction to the optimality of ~N∗λn .

2. Assuming now that C( ~N∗λn) < ( ~M∗λn) on a subsequence {λn}, we show that (A.7) implies that for

all n large enough there exists a staffing vector ~Lλn which is feasible for the problem SP(λ(1−∆)),

but C(~Lλn) < C( ~M∗λn), which is a contradiction to the optimality of ~M∗λn .
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To find ~M∗λ and C( ~M∗λ) one needs to solve the problem:

minimize c1M
p
1 + c2M

p
2 + ... + cKMp

K

subject to µ1M1 + µ2M2 + ...µKMK ≥ λ(1−∆)

M1,M2, ..., MK ≥ 0 .

(A.8)

The solution to (A.8) is as given in (5.13), and the corresponding optimal cost is:

C( ~M∗λ) = (λ(1−∆))pξ, (A.9)

where ξ = min{C(~x) | µ1x1 + ... + µKxK ≥ 1}.

1. Assume that (A.7) holds and that, without loss of generality, C( ~M∗λ) ≤ C( ~N∗λ) for all λ. By (A.7),

we have that for all λ large enough

C( ~N∗λ)− C( ~M∗λ) ≥ λp ε

2
.

Let ~Mλ be the solution of SP(λ(1−∆+η)), where 0 < η < ∆ is such that (1−∆+η)p−(1−∆)p <

ε/(4ξ). Then,
C( ~Mλ)− C( ~M∗λ)

λp
= ξ ((1−∆ + η)p − (1−∆)p) <

ε

4
.

In particular, C( ~Mλ) < λp ε
4 + C( ~M∗λ) ≤ C( ~N∗λ) − λp ε

4 for all λ large enough. Let ~Lλ be such

that Lλ
k = dMλ

k e, k = 1, 2, ..., K, for all λ. Then, for all λ large enough, we also have that

C(~Lλ) ≤ C( ~N∗λ)− λp ε

8
< C( ~N∗λ) . (A.10)

Now, note that by the results of Section 4.1 we have that, when staffing the λ system with ~Lλ, and

using any work-conserving policy

lim
λ→∞

P λ(ab) = ∆− η < ∆.

In particular, P λ(ab) ≤ ∆ for all λ large enough, which implies that ~Lλ is a feasible solution of

(5.12), which by (A.10) is a contradiction to the optimality of ~N∗λ.

2. Assume that (A.7) holds and that, without loss of generality, C( ~N∗λ) ≤ C( ~M∗λ) for all λ. By (A.7),

we have that for all λ large enough

C( ~M∗λ)− C( ~N∗λ) ≥ λp ε

2
.

By the optimality of ~M∗λ, we have that µ1N
∗λ
1 + µ2N

∗λ
2 + ... + µKN∗λ

K < λ(1−∆) for all λ large

enough. By the feasibility of ~N∗λ, we have that µ1N
∗λ
1 +µ2N

∗λ
2 + ...+µKN∗λ

K ≥ λ(1−∆)+o (λ).
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Let fλ := λ(1−∆)−(µ1N
∗
1 +µ2N

∗
2 +...+µKN∗

K). Then, fλ > 0 and fλ = o (λ). Let ~Lλ = bλ· ~N∗λ,

where bλ := λ(1−∆)
λ(1−∆)−fλ > 1. Then, one can verify that µ1L

λ
1 + µ2L

λ
2 + ... + µKLλ

K = λ(1−∆). In

particular,

C(~Lλ) ≥ C( ~M∗λ) . (A.11)

Note that (bλ)p = 1(
1− fλ

λ(1−∆)

)p = 1

1−p fλ

λ(1−∆)
+o(1/λ)

= 1 + p fλ

λ(1−∆) + o(1/λ). We now have that

C(~L∗λ)− C(N∗λ)
λp

=
C( ~N∗λ)((bλ)p − 1)

λp
=

C( ~N∗λ)
(
p fλ

λ(1−∆) + o (1/λ)
)

λp

≤
C(M∗λ)

(
p fλ

λ(1−∆) + o (1/λ)
)

λp
=

ξ (λ(1−∆))p
(
p fλ

λ(1−∆) + o (1/λ)
)

λp
→ 0 as λ →∞ .

In particular,

C(~L∗λ) ≤ λp ε

4
+ C( ~N∗λ) ≤ C( ~M∗λ)− λp ε

4
< C( ~M∗λ),

for all λ large enough. This is in contradiction to (A.11).

Proof of Proposition 5.4: Let ~M∗λ be the non-negative vector on the half-plain µ1M1 + µ2M2 + ... +

µKMK ≥ λ(1 − ∆) that minimizes the staffing cost C(M), λ > 0. Clearly, µ1M
∗λ
1 + µ2M

∗λ
2 + ... +

µKM∗λ
K = λ(1 − ∆). Let Ñλ

k = dM∗λ
k e, k = 1, ..., K. We prove that || ~N∗λ − ~M∗λ|| = o(λ), which

automatically shows that || ~N∗λ − Ñλ|| = o(λ).

By contradiction, suppose that, without loss of generality, limλ→∞
|| ~N∗λ− ~M∗λ||

λ = ε > 0. Let ~x be

the optimal solution to the problem min{C(~x) | µ1x1 + ...+µKxK = 1}. Then from homogeneity, ~M∗λ =

λ(1 − ∆)~x. Now, for any subsequence {λn} with limn→∞
N∗λn

k
λ(1−∆) = yk we have that ~x 6= ~y. The latter

follows from the contradicting assumption due to the fact that
∑K

m=1 µmN∗λn
m −∑K

m=1 µmM∗λn
m = o(λ)

(by Proposition 5.1). This implies that

|C( ~N∗λ)−C( ~M∗λ)|
λp = |∑K

k=1 ck[(N∗λ
k )p−(M∗λ

k )p]|
λp

→
∣∣∣(1−∆)p

∑K
k=1 ck(x

p
k − yp

k)
∣∣∣ > 0,

(A.12)

where the convergence is as λ →∞ and the last inequality is due to the strict convexity of C(·) and the fact

that
∑K

k=1 µkxk =
∑K

k=1 µkyk = 1.

Proof of Proposition 5.5: We prove the proposition for the case K = 2. The general case follows similarly.

Let ~M∗λ be the non-negative vector on the half-plain µ1M1 +µ2M2 ≥ λ+ δ
√

λ that minimizes the staffing

cost C(M), λ > 0. Clearly, µ1M
∗λ
1 + µ2M

∗λ
2 = λ + δ

√
λ. Let Ñλ

k = dM∗λ
k e, k = 1, 2. We prove (5.17),

which also implies the validity of (5.18). The outline of the proof is as follows:
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1. We solve for ~M∗λ, and C( ~M∗λ) for all λ > 0, and show that d ~M∗λe satisfies the conditions of

Proposition 5.2. Now assume by contradiction that lim supλ→∞
|C( ~N∗λ)−C( ~M∗λ)|

λp−1/2 > 0, and without

loss of generality assume that

lim
λ→∞

|C( ~N∗λ)− C( ~M∗λ)|
λp−1/2

= ε > 0. (A.13)

2. Assuming first that C( ~M∗λn) ≤ C( ~N∗λn) on a subsequence {λn}, we show that (A.13) implies that

for all n large enough there exists a staffing vector ~Lλn which is feasible for the problem (5.11), but

C(~Lλn) < C( ~N∗λn), which is a contradiction to the optimality of ~N∗λn .

3. Assuming now that C( ~N∗λn) ≤ C( ~M∗λn) on a subsequence {λn}, we show that (A.13) implies that

for all n large enough there exists a staffing vector ~Lλn which is feasible for the problem SP(λ+δ
√

λ),

but C(~Lλn) < C( ~M∗λn), which is a contradiction to the optimality of ~M∗λn .

We now proceed with the details of steps 1-3.

1. To find ~M∗λ and C( ~M∗λ) one needs to solve the problem:

minimize c1M
p
1 + c2M

p
2

subject to µ1M1 + µ2M2 ≥ λ + δ
√

λ

M1,M2 ≥ 0 .

(A.14)

The solution to (A.14) is given in (5.16), and for K = 2 it satisfies

(
M∗λ

1 ,M∗λ
2

)
= (λ + δ

√
λ) ·

(
(µ1c2)1/(p−1), (µ2c1)1/(p−1)

)

(µp
1c2)1/(p−1) + (µp

2c1)1/(p−1)
,

and

C( ~M∗λ) =
(λ + δ

√
λ)pc1c2(

(µp
1c2)1/(p−1) + (µp

2c1)1/(p−1)
)p−1

∆= (λ + δ
√

λ)pξ. (A.15)

In particular, d ~M∗λe satisfies condition (5.5) of Proposition 5.2, because

M∗λ
1

M∗λ
1 + M∗λ

2

≡ (µ1c2)1/(p−1)

(µ1c2)1/(p−1) + (µ2c1)1/(p−1)
> 0.

2. Assume that (A.13) holds and that, without loss of generality, C( ~M∗λ) ≤ C( ~N∗λ) for all λ. By

(A.13), we have that for all λ large enough

C( ~N∗λ)− C( ~M∗λ) ≥ λp− 1
2
ε

2
.
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Let ~Mλ be the solution of SP(λ + (δ + η)
√

λ), with η = ε
8ξp . Then,

C( ~Mλ)− C( ~M∗λ)

λp− 1
2

= ξλp

(
1 + δ+η√

λ

)p
−

(
1 + δ√

λ

)p

λp− 1
2

= ξλp 1 + p(δ + η)/
√

λ− 1− p δ/
√

λ + o(1/
√

λ)

λp− 1
2

= ξ[pη + o(1)] <
ε

4
,

for all λ large enough.

In particular, C( ~Mλ) < λp− 1
2

ε
4 + C( ~M∗λ) ≤ C( ~N∗λ) − λp− 1

2
ε
4 for all λ. Let ~Lλ be such that

Lλ
k = dMλ

k e, k = 1, 2, for all λ. Then, for all λ large enough, we also have that

C(~Lλ) ≤ C( ~N∗λ)− λp− 1
2

ε

8
< C( ~N∗λ) . (A.16)

Now, note that by Corollary 4.2, we have that, when staffing the λ system with ~Lλ,

lim
λ→∞

√
λP λ

FSF(ab) = ∆(δ + η, µ, θ) < ∆(δ, µ, θ) .

In particular,
√

λP λ
FSF(ab) ≤ ∆(δ, µ, θ) for all λ large enough, which implies that ~Lλ is a feasible

solution of (5.11), which by (A.16) is a contradiction to the optimality of ~N∗λ.

Before we turn to step 3 of the proof, we state and prove two lemmas.

Lemma B.2 Suppose that for all λ > 0, ~N∗λ is an optimal solution of (5.11) and

lim infλ→∞
N∗λ

1

N∗λ
1 +N∗λ

2
> 0. Then, µ1N

∗λ
1 + µ2N

∗λ
2 = λ + δ

√
λ + o(

√
λ).

Proof: By contradiction, assume that either there exists a subsequence {λj} for which µ1N
∗λj

1 +

µ2N
∗λj

2 < λj + δ
√

λj + o(
√

λj), or there exists ε̃ > 0 such that µ1N
∗λj

1 + µ2N
∗λj

2 ≥ λj +

(δ + ε̃)
√

λj + o(
√

λj). In the first case, by Proposition 5.2, lim supj→∞
√

λjP
λj

πλj
(ab) > ∆, for

all πλj ∈ Π, which is a contradiction to the feasibility of ~N∗λj , for some large values of j. In the

second case, let ~Nλj = ~N∗λj − ~e (where ~e is a vector of 1’s). Then C( ~Nλj ) < C( ~N∗λj ), and

by Proposition 5.2, there exists a sequence of policies {πλj}, with πλ ∈ Π(λj , ~Nλj ) under which

lim supj→∞
√

λP
λj

πλj
(ab) < ∆. This is a contradiction to the optimality of ~N∗λj for all large j.

Lemma B.3 Let ~Nλ be a sequence of staffing vectors satisfying µ1N
λ
1 + µ2N

λ
2 < λ + δ

√
λ for some

−∞ < δ < ∞, and limλ→∞
Nλ

1

Nλ
1 +Nλ

2
= 0. Suppose that there exists a sequence of policies {πλ},

with πλ ∈ Π(λ, ~Nλ) such that limλ→∞
√

λP λ
πλ(ab) = ∆, where ∆ = ∆(δ, µ1, θ). Then, ~Nλ satisfies

µ1N
λ
1 + µ2N

λ
2 ≥ λ + δ

√
λ + o

(√
λ
)

. (A.17)
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Proof: Let δ1 = limn→∞
µ1Nλn

1√
λn

, 0 ≤ δ1 ≤ ∞ and let δ2 = limn→∞
µ2Nλn

2 −λn√
λn

, −∞ ≤ δ2 ≤ ∞,

where {λn} is a subsequence along which these limits are well defined. Without loss of generality,

assume that {λn} ≡ {λ}. We show that if the policy FSFp is used to process the system (which by

Proposition 3.2 implies that lim supλ→∞
√

λP λ
FSFp

(ab) ≤ ∆), then (A.17) is satisfied.

We consider three different cases with respect to the value of δ1: (a) 0 < δ1 < ∞, (b) δ1 = 0 and (c)

δ1 = ∞, and note that since δ1 + δ2 < δ, we have δ2 < ∞. Denote δ̃ := δ1 + δ2.

Case (a) (0 < δ1 < ∞): First suppose that δ2 > −∞. In this case, we can show, using Stone’s

criterion and the birth-and-death representation of the total number in the system given in (3.1), that

the scaled process Xλ(t) weakly converges to a diffusion process X(t) with infinitesimal drift

m(x) =





−δ̃
√

µ2 − θx x ≥ 0

−δ̃
√

µ2 − µ1x − δ1
µ1

√
µ2 ≤ x < 0

−µ2

(
δ1
µ1

+ δ2
µ2

)√
µ2 − µ2x x < − δ1

µ1

√
µ2

and infinitesimal variance σ2(x) = 2µ2.

Let X be another diffusion process with the same infinitesimal variance and with infinitesimal drift

m(x) =




−δ̃
√

µ2 − θx x ≥ 0

−δ̃
√

µ2 − µ1x x < 0 .

Then, clearly m(x) ≥ m(x) for all x, and therefore, by Proposition 18.5 of [2] we have that X(∞)
st≥

X(∞). In particular, θ√
µ2

EX+(∞) ≥ θ√
µ2

EX+(∞) = ∆(δ̃, µ1, θ). Therefore, by establishing

that limλ→∞
√

λP λ
FSFp

(ab) = θ√
µ2

EX+(∞), the proof is complete for this case (recalling that ∆ is

a decreasing function of δ (see Lemma B.1). Note that this latter limit holds due to the tightness and

uniform integrability results established in the proofs of Proposition 4.3 (step 2) and of Theorem 4.1

(step 2).

Next, consider the case δ2 = −∞. We claim that in this case, limλ→∞
√

λP λ
FSFp

(ab) = ∞. To see

this, we first note that if−∞ < δ2 < ∞, then by [2] along with the tightness and uniform integrability

results, we have that

lim
λ→∞

√
λP λ

FSFp
(ab) = ∆̃(δ1, δ2, µ1, µ2, θ) :=

√
θ α1

[
h

(
δ1 + δ2√

θ

)
− (δ1 + δ2)√

θ

]
,

where α1 := α1(δ1, δ2, µ1, µ2, θ) =
[
1 +

√
θ
µ1

h
(

δ̃√
θ

)
Φ(δ̃/

√
µ1)−Φ(δ2/

√
µ1)

φ(δ̃/
√

µ1)
+

√
θ
µ2

h(δ̃/θ)
h(−δ2/

√
µ2)

]−1

,

with δ̃ := δ1 + δ2. Note that ∆̃ is continuous in δ2 and that limδ2→∞ ∆̃ = 0 and limδ2→−∞ ∆̃ = ∞
(these limits may be obtained by a successive application of L’Hôpital’s rule). Therefore, by an
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argument analogous to the proof of Proposition 5.2 for the case δ = −∞, one can show that indeed

if δ2 = −∞ then limλ→∞
√

λP λ
FSFp

(ab) = ∞. This finally leads to a contradiction due to the

optimality of FSFp.

Case (b) (δ1 = 0): In this case, if δ2 > −∞, then one can show that the scaled process Xλ(t)

weakly converges to a diffusion process X(t) with infinitesimal drift

m(x) =




−δ2

√
µ2 − θx x ≥ 0

−δ2
√

µ2 − µ2x x < 0

and infinitesimal variance σ2(x) = 2µ2. Consider another diffusion process X with the same in-

finitesimal variance and with infinitesimal drift equal to

m(x) =




−δ2

√
µ2 − θx x ≥ 0

−δ2
√

µ2 − µ1x x < 0 .

Then, clearly, m(x) ≥ m(x) for all x, and hence, by analogous arguments to the ones used in case

(a), we have that

lim
λ→∞

√
λP λ

FSFp
(ab) ≥ ∆(δ2, µ1, θ) ,

which implies by Lemma B.1 that δ2 ≥ δ, and in turn, that µ1N
λ
1 + µ2N

λ
2 ≥ λ + δ

√
λ + o

(√
λ
)

.

The case δ2 = −∞ may be analyzed analogously to δ2 = −∞ in case (a) to show that if δ2 = −∞
then limλ→∞

√
λP λ

FSFp
(ab) = ∞, which leads to a contradiction.

Case (c) (δ1 = ∞): In this case, since δ1 + δ2 := limλ→∞ µ1N1+µ2N2−λ√
λ

≤ δ, we have that neces-

sarily, δ2 = −∞. Assume first that δ1 + δ2 = δ̃ > −∞. Then, in this case, the scaled process Xλ(t)

weakly converges to a diffusion process X(t) with infinitesimal drift

m(x) =




−δ̃
√

µ2 − θx x ≥ 0

−δ̃
√

µ2 − µ1x x < 0

and infinitesimal variance σ2(x) = 2µ2. This process has the same law as the diffusion process

defined through (4.19) and (4.20) with δ = δ̃ and µ = µ2. In particular, one can show that

limλ→∞
√

λP λ
FSFp

(ab) = ∆(δ̃, µ1, θ), which, in turn, implies that δ̃ ≥ δ, so that µ1N1 + µ2N2 ≥
λ + δ

√
λ + o

(√
λ
)

. Finally, if δ1 + δ2 = −∞, one can obtain a contradiction in the same way that

was done for cases (a) and (b).

We now return to step 3. in the proof of Proposition 5.5.

3. Assume that (A.13) holds and that, without loss of generality, C( ~N∗λ) ≤ C( ~M∗λ) for all λ. By

(A.13), we have that for all λ large enough

C( ~M∗λ)− C( ~N∗λ) ≥ λp− 1
2
ε

2
.
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By the optimality of ~M∗λ, we have that µ1N
∗λ
1 +µ2N

∗λ
2 < λ+δ

√
λ for all λ large enough. Therefore,

by Lemmas B.2 and B.3, we have that µ1N
∗λ
1 + µ2N

∗λ
2 ≥ λ + δ

√
λ + o

(√
λ
)

.

Let fλ := λ + δ
√

λ − (µ1N
∗
1 + µ2N

∗
2 ). Then, fλ > 0 and fλ = o

(√
λ
)

. Let ~Lλ = bλ · ~N∗λ,

where bλ := λ+δ
√

λ
λ+δ

√
λ−fλ

=
(
1− fλ

λ+δ
√

λ

)−1
. Then, one can verify that µ1L

λ
1 + µ2L

λ
2 = λ + δ

√
λ. In

particular,

C(~Lλ) ≥ C( ~M∗λ) . (A.18)

Note that (bλ)p = 1(
1− fλ

λ+δ
√

λ

)p = 1

1−p fλ

λ+δ
√

λ
+o(1/

√
λ)

= 1 + p fλ

λ+δ
√

λ
+ o(1/

√
λ). We now have that

C(~L∗λ)− C(N∗λ)

λp− 1
2

=
C( ~N∗λ)((bλ)p − 1)

λp− 1
2

=
C( ~N∗λ)

(
p fλ

λ+δ
√

λ
+ o

(
1/
√

λ
))

λp− 1
2

≤
C(M∗λ)

(
p fλ

λ+δ
√

λ
+ o

(
1/
√

λ
))

λp− 1
2

=
ξ
(
λ + δ

√
λ
)p (

p 1√
λ

fλ√
λ+δ

+ o
(
1/
√

λ
))

λp− 1
2

= ξ

(
p

(
1 +

δ√
λ

)p fλ

√
λ + δ

+ o (1)
)
→ 0 as λ →∞ .

In particular,

C(~L∗λ) ≤ λp− 1
2

ε

4
+ C( ~N∗λ) ≤ C( ~M∗λ)− λp− 1

2
ε

4
< C( ~M∗λ),

for all λ large enough. This is in contradiction to (A.18).

Proof of Proposition 5.6: We prove the proposition for the case K = 2. The general case follows similarly.

Let ~M∗λ be the non-negative vector on the half-plain µ1M1 +µ2M2 ≥ λ+ δ
√

λ that minimizes the staffing

cost C(M), λ > 0. Clearly, µ1M
∗λ
1 + µ2M

∗λ
2 = λ + δ

√
λ. Let Ñλ

k = dM∗λ
k e, k = 1, 2. We prove that

limλ→∞
C( ~N∗λ)−Cλ

C( ~M∗λ)−Cλ = 1. The asymptotic optimality of Ñλ then easily follows. The outline of the proof is

as follows:

1. We solve for Cλ, and explicitly express C( ~M∗λ)− Cλ.

2. The asymptotic optimality then follows easily from Proposition 5.5.

1. To find Cλ, one needs to solve the problem SP(λ). Simple constrained optimization obtains:

Cλ =
λpc1c2(

(µp
1c2)1/(p−1) + (µp

2c1)1/(p−1)
)p−1 =λpξ. (A.19)

If follows that

C( ~M∗λ)− Cλ = ξpδλp−1/2 + o(λp−1/2).

19



2. By proposition 5.5, we have that C( ~N∗λ) = C( ~M∗λ) + fλ, where fλ = o(λp−1/2). Therefore,

C( ~N∗λ)− Cλ

C( ~M∗λ)− Cλ
=

ξpδλp−1/2 + o(λp−1/2) + fλ

ξpδλp−1/2 + o(λp−1/2)
= 1 +

fλ

ξpδλp−1/2 + o(λp−1/2)
→1,

as λ→∞, provided that δ 6= 0.

Proof of Proposition 6.1: The proof is analogous to the proof of Proposition 3.1 in [2]. The details are

omitted.

Proof of Corollary 6.1: The proof follows from Proposition 6.1 and the work conservation of FSFp. For

the queue length, the proof directly follows from the relationship Q(t; FSFp) = [Y (t; FSFp) − N ]+ and

Q(t; π) = [Y (t; π)−N ]+ for all t ≥ 0 and for a general FCFS policy in Πp.

For the virtual waiting time, we have that, for Y := Y (∞; π) for some π ∈ Πp which is FCFS and

work-conserving,

V (∞;π) D=
[Y−N+1]+∑

i=1

Ti,

where D= denotes equality in distribution, and Ti ∼ exp(
∑K

k=1 µkNk+(i−1)θ), and all Ti’s are independent.

If π is FCFS, and not work-conserving, but θ ≤ µ1, then we have that

V (∞;π)
st≥

[Y−N+1]+∑

i=1

Ti.

Since
∑[Y−N+1]+

i=1 Ti is an increasing function of Y , the stochastic dominance of FSFp with respect to Y ,

implies that FSFp also stochastically minimizes the steady-state virtual waiting time.

Finally, the stochastic dominance of FSFp with respect to the actual steady-state waiting time, follows

from the relationship W (∞) = V (∞) ∧ τ , where τ ∼ exp(θ) is independents of V (∞).

Proof of Proposition 6.2: The first step in the proof is to show that if the staffing vector satisfies (6.3) and

under any work-conserving policy, we have that (6.4) is satisfied with T = G−1(∆1) and α = (1−G(T )) ·(
δ1/

√
g(T )

)
. To see that, consider the three systems of Proposition 3.3 with NB = b 1

µK

∑K
k=1 µkNkc, and

NC = d 1
µ1

∑K
k=1 µkNke. By [32, Remark 4.5] we have that for both systems B and C, limλ→∞ P (W λ >

T ) = (1 − G(T ))Φ̄ (δ/g(T )). The proof then follows from the fact that W λ
C

st≤ W λ
A

st≤ W λ
B , where

W λ
A,W λ

B , and W λ
C are the steady-state waiting times for systems A,B and C, respectively. The latter is a

straightforward consequence of Proposition 3.3.
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The rest of the proof is analogous to the proofs of Propositions 5.2 and 5.1. Details are omitted.
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