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A System Dynamics and Fluid Model

In this section we describe the dynamics of the system in terms of its flow balance equations. We also
describe the fluid model associated with the QED regime, and state and prove a fluid-related proposition

which is needed for the asymptotic analysis in this regime.

Let A(t) be the total number of arrivals into the system up to time ¢ (that is, A(t), ¢ > 0, is a
Poisson process with rate \). Also, for k& = 1,..., K, and for a policy 7 € II, let Ag(¢;7) be the total
number of external arrivals joining pool & upon arrival up to time ¢, and let By(¢; ) be the total number of
customers joining server pool k, up to time ¢, after being delayed in the queue. The number of arrivals into
the queue (excluding direct arrivals to one of the servers) up to time ¢ is denoted by A, (t; 7). In addition, let
T} (t; ) denote the total time spent serving customers by all Ny, servers of pool & up to time ¢. In particular,
0 < Tx(t;m) < Nit. Respectively, let I (t; ) be the total idle time experienced by servers of pool & up to
time ¢. Also, let D(t), t > 0, be a Poisson process with rate y;. Then the number of service completions
out of server pool k may be written as Dy (T} (¢; 7)). In addition, let E'(¢; 7) represent the total time spent by
customers in the queue up to time ¢, and let L(t), t > 0, be a Poisson process with rate §. Then the number
of customers who have abandoned up to time ¢ can be written as L(E(t; 7)). The above definitions allow us

to write the following flow balance equations:

K
Qt; ) = Q(0;m) + Ag(t;7) — > Bi(t; ) — L(E(t;m)), (A1)
k=1
t
B(t;m) = /O Q(s;m)ds, (A2)
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Zy(t;m) = Zi(0; ) + Ag(t; ) + Bi(t;7) — Di(Ty (85 7m)), k=1,.... K, (A.3)

t
Ti(t;m) = / Zy(s;m)ds (A4)
0
Y(t;7) =Y (0;7) + At ZDk Ti(t; ) — L(E(t; 7)), (A.5)
K
A(t) = Ag(tsm) + Y Ax(tsm), (A.6)
k=1
Ty (t;m) + I (t; m) = Nit. (A7)

Finally, for any work conserving policy m we have the additional three equations:

K
Qt;m) - (Z(Nk — Z(t; 7r))> =0, Vt >0, (A.8)
k=1
/ Z Ny, — Zy(t; 7)) d A, (t; ) = 0, (A.9)
and
K 00
Q(t;m)dI(t;m) = 0. (A.10)
X

All of the above apply almost surely. In words, (A.8) means that there are customers in queue only when
all servers are busy. The verbal interpretation of (A.9) is that new arrivals wait in the queue only when all

servers are busy. Finally, (A.10) states that servers can only be idle when the queue is empty.

Fluid Scaling: For each A\ > 0, k = 1, ..., K, and a fixed sequence of routing policies 7* € II(\, N*)

let QMt) = LW, and Z)(1) = ZN() Similarly, let V(1) = 20, A1) = 20 4 1) = A]%(P,
_ A A _ A _
At = MO By = BO T gy = BO Py = RO ang 1) = B0, Finally, let D) (1) =

D(t) = Di(t) and L (t) = L*(t) = L(t). That is, as equalities between processes,
(QN 20, YA AN Ay, A, B, TR IR BY) = (Q4, 20, Y2, AN AR AQ By T I, B /NP,

and (D, L*) = (Dg,L). Note that D} and L* need not be divided by N*, due to their definitions as

Poisson processes with rates . and 6, respectively, which are independent of .

Using standard tools of fluid models (see for example [3], Theorem A.l1) one can show that if
(Q1(0), 22(0), k = 1,..., K) are bounded, then the process X := (Q*, Z,Y*, AN A}, A, B, T I},
EA, D,)c‘, L*) is pre-compact, as A—o0, and hence any sequence has a converging subsequence (where the

convergence is almost surely, uniformly on compact intervals). Denote any such fluid limit with a “bar” over



the appropriate letters but with no superscript (for example, let Q() be a fluid limit of Q*(¢), as A—o0).

Note that, by Theorem A.1 of [3], equations (A.1)-(A.7) imply that the following flow balance equations

hold for any fluid limit:

Q(t) = Q(0) + Ag(t) —in(t) —0E(t), (A.11)

k=1
E(t) = Ot Q(s)ds, (A.12)
Zi(t) = Z1(0) + Ap(t) + Br(t) — wT(t), k=1,.., K, (A.13)
Ti(t) = /t Zi(s)ds (A.14)

OK

Y(t) =Y (0)+put — Y uTe(t) — 0E(t), (A.15)
pt = Ag(t) + > A1), (A.16)

k=1
Ty (t) + I (t) = qut. (A.17)

Finally, for work conserving policies, conditions (A.8)-(A.10) imply:

K
Q(t) - (Z(Qk - Zk(t))> =0, (A.18)
k=1
o K
/0 > gk — Z(t)dAy(t) =0, (A.19)
k=1
and
K 0o -
kzl /0 Q(t)dIx(t) = 0. (A.20)

The following proposition shows that for every sequence of work-conserving routing policies and for
every fluid limit, the quantities Q(¢) and Z(t), k = 1,..., K, remain constant if starting at time 0 from

some appropriate initial conditions.

Proposition A.1 (fluid limits) For A\ > 0, let 7 € II(\, N*) be a sequence of work-conserving policies
(omitted from the following notation), and let X be some fluid limit of the processes associated with the
system, as A—oo. Recall that q, = limy_, % = %,u,, k = 1,..., K, and suppose that Q(0) = 0 and
Zp(0) = qx, k=1,...., K. Then, Q(t) =0 and Zy(t) = q1, k=1, ..., K, forall t > 0.



Proof of Proposition A.1: Let f(t) = |Y(t) — 1| = ‘ZkK:l(Zk(t) —qr) + Q(t)|, then f(t) > 0 and
f(t) = 0if and only if Q(t) = 0 and Zx(t) = qx for all k = 1,..., K. By Lemma C.1 of [6], and from
the fact that f(-) is absolutely continuous, it is sufficient to show that whenever ¢ > 0 is such that f is
differentiable at ¢, we have f(t) < 0. Suppose that ¢ is such that Y (¢) > 1. Then, by (A.18) Zy(t) = g, for
all k. In particular, if f is differentiable at ¢, then

K

‘ K
f@&) =Y () =p =) mZ(t) - 0Q(t) < =) uras = 0.
P

k=1
If ¢ is such that Y'(t) < 1, then Z(t) < g for at least one k, and hence, by (A.18), Q(t) = 0. If f is
differentiable at ¢ then,

K

. K
f(t) - _Y(t) = ZMka(t) + 9Q<t) —u < Zuqu —u=0.
k=1

k=1

B Proofs

Proof of Proposition 3.1: Due to (A.4) below which relates between the abandonment probability and
the expected queue length, minimizing Py (ab) is equivalent to minimizing FQ(co; 7). We show that
EQ(oo; ) under any policy 7 which is not necessarily FCFS is equal to EQ(oo;7’), where 7’ is a cor-
responding FCFS policy. We prove this using a construction of the policy 7’ and a sample path coupling.
Consider the system under a particular sample path w and the policy 7. Construct a policy 7’ with a sample
path w’ as follows: The arrival times under both w and w’ are the same. Every time the policy 7 serves a
tagged customer which is not at the head of the line, the policy 7’ leaves this customer in line, and instead
serves the head-of-line (HOL) customer. The service time of this HOL customer under '’ is set equal to
the service time of the tagged customer under w. Similarly, the time to abandon from that moment on of
the tagged customer under «’ is set equal to the time to abandon of the HOL customer under w. Since the
time to abandon distribution is exponential one can couple those two systems and get the same steady-state

expected queue length. Also, by construction, 7’ is a FCFS policy. (]

Proof of Proposition 3.2: We prove the Proposition using sample-path coupling arguments. Consider two
coupled systems both with the same initial conditions, and the same sequence of arrivals. System 1 operates
under an arbitrary policy m € II, while System 2 operates under FSF,,. For all¢ > 0 and ¢ = 1,2, let

Q'(t), Y(t), and Ab(t) be the queue length at time ¢, the head-count at this time, and the total number of



abandonment up to this time in System ¢, respectively. We claim that the two systems can be coupled such

that the following three properties hold almost surely for all £ > 0:

AbL(t) > AV (1), (A.1)
Q(t) — Q' (t) < Ab'(t) — Ab*(t), (A.2)

and
Y2(t) — YH(t) < AbY(t) — AB%(t). (A.3)

Establishing property (A.1) will complete the proof of the proposition. Let {5 = 0. We define the set of
path-dependent time points 0 < #; < t3 < ... and corresponding state transitions, inductively. For n > 1,
suppose that 0 < t; < t3 < ... < t, have been determined. Let ¢,,4; be the time of the first transition in

either system, after time ¢,,, and let ¢ = 1 if the transition is in system 1 and ¢ = 2, otherwise.

o If Ab'(t,) = Ab?(t,) and the transition at time ¢, ; corresponds to an abandonment in system 2,

then we impose an abandonment in system 1 at the same time.

e Otherwise, if Q%(t,) — Q' (tn) = Abl(t,) — Ab%(t,) or Y2(t,) — Y(t,) = Ab}(t,) — Ab?(t,,) and
the transition at time ¢,,+1 corresponds to a service completion in system 1, then we impose a service

completion in system 2 at the same time.

e Otherwise, the relevant transitions occur as follows: arrivals occur into both systems simultaneously,

while departures and abandonment occur in system ¢ only.

We prove (A.1)-(A.3) by induction on t,, n = 0,1,2, .... Attime ¢y = 0 both systems are assumed to have
the same state and therefore properties (A.1)-(A.3) are trivially satisfied. Suppose that these properties are
satisfied for all ¢ < ¢,,. We need to establish that they are also satisfied at ¢,, < t < ¢,,1. Clearly, it suffices

to prove that they are satisfied at ¢ = ¢,,+1. We verify the three properties as follows:

e Verification of (A.1): This property might be violated only if Ab'(¢,) = Ab?(t,) and at time ¢, 1,
there is an abandonment from system 2 and not in system 1. But, by the construction of out coupling,

any such transition in system 2 will be accompanied by a transition in system 1. This coupling is valid

only if Q?(t,) < Q'(t,), which holds due to (A.2) and the equality in (A.1).

e Verification of (A.2): This property might be violated if Q*(t,) — Q' (t,) = Abl(t,) — Ab*(t,),
and one or more of the following occurs: a) Q(¢,) > 0 and Q*(t,) = 0, b) Q1(t,) > 0, and there



is a service completion in system 1 and not in system 2, or c) there is an arrival into both systems
that enters service in system 1 and joins the queue in system 2. Case a) cannot occur, because, by
(A.1), Q%(t,) > Q*(t,) > 0. Case b) may be contradicted by our construction of the coupling. This
coupling is valid only if S5, L2 (tn) < K peZE(tn). But, since Q(t,) > Q'(t,) > 0,
we have that, by the work-conservation properties of FSF,, all servers are busy in system 2 at time
t,,, which implies that Z{f:l peZE(tn) = Zszl 1 Ny. Finally, ¢) implies that, at time t,,, all the
servers are busy in system 2 and some servers are idle in system 1. Th! erefore, Y2(¢,,) — Y'1(t,) >

Q%(tn) + N — (Q'(tn) + N) = Q2(t,) — Q'(t,) = Ab (t,) — Ab?(t,,) which violates (A.3).

e Verification of (A.3): The latter might be violated if Y2(t,) — Y!(t,) = Ab'(t,) — Ab?(t,) and a
service completion occurs in system 1 only. But, this cannot occur due to our coupling construction.
This coupling is valid only if >0 | puxZ}(tn) < b, unZ2(t,). But, due to (A1), Y2(t,) >
Y'(t,). In particular, due to the work-conserving nature of FSF,, there are more busy servers in

system 2 than in system 1. Now, due to the fast server first property of FSF,, this also implies that
K K
> k=1 Z}%(tn)ﬂk > ket Z}i (tn) -

Proof of Corollary 3.1: Notice that, in steady-state, the following balance equation holds for any policy

7 € 11, (see also equation (2) in [4]):
0 - E[Q(co;m)] = X - Pr(ab). (A4)

The left-hand-side corresponds to the rate of abandonment from the system, and the right-hand-side de-
scribes the rate of arrival of customers who will eventually abandon. From Little’s law and (A.4) we also

obtain a relationship between the expected waiting time and probability of abandonment in steady-state:
0 - E[W(oo;m)] = Pr(ab). (A5)
Proposition 3.2 together with the relationships (A.4) and (A.5) completes the proof. m

Proof of Proposition 3.3: The proof is shown for K = 2. The general case follows similarly. We first
show that Q4 < @p and that Z4 — (N1 + N3) < Zp — Np, almost surely. Consider two coupled systems,
A and B, both with the same initial conditions (all servers are busy and no customers in queue) and the
same sequence of arrivals. We will show that the two systems can be coupled such that the following two

properties hold, almost surely, for all ¢ > 0:



1. Qa(t) < Qp(t),and

2. ZA(t) — (N1 + NQ) < ZB(t) — Npg,

Let t5 = 0. We define the set of path-dependent time points 0 < ¢; < t3 < ... and corresponding
state transitions, inductively. For n > 1, suppose that 0 < ¢; < t9 < ... < t,, have been determined. Let
tn+1 be the time of the first transition in either system, after time ¢,,, and let i = A if the transition is in

system A and i = B, otherwise.

o If Qa(t,) = Qp(t,) > 0 and the transition at time ¢, corresponds to a service completion or an
abandonment in system B, then we impose a service completion or an abandonment in system A, at

the same time, respectively.

e Otherwise, if Z4(t,) — (N1 + Na) = Zp(tn,) — Np, @p(t,) = 0, and the transition at time ¢,, 41
corresponds to a service completion in system B, then we impose a service completion in system A,

at the same time.

e Otherwise, the relevant transitions occur as follows: arrivals occur into both systems simultaneously,

while departures and abandonment occur in system ¢ only.

We prove 1. and 2. by induction on ¢, n = 0,1,2,.... Attime tg = 0 both systems are assumed to have
all servers busy and no queue. Therefore properties 1. and 2. are trivially satisfied. Suppose that these
properties are satisfied for all ¢ < ¢,,. We need to establish that they are also satisfied at t,, < t < t,41.

Clearly, it suffices to prove that they are satisfied at t = ¢,,+1. We verify the two properties as follows:

e Verification of 1.: This property might be violated only if QA(t,) = Q@p(t,) > 0 and at time
tn+1, there is a service completion or an abandonment in system B and not in system A. But, by
the construction of out coupling, any such transition in system B will be accompanied by a similar
transition in system A. The coupling with respect to service completions is valid because, due to
work-conservation, the total service rate in system B at time ¢,, is Nguo which is less than or equal to
Njpy1 + Naps, the total service rate in system A. The coupling with respect to abandonment is valid

because both queue lengths are equal at time ¢,,.

e Verification of 2.: This property might be violated if Z4(¢,,) — (N1+N2) = Zp(tn) —Np, Qp(tn) =
0, and there is a service completion in system B, but not in system A. This cannot occur due to the

construction of our coupling. This coupling is valid only if the total service rate in system B is less



than or equal to the total service rate in system A. The latter is true because if Zg = Ng — m where
m < Np, then Z4 = N1 + Ny — m. Also, the total service rate in system A is minimal when the idle

servers are the faster ones. In other words, the total service rate in system A is greater than or equal to

Nipg + (No —m)ug, if m < N,
(Nl—(m—NQ)),ul, if m > No.

In either case, x > (Np — m)us.

The comparison between systems A and C is analogous. The details are omitted. ([}

Proof of Proposition 4.1: The proof follows directly from Theorem 3.1 of [5] (our model satisfies assump-
tions C-1 (pool dependent service rate) and C-3 (the graph that connects server pools to customer classes is

a tree) of that theorem). m

Proof of Remark 4.1: The proof follows directly from Theorem 3.1 of [5] (our model satisfies assumptions

C-1 and C-3 of that theorem). m

Proof of Proposition 4.2: The proof follows from [2]. Note that the process X (-), restricted to [0, 00), is
a an O-U process with infinitesimal drift —6,/iz — 6 and variance 2. Hence, according to [2, (18.33)],
its steady-state density, conditional on X (co) > 0, is normal with mean —§/,/z/60 and variance 1/0,
conditioned on having non-negative values only (see [2, (18.28)]). Similarly, the process X (-) restricted to
the negative half-line is an O-U process with infinitesimal drift —d,/z — p12 and variance 2u. Therefore,
its stationary density, conditional on X (co) < 0, is the density of a normal random variable with mean
—0&./p/ 1, and variance ju/fi1, conditioned on having negative values only. Putting these two densities
together, establishes that f(x) is indeed the steady-state density of X, with « = P(X (o0) > 0). To find the
value of «a, note that f(-) is continuous because the infinitesimal variance is continuous on the whole real
line (see [2, p. 471]). Hence, o may be solved for by a smooth fit, namely, by equating the limits of f(-) at
0 from both left and right. m

Proof of Proposition 4.3: By Corollary 4.2 of [5] it suffices to show that:

1. There exists a stationary distribution of X*(-) for all \.

2. The sequence of stationary distributions of X*(-) is tight.

We establish 1. and 2. for K = 2. The general case follows similarly.



1. Fix A > 0. First note that under FSF,, the total number in the system Y* is a Birth and Death
process with birth rates A(y) = X and death rates p*(y) as given in (3.1). Due to abandonment, the

system is stable for all ), and the stationary distribution is given by p) := P(Y*(c0) = n) = p{7)),

n =0,1,..., where 7)) = ﬁ, n=01,.,andp} = >, 772]_1. Clearly, the stationary
=1
distribution of X* = Y\A/;V—]ZA, can be easily obtained from the stationary distribution of Y. Finally,

since X* is easily obtained as a one-to-one function of its sum X*, the existence of a steady-state

distribution for X* has been established.

To show the existence of a stationary distribution of X* under the non-preemptive policy FSF one can
use the stationarity of the process with respect to FSF,, and the dominance of FSF,, over FSF which
was established in Proposition 6.1, noting that FSF is work-conserving. The details are omitted as the

proof is identical to the proof of part 1. of Proposition 4.6 in [1].

2. Tightness of X*(c0), 0 < A < oo, is established in two stages. First, we show that X*(co) is tight

under FSF,,. We then conclude that this sequence is also tight under FSF.

Tightness under FSF,: Suppose that the policy FSF, is used (to be omitted from the notation for
brevity). We start by establishing the tightness of X*(c0) = Zszl X (c0). Assume, without loss of
generality, that K = 2. Along the lines of Proposition 3.3 define two related sequences of systems.

One is sequence B which is a sequence of M /M /N g + M systems with NV g servers all working
Ny +N3 po
H2
M/M /N()) -+ M systems with Né‘, servers all working with rate p1, where Né: = {

J. Similarly, define the sequence C' to be a sequence of

N1 +NQ o
M1 :

with rate jio, where N g = {

The sequences B and C' both have the same sequence of arrival rates A as the original system, and
the same abandonment rate of . Then, according to Proposition 3.3, for every fixed A, X*(c0) is

stochastically dominated from above by Qg(oo) /V N and is stochastically dominated from below

A _NA
by ZC(\C;.%NC

A p2 + \/% Mpz + o(VA), N = A + \/% M1 + o(v/X), and that both /N3 /N> and

\/ N2 /N? have finite limits.

Now that we have established that X*(co) is tight, we proceed by showing that X*(co) is tight

. Tightness of X*(00) now follows from [4, Theorem 2], and the facts that N g =

(again for K = 2, without loss of generality). Note that under FSF,, Q* + Z = [Y* — N3]" and
Z3 = min{Y*, N3'}. Therefore, as long as Y*(00) > N3, X7 (00) = X*(00) and X3 (c0) = 0. But
A
1

Y*(00) > N3\ is equivalent to X*(c0) > —%, whose probability goes to 1 as A—oo by tightness

of X*(c0). Therefore, the vector X *(co) is tight.

Tightness under FSF: To establish the tightness of X A(00) under FSF, we can use a proof which is

essentially identical the proof of part 2. in [1, Proposition 4.6]. All that is missing is to establish that



the steady-state probability that all the servers are busy under FSF,, goes to a non-zero limit as A—o0.
Since we have already established that under FSF,,, X*(oc0) weakly converges to X (0o), it is left to
show that the probability that X (co) is non-negative is non-zero. But this probability is equal to « (in

the statement of Proposition 4.2) which is clearly positive. ([}

Proof of Corollary 4.2: The proof of the corollary follows from Corollary 4.2 in [5] and the proof of
Proposition 4.3. m

We are now finally in a position to prove the asymptotic optimality of FSF as stated in Theorem 4.1.

Proof of Theorem 4.1: Let {7*},-¢ C II be a sequence of policies, and suppose that the steady-state
distributions of Q*(-;m*), VA(-;7*) and P2, (ab, ) exist for all A > 0 (here P2, (ab,t) is defined as the
probability of abandonment for a virtual customer who arrives at time ¢.) In addition, for A > 0, define

QM (00; 1) 1= Q*(00; ™)/ VN, W (00; ) := VN W (00; ), and P?WA}(ab) = \/WP?A(ab).

We prove the theorem in three steps:
1. First we show asymptotic optimality of FSF, in terms of minimizing lim sup,_, ., EQ*(c0), as

A—00.

2. The asymptotic optimality of FSF in terms of minimizing lim sup,_, . EQ’\(OO) as A—oo0 is shown

next.

3. We conclude by showing the asymptotic optimality of FSF with respect to both EW*(c0), P (ab),
and VAP (ab) as A—o0.

Step 1. In Corollary 3.1 we have shown that FSF,, minimizes F[Q*(c0)] for every fixed \. Therefore, we can
conclude that

lim sup EQ*(o0; FSE,) < lim inf EQ*(co; ) (A.6)

A—oo
Step 2. In light of 1. it is sufficient to show that lim ., EQ*(co; FSF) = lim)_., EQ*(co; FSF,), in order
to establish the asymptotic optimality of FSF with respect to EQ)‘(OO) as A—oo. From Proposition
4.3 and the continuous mapping theorem it follows that Q*(cc) converges weakly to [X (00)]* under
both FSF and FSF,,. In turn, corollary 4.2, shows that limy ., EFQ*(c0) = E[X (c0)]™ under both

these policies.

10



Step 3. The asymptotic optimality of FSF with respect to EW’\(oo) and P*(ab) follows from Little’s law and
the relationship (A.4). Finally, the asymptotic optimality of FSF with respect to v/ AP*(ab) follows
from (4.6).

m
Proof of Corollary 4.1: The proof of this corollary is included in the proof of Theorem 4.1. m
Proof of Proposition 5.1: For 0 < A < 1 the proof follows directly from the discussion of Section 4.1.

For A = 1, suppose that Zle wieN ,;\ = o()), and that, by contradiction, there exists a sequence of
policies {7*} such that lim sup,_, P?A (ab) = 1 — € < 1. In particular, this implies that with a staffing
vector N” that satisfies S+, i, N;* = Ae/2 + o(\) one can obtain lim sup,_, . P, (ab) = 1 — ¢ (by only
using the servers in the original staffing vector). This is a contradiction to the result of this proposition with

respectto A =1 —¢/2.

Finally, for A = 0 we wish to establish that if S5, yx N 2 > A+ o(A) then there exists a sequence
of policies {7} such that lim)_, P7i‘A (ab) = 0. This can be done by using the first part of this proposition
(for 0 < A < 1) to establish that there exists a sequence {A*} with limy_,., A* = 0 and a sequence of
policies {7*} such that P%\ (ab) < A for all X large enough. m

Lemma B.1 The function A, o(-) := A(6, p1,0) defined in (5.8) is continuous and monotonically de-

creasing in 0. Moreover, lims_, oo A(9, p1,0) = 0 and lims_, _ oo A(9, p1,0) = oc.

The proof of Lemma B.1 follows, in a straightforward manner, from the proof of Theorem 4.1 in [32].

Proof of Proposition 5.2: We prove the proposition for K = 2. The general case follows similarly. Fix

peNp
A I

and a; > 0. Suppose first that a; + az > 1. In this case, we can obtain (5.6) with A:=A(d, u11,6) by

(ax/(a1+a2))A+(E/DVA 1 _
Mok ’

—00 < § < 00, and suppose that (5.7) holds. Let ap = liminfy ..,

k=1,2. Clearly, a1 +as > 1

choosing to use only a subset of each server pool of size N ,i‘ = 1,2, and apply

the policy FSF. Corollary 4.2 then confirms that (5.6) is satisfied. Now, suppose that a; 4+ a2 = 1, and

. . . N < . N o Ny =) . .
without loss of generality, let ap = lim) .o K kA ko Letd = liminfy_ o % (again, without

- A A_ ~ -
loss of generality, assume that 6 = limy_, M\%Nz)‘). Clearly, § > §, and possibly, § = oo. If

6 > &, then one is able to obtain (5.6) by using FSF with respect to a subset of each server pool of size
~ A_ (AN _ ~

N} = M—i”m where d = %J;NW _ 4. Finally, if & = 6, then (5.6) holds if FSF is used by
Corollary 4.2.

11



Now suppose (5.6) holds for some 0 < Ay < 0o, and let —oco < §p < oo be such that A(do, p1,6) =
Ag (such ¢ exists due to Lemma B.1). Assume by contradiction that (5.7) is violated with respect to § = .
Then if (5.7) holds with respect 6 = d; for some —oco < d; < dg, then by the monotonicity of A(J)
and Corollary 4.2, FSF will satisfy limy ., ﬁPk(ab) = Ay where A1 > /g, which contradicts the

asymptotic optimality of FSF (Theorem 4.1). Finally, if (5.7) is violated with respect to any § > —oo then

the case 0 = —oo applies. This case is dealt with next.
To complete the proof, we need to examine the cases where § = —oo and § = oo. Suppose
first that § = —oo, and assume, by contradiction, that there exists a sequence of policies {7}, with

7 € II(A,N?), such that limsupy ., VAP (ab) = A < oco. Let —0o < dy < oo be such that
A(0, u1,0) = A (09 exists due to Lemma B.1). Consider another sequence of systems with server pools of
size N} = N + (60/4)V/ Nk, k = 1,2. Clearly, (5.7) holds for the new sequence, with § = §y/2. Now,
according to Corollary 4.2, if FSF is used with the new sequence of systems, then limy_, \f/\Plé‘SF(ab) =
A(8o/2, u1,6) > A. However, {7*} is assumed to obtain a scaled abandonment probability of A (asymp-
totically, over a subsequence) by using only a subset of the servers (Nf‘, NQA). This is a contradiction to the
asymptotic optimality of FSF (Theorem 4.1). Finally, if 11 N{* 4+ 2 N3 > A+ 6V A +o(v/\) forall § < oo,
then by using FSF with a subset of the servers, one can obtain that lim sup,_,., VAP*(ab) = A, for all

0< A < oo m

Proof of Proposition 5.3: Let M** be the non-negative vector on the half-plain p; My + pusMs + ... +
px My > A(1 — A) that minimizes the staffing cost C'(M), A > 0. Clearly, g M;* + pa M3* + ... +
pr M2 = M1 — A). Let N} = [Mj*], k = 1,..., K. We prove (5.14), which also implies the validity

of (5.15). The outline of the proof is as follows: We solve for M**, and C (M *A) for all A > 0, and then
[CVM)—C ()]
P

assume by contradiction that lim sup,_, ., > 0, and without loss of generality assume that

V2 2
O - cY)

R 0 =e>0. (A7)

1. Assuming first that C'(M**) < C(N**) on a subsequence {),}, we show that (A.7) implies that
for all n large enough there exists a staffing vector L*» which is feasible for the problem (5.12), but

C(L ) < C(N**), which is a contradiction to the optimality of N*».

2. Assuming now that C(N**) < (M**) on a subsequence { )\, }, we show that (A.7) implies that for
all n large enough there exists a staffing vector L*» which is feasible for the problem SP(A(1 — A)),

but C(L*) < C(M**), which is a contradiction to the optimality of M**n.

12



To find M** and C'(M**) one needs to solve the problem:

minimize ¢; M} + oMY + .. + cx MY,

v

subject to My + poMs + ... Mg
My, My, ..., Mk

A1 —A) (A.8)
0.

Y

The solution to (A.8) is as given in (5.13), and the corresponding optimal cost is:

C(M™) = (A1 — A))PE, (A.9)

where £ = min{C(Z) | p1z1 + ... + pxrx > 1}

1. Assume that (A.7) holds and that, without loss of generality, C(M*}) < C(N**) for all \. By (A.7),

we have that for all \ large enough

— €

C(N*Y) — C(M*) > AP

\V)

Let M be the solution of SP(A(1— A +7)), where 0 < 17 < A is such that (1— A+7)? — (1 —A)P <
€/(4€). Then,
C(M*) — (M
WO COD _e(a-avmy-a-ay <&

In particular, C(M*) < AP T+ C(M*) < C(N*) — AP £ for all A large enough. Let L* be such
that Lz =[M ,;\] ,k=1,2,..., K, for all \. Then, for all X large enough, we also have that

C(LY) < C(N™) — AP% < C(N*™. (A.10)

Now, note that by the results of Section 4.1 we have that, when staffing the A system with L*, and

using any work-conserving policy

lim P*ab) = A —n < A.

A—00

In particular, P*(ab) < A for all ) large enough, which implies that L* is a feasible solution of

(5.12), which by (A.10) is a contradiction to the optimality of N*X,

. Assume that (A.7) holds and that, without loss of generality, C' (]\7 ) <O (]\Zf *A) for all \. By (A.7),

we have that for all A large enough

—

C(M™) — C(N*) > Apg .

By the optimality of M**, we have that p NTA + o NG+ o+ ug N2 < A(1 — A) for all ) large
enough. By the feasibility of N**, we have that 1y N + o N3* + ... + pr N2 > A1—A)+o(N).

13



Let fA := A(1—=A)—(uy N¥+1us Ni+... 4+ g N%). Then, 2 > 0and f* = o (\). Let L* = - N**,
1INy T 24V % K

where b := % > 1. Then, one can verify that 11 L3 + poL3 + ... + pux Ly = A(1 — A). In
particular,
C(LY) > C(M*). (A.11)
Note that (b*)? = L = 1 zl—i—pL—Fol A). We now have that
) (-sds) et/ iy oA

A

CE™N — V) CE N (W —1)  CO) (pray +0/)

AP AP AP
CM) (pxclgy +o(1/N) €A1 = A (pxelgy +o(1/N)
< 0 = 0 —0 as A — o0.

In particular,

C(L™) < AP i L O(N™) < O(M*™) — Api < C(M™),

for all X large enough. This is in contradiction to (A.11). m

Proof of Proposition 5.4: Let M* be the non-negative vector on the half-plain py M7 + poMs + ... +
px My > A1 — A) that minimizes the staffing cost C'(M), A > 0. Clearly, g M;* + pua M3* + ... +
pr M2 = M1 — A). Let N} = [M;*], k = 1,..., K. We prove that |IN** — M*}|| = o()\), which

automatically shows that || N** — N*|| = o()\).

By contradiction, suppose that, without loss of generality, limy_, M =€ > 0. Let ¥ be
the optimal solution to the problem min{C(Z) | p121 + ... + g xx = 1}. Then from homogeneity, M** =
A(1 — A)Z. Now, for any subsequence { A, } with lim,,_,, )\](Vl’:ijz) = yr, we have that ¥ # ¢. The latter
follows from the contradicting assumption due to the fact that Zgzl P NN — Zﬁzl pm MM = o(\)

(by Proposition 5.1). This implies that

IC(NN)—C(M*N)| [ er[(NgA)P = (M )P
AP - P

= | (L= AP el —up)| > 0,

(A.12)

where the convergence is as A — oo and the last inequality is due to the strict convexity of C'(-) and the fact

that Eszl HEXp = Zle pryr = 1. m

Proof of Proposition 5.5: We prove the proposition for the case K = 2. The general case follows similarly.
Let M** be the non-negative vector on the half-plain i3 My + 1o Mo > X+ §+/\ that minimizes the staffing
cost C(M), A > 0. Clearly, 1y M;* + pa M3» = X + 6vV/\. Let N = [M;*], k = 1,2. We prove (5.17),

which also implies the validity of (5.18). The outline of the proof is as follows:

14



1. We solve for M**, and C'(M**) for all A\ > 0, and show that [M**] satisfies the conditions of

|C(N*Y)—C(M*)|
Ap—1/2

Proposition 5.2. Now assume by contradiction that lim sup,_, > 0, and without

loss of generality assume that

THEA) TR
OV — o)
A—00 )\pfl/z

=e>0. (A.13)

2. Assuming first that C'(M**») < C'(N**) on a subsequence {),, }, we show that (A.13) implies that
for all n large enough there exists a staffing vector L*» which is feasible for the problem (5.11), but

C(L*) < C(N**), which is a contradiction to the optimality of N*».

3. Assuming now that C'(N**») < C/(M**) on a subsequence {\, }, we show that (A.13) implies that
for all n large enough there exists a staffing vector L*» which is feasible for the problem SP(A+49 ﬁ),

but C(L*) < C(M**), which is a contradiction to the optimality of M**».

We now proceed with the details of steps 1-3.

1. To find M** and C(M**) one needs to solve the problem:

minimize ¢y MY + co MY
subjectto iy My + paMay > A+ 6V (A.14)
My, My > 0.

The solution to (A.14) is given in (5.16), and for K = 2 it satisfies

((HlCQ)l/(p_l)v (,UJQCl)l/(p_l))
(W) 700 + () /D)

(Ml*A, M§’\> = (A+6VN) -

and
. (A + 6V A)Peicy A

CM™) = A+ IVAPE. A15
e ((£5ex)V/ =) 4 (pher )/ (=D)P + VA (A.15)

In particular, []\7[ *A7 satisfies condition (5.5) of Proposition 5.2, because

M _ ) >0
M+ M3 (1)1 4 (pgey) V=1 —

2. Assume that (A.13) holds and that, without loss of generality, C(M*") < C(N**) for all \. By
(A.13), we have that for all A large enough

—

C(N*) = C(M*) > AP~

[NIE

N

15



Let M be the solution of SP(A+ (6 + n)\f/\), with n = @. Then,

oy —cwiy _,,, (14 47) - (1+5)°
AP AP
100+ /YA~ 1= p3/VE +o(1/VR)

:é/\ i
P72

= {[pn+o(1)] <

)

IS Ne

for all A large enough.

In particular, C(M?) < AP 2 -+ C(M*) < C(N*) — AP~ 3 ¢ for all \. Let L* be such that
Ly = [M], k = 1,2, for all \. Then, for all X large enough, we also have that

C(LY) < C(N*) — a3 g < O(N™Y). (A.16)
Now, note that by Corollary 4.2, we have that, when staffing the A system with I,
/\lim VA Pigp(ab) = A(8 41, 11,0) < A8, 1, 0) .
—00

In particular, VA PAgp(ab) < A(6, u, ) for all A large enough, which implies that L™ is a feasible
solution of (5.11), which by (A.16) is a contradiction to the optimality of N*A,

Before we turn to step 3 of the proof, we state and prove two lemmas.

Lemma B.2 Suppose that for all X > 0, N*\is an optimal solution of (5.11) and
*
liminfy oo yoriqs > 0. Then, i N> + s N3 = A+ 6VA + o(VA).
1 2

Proof: By contradiction, assume that either there exists a subsequence {\;} for which ule & +
,ugNQ*Aj < Aj + 0\/A; + o(y/A;), or there exists € > 0 such that ,ulNl*Aj + MQN;Aj > A+
(6 4+ €)\/Aj + o(y/A;). In the first case, by Proposition 5.2, limsup;_ ., \/EP:}] (ab) > A, for
all 7 € TI, which is a contradiction to the feasibility of N*i, for some large values of j. In the
second case, let N = N*N — & (where & is a vector of 1’s). Then C(N%) < C(N*), and
by Proposition 5.2, there exists a sequence of policies {7}, with 7 € TI(};, N*3) under which

limsup;_, \f)\PAjj (ab) < A. This is a contradiction to the optimality of N*% for all large j. W
™

Lemma B.3 Let N be a sequence of staffing vectors satisfying p1 N {\ + ugNQ)‘ < A+ 6V for some

. N} . -
—00 < § < 00, and limy WIJV)‘ = 0. Suppose that there exists a sequence of policies {7},
1 2

with m € TI(\, N*) such that lim_, o \ﬁPﬁ‘A (ab) = A, where A = A(6, ju1,0). Then, N> satisfies

LN 4 o ND > A+ 6V A+ 0 (ﬁ) . (A.17)
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An An _
Proof: Let 61 = lim,,_,oo “i/]\){i , 0 <61 < ooandletdg = lim,_o % —00 < 0y < 00,

where {\,} is a subsequence along which these limits are well defined. Without loss of generality,
assume that {\,} = {A}. We show that if the policy FSF,, is used to process the system (which by
Proposition 3.2 implies that lim sup,_, \ﬂPﬁ‘SFp (ab) < A), then (A.17) is satisfied.

We consider three different cases with respect to the value of §1: (a) 0 < &1 < oo, (b) 61 = 0 and (¢)

01 = 00, and note that since d; + do < §, we have do < 00. Denote § := 01 + 09.

Case (a) (0 < 81 < oo): First suppose that 0o > —oo. In this case, we can show, using Stone’s
criterion and the birth-and-death representation of the total number in the system given in (3.1), that

the scaled process X *(t) weakly converges to a diffusion process X (¢) with infinitesimal drift

—0\/1iz — Ox x>0
m(z) = —0\/liz — [z —3L iz < <0
iz (24 2) iz — o v <2

and infinitesimal variance o2(z) = 2us.

Let X be another diffusion process with the same infinitesimal variance and with infinitesimal drift

—6\/fiz — Oz x>0
—&/;T—,ul:c xz <0.

m(z) =

t
Then, clearly m(x) > m(x) for all z, and therefore, by Proposition 18.5 of [2] we have that X (co) 82

X (o0). In particular, /= EX*(c0) > %EXJF(OO) = A(6,p11,0). Therefore, by establishing

vz VHz
that lim)y o ﬁPF)‘SFp (ab) = \/%EX T (00), the proof is complete for this case (recalling that A is

a decreasing function of § (see Lemma B.1). Note that this latter limit holds due to the tightness and
uniform integrability results established in the proofs of Proposition 4.3 (step 2) and of Theorem 4.1

(step 2).

Next, consider the case o = —oo. We claim that in this case, limy_, o ﬁPF/\SFP(ab) = o0. To see
this, we first note that if —oco < o < o0, then by [2] along with the tightness and uniform integrability

results, we have that

A 0+ 6 0+ 6
/\Hm ﬁpﬁ\SFp(ab) = A(01, 02, p1, p12,0) := VO ay [h< Lt 2) s 2)] ,

Vo Vo

o _ 0, (5 26/ i) -0/ i) | [a h(G/e) |
where oy = 041(51,52,,[“,/12,9) = |:1 + Eh (ﬁ) N + EMT/\/ITQ)} S

with 8 := &, + do. Note that A is continuous in d and that lims, 00 A =0and limgs, oo A =00

(these limits may be obtained by a successive application of L’Hdpital’s rule). Therefore, by an
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argument analogous to the proof of Proposition 5.2 for the case § = —oo, one can show that indeed
if 9 = —oo then lim)_ \f/\Pﬁ\SFP (ab) = oo. This finally leads to a contradiction due to the
optimality of FSF,,.

Case (b) (6; = 0): In this case, if o > —oo, then one can show that the scaled process X*(t)

weakly converges to a diffusion process X (¢) with infinitesimal drift

—02/i2 — Oz x>0
—02y/f2 — por <0

and infinitesimal variance o%(z) = 2. Consider another diffusion process X with the same in-

m(z) =

finitesimal variance and with infinitesimal drift equal to

—094/ 2 — Ox x>0
—do\/th2 — iz x <0.

Then, clearly, m(z) > m(z) for all z, and hence, by analogous arguments to the ones used in case

m(x) =

(a), we have that

Jim VAPRsp (ab) > A(0g, 1, 0)

which implies by Lemma B.1 that 53 > 4, and in turn, that gy N + pua N3 > X + VA +o (ﬁ)
The case 63 = —oo may be analyzed analogously to §o = —oc in case (a) to show that if jo = —o0
then lim) \f/\P}%SFp(ab) = 00, which leads to a contradiction.

% < §, we have that neces-

sarily, o = —oo. Assume first that 61 + do = 8 > —oo. Then, in this case, the scaled process X/\(t)

Case (¢) (01 = o0): In this case, since d; + g := limy

weakly converges to a diffusion process X (¢) with infinitesimal drift

—5\//7—036 z>0
—5\/;Tg—u1x z <0

and infinitesimal variance o?(x) = 2uo. This process has the same law as the diffusion process

m(z) =

defined through (4.19) and (4.20) with 6 = 6 and = po. In particular, one can show that
limy e ﬁPﬁ\SFp(ab) = A(S, 1, 0), which, in turn, implies that 5 > 4, so that 1 N1 + pa Ny >
A+ 0V +o (ﬁ) Finally, if §; 4+ 02 = —o0, one can obtain a contradiction in the same way that

was done for cases (a) and (b). m

We now return to step 3. in the proof of Proposition 5.5.

. Assume that (A.13) holds and that, without loss of generality, C(N*") < C(M**) for all \. By
(A.13), we have that for all A large enough

[NIES

N

C(M*) = C(N*) > X~
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By the optimality of M**, we have that ui N 1*’\ + MQNQ*)‘ < A48/ for all X large enough. Therefore,
by Lemmas B.2 and B.3, we have that ulNl*’\ + MQNS)‘ >A+0VA+o (ﬁ)

Let fA := A+ 6V A — (uN; + puaN3). Then, f* > 0and f* = o (ﬁ) Let LN = b* - N*,

-1
where b 1= —ATOVA__ <1 P ) . Then, one can verify that 1 L + pia Ly = A + 5v/A. In

T OASVA—fA A5V
particular,
C(LN) > C(M™). (A.18)
A
Note that (b*)? = = - =14 p—L—~ +0(1/v/X). We now have that
(1_ )\+f5ﬁ> 1P sfia ot/ V) AV

O~ 00 _ o0y ~1) _ O (pifis +o (1))

AP35 AP~ 3 APT2
C(M*) (p A+f;ﬁ Yo <1/ﬁ>> K (/\ + 5ﬁ)p (p%af’;—jr& +o (1/\5))
= §<p<1+ﬁ> ﬁ+5+o(1)>—>0 as A\ — o0o.

In particular,

C(L™) < A3 i + O(N™) < O(M™) — A3 2 < O(M™),

for all X large enough. This is in contradiction to (A.18). m

Proof of Proposition 5.6: We prove the proposition for the case K = 2. The general case follows similarly.
Let M** be the non-negative vector on the half-plain iy M 4 o My > A+ 64/ that minimizes the staffing

cost C(M), A > 0. Clearly, iy Mj* + poMz» = X+ 6v/\. Let N} = [M;*], k = 1,2. We prove that
C(N*A)_QA
C(M*A)_Q)\
as follows:

limy 0 = 1. The asymptotic optimality of N? then easily follows. The outline of the proof is

1. We solve for C*, and explicitly express C'(M**) — C*.

2. The asymptotic optimality then follows easily from Proposition 5.5.

1. To find C*, one needs to solve the problem SP()\). Simple constrained optimization obtains:

p
c = Arercs —\PE. (A.19)

((uhea) V=D + (hey )/ o= 1) 7

If follows that
C(M*) — C* = pdAP~1/2 4 o(AP~1/2),
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2. By proposition 5.5, we have that C(N*) = C'(M**) + f*, where f* = o(\?~1/2). Therefore,

C(N*A) _ Q)\ fp&)\p_lp + O()\p—l/Q) + f)\ f>\
= = —
C(M*) — c* EpOAP=1/2 + o(AP~1/2) EPOAPTL/2 4 o(AP~1/2)

L,

as A—o0, provided that § # 0.

Proof of Proposition 6.1: The proof is analogous to the proof of Proposition 3.1 in [2]. The details are

omitted. ]

Proof of Corollary 6.1: The proof follows from Proposition 6.1 and the work conservation of FSF,,. For
the queue length, the proof directly follows from the relationship Q(¢; FSF,) = [Y (¢;FSF,) — N|* and
Q(t;m) = [Y(t;7) — N| T forall t > 0 and for a general FCFS policy in IT,,.

For the virtual waiting time, we have that, for Y := Y (oco; 7) for some 7 € II, which is FCFS and

work-conserving,
[Y-N+1]*

Vieom) 2 Y. T,
=1

where 2 denotes equality in distribution, and 7; ~ exp(Zfz1 peNi+(i—1)8), and all 7;’s are independent.
If 7 is FCFS, and not work-conserving, but 6 < 11, then we have that

Y—-N+1]*
St[ +1]

Vicsm) > Y T
i=1

. — + . . . . . . .
Since ZP; N+ T; is an increasing function of Y, the stochastic dominance of FSF, with respect to Y,

implies that FSF,, also stochastically minimizes the steady-state virtual waiting time.

Finally, the stochastic dominance of FSF,, with respect to the actual steady-state waiting time, follows

from the relationship W (oco) = V' (o0) A 7, where 7 ~ exp() is independents of V' (c0). m

Proof of Proposition 6.2: The first step in the proof is to show that if the staffing vector satisfies (6.3) and
under any work-conserving policy, we have that (6.4) is satisfied with 7 = G~1(A;) and o = (1 — G(T)) -
(61 /\9(T) ) . To see that, consider the three systems of Proposition 3.3 with Ng = LMLK Zle N |, and
No = [i Zle prNi]. By [32, Remark 4.5] we have that for both systems B and C, limy_., P(W* >
T) = (1 — G(T))® (6/9(T)). The proof then follows from the fact that W2 Sgt W) Sgt W3, where
Wﬁ, Wg, and Wg} are the steady-state waiting times for systems A, B and C, respectively. The latter is a

straightforward consequence of Proposition 3.3.
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The rest of the proof is analogous to the proofs of Propositions 5.2 and 5.1. Details are omitted. 1l
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